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Abslracl-In this paper a method for contour-based 
rigid body tracking with simultaneous camera calibration 
is developed. The method works for a single eye-in-hand 
camera with unknown hand-eye transformation, viewing a 
stationary object with unknown position. The method uses 
dual quaternions to express the relationship between the 
camera- and end-effector screws. It is shown how using 
the measured motion of the robot end-effector can improve 
the accuracy of the estimation, even if the relative position 
and orientation between sensor and actuator is completely 
unknown. 

The method is evaluated in simulations on images from 
a real-time 3D rendering system. The system is shown to 
he able to track the pose of rigid objects and changes in 
intrinsic camera parameters, using only rough initial values 
for the parameters. The method is finally validated in an 
experiment using real images from a camera mounted on an 
industrial robot. 

I .  INTRODUCTION 
A. Visual position tracking 

Tracking and estimating the position of objects using 
measurements from one or several cameras has been an 
active research topic for many years. A special case is 
tracking of the position and orientation of rigid objects. 
Many methods for rigid body tracking work by minimiz- 
ing some measure of the image space error as a function 
of the unknown position and orientation parameters. The 
minimization can for instance be performed using standard 
non-linear optimization methods such as Gauss-Newton or 
Levenherg-Marquardt. Another option is to use Kalman 
filtering techniques [I] ,  [2]. 

The position and orientation can be parameterized in 
different ways, such as roll-pitch-yaw angles [l], quater- 
nions or dual quaternions [2]. There are also various 
ways to measure the image space error, the most common 
measurements are the positions of point features [I] or 
line features [2], or point-to-contour errors [3], [4]. The 
point-to-contour method has a major advantage in that it 
does not require exact matching of features, only the error 
in the normal direction at a number of points on a contour. 
This only requires a one-dimensional search for features 
(edges). 

In [3] it is shown that not only the position and orien- 
tation can he estimated, but also the intrinsic parameters 

of the camera (focal length, aspect ratio and principal 
point). In [4], on the other hand, it is pointed out that the 
problem of simultaneously tracking position and intrinsic 
parameters is ill-conditioned when the points of the object 
lie on a plane parallel to the image plane. This causes the 
Jacobian matrix, relating errors in position- and intrinsic 
parameters to image errors, to lose rank. Because of noise, 
this problem extends also to positions where the relative 
depth of the object points in the camera is small. A mnlti- 
camera tracking system 1s suggested as a possible solution 
to this problem. 

B. Quaternions and dual quaternions 

Unit quaternions [ 5 ] ,  [6], [2] is a common represention 
of rotations. Similarly toJeal quaternions, dual quaternions 
are defined as q = (q0, TI), where 4: = qO+ eq" is a dual 
number with &* = 0, and where c = 6 +&a' is a dual 
vector. The dual quaternion operations are 

i1,+42=(4?+4;>61+62) (1) 

41% =(4?4;-a:6*,&a2+4qa, +a, xa,,. (3) 

kq = (kgo,k4)  (2) 

We will often write the dual quaternion as the sum of the 
real and dual parts q+&q'. Its norm is given by llqllz = q3 
with q = q + &q', and the unity conditions become 

qq=1 ,  qq'+q'q=0. (4) 

Unit dual quaternions can he used to represent general 
rigid transformations including translations, similarly to 
the way rotations can he represented by real quaternions. 
It can he shown, see [6], that the rigid transformation of a 
line through the point @, represented by its direction fi and 
moment m = 6 x fi, is given by 4(n + &m)q, where fi and 
6 are expressed as quaternions n = (0,fi) and m = (O,m), 
respectively. The dual quaternion itself is q + eq', where q 
is the quaternion describing the rotation, and where q' = 
tq/2 with t = (O,?) being the translation. 

C. Screws and robot motion constraint.$ 
Screws: According to Chasles' theorem [5] ,  a general 

rigid transfornation can be modeled as a rotation ahout 
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Fig. 1. Two different positions of the robot and relevan1 transformations. 

an axis not through the origin and a translation along 
the rotation axis. The parameters of the screw are the 
direction 6 and the moment 1 of the screw axis line, 
the rotation angle 0, and the translation (pitch) d along 6. 
Together with the constraints iirii = 1 and 6'1% = 0 these 
parameters constitute the six degrees of freedom of a rigid 
transformation. It can be shown that the dual quaternion 
corresponding to the screw with parameters 6,  61, 0 and 
d can be written as 

q = (cOs(e/2),sin(e/z)i), ( 5 )  
where the dual angle is 6 = 0 + &d. and the line is given 
by I=6+&. 

Robot motion constraints: The well known hand-eye 

- 
equation 

with A = AT'A, and B = B,B;' from Fig. 1, can be 
written using dual quaternions as 

AX = XB, (6) 

g = qaq. (7) 

In [6], it is shown that the scalar parts of i and 6 a e  

1 1 ". - 

2 2 
1 .  
2 

equal, which can easily be shown as follows 

Sc(H) = - ( i i + H )  = -(qbq+qbq) = (8) 

= -q(b+b)q =Sc(b)qq=Sc(b) 

In terms of the screw parameters, Eq. (8) means that the 
angle and pitch of the camera screw and the robot end- 
effector screw must be equal [61. This is known as the 
Screw Congruence Theorem, see [71. 

D. Pmblem formulation 

The purpose of this paper is to develop methods for 
real-time rigid body tracking with simultaneous calibration 
and tracking of intrinsic parameters. We intend to show 
that a dual quaternion parameterization of the object pose, 
together with measurements of the robot motion, can be 
used to formulate constraints on the estimated motion. The 

constraints can be expressed as linear equations in the 
states. 

11. MODELING 

Consider a manipulator with.a single camera attached 
to its end-effector, viewing a stationary object. We assume 
that only rough initial values of the intrinsic camera 
parameters and the positiodorientation of the ohject are 
known, but that a CAD model of the object is available. 
The motion of the robot end-effector is related to the 
motion of the camera through the hand-eye equation (6), 
where the relative sensor-actuator pose X is unknown. 
We assume that the camera can be modeled as a four 
parameter pinhole camera 

with 1 corresponding to the depth of point ( X , Y , Z )  in the 
camera. The parameters to he estimated are f ,  y, uo, vo. 
and some parameterizations of R E  SO(3) and t E R3. 

A. Extended Kalman Filtering (EKF) 

The motion of the system can he written as a non-linear 
discrete-time dynamic system 

Xk+l = f(4 (10) 
dP,,X,) = 0 (11) 

with xk t R" the state of the system, pk E R"' a vector 
of measured outputs, f a known function describing the 
system dynamics, and g a known function relating the 
state to the output. The state vector is chosen as 

where q. q' E E? is the vector representation of the ohject- 
camera dual quaternion q = q + &q', and v, o E R3 are 
the velocity and angular velocity. 

Measurement model: In the function g(p,,x,) we have 
all the measurement equations, and the constraints on the 
state vector. For a point feature, denoted by index i, the 
measurement would he its image coordinates, denoted by 
pk,r = ( u z ,  v , ) ~  d"'h,(x), which is known from Eq. (9) to 
be related to the states by the equations 
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where K is the matrix of intrinsic parameters in Eq. (9). 
The image space coordinates are given by 

and included by linearizing around the prediction xpl, 
which gives us two linear equations in q and q' 

hi(x) = ( :: ) = ( %Ihi s i p i  ) (14) 

The rotation matrix can be calculated directly from the unit 
quaternion q, and the translation can he obtained from q 
as 

t = 2q'q. (15) 

If pk,i are the measured image coordinates, we can write 
the measurement equation for this point as 

gi(Pk>i,Xk) =Pk,i-hi(Xk) = o  (16) 

This equation can be linearized around the predicted state 
x!), which gives the approximation 

gi(Pk,i>xk) !2 gi(Pk,j$xp))+ %((Pk,i)Xfl)(Xk-Xtl) 

= P ~ , ~ - ~ ~ ( X ~ ' ) + ~ ( P , , ~ , X ~ ) ) ( X ~ ; - X ~ ) )  Jg. = O  (17) 

In our system however, the only image measurements 
available are the point-to-contour error in the predicted 
(local) normal direction of the contour, which can be 
approximated with the normal component of the error 

$1 = nT(pk,i - hi(xk')) (18) 

Eq. (17) can then be rewritten as 

0 = gj"l(pk,i,xk) =nT(pk,i-hi(x!)))+ 

(19) 

Yk,i - ' k , i X k  (20) 

+ "i 7 ~ ( p k , j > x f ) ) ( x k - x ~ l )  Jg; 

which can be expressed on linear form as 

The Jacobian of of hi can be calculated by direct differ- 
entiation of Eq. (13) with respect to the elements of x, 
combined with the equations 

where lij denotes the differentiation of lii with respect to 
the relevant quantity. 

The constraints on the dual quaternion in Eq. (4) can 
be written on vector form 

qrq=1,  q'q'=O (22) 

1 0 q(PITq(P1 +2q(P)r(q- q(P)) (23) 
0 !2 - q ( ~ ) r q ' ( ~ )  +q'(p)rq+ q(P)r q ,  (24) 

which can be included among the output equations. 
Including the robot motion constraints from Eq. (8) is 

also straightforward. Consider two different robot poses, 
represented by the the dual quaternions qBl and qB,. 
and the corresponding relative object-camera poses qA 
and qA . We know from Eq. (8) that the scalar part: 
of qA = aA2QAAI and qB = qB,GB, must be equal. Define 
the scalar part of the relative robot pose qs as 4F) = 

+&@I, which can he calculated directly from the 
forward kinematics of the robot. The scalar part of q,, can 
be seen from Eq. (3) to be qi,qA, +&(I&;qA2+dlI& ), 
with the quaternions written on vector form. Setting the 
scalar parts equal gives us two more linear equations 

2 -  

daT,qA, = 4F) (25) 

d4:qA,id,d4, = dfl> (26) 

which can also he added to the system measurement 
equation, which can now he formulated as 

Yk = 'kXk 'k (27) 

where 6, is a sequence of uncorrelated Gaussian noise, and 
the vector yk and time-varying matrix C, are obtained by 
stacking equations (19) for each edge search point, and 
adding constraints from Eq. (23x24)  and (25)-(26). Any 
number of robot motion constraints can be added to the 
measurement equation. In general each position used gives 
us two independent constraints on the pose, meaning that 
three positions are sufficient to completely constrain the 
estimated pose. This can be compared to the problem of 
hand-eye calibration, where it is well known that three 
positions are necessary for the calculation of the hand-eye 
transformation [6]. 

State dynamics model: In the function f in the state 
update equation (1 I), we update the estimate of the dual 
quaternion using the equations 

(28) 
1 1 

1. 1 ,  1 1 
2 2 2 4  

q =  Twq' ,(o,Gk)q 

(29) q' = - tq+- tq=-vq+- toq  

where the details can be found in [2].  Discretizing 
Eqs. (28) and (29) using sample time h, the noise-free 
state update equation becomes 

I 0 0 $Qk 

0 0 1  (30) 
0 0 0  
0 0 0  
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Fig. 2. 
hidden features have been removed. 

where K = ( f ,  7, uo, yo) , and where the matrices Qk and 
T, correspond to the quaternion multiplications with qk = 
(40,41,42,43) and t k =  ( o , t x , t y , t z )  =2q;qk in 
and (29). Adding uncorrelated Gaussian noise &k, Eq. (30) 
can be written as 

xk+, = Akxk+Ek. (31) 

The linearized equations in (30) and (27) can then be 
used to recursively update the state estimate using an 
Extended Kalman filter. The equations for the EKF can 
for instance be found in [SI, [l], [21. 

B. Object modeling and feature selectionAocalization 
The object models consist of a number of planar sur- 

faces connected at their edges, see Fig. 2. No assumptions 
are made about the shape of the planar surfaces, although 
in the experiments we use an object with only straight 
edges. At each step in the tracking visible object edges 
are selected, based on the predicted object pose and 
a pre-generated Binary Search Partitioning (BSP) tree 
description of the object, see [9]. The BSP tree recursively 
divides the surfaces in the object into “in front” and “be- 
h i n d ,  until we have a perfect front-to-back ordering. The 
surfaces are then processed front-to-back, each surface is 
clipped against all surfaces in front of it, and a number 
of search points are selected on each visible edge. The 
image position measurements are then obtained from a 
one-dimensional edge localization in the local edge normal 
direction at each point. The edges are found from the 
convolution with a differentiated Gauss kernel, at three 
different scales. To increase robustness only points where 
a clear single edge is detected are used by the tracker. 

Example of image with superimposed object madel, where 

T 

111. EXPERIMENTS 

The algorithm is first evaluated in simulations using im- 
ages generated using an image-generation program based 
on OpenGL, making it possible to simulate phenomens 
such as occlusion, specular reflections and noise from a 
cluttered background. 

5b 50 I b o  IiO 200 250 3hO 3b0 

0 50 100 150 200 250 X U  350 

d 3  
2.5 i 

0 50 1W 150 200 250 300 350 
Time [sample] 

Fig. 3. Trac!hg of 8. The diagram shows the real orientation (solid), 
estimated onentation using four consminll (doshed), and estimated 
orientation using W O  constraints (dotted.) 

The experiments are performed in two steps. The tracker 
is initialized with a poor initial guess for the intrinsic 
camera parameters, which is used to get a very rough 
estimate of the object-camera pose. We then run the 
tracker for a little over a second with the robot stationary 
to get a good initial estimate of the state. During the 
initialization phase the robot motion constraints are not 
used, since they would require a good initial guess for the 
object pose. When the state estimate has converged, the 
tracker is started, using the initial estimate of the state 
as qA to constrain the position estimate according to 
Eq. ( h t ( 2 6 ) .  

IV. EXPERIMENTAL RESULTS 

In this section the presented methods will he validated. 
There will be a comparison between when only using 
Eqs. (23) and (24) and when also using Eqs. (25) and (26). 
The first will be referred to as the two constraint case and 
the latter as the four constraints case. In the study we 
have looked at the mean of the absolute estimation error, 
which will he denoted with A. The number of edge search 
points varied between 100 and 250 during the motion . 

A. Visual position tracking 

Figs. 3 and 4 show the result of tracking the orientation 
e and the translation t. Both with four and with two 
constraints the tracking of the position is satisfactory. 
There are some differences in the tracking accuracy, see 
Table I. We see that with four constraints the mean error in 
the estimation of 0 and t is reduced. Table I shows results 
using different conditions and number of constraints in the 
estimation of the object pose. For case 1 the only noise 
is from the image measurements. For case 2 extra noise 
E N(0,3) was added. The initial state covariance, Po, and 
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" " [ ,  , , , , -  

-"DO 50 100 150 MO 250 3W 350 

-150 
0 50 100 150 200 250 3W 350 

400' I 
0 50 100 150 200 250 3W 350 

Time [sample] 

Fig. 4. Tracking of t .  The diagram shows the real translation (solid), 
estimated vanslation using four consmints (dorhed), and estimated 
translation using two constrain& (dotled.) 

state noise covariance, Q, for case I and 2 were set to 

Po = diag(O.l'.l,,, 50' 0.1' 40' 40' O,,,) 

Q = diag(OlX8 3' 0.01' 0.2' 0.2' 0.1'~l lx6) .  

The output noise variance was set to E(&;) = 1 in case 1 
and 3 and to E(&;) = 32 in case 2 and 4. 

B. Vaqing focal length. 

Fig. 5 shows results of when the focal length was varied 
between 300 and 600 pixels. Still the tracking of the 
focal length was successful, and the effect on the depth 
estimation was negligible. 

C. Incorrect initial values 

Figs. 6 and 7 show results of when the tracker starts with 
incorrect initial values, both for the intrinsic parameters 
and for the pose of the object. After approximately 30 
samples the intrinsic parameters and the position have 
converged to their correct value. The intrinsic camera 
parameters in this experiment were f = 400, y = 1.0, 
uo = 320, and vo = 240. 

TABLE I 
MEAN TRACKING ERRORS USING TWO AND FOUR CONSTRAINTS 

2W' I 
0 50 100 150 200 250 3W 350 400 

1 
0 50 100 150 ZW 250 3W 350 4W -20' 

A 600 

Y 
450 

0 50 1W 150 200 250 300 350 400 
Time [sample] 

Fig. 5. Experiment where f is varying between 300 and 6W pixels. The 
diagram shows the red values (so/*, estimation using four consvaints 
(dashed), and estimation using two consmints (doned.) 

2 8 0 0 w 5 0  
Time [sample] 

210 
0 50 1M 150 

Time [sample] 

Fig. 6. Transient responses of estimates from incomt  initial values. 

D. Real world experiments. 

Fig. 8 show the results of an experiment using images 
from a Sony DFW-V300 640x480 pixels digital camera, 
see Fig. 2 for an example image. The camera was mounted 
on an ABB Irh2000 industrial robot. The top figures 
show the estimated focal length and principal point, which 
should he compared with the values f = 1020 pixels, 
U - 344 pixels and vo = 215 pixels from an offline camera 
calibration. The lower figure shows the estimated position 
of the camera, where the lines indicate the direction of the 
camera z-axis. 

0- 

V. DISCUSSION 

The use of the robot motion constraints showed an 
improvement in the estimation of the parameters, even 
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previously been demonstrated. The fact that we are able 
to track even during changes in the intrinsic parameters 
is an advantage, for instance in vision-based control. This 
gives the practical advantage of allowing the system to 
dynamically change its field of view, allowing a wider 
range of motions. 

One apparent drawback with our EKF-based algorithm 
is that the updating of the state covariance estimates is 
very time consuming when the number of outputs is large. 
Effectively, this limits the feasible number of edge search 
points to a value which is lower than for optimization 
based methods. The effective sampling interval varied 
between 66 ms and 91 ms during the simulation, where 
the variation can be explained by the varying number of 
search points. With some optimizations it is reasonably to 
assume that 30 frameslsecond is achievable for the real- 
world system, especially since there is no need for the 
relatively time consuming 3D rendering. 

Fig. 7. Transient responses of estimates from incorrect initial values. 

VI. CONCLUSION 
We have developed methods for real-time rigid body 

tracking with simultaneous calibration and tracking of 
intrinsic parameters. We have shown that a dual quaternion 
parameterization can be used to formulate linear robot 
motion constraints on the estimated states, and that the 
extra constraints can help to reduce the tracking error. The 
method has been validated in simulations and experiments 
on an industrial robot. 

::m 
,m ’_ 
m .”, 

0 ~ 4 m ~ ~ 1 -  ’%  m .m m - I- 
sa 

sample sample 

Fig. 8. 
real world experiment. 

though the hand-eye transformation was unknown. Ad- 
ditionally, it is also intuitively reasonable that the extra 
constraints should improve the robustness of the tracking 
against other error sources, such as errors due to the 
edge detector locking on to false edges. Experiments with 
multiple constraints show that three or more positions will 
constrain the position estimation completely, allowing for 
tracking of very fast motions. 

Estimated focal length, principal point, and trajectory in the 
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