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Stress calculations on multiply connected domains

Johan Helsingy and Anders JonssonzyNumerical Analysis, Center for Mathematical Sciences, Lund University, Box 118, S-221 00 Lund,

Sweden; andzDepartment of Solid Mechanics, Royal Institute of Technology, S-100 44 Stockholm,
Sweden.

The outstanding problem of finding a simple Muskhelishvili-type integral equa-

tion for stress problems on multiply connected domains is solved. Complex po-

tentials are represented in a way which allows for the incorporation of cracks and

inclusions. Several numerical examples demonstrate the generality and extreme

stability of the approach. The stress field is resolved with arelative error less than10�10 on a large, yet simply reproducible, setup with a loaded square plate con-

taining 4096 holes and cracks. Comparison with previous results in the literature

indicates that general purpose finite element software may perform better than many

special purpose codes.

Key Words:multiply connected domain, cracks, holes, stress concentration factor, stress intensity

factor, Fredholm integral equation, fast multipole method

1. INTRODUCTION

The problem of solving the equations of linear elasticity on2D multiply connected do-
mains has received attention for almost a century. Early work dealt with formulations of
integral equations and analytical solutions. See the textbooks of Mikhlin [29], Muskhe-
lishvili [30], and Sokolnikoff [39]. Later work focus more on specialized numerical
techniques. See Refs [3, 4, 5, 6, 18, 27, 43] for recent examples. Parallel to this devel-
opment there has been a steady improvement of general purpose finite element packages
which, among other things, can solve for stress on multiply connected domains. There has
also been progress on fast solvers for large-scale problems[8].

Despite the apparent simplicity of the stress problem and the advances mentioned above,
numerical results in the literature are not always correct.There is yet no code which
combines error control, rapid execution, and sufficient flexibility as to accurately solve
for stress in common setups such as rectangular plates with alarge number of cracks,
holes, and inclusions. There may be many reasons for this. Stress fields in corners
and around crack tips have complicated asymptotic shapes. Special basis functions are
needed for good resolution. Further, integral equation based approaches are burdened with
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2 HELSING AND JONSSON

some confusion regarding the theory. There are different opinions about what potential
representationsand equations are the best in differentsituations. Classic authors [29, 30, 39]
recommend an approach based on the Airy stress function and the Sherman–Lauricella
representation. They argue against the Muskhelishvili representation, despite its efficiency
for crack problems. Some modern authors, too, prefer to workwith the Airy stress function
and use real or complex variables and a variety of representations and equations [4, 8,
11, 40, 41]. Others prefer primitive variables [22, 27, 31] or a mix of variables [3] or
techniques [26]. Some authors prefer hypersingular integral equations [32, 37].

This paper presents a rapid, stable, and flexible algorithm for the stress problem on
multiply connected domains. The algorithm is based on a Fredholm second kind integral
equation derived solely from the Muskhelishvili potentialrepresentation. The use of one
single representation increases the flexibility of the codeand facilitates the incorporation of
fast solvers. The fact that the unknown quantity is the limitof an analytic function makes
the construction of special corner quadratures easy.

The paper is organized as follows: Section 2 states the stress problem and explains the
Muskhelishvili representation. For brevity, finite and infinite domains are treated in the
same equations. Section 3 lists relations between the integral operators which form the basis
of our scheme. These relations are useful for proving equivalence and uniqueness. Section 4
treats the exterior stress problem for one hole. We compare different integral equations and
prove our main result – that a simple Muskhelishvili equation can be constructed. Sections 5
and 6 extend the result of Section 4 to encompass several holes, cracks, and inclusions.
The paper ends with Section 7, which gives details about our implementation and presents
numerical results. Section 7 reviews a number of small-scale setups. The reason for
studying these setups was that we wanted to be confident that our code reproduced previous
results before venturing into large-scale examples. As it turned out, some previous results
were of poor quality. We were forced to do several independent tests with commercial
finite element software to establish correct benchmarks.

2. PROBLEM STATEMENT AND POTENTIAL REPRESENTATION

A finite or infinite, linearly elastic, specimen occupies a domainD. The outer boundary
of the specimen, if it exists, is denoted�0 and is given positive (counter-clockwise)
orientation. The domainD is multiply connected. InsideD there are a numberNh of holes
and a numberN
 of cracks. The holes have boundaries�j , j = 1; 2; : : : ; Nh, and are given
positive orientations. The cracks are denoted�j , j = Nh + 1; : : : ; Nh + N
. The crack�j starts at crack tip
js and ends at crack tip
je. The union of all boundaries is�. The
left and right sides of� are distinguished with superscripts(+) and(�). The area of the
region enclosed by contour�j isAj . For cracks, it is convenient to chooseAj = ��i=2.
Traction(tprx ; tpry ), that is, stress on the boundary, is prescribed at�+0 in the case of a finite
domain. Stress��pr is prescribed at infinity in the case of an infinite domain. Theholes and
the cracks are free of stress. The exterior of the domain is denotedD0. In passing, we also
treat the more general problem of a specimen withNin
 elastic inclusions.

Let U(x; y) denote the Airy stress function. SinceU(x; y) satisfies the biharmonic
equation everywhere, except for at�, it can be represented asU(x; y) = <e f�z�(z) + �(z)g ; (1)
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where the potentials�(z) and�(z) are possibly multi-valued analytic functions of the
complex variablez = x + iy. In the stress problem, requiring that the displacements
be single-valued, see (12) below, and with certain conditions imposed on the applied
external forces, see (14,15) below,�(z) and�0(z) are single-valued,�00(z) is unique, and�0(z) is determined up to an imaginary constant inD, see Paragraph 40 of Mikhlin [29].
For a thorough discussion of the complex variable approach to elasticity problems, see
Refs. [29, 30, 33, 39]. For now, it is sufficient to observe a few relations that link the
complex potentials to quantities of physical interest. Thetractiont(z) = tx(z) + ity(z)
along a curve
 ist(z) = n(z)�(z) + n(z)�(z)� n(z) z�0(z)� n(z)	(z) ; (2)

where�(z) = �0(z), 	(z) = �00(z), andn(z) = nx(z) + iny(z) is the outward unit
normal vector on
. The components of the stress tensor in the material are�xx + �yy = 4<ef�(z)g ; (3)�yy � �xx � 2i�xy = 2�z�0(z) + 	(z)� : (4)

A natural starting point for stress problems is to representthe potentials�(z) and	(z)
in the form of Cauchy-type integrals�(z) = 12�i Z� �
(�) d�(� � z) + �2 ; z 2 D [D0 ; (5)	(z) = 12�i Z� ��(�) d�(� � z) � 12�i Z�0 �ntpr d�(� � z) + � ; z 2 D [D0 ; (6)

where
(�) and�(�) are unknown layer densities on�, and where�(�) is a weight which
on contours is given by�(�) = 1 ; � 2 �j ; j = 0; 1; : : : ; Nh ; (7)

and on the cracks is given by�(�) = ((� � 
js)(� � 
je))� 12 ; � 2 �j ; j = Nh + 1; : : : ; Nh +N
 : (8)

In (8) the weight�(�) is the limit from the right (relative to the orientation of the crack) of
the branch given by a branch cut along�j andlim�!1 ��(�) = 1: (9)

Further in (5,6),tpr = tprx +itpry is the prescribed traction at�+0 in the case of a finite domain,
and the constants� and� are related to the stress at infinity��pr = (�prxx; �pryy; �prxy) in the
case of an infinite domain. Three fundamental stresses are��prI = (1; 0; 0), ��prII = (0; 1; 0),
and��prIII = (0; 0; 1). They are obtained by choosing� = 1=2 and� = �1=2,� = 1=2 and� = 1=2, and� = 0 and� = i. Note that� always is real and that we have omitted the
argument� fromn(�), �(�), andtpr(�) in (5,6).
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The potential�(z), represented as in (5), will not be unique for the stress problem on
a multiply connected domain. As a consequence, we can not expect integral equations
derived from this representation to have unique solutions.This is discussed in detail in
Paragraph 40 of Mikhlin [29]. Two things need to be fixed. First, the potential�(z) can
only be determined up to an imaginary constant inside each contour. By adding a suitable
uniqueness condition, for example,Pj�+ = 0 ; j = 0; 1; : : : ; Nh ; (10)

where�+ is the limit of�(z) at�+, and where the operatorPj is a mapping from�j toR, defined by Pjf = � 12Aj<e(Z�j f(�)�� d�) ; j = 0; 1; : : : ; Nh ; (11)

this indeterminacy is removed. Second, the representation(5) for �(z) may allow for an
arbitrary term corresponding to a multi-valued�(z) and to multi-valued displacements. By
requiring Qj�
 = 0 ; j = 0; 1; : : : ; Nh +N
 ; (12)

whereQj is a mapping from�j to C , defined byQjf = � 12Aj Z�j f(�) d� ; (13)

in combination with that the applied load satisfiesPj �ntpr = 0 ; j = 0; 1; : : : ; Nh +N
 ; (14)Qj�ntpr = 0 ; j = 0; 1; : : : ; Nh +N
 ; (15)

we ensure that�(z) has no simple pole inside�j , that�(z) is single-valued, that displace-
ments are single-valued, and that the stress problem has a unique solution in terms of�(z)
and	(z).

The representations for�(z) and	(z) of (5,6) guarantee that the equations of elasticity
are satisfied everywhere inD[D0. The representations also satisfy the boundaryconditions
at infinity for an infinite domain. It remains only to find
(�) and�(�) which satisfies the
uniqueness conditions (10,12) and the boundary conditionsat the holes and at the crackst(z) = 0 ; z 2 ��j ; j = 1; 2; : : : ; Nh +N
 ; (16)t(z) = 0 ; z 2 �+j ; j = 1; 2; : : : ; Nh +N
 ; (17)

and for a finite domain also t(z) = 0 ; z 2 ��0 ; (18)t(z) = tpr ; z 2 �+0 : (19)

If we now demand that the traction jump a quantitytpr as�0 is crossed and that the traction
be continuous as�j , j = 1; 2; : : : ; Nh + N
, is crossed, one can express�(�) of (6) in
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terms of
(�) of (5). The potential	(z) of (6) assumes the form	(z) = � 12�i Z� �
(�) d��(� � z) � 12�i Z� ���
(�) d�(� � z)2 � 12�i Z�0 �ntpr d�(� � z) + � ;z 2 D [D0 : (20)

A representation of (z), which is related to (20) by partial integration, is the choice of
Muskhelishvili for stress problems. See Paragraph 98 of Ref. [30].

3. OPERATORS AND RELATIONS

In the following sections we shall frequently use a number ofintegral operatorsM1,M�1 , M01 , andM3. Here we define these operators, together with some useful relations
involving the operatorsPj andQj of (11,13).

The Cauchy singular operatorM1, acting on a functionf(z), is given byM1f(z) = 1�i Z� f(�) d�(� � z) ; z 2 � : (21)

The conjugate ofM1 is denotedM1. The part ofM1 which describes self-interaction, and
which is of interests for cracks, is denotedM�1M�1 f(z) = 1�i Z�j f(�) d�(� � z) ; z 2 �j ; j = Nh + 1; : : : ; Nh +N
 ; (22)

and the compact remainder ofM1 is denotedM01M01 f(z) = (M1 �M�1 ) f(z) ; z 2 �j ; j = Nh + 1; : : : ; Nh +N
 : (23)

The compact operatorM3 is given byM3f(z) = 12�i �Z� f(�) d�(� � z) + �nn Z� f(�) d�(�� � �z)+ Z� f(�) d��(�� � �z) + �nn Z� (� � z)f(�) d��(�� � �z)2 # ; z 2 � : (24)

The operatorsPj andQj satisfy the following relationsPji = 1 ; j = 0; 1; : : : ; Nh ; (25)Qji�z = 1 ; j = 0; 1; : : : ; Nh ; (26)PjM1f = PjM3f ; j = 0; 1; : : : ; Nh ; (27)Q0M3f = �Q0f � Nh+N
Xj=1 2AjA0 Qjf ; (28)QjM1f = �Qjf ; j = 1; 2; : : : ; Nh ; (29)QjM3f = �Qjf ; j = 1; 2; : : : ; Nh ; (30)
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wheref is square integrable function. One can, further, showP0 �nnM1n�nf = �P0f � Nh+N
Xj=1 2AjA0 Pjf ; (31)Pj �nnM1n�nf = �Pjf ; j = 1; 2; : : : ; Nh ; (32)Q0 �nnM1n�nf = �Q0f � Nh+N
Xj=1 2AjA0 Qjf ; (33)Qj �nnM1n�nf = �Qjf ; j = 1; 2; : : : ; Nh : (34)

On the cracks we have [16]Qj� = 1 ; j =; Nh + 1; : : : ; Nh +N
 ; (35)Qj�M�1 ��1f = 0 ; j = Nh + 1; : : : ; Nh +N
 ; (36)M�1 �M�1 ��1f(z) = f(z) ; z 2 �j ; j = Nh + 1; : : : ; Nh +N
 ; (37)M�1 ��1M�1 �f(z) = f(z)�Qj�f ; z 2 �j ; j = Nh + 1; : : : ; Nh +N
 : (38)

Finally, we observe that�(z)+ can be expressed in terms ofM1 as�+(z) = 12 (I +M1) 
(z) + �2 ; z 2 � ; (39)

and that the uniqueness condition (10) can be written asPj (I +M1) 
 = 0 ; j = 0; 1; : : : ; Nh : (40)

4. ONE HOLE IN AN INFINITE DOMAIN

Let us first consider one hole in an infinite domain. There certainly exist classical integral
equations for this problem. The most famous may be the Sherman–Lauricella equation,
based on the potentials�(z) and (z), see Paragraph 56 of Mikhlin [29]. The Sherman–
Lauricella equation does not satisfy (17,18). It also has three undesirable properties: First,
it involves the arbitrary placement of points which affectsits stability, see Figure 2 of [8]
and [13]. Second, it can not easily be extended to setups involving cracks and inclusions.
Third, it solves for an unknown density which is related to�(z) on � via the Cauchy
singular operatorM1. This may complicate post-processing [25]. In this sectionwe
derive more flexible and efficient integral equations for thehole problem, based on the
representations (5,20) for�(z) and	(z). The unknown density is the limiting value of�(z) on� itself. The representations (5,20) have previously, and successfully, been used
in other elastostatic contexts [13, 14, 16, 40]. In Sections5 and 6 we shall extend their use
further.

4.1. A straight-forward integral equation
Starting with the representations (5,20) for�(z) and	(z), we demand that the traction

on� be zero so that the conditions (16,17) hold. This leads to theintegral equation(M1 �M3) 
(z) = �nn �� � � ; z 2 � ; (41)
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which has to be solved along with the uniqueness conditions (12,40). This system is not
good for numerics. The equation (41) is of Fredholm’s first kind and it is not obvious how
to implement (12,40). We shall now show that (12,40,41) are equivalent to the following
single integral equation of Fredholm’s second kind�I �M1 (M3 + i�zQ1) + i2P1(I +M1)�
(z) =M1 � �nn �� � �� ; z 2 � : (42)

This equation is simply obtained by a linear combination of (12,40,41) and use of thatM1
is its own inverse.

To show equivalence we applyM1 to the left in (42) followed by application ofQ1 and
use of (26,29,30). This gives back (12). Application ofM1 to the left in (42) and use
of (12) followed by application ofP1 and use of (25,27) gives back (40). Use of (12,40)
and application ofM1 in (42) gives back (41).

4.2. A Sherman bimaterial type integral equation
It will be shown in Subsection 7.2 that (42) can lead to very stable numerical algorithms.

One drawback is that (42) contains the composition ofM1 with M3. If the integral
equations is discretized and solved iteratively, each iterations step will involve two matrix-
vector multiplications. In this subsection we shall derivean integral equation which is free
from this problem. The treatment closely follows Sherman [38]. See also Refs. [9, 16, 40].

Assume that the hole is replaced by an elastic inclusion. Theinfinite domainD has elastic
bulk and shear moduli�1 and�1. The inclusionD0 has moduli�2 and�2. Sherman [38]
derived an integral equation for this problem based on continuity of the integral of traction
and of the displacement at�, and on a representation for�(z) and (z) related to our
representations (5,20) for�(z) and	(z) by partial integration. For our density
(z),
Sherman’s equation reads(I + d1M1 + d2M3) 
(z) = �d1�� d2 �nn ��; z 2 � ; (43)

where the bimaterial parametersd1 andd2 are given byd1 = � 1�2 � 1�1� =� 1�2 + 1�2 + 1�1 + 1�1� ; (44)d2 = � 1�2 � 1�1� =� 1�2 + 1�2 + 1�1 + 1�1� : (45)

It is easy to see that the solution
(�) to (43) satisfies a uniqueness condition similar to (40),
namely P1 (I + (d1 + d2)M1) 
 = 0 ; (46)

and that the uniqueness condition (12) is satisfied ford1 + d2 6= 1.
Let now�2 and�2 approach zero in such a way that their ratio is constant. The inclusion

has become a hole. We get d1 = �2�2 + �2 ; (47)
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and observe thatd1+ d2 = 1. The uniqueness condition (46) is now the same as (40). The
uniqueness condition (12) is no longer satisfied. We therefore replace (43) by(I + d1M1 + d2M3 + i�zQ1) 
(z) = �d1�� d2 �nn �� ; z 2 � ; (49)

which can be used both for elastic inclusions and for holes. Application ofQ1 to the left
in (49) and use of (29,30) shows that (49) is the same as (43) and (12). Note thatd1 is a
free parameter. Numerical experiments indicate that the quality of the solution to (49) is
rather insensitive to the choice ofd1. The choiced1 = 0:25 seems to be generally good.

An advantage with (49), over Sherman’s original equation [38], is that (49) is based on
the potentials�(z) and	(z), simply related to stress via (3,4), while Sherman’s original
equation is based on the potentials�(z) and�(z), related to stress via differentiation.
We prefer (49) since stress is a quantity of more fundamentalinterest than displacement
in fracture mechanics, and since differentiation is an ill-conditioned numerical operation.
Should we wish to obtain displacements, we could always use integration, which is a
well-conditioned numerical operation.

4.3. Muskhelishvili-type integral equations
The solution
(z) to (42) and to (49) corresponds, because of (10) and (17), to a�(z)

which is zero inside the holeD0. Jump relations in (5) give(I +M1) 
(z) = �� ; z 2 � ; (50)(I �M1) 
(z) = �2��(z) + � ; z 2 � : (51)

We see, by adding these equations, that
(z) is minus the outside limit of the analytic
function�(z) on�. One can therefore view (42) and (49) as an integral equations for�(z).

Fredholm second kind integral equations with�(z) on� as the unknown variable, with
simple (not composed) compact operators on the left hand side, and with possibly singular
operators on the right hand side are known as “Muskhelishvili equations”. An example
is (56), below, for the interior stress problem. Muskhelishvili equations are useful. They
solve for the unknown�(z) which is directly related to quantities of physical interest, such
as the hydrostatic pressure of (3). Furthermore, on polygonal domains, they allow for the
construction of special corner quadratures [14]. The stress in corners has a non-trivial
asymptotic behavior, which is remarkably simple to expressfor �(z) [14, 42].

Muskhelishvili equations are considered difficult to construct and to analyze on multiply
connected domains. They are therefore not recommended in the classic literature. See p.
398 of Muskhelishvili [30], p. 314 of Sokolnikoff [39], p. 249 and p. 255 of Mikhlin [29],
and p. 158 of Parton and Perlin [33]. To illustrate the problem, consider again (41).
It is tempting to replace the singular operatorM1 in (41) by the use of (50) and in this
way, somehow, obtain a Fredholm equation. Attempts in this direction easily lead to
equations with complicated null-spaces and auxiliary problems may have to be solved.
As a consequence, the representation for	(z) of (20) has been rejected in favor of a
representation leading to the Sherman–Lauricella equation, whose undesirable properties
are listed in the first paragraph of this section.

Perhaps one can say that Sherman’s equation of the form (49),for holes, is a Muskhelish-
vili-type equation? One could argue that the presence ofM1 on the left hand side dis-
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qualifies (49) from being of Fredholm’s second kind. On the other hand, we shall see in
Subsection 7.2 that the spectrum of (49) is very similar to the spectrum of the Fredholm
second kind equation (42), and that (49) can be implemented almost as stably and efficiently
as (42). We therefore conclude that (49) replaces both the Sherman–Lauricella equation
and earlier attempts at constructing Muskhelishvili equations.

We now go further and demonstrate that it is possible to derive an equation on multiply
connected domains with holes which shares all the properties of the classic Muskhelishvili
equation for interior problems (56). We rewrite (43) as(d2 (I +M3) + d1 (I +M1)) 
(z) = �d1�� d2 �nn �� ; z 2 � : (52)

Then we use (50) and (25), divide byd2, and obtain�(I +M3) + d1d2P1i (I +M1)�
(z) = �d1d2�� �nn �� ; z 2 � : (53)

Adding a term as to satisfy (12) and choosingd1=d2 = 1=2 we arrive at�I +M3 + 12P1i (I +M1) + i�zQ1�
(z) = ��2 � �nn �� ; z 2 � ; (54)

which is the main result of this paper. A proof that (54) has a unique solution is given in
the appendix.

We observe that the left hand side of (54) can be evaluated without explicitly computing
the action ofM1 on
(z). Change of the order of integration givesP1iM1
 = � 12A1<e�Z�1 �� d�� Z�1 
(z) dzz � � � = 12A1<e�Z�1 
(z) dz� Z�1 �� d�� � z� :

(55)

5. SEVERAL HOLES OR INCLUSIONS IN INFINITE AND IN FINITE
DOMAINS

Sherman also treats the case of several elastic inclusions in an infinite domain, and in a
finite domain [38] with traction applied at�0. Expressed in our quantity
(z), Sherman’s
equations read(I �M3 � 2iP0) �
(z) = 12 �I � �nnM1n�n� �ntpr ; z 2 �0 ; (56)(I + d1M1 + d2M3 + i�zQj) �
(z) = d22 �nnM1n�n �ntpr � d1�� d2 �nn �� ;z 2 �j ; j = 1; 2; : : : ; Nin
 ; (57)

where the last term on the left hand side of (57) only is necessary for the special case of an
inclusion being a hole, and where the weight�(z) of (7,8) has been added as to prepare these
equations for the incorporation of cracks, see Section 6. With the help of (14,15,25–34) it
is easy to verify that the uniqueness conditions (12,40) hold for the solution to (56,57).
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For the case of inclusions being holes the corresponding Muskhelishvili equation, which
may replace (57), is�I +M3 + 12Pji (I +M1) + i�zQj� �
(z) = 12 �nnM1n�n �ntpr � �2 � �nn �� ;z 2 �j ; j = 1; 2; : : : ; Nh : (58)

Remark. Since Sherman [38] does not derive his equations from the potentials�(z)
and	(z), but from the potentials�(z) and (z), he does not have to worry about our
uniqueness condition (12) and he does not use the operatorsP0 andQj . Instead, Sherman
introduces other uniqueness conditions related to rigid body displacements and he takes
care of them using other operators.

6. THE PRESENCE OF CRACKS

It is easy to extend the equations (56,57,58) as to include the presence of cracks. Integral
equations for cracks and inclusions (not holes) in an infinite domain, based on the potentials�(z) and	(z) of (5,20), have already been derived in [16]. Integral equations for cracks
(only) in a finite domain have been derived in [15]. The extra equations are�I +M�1 ��1 �M01 ��M3���)
(z) = �M�1 ��1 12 �nnM1n�n �ntpr +M�1 ��1 � �nn �� � �� ;z 2 �j ; j = Nh + 1; : : : ; Nh +N
 : (59)

Application ofQj to the left in (59) and use of (36) shows that the uniqueness condition (12)
holds on the cracks.

7. NUMERICAL EXAMPLES

In this section we solve the integral equations (42,49,54,56,58,59) numerically on a
SUN Enterprise workstation and study the convergence of computed quantities of physical
interest. We cover a wide range of geometries and loads, involving both new and well-
studied setups. We use a Nyström algorithm based on composite Gauss-Legendre and
Gauss-Jacobi quadrature and iterative solution. Special quadrature based on Williams
basis functions [42] will be used in the corners of finite rectangular domains [14]. A few
things can be noted.� In the examples with holes in an infinite domain we use 16-point Gauss-Legendre
quadrature. In the examples with holes and cracks in finite rectangular domains we use
8-point quadrature. The reason for lowering the order of thequadrature on rectangular
domains has to do with stability. It is difficult to get higher-order quadrature stable in the
corners.� The order of the the Nyström scheme will generally be16 for holes in an infinite
domain. The implementation ofM3 and large parts ofM1 is 32nd order, while the
implementation of the Cauchy principal value inM1, acting on an unknown function, is
only 16th order. In (54) the operatorM1 is only acting on�z, which is known analytically
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and we can expect full32nd order convergence. The asymptotic order for holes and cracks
in rectangular domains is approximately7. The order of the scheme is limited by the
magnitude of the smallest omitted Williams exponent [42] inthe special quadrature used
on corner panels [14].� We use a modified uniform mesh on polygonal domains. This means that the outer
boundary is first divided into panels of approximately equallengths in such a way that
corners are symmetrically placed in panels. Then some panels, neighboring to corner
panels, are made smaller. The reason that we use somea priori refinement is that we aim at
very high accuracy and that the solution in the corners is notsmooth. See [14] for details.� The GMRES solver [36] is used for the system of linear equations. The iterations are
terminated when the relative norm of the residual is as smallas it can get. This often means10�16. The number of iterations needed for convergence, given a geometry and a load, is
almost independent of the number of discretization points.This is typical for discretized
Fredholm integral equations of the second kind.� The complexity and storage requirement of our implementations for simple geometries
grows asN2, whereN is the total number of discretization points. For the large scale
computations in Subsection 7.8 we use the fast multipole method [2, 10, 35], previously
used in elastostatic contexts in Refs. [7, 8, 9, 12], and the complexity and the storage
requirement is proportional toN .� Great care is devoted to avoiding roundoff error throughoutthe code. Compensated
summation [19, 23] is used for inner products and for matrix-vector multiplications when
the fast multipole method is not invoked.

7.1. Earlier implementations and tests
Subsets of the integral equations presented above have already been implemented and

tested by others and by us. Equation (59), for cracks in an infinite region, has been used
for the computation of stress intensity factors and compared to two previous results for a
kinked crack [16] and one previous result for a setup involving four straight cracks [12].
The equation has also been used to compute stress intensity factors for spiral-shaped
cracks [16] and effective moduli of a periodic array involving ten thousand randomly
oriented cracks [12]. Equation (43), for an elastic inclusion in an infinite region was
implemented by Theocaris and Ioakimidis [40] and tested on an elliptic inclusion and
compared to an analytical solution. Equation (43) and (59) for cracks and inclusions in an
infinite region have been tested on a circular inclusion surroundedby 17 straight cracks [16].
Equation (56) for a finite domain has been tested on a starfish shaped region and compared to
results obtained by the Sherman–Lauricella equation [13],and also on rectangular domains
with V-notches and compared to eight previous results [14].Equations (56) and (59) for one
crack in a finite domain has been tested on a centered crack andcompared to 29 previous
results [15].

In all the tests mentioned above, where previous results were available, algorithms based
on our equations showed dramatic improvement in terms of both stability and economy of
points.
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FIG. 1. Singular values for the discretized operators of the left hand side in (42), (49), and (54) for the
geometry of (60). A number of2080 discretization points is used. The condition numbers for the discretized
operators areC(42) = 110, C(49) = 250, andC(54) = 830.
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FIG. 2. Convergence of the quantityqref of (61) for the hole of (60) and the load at infinity��prI . Equations (42), (49) and (54) are compared. DP refers to double precision calculations and QP
to quadruple precision calculations. The relative errors are computed with the reference quantity taken asqref = 5:1445778061927687005756, which is obtained from (54) with2400, or more, points in quadruple
precision. A uniform mesh is used, where all quadrature panels have equal lengths in terms of the parametert
of (60).
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7.2. One hole in an infinite domain
Let us first consider a nine-armed starfish-shaped hole in an infinite plane parameterized

by z(t) = (1 + 0:36 
os 9t)eit ; 0 � t < 2� : (60)

The load at infinity is chosen to be��prI = (1; 0; 0), that is,� = 0:5 and� = �0:5. We set
out to compute a quantityqref which is theL2 norm of the hydrostatic stress on�qref = �Z� (�xx(z) + �yy(z))2 ds� 12 : (61)

We shall compare the performance of (42), (49), and (54). Ourproblem is well-
conditioned. Figure 1 depicts the singular values of the discretized operators in the in-
tegral equations. The condition numberC of the corresponding matrices is approximatelyC(42) = 110, C(49) = 250, andC(54) = 830. A convergence study of the quantityqref
of (61) is presented in Figure 2. The achievable accuracy is better than machine epsilon
times the condition numbers of the discretized systems. This is so since the condition
number of a system matrix is an upper bound for the condition number of the problem of
solving a linear system of equations and since the quantityqref computes an average of the
solution
(z).

The algorithm based on (42) exhibits the most stable convergence, but it consumes the
most computational work per iteration. See Subsection 4.2.The number of GMRES itera-
tions required for full convergence at 4000 discretizationpoints is 31. The computational
work per iteration consumed by algorithms based on (49) and (54) is similar to each other.
Computing the action ofM1 on
(z) can be viewed as a part of the process of computing
the action ofM3 on 
(z). However, the result computed by (54) converges faster but
less stably, with the number of discretization points, thanthe results computed by (49).
This is so sinceM1 is not acting on
(z) in (54) and since the discretized system (54)
has a higher condition number than the discretized system (49). The number of GMRES
iterations required for full convergence at 4000 discretization points is 35 with (49) andd1 = 0:25, and 34 with (54). We conclude than the algorithm based on (42) gives the most
stable convergence and that it consumes the most computational work. The algorithms
based on (54) converges faster than the others and consumes the least work, but it is least
stable. The algorithm based on (49) is somewhere in between.

7.3. One hole in a finite domain
Let us now consider a circular hole of radiusR centered in a rectangular plate with height

of 2h and width of2w. Uniform normal tractiontpry is prescribed at two opposing sides.
See Figure 3a. A quantity of interest here is the normalized tangential stresŝ�t(z). For
a stress-free hole, one can define�̂t(z) as the ratio of the trace of the stress tensor on the
hole to the trace of the applied stress tensor. The relation for the present setup becomes�̂t(z) = �xx(z) + �yy(z)tpry ; z 2 �1 : (62)
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FIG. 3a. Left, a hole of radiusR centered in a rectangular plate with height2h and width2w. A uniaxial
stress is applied at two opposing sides. The remaining two sides are stress-free. A maximum absolute value of
the normalized tangential stress (63) will occur at pointA.

FIG. 3b. Right, four holes of radiusR in a square plate with side-length2w. The hole are symmetrically
placed on the coordinate axes, a distanced from the origin.
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FIG. 4. Convergence of the stress concentration factorKt of (63) for a circular hole of radiusR = 0:25,
centered in a square plate of unit side-length. A uniform uniaxial load applied. The systems (56,57), and (56,58)
are compared in double precision arithmetic. The problem iswell-conditioned. The relative errors are computed
with a reference value taken asKt = 6:3886960194568237. A modified uniform mesh is used, where all
quadrature panels have approximately equal lengths.

A stress concentration factorKt can be defined as the maximum absolute value of the
normalized tangential stress Kt = maxz2�1 j�̂t(z)j : (63)

The value ofKt for this setup, withR=w = 0:5 andh=w = 1, has previously been
computed by Isida and Sato [21], with a method based on seriesexpansions, and by Nisitani
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and Chen [31] with a method based on singular integral equations. The authors report the
valuesKt = 6:3887 andKt = 6:38869, respectively. Figure 4 compares the performance
of the two systems (56,57), and (56,58) for this setup. Our computations converge to a
value ofKt = 6:3886960194568, which is reached at about2000 discretization points.
With only216 points, which corresponds to the coarsest mesh we can use without violating
the rules for the construction our modified uniform mesh [14], we getKt = 6:38870 and
confirm the result of the previous authors. This computationtakes only a few seconds.

Figure 4 shows that the convergence rate of the algorithm based on the systems (56,57)
is approximately eighth order. It is controlled by the operator M1 on the left hand side
of (57). The convergence of the algorithm based on the system(56,58) is initially faster,
sinceM1, thanks to (55), does not have to be evaluated on the left handside of (58). With
more than 800 points, the error related to the accuracy of thecorner quadrature dominates.
It is seventh order. It is worth mentioning that for the setupof Figure 3a, the location of the
pointz, where the normalized tangential stress has its maximum, isknown in advance and
that we arrange the mesh so that a quadrature point is placed there. If we were to perform
the maximization of (63) numerically, the order of both schemes would decrease.

As for convergence in the GMRES iterative solver, the algorithms based on the two
systems are rather similar. The algorithms based on (56,57)requires no more than 30
GMRES iterations for full convergence, while the algorithmbased on (56,58) requires no
more than 28 iterations, irrespective of the number of discretization points used.

The value forKt of the setup in Figure 3a has also been computed for the caseR=w = 0:1
andh=w = 1, by Leung, Zavareh, and Beskos [26] and for the caseR=w = 0:5 andh=w = 10 by Chen, Ting, and Yang [4]. Leung, Zavareh, and Beskos [26] use a variety of
methods, including a combined finite element/boundary element scheme, and the commer-
cial software BEASY and NASTRAN. The authors exploit symmetry, use a number of 40
to 100 points for a quarter of the geometry, and arrive at computed values lying in the rangeKt = 2:889 toKt = 3:059. With our coarsest mesh, corresponding to176 discretization
points for the entire geometry, we get the estimateKt = 3:0860851. Full accuracy is
achieved at about600 points and the converged value isKt = 3:0860851670536. Since
the discrepancy between our value and those of Ref. [26] is rather large considering the
simple nature of the geometry, we asked Dr. Jonas Faleskog atthe Department of Solid
Mechanics, KTH, to do an independent investigation with thecommercial finite element
package ABAQUS. Using bi-quadratic elements and a number of24576degrees of freedom
for a quarter of the geometry, Dr. Faleskog obtained the estimateKt = 3:0861� 0:0001.
This computation took about ten seconds, the time for mesh generation not included, and
confirms our result. Chen, Ting, and Yang [4] use a combination of a boundary element
method and a spectral method and arrive at a value ofKt = 4:32 for their choice of pa-
rameters. A number of32 to 96 quadratic boundary elements on an adaptive mesh and12
Fourier modes were used. With a number of360 discretization points, corresponding to the
coarsest uniform mesh we can construct, we compute the estimateKt = 4:347. Full accu-
racy is achieved at about2000 points and the converged value isKt = 4:3475991016650.
A possible explanation to the discrepancy between our results and those of Ref. [4] can be
found in the convergence study in Table 1 of Ref. [4]. This table indicates that 12 Fourier
modes is not enough to guarantee three accurate digits.
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FIG. 5a. Left, two symmetrically placed holes of radiusR separated a distance2P in a rectangular plate
with height2h and width2w. A uniaxial stress is applied at two opposing sides. The remaining two sides are
stress-free.

FIG. 5b. Right, five symmetrically placed holes.
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FIG. 6. Convergence of the stress concentration factorKt of (63) for the setup of Figure 5a. The
system (56,58) is used in double precision arithmetic. Stars refer to a setup with smaller holes given byR=w =0:25, P=w = 5=6, andh=w = 3:125. Open circles refer to a setup with larger holes given byR=w = 0:5,P=w = 1, andh=w = 10. The reference values for the two cases are taken asKt = 3:1471561193558794
andKt = 4:1693288541234566, respectively. A modified uniform mesh is used.
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7.4. Two holes in a finite domain
One setup studied by Chen, Ting, and Yang [4] involves two equisized holes of radiusR=w = 0:5 separated a distanceP=w = 1 in a rectangle withh=w = 10, see Figure 5a.

A number of30 to 60 quadratic elements and a number of12 to 24 Fourier modes on
each hole were used. The result converged toKt = 4:17, which coincides with the
estimate of Atsumi [1] for a specimen withh=w = 1. We used the algorithm based on
the system (56,58) for this setup. A convergence study is presented in Figure 6. In this
problem, the location of the pointz on � where�̂t(z) of (62) achieves its maximum is
not known in advance, and we have to interpolate the solutionto (56,58) in order to find
the maximum. The interpolation is eighth order accurate. The optimization is done with
Newton’s method and safeguarded with Golden Section Search. This procedure slows
down the rate of convergence compared to the case of a single,centered hole. Still, as can
be seen in Figure 6, with400 discretization points, we get the resultKt = 4:17 which
confirms the results of the previous investigators. The computations converge to a valueKt = 4:16932885412, which is reached at about6000 points.

Another, simpler, setup studied by Chen, Ting, and Yang [4],involves two smaller
equisized holes of radiusR=w = 0:25 separated a distanceP=w = 5=6 in a rectangle withh=w = 3:125, see Figure 5a. Here the authors compare their own resultKt = 3:145 with
a resultKt = 3:139 obtained with the commercial finite element software ANSYS using
2132 elements, and a resultKt = 3:345 obtained by Meguid [28] with the finite element
package SUPERB. With only272 discretization points we compute the four digit accurate
answerKt = 3:147, see Figure 6. With3300, or more, points we get the converged valueKt = 3:1471561193559.

7.5. Four holes in a finite domain
Woo and Chan [41] studied 28 setups of square plates centeredat the origin and aligned

with the coordinate axes of a cartesian coordinate system. The plates had side-lengths2w
and contained four small holes with radii varying fromR=w = 0:01 toR=w = 0:15. The
hole centers were placed at the four points(d; 0), (0; d), (�d; 0), and(0;�d), whered
varied betweend=R = 2 andd=R = 5. The applied load was uniaxial. See Figure 3b. A
collocation method based on series expansions for the potentials�(z) and	(z), adaptive
placement of the collocation points, and least squares approximation was used. The number
of degrees of freedom used corresponds to320 for the entire geometry. Results forKt
of (63) were presented to four digits in the authors’ Table 2.

We checked all 28 results forKt of Woo and Chan [41] against results obtained us-
ing (56,58). For 22 setups we confirm all their four digits, for four setups we confirm
three digits, for one setup we confirm two digits, and for one setup we do not confirm
a single digit. The discrepancies between our results and those of Woo and Chan [41]
chiefly took place for the most difficult setup with the largest holes, see Table 1. The very
large discrepancy for the setup withd=R = 5 deserves some comment. Not only do our
results differ from those of Woo and Chan [41] with 20 per cent. Further, while Woo and
Chan [41] find that the maximum stress concentration occurs on the holes centered around(0; d) and(0;�d) we find that the maximum occurs at the holes centered around(d; 0)
and (�d; 0). For this reason we decided to perform computations with thecommercial
finite element software ANSYS. We used about 10000 eight-node quadratic elements of
the type PLANE82 corresponding to about 31000 discretization points per configuration.
The results of these computations are presented in Table 1.
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TABLE 1
Results for the stress concentration factorKt of (63) for the most challenging

setups of four holes in a square plate of Woo and Chan [41].d=R� Ref. [41] ANSYSa Eqs. (56,58) and 320 ptsb Eqs. (56,58) best poss.

2 4.833 4:832� 0:001 4.8327 4.8326684347317
2.5 4.332 4:331� 0:001 4.332 4.3314395844773
3 4.051 4:050� 0:001 4.051 4.0504940219307
3.5 3.814 3:813� 0:001 3.814 3.8142986073521
4 3.768 3:769� 0:001 3.7694 3.7693606053913
4.5 3.860 3:941� 0:001 3.942 3.9414430052749
5 3.905 4:764� 0:001 4.765 4.7639166341954� The plate has side length2w and the hole radii areR=w = 0:15. The holes are placed on the coordinate axes

a distanced from the origin.a ANSYS refers to finite element computations.b Results from (56,58) using only 320 discretization points.
 Best possible results in double precision arithmetic from (56,58).
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FIG. 7. Convergence of the stress concentration factorKt of (63) for the five hole setup of Figure 5b. The
system (56,58) is used in double precision arithmetic. The plate has a height-to-width ratio ofh=w = 3:125. The
two holes furthest removed from the origin have radiiR1=w = R5=w = 0:25. The hole at the origin has radiusR3=w = 1=16. The separation distances areP1=w = 5=6 andP2=w = 2=6. The symbols ’x’, ’+’, ’o’, and ’*’
refer to radiiR2 = R4 = 1=16,R2 = R4 = 1=12,R2 = R4 = 1=6, amdR2 = R4 = 11=48. The reference
values are taken asKt = 3:1191735564211897, Kt = 3:1069156838873726, Kt = 2:9969770267128966,
andKt = 2:8309208646076457, respectively.

7.6. Five holes in a finite domain
The most complex hole system in a finite rectangular plate that we could find results

for in the literature is the system denoted “condition (III)” by Meguid [28] and Chen,
Ting, and Yang [4]. This system involves five small symmetrically aligned holes in a
plate with h=w = 3:125. The two holes furthest removed from the origin have radiiR1=w = R5=w = 0:25. The hole at the origin has radiusR3=w = 1=16. The radii of the
remaining two holes are allowed to vary betweenR2 = R4 = 1=16andR2 = R4 = 11=48.
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TABLE 2

Results for the stress concentration factorKt of (63) of Figure 5b.R2 = R�4 Ref. [4] BEAM Ref. [4] ANSYS Ref. [28] SUPERB Eqs. (56,58)w=16 3.115 3.110 3.244 3.1191735564212w=12 3.102 3.095 3.204 3.1069156838874w=6 2.980 2.974 3.049 2.996977026712911w=48 2.792 2.790 2.981 2.8309208646076� Three radii are fixed:R1=w = R5=w = 0:25 andR3=w = 1=16. The radiiR2 andR4 vary. The separation
distances areP1=w = 5=6 andP2=w = 2=6.

The separation distances areP1=w = 5=6 andP2=w = 2=6, see Figure 5b. The stress
concentration factor for the two outer holes reported by theprevious authors, as well as our
new results are displayed in Table 2. The mesh is not completely uniform. The spacing
between discretization points is taken four times denser onthe holes than on the outer
boundary. The reason for thisa priori refinement is that the holes are much closer to each
other than to the outer boundary.

It can be noted, in Table 2 that the newer results of Chen, Ting, and Yang [4] are generally
better than the older results of Meguid [28]. The largest discrepancies are found for the
most difficult case whereR2 = R4 = 11=48. Here the holes are closest to each other.
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FIG. 8. Two holes of radiiR and a crack of length2a in a square plate with side-length2w. The distance
from the hole-centers to the origin isd. The angle of a line through the hole-centers and thex-axis is�.

7.7. Holes and cracks in a finite domain
Let us now consider setups involving equisized holes of radii R and straight cracks of

length2a. A quantity, of particular interest in this context is the complex valued normalized
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stress intensity factorF = FI + iFII, which can be computed asF (
s) = ip2tpry pa limz!
js 
(
s)�(z)pÆs(z) ; z 2 �j ; j = Nh + 1; : : : ; Nh +N
 ;(64)F (
e) = � ip2tpry pa limz!
je 
(
e)�(z)pÆs(z) ; z 2 �j ; j = Nh + 1; : : : ; Nh +N
 ;
(65)

whereÆs(z) is arclength measured from the closest crack tip.
Woo and Chan [41] studied 23 setups involving two small holesand one small straight

crack in a square plate with side-length2w and centered at the origin. The crack is placed
at the origin and aligned with thex-axis. The two holes are placed opposite each other and
at a distanced from the origin. The angle between a line through the holes and thex-axis
is �. See Figure 8. The setup is such thata=w = 0:1, d=w = 0:3, R=w = 0:1, and� is
allowed to vary. Numerical results forFI andFII are presented to four or to five digits.
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FIG. 9. Convergence of the stress concentration factorKt of (63) and the normalized stress intensity factorFI andFII of (64,65) for the setup in of Figure 8. The system (56,58,59)is used in double precision arithmetic.
The two holes have radiiR=w = 0:1. The distance from the origin isd=w = 0:3. The angle of inclination is� = �=4. The crack has lengtha=w = 0:1. The reference values are taken asKt = 3:5220865511473008,FI = 1:2503879831741171, andFII = �0:14416713067935393, respectively. The mesh is uniformly
refined. The discretization points are placed four times closer to each other on the cracks and on the holes than
on the outer boundary.

With � = 0 and� = �=2 and with our equations (56,58,59,64,65) we reproduce the
results of Woo and Chan [41] forFI to all digits presented in their Table 6. The value ofFII
is zero due to the symmetry. For all other values of the angle� we get results forFI andFII that differ significantly from those in Table 6 of Woo and Chan[41]. The mismatch is
particularly severe forFII, where we sometimes do not even get the same sign as Woo and
Chan [41]. As an example we take� = �=4. Here Woo and Chan [41] reportFI = 1:2532
andFII = 0:4039 in their Table 6 (andFI = 1:2530 andFII = 0:4045 in their Table 5),
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while we get convergence toFI = 1:2503879831741 andFII = �0:1441671306794, see
Figure 9. Again, we performed computations with the commercial finite element software
ANSYS and about 10000 eight-node quadratic elements of the type PLANE82, to validate
our code. Near the crack tips, a focused mesh with quarter point triangular elements was
used. The stress intensity factors were obtained through a fit of the nodal displacements
near the crack tip to the asymptotic analytical crack tip solution. The result from ANSYS
wasFI = 1:250 � 0:003 andFII = �0:14 � 0:01, which indicates that our code based
on (56,58,59) is implemented correctly.

7.8. Large scale computations
In a final example we solve for stress concentration factorsKt and normalized stress

intensity factorsFI andFII for some large setups using equations (56,58,59,63,64,65)and
the fast multipole method. We choose a simply reproducible setup consisting of a square
plate of side length2w with 2m2 equisized circular holes of radiiR and2m2 straight cracks
of length2a. The total number of object is thus4m2. The size of the objects are chosen
asR=w = a=w = 0:25=m and the objects are placed on square grid with a distancew=m
between nearest grid points. See Figure 10. In particular, we study the convergence ofKt
and the largest valueFI andFII with the size of the setup, determined by the parameterm,
and with the number of uniformly placed discretization pointsN .
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FIG. 10. Two setups with holes and cracks. The square plates have sidelengths2w and contain2m2
circular holes with radiiR = 0:25w=m and2m2 cracks of length2a = 0:5w=m. The objects are placed on
square grid with a distancew=m between nearest grid points. The left plate hasm = 1 and the right plate hasm = 16.

As it turns out, the largest tangential stress and the largest stress intensity factors are
always found on cracks and holes closest to the plate corners. In Table 3 we show how
these quantities converge with the parameterm. The largest value ofm chosen ism = 32,
corresponding to4096 objects. Figure 11 shows convergence ofKt along with the largest
values ofFI andFII for a plate withm = 16, that is, with1024 objects. As can be seen,
the achievable accuracy for this large-scale computation is about three digits less than in
the examples of the preceding subsections. The chief reasonfor this loss of accuracy is not
that our large-scale example is more ill-conditioned than the previous examples, but due to
numerical cancellation in the fast multipole scheme as differences between positions of the
discretization points are evaluated. In the smaller examples of the preceding subsections
these differences were computed with special care.
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TABLE 3
Results for the stress concentration factorKt of (63) and largest normalized

stress intensity factorsFI andFII of (64,65) in the setup of Figure 10.m� Kat FaI FaII
1 4.748140332912 1.133105345114 -0.059347687764
2 4.7341318940 1.1442488313 -0.0545599210
4 4.7339636409 1.1441818139 -0.0542844102
8 4.7340021110 1.1441832610 -0.0542907947

16 4.734000002 1.144183308 -0.054290737
32 4.733998851 1.144183030 -0.054290181� The number of holes and cracks is4m2 .a Equations (56,58,59) are used with a modified uniform mesh.
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FIG. 11. Convergence of the stress concentration factorKt of (63) and the largest normalized stress intensity
factorFI andFII of (64,65) for the setup in of Figure 10 withm = 16, corresponding to1024 holes and cracks.
The system (56,58,59) is used in double precision arithmetic and the fast multipole method is used for matrix-
vector multiplication. The reference values are taken asKt = 4:7340000015921, FI = 1:1441833078687,
andFII = �0:054290736731657. The mesh is uniformly refined. About50 GMRES iterations are needed for
full convergence.

8. CONCLUSION AND DISCUSSION

We derived the Muskhelishvili-type integral equation (54)for a multiply connected
domain with a hole. The equation is simple. It does not require the solution of any
“auxiliary problems for some particular types of loadings”as has been the case for previous
equations of this type according to p. 158 of Ref. [33]. The analysis of the equation seems,
in our opinion, not more complicated than the analysis of theclassic Sherman–Lauricella
equation. The difficulty of the analysis of Muskhelishvili-type equations is the reason
why the Sherman–Lauricella should be preferred, accordingto the authors referenced in
Subsection 4.3. Undesirable properties of the Sherman–Lauricella equation, avoided in our
formulation, are listed in the first paragraph of Section 4.
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The equation (54) is not the only integral equation for multiply connected domains which
can be derived from the Muskhelishvili potential representation. Equations (42) and (49)
are two other examples, each with their own advantages and drawbacks. The reason that
we prefer (54) over (42) and (49) has to do with speed and convergence. Further, one could
construct modifications of (54) by replacing the operatorPj with some other operator which
has the property (25). The reason that we preferPj in (54) has to do with simplicity. The
operatorPj naturally appears in (14) and we want to stick to a small number of operators.
WhilePj may not be an optimal choice, we believe it is sufficiently good for our purposes.

Interestingly, it is recommended that crack problems, which involve multiply connected
domains, should be solved with algorithms based on the Muskhelishvili potential represen-
tation. See Paragraph 23 in Ref. [33] and Section 6 of ChapterV in Ref. [34]. In (56,58,59)
we unite these results and get a set of equations for bodies containing an arbitrary number
of cracks, holes, and inclusions. These equations have several properties which are good
for numerics, especially so in the context of polygonal domains. Here, too, minor modi-
fications are possible. For example, by changing the uniqueness condition (10), which is
somewhat arbitrarily chosen, alternative equations can bederived. Anyhow, in a series of
small-scale examples we greatly improved on previous benchmarks. It was easy to review
a large number of setups and results, since our algorithm is comparatively flexible. We saw
that commercial finite element packages often performed better than special purpose codes
for these simple problems.

Finally, we solved some large but well-conditioned problems. The largest problem stud-
ied involved4096 objects, that is, on the order of 1000 times more objects thanthe typical
research paper in this field. A slightly smaller problem was resolved in double precision
arithmetic using250000 uniformly placed discretizations points and overresolvedwith up
to 1550000 points as to demonstrate stability. Naturally, as the number of discretization
points increases the achievable accuracy goes down. As a rule of thumb, we get about16 � log10N correct digits, whereN is the number of discretization points needed for
resolution. It is our hope that this paper will encourage more reliable calculations in the
field of computational fracture mechanics. We also believe our work to have relevance for
the problem of Stokes flow, multicomponent fluid flow, and other large-scale multiphase
problems in materials science where similar equations are to be solved [8, 20, 24, 25] and
where the Sherman–Lauricella equation and equations basedon primitive variables do not
perform to satisfaction unless preconditioners are used [8, 20].

APPENDIX

We shall show that the homogeneous equation (54) has no non-trivial solutions. Using
relations in Section 3 and P1iM3f = �P1if ; (A.1)

it is easy to show that the homogeneous version of equation (54)�I +M3 + 12P1i (I +M1) + i�zQ1�
(z) = 0 ; z 2 � ; (A.2)

is equivalent to the following four equations(I +M3) 
(z) = 0 ; z 2 � ; (A.3)
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 = 0 ; (A.4)Q1
 = 0 ; (A.5)P1 (I +M1) 
 = 0 : (A.6)

Application of Q1 to the left in (A.2) gives (A.5). Subtraction of (A.5) from (A.2)
and multiplication byi, followed by application ofP1 gives (A.4). Subtraction of (A.5)
and (A.4) from (A.2) gives (A.3). Equation (A.6) follows from the application ofP1
to (A.3). A linear combination of (A.3-A.5) gives back (A.2).

We shall focus on (A.3) and show that any non-trivial solution 
0(z) to this equation
satisfies (I +M1) 
0(z) = 
1 ; z 2 � ; (A.7)

where
1 is a real-valued constant. If
1 is non-zero, this violates (A.4). If
1 is zero, then
a substitution of (A.7) in (A.3) gives that
0(z) must satisfy(M1 �M3) 
0(z) = 0 ; (A.8)

which is the homogeneous version of (41). Under the uniqueness condition (A.5), there is
only one non-trivial solution to (A.8), namely
0(z) = i
2, where
2 is another real-valued
constant. If
2 is non-zero, this violates (A.6).

It remains to show (A.7). For this we introduce new potentials in D��(z0) = � 12� Z� 
0(�) d�(� � z0) z0 2 D ; (A.9)

and 	�(z0) = 12� Z� 
0(�) d��(� � z0) + 12� Z� ��
0(�) d�(� � z0)2 : z0 2 D ; (A.10)

Taking limits from the inside ofD, one can showlimz0!z2�n��(z0) + n��(z0)� �nz0��0(z0)� �n	�(z0) = in (I +M3) 
0(z) :(A.11)

Equation (A.11) implies that a solution��(z0) tolimz0!z2�n��(z0) + n��(z0)� �nz��0(z0)� �n	�(z0) = 0 ; (A.12)

corresponds, via (A.9), to a density
0(z)which is a non-trivial solution to (A.3). According
to Paragraph 34 of Muskhelishvili [30], the only solution to(A.11) is��(z0) = i
3, where
3 is another real-valued constant. Taking the limitz0 ! z 2 � from the inside ofD
in (A.9) we see that (I +M1) 
0(z) = �2
3 ; z 2 � ; (A.13)

and with
1 = �2
3 this proves (A.7).
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