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Stress calculations on multiply connected domains

Johan Helsingand Anders Jonssén

TNumerical Analysis, Center for Mathematical SciencesdUniversity, Box 118, S-221 00 Lund,
Sweden; anciDepartment of Solid Mechanics, Royal Institute of Techmgl&-100 44 Stockholm,
Sweden.

The outstanding problem of finding a simple Muskhelishtjifie integral equa-
tion for stress problems on multiply connected domains gesb Complex po-
tentials are represented in a way which allows for the in@@ton of cracks and
inclusions. Several numerical examples demonstrate therglty and extreme
stability of the approach. The stress field is resolved witblative error less than
107'° on a large, yet simply reproducible, setup with a loaded sgptate con-
taining 4096 holes and cracks. Comparison with previousltef the literature
indicates that general purpose finite element software raeipgm better than many
special purpose codes.

Key Words: multiply connected domain, cracks, holes, stress coragorrfactor, stress intensity
factor, Fredholm integral equation, fast multipole method

1. INTRODUCTION

The problem of solving the equations of linear elasticity2@hmultiply connected do-
mains has received attention for almost a century. Earhkwlealt with formulations of
integral equations and analytical solutions. See the t®ktb of Mikhlin [29], Muskhe-
lishvili [30], and Sokolnikoff [39]. Later work focus morenospecialized numerical
techniques. See Refs [3, 4, 5, 6, 18, 27, 43] for recent exasngParallel to this devel-
opment there has been a steady improvement of general pufipde element packages
which, among other things, can solve for stress on multipynected domains. There has
also been progress on fast solvers for large-scale proj&ms

Despite the apparent simplicity of the stress problem ae@tivances mentioned above,
numerical results in the literature are not always correthere is yet no code which
combines error control, rapid execution, and sufficientilfiéity as to accurately solve
for stress in common setups such as rectangular plates wélga number of cracks,
holes, and inclusions. There may be many reasons for thisessSfields in corners
and around crack tips have complicated asymptotic shappsci&@® basis functions are
needed for good resolution. Further, integral equatioettapproaches are burdened with
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2 HELSING AND JONSSON

some confusion regarding the theory. There are differemmtiaps about what potential
representations and equations are the best in differeatigihs. Classic authors[29, 30, 39]
recommend an approach based on the Airy stress functionhen8herman—Lauricella
representation. They argue against the Muskhelishviliesgntation, despite its efficiency
for crack problems. Some modern authors, too, prefer to wittkthe Airy stress function
and use real or complex variables and a variety of represemsaand equations [4, 8,
11, 40, 41]. Others prefer primitive variables [22, 27, 3L]Jaomix of variables [3] or
techniques [26]. Some authors prefer hypersingular iategruations [32, 37].

This paper presents a rapid, stable, and flexible algorithintHe stress problem on
multiply connected domains. The algorithm is based on alied second kind integral
equation derived solely from the Muskhelishvili potentiapresentation. The use of one
single representation increases the flexibility of the @mtkfacilitates the incorporation of
fast solvers. The fact that the unknown quantity is the liofidn analytic function makes
the construction of special corner quadratures easy.

The paper is organized as follows: Section 2 states thesgtreblem and explains the
Muskhelishvili representation. For brevity, finite and mifé domains are treated in the
same equations. Section 3 lists relations between theraltggerators which form the basis
of our scheme. These relations are useful for proving etprica and uniqueness. Section 4
treats the exterior stress problem for one hole. We comp#ieeaht integral equations and
prove our main result —that a simple Muskhelishvili equatan be constructed. Sections5
and 6 extend the result of Section 4 to encompass severd, fabecks, and inclusions.
The paper ends with Section 7, which gives details aboutropldmentation and presents
numerical results. Section 7 reviews a number of smallessatups. The reason for
studying these setups was that we wanted to be confidentithadde reproduced previous
results before venturing into large-scale examples. Agited out, some previous results
were of poor quality. We were forced to do several indepentists with commercial
finite element software to establish correct benchmarks.

2. PROBLEM STATEMENT AND POTENTIAL REPRESENTATION

A finite or infinite, linearly elastic, specimen occupies adon D. The outer boundary
of the specimen, if it exists, is denotdy) and is given positive (counter-clockwise)
orientation. The domai® is multiply connected. Insid® there are a numbéyy, of holes
and a numbel, of cracks. The holes have boundafigs; = 1,2,..., Ny, and are given
positive orientations. The cracks are dendigd; = Ny + 1,..., Ny, + N.. The crack
['; starts at crack tip/;s and ends at crack ti;.. The union of all boundaries iS. The
left and right sides of" are distinguished with superscridts) and(—). The area of the

region enclosed by contolly; is A;. For cracks, it is convenient to choode = —i/2.
Traction(#hr, tbT), that is, stress on the boundary, is prescribddjain the case of a finite

domain. StressP" is prescribed at infinity in the case of an infinite domain. fbkes and
the cracks are free of stress. The exterior of the domainristdelD’. In passing, we also
treat the more general problem of a specimen With. elastic inclusions.

Let U(z,y) denote the Airy stress function. Siné&z,y) satisfies the biharmonic
equation everywhere, except forIatit can be represented as

U(z,y) = Re{zé(2) + x(2)} , 1)
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where the potentialg(z) andx(z) are possibly multi-valued analytic functions of the
complex variablez = z + iy. In the stress problem, requiring that the displacements
be single-valued, see (12) below, and with certain condftionposed on the applied
external forces, see (14,15) belaf(z) andy'(z) are single-valuedy”(z) is unique, and
¢'(2) is determined up to an imaginary constanfinsee Paragraph 40 of Mikhlin [29].
For a thorough discussion of the complex variable approaatidsticity problems, see
Refs. [29, 30, 33, 39]. For now, it is sufficient to observe & felations that link the
complex potentials to quantities of physical interest. Taetiont(z) = t,(z) + it,(2)
along a curvey is

t(z) = n(2)®(2) + n(2)®(2) — n(z) 2 ®'(2) — n(2)¥(z), (2)

where®(z) = ¢'(z), ¥(z) = x"(z), andn(z) = ng(z) + iny(z) is the outward unit
normal vector ory. The components of the stress tensor in the material are

Oza + oyy = 4Re{®(2)}, 3)

Oyy — Ogg — 2105y = 2 (z‘I”—(z) +W) . 4)

A natural starting point for stress problems is to repreffempotentials(z) and¥(z)
in the form of Cauchy-type integrals

1 PQr)dr « ,
<I>(,z)_2m,/F Gyt ebul, 5)
1 pE(r)dr 1 / ntPr dr ,
\I](z)_2m'/1~ (r—2) 2miJp, (T—z)+6’ zebuD, ©)

whereQ)(7) and=(7) are unknown layer densities @h and wherep(7) is a weight which
on contours is given by

p(T):17 TEF]', j:[]v]-a"'thv (7)

and on the cracks is given by

[N

p(T):((T_’YjS)(T_’YJ'e))_ ) TEF]', j:Nh+1a---aNh+Nc- (8)

In (8) the weightp(7) is the limit from the right (relative to the orientation ofetlerack) of
the branch given by a branch cut alongand

lim 7p(7) =1. 9)
T—>00
Furtherin (5,6)(P" = 2" +it}" isthe prescribed traction B in the case of a finite domain,
and the constants andj are related to the stress at infini#y* = (o3, op;, ob;) in the
case of an infinite domain. Three fundamental stresse®rare (1,0,0), 517 = (0, 1,0),
andat; = (0,0,1). They are obtained by choosing= 1/2andg = —1/2,a« = 1/2and
B =1/2,anda = 0 andf = i. Note thato always is real and that we have omitted the
argumentr fromn(7), p(7), andt®*(7) in (5,6).
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The potentiak®(z), represented as in (5), will not be unique for the stressiprolon
a multiply connected domain. As a consequence, we can n@cexptegral equations
derived from this representation to have unique solutiofsis is discussed in detail in
Paragraph 40 of Mikhlin [29]. Two things need to be fixed. Fitise potentia®(z) can
only be determined up to an imaginary constant inside eastooa By adding a suitable
unigueness condition, for example,

Pet =0, j=0,1,..., Ny, (10)

whered* is the limit of ®(z) atI'*, and where the operatd?; is a mapping fronT'; to
R, defined by

1 _ .
ij:—E%e{/ij(T)TdT}, j=0,1,..., Ny, (12)

this indeterminacy is removed. Second, the representéiofor ®(z) may allow for an
arbitrary term corresponding to a multi-valug@) and to multi-valued displacements. By
requiring

ijQ:O’ j:Oala“"Nh_'_NC’ (12)

whereQ); is a mapping froni’; to C, defined by

1
Qif =55 [ s, 13)
J 2A] 1"]. ( )
in combination with that the applied load satisfies
Pjﬁtprzo, j=0,1,..., N, + N, (14)
Qjﬁtpr:(), j:071’~"aNh+Nca (15)

we ensure tha®(z) has no simple pole insidg;, that$(z) is single-valued, that displace-
ments are single-valued, and that the stress problem hag@ewsolution in terms o®(z)
and¥(z).

The representations fdr(z) and¥ (z) of (5,6) guarantee that the equations of elasticity
are satisfied everywhereldU D’. The representations also satisfy the boundary conditions
at infinity for an infinite domain. It remains only to fiffel(7) and=(7) which satisfies the
unigueness conditions (10,12) and the boundary condiibtiee holes and at the cracks

t(z) =0, zely, j=12,...,Np+ Nc, (16)
t(z) =0, z€Tf, j=1,2...,Ny+Ne, (17)

and for a finite domain also

t(z)=0, zely, (18)
t(z) =tP", zeTg. (19)

If we now demand that the traction jump a quantityasr’y is crossed and that the traction
be continuous a¥;, j = 1,2,..., Ny + N, is crossed, one can expresgr) of (6) in
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terms ofQ(7) of (5). The potentiall (z) of (6) assumes the form

1 pQ(7) d7 1 7pQ(7)dr 1 ntPrdr

2 Jp (r—2)  2mifr (T—2)?  2miJp, (T—2)

U(z) = + 83,

zeDUD'. (20)
A representation ofp(z), which is related to (20) by partial integration, is the aw®oof
Muskhelishvili for stress problems. See Paragraph 98 of [36f.

3. OPERATORS AND RELATIONS

In the following sections we shall frequently use a numbemntégral operatord/,,
My, M?, and M;. Here we define these operators, together with some usédtilores
involving the operator®; and@; of (11,13).

The Cauchy singular operatdf;, acting on a functiorf(z), is given by

le(z):%/Ff

(dr —  cr. (21)
(r—2)
The conjugate ofM; is denotedV/;. The part ofM; which describes self-interaction, and
which is of interests for cracks, is denotaf

Mife =~ [ 4

d
(T) T7 ZEF]', j:Nh+17"'7Nh+N07 (22)
(r—2)
and the compact remainder bf; is denotedV/?

MPf(z) = (My — M) f(z), z€T;, j=Ny+1,....,Ny+N.. (23)

The compact operatd; is given by
1 f(r)ydr n f(r)ydr
Mal2) = o [/ oA NG

fMdr n [ (r—2)f(r)dF i
+ /F—_ ] eT. (24)

r(F—2) n

The operatord’; and@; satisfy the following relations

Pyi =1, 3=01,..., Ny, (25)
Qjiz =1, j=0,1,..., Ny, (26)
P;Mf = PiMs3f, j=0,1,..., Ny, (27)
Nh+N¢2A.
QoMsf = —Qof — > T @il (28)
j=1
Q;Mif = =Q;f, j=12,..., Ny, (29)

QJMSf = _ija .]: 1727"'7Nh7 (30)
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wheref is square integrable function. One can, further, show

Nn+N.

N—"n 24;
Po—Mi—f = —Pf - —LPf, (31)
n T f = A
Nn—mn .
PioMi—f = =Fif, j=12...,Nn, (32)
ﬁ n Nh+Nc 2A
sy i . W “Aio.
Qoo Mi—f = ~Qof ; 2@l (33)
Nn—mn .
QjEMlﬁ‘f = —ij, j=1,2,...,Ny. (34)
On the cracks we have [16]
ij = 17 jzaNh+17"'7Nh+NC7 (35)
QipMip'f =0, j=Ny+1,...,Ny+N,, (36)
Ml*le*p_lf(z) = f(2), ze€ly, j=Np+1,...,Ny+ N, (37)
prilepf(z) = f(Z) _ijfa z € Pja ]:Nh+177Nh+NC(38)

Finally, we observe thak(z)* can be expressed in terms/f; as

1 o
®F(2) =5 (I+M)Q(2) + 3,

and that the uniqueness condition (10) can be written as

zeTl, (39)

Pi(I+M)Q=0, j=0,1,...,N,. (40)

4. ONE HOLE IN AN INFINITE DOMAIN

Let usfirst consider one hole in an infinite domain. Thereately exist classical integral
equations for this problem. The most famous may be the Sherbzauricella equation,
based on the potentiadqz) andy(z), see Paragraph 56 of Mikhlin [29]. The Sherman—
Lauricella equation does not satisfy (17,18). It also hesdlundesirable properties: First,
it involves the arbitrary placement of points which affeitssstability, see Figure 2 of [8]
and [13]. Second, it can not easily be extended to setup$vingocracks and inclusions.
Third, it solves for an unknown density which is related¢te) on ' via the Cauchy
singular operatof/;. This may complicate post-processing [25]. In this sectign
derive more flexible and efficient integral equations for liwée problem, based on the
representations (5,20) fdF(z) and ¥(z). The unknown density is the limiting value of
®(z) onT itself. The representations (5,20) have previously, armdessfully, been used
in other elastostatic contexts [13, 14, 16, 40]. In Sect®asad 6 we shall extend their use
further.

4.1. A straight-forward integral equation
Starting with the representations (5,20) fiofz) and ¥ (z), we demand that the traction
onT be zero so that the conditions (16,17) hold. This leads tintiegral equation

(MI_M3)Q(Z): B_av zel, (41)

S|
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which has to be solved along with the uniqueness conditib®g!Q). This system is not
good for numerics. The equation (41) is of Fredholm’s firsidkand it is not obvious how
to implement (12,40). We shall now show that (12,40,41) ap@walent to the following
single integral equation of Fredholm’s second kind

(1 — My (M +i2Q1) + %P1(1+ M1)> Q(z) = M, (%5 - a) . 2eT. (42)

This equation is simply obtained by a linear combination1éf,40,41) and use of thaf;
is its own inverse.

To show equivalence we apply; to the left in (42) followed by application a@; and
use of (26,29,30). This gives back (12). ApplicationMi to the left in (42) and use
of (12) followed by application ofP; and use of (25,27) gives back (40). Use of (12,40)
and application of\/; in (42) gives back (41).

4.2. A Sherman bimaterial type integral equation

It will be shown in Subsection 7.2 that (42) can lead to veapkt numerical algorithms.
One drawback is that (42) contains the compositiom\fif with M3. If the integral
equations is discretized and solved iteratively, eachtii@ns step will involve two matrix-
vector multiplications. In this subsection we shall dedveintegral equation which is free
from this problem. The treatment closely follows Shermasj.[$ee also Refs. [9, 16, 40].

Assume that the hole is replaced by an elastic inclusion.iffiméte domainD has elastic
bulk and shear moduk; andy;. The inclusionD’ has moduliks andus. Sherman [38]
derived an integral equation for this problem based on oaityi of the integral of traction
and of the displacement &t and on a representation fg(z) and(z) related to our
representations (5,20) fab(z) and ¥(z) by partial integration. For our densif(z),
Sherman’s equation reads

(I +di My + dsM3) Q(2) = —dya — dggﬁ, zel, (43)

where the bimaterial parametefsandd, are given by

11 1 1 1 1
dlz(———)/(—+—+—+—>, (44)
K2 K1 M2 K2 p1 K1

1 1 1 1 1 1
nm(LoL)/(Lel il 1y, -
M2 K2 kK2 M1 K1

Itis easy to see that the solutifir) to (43) satisfies a uniqueness condition similar to (40),
namely

Py (I+(d +do)M1)Q=0, (46)

and that the uniqueness condition (12) is satisfiedifor ds # 1.
Let nowks andus approach zero in such a way that their ratio is constant. A¢iasion
has become a hole. We get

M2
d = —2—, 47
T (47)
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N M2 + Ko ’
and observe that; + d> = 1. The uniqueness condition (46) is now the same as (40). The
unigueness condition (12) is no longer satisfied. We theegfeplace (43) by

da

(48)

(I +dy My + dsM; +i2Q1) Q(2) = —dyo — dzgﬁ, zel, (49)

which can be used both for elastic inclusions and for holgsplidation of@; to the left
in (49) and use of (29,30) shows that (49) is the same as (4B}j1#). Note that/; is a
free parameter. Numerical experiments indicate that tladitgjLof the solution to (49) is
rather insensitive to the choice @f. The choicel; = 0.25 seems to be generally good.

An advantage with (49), over Sherman’s original equatid@j,[® that (49) is based on
the potentialgb(z) and¥(z), simply related to stress via (3,4), while Sherman’s oagin
equation is based on the potentigl&:) and ¢(z), related to stress via differentiation.
We prefer (49) since stress is a quantity of more fundamémtidest than displacement
in fracture mechanics, and since differentiation is acdihditioned numerical operation.
Should we wish to obtain displacements, we could always mgyiation, which is a
well-conditioned numerical operation.

4.3. Muskhelishvili-type integral equations
The solutionf)(z) to (42) and to (49) corresponds, because of (10) and (17)®tc a
which is zero inside the holB’. Jump relations in (5) give

(I+M)Q(z)=—-a, z€T, (50)
(I -M)Q(z)=—-20"(2)+aa, zel. (51)

We see, by adding these equations, &t) is minus the outside limit of the analytic
function®(z) onT'. One can therefore view (42) and (49) as an integral equat® (z).

Fredholm second kind integral equations wtfx) onT" as the unknown variable, with
simple (not composed) compact operators on the left hargl s with possibly singular
operators on the right hand side are known as “Muskhelishgtlations”. An example
is (56), below, for the interior stress problem. Muskhalilequations are useful. They
solve for the unknow® (z) which is directly related to quantities of physical inteéresich
as the hydrostatic pressure of (3). Furthermore, on polgbdomains, they allow for the
construction of special corner quadratures [14]. The stiesorners has a non-trivial
asymptotic behavior, which is remarkably simple to expfes®(z) [14, 42].

Muskhelishvili equations are considered difficult to constand to analyze on multiply
connected domains. They are therefore not recommended itlaksic literature. See p.
398 of Muskhelishvili [30], p. 314 of Sokolnikoff [39], p. &4and p. 255 of Mikhlin [29],
and p. 158 of Parton and Perlin [33]. To illustrate the probhleonsider again (41).
It is tempting to replace the singular operafdi in (41) by the use of (50) and in this
way, somehow, obtain a Fredholm equation. Attempts in tirscton easily lead to
equations with complicated null-spaces and auxiliary fgais may have to be solved.
As a consequence, the representation®dr) of (20) has been rejected in favor of a
representation leading to the Sherman—Lauricella equatibose undesirable properties
are listed in the first paragraph of this section.

Perhaps one can say that Sherman'’s equation of the fornf¢48ples, is a Muskhelish-
vili-type equation? One could argue that the presenc&/pfon the left hand side dis-
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qualifies (49) from being of Fredholm’s second kind. On theeothand, we shall see in
Subsection 7.2 that the spectrum of (49) is very similar ®gpectrum of the Fredholm
second kind equation (42), and that (49) can be implemeitsakhas stably and efficiently
as (42). We therefore conclude that (49) replaces both tkeen®in—Lauricella equation
and earlier attempts at constructing Muskhelishvili eurest.

We now go further and demonstrate that it is possible to dexivequation on multiply
connected domains with holes which shares all the propeastithe classic Muskhelishvili
equation for interior problems (56). We rewrite (43) as

(ds (I + Ms) +dy (I +My))Q(2) = —dla—dzgﬁ‘, 2€T. (52)
Then we use (50) and (25), divide By, and obtain
d 7 -
((I+M3)+d—1P1i(I+M1)> Q(2) :——a—%,@’, zel. (53)
2
Adding a term as to satisfy (12) and choosiigd, = 1/2 we arrive at
1. . a Nn=
<I+M3+§Plz(I+M1)+zzQ1> Q(z):_§_ﬁﬁ’ zel, (54)

which is the main result of this paper. A proof that (54) hasi@mjue solution is given in
the appendix.

We observe that the left hand side of (54) can be evaluatdéutiexplicitly computing
the action ofM; onQ(z). Change of the order of integration gives

Plelﬂ_——éR {f TdT/ }_ Y {f Q(z)dz/ de}.
ry Ty Z—T 2A1 ry T Ty T —Z

(55)

5. SEVERAL HOLES OR INCLUSIONS IN INFINITE AND IN FINITE
DOMAINS
Sherman also treats the case of several elastic inclusicars infinite domain, and in a
finite domain [38] with traction applied &. Expressed in our quantif(z), Sherman’s
equations read

1 N—mn
_ — 99 — _ _ _ )\ »4Pr
(I = My = 2iPy) pf2(2) = 5 (I anﬁ)nt , 2€Ty, (56)
d
(I-F di My + do M3 +7:2Qj)p9( ) = gﬁMl—ntp —dia — dg—,B,
ZEF]‘, j:1727---7NinC7 (57)

where the last term on the left hand side of (57) only is nengdser the special case of an
inclusion being a hole, and where the weight) of (7,8) has been added as to prepare these
equations for the incorporation of cracks, see Section @h e help of (14,15,25-34) it

is easy to verify that the uniqueness conditions (12,40QJ Farl the solution to (56,57).
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For the case of inclusions being holes the correspondindMalishvili equation, which
may replace (57), is

1. L 1n—n__. «
<I—|— Ms + §Pj2 (I—|— Ml) +ZZQ]'> pQ(z) = ingﬁntp _ E _

B,

SIS

zeTy, j=12,...,Ny. (58)

Remark. Since Sherman [38] does not derive his equations from thenfiats® (z)
and ¥(z), but from the potentialg(z) and(z), he does not have to worry about our
unigueness condition (12) and he does not use the opefatarsd( ;. Instead, Sherman
introduces other uniqueness conditions related to rigilyldisplacements and he takes
care of them using other operators.

6. THE PRESENCE OF CRACKS
Itis easy to extend the equations (56,57,58) as to incluglpitisence of cracks. Integral
equations for cracks and inclusions (not holes) in an ifidditmain, based on the potentials
®(z) and¥(z) of (5,20), have already been derived in [16]. Integral eiguatfor cracks
(only) in a finite domain have been derived in [15]. The extjaations are

* — * _— lﬁ_n— r * — n 5
(I+Mfp ' (M{p— Mzp)))Q(z) = —M;p 1§EM1%MP +Mip! (E/B—Oé) )

ZEF]', j=Np+1,...,Nyn+ N¢. (59)

Application of@; to the leftin (59) and use of (36) shows that the uniquenesdition (12)
holds on the cracks.

7. NUMERICAL EXAMPLES

In this section we solve the integral equations (42,4965%%59) numerically on a
SUN Enterprise workstation and study the convergence opeed quantities of physical
interest. We cover a wide range of geometries and loads|vimgpboth new and well-
studied setups. We use a Ny@tr algorithm based on composite Gauss-Legendre and
Gauss-Jacobi quadrature and iterative solution. Spedciafiqture based on Williams
basis functions [42] will be used in the corners of finite amgfular domains [14]. A few
things can be noted.

¢ In the examples with holes in an infinite domain we use 164pGauss-Legendre
quadrature. In the examples with holes and cracks in fintttangular domains we use
8-point quadrature. The reason for lowering the order ofdhadrature on rectangular
domains has to do with stability. It is difficult to get high@mder quadrature stable in the
corners.

e The order of the the Nysim scheme will generally b&6 for holes in an infinite
domain. The implementation a¥/; and large parts of\f; is 32nd order, while the
implementation of the Cauchy principal value M, acting on an unknown function, is
only 16th order. In (54) the operatd¥/; is only acting onz, which is known analytically
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and we can expect ful2nd order convergence. The asymptotic order for holes aruksra
in rectangular domains is approximately The order of the scheme is limited by the
magnitude of the smallest omitted Williams exponent [42fhiea special quadrature used
on corner panels [14].

e We use a modified uniform mesh on polygonal domains. This sézat the outer
boundary is first divided into panels of approximately edealgths in such a way that
corners are symmetrically placed in panels. Then some ganelghboring to corner
panels, are made smaller. The reason that we use a@mieri refinement is that we aim at
very high accuracy and that the solution in the corners isnmtoth. See [14] for details.

e The GMRES solver [36] is used for the system of linear equatid he iterations are
terminated when the relative norm of the residual is as sasdtlcan get. This often means
10~16, The number of iterations needed for convergence, giveromgey and a load, is
almost independent of the number of discretization poiftss is typical for discretized
Fredholm integral equations of the second kind.

e The complexity and storage requirement of our implemesnatior simple geometries
grows asN2, whereN is the total number of discretization points. For the largale
computations in Subsection 7.8 we use the fast multipoldatkef2, 10, 35], previously
used in elastostatic contexts in Refs. [7, 8, 9, 12], and traptexity and the storage
requirement is proportional tty .

e Great care is devoted to avoiding roundoff error throughbetcode. Compensated
summation [19, 23] is used for inner products and for matagtor multiplications when
the fast multipole method is not invoked.

7.1. Earlierimplementations and tests

Subsets of the integral equations presented above haaslalbeen implemented and
tested by others and by us. Equation (59), for cracks in aniiefiegion, has been used
for the computation of stress intensity factors and congbsmdéwo previous results for a
kinked crack [16] and one previous result for a setup inva\viour straight cracks [12].
The equation has also been used to compute stress inteasitys for spiral-shaped
cracks [16] and effective moduli of a periodic array involgiten thousand randomly
oriented cracks [12]. Equation (43), for an elastic inabasin an infinite region was
implemented by Theocaris and loakimidis [40] and tested moreltiptic inclusion and
compared to an analytical solution. Equation (43) and (6Btfacks and inclusions in an
infinite region have been tested on a circular inclusionrsurded by 17 straight cracks [16].
Equation (56) for a finite domain has been tested on a stalfagbesl region and compared to
results obtained by the Sherman—Lauricella equation EiR],also on rectangular domains
with V-notches and compared to eight previous results [Edliations (56) and (59) for one
crack in a finite domain has been tested on a centered crackoamglared to 29 previous
results [15].

In all the tests mentioned above, where previous results exailable, algorithms based
on our equations showed dramatic improvement in terms ¢f &tability and economy of
points.
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FIG. 1.  Singular values for the discretized operators of the leftchside in (42), (49), and (54) for the
geometry of (60). A number 2080 discretization points is used. The condition nhumbers ferdtscretized
operators ar€’'(42y = 110, C(49y = 250, andC'54) = 830.
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FIG. 2. Convergence of the quantity,.s of (61) for the hole of (60) and the load at infinity

&7". Equations (42), (49) and (54) are compared. DP refers tdldoprecision calculations and QP
to quadruple precision calculations. The relative errais @mputed with the reference quantity taken as
Qrer = 5.1445778061927687005756, which is obtained from (54) witl2400, or more, points in quadruple
precision. A uniform mesh is used, where all quadrature Igdma/e equal lengths in terms of the parameter
of (60).
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7.2. One hole in an infinite domain
Let us first consider a nine-armed starfish-shaped hole infanité plane parameterized

by
2(t) = (1 +0.36cos 9t)e’, 0<t < 2m. (60)

The load at infinity is chosen to &8 = (1,0, 0), thatis,o = 0.5 and = —0.5. We set
out to compute a quantity.s which is theL? norm of the hydrostatic stress &

1
2

ot = [ @ea) 4 o7 a5) (61)

We shall compare the performance of (42), (49), and (54). @oblem is well-
conditioned. Figure 1 depicts the singular values of therditzed operators in the in-
tegral equations. The condition numlggiof the corresponding matrices is approximately
Claz) = 110, C(49) = 250, andC54) = 830. A convergence study of the quantigy
of (61) is presented in Figure 2. The achievable accuracgtiebthan machine epsilon
times the condition numbers of the discretized systems.s Ehso since the condition
number of a system matrix is an upper bound for the conditiontrer of the problem of
solving a linear system of equations and since the quaptitcomputes an average of the
solution2(z).

The algorithm based on (42) exhibits the most stable coeverg, but it consumes the
most computational work per iteration. See Subsection®h2.number of GMRES itera-
tions required for full convergence at 4000 discretizapoimts is 31. The computational
work per iteration consumed by algorithms based on (49) &4yl similar to each other.
Computing the action ol/; on2(z) can be viewed as a part of the process of computing
the action of M3 on Q(z). However, the result computed by (54) converges faster but
less stably, with the number of discretization points, thianresults computed by (49).
This is so sinceMf; is not acting orf)(z) in (54) and since the discretized system (54)
has a higher condition number than the discretized syst&n {#he number of GMRES
iterations required for full convergence at 4000 discedton points is 35 with (49) and
d, = 0.25, and 34 with (54). We conclude than the algorithm based opg#2s the most
stable convergence and that it consumes the most commahti@rk. The algorithms
based on (54) converges faster than the others and conshenlesist work, but it is least
stable. The algorithm based on (49) is somewhere in between.

7.3. One hole in a finite domain
Let us now consider a circular hole of radiR€entered in a rectangular plate with height
of 2h and width of2w. Uniform normal tractiont}" is prescribed at two opposing sides.
See Figure 3a. A quantity of interest here is the normaliaedéntial stresé;(z). For
a stress-free hole, one can defiéz) as the ratio of the trace of the stress tensor on the
hole to the trace of the applied stress tensor. The relatiothe present setup becomes

A 0pe(2) + Tyy (2)

6¢(z) = or , ze€l. (62)
y
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Left, a hole of radiusk centered in a rectangular plate with heightand width2w. A uniaxial

stress is applied at two opposing sides. The remaining tdessare stress-free. A maximum absolute value of
the normalized tangential stress (63) will occur at peint

FIG. 3b.

placed on the coordinate axes, a distasi¢dem the origin.
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Convergence of the stress concentration fa&fgrof (63) for a circular hole of radiu& = 0.25,

DP

Right, four holes of radiug in a square plate with side-lengthw. The hole are symmetrically

centered in a square plate of unit side-length. A unifornaxial load applied. The systems (56,57), and (56,58)
are compared in double precision arithmetic. The probleweitconditioned. The relative errors are computed
with a reference value taken d6; = 6.3886960194568237. A modified uniform mesh is used, where all

quadrature panels have approximately equal lengths.

A stress concentration factdtf; can be defined as the maximum absolute value of the

normalized tangential stress

K; = max|6:(2)] .

2€T

(63)

The value ofK; for this setup, withR/w = 0.5 andh/w = 1, has previously been
computed by Isida and Sato [21], with a method based on saqEmsions, and by Nisitani



MULTIPLY CONNECTED DOMAINS 15

and Chen [31] with a method based on singular integral egustiThe authors report the
valuesK; = 6.3887 and K; = 6.38869, respectively. Figure 4 compares the performance
of the two systems (56,57), and (56,58) for this setup. Ounptations converge to a
value of K; = 6.3886960194568, which is reached at abo@000 discretization points.
With only 216 points, which corresponds to the coarsest mesh we can useuwitiolating

the rules for the construction our modified uniform mesh [I¥8 getK; = 6.38870 and
confirm the result of the previous authors. This computatides only a few seconds.

Figure 4 shows that the convergence rate of the algorithmdas the systems (56,57)
is approximately eighth order. It is controlled by the opera/; on the left hand side
of (57). The convergence of the algorithm based on the sy&émh8) is initially faster,
since M, thanks to (55), does not have to be evaluated on the left idadf (58). With
more than 800 points, the error related to the accuracy afdheer quadrature dominates.
Itis seventh order. It is worth mentioning that for the satfipigure 3a, the location of the
point z, where the normalized tangential stress has its maximukmda/n in advance and
that we arrange the mesh so that a quadrature point is plaeesl tIif we were to perform
the maximization of (63) numerically, the order of both sties would decrease.

As for convergence in the GMRES iterative solver, the athoms based on the two
systems are rather similar. The algorithms based on (58¢gjlires no more than 30
GMRES iterations for full convergence, while the algoritbased on (56,58) requires no
more than 28 iterations, irrespective of the number of éiszation points used.

The value forK; of the setup in Figure 3a has also been computed for theftase= 0.1
andh/w = 1, by Leung, Zavareh, and Beskos [26] and for the cRgevr = 0.5 and
h/w = 10 by Chen, Ting, and Yang [4]. Leung, Zavareh, and Beskos [26Jauvariety of
methods, including a combined finite element/boundary elgracheme, and the commer-
cial software BEASY and NASTRAN. The authors exploit symmetse a number of 40
to 100 points for a quarter of the geometry, and arrive at adetgpvalues lying in the range
K; = 2.889to K; = 3.059. With our coarsest mesh, corresponding T6 discretization
points for the entire geometry, we get the estimAie= 3.0860851. Full accuracy is
achieved at abou00 points and the converged valueA§ = 3.0860851670536. Since
the discrepancy between our value and those of Ref. [26]tlerdarge considering the
simple nature of the geometry, we asked Dr. Jonas Faleskibg &epartment of Solid
Mechanics, KTH, to do an independent investigation withabmmercial finite element
package ABAQUS. Using bi-quadratic elements and a numti&ia® degrees of freedom
for a quarter of the geometry, Dr. Faleskog obtained thened&/(; = 3.0861 £ 0.0001.
This computation took about ten seconds, the time for meskrg&on not included, and
confirms our result. Chen, Ting, and Yang [4] use a combinatiioa boundary element
method and a spectral method and arrive at a valug;of 4.32 for their choice of pa-
rameters. A number d¥2 to 96 quadratic boundary elements on an adaptive mesHiand
Fourier modes were used. With a numbe86d discretization points, corresponding to the
coarsest uniform mesh we can construct, we compute theastiy = 4.347. Full accu-
racy is achieved at aboR6000 points and the converged valueAs = 4.3475991016650.

A possible explanation to the discrepancy between ourtsean those of Ref. [4] can be
found in the convergence study in Table 1 of Ref. [4]. Thidaabdicates that 12 Fourier
modes is not enough to guarantee three accurate digits.
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FIG. 5a. Left, two symmetrically placed holes of radids separated a distan@® in a rectangular plate
with height2h and width2w. A uniaxial stress is applied at two opposing sides. The imgim@ntwo sides are
stress-free.

FIG. 5b. Right, five symmetrically placed holes.
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FIG. 6. Convergence of the stress concentration fadtgr of (63) for the setup of Figure 5a. The

system (56,58) is used in double precision arithmetic. sS&fer to a setup with smaller holes given Byw =
0.25, P/w = 5/6, andh/w = 3.125. Open circles refer to a setup with larger holes givenRyyw = 0.5,
P/w =1, andh/w = 10. The reference values for the two cases are takefijas- 3.1471561193558794
andK; = 4.1693288541234566, respectively. A modified uniform mesh is used.
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7.4. Two holes in a finite domain

One setup studied by Chen, Ting, and Yang [4] involves twasézgd holes of radius
R/w = 0.5 separated a distand®/w = 1 in a rectangle witth/w = 10, see Figure 5a.
A number of30 to 60 quadratic elements and a numberl@fto 24 Fourier modes on
each hole were used. The result convergedto= 4.17, which coincides with the
estimate of Atsumi [1] for a specimen wiflyw = co. We used the algorithm based on
the system (56,58) for this setup. A convergence study isemted in Figure 6. In this
problem, the location of the pointon I" whered,(z) of (62) achieves its maximum is
not known in advance, and we have to interpolate the solutidb6,58) in order to find
the maximum. The interpolation is eighth order accuratee dptimization is done with
Newton’s method and safeguarded with Golden Section Seaftlis procedure slows
down the rate of convergence compared to the case of a saggltered hole. Still, as can
be seen in Figure 6, with00 discretization points, we get the resiif = 4.17 which
confirms the results of the previous investigators. The agatfpns converge to a value
K; = 4.16932885412, which is reached at abo6000 points.

Another, simpler, setup studied by Chen, Ting, and Yang i@olves two smaller
equisized holes of radiug/w = 0.25 separated a distand®/w = 5/6 in a rectangle with
h/w = 3.125, see Figure 5a. Here the authors compare their own r&5u 3.145 with
a resultK; = 3.139 obtained with the commercial finite element software ANS%#g
2132 elements, and a resilifi = 3.345 obtained by Meguid [28] with the finite element
package SUPERB. With onBf72 discretization points we compute the four digit accurate
answerk; = 3.147, see Figure 6. Witl3300, or more, points we get the converged value
K; = 3.1471561193559.

7.5. Four holes in a finite domain

Woo and Chan [41] studied 28 setups of square plates cerattlee origin and aligned
with the coordinate axes of a cartesian coordinate systdma.plates had side-lengths
and contained four small holes with radii varying frddfw = 0.01 to R/w = 0.15. The
hole centers were placed at the four poifds0), (0,d), (—d,0), and (0, —d), whered
varied betweed/R = 2 andd/R = 5. The applied load was uniaxial. See Figure 3b. A
collocation method based on series expansions for the faited(z) and¥(z), adaptive
placement of the collocation points, and least squareoappation was used. The number
of degrees of freedom used correspond82d for the entire geometry. Results féf;
of (63) were presented to four digits in the authors’ Table 2.

We checked all 28 results fdk; of Woo and Chan [41] against results obtained us-
ing (56,58). For 22 setups we confirm all their four digits; four setups we confirm
three digits, for one setup we confirm two digits, and for oetig we do not confirm
a single digit. The discrepancies between our results aosetiof Woo and Chan [41]
chiefly took place for the most difficult setup with the larglesles, see Table 1. The very
large discrepancy for the setup witi R = 5 deserves some comment. Not only do our
results differ from those of Woo and Chan [41] with 20 per cdndrther, while Woo and
Chan [41] find that the maximum stress concentration ocauth®@holes centered around
(0,d) and (0, —d) we find that the maximum occurs at the holes centered ar¢dytJ
and (—d,0). For this reason we decided to perform computations withcttramercial
finite element software ANSYS. We used about 10000 eightrpdadratic elements of
the type PLANES82 corresponding to about 31000 discretimgpioints per configuration.
The results of these computations are presented in Table 1.
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TABLE 1
Results for the stress concentration factorK,; of (63) for the most challenging
setups of four holes in a square plate of Woo and Chan [41].

d/R* Ref. [41] ANSYS Egs. (56,58) and 320 pts Egs. (56,58) best poss.
2 4.833 4.832 + 0.001 4.8327 4.8326684347317
2.5 4.332 4.331 +0.001 4.332 4.3314395844773
3 4.051 4.050 4+ 0.001 4.051 4.0504940219307
3.5 3.814 3.813 £ 0.001 3.814 3.8142986073521
4 3.768 3.769 £ 0.001 3.7694 3.7693606053913
4.5 3.860 3.941 £ 0.001 3.942 3.9414430052749
5 3.905 4.764 + 0.001 4.765 4.7639166341954

* The plate has side lengthw and the hole radii ar& /w = 0.15. The holes are placed on the coordinate axes
a distanced from the origin.

@ ANSYS refers to finite element computations.

b Results from (56,58) using only 320 discretization points.

¢ Best possible results in double precision arithmetic fr66%8).

5 Convergence of K-t

10 N N * N N N N I - - - - - - 1
S x R2/w=R4/w=1/16
L + R2/w=R4/w=1/12
0 r o R2/w=R4/w=1/6
* R2/w=R4/w=11/48
10_6 | . . . R i
v
-zélo’8 -
5
5
g -10
510 -
[)
e
10712_
10
10—15

Number of uniformly placed discretization points

FIG. 7. Convergence of the stress concentration faéferof (63) for the five hole setup of Figure 5b. The
system (56,58) is used in double precision arithmetic. Tateas a height-to-width ratio &f/w = 3.125. The
two holes furthest removed from the origin have ralii/w = Rs/w = 0.25. The hole at the origin has radius
R3/w = 1/16. The separation distances d@¢/w = 5/6 andP> /w = 2/6. The symbols 'x’, '+, '0’, and "*’
refertoradiiRy = Ry = 1/16, Ry = R4 = 1/12, R» = R4 = 1/6,amdR» = R4 = 11/48. The reference
values are taken &s; = 3.1191735564211897, K = 3.1069156838873726, K+ = 2.9969770267128966,
andK; = 2.8309208646076457, respectively.

7.6. Five holes in a finite domain
The most complex hole system in a finite rectangular platewacould find results
for in the literature is the system denoted “condition (llby Meguid [28] and Chen,
Ting, and Yang [4]. This system involves five small symmaeititic aligned holes in a
plate withh/w = 3.125. The two holes furthest removed from the origin have radii
R;/w = Rs/w = 0.25. The hole at the origin has radil® /w = 1/16. The radii of the
remaining two holes are allowed to vary betwdgn= R, = 1/16andR, = Ry = 11/48.
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TABLE 2
Results for the stress concentration factoK; of (63) of Figure 5b.

Ry = R} Ref. [4] BEAM Ref. [4] ANSYS Ref. [28] SUPERB Egs. (56,58)
w/16 3.115 3.110 3.244 3.1191735564212
w/12 3.102 3.095 3.204 3.1069156838874
w/6 2.980 2.974 3.049 2.9969770267129

11w /48 2.792 2.790 2.981 2.8309208646076

* Three radii are fixedR; /w = Rs/w = 0.25 andR3 /w = 1/16. The radiiR2 and R4 vary. The separation
distances aré; /w = 5/6 and P> /w = 2/6.

The separation distances aPe/w = 5/6 and P,/w = 2/6, see Figure 5b. The stress
concentration factor for the two outer holes reported byptteious authors, as well as our
new results are displayed in Table 2. The mesh is not contpletéform. The spacing
between discretization points is taken four times densetherholes than on the outer
boundary. The reason for thispriori refinement is that the holes are much closer to each
other than to the outer boundary.

It can be noted, in Table 2 that the newer results of Chen,, @ing Yang [4] are generally
better than the older results of Meguid [28]. The largestmisancies are found for the
most difficult case wher&, = R, = 11/48. Here the holes are closest to each other.

tPr
y

2w

2h

T

FIG. 8. Two holes of radiiR and a crack of lengtBa in a square plate with side-leng#w. The distance
from the hole-centers to the originds The angle of a line through the hole-centers anditeis isa.

7.7. Holes and cracks in a finite domain
Let us now consider setups involving equisized holes ofi rRdand straight cracks of
length2a. A quantity, of particular interest in this context is themglex valued normalized
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stress intensity factaF’ = Fi + ¢ F11, which can be computed as

w2 o .
F(ys) = T Ja ZLIT%SQ(%W(Z)\/(SS(Z), zely, j=Ny+1,...,Ny+ NJ(64)

F(ve) :—W lim Q(ye)p(2)v/ds(2), 2z€T;, j=Ny+1,...,N,+ N,
y

QA z2—Yje
(65)
whereds(z) is arclength measured from the closest crack tip.

Woo and Chan [41] studied 23 setups involving two small haled one small straight
crack in a square plate with side-len@tln and centered at the origin. The crack is placed
at the origin and aligned with the-axis. The two holes are placed opposite each other and
at a distance from the origin. The angle between a line through the holekthex-axis
is a. See Figure 8. The setup is such thatw = 0.1, d/w = 0.3, R/w = 0.1, anda is
allowed to vary. Numerical results fdf; and F1; are presented to four or to five digits.

Convergence of F-I, F-IlI, and K-t
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FIG.9. Convergence of the stress concentration faéfgiof (63) and the normalized stress intensity factor
Fy and Fy; of (64,65) for the setup in of Figure 8. The system (56,58i6®@)sed in double precision arithmetic.
The two holes have radi?/w = 0.1. The distance from the origin i#/w = 0.3. The angle of inclination is
a = /4. The crack has length/w = 0.1. The reference values are takenkis = 3.5220865511473008,
F1 = 1.2503879831741171, and Fi1 = —0.14416713067935393, respectively. The mesh is uniformly

refined. The discretization points are placed four timesesido each other on the cracks and on the holes than
on the outer boundary.

With @« = 0 anda = 7/2 and with our equations (56,58,59,64,65) we reproduce the
results of Woo and Chan [41] fdf; to all digits presented in their Table 6. The valud@f
is zero due to the symmetry. For all other values of the anghee get results fo#; and
F11 that differ significantly from those in Table 6 of Woo and CHdfh]. The mismatch is
particularly severe foFyr, where we sometimes do not even get the same sign as Woo and
Chan [41]. As an example we take= 7 /4. Here Woo and Chan [41] repdiit = 1.2532
and F1; = 0.4039 in their Table 6 (andfy = 1.2530 and F; = 0.4045 in their Table 5),
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while we get convergence th = 1.2503879831741 and Fi1 = —0.1441671306794, see
Figure 9. Again, we performed computations with the comiaéfinite element software
ANSYS and about 10000 eight-node quadratic elements of/ffeeRLANES82, to validate
our code. Near the crack tips, a focused mesh with quartet pgangular elements was
used. The stress intensity factors were obtained throughof tie nodal displacements
near the crack tip to the asymptotic analytical crack timgoh. The result from ANSYS
was F1 = 1.250 + 0.003 and F;; = —0.14 + 0.01, which indicates that our code based
on (56,58,59) is implemented correctly.

7.8. Large scale computations

In a final example we solve for stress concentration fackgrsand normalized stress
intensity factorsFt and Fi; for some large setups using equations (56,58,59,63,6db)
the fast multipole method. We choose a simply reproduciélesconsisting of a square
plate of side lengtBw with 2m? equisized circular holes of radi and2m? straight cracks
of length2a. The total number of object is th4sn?. The size of the objects are chosen
asR/w = a/w = 0.25/m and the objects are placed on square grid with a distariee
between nearest grid points. See Figure 10. In particustady the convergence &f;
and the largest valug; and F1; with the size of the setup, determined by the parameter
and with the number of uniformly placed discretization pgeiN.

N I I N I O I

2w 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-] 2w

T T T e [ B R R

FIG. 10.  Two setups with holes and cracks. The square plates havdesigths2w and contairnzm?
circular holes with radiiR = 0.25w/m and2m? cracks of lengtt2a = 0.5w/m. The objects are placed on
square grid with a distance /m between nearest grid points. The left plate has= 1 and the right plate has
m = 16.

As it turns out, the largest tangential stress and the lagesss intensity factors are
always found on cracks and holes closest to the plate cormersable 3 we show how
these quantities converge with the parameteiThe largest value af. chosen isn = 32,
corresponding td096 objects. Figure 11 shows convergencd@falong with the largest
values ofFy and F1; for a plate withm = 16, that is, with1024 objects. As can be seen,
the achievable accuracy for this large-scale computati@bout three digits less than in
the examples of the preceding subsections. The chief réasthis loss of accuracy is not
that our large-scale example is more ill-conditioned threngrevious examples, but due to
numerical cancellation in the fast multipole scheme agdiffices between positions of the
discretization points are evaluated. In the smaller exampf the preceding subsections
these differences were computed with special care.
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TABLE 3
Results for the stress concentration factorK; of (63) and largest normalized
stress intensity factorsFt and Fyx of (64,65) in the setup of Figure 10.

m* K} F Fi
1 4.748140332912 1.133105345114 -0.059347687764
2 4.7341318940 1.1442488313 -0.0545599210
4 4.7339636409 1.1441818139 -0.0542844102
8 4.7340021110 1.1441832610 -0.0542907947
16 4.734000002 1.144183308 -0.054290737
32 4.733998851 1.144183030 -0.054290181

* The number of holes and crackstis:?.
@ Equations (56,58,59) are used with a modified uniform mesh.

Convergence of F-I, F-Il, and K-t

10
FE I : : N I + F-l
o o : : A O F-l
oot : : oo * K-t
| % EEEE : : EE
106-9285**;555; 5 Dot Dt -
EVYO AT : : Do
- 0¥+l 8 % S
X S : : .
z 8 | : #9 -k : : S ]
g 10 g : S
= S :'Da'E : : -
L s
T 10 : :::%%2 : [
& 10 FEREEREEE - : o o .
£ : ::::ﬁ»ﬁ;} * 00 C[SJCD R o104
= : *
: T ekt o
- Py e g T Bol®
210 SRR TR L AP
s OF ok
o : $ o
ol
107 L Co L
10° 10°

Number of uniformly placed discretization points
FIG.11. Convergence of the stress concentration faifpof (63) and the largest normalized stress intensity
factor F1 and Fyp of (64,65) for the setup in of Figure 10 with = 16, corresponding t@024 holes and cracks.
The system (56,58,59) is used in double precision arittaveetd the fast multipole method is used for matrix-
vector multiplication. The reference values are takedkas= 4.7340000015921, F; = 1.1441833078687,
andF1; = —0.054290736731657. The mesh is uniformly refined. Abotid GMRES iterations are needed for
full convergence.

8. CONCLUSION AND DISCUSSION

We derived the Muskhelishvili-type integral equation (35d) a multiply connected
domain with a hole. The equation is simple. It does not rexthe solution of any
“auxiliary problems for some particular types of loadings’has been the case for previous
equations of this type according to p. 158 of Ref. [33]. Thalgsis of the equation seems,
in our opinion, not more complicated than the analysis ofdlassic Sherman—Lauricella
equation. The difficulty of the analysis of Muskhelish\ilipe equations is the reason
why the Sherman—Lauricella should be preferred, accortirtge authors referenced in
Subsection 4.3. Undesirable properties of the Shermarridedla equation, avoided in our
formulation, are listed in the first paragraph of Section 4.
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The equation (54) is not the only integral equation for npljtconnected domains which
can be derived from the Muskhelishvili potential repreatioh. Equations (42) and (49)
are two other examples, each with their own advantages avdbdicks. The reason that
we prefer (54) over (42) and (49) has to do with speed and cganee. Further, one could
construct modifications of (54) by replacing the oper@powith some other operator which
has the property (25). The reason that we préfein (54) has to do with simplicity. The
operatorP; naturally appears in (14) and we want to stick to a small nurobeperators.
While P; may not be an optimal choice, we believe it is sufficiently @éar our purposes.

Interestingly, it is recommended that crack problems, Wimiwolve multiply connected
domains, should be solved with algorithms based on the Malsitvili potential represen-
tation. See Paragraph 23 in Ref. [33] and Section 6 of ChafiteRef. [34]. In (56,58,59)
we unite these results and get a set of equations for bodiaining an arbitrary number
of cracks, holes, and inclusions. These equations haveaereperties which are good
for numerics, especially so in the context of polygonal dommaHere, too, minor modi-
fications are possible. For example, by changing the unieggeoaondition (10), which is
somewhat arbitrarily chosen, alternative equations catebiged. Anyhow, in a series of
small-scale examples we greatly improved on previous breacks. It was easy to review
a large number of setups and results, since our algorithonparatively flexible. We saw
that commercial finite element packages often performaeibttan special purpose codes
for these simple problems.

Finally, we solved some large but well-conditioned prokderhe largest problem stud-
ied involved4096 objects, that is, on the order of 1000 times more objects thatypical
research paper in this field. A slightly smaller problem wesotved in double precision
arithmetic using250000 uniformly placed discretizations points and overresolwitti up
to 1550000 points as to demonstrate stability. Naturally, as the nurobeiscretization
points increases the achievable accuracy goes down. A afuhumb, we get about
16 — log,o IV correct digits, whereV is the number of discretization points needed for
resolution. It is our hope that this paper will encourage @m@liable calculations in the
field of computational fracture mechanics. We also beliewenork to have relevance for
the problem of Stokes flow, multicomponent fluid flow, and otlaege-scale multiphase
problems in materials science where similar equationsceaboe solved [8, 20, 24, 25] and
where the Sherman-Lauricella equation and equations loespdmitive variables do not
perform to satisfaction unless preconditioners are usg2iB

APPENDIX

We shall show that the homogeneous equation (54) has norivéai-$olutions. Using
relations in Section 3 and

PiiMsf = —Pyif, (A.1)
it is easy to show that the homogeneous version of equatin (5
(I-I- Ms + %Pli (I+ M)+ izQ1> Qz)=0, zeTl, (A.2)
is equivalent to the following four equations

(I+M)Q(2)=0,z€T, (A.3)
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Pi(I+M)Q=0, (A.4)
@:12=0, (A.5)
P (I+M)Q=0. (A.6)

Application of @; to the left in (A.2) gives (A.5). Subtraction of (A.5) from (2)
and multiplication byi, followed by application ofP; gives (A.4). Subtraction of (A.5)
and (A.4) from (A.2) gives (A.3). Equation (A.6) follows fmo the application ofP;
to (A.3). Alinear combination of (A.3-A.5) gives back (A.2)

We shall focus on (A.3) and show that any non-trivial solntiey (z) to this equation
satisfies

(I-F Ml) Qo(z) =c, z€l, (A.7)

wherec; is a real-valued constant. ¢f is non-zero, this violates (A.4). H; is zero, then
a substitution of (A.7) in (A.3) gives th&ly(z) must satisfy

(Ml — Mg) Qo(z) = 0, (A8)

which is the homogeneous version of (41). Under the unigseoendition (A.5), there is
only one non-trivial solution to (A.8), namefy, (z) = icq, wherec, is another real-valued
constant. Ife; is non-zero, this violates (A.6).

It remains to show (A.7). For this we introduce new potestialD

@*(z'):—%/r% 2 eD, (A.9)
and
W*(z')z%[ﬂ%—l—%/r%. 2'eD, (A.10)

Taking limits from the inside oD, one can show

lim n®*(2') + n®*(2') — ' ®*'(2') — AV*(2') = in (I + M3) Qo(2) .(A.11)

2! —zel

Equation (A.11) implies that a solutieh* (2') to

lim  n®*(2') + n®*(2') — nz®*'(2') — Av*(2') =0, (A.12)

z'—zel

corresponds, via (A.9), to adensidy(z) which is a non-trivial solution to (A.3). According
to Paragraph 34 of Muskhelishvili [30], the only solution(fal1) is®*(z') = ic3, where
cs is another real-valued constant. Taking the lindit— z € T from the inside ofD
in (A.9) we see that

(I+Mi)Qo(z) =—2¢c3, zE€T, (A.13)

and withe; = —2¢3 this proves (A.7).
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