
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Ion pairing and phase behaviour of an asymmetric restricted primitive model of ionic
liquids

Lu, Hongduo; Li, Bin; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan

Published in:
Journal of Chemical Physics

DOI:
10.1063/1.4972214

2016

Link to publication

Citation for published version (APA):
Lu, H., Li, B., Nordholm, S., Woodward, C. E., & Forsman, J. (2016). Ion pairing and phase behaviour of an
asymmetric restricted primitive model of ionic liquids. Journal of Chemical Physics, 145(23), Article 234510.
https://doi.org/10.1063/1.4972214

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1063/1.4972214
https://portal.research.lu.se/en/publications/18e48102-2a7a-4f86-83d3-73c13f30c134
https://doi.org/10.1063/1.4972214


Ion Pairing and Phase Behaviour of an Asymmetric

Restricted Primitive Model of Ionic Liquids

Hongduo Lu†1, Bin Li†1, Sture Nordholm2 , Clifford E. Woodward3, and Jan

Forsman1∗

1Theoretical Chemistry, Lund University, P.O.Box 124, S-221 00 Lund, Sweden

2Department of Chemistry, The University of Gothenburg, SE-412 96 Göteborg, Sweden

3School of Physical, Environmental and Mathematical Sciences, University of New South Wales,

Canberra, ACT 2600, Australia

† Contributed equally to the work.

E-mail: jan.forsman@teokem.lu.se

Abstract

An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple

three parameter (charge q, diameter d and charge displacement b) model of ionic liquids and

solutions. Charge displacement allows electrostatic and steric interactions to operate between

different centres, so that orientational correlations arise in ion-ion interactions. In this way the

ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid

formed from ion pairs. The present exploration of the system focuses on the ion pair formation

mechanism, the relative concentration of paired and free ions and the consequences for the

cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar

(though not identical) models in the past, we focus on behaviours at room temperature. By

MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or

∗To whom correspondence should be addressed
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essentially hard-sphere) diameter equal to 5 Å and a charge displacement from hard-sphere

origin ranging from 0 to 2 Å we find that ion pairing dominates for b larger than 1 Å. When b

exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs, with a small presence

of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of

purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent

with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate

of self-diffusion and, to a lesser extent, conductivity are overestimated, presumably due to

the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in

relation to the rich variety of new mechanisms and properties it introduces, and to the numerical

simplicity of its exploration by theory or simulation, makes it an essential step on the way

towards representation of the full complexity of ionic liquids.

Introduction

The so-called restricted primitive model (RPM) has been widely applied to aqueous salt solutions

and dispersions of charged particles. The model is a crude one, e.g., the solvent is treated as a

dielectric continuum while all the ions are hard spheres, with diameter d, each carrying a charge

±q, embedded at the center. While its relative simplicity may detract from its ability to describe

say specific effects in electrolytes, steric and electrostatic interactions are clearly articulated in the

model and the RPM has been instrumental to our understanding of how these mechanisms interact

in simple electrolytes. The model has also been utilized to describe molten salts and other types of

ionic liquids, wherein steric and electrostatic correlations have uncovered effects that are sensitive

to temperature, dielectric response and ion concentration.

The logical next step towards a more realistic modelling of electrolytes and ionic liquids (ILs)

is simple generalization of the RPM. Several modified RPM models, have been proposed which al-

low other mechanisms to be explored. For instance, Spohr and Patey performed studies on charged

Lennard-Jones particles with size-asymmetry,1 charge-asymmetry, competing influences of size

and charge asymmetry,2 and solvent polarization.3 Lindenberg and Spohr also simulated melt-
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ing temperatures for systems containing charge-asymmetric Lennard-Jones ions.4 In a subsequent

study, they investigated effects of size-asymmetry.5 Malvaldi and Chiappe introduced a dumb-

bell model.6 Slivestre-Alcantara and co-workers performed analyses on mixtures of off-centre

charged cations and centrally charged anions7, as well as on ions composed of hard-sphere dimers,

where only one of the tangentially connected spheres carry a charge.8 Similar models, also includ-

ing those with a trimer structure, were considered by Fedorov and Kornyshev.9,10 Models with

Gaussian-distributed charges have also been considered.11,12

In room temperature ionic liquids (RTILs), a high density and low dielectric screening pro-

motes large electrostatic correlations and the increased importance of steric interactions. Here the

RPM (and modifications to it) can serve as a basic model that can be treated semi-analytically or

numerically with simulations. However, it is clear that the simple RPM does not include the mech-

anisms responsible for the persistent fluidity of RTILs. Instead, quite detailed molecular models

are often proposed, which are typically investigated using simulations, the results of which can be

difficult to interpret in terms of basic mechanisms. The purpose of our current work is to find the

simplest extension of the RPM, which includes the most essential mechanisms responsible for the

properties of RTILs. In particular, we will investigate a model that is very close to the original

RPM but which includes a new parameter, b, (common to all ions) which measures the displace-

ment of the charge away from the center of the hard sphere (b ≤ d/2). Of particular interest to

us will be how b influences the freezing point and overall cohesion within an ionic liquid. For

example, one can anticipate that a significant displacement of charge away from the center will

result in the formation of ion pairs, which in turn can have a considerable influence on electrostatic

screening. There are surface force, conductivity and voltammetry measurements that do support

the existence of ion pairs, or higher order clusters, in ionic liquids.11–16 For example, Gebbie et

al.11,12 used the Surface Force Apparatus, SFA, to measure interactions between charged surfaces,

separated by ILs. They found long-ranged forces, persisting to separations of 10-12 nm. If one

assumes these forces can be explained by simple electrostatic screening arguments, the implied

fraction of free (unassociated) ions would be below 0.1 %. Interestingly, Smith et al.16 performed
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SFA studies of simple aqueous salt solutions, and noted an increased range of the forces with

added salt, for concentrated solutions (beyond some threshold value). Their measurements also

confirmed the existence of long-ranged interactions in RTILs, and in concentrated RTIL+solvent

mixtures. A correlation between transport properties and ion pair (or cluster) formation in RTILs

has been found in simulations.17,18 Sha et al. simulated RTILs in aqueous solutions as well as

the corresponding neat liquid. They found strong ion association in the latter and in highly con-

centrated solutions However, the average life-time of the clusters was estimated to be relatively

short - of the order of nanoseconds. The fact that RTILs display a significant conductivity seems

to be at odds with the conjecture of almost complete association. It is true that the conductivity is

generally lower than one would anticipate in a fully dissociated fluid, but a degree of association of

about 50 percent normally suffices to explain the measured values. While it is possible that charge

transfer15,19 can at least offer a partial explanation for these discrepancies, there seems to be little

overall consensus about this issue in the presence of seemingly contradictory experimental results.

The formation of ion pairs, i.e. dimers, may be expected to impart the following properties to

the fluid:

• a reduced tendency to freeze into a crystal

• a reduced conductivity

• a reduced electrostatic screening, i.e. an increased range of the electrostatic interactions

• a dielectric low frequency response of the fluid

We also anticipate interesting new behaviours in heterogeneous systems, e.g. in the vicinity of

charged or neutral electrodes. These aspects will be investigated in a subsequent publication.

While our model contains two parameters (the ionic radius d and the charge displacement dis-

tance b), for molar volumes typical of RTILs at atmospheric pressure, d is realistically constrained

within a rather narrow window of values. Hence, we are in effect left with one freely varying

parameter, b. In this study, we focus on fundamental aspects of the bulk fluid, such as the melting
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point, dielectric response, structure, cohesion, diffusion and conductivity. We will consider how

these properties vary with b, and compare the results with those typical for RTILs. We will also

address the role of ion pairing in some detail. We used Metropolis Monte Carlo (MC) simulations

and the veracity of the results were ascertained by comparing with Molecular Dynamics (MD) cal-

culations. MC simulation codes are less amenable to efficient parallelization, so MD simulations

tended to be more efficient, at least given our access to a computational cluster.

While this work is primarily devoted to generic ARPM models of RTILs, it should be empha-

sized that the ARPM also may constitute an interesting extension to the RPM model of aqueous

salt solitions. We anticipate relevant contributions to osmotic and acticity coefficients, as well as

to the screening properties and capacitance of such solutions. However, we postpone these consid-

erations to future work.

The model is described in the next section, followed by the presentation of results. We conclude

with a discussion and suggestions for future studies.

Model and methods

The model we use here adheres to the simple RPM description, with a common hard sphere diam-

eter d and charge ±q for the ions, maintaining electroneutrality.

b +
b-

Figure 1: A graphical illustration of the ARPM, being composed of hard-sphere ions, each carrying
a charge that is displaced a distance b from the centre.

In this work, we shall only consider monovalent charges, i.e., q is equal to the elementary

charge. In future work, fractional charges may also feature, given the possibility that charge trans-

fer may play a role in RTILs.15,19 In this context, we note that varying the ionic charge is essentially
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equivalent to changing the dielectric constant or the temperature. In contrast to the standard RPM,

for all ions, the charge will be located a distance, b, away from the hard-sphere centres of the

particles. We shall denote our model as the Asymmetric Restricted Primitive Model (ARPM) and

it is depicted in Figure 1. It should be noted that the ARPM is similar in spirit to a range of simple

asymmetric models that were investigated by Spohr and Patey,1–3 and by Lindenberg and Patey,4,5

although they included dispersion interactions, which we do not. We will generally consider fluids

at room temperature (298 K), while Patey and co-workers primarily studied models at elevated

temperatures. Furthermore, we will investigate the influence of b on fluid cohesion, and dielectric

properties, which was not done in previous works.

Typical concentrations of RTILs are between 2 to 8 M. For example, bulk concentrations of

EMIBF4, BPBF4, EMIT FSI and BPT FDSI fall within the range 3.5 M - 6.5 M, at room temper-

ature.20 Hence, the diameter, d, should in our model be chosen to achieve this concentration, at

a relatively high volume fraction. In this work, we set d = 5 Å. We will consider two different

volume fractions: 0.49 and 0.23, corresponding to concentrations of about 6.2M and 2.9M, respec-

tively. The more dense system has a volume fraction which is close to where the corresponding

hard-sphere system would freeze. The less concentrated system is motivated by results obtained

from NPT simulations at 1 bar, as we shall describe below.

The particles interact via a short-ranged repulsion which is the usual hard-sphere interaction

in the MC simulations and a soft but steep potential in the MD simulations (details below). The

Coulomb interaction energy, ui j(R) between charges i and j, separated a distance R, is given by,

ui, j(R) =
qiq j

4πε0ε∞R
(1)

where ε0 is the dielectric permittivity of vacuum and ε∞ is the high frequency contribution to the

dielectric constant, stemming from electronic polarizability. We chose ε∞ = 2. In addition to the

Coulomb interaction, there is a hard-sphere interaction, uhs(r) between hard-sphere centres i and
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j, separated a distance r:

βuhs(r) =

 0, r > d

∞, r ≤ d
(2)

In this work, we will consider two different simulation geometries. One uses cubic periodic

boundary conditions to mimic a bulk solution. This system contains 800 ions, i.e. 400 neutral “salt

pairs”, within a cubic simulation box, with a side length of either 47.5 Å (dense, 6.2 M, system)

or 61 Å (less dense, 2.9 M, system). Cubic periodic boundary conditions were applied in all three

dimensions.

The other system, with a spherical geometry, models a liquid droplet, and is used determine

the cohesive interactions in the fluid. In this case, 20000 ions were initially equilibrated inside a

small droplet, with a hard confining boundary at a radius of 100 Å. This generates a fluid droplet

with a relatively high volume fraction. After equilibration, the confining boundary was shifted out

to a radius of 240 Å, causing an almost 14-fold increase of the system volume. If the fluid is very

cohesive, essentially all particles will remain inside the original boundary, signifying a liquid with

very low vapour pressure. In a less cohesive fluid, the droplet will evaporate, to give a uniform

distribution of particles throughout the larger spherical volume. Droplets were only studied using

MC. Note that since this is a limited system, there are no long-range “corrections”, i.e. the full

Coulomb potential was utilized.

Ion pair definition

For increasing values of b, ions will show a greater tendency to form pairs with oppositely charged

species. We then need a suitable definition of an ion pair. This will involve an inevitable ambigu-

ity, but this is of small concern, given that we are primarily interested in how the ion pair fraction

changes in the system. Given the propensity of the ions to form pairs, MC simulations of these sys-

tems become inefficient unless cluster moves21 are implemented. Note that, given the asymmetry,

there are two relevant ion-ion separations:

• between hard-sphere centres (normally denoted r)
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• between charges, denoted R

It is convenient to define the cluster (or ion pair) radius, Rpair, such that it is as large as possible,

given the constraint that a cluster will contain at most two ions. In other words, if two particles

have their charged sites at a distance less than Rpair, we shall define them as an ion pair. We then

choose the value of Rpair such that, if two ions form a pair, then a third ion cannot simultaneously

form a pair with either, due to steric repulsion. This leads to the following analytic expression:

Rpair =

√
d2 +b2−db

√
3−b (3)

An advantage with this definition, which is the one we have adopted, is that one only needs to scan

for a single possible partner when performing a cluster move. Another advantage is that we ensure

that each separate cluster is electroneutral and we can make comparisons with dipolar fluids, where

the ion pairs are covalently bonded, permitting studies of dielectric response. Our definition means

that the ion pair (cluster) radius, Rpair, will drop as b increases. This is illustrated in Figure 2.

0 0.5 1 1.5 2
b/Å

1

2

3

4

5

R
pa

ir/
Å

pair radius varies with b

Figure 2: The variation of the ion pair radius with the asymmetry parameter b.

Note that our chosen definition rules out the existence of any ion pair in the RPM (b = 0).

We stress that other definitions of ion pairs, or ion clusters, may offer some advantages, and may

indeed be adopted in future work. Possibilities include definitions based on electrostatic binding

energy, or to structural properties of radial distribution functions.
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Metropolis Monte Carlo simulation details

The MC simulations utilized cluster moves, and single particle translation moves. In the latter

case, the attempted translation was usually constrained to a spherical volume centred on the cur-

rent position of the ion, but in one percent of the cases the attempted new location was chosen

randomly within the simulation box. The long range part of the Coulomb interactions was handled

via the so-called “SP3” splitting function, introduced by Fanourgakis.22 This approach closely re-

sembles the so-called Wolf method,23 but has the advantage that complementary error functions

are avoided. We performed checks with simulations using the Wolf method, and observed no sig-

nificant differences. The truncation radius was set to half the simulated box length of the system.

Molecular dynamics simulation details

All the MD simulations were performed using the software package LAMMPS24. In order to avoid

problems associated with impulsive forces due to hard sphere interactions, we adopted a smooth

repulsive potential developed by Jover and co-workers25, The so-called Mie potential is given by,

U(r) =
λr

λr−λa
(

λr

λa
)

λa
λr−λa ε[(

σ

r
)λr − (

σ

r
)λa] (4)

Setting λr = 50 and λ = 49, and truncating and shifting the potential at its minimum, results in the

purely repulsive pseudo hard sphere potential:

U(50,49)(r) =


50(50

49)ε[(
σ

r )
50− (σ

r )
49]+ ε, r < 50

49σ

0, r ≥ 50
49σ

(5)

We used ε = 50kBT which gives a very steep potential, and σ is equal to the ARPM hard sphere

diameter of 5 Å.

Electrostatic interactions were treated with the Ewald particle-particle particle-mesh method

(PPPM),26 with the real-space part of the Coulomb potential being truncated at 18 Å. The distance
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between the center of the sphere and the point charge within the particle was constrained using the

SHAKE algorithm.

All the simulations for the bulk systems were performed for 50 ns in the canonical ensemble,

with a time step of 0.5 fs. The temperature was equal to 300 K, which was maintained via a

Nose-Hoover thermostat, using a damping parameter of 100 fs.

Results and Discussion

We will present our results in three separate sections. The first section will focus on a dense bulk

fluid. With ρ+ and ρ− denoting the cat- and anion densities, we then choose a volume fraction

η = (ρ++ρ−)πd3/6 such that it is close to the fluid-solid phase boundary (η = 0.49), for the cor-

responding hard-sphere system. Recall that for our ion diameter, this results in a salt concentration

(ρ+ = ρ−) of about 6.2 M. In the subsequent section, we investigate the overall cohesive energy in

the fluid, utilizing our droplet model. In the final section, we perform isobaric (NPT ) simulations,

at a pressure of 1 bar. The results from those simulations motivated further canonical ensemble

simulations at approximately 2.9 M.

Dense bulk systems

Here we will investigate the ARPM with canonical ensemble simulations, using 800 ions, and a

box length of Lbox = 47.5 Å. This results in a volume fraction of about 0.49, which is close to the

limit where a hard-sphere fluid will freeze. The corresponding concentration is approximately 6.2

M.

Melting point

First, we note that the RPM system (corresponding to b equal zero) freezes, under our room tem-

perature conditions. This is clearly seen in Figure 3, where we show the projection of the particle

coordinates on the x−y plane, taken from a simulation snapshot of the RPM. The snapshot is from
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an MD simulation, but a similar structure is obtained also by MC simulations, even when starting

from randomly distributed coordinates. For some sufficiently large value of b the solid will melt

into a fluid phase. This is obvious from the fact that, in the limiting case of b approaching the

radius of the particles, we will arrive at a neutral dumbbell fluid 1.

−20 −10 0 10 20
x/Å

−20

−10

0

10

20
y/

Å

MD snapshot (y vs x)

Figure 3: A snapshot of x,y coordinates, from an MD simulation snapshot

Structure

The transition from solid to fluid states can be traced by analyzing how the radial distribution

function, g(R), changes as b increases. Examples are shown in Figure 4.

1It will be a fluid, since the volume fraction is chosen to be slightly below the freezing point of a hard-sphere fluid,
and the corresponding dumbbell fluid will freeze at even higher volume fractions.
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Figure 4: Radial distribution functions, for various degrees of charge asymmetry. Note that R
measures the separation between charges. The insets of graph (a) zooms in on the primary peak,
and the region between 1 and 5 Å, for the case b = 2.0 Å.
(a) Radial distribution function, g+−(R), between opposite charges
(b) Radial distribution function, g++(R), between positive charges

We note the expected long-ranged oscillations in the pair correlations, at low b-values, com-

mensurate with an essentially frozen structure. Interestingly, the nearest-neighbour peak height for

g(R)+− displays a non-monotonic dependence on b. The initial drop, at small b values, is per-

haps best seen as a broadening of the peak, resulting from particle rotations. However, a further

increase of b will generate strong orientational correlations, resulting in a dramatic increase of the

peak height, combined with its shift to smaller separations. On the other hand, the long-ranged

oscillations weaken monotonically as b is increased.

Dynamics

The degree of charge asymmetry also has a substantial impact on dynamics, as was also pointed

out by Spohr and Patey.1–3 However, in our dense canonical ensemble, room-temperature system

the effect is rather dramatic, due to the system undergoing a phase transition (from a solid to

liquid), as b increases from zero. In Figure 5,we see how the mean-square displacement, MSD,

changes from insignificant values (as in a solid) to those typical of a fluid as b increases from 1.5

Å to 1.75 Å. The inset of Figure 5 shows focuses on the MSD for b = 1.5 Å. The observed initial

increase can be attributed to local movements at sites within the solid. This increase is, as expected,
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followed by an essentially constant MSD. Using the Einstein relation, the MSD values observed for

b = 1.75 and 2.0 Å, lead to predicted self diffusion coefficients of 3.5∗10−6 and 6.5∗10−6 cm2/s,

respectively. We conclude that for this volume fraction, and at room temperature, the system melts

Figure 5: Plots of MD data on the mean square displacement, MSD ≡< |rα(t)− rα(0)|2 >1/2,
where rα(t) is the centre of mass coordinate for ion α , at time t. The brackets indicate a canonical
average.

for asymmetries in the range 1.5 Å < b < 1.75 Å.

Ion pairing

We expect that an increase in the asymmetry parameter b will also generate a higher fraction of

ion pairs in the system (see above for the definition of an ion pair). This is illustrated in Figure 6

which displays the ion pair probability distributions, P(Xpair), for several values of b. Here, Xpair,

is the molar fraction, of pairs. Note how there is a rather rapid transition from a dissociated to an

almost completely associated system, occurring in the regime 0.5 Å < b < 1.5 Å. The agreement

between MC and MD results is not perfect, presumably reflecting the slight discrepancy between

the models, but the qualitative outcomes are essentially the same.
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Figure 6: Ion pair probability profiles, for various degrees of charge asymmetry. Xpair is the mole
fraction of ion pairs (see eq. (3)).

The maximum binding energy of a dimer pair, eB(max), is given by:

eB(max) =
q2

4πε0ε∞ (d−2b)
(6)

which rises rapidly, as b approaches d/2. Moreover, the shorter the bond length of the dimer the

stronger will be the electrostatic attraction and this also enhances the stability of the dimers. All of

this speaks for a rather sudden shift to a largely dimerized fluid as b increases.

Comparing with fluids of completely paired (dipolar) particles

As we have seen, almost all ions are paired for b values above about 1.5 Å. This suggests that these

systems also could be modelled as a fluid of bonded (dipolar) pairs. The dipoles consist of a pair

conformation that corresponds to perfect alignment of the charges (i.e. with the charges as close

to each other as is permitted by the hard core constraint). We shall denote this bonded fluid as the

“dipolar system”. We note then that in the dipolar system we have removed the option for partner

exchange - a process that may occur even for high values of b in the ARPM. This notwithstanding,

as illustrated in Figure 7, the average structure in the dipolar system agrees almost perfectly with

the corresponding ARPM, with large enough charge asymmetry. This is consistent with similar

findings by Ma et al. for model RTILs in slit geometries.27
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Figure 7: Comparing radial distribution functions for ARPM models, and their dipolar fluid coun-
terpart. The dipolar fluid does not contain any free ions. Instead, it is composed of zwitterionic
dipoles. These dipoles are formed by connecting ARPM ions, such as these become perfectly
aligned, i.e. with the charges arranged as closely as possible, given the hard-sphere exclusion.
Note that R measures the separation between charges.
(a) g+−(R)
(b) g++(R)

Dielectric properties of the dipolar system

The dipolar system is of course non-conducting, in contrast to typical RTILs, which generally have

a small but finite conductivity. On the other hand, we recall that recent SFA measurements also

suggest that there is an extremely low fraction of free ions present, at least in some RTILs. If this

were the case, the ion pairs present would behave as a polar solvent with an inherent dielectric con-

stant (which could be measured by applying an oscillating electric field of appropriate frequency).

The RTIL would then be equivalent to a weak electrolyte with associated (long-ranged) electro-

static screening. The dielectric constant of the implicit ion paired solvent can be well approximated

by that of the dipolar system (with the corresponding asymmetry parameter b), provided the free

ion concentration is low. The absence of free ions in the dipolar system allows us to more eas-

ily calculate the dielectric response. In principle, one can estimate the dipolar contribution to the

dielectric constant using dipole moment fluctuations of the simulation box.28
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Table 1: Simulated dielectric constants, < εr >, as obtained by applying a field along the z direction. The field
results from placing an imaginary planar charged surface, with a uniform surface charge density σs = 0.00025 e/Å2,
extending infinitely in the (x,y) direction, at z <−(Lbox +d)/2, and an oppositely charged surface at z > (Lbox +d)/2
(their exact location is irrelevant). Here, e is the elementary charge. Two different system sizes were investigated.

b/ Å Lbox/ Å < εr >
2.0 47.5 12

1.75 47.5 26
2.0 95.0 12

1.75 95.0 25

However, when we used this approach, the results obtained were very noisy, so we followed the

suggestion by Kolafa et al. and applied an external field, Ez along the z direction. The total

dielectric constant, εr of the system can then be obtained as:

εr = ε
∞
r +

< Mz >

ε0EzV
(7)

where V = L3
box and < Mz > are the volume, and average dipole moment along the z direction,

respectively, of the cubic simulation box. Table 1 gives the results obtained by applying fields

of two different system sizes, using MC simulations. Even with this method, there is still some

significant noise, but at least we can state that any system size dependence is small, and irrelevant

to our main conclusion, namely that the dielectric response in the ARPM (with the given parameter

choices) is typical to those of RTILs. Experimentally measured relative dielectric constants of real

RTILs are often within the range 8-25. For instance, Huang et al.,29 investigated a large number of

RTILs, and reported values in the range 9-41, excluding the rather extreme (high) values obtained

for RTILs with OH− functionalized cations.

Cohesion, droplet geometry

In order to investigate the role played by the asymmetry parameter b on the overall cohesion within

the fluid, we performed MC simulations on a spherical droplet. The system was described in

detail above. It consists of a dense spherical fluid droplet confined by a spherical boundary. The

droplet was equilibrated within a smaller spherical boundary, which was then shifted outward.
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The case for the RPM (b = 0) is illustrated in Figure 8 in the presence of the larger boundary.

Clearly, there is sufficient cohesive energy in the system to maintain the integrity of the droplet.

We investigated the effects of a increasing the temperature in the RPM model system. Figure 8
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Figure 8: Left: a snapshot from a simulation of the RPM droplet. The confining outer boundary is
indicated by a black circle. Right: radially dependent volume fractions, φ(r), for RPM systems, at
different temperatures.

also shows the volume fraction profiles of the fluid as a function of the radial distance from the

droplet center (at the center of mass). Doubling the temperature from 298 K to 596 K, leads to

a decrease of the average density, but the droplet still remains condensed. Longer simulations of

larger systems would in principle allow us to estimate the vapour pressure from the average density

in the gas phase surrounding the condensed droplet. However, the vapour pressure is too low to

be measurable for our system size, at these temperatures. At 1192 K, the droplet has evaporated

completely. We now consider the corresponding ARPM systems, at room temperature but with

varying b. The results are displayed in Figure 9. With b = 1.0 Å, the droplet remains condensed,

with a very low (essentially unmeasurable) vapour pressure. An increase of the asymmetry, to b =

1.5 Å, leads to complete evaporation, with a gas phase filling the entire volume of the spherical cell.

Thus, at room temperature, the cohesion of our ARPM is strong enough to support a condensed

phase, with a very low vapour pressure, for modest values of b. However, somewhere in the regime
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Figure 9: Radially dependent volume fractions, φ(r), for ARPM systems at room temperature, for
different values of the asymmetry parameter b.

1.0 Å < b < 1.5 Å, the vapour pressure increases dramatically, and the fluid evaporates. As we

shall see below, this is in line with our findings from isobaric bulk simulations.

Bulk systems at atmospheric pressure

As described earlier, we also carried out bulk NPT simulations at 1 bar and room temperature,

utilizing MD. Comparable canonical ensemble MC simulations were also performed (for the case

b = 1.0 Å) at the same average density as isobaric simulations.

Bulk densities from (NPT ) simulations at 1 bar

We consider first how the average density responds to an increased charge asymmetry. In Figure

10, we see how the density only drops gradually for increased b provided b≤ 1.0 Å. In this range of

asymmetry, the concentration remains liquid-like, with values that are that are typical for RTILs.

However, asymmetries that are slightly larger than b = 1.0 Å, cause the liquid to evaporate. At

much smaller values of b the system becomes crystalline. Combining these observations, have led

us to more carefully explore the properties of the system with b = 1.0 Å. Here the ARPM would

appear to have behaviors typical of RTILs.
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The bulk fluid properties at atmospheric pressure, with b = 1.0 Å
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Figure 11: Ion pair probability distribution, for b = 1.0 Å, at a density for which the pressure is
about 1 bar (at room temperature).

Here, we consider the special case of b = 1.0 Å, at a density that corresponds to a bulk pressure

of 1 bar. We perform MC simulations in the canonical ensemble with 400 cations and 400 anions,

which results in a simulation box with a side length of about 61 Å. In Figure 11, we show the ion

pair probability distribution, P(Xpair), for this system, as obtained by our canonical MC simulation,

and compare it with the isobaric MD simulation (at 1 atm). We see that, on average, about half

of the ions form pairs, under these conditions, which is consistent with typical estimates for bulk

RTILs, as obtained by comparing measured conductivities with NMR data. For instance, NMR
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measurements by Susan et al.20 implied ion pair molar fractions in the range 0.2-0.9 for, EMIBF4,

BPBF4, EMIT FSI and BPT FDSI. Using MD simulations, we have also calculated the conductiv-

ity, as well as the self-diffusion coefficient (see specific values reported below). The conductivity is

measured via the Green-Kubo relation, by integrating the electric current autocorrelation function,

σ =
1

3kBTV

∫
∞

0
〈J(0)J(t)〉dt (8)

where V is the volume of the simulation box, while J(t) is the electric current at time t, which is

calculated via J(t) =
N
∑

i=1
qivi. Here, qi is the charge of the particle i, and vi is the velocity.

In summary, we find that this particular ARPM system:

• is a dense fluid at room temperature and atmospheric pressure, with a concentration (2.9M)

that falls inside the range of typical values for RTILs

• is composed of ions of which about 50 percent form ion pairs - in agreement with experi-

mental bulk RTIL estimates

• has a conductivity of about 12 S/m, which is a realistic, albeit high, value for RTILs

• has a self-diffusion constant of about 8.7e-5 cm2/s, which is 1-2 orders of magnitude higher

than for typical RTILs

An unrealistically rapid diffusion is not unexpected, given the idealized spherical geometry of the

ions. Nevertheless, even though the ARPM is coarse-grained and somewhat simplistic it neverthe-

less does reproduce some properties of typical RTILs remarkably well, indicating that it captures

some of the important physics in these systems.

Conclusions

We have introduced and investigated some properties of the ARPM, which results from a minor

modification of the RPM. In the ARPM, a single new parameter, b, is used, which measures the
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displacement of the ionic charge from the center of the hard sphere. Such a displacement uni-

formly applied to all particles creates a model, which, while simple, introduces a mechanism that

extends the applicability of the RPM to a wider range of realistic systems, including RTILs. The

presence of a non-vanishing displacement b means that the ions of the system now have an internal

structure and orientations can become correlated. Larger b also increases the possibility of dimers

of oppositely charged ions.

In this work, the fundamental bulk properties of the ARPM, such as structure and phase sta-

bility, as well as dynamic properties, such as conductivity and diffusion have been investigated.

Despite the simplicity of the model, it is able to generate remarkably realistic properties, compared

with real RTILs, suggesting that it does capture most of the important physics that underlies some

of the fascinating properties displayed by RTILs. The simplicity of the ARPM also offer important

modelling advantages. The computational cost is minimal, as compared with more elaborate, or

even all-atomistic models. Furthermore, the simple structure of the ARPM should facilitate anal-

yses by more approximate theoretical approaches, such as integral equations, or statistical density

functional theory.

Future studies will include the behaviour of the ARPM in heterogeneous systems, such as in

the vicinity of electrodes. As mentioned earlier, we also anticipate that the ARPM will form an

interesting extension to the RPM description of aqueous electrolyte solutions.
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