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Abstract

We generalize a recently developed polymer density functional theory (PDFT) for polydisperse

polymer fluids to the case of equilibrium random copolymers. We show that the generalization

of the PDFT to these systems allows us to obtain a remarkable simplification compared to the

monodispersed polymers. The theory is used to treat a model for protein aggregation into linear

filaments in the presence of surfaces. Here we show that, for attractive surfaces, there is evidence

of significant enhancement of protein aggregation. This behaviour is a consequence of a surface

phase transition, which has been shown to occur with ideal equilibrium polymers in the presence

of sufficiently attractive surfaces. For excluding monomers, this transition is suppressed, though

an echo of the underlying ideal transition is present in the sudden change in the excess adsorption.

∗Electronic address: jan.forsman@teokem.lu.se
†Electronic address: c.woodward@adfa.edu.au
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I. INTRODUCTION

Polymers are profoundly affected by the presence of surfaces, a property which is rele-

vant to many industrial and biological phenomena, such as colloidal stability and protein

crystallization [1, 2]. Polymer density functional theory, PDFT, has proven to be a powerful

theoretical tool for the treatment of polymer fluids and solutions at interfaces, furnishing

accurate predictions for both structure and thermodynamic properties [3–7].

In the past, PDFT has focused on monodispersed chains [3, 8–10]. This is despite the

fact that laboratory samples of polymers rarely possess chains of a fixed molecular weight,

but generally display a degree of polydispersity. While polydispersity introduces additional

complexity in the theoretical treatment of polymer fluids, it can be viewed as a potentially

useful control parameter in such systems, allowing the tuning of physical properties, such

as polymer adsorption and interfacial forces. This has made it desirable to find accurate

theoretical treatments for polydispersed polymer fluids. For example, Tuinier and Pethukhov

have used a product function approximation to study polydispersity effects on depletion by

ideal chains [11]. The case of equilibrium polymers has been studied by van der Gucht and

co-workers [12–14], using Scheutjens-Fleer theory [15], as well as the Edwards-deGennes

self-consistent-field (SCF) theory [16–18]. More recently, Besseling and Korobko [19] have

used SCF theory to study the adsorption of hard sphere equilibrium polymers between

two surfaces. In other work, the effect of polydispersity has been treated by numerically

averaging monodispersed solutions over the molecular weight distribution function using

quadrature methods [20–22] and Yang et al [23] have studied the effect of polydispersity on

the depletion interaction between non-adsorbing surfaces using such an approach.

Recently, we showed how the PDFT could be easily generalized to include polydispersity,

when the molecular weight distribution is of the Schulz-Flory (SF) form [24]. Surprisingly, it

was found that the algebraic structure of the PDFT was simpler than that for the monodis-

persed fluid and this manifested itself in a numerically more efficient solution algorithm. The

SF distribution encompasses the exponential molecular weight distribution (MWD) of equi-

librium polymers. Indeed, at thermodynamic equilibrium, the cases of equilibrium polymers

(with reversible bonding of monomers) and an exponential MWD with permanent bonds,

are indistinguishable.

There are many types of macromolecular systems that can reversibly aggregate into
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linear structures under appropriate conditions. A particularly interesting example is the

aggregation of amyloidal proteins into linear filaments. These structures are believed to be

part of the process that form fibrils, which are implicated in diseases such as Alzheimer’s

and Parkinson’s disease. There have been a number of theoretical attempts to model the

kinetic and equilibrium behaviour of these protein aggregates. A simple model has been

developed by van Gestel and de Leeuw [25], which describes the linear aggregation of a

two-state protein model. Their work is a generalization of the Zimm-Bragg treatment of

helix-coil transitions in finite length polymers, to account for reversible aggregation [26].

In the treatment by van Gestel and de Leeuw [25], the possibility of the linear filaments

aggregating laterally into fully-formed fibrils was also considered.

We shall generalize the theory by van Gestel and de Leeuw to account for the presence

of external potentials. The work we present here will not consider fibril formation, instead

focusing on simpler linear aggregates. More specifically, we will consider the effects of

surfaces on the process of filament formation. Recent experimental investigations have shown

that the presence of surfaces, such as cell membranes, or even synthetic nanoparticles can

significantly modify the aggregation of proteins compared to the bulk [27–31]. The PDFT,

is particularly suited to the description of reversibly aggregating monomers next to surfaces.

We consider an extension of the theory to include the possibility of different (countable)

states of the constituent aggregating monomers. In the case of aggregating proteins, this

generalization would allow us to account for different conformational states of the protein

molecules. The resulting theory essentially corresponds to a density functional treatment of

equilibrium random copolymers.

In the next section we will develop the formalism of our new theory., which is then applied

to the problem of protein association in the presence of surfaces. Results are presented for

a range of model parameters and the implications of our results for the formation of protein

filaments near surfaces are discussed.
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II. THEORY

A. Density Functional Theory for Polydispersed Polymers

Our derivation is based on earlier work for semi-flexible polydisperse polymers [3, 32, 33].

We begin with the exact canonical free energy density functional for an ideal, monodisperse

polymer fluid of semi-flexible r-mers,

βF id
r =

∫
dRNr(R) (ln[Nr(R)]− 1) +∫
dRNr(R)Φ(b)(R) +

∫
drnr(r)ψ

0(r) +∫
dRNr(R)

r−2∑
i=1

EB(ri, ri+1, ri+2) (1)

Here, β, is the inverse thermal energy. The r-point density, Nr(R), is a function of the

monomer positions, R = (r1, ..., rr), where ri is the coordinate of monomer i. Φ(b)(R) de-

scribes the intra-molecular connectivity modelled as nearest-neighbor, non-directional bond-

ing, i.e.,

Φ(b)(R) =
r−1∑
i=1

φ(b)(|ri − ri+1|) (2)

The bending potential, EB, imparts stiffness to the chain. Keeping this stiffness term

complicates the algebra and in the exposition given in this work we shall assume it to

be zero. We note, however, that the inclusion of stiffness is, in principle, straightforward.

But here we choose to focus on flexible random copolymers. Finally, ψ0(r), is the external

potential acting on the monomers. While Eq.(1) is appropriate for polymers under theta

(Θ) conditions, when additional non-bonding interactions are present, the ideal functional

must be supplemented with a suitable excess term, F ex. This excess term accounts for

short-ranged steric interactions as well as possible long-ranged attractions, depending upon

the quality of the solvent.

Consider now the the case of polydisperse polymers with up to nm different monomer

types (labelled by 1, ...nm). We let the vector, c = (r, s), denote both the degree of

polymerization r, and the primary sequence of monomer types, s = (s1, s2, ...sr), where

sk ∈ {1, ...nm}. A bulk fluid of such polymers can be characterized by the average density

of all polymer species, φp, and the fractional distribution of polymer types, F (c). This dis-

tribution gives the fraction of species with primary structure given by c and is normalized
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according to ∑
c

F (c) = 1 (3)

The chemical potential of the various polymer species is given by,

βµc = ln[φpF (c)] + β∆µc(bulk) (4)

where ∆µc(bulk) is the excess chemical potential, which is zero for Θ conditions. In addition

to bound species, there are free monomers (of type i), with density nfi (r) and chemical

potential µfi .

When the fluid is subject to a spatially varying external potential, non-uniform density

profiles result. These densities minimize the Gibb’s free energy functional,

Ω = F id + F ex[{nαi (r)}]−
∑
c

µc

∫
dRNc(R)−

∑
i

µfi

∫
drnfi (r) (5)

The first term of the RHS of Eq.(5) is the ideal contribution, and is the generalization of

Eq.(1) to a mixture

βF id =
∑
c

∫
dRNc(R) (ln[Nc(R)]− 1) +

∑
i

∫
drnfi (r)

(
ln[nfi (r)]− 1

)
+

∑
c

∫
dRNc(R)Φ(b)

c (R) +
∑
i

∫
drntoti (r)ψ0

i (r) (6)

In this expression we have specifically separated the free monomer species and also accounted

for the possibility that the monomer types will have different interactions with the external

potential.

We let, nαi (r), denote the density of type i monomers with connectivity denoted by α.

The different types of monomer connectivities are:

• monomers with two bonded neighbours

• monomers with a single bonded neighbour

• monomers with no bonds (free).

The total monomer density is ntoti (r) =
∑

α n
α
i (r). As with most DFT approaches, we shall

assume that the excess free energy, F ex[{nαi (r)}], is a functional only of these monomer

densities. If we assume that only steric interactions act between monomers, the system is
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denoted as athermal, which corresponds to a particular type of good solvent. In principle,

this excess free energy term should then be sensitive to the monomer connectivity, due to

cooperativity in excluded volume overlaps. In short, a free monomer excludes more volume

to other particles than a bound monomer, as bound neighbours will have overlapping

excluded volume. Hence, bound monomers at chain ends exclude more volume than those

in the interior part of the chain. For simplicity, in the current theoretical development, we

shall only differentiate free and bound monomers, where the latter is the sum of densities

of those monomers with either one or two bonded neighbours. Later, when we apply the

theory to adsorbing peptides, we shall remove this distinction altogether.

B. Self-Assembling Random Copolymers

1. Bulk System

We now consider polymer molecules, which result from the reversible self-assembly of

monomers into linear chains. Hence, the total chemical potential of all monomer species is

set by the concentration of free monomers in the bulk, denoted by {nfi (bulk); i = 1, nm}.

For the case of only one monomer type, the bulk distribution, F (c), will depend only upon

the degree of polymerization, r. For ideal polymers it will be given by an exponential

distribution,

F (r) = Ke−κr (7)

with K a normalization factor and κ−1 =< r >b is the average polymer length in the bulk.

Even for non-ideal polymers, the exponential distribution is a reasonably good approxima-

tion for long enough polymers due to the fact that (to a good approximation) the excess

chemical potential scales as the degree of polymerization, r.

When different monomer types are present, the bulk distribution is determined by consid-

ering all possible monomer combinations. This problem can be mapped onto a 1-dimensional

Ising chain with an applied magnetic field, an approach used by van Gestel et al to study

helical transitions in equilibrium polymers [34] and more recently for associating proteins
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[25]. The distribution of of aggregate lengths, f(r) =
∑

s F (c), will be given by

f(r) = Q(r)/
∑
r

Q(r) (8)

where the Grand partition function for the r-mer (r > 1) is given by, the expression,

Q(r) = u ·Tr−1 · f † (9)

The transfer matrix T is given by the expression

T =


f1t11 f1t12 . . . f1t1nm

f2t21 f2t22 . . . f2t2nm

...
...

. . .
...

fnmtnm1 fnsptnm2 . . . fnmtnmnm

 (10)

where fi is the bulk fugacity of the free monomer of type i

fi = nfi (bulk)eβ∆µfi (bulk) (11)

where ∆µfi (bulk) is the excess chemical potential (beyond the ideal fluid) of the free monomer

of type i in the bulk fluid. The quantity tij = e−βgij , where gij, is the free energy of the

bonded monomers of type i and j. The terminal vectors are given by

f † =


f1

...

fnm

 (12)

and

u =
(

1, 1 . . . 1
)

(13)

Variation of these terminal vectors allows the investigation of end-effects on the molecular

weight distribution. For example, a model used to study associating proteins found that

the lengths of filaments formed can be significantly affected by the configurational state of

the terminal proteins [25]. The Mass Action Law gives the following expression for the bulk

copolymer densities, Nc(bulk), with primary structure c,

Nc(bulk) = fsr

r−1∏
i=1

Tsi,si+1
(14)

We note that Nc = φpF (c) and Tij are the elements of the transfer matrix, Eq.(10).
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2. Non-uniform System

Suppose the polymer fluid is subject to an external potential, ψ0
k(r) which acts on the

different monomer types k = 1..nm. We shall assume that the external potential is zero in the

bulk fluid. The equilibrium polymer density becomes spatially dependent and is obtained

by minimizing the free energy functional, Ω, Eq.(5). This gives the following self-consistent

expression for the density of aggregates of dimers and greater (r > 1),

Nc(R) = Nc(bulk)eβ∆µc(bulk)

r∏
i=1

e−βψ
b
si

(ri)
r−1∏
i=1

Θsisi+1
(|ri − ri+1|) (15)

Here we have defined,

ψbi (r) =
δF ex

δnbi(r)
+ ψ0

i (r) (16)

where nbi(r) is density of bound monomers and F ex is the excess free energy of the non-

uniform fluid, from Eq.(5). Also,

Θkl(|r− r′|) = e−φ
(b)
kl (|r−r′|) (17)

The excess (beyond the ideal) bulk chemical potential of the chains with primary structure,

c, is given by

β∆µc(bulk) =
r∑
i=1

βψbsi(bulk)−
r−1∑
i=1

ln[

∫
dr′Θsisi+1

(|r− r′|) (18)

The first term on the RHS of Eq.(18) describes the effect of the medium on the chemical

potential of the bound monomers It is equal to the RHS of Eq.(16) in the bulk, i.e.,

βψbi (bulk) = ψbi (r), for all r ∈ bulk (19)

The second term on the RHS of Eq.(18)is the free energy of the ideal chain with one end

pinned. Substituting this expression for the chemical potential into Eq.(15) gives,

Nc(R) = Nc(bulk)
r∏
i=1

e−β∆ψb
si

(ri)
r−1∏
i=1

Θsisi+1
(|r− r′|)∫

dr′Θsisi+1
(|r− r′|)

(20)

where ∆ψbi (r) = ψbi (r)− βψbsi(bulk). Finally, using Eq.(14), we obtain

Nc(R) =
r∏
i=1

fsie
−β∆ψb

si
(ri)

r−1∏
i=1

Tsisi+1
(|ri − ri+1|) (21)
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where

Tlk(|r′ − r|) = tlk
Θlk(|r′ − r|)∫
dr′Θlk(|r′ − r|)

(22)

which is the generalization of Eq.(14) to non-uniform fluids. The above equations represent a

closed system, which must be solved self-consistently in order to generate the thermodynamic

properties of the system.

In order to calculate the required monomer densities, it is useful to introduce the following

modified distribution functions for chain segments of length n (≥ 2)

csn(n; rn) =

∫
dr1...

∫
drn−1

∑
s1

...
∑
sn−1

n−1∏
i=1

fsie
−β∆ψb

si
(ri)Tsisi+1

(|ri − ri+1|)
√
f bsne

−β∆ψb
sn

(r)/2

(23)

and, for n = 1,

ck(1; r) =
√
fke
−β∆ψb

k(r)/2. (24)

The average total density of (bound) monomers of type k is given by,

nbk(r) =
∞∑
n=1

∞∑
m=1

ck(n; r)ck(m; r)− ck(1; r)2 (25)

where the second term on the RHS of Eq.(25) corrects for the spurious non-bonded term

(n,m = 1). This expression can be rewritten more succinctly as,

n
(b)
k (r) = c̄k(r)c̄k(r)− ck(1; r)2 (26)

where

c̄k(r) =
∞∑
n=1

ck(n; r) (27)

The density of free monomers is given by

nfk(r) = fke
−β∆ψf

k (r) (28)

where,

∆ψfk (r) =
δF ex

δnfk(r)
+ ψ0

k(r) (29)

Given the definitions Eq.s (23) and (27), one can obtain the following simple recursion

formula,

c̄k(r) =
nm∑
l=1

∫
dr′c̄l(r

′)Mlk(r, r
′) +

√
fke
−β∆ψb

k(r)/2 (30)
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where

Mlk(r
′, r) =

√
fle
−β∆ψb

l (r′)/2tlkTlk(|r′ − r|)
√
fke
−β∆ψb

k(r)/2 (31)

which can be written in matrix form as,

c̄ = c̄M + v (32)

where M is the symmetric matrix with elements, Mlk(r
′, r) with the vector c̄ =

(c̄1(r)...c̄nm(r)) and v = (
√
f1e
−β∆ψb

1(r)/2...
√
f bnm

e−β∆ψb
nm

(r)/2). The generalized matrix vector

product is given by
nm∑
l=1

∫
dr′c̄l(r

′)Mlk(r
′, r) (33)

C. End-Effects

The expressions above make the assumption that all monomers in the aggregate chains

are in equilibrium with the bulk. It may be desirable to consider situations where the

distribution of terminal monomer types in the bulk are fixed a priori. We use A,B to label

the two ends of a linear aggregate which is modified from its equilibrium distribution via

the weights, P(A) = (p
(A)
1 , ...., p

(A)
nm ). These weights affect the end vector as follows, v(A) =

(p
(A)
1

√
f1e
−β∆ψb

1(r)/2...p
(A)
nm

√
fnme

−β∆ψb
nm

(r)) and the recursion formula, Eq(30), becomes,

c̄(A) = c̄(A)M + v(A) (34)

These new end-point distributions can be used to generate the (bound) monomer densities

in an equilibrium random copolymer, with different with different types of ends, A and B.

These are given by,

nbk(r) = c̄
(A)
k (r)c̄

(B)
k (r)− p(A)

k fke
−β∆ψb

k(r)p
(B)
k (35)

III. PROTEIN AGGREGATION ON SURFACES

The theory presented above is quite general and can be applied to a wide range of molec-

ular models over a diverse range of length-scales. Here, we will consider the problem of

protein aggregation on surfaces. In this case, the monomer size is of the order of nanome-

ters. We shall generalize a protein aggregation model for the Aβ peptide (which is linked

to Alzheimer’s Disease) proposed by van Gestel and de Lueew. This model describes the
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formation of protein filaments and their association into fibrils in a bulk solution. Using

the PDFT above we will generalize this model so as to describe the association of protein

filaments in the presence of surfaces.

In the theory of van Gestel and de Lueew, a filament consists of a random linear aggregate

of two “monomer” types. One is the Aβ peptide in a β-strand form, which is able to

participate in so-called cross-β sheet hydrogen bonding with neighboring peptides having

a similar conformation. The other monomer type is a disordered peptide structure, which

associates more weakly, but is the preferred conformation at the terminals of the filaments.

We shall label these as the β-strand (β) and disordered (d) forms of the Aβ peptide. Fibrils

consist of several filaments associated via steric zipper interactions [35, 36]. While fibril

formation is often associated with amyloidal diseases, it is now widely conjectured that

smaller oligomeric aggregates are more likely responsible for cell death, presumably through

adsorption onto cell membranes, leading to their eventual disruption [37–40]. It is likely

that these oligomers are not mature fibrils, but have a structure better represented by the

simpler filaments. Thus, in this study, we shall only consider the interaction between linear

peptide filaments and surfaces.

A. Filament distribution in the bulk

From Eq.(15), we see that the non-uniform theory requires the distribution of aggregates

in the bulk fluid as input. In the theory of van Gestel and de Lueew, the water solvent is

treated implicitly and it is assumed that the long-ranged (dispersion) interaction between

the peptides is relatively weak. The primary structure of a filament is determined by the

nearest neighbor bonding free energy and the availability of monomers, determined by their

bulk fugacity, fk. Monomer types at the terminals of the filaments were assumed to be in

the d conformation [25]. This choice was based on the idea that β-strands are stabilized by

a sufficient number of adjacent peptides especially when they are also in a β conformation.

As already noted above, the thermodynamic properties of the bulk can be obtained by

mapping onto a 1-dimensional Ising chain in a magnetic field, which is then solved using

standard transfer matrix methods. The details are provided in the original reference [25], so

we will only report the results of relevance to the current study. For example, the number
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density of oligomers of length, r (≥ 2), is given by,

ρ(r) = zrq(r) (36)

where z is the fugacity of the free monomers of the disordered peptide and q(r) is the partition

function of an oligomer containing r monomers (of either type). An explicit expression for

q(r) can be obtained in terms of the eigenvalues of the 2× 2 transfer matrix,

q(r) = (xλr−2
1 + yλr−2

2 )kr−1 (37)

with x = (λ1 − s)/(λ1 − λ2) and y = (s− λ2)/(λ1 − λ2). The eigenvalues are given by

λ1,2 =
1

2
+
s

2
± ((1− s)2 + 4sσ)1/2

2
(38)

These parameters reflect the various interaction energies between the bound monomers with

k = exp(−M); s = exp(−P ), and σ1/2 = exp(−R). Here M is the binding free energy

between d conformers. P is the additional free energy upon binding two peptides in β

conformations. Finally, R represents the cost of creating an interface between a bound

peptide pair in β and d conformations respectively. We can define the normalized distribution

for r -mers, r(≥ 2),

f(r) =
zrq(r)∑∞
r=1 z

rq(r)
(39)

Here, we make the implicit substitution, q(1) = 1, in the denominator sum. Upon substitu-

tion of Eq.(37) we obtain,

f(r) = K1(λ1kz)r +K2(λ2kz)
r (40)

where

K1 =

x
λ21

x
λ21

λ1kz
1−λ1kz + y

λ22

λ2kz
1−λ2kz

(41)

and

K2 =

x
λ22

x
λ21

λ1kz
1−λ1kz + y

λ22

λ2kz
1−λ2kz

(42)

In this study, use the following parameter values s = 70 and σ = 0.1, which are the same

as those used in the work by van Gestel and de Leeuw [25]. These parameters give the free

energies associated with β-β bonding and β-d interfaces in excess of an underlying chain of

d conformers. The free energy of this underlying chain is determined by the value of the
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product zk, which is the excess fugacity associated with removing a peptide from the bulk

and creating a (shared) d -d bond. Choosing the average filament length in the bulk < r >b

allows us to obtain the product zk from the following expression (obtained as an appropriate

average over the distribution f(r)) [25],

< r >b=
zk +

∑
r=2 z

rkq(r)r

zk +
∑

r=2 z
rkq(r)

(43)

The bulk protein density, ntot(bulk), then gives the individual z and k values, using the

following expression for the number density of r -mers [25],

Φtot
p =

ntot(bulk)

< r >b

= z + z(
zkx

1− λ1zk
+

zky

1− λ2zk
) (44)

where Φtot
p , is the overall oligomer density of the bulk.

B. Simplified Model for Protein Adsorption

The oligomer distribution Eq.(40) provides a starting point for a simplified model for

protein surface aggregation. We shall assume a flat surface which adsorbs both β and d

conformers of the peptide equally well. This treatment ignores scenarios where confor-

mational changes in the peptide affect their surface interactions in a significant way, e.g.,

functionalized surfaces may interact with specific peptide sites, which become accessible

upon conformational change. Instead, we consider situations where the the conformational

changes associated with the d→ β transition has greater implications on the peptide-peptide

interaction, rather than on peptide-surface interactions. This is likely to be the case for the

Aβ peptide, which forms strong cross-β sheets. It is worth noting, however, that the general-

ization of the theory to account for conformation dependent surface interactions is relatively

straightforward. We shall also assume that conformational changes will not cause significant

changes in the size (excluded volume) of the peptides. With these assumptions, the local

excess chemical potential for bound monomers, Eq.(16), becomes independent of monomer

type. Thus it is useful to define,

ψb(r) =
δF ex

δnb(r)
+ ψ0(r) (45)

and

∆ψb(r) = ψb(r)− ψb(bulk) (46)
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where nb(r) is the total bound monomer density, and ψ0(r) is the generic surface-protein

interaction. Additionally, the bonding factor has the following simpler form,

Tlk(|r′ − r|) = tlkt(|r′ − r|) (47)

with t(|r′ − r|) describing monomer-monomer bonding. In this application we shall assume

the bonding has the simple form,

t(|r− r′|) =
δ(|r− r′| − σ)

4πσ2
(48)

with δ(r) the Dirac delta function and σ is the nearest-neighbour bonding length-scale of

the aggregating peptides. Using Eq.(25), we sum over the monomer type k to get the total

bound monomer density,

nb(r) =
∑
k=β,d

∞∑
n=1

∞∑
m=1

ck(n; r)ck(m; r)−
∑
k=β,d

ck(1; r)2 (49)

From the definition of ck(n; r) in Eq.(23), we can rewrite Eq.(49) as,

nb(r) =
∞∑
n=1

∞∑
m=1

Φpf(n+m− 1)c(n; r)c(m; r)− Φpf(1)c(1; r)2 (50)

where we define the simpler end-point distribution,

c(n; rn) =

∫
dr1...

∫
drn−1

n−1∏
i=1

e−β∆ψb(ri)t(|ri − ri+1|)e−β∆ψb(rn)/2 (51)

which satisfies the following recursion formula

c(n+ 1, r) =

∫
dr′e−β∆ψb(r)/2t(|r− r′|)e−β∆ψb(r′)/2c(n, r′) (52)

with initial condition,

c(1, r) = exp(−β∆ψb(r)/2) (53)

Using Eq.(40), we obtain

nb(r) = Φp

∞∑
n=1

∞∑
m=1

K1

λ1kz
(λ1kz)

nc(n, r)(λ1kz)mc(m, r) (54)

+Φp

∞∑
n=1

∞∑
m=1

K2

λ2kz
(λ2kz)nc(n, r)(λ2kz)

mc(m, r)− Φpf(1)c(1; r)2

Defining,

c̄i(r) =
∞∑
n=1

(λikz)nc(n, r) (55)
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where i = 1, 2, we obtain

nb(r)Φ−1
p =

K1

λ1kz
c̄1(r)c̄1(r) +

K2

λ2kz
c̄2(r)c̄2(r)− f(1)c(1; r)2 (56)

From Eq.(52) and the definition Eq.(55), the following recursion formula applies,

c̄i(r)− λikzc(1, r) = λikz

∫
dr′e−β∆ψb(r)/2t(|r− r′|)e−β∆ψb(r′)/2c̄i(r

′) (57)

Eq.s (45), (56) and (57) provide a self-consistent set of equations which can be used to solve

for the density and free energy of protein filaments adsorbed onto surfaces.

C. The excess free energy

Different versions of PDFT arise from the choice of excess functional F ex in Eq.(5) [3–

7, 41–47]. We used three different models for the excess free energy. In the first model we

assume that water is a Θ solvent for the peptides, so that the excess free energy is zero. In

the other two models, steric interactions are assumed to act between the peptides, which

we model as effective hard spheres with a radius independent of the peptide conformation

(d or β). For hard sphere interactions a good accuracy has been found with the so-called

Generalised Flory-Dimer (GFD) functional for the excess free energy, F ex [4, 43] Numerous

tests have verified that this also pertains to structural properties in heterogeneous systems,

containing monodisperse polymers [46, 47]. Corresponding tests of polydisperse solutions

have not been performed, as these would require expensive and cumbersome simulations.

This functional will be used in the present problem.

It is convenient to express the excess free energy in the following form,

βF ex =

∫
drntot(r)a

ex(η)dr (58)

where ntot(r) is the total peptide density. Here aex(η) is the local free energy per particle

and η is a measure of the volume fraction, which is a functional of the total peptide density.

In the GFD approximation aex(η) is given by the general expression [4, 43],

aex(η) = −ci + 1

2
ln(1− η)− (2ci − 2ai − 4)η + (3− bi + ai − 3ci)η

2

(1− η)2
(59)
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where

a1 = 1, a2 = 2.45696 (60)

b1 = 1, b2 = 4.10386 (61)

c1 = 0, c2 = −3.75503 (62)

We denote the two versions of the steric model as local and non-local. The local model

is similar in spirit to the incompressibility assumption, used in the Flory-Huggins theory. If

one assumes incompressibility at every point in the solution, we obtain a simplified excluded

volume term between monomers. If we use the GFD functional to treat this, the quantity

η in Eq.(58) is given by a local volume fraction, i.e., η = (πσ3ntot(r))/6, where the bond-

length, σ, between peptides in the filament is also assumed to be equal to the peptide

diameter. Our other model employs a non-local version of this functional with a weighted

density that accounts for the possibility of short-ranged structuring. The functional has the

form, η = [(πσ3n̄tot(r))/6] where,

n̄tot(r) =
3

4πσ3

∫
|r−r′|<σ

dr′ntot(r
′) (63)

IV. THE SURFACE POTENTIAL

The interaction between the surface and peptide conformers is modelled as a truncated

and shifted Lennard-Jones potential, integrated over the half-space of the surface, i.e.,

ψ0(z) =

ωLJ(z)− ωLJ(zc), for z < zc

0 otherwise
(64)

where

βωLJ(z) = 10π[
2

45
(
σ

z
)9 − aw

3
(
σ

z
)3] (65)

The coordinate z is the perpendicular distance from the surface and we have set zc = 4σ.

The strength of the surface attraction is determined by the parameter, aw. Due to the

form of this external potential, this system has a planar geometry and the densities which

minimise the free energy will only depend on z
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V. RESULTS AND DISCUSSION

A. Ideal peptide model

Fig. 1 shows the density of peptide bound in filaments as a function of distance from the

surface for various values of the attractive part of the surface potential, as parameterized

by the quantity aw. The average filament length in the bulk was set at < r >b= 2. In the

ideal model, the steric effect of the peptides is not accounted for. At low surface attraction,

it is clear that there is a depletion of monomers close to the surface due to the decrease

in configurational entropy. However, as the attraction on the surface increases, the peptide

concentration starts to build. Indeed, for aw slightly greater than 0.07, we find that the

monomer density on the surface goes to infinity. When the surface attraction reaches a

certain critical value, the density of the adsorbed peptide diverges, displaying the signature

of a second order surface phase transition. This is the same adsorption transition observed

by de Gennes for infinite polymers in a Θ solvent [17, 48]. However, it occurs here in

a living polymer formed by aggregating peptide, displaying a dual exponential molecular

weight distribution, Eq.(40). Hence this is essentially equivalent to a surface phase transition

described by Sear [49] and which has also been reported by van der Gucht et al. [14], as well

as Forsman and Woodward [50]. This transition is accompanied by an enormous growth in

the average length of filaments close to the surface.

According to Sear [49], the surface phase transition occurs when the attraction is larger

than aw ≈ aw(eq) + 1/ < r >
1/2
b where aw(eq) is the value which gives essentially zero excess

adsorption (θex = 0) where the latter is defined as,

θex =

∫ ∞
0

(nb(z)− nb(bulk))dz (66)

The value of aw must be somewhat greater than aw(eq) for the surface transition to be

observed. The greater the average bulk filament length, the closer to aw(eq) at which this

transition will occur. In Fig. 2, we show the bound monomer density as a function of

the distance from the surfaces for a number of average filament lengths. The strength of

the surface adsorption is set at aw = 0.05. It is clear from the profiles that θex < 0, i.e.,

aw < aw(eq). Increasing the average length of the peptides in the bulk only serves to decrease

the peptide density at the surfaces, due to the depletion effect. Indeed, one finds that the

average length of peptide filaments close to the surfaces actually decreases below that of
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the bulk value (not shown). In Fig. 3, we show the bound peptide density profiles for

various average bulk filament lengths with aw = 0.065 and nb(bulk)σ3 = 0.001. In this case

θex > 0, for all the < r >b investigated. The longer filaments have a higher density near

the surface than the shorter ones, due to cooperative binding, and increasing the value of

< r >b eventually leads to the adsorption transition. We note here that for ideal polymers,

the bulk density serves only as a multiplicative factor for the density profiles. This will not

be the case for the peptide models which include steric interactions. The infinite surface

FIG. 1: Plot of nb(z)σ3 as a function of z/σ for ideal polymer for increasing surface attraction and

nb(bulk)σ3 = 10−3. The arrow indicates the direction of increasing aw.

density that is implied by the adsorption transition is clearly unphysical. It occurs in the

ideal model because of the lack of steric interactions. We expect the latter should act to

suppress the transition. This can be verified by considering the models which include the

effects of the hard core interactions, as will be done in the next section.
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FIG. 2: Plot of nb(z)σ3 as a function of z/σ for different average lengths,aw = 0.05 and nb(bulk)σ3 =

10−3. The arrow indicates the direction of increasing < r >b.

FIG. 3: Plot of nb(z)σ3 as a function of z/σ for different average lengths,aw = 0.065 and

nb(bulk)σ3 = 10−3. The arrow indicates the direction of increasing < r >b.
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B. Steric interactions - non-local theory

In this section peptides with steric interactions. The bound peptide density profiles for

the case < r >b= 2 are plotted in Fig. 4 and 5 for different values of attraction parameter

aw. In Fig. 4, we see a similar behaviour to what is seen in the ideal model. However,

when the surface attraction increases to quite large values (as shown in Fig. 5), the density

remains finite due to peptide excluding one another at the surface. We note that the density

adjacent to the surface can become large provided that the integral of the density within a

certain distance of the order of σ from the surface is finite. In Fig. 5, there is clear evidence

of peptide layering at the surface. This is due to hard sphere structuring, which is captured

by the non-local functional, Eq.(63).

FIG. 4: Plot of nb(z)σ3 as a function of z/σ for polymer with hard sphere terms for increasing

surface attraction and nb(bulk)σ3 = 10−3. The arrow indicates the direction of increasing aw.
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FIG. 5: Plot of nb(z)σ3 as a function of z/σ for polymer with hard sphere terms and larger

attraction from the surface. The bound peptide density in the bulk nb(bulk)σ3 = 10−3.
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In Fig. 6 we plot the excess adsorption of bound peptide at the surface as function of

the attraction strength, aw, for various average filament lengths. Obviously, at very weak

adsorption potential strength, the excess adsorption is low and clearly approaches negative

values. We note that aw(eq) is rather independent of the average filament length, as can

be ascertained by the quite sudden transition between positive and negative θex. As the

peptide are able to sterically exclude one another, the second-order adsorption transition

does not occur in this system. However, we do expect to see a sudden increase in the excess

adsorption at a particular value of aw, which echoes the adsorption transition of the ideal

system. This should appear as a point of inflection in the adsorption plot. Interestingly, we

do not see strong evidence for this in Fig. 6, which would imply that steric effects suppresses

it.

FIG. 6: Plot of the excess adsorption on the surface θex/(Φp < r >b σ) as a function of attraction

strength on the surface, aw, for different average lengths. The bound peptide density in the bulk

nb(bulk)σ3 = 10−3 and the arrow indicates the direction of decreasing < r >b.

In Fig. 7 and Fig. 8, we plot similar adsorption profiles, but at much smaller bulk peptide

densities. This should have the effect of diminishing the steric effect. While showing similar

behaviours to the adsorption profiles at higher bulk density, we do note the presence of an

inflection point in these profiles suggesting a sudden (orders of magnitude) increase in the

adsorbed peptide concentration at a particular value of aw. We reiterate that this is not a
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true phase transition, but reflects the adsorption transition that occurs in the ideal system −

a ”soft transition”. Indeed, we see in Fig. 8 that the soft transition in the surface adsorption

for < r >b= 2, occurs at a value of aw, which is close to the estimated adsorption transition

point in the ideal system, at the same average length. As expected, the soft transition also

occurs at a smaller adsorption strength the larger is < r >b.

FIG. 7: Plot of the excess adsorption on the surface θex/(Φp < r >b σ) as a function of attraction

strength on the surface, aw, for different average lengths. The bound peptide density in the bulk

nb(bulk)σ3 = 10−6 and the arrow indicates the direction of decreasing < r >b.
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FIG. 8: Plot of the excess adsorption on the surface θex/(Φp < r >b σ) as a function of attraction

strength on the surface, aw, for different average lengths. The bound peptide density in the bulk

nb(bulk)σ3 = 10−9 and the dashed arrow indicates the direction of decreasing < r >b. The red

solid arrow shows the point where the adsorption of ideal polymer on the surface goes to infinity

for the case < r >b= 2.
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C. Steric interactions - local theory

The non-local theory describes above is able to describe structuring in the density profiles

of the adsorbed peptide filaments. However, at very high adsorption strengths, the iterative

solutions of the PDFT become rather laborious. On the other hand, the local model may

be a viable alternative approach, especially at lower adsorption strengths where the peptide

density profiles are less structured.

In Figs. 9 and 10 we plot the bound peptide density profiles for the local model using

the same set of parameters as those in Figs. 4 and 5. The local and non-local theories show

good agreement at low values of aw (compare Figs. 9 and 4). On the other hand, for large

adsorption strengths (Fig. 5 and Fig. 10) there is qualitative disagreement, as expected.

The local theory shows less structure and certainly no indication of the expected layering

behaviour. However, the excess adsorption density profiles from the local model are similar

to the results of the non-local model. That is, while the density profiles are qualitatively

different, the integrated densities of both approaches give similar values.

FIG. 9: Plot of nb(z)σ3 as a function of z/σ for polymer with hard sphere terms for increasing

surface attraction and nb(bulk)σ3 = 10−3. The arrow indicates the direction of increasing aw.
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FIG. 10: Plot of nb(z)σ3 as a function of z/σ for polymer with hard sphere terms and larger

attraction from the surface. The bound peptide density in the bulk nb(bulk)σ3 = 10−3.

FIG. 11: Plot of the excess adsorption on the surface θex/(Φp < r >b σ) as a function of attraction

strength on the surface, aw, for different average lengths. The bound peptide density in the bulk

nb(bulk)σ3 = 10−6 and the arrow indicates the direction of decreasing < r >b.
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VI. CONCLUSION

In this work we have generalised the PDFT to treat living random copolymer systems.

This theory was then applied to the problem of amyloidal peptide adsorption onto surfaces

at various degrees of adsorption attraction. We used the model of van Gestel and de Leeuw

[25] for the Aβ peptide, which is known to aggregate into peptide filaments, wherein the

monomers consist of peptide conformers in either a β or disordered state. The former is able

to form corss-β sheets with neighbouring β conformers and build up long peptide filaments.

Our results show that the presence of an attractive surface is able to facilitate the for-

mation of these filaments to an exceptional degree. The reason for this is an underlying

second-order adsorption transition. This transition is seen in infinitely long polymer sys-

tems under Θ conditions, as exemplified in the work by de Gennes [17, 48], and later shown

for polydispersed polymers [14, 49, 50]. We have shown that this transition is also exhibited

in the generic amyloid model of van Gestel and de Lueew, in the case of ideal peptides.

When we allowed for steric interactions between the peptides, this adsorption transition

was suppressed, due to the exclusion effect of peptides already adsorbed onto the surface.

However, the peptide adsorption still clearly showed some remnant of the ideal fluid adsorp-

tion transition. There was an order of magnitude increase in the adsorption at a critical

adsorption strength, which decreased for larger average filament length. The increase in the

adsorbed peptide density corresponds to a significant increase in filament lengths adjacent

to the surfaces. This work gives a mechanistic explanation to the experimental observations

that surfaces are able to enhance the formation of amyloidal fibrils [27–31]. Furthermore,

the theory developed here can be further applied to many other systems, which display

reversible bonding of co-monomers.
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