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A seventh order aurate and stable algorithm for theomputation of stress inside raked retangular domains �Johan Helsing y Anders Jonsson zAbstratA seventh order aurate and extremely stable algorithm for the rapid omputationof stress �elds inside raked retangular domains is presented. The algorithm is seventhorder aurate sine it inorporates basis funtions taking the asymptoti shape of thestress �elds lose to rak tips and orners into aount at least up to order six. Thealgorithm is stable sine it is based on a Fredholm integral equation of the seondkind. The partiular form of the integral equation represents the the solution as thelimit of a funtion whih is analyti inside the domain. This allows for an eÆientimplementation. In an example, involving 112 disretization points on an elasti squarewith a enter rak, values of normalized stress intensity fators and T -stress with arelative error of 10�6 are omputed in seonds on a workstation. More points reduethe relative error down to 10�15, where it saturates in double preision arithmeti. Alarge-sale setup with up to 1024 raks in an elasti square is also studied, using upto 740,000 disretization points. The algorithm is intended as a basi building-blok ingeneral purpose solvers for frature mehanis. It an also be used as a substitute forbenhmark tables.Key words: Stress analysis, polygonal domain, stress intensity fator, T-stress, raks,integral equation of Fredholm type.
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1 INTRODUCTIONThe aurate omputation of stress �elds inside polygonal domains, possibly ontaininginlusions and raks, has traditionally been assoiated with substantial omputing ostsand stability problems. A large obstale, irrespetive of the numerial method used, is thediÆulty of resolving the stress �elds in the domain orners.There are various ways to deal with orners. The easiest approah, whih we refer toas 'brute fore', is to represent the �eld in terms of polynomial basis funtions and use astandard �nite element or boundary element adaptive solver. This proess is ostly. Par-tiularly so if high auray is required. Furthermore, as disretization points aumulatein the orners, the onvergene may stop prematurely. Another approah is to use speialbasis funtions whih take the asymptoti (non-polynomial) form of the stress �eld in theorners into aount. While speial basis funtions are eonomial in terms of disretizationpoints, their inlusion into an algorithm easily add ill-onditioning to the problem.Implementations of algorithms for the omputation of stress �elds inside polygonal do-mains are often of low order and aim at moderate auray. As we shall see, the results ofdi�erent authors seldom agree to more than two or three digits, not even for simple setups.The purpose of this paper is to show that higher order aurate and stable shemes an andshould be implemented. The onlusion is that with a areful hoie of basis funtions, witha areful implementation, and with a good formulation of the mathematial problem, onean onstrut shemes whih are substantially more eÆient than 'brute fore'. Adaptivitymay not even be neessary sine for many problems, a few hundred disretization pointsgive a solution whose quality is more than suÆient for engineering use.Numerial results for an elasti retangle with one or more raks are presented. Weonstrut a sheme whih is approximately seventh order aurate both in theory and inpratie. The sheme is extremely stable. With just a few hundred disretization pointswe ompute stress intensity fators for an elasti retangle with one rak with a relativeerror of only 10�7. With two thousand points, or more, we derease the relative error toless than 2 � 10�15. A large-sale setup, involving up to 1024 slanted raks in a uniaxiallyloaded square, is also studied using up to 740,000 disretization points. This demonstratesthe apability of the sheme to handle large-sale problems.2 PROBLEM STATEMENT AND POTENTIAL REPRE-SENTATIONA �nite, linearly elasti, speimen oupies a domain D. The outer boundary of the spei-men is denoted �0 and is given positive (ounter-lokwise) orientation. Inside the domainthere are N raks denoted �k ; k = 1; 2; : : : ; N. The domain D is therefore multiply on-neted. Crak k starts at rak tip ks and ends at rak tip ke. The union of all raksis �. The union of �0 and � is �. The left and right sides of � are distinguished withsupersripts (+) and (�). The exterior domain, outside �0, is D0. Tration (tprx ; tpry ) ispresribed at �+0 . The raks are tration-free. We would like to ompute the stress �eldin the entire plane.Let U(x; y) denote the Airy stress funtion. Sine U(x; y) satis�es the biharmoni equa-2



tion everywhere, exept for at �, it an be represented asU(x; y) = <e f�z�(z) + �(z)g ; (1)where the potentials �(z) and �(z) are possibly multi-valued analyti funtions of the om-plex variable z = x + iy. In the elastiity problem, requiring that the displaements besingle-valued, see (11,12) below, and with ertain onditions imposed on the applied externalfores, see (19) below, �(z) and �0(z) are single-valued, see paragraph 40 of Mikhlin (1957).For a thorough disussion of the omplex variable approah to elastiity problems, seeMuskhelishvili (1953a), Sokolniko� (1956), Mikhlin (1957), and Parton and Perlin (1982).The following relation links the omplex potentials to the tration t(z) = tx(z) + ity(z)along the tangent of a urve t(z) = n�(z) + n�(z)� �nz�0(z) � �n	(z) ; (2)where �(z) = �0(z), 	(z) = �00(z), and n = nx + iny is the outward unit normal vetor on. The potentials �(z) and 	(z) an be represented in the form of Cauhy-type integrals�(z) = 12�i Z� V (�) d�(� � z) ; z 2 D [D0 ; (3)	(z) = 12�i Z� W (�) d�(� � z) ; z 2 D [D0 ; (4)where V (�) and W (�) are unknown layer densities on �. The representations for �(z) and	(z) of (3) and (4) guarantee that the equations of elastiity are satis�ed everywhere inD[D0. It remains only to �nd V (�) andW (�), that is, to solve the boundary value problemt(z) = tpr ; z 2 �+0 ; (5)t(z) = 0 ; z 2 ��0 ; (6)t(z) = 0 ; z 2 �+ ; (7)t(z) = 0 ; z 2 �� ; (8)where tpr = tprx + itpry is the applied external tration.3 TOWARDS AN EXTENDEDMUSKHELISHVILI EQUA-TIONIn this setion we shall derive an integral equation for the stress problem stated in Setion 2.The lassi hoie of integral equation for stress problems is the Sherman{Lauriella equa-tion, see paragraph 56 of Mikhlin (1957). An alternative equation is presented in paragraph98 of Muskhelishvili (1953a). The fundamental di�erene between the two equations is thehoie of representation for the potential  (z), related to 	(z) via 	(z) =  0(z).The \Muskhelishvili equation" is often not reommended. Reasons are that the Sherman{Lauriella equation is onsidered simpler and more suitable for the purpose of general in-vestigations (p. 398 of Muskhelishvili (1953a), 314 of Sokolniko� (1956), and p. 255 of3



Mikhlin (1957)), that the atual implementation of solutions to the Muskhelishvili equationfor multiply onneted domains is onsidered diÆult beause of the neessity of �rst solvingauxiliary problems for some partiular types of loading (p. 158 of Parton and Perlin (1982),and that the analysis of the Muskhelishvili equation for multiply onneted domains is on-siderably more ompliated (p. 249 of Mikhlin (1957)). Still, we observe, that for stressproblems involving raks, equations based on Muskhelishvili's hoie of representation for (z) are often used, see paragraph 23 of Parton and Perlin (1982) and Setion 6 of ChapterV in Parton and Perlin (1984).We �nd it hard to determine whih equation is the more diÆult to analyze. Both theSherman{Lauriella equation and the Muskhelishvili equation are diÆult to deal with whenit omes to proving uniqueness for multiply onneted domains involving raks. Espeiallyso if the raks are not straight. However, we �nd the Muskhelishvili equation so muhmore eÆient than the Sherman{Lauriella equation, from a numerial point of view, thatwe shall use an extension of the Muskhelishvili equation in this paper. The problem ofrigorously proving uniqueness will be left open.We start with a useful lemma given in paragraph 36 of Muskhelishvili (1953a)Lemma 3.1 The solution to the plane problem of the theory of elastiity for z0 in theexternal domain D0 and with t(z0) = 0 on ��0 and displaements and stresses single-valuedand bounded at in�nity has the general solution �(z0) = i�, where � is a real onstant.When �(z0) is represented as in (3), the solution is �(z0) = 0.Aording to Lemma 3.1, we shall seek �(z) as a funtion analyti inside D and zero inD0. To this end, we rewrite (3) as�(z) = 12�i Z�0 �(�) d�(� � z) + 12�i Z� ��(�) d�(� � z) ; z 2 D : (9)where �(�) is the limit of �(z) on �+0 , and ��(�) is the jump in �(z) over � (the limit on�+ minus the limit on �� ). For z on �0 equation (9) beomes�(z) = 1�i Z�0 �(�) d�(� � z) + 1�i Z� ��(�) d�(� � z) ; z 2 �0 : (10)To ensure that the displaements are single-valued we add the onditionsQ0� =0 ; (11)Qk�� =0 ; k = 1; 2; : : : ; N ; (12)where where Qj is a mapping from �j to C , de�ned byQjf = 1�i Z�j f(�) d� : (13)We now demand that the tration t(z) of (2) jumps a quantity equal to the appliedexternal tration as �0 is rossed (onditions (5,6)), and that the tration t(z) is ontinuousas � is rossed (onditions (7,8)). This, together with the representation (10), enable us to4



express the density W (�) of (4) in terms of �(�) and ��(�). The potential 	(z) assumesthe form 	(z) =� 12�i Z�0 �(�) d��(� � z) � 12�i Z�0 ���(�) d�(� � z)2 � 12�i Z�0 �ntpr d�(� � z)� 12�i Z� ��(�) d��(� � z) � 12�i Z� ����(�) d�(� � z)2 ; z 2 D [D0 : (14)The representation (14) for 	(z) is the derivative of Muskhelishvili's representation for  (z).For brevity and simpliity, we assume that N = 1 in the following of this setions. Thederivations an easily be generalized to the ase when N > 1. The requirements (6,7) lead,via (2), to the following system of singular integral equations�M (00)1 �M (00)3 ��(z) + �M (01)1 �M (01)3 ���(z) (15)= 12 �I � �nnM1(00)n�n� �ntpr(z) ; z 2 �0 ;�M (10)1 �M (10)3 ��(z) + �M (11)1 �M (11)3 ���(z) (16)= �12 �nnM1(10)n�n �ntpr(z) ; z 2 �1 ;where the operator M (jk)1 , ating on a funtion f(z), is given byM (jk)1 f(z) = 1�i Z�k f(�) d�(� � z) ; z 2 �j ; (17)the operator M1(jk) is the onjugate of M (jk)1 , and the ompat operator M (jk)3 is given byM (jk)3 f(z) = 12�i �Z�k f(�) d�(� � z) + �nn Z�k f(�) d�(�� � �z) (18)+Z�k f(�) d��(�� � �z) + �nn Z�k (� � z)f(�) d��(�� � �z)2 # ; z 2 �j :Equations (11,12,15,16) are not solvable unless the solvability onditionsP0�ntpr = 0 ; (19)Q0�ntpr = 0 ; (20)hold, where Pk is a mapping from �k to R, de�ned byPkf = � 12A<e�Z�k f(z)�z dz� ; (21)where A is the area of the domain D. Neither do (11,12,15,16) have a unique solution. Theonstant �0(z) = i�, where � is real, is a homogeneous solution. We add the uniquenessondition P0� = 0 : (22)5



Sine P0i = 1 ; (23)equation (22) does not allow for the arbitrary addition of a homogeneous solution �0(z) = i�to �(z).4 A FREDHOLM EQUATION OF THE SECOND KINDEquations (15,16) are singular Fredholm integral equations of the �rst kind. Upon dis-retization suh equations lead to systems of linear equations whose ondition numbers growwith inreased resolution. Implementing the onditions (11,12,22) may also pose problems.These equations are therefore not good for numeris. In this setion we shall reformulatethe �ve equations (11,12,15,16,22) and arrive at a system of two seond kind Fredholmintegral equations that is well suited for omputations. We assume that N = 1 for reasonsof simpliity and brevity. All derivations are easy to modify for ases when N > 1.First we shall ombine (15) and (22) into a single equation. The following lemma isusefulLemma 4.1 Changing the order of integration, and using partial integration, one an showP0 h�M (00)1 �M (00)3 ��(z) + �M (01)1 �M (01)3 ���(z)i
 = 0 ; (24)P0 12 �I � �nnM1(00)n�n� �ntpr = P0�ntpr; (25)whatever the applied tration tpr is.Now a linear ombination of (15) and (22) gives�M (00)1 �M (00)3 + iP0��(z) + �M (01)1 �M (01)3 ���(z)= 12 �I � �nnM1(00)n�n� �ntpr(z) ; z 2 �0 ; (26)To show that (26) is equivalent to (15,22), assuming that (19) holds, we apply P0 from theleft in (26). This gives (22) with the help of Lemma 4.1 and (19,23). A linear ombinationof (22) and (26) gives bak (15).Next we make use of (10) and rewrite (26) as a seond kind equation�I �M (00)3 + iP0��(z)�M (01)3 ��(z) (27)= 12 �I � �nnM1(00)n�n� �ntpr(z) ; z 2 �0 :To show that (27) is equivalent to (26) we must prove that (27) does not allow for ahomogeneous solution whose analyti extension to the plane is non-zero in D0. We thereforeinvestigate solutions to the homogeneous equation�I �M (00)3 + iP0��0(z)�M (01)3 ��0(z) = 0 ; z 2 �0 : (28)6



Using the new analyti funtions in D0��(z0) = �P0�02 � 12� Z�0 �0(�) d�(� � z0) � 12� Z� ��0(�) d�(� � z0) ; z0 2 D0 ; (29)and 	�(z0) = 12� Z�0 �0(�) d��(� � z0) + 12� Z�0 ���0(�) d�(� � z0)2 (30)+ 12� Z� ��0(�) d��(� � z0) + 12� Z� ����0(�) d�(� � z0)2 ; z0 2 D0 ;and taking limits, one an showlimz0!��0 n��(z0) + n��(z0)� �nz0��0(z0)� �n	�(z0) (31)= in�I �M (00)3 + iP0��0(z)� inM (01)3 ��0(z) ; z = lim z0 ! ��0 :Now the equation limz0!��0 n��(z0) + n��(z0)� �nz��0(z0)� �n	�(z0) = 0 ; (32)has, aording to Lemma 3.1, only the solution ��(z0) = i�. The form of the representa-tion (29) implies that ��(z0) = 0 for z0 2 D0, and therefore �0(z) on � has to be the limitof a funtion analyti in D and zero in D0.For the transformation of the entire system (11,12,16,27) into seond kind equations weneed to introdue a weight �(z) whih for z 2 �k is given by�(z) = � 1; k = 0;((z � ks)(z � ke))� 12 ; k = 1; 2; : : : ; N : (33)To be preise, the weight �(z) is the limit from the right (relative to the orientation of rakk) of the branh given by a branh ut along �k andlimz!1 z�(z) = 1: (34)We also introdue the new, smooth, unknown funtion 
(z) via the substitution�(z)
(z) = �(z) ; z 2 �0 ; (35)�(z)
(z) = ��(z) ; z 2 � : (36)The system of equations (11,12,16,27) now reads�I �M (00)3 �M (01)3 �+ iP0�
(z) = 12 �I � �nnM1(00)n�n� �ntpr(z) ; z 2 �0 : (37)�M (10)1 �M (10)3 +M (11)1 ��M (11)3 ��
(z) (38)7



= �12 �nnM1(10)n�n �ntpr(z) ; z 2 �1 ;Q0�
 = 0 ; (39)Qk�
 = 0 ; k = 0; 2; : : : ; N : (40)It was shown in Helsing and Peters (1999) that the following relations involving Q1,�(z), and M (11)1 holdLemma 4.2 Q1�M (11)1 ��1f(z) = 0 ; (41)M (11)1 ��1M (11)1 �f(z) = f(z)�Q1�f ; z 2 �1 ; (42)M (11)1 �M (11)1 ��1f(z) = f(z) ; z 2 �1 ; (43)where f(z) is a square integrable funtion. See also p. 155 of Estrada and Kanwal (2000).It is now easy to show that the system (37-40) is equivalent to the following two integralequations of Fredholm's seond kind�I �M (00)3 �M (01)3 �+ iP1�
(z) = 12 �I � �nnM1(00)n�n� �ntpr(z) ; z 2 �0 : (44)�I +M (11)1 ��1 �M (10)1 �M (10)3 �M (11)3 ���
(z) (45)= �M (22)1 ��1 12 �nnM1(10)n�n �ntpr(z) ; z 2 � :Appliation of M (11)1 ��1 from the left in (38) and the use of (40) and the relation (42)give (45). In the other way we apply Q1� to the left in (45). The relation (41) givesbak (40). Appliation of M (11)1 � to the left in (45) and the relation (43) give bak (38).Appliation of Q0 to the left in (44) and use of (20,40) give bak (39).Equations (44,45) will be used for omputations in Setion 10. We end this setion witha listing of some partiular advantages with these equations and their solution 
(z).� Equations (44,45) are of Fredholm's seond kind with ompat operators. This allowsfor stable onvergene as the system is disretized and solved on an inreasingly re-�ned mesh. See Helsing and Peters(1999) for proof that the omposition of integraloperators in (45) are ompat.� The density 
(z) on �0 is the limit of �(z) in D. This simpli�es the onstrutionof an asymptotially orret basis for 
(z) in the orners. The ation of the integraloperators an be implemented in an eÆient way. See Setions 6 and 8.� The density 
(z) is simply related to �(z) and 	(z) and therefore also to the stress inD, see Setion 5. The solutions to the original Muskhelishvili- and Sherman{Lauriellaequations are related to the potentials �(z) and  (z). The stress has to be omputedvia di�erentiation, whih is an ill-onditioned operation. See also p. 92 in Setion 6of Chapter V of Parton and Perlin (1984) for a disussion of these matters.8



� Equation (44) ontains the operator P1 whih removes an indeterminay in �(z).The original Muskhelishvili- and Sherman{Lauriella equations ontains other oper-ators whih remove a larger indeterminay in �(z) and involve an arbitrarily plaedpoint. An unfortunate plaement of this point ould degrade numerial performane.Generally, the operator P0 seem to lead to more stable shemes, see Helsing (2000).� A reent trend in the development of integral equations for planar elastiity is to workwith Green's funtions for stresses and displaements. This is referred to as \standardBEM", see Beker (1992). Disadvantages with the BEM equations are that they solvefor displaement �elds, that they involve logarithmi kernels, and that they seem lesseonomial for rak and inlusion problems.5 EXTRACTION OF STRESS AND STRESS INTENSITYFACTORSOne (44,45) are solved for 
(z), the potentials �(z) and 	(z) an be omputed everywherein D via (9,14,35,36). This enables the rapid extration of many quantities of physialinterest. Here we list a few.The omponents of the stress tensor in the material are always of interest. They an beomputed via �xx + �yy = 4<ef�(z)g ; (46)�yy � �xx � 2i�xy = 2(z�0(z) + 	(z)) : (47)A funtion of the stresses, whih is used to predit the ourrene of yielding in a materialwhere the stress state is multiaxial, is the von Mises e�etive stress �e. For plane strainonditions, it an be expressed as�e = h(1� �(1� �)) (�xx + �yy)2 � 3 ��xx�yy � �2xy�i1=2 ; (48)where � is the Poisson's ratio.Linear elasti frature mehanis is widely used to predit the frature resistane ofraked strutures. Linear theory has been suessful even though non-linear materialbehavior ours in regions lose to rak tips. The reason for this is the small sale yieldingassumption, whih states that the frature proess is governed by so-alled stress intensityfators whenever the plasti zone is small ompared to other speimen dimensions. Theassumption is assumed to hold if l > 2:5(KI=�Y )2, where l is the smallest harateristilength of the speimen, KI is the frature toughness of the material and �Y is the tensileyield strength of the material (ATSM (1998)). The stress intensity fators an then beused to estimate the extent of the plasti zone. The omplex valued stress intensity fatorK = KI + iKII at the rak tips ks and ke an be de�ned asK(ks) = lim�!0+p2�� ��y0y0(ks � i�ns) + i�x0y0(ks � i�ns)� ; (49)K(ke) = lim�!0+p2�� ��y0y0(ke + i�ne) + i�x0y0(ke + i�ne)� ; (50)9
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Figure 1: Loal oordinate systems aligned with the tangent to the rak at the rak tips.where � is a real number, ns = n(ks), ne = n(ke), and x0, y0 refer to loal oordinatesystems parallel to the tangent of the rak at the rak tips, see Figure 1. A normalizedstress intensity fator F = FI + iFII is introdued asF = Ktpry p�a ; (51)where tpry is the applied external load and a is half the length of an internal rak or theentire length of an edge rak. The normalized stress intensity fator an be omputed asF (ks) = ip2tpry pa limz!ks
(ks)�(z)pÆs(z) ; z 2 �k ; (52)F (ke) = � ip2tpry pa limz!ke
(ke)�(z)pÆs(z) ; z 2 �k ; (53)where Æs(z) is arlength measured from the losest rak tip.Larsson and Carlsson (1973) studied four ommon test speimen geometries and showedthat stress intensity fators alone are not suÆient to determine the extent of the plastizones around the rak tips. They suggested that the �rst non-singular, onstant, termin the series expansion of the normal stress parallel to the rak-plane, at the rak tips,should also be onsidered. This term is referred to as T -stress. Beteg�on and Hanok (1991)went further and onluded that the rak tip �eld will be dominated by the stress intensityfators K if T is positive. The K-dominane is lost for negative T . This implies that if Tis negative, it should be inluded as a parameter in frature resistane estimation. If T ispositive, it an be negleted and the small sale yielding assumption is valid. In order toorretly predit the frature toughness of a struture, the same level of negative T -stressshould therefore be used in tests as is present in a real situation. Today, inluding e�ets ofthe T -stress in tests is a relatively well established proedure, at least in mode I frature,see Hallb�ak (1996). The real valued T -stress at rak tips ks and ke an be de�ned asT (ks) = lim�!0+ �x0x0(ks � i�ns)� �y0y0(ks � i�ns) ; (54)10



T (ke) = lim�!0+ �x0x0(ke + i�ne)� �y0y0(ke + i�ne) ; (55)In terms of omplex potentials these expression assume the formT (kj) = 2<en �nn �kj�0(kj) + 	(kj)�o ; j = s; e : (56)For straight raks, the expression (56) an be evaluated asT (kj) = 2<e( NXm=0M (km)3 �
(kj)� 12 �nnM1(k0)n�n �ntpr(kj)) ; j = s; e : (57)The biaxiality parameter B is introdued by normalizing the T -stress. For uniaxial appliedtration in the y-diretion the normalization readsB = Ttpry qF 2I + F 2II : (58)We shall now devote the four following setions to the implementation of a seventh orderaurate algorithm for the solution of (44,45).6 SMOOTH AND NON-SMOOTH FUNCTIONSThe auray of a partiular implementation of an integral operator will depend on theontinuity properties of the funtion on whih the operator is ating. This setion disussesthe smoothness of the funtion 
(z) and tpr appearing in (44,45).The density 
(z) is a smooth funtion (C1) on �. This is so thanks to the introdutionof the weight �(z) of (33). The applied tration tpr is also smooth, but disontinuous in theorners. The density 
(z) on �0, on the other hand, is not smooth. In the orners, 
(z)an be deomposed into a symmetri part and an antisymmetri part ontaining terms ofthe form 
symm(z) = sz��1 + �sz���1 ; (59)and 
antisymm(z) = asz��1 � �asz���1 ; (60)where s and as are omplex oeÆients and where � and � are a mix of positive integerexponents and widely spaed non-integer exponents given by the Williams solution, seeWilliams (1952). The speial ase of real � and � renders s real and as purely imaginary.See Helsing and Jonsson (2001) for details. In this paper we shall use integer values of �and � ranging from one to six, together with the �rst non-integer values in the Williamsseries for � and �. The �rst omitted term in the Williams series for � has a real part ofapproximately 6:845. The �rst omitted term in the Williams series for � has a real part ofapproximately 8:87.
11



Figure 2: Left, a regular quadrature panel. Right, orner quadrature panels with two legs. Thedots on the regular panel and on the leftmost orner panel symbolize points where the solution
 has support. The other two orner panels show points where intermediate quantities areomputed.

Figure 3: Quadrature panels on a modi�ed uniform mesh for a square with a entered rak.Most panels have the same length. Panels neighboring to orner panels and panels neighboringto panels ontaining ra-tips are shorter.7 DISCRETIZATION AND BASIC QUADRATUREWe intend to solve (44,45) using a Nystr�om sheme with omposite eight-point Gauss-Legendre quadrature as our basi quadrature rule. On panels ontaining rak tips weuse eight-point Gauss-Jaobi quadrature. To this end we divide �0 and � into quadraturepanels. First we let all panels have approximately the same length. This onstrution we alla standard uniform mesh. We arrange the panels so that all four orners are symmetriallyinluded in panels referred to as orner panels, see Figure 2. Panels whih do not ontainorners are referred to as regular panels. We now perform a modi�ation of the standarduniform mesh. If a regular panel is neighboring to a panel ontaining a rak tip, it issubdivided one into two smaller regular panels. If a regular panel is neighboring to aorner panel, it is subdivided twie into three smaller regular panels with the two smallestpanels losest to the orner panel. We all the resulting mesh a modi�ed uniform mesh.See Figure 3. 12



There are two reasons for using the modi�ed uniform mesh rather than the standarduniform mesh. The �rst reason has to do with that the solution 
(z) on regular panelslose to a orner varies faster than further away from the orner. Although 
(z) is smoothon panels neighboring to orners, a ertain singular-like behavior an be diserned. Shoulda standard uniform mesh be re�ned, the solution 
(z) on regular panels neighboring toorners will vary even faster and the its quality would not neessarily be improved. Asimilar e�et is present for 
(z) on panels lose to rak tips. The density 
(z) is smoothon the entire rak � thanks to the weight �(z). Unfortunately, �(z) annot be used as aquadrature weight in the omposite quadrature sheme. We implement the quadrature onthe panels of � using the following reformulation, where f is a smooth funtion,Z ba �(�)f(�) d� = Z tbta �(�)h(t) f(�) d�dt h(t) dt : (61)In (61) t is a parameterization and h(t) is a real valued weight inorporated into the quadra-ture. If a = ks we hoose h(t) = 1=pt� ta. If b = ke we hoose h(t) = 1=ptb � t. Ifneither a nor b are rak tips we hoose h(t) = 1. In this way we get high preision onpanels ontaining rak tips and panels not neighboring to rak tips. On panels that doneighbor to rak tips the fator �(�)=h(t) will grow as a standard uniform mesh is re�ned.Full double preision auray for the quadratures annot be ahieved.The seond reason for using the modi�ed uniform mesh rather than the standard uniformmesh has to do with the interation between neighboring panels on opposite sides of orners.When a standard uniform mesh is re�ned, neighboring panels on opposite sides of a ornerare moving loser to eah other and are simultaneously shrinking. The net e�et may bethat the integral kernels desribing these interations is never well resolved. Numerialexperiments indiate that re�nement of a modi�ed uniform mesh will allow us to reahdouble preision aurate answers.As for the plaement of disretization points we do as follows: on all regular panels weplae eight Gauss-Legendre nodes for the support of 
(z). On panels ontaining rak tipswe plae eight Gauss-Jaobi nodes for the support of 
(z). On eah leg of the orner panelswe plae one set of four Gauss-Legendre for the support of 
(z). Also, on eah leg of theorner panels we plae one set of eight Gauss-Legendre nodes and one set of sixteen Gauss-Legendre nodes. See Figure 2. On these extra sets of nodes, intermediate quantities willhave support. We shall thus use three sets of nodes on orner panels for di�erent purposesin our implementation of the operators appearing in (44,45). The overall ambition is thatall quadratures shall be implemented with at least seventh order auray.8 IMPLEMENTATION OF INTEGRAL OPERATORS8.1 Review of previous implementationsThe implementation of several of the operators appearing in (44,45) have been disussed inprevious work. The implementation of other operators an be done in similar ways. Herefollows a brief review. One again, for brevity, details will only be given for the ase N = 1.Extensions are analogous.The implementation of the operatorsM (01)3 �, M (11)3 �, andM (11)1 ��1 for ation on smoothfuntions are disussed in Helsing and Peters (1999). The implementation of M (01)3 � and13



M (11)3 � will be 16th order aurate with eight Gauss-Legendre or Gauss-Jaobi nodes assoure points. The implementation of M (11)1 ��1 will be eighth order aurate. With nthorder auray we mean that a polynomial of order n� 1 an be integrated exatly.The implementation of M (00)3 for ation on the non-smooth funtion 
(z) is ratherinvolved. It is disussed in detail in Helsing and Jonsson (2001). In short, the operatorM (00)3 is deomposed into three parts. One part of M (00)3 desribes the ation on 
(z)for soure points on regular panels. Here 16th order Gauss-Legendre quadrature is used.Another part of M (00)3 desribes the ation on 
(z) for soure points on orner panels andtarget points lose to the soure points. Here a hange of basis for 
(z), from pointwiserepresentation to a representation in terms of the basis funtions of (59,60), is used. Thevalues of the di�erent entries of the matrix representing this part ofM (00)3 are preomputedto high preision using adaptive quadrature. The auray of the sheme is of order 6:845.The third part of M (00)3 desribes the ation on 
(z) for soure points on orner panels andtarget points far away from the soure points. Here, too, a hange of basis is employed,followed by interpolation and 32nd order aurate quadrature. The intermediate set of 16quadrature points on eah orner leg is used in this proedure whose auray is estimatedto, again, 6:845. The deision of whether a target point should be onsidered being loseto or far away from a orner panel will of ourse a�et the ahievable auray of theimplementation of M (00)3 . Numerial experiments indiate that, with our modi�ed uniformmesh and for double preision auray, it is generally suÆient to onsider points on thesix losest panels neighboring to a orner leg as being lose to the orner panel.The implementation ofM (10)1 andM (10)3 for ation on 
(z) resembles the implementationofM (00)3 . The only di�erene is that the seond part in the deomposition, for the ation onsoure points on orner panels and target points lose to the soure points, is not needed.8.2 Implementation of M (00)1 and M (10)1We now disuss an eighth order aurate implementation of the operator M (00)1 whoseonjugate ats on the applied tration in (44). The tration will be evaluated at all nodeson regular panels and on the intermediate sets of eight nodes on the legs of orner panels.The operatorM (00)1 is singular. The part ofM (00)1 that desribes ation on soure pointson one quadrature panel when target points are on another panels is, however, ompat.We use 16th order Gauss-Legendre quadrature for this ation whenever the soure pointsare on a regular panel and the target points are on a panel far away from that panel. Threepanel lengths an be onsidered \far away" for double preision auray.The implementation of M (00)1 for ation on a funtion f(z) when soure points are ona regular panel and when target points are lose to or on that panel is evaluated usingthe following relation. Let f(z) be smooth and let a and b be the starting point and theendpoint of a regular quadrature panel. Then1�i Z ba f(�) d�(� � z) = 1� Z ba f(�)<e� d�i(� � z)�+ i� Z ba (f(�)� f(z))=m� d�i(� � z)�+ f(z)�i <e�ln�a� zb� z �� : (62)14



The �rst integral on the right hand side of (62) has a smooth kernel. The seond integralhas a smooth integrand. The third term is easy to evaluate.The implementation of M (00)1 for ation on a funtion f(z) when soure points areon a orner panel and when target points are lose to or on that panel is dealt with asfollows: It is assumed that f(z) is available on eight Legendre nodes on eah orner leg.A Legendre transform of f(z) is omputed. Legendre transforms are very stable. Thenterms are reombined in the Legendre expansion as to get the oeÆients in a monomialbasis for f(z). Finally the ation of M (00)1 on eah term in the monomial basis is evaluatedanalytially. This proedure is eighth order aurate. The parts of M (00)1 that desribe theation on f(z) on a leg of a orner panel when target points are far away from that leg areomputed with eighth order aurate quadrature based on the values of f(z) at the set offour nodes on eah leg.The operator M (10)1 is ompat but its implementation is ompliated by the fat thatit is ating both on 
(z), whih is non-smooth, and on the presribed tration, whih issmooth. For the smooth ation, we disretize using Gauss-Legendre quadrature in all pointswhere 
(z) has support. This proedure is ninth order aurate. For the non-smooth ation,we implement M (10)1 like M (10)3 and the auray is the same.
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Figure 4: An elasti retangle of height 2h and width 2w with a entered rak of length 2a.The rak is slanted with an angle �. A uniform external tration tpry of unit strength is appliedto two opposite sides of the retangle. The other two sides of the retangle are tration-free.9 THE ALGORITHMWe disretize (44,45) with N points as outlined in the previous setions. Our geometry isa retangle of height 2h and width 2w. Inside the retangle there is either one or morestraight rak of length 2a, see Figure 4 and Figure 5, or a irular ar-shaped rak ofradius R. A few things an be noted. 15
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Figure 5: Two setups with multiple raks. The square plate has side lengths 2w and ontains4m2 straight slanted raks with angle �=4 and length 2a = 0:6w=m. The raks are plaedon a square grid with a distane w=m between grid points. Distanes between rak mid-pointsare w=(2m).The left plate has m = 1 and the right has m = 16.� For a straight rak, M (11)3 vanishes and (45) simpli�es.� The implementation of M (10)1 is dependent on whether the operator is ating on asmooth funtion or not. Only parts whih desribe ation on orner panels are om-puted and stored twie.� The GMRES solver (Saad and Shultz (1986)) is used for the system of linear equa-tions. The iterations are terminated when the relative norm of the residual is assmall as it an get. This often means 10�16. The number of iterations needed foronvergene, given a geometry and a load, is almost independent of the number ofdisretization points. This is typial for disretized Fredholm integral equations of theseond kind.� Great are is devoted to avoiding roundo� error throughout the ode. Matrix-vetormultipliations and inner produts are evaluated with ompensated summation, seHigham (1996) and Kahan (1965), for the small-sale examples. The fast multipolemethod, see Helsing and Greengard (1998), and Greengard and Rokhlin (1987), isused for large-sale omputations.� The operators of (44,45) are implemented with order of auraies ranging from 6:845to 16. We expet the asymptoti onvergene rate to be of order 6:845, whih isindistinguishable from seven in double preision auray.� The omplexity and storage requirement of our implementation grows as N2 for thesmall-sale examples. By use of the fast multipole method for the large-sale examples,the omplexity and the storage requirement is proportional to N .16



10 NUMERICAL EXAMPLESThe purpose of this setion is to demonstrate the extreme stability of our sheme. Threesmall-sale examples are studied for this purpose. In a fourht example, we demonstrate theapability of our sheme to handle large-sale omputations.
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Table 2: Numerial results for the biaxiality parameter B and the normalized stress intensityfator FI of a entrally raked speimen with � = 0, and with di�erent ratios h=w and a=w,see Figure 4. Three stars indiate that no value was presented. The symbols (t), (g), and(i) indiates tabulated, graphial, and interpolated data. (1) Leevers and Radon (1982) laimfour digit agreement with Isida (1971). (2) The speimen in (Mukhopadhyay et al. (1998)) isintended as in�nite, but a ratio h=w = 5 was used for the numerial results (Mukhopadhyay,private ommuniation).h=w a=w B FI ref1 0.3 � � � 1:123 Isida (1971) (t)1 0.3 �1:03 1:123(1) Leevers, Radon (1982) (i)1 0.3 �1:032 � � � Cardew et al. (1984) (t)1 0.3 �1:02 1:12 Kfouri (1986) (g)1 0.3 �1:03 1:12 Fett (1998) (t)1 0.3 � � � 1:1214 Kabele et al. (1999) (t)1 0.3 �1:0286 1:1232 Chen et al. (2001) (t)1 0.3 �1:02864238631710 1:12319110266148 new1 0.5 � � � 1:3337 Isida (1971) (t)1 0.5 �1:04 � � � Larsson, Carlsson (1973) (t)1 0.5 �1:04 1:334(1) Leevers, Radon (1982) (i)1 0.5 �1:039 � � � Cardew et al. (1984) (t)1 0.5 � � � 1:331 Banks-Sills, Sherman (1986) (t)1 0.5 �1:02 1:31 Kfouri (1986) (g)1 0.5 � � � 1:331 Banks-Sills, Sherman (1992) (t)1 0.5 � � � 1:3341 Chan, Mear (1995) (t)1 0.5 � � � 1:3296 Zhu, Smith (1995) (t)1 0.5 �1:04 1:33 Fett (1998) (t)1 0.5 � � � 1:3317 Kabele et al. (1999) (t)1 0.5 � � � 1:332 Guinea et al. (2000) (t)1 0.5 �1:0385589347143231 1:3337121602578887 new1 0.6 � � � 1:3033 Isida (1973) (i)3 0.6 � � � 1:32548 Gu (1993) (t)3 0.6 �1:11408542438965 1:30332730119436 new1 0.8 � � � 1:8160 Isida (1973) (i)5(2) 0.8 � � � 1:7577 Mukhopadhyay et al. (1999) (t)5 0.8 �1:41111943705804 1:8159948204573 newpanels, presented in Setion 7. Inorporating the fast multipole method into the solvermakes it possible to treat large-sale problems. In Setion 10.4, stress intensity fators andbiaxiality parameters for a setup ontaining up to 1024 raks are omputed with a relativepreision better than 10�8.One may argue that fast and stable solvers for linear frature mehanis problems are notneeded. After all, most omputational problems of engineering importane are non-linear.22
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