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Abstract

A fast and stable numerical algorithm is presented for the elastostatic problem of
a linearly elastic plane with holes, loaded at infinity. The holes are free of stress. The
algorithm is based on an integral equation which is intended as an alternative to the
classic Sherman-Lauricella equation. The new scheme is argued to be both simpler and
more reliable than schemes based on the Sherman-Lauricella equation. Improvements
include simpler geometrical description, simpler relationships between mathematical
and physical quantities, simpler extension to problems involving also inclusions and
cracks, and more stable numerical convergence.

Key words: Linear elasticity, holes, integral equation of Fredholm type, fast multipole
method, Sherman-Lauricella equation, effective elastic moduli, stress concentration factor,
numerical methods, stable algorithms

1 Introduction

Perforated structures are commonly encountered in mechanical engineering and materials
science. An important reason for perforation in mechanical design is to reduce weight.
Other reasons are to facilitate ventilation and inspection. In materials science an objective
is to reduce the occurrence of voids in order to improve material performance.

Perforation of a structure or a material often increases the local stress. Stress concen-
trations due to holes may result in reduced fatigue endurance or even in global structural
collapse. Several engineering textbooks deal with stress concentration around holes (Neuber
1937; Savin 1961; Radaj and Schilberth 1977). In materials science, the over-all material
properties are of interest. These properties are often described by a non-isotropic constitu-
tive equation, which relates the average stress to the average strain by means of so called
effective elastic moduli. The process of determining effective moduli is referred to as ho-
mogenization (Persson et al. 1993; Dvorak and Srinivas 1998). For a recent application to
micromechanical modeling of cast iron, see Manson and Nilsson (2000).



In this paper we study perforated loaded planes numerically and compute local stresses
and displacements. Also, we compute the effective elastic moduli using periodic bound-
ary conditions. For reasons of stability and speed we prefer a method based on integral
equations. There are several choices here, involving real variable notation with Green’s
functions for the stress and the displacement (Becker 1992) and complex variable notation
with potential representation for the Airy stress function (Muskhelishvili 1953). The latter
approach, which is our choice, may lead to the classic Sherman-Lauricella equation. See
Greengard, Kropinski and Mayo (1996) for a comprehensive review.

The Sherman-Lauricella equation is a second kind Fredholm integral equation with com-
pact operators. Despite its virtues, such as brevity of notation and that it gives stable nu-
merical algorithms, we consider it awkward for two reasons. First, the Sherman-Lauricella
equation requires the introduction of source terms at arbitrary points inside the holes and
several arbitrary constants. This arbitrariness can substantially reduce numerical efficiency.
It may be difficult to find the optimal choices of points and constants in practical appli-
cations. Second, the Sherman-Lauricella equation is based on representations of the Airy
stress function which depend on the boundary conditions, and which are different from what
has previously been used in crack- and bimaterial problems (Helsing and Peters 1999).

We will derive an integral equation for stress- and strain problems in a perforated plane
that improves on the Sherman-Lauricella equation in four ways

- Unification of formulations: the same potential representation is used as in established
equations for crack- and bimaterial problems.

- Simplified geometrical description: arbitrarily placed source points are not needed.

- Simplified post-processing: the layer density (unknown quantity) is related to physical
quantities by simple expressions.

- Improved numerical efficiency: iterative algorithms based on the new equation require
fewer iterations and exhibit slightly better stability.

The paper is organized as follows: Section 2 and 3 describe the elastostatic problem in words
and in terms of partial differential equations. Section 4 introduces potential theory. The
derivation of possible integral equations is outlined. Section 5 presents the classic Sherman-
Lauricella equation. Section 6 presents our proposal for a new equation, which can be
viewed as a special case of a bimaterial equation due to Sherman. The two equations are
compared from a mathematical viewpoint in Section 7. Section 8 deals with the extraction
of stress intensity factors and effective moduli from the solution. Section 9 contains details
about numerical implementation. A numerical comparison between the two equations is
undertaken in Section 10. The paper ends with Section 11 where we improve greatly on a
recent numerical result (Ting, Chen, and Yang 1999) for two circular holes, and illustrate
the extreme numerical stability of our scheme on a more challenging geometry.

2 The elastostatic problem

An infinite, linearly elastic plane is perforated with holes. The plane has two-dimensional
elastic bulk and shear moduli x and pu. There are N holes in the plane. The boundaries



of the holes are denoted I/, j = 1,..., N. The union of all boundaries is denoted I". The
interior of the perforated plane is Dy and the interior of all holes is Dy. Stress or strain is
applied at infinity so that the average stress is ¢ = (044, Oyy, Ouy), Or so that the average
strain is € = (€gy, €y, €xy). The boundaries of the holes are free of stress.

We would like to compute displacement (u,,u,) and the stress- and strain fields in
the material subject to three different imposed average stresses, namely a; = (1,0,0),
o = (0,1,0), and o = (0,0, 1), or to three different imposed average strains, namely
e = (1,0,0), enx = (0,1,0), and &y = (0,0,1). We would also like to compute effective
elastic moduli.

3 Partial differential equation formulation

We begin with a partial differential equation formulation for our problem. We present it as
a mathematically equivalent alternative to the integral equations used later on.

Insertion of the definition of the linear strain tensor and the constitutive equation relat-
ing the strains to the stresses into the equation of static equilibrium yields a coupled system
of second order elliptic equations for the displacement field (Navier’s equation)

P 55 + Kug 5 = 0, 1=1,2. (1)
The boundary condition on I' is
(1(uig +ug;) + (k — p)ugkdij) ng =0, i=1,2, (2)

where (n4,n,) is the normal unit vector on I'. The plane is loaded by stress or strain which
is applied at infinity so that their area averages assume prescribed values

0ij =< puij +uj;) + (k — p)ugpdi; >= a%fGSC’ i,j=1,2, (3)

or
€ij =< (uij+uji)/2>=e ", Q5 =1,2. (4)
The components of a%resc or e?fesc are given by the components of the applied load &1, o,

0111, €1, €11, OT €I].

4 Potential representation

It is natural to introduce the Airy stress function U, which solves the equation of static
equilibrium by definition. From the assumption that certain sequences of partial derivative
operators commute when acting on u, and on u, (compatibility equations), it follows that
U is biharmonic (except for at T"). Airy’s stress function can be represented as

U=Re{zd+x}, (5)

where the potentials ¢ and x are single valued analytic functions of the complex variable
z = x +4y. For a thorough discussion of the complex variable approach to elasticity
problems, see Muskhelishvili (1953), Sokholnikoff (1956), Mikhlin (1957), or Parton and



Perlin (1982). For our purposes it is sufficient to observe a few relations that link the
complex potentials to quantities of physical interest. The displacement (uz,u,) in the

material satisfies
. 1 1 1 — =

where 1) = x'. The integral of the traction (¢,,t,) along a curve vy(s) with normal (ng,n,)

can be obtained from s

i(p+ 24 +9), (7)
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S
(ty +ity)ds = —

50

where s denotes arclength along 7(s).
The components of the stress tensor can be computed via

Oae + oyy = WRe{¢'}, (8)

Oyy — Opg + 2004y = 2(z¢" + ). (9)

A standard starting point for elastostatic problems is to represent the potentials ¢ and
1 in the form of Cauchy-type integrals

b(2) = 2% /F ‘E’T(T_)CZ + % z€ Dy, (10)
and ) q
P(z) = 2_7”/p E)T(T_) zT) +Bz, ze€Dy, (11)

where w and p are unknown layer densities and « and 3 are forcing terms. Values of ¢ and
1 on I' are defined as limits of ¢ and 1 in D; as I' is approached. Since the equations of
elasticity now are satisfied everywhere, it remains only to solve the problem which consists
of enforcing the boundary condition of zero traction along I'.

The constants o and § in (10) and (11) represent the forcing terms at infinity. When
average stress is imposed, the constants take the values & = 1/2 and 8 = —1/2 for 47, the
values @ = 1/2 and 8 = 1/2 for o1, and the values &« = 0 and 3 = i for oy;;. When average
strain is imposed, the constants take the values « = k and 8 = —pu for €, the values a = k
and B = p for €1, and the values « = 0 and g = 2iyu for €r;1. Thus, « can always be assumed
to be real, while 3 is either a real or an imaginary number.

5 The Sherman-Lauricella integral equation

The classical way of solving the elastostatic equation is by expressing p of (11) in terms of
w of (10) in a way which makes 1) assume the form

_ _ N
Q[,(Z)_L M*‘L/FM—L/FM‘FZZ)—]-FQZ, (12)

C2mi Jp(T—2) 2mifp (T—2) 2mifp (T —2)? Pl



where z; is an arbitrary point inside the hole bounded by I'V and the source terms b;/(z —z;)
are needed to ensure that the resulting integral equation is solvable. The real constants b;

are related to w by
b = k%m{/ w(z)dz} , (13)
i

where k is an arbitrary real non-zero constant, usually chosen as k = —2. The representa-
tions (10) for ¢ and (12) for 1) were first derived by Lauricella (1909) and further developed
by Sherman (1940).

The choice of the representation (12) for ¢ can be motivated by the fact that it leads
to an equation of Fredholm’s second kind. The requirement of zero traction on TV gives,
via (7), (10) and (12), the Sherman-Lauricella integral equation

b;

N
(I - Msp)w(z) =Y ~Cj=az+pz, 2z€lV, (14)

Jj=1

where Mgy, is a compact integral operator given by

Msrw(r) = 2%” [/F WT(T_)dzT _/wa(r_)d; _/wa(T_)iT _I_/F%] , zel,
(15)

and C; are complex constants, related to w via

G =t [ wlr(s)ds. (10

where k; are arbitrary non-zero complex constants, usually chosen as k; = 1.
The displacement of (6) at IV is given by

, 1 1 1 w(r)dr  w(z) «az C; -
=|l—-+—)| = - — |- =, elv. 17
ta o+ 1y </@+u> (27ri/p(7—z) 2 + 2 2u ? (17
Proofs of solvability and uniqueness of (14) can be found in Muskhelishvili (1953),
Mikhlin (1957), and Parton and Perlin (1982). The particular choices of z; in (12), k
n (13), and k; in (16) do not change the value of the potentials ¢ and 1 in the interior of
the perforated plane. They do, however, change the value of w, and they will influence the

performance of iterative numerical schemes based on equation (14). The standard choices
k = —2 and k; = 1 seem to be reasonably efficient from a numerical viewpoint.

Remark 5.1 Sherman has three different choices for 1 depending on the boundary condi-
tions, leading to three different integral equations. If the holes are free from stress and the
loads are applied only at infinity, the equation for prescribed stress (14) can handle both
the case of prescribed average stress and the case of prescribed average strain.

Remark 5.2 Representations for the potentials ¢ and 1) do not necessarily have to be on
the form of Cauchy-type integrals and lead to integral equations. Another possibility is
to represent the potentials in terms of Laurent series and to derive algebraic equations for
their coefficients. See Vigdergauz (1999) for a recent example.



6 The Sherman bimaterial equation

An interesting option, introduced by Sherman (1959) for bimaterials, is to extend the valid-
ity of ¢ of (10) and v of (11) into the holes D5, and to choose the unknown layer densities
w of (10) and p of (11) in such a way that the expression for the integral of traction (7) is
continuous over I'. This requirement allows us to express p in terms of w, and 1) assumes

the form
b(z) = 1 /Fw(T)df 1 /Fw(r)dT 1 /Fi'w(T)d; 4 B (18)

Tomifr(r—2) 2mifr(r—2) 2mifr (r—2)

The requirement of zero traction along I' leads to the integral equation for w

(M) — Mb)w(z) = —az — z —c¢;, z€TY, (19)

where c; are complex constants of consistency, and M; and M, are integral operators given
by

_ i w(r)dr ,
Miw(e) = — /F AU ser (20)
and
_ 1 w(r)dr [ w(r)d7 w(r)dr [ (1 —2)w(r)dT B
Ml = 5 [/p(r—@ (7575 ] =
(21)
Two properties of My are easy to prove

MQC =cC, (22)

Myiz =iz, (23)

where ¢ is a constant. Since constants and iz are eigenfunctions with eigenvalue unity also
to the operator M, equations (22) and (23) imply that (19) is not uniquely solvable, but
that is has two simple null-functions. We therefore add the uniqueness condition

(I+ M)w(z) = —az— (1 —dj)c;, z€TI. (24)
where d; is an arbitrary constant. Linear combinations of (19) and (24) gives that w satisfies
(I +d;My + (1 — dj)Ms) w(z) = —djaz + (1 — d;) Bz, zeT7, (25)

which is our proposal for a new equation. Note that the constants of consistency, c;, of (19)
and (24) do not appear in (25). That (25) is uniquely solvable follows from Fredholm’s
alternative and the discussion in paragraph 4 of Sherman (1959). In fact, equation (25)
can be derived directly from the Sherman bimaterial equation (1959) by letting the bulk
and shear moduli x; and p; of inclusion j in the bimaterial approach zero in such a way
that their ratio is constant. The Sherman bimaterial integral equation then assumes the
form (25) with dj = p;/(pj + K;)-



The displacement of (6) at the boundary I'V is particularly easy to evaluate in our setting,

11 C((di—1) d;
ux+iuy:—wj<g+p>+%<%+i>. (26)

The solution w to (25) is independent of d; (up to a constant on each T'¥). In the limits
d;j — 0 and d; — 1, however, equation (25) becomes singular. For certain values of d; the
conditioning of (25) is optimal. An interesting choice is d; = p/(p + k). This choice makes
the displacement of (26) directly proportional to w. More generally, we have found that
d;j > 0.5 can cause an unnecessary large number of iterations in the process of solving (25)
iteratively. A value in the range 0.10 < d; < 0.35 seems to be a good general choice.

Remark 6.1 The equation (25) contains the Cauchy singular operator M; which is non-
compact on a single, closed contour. This is not a problem from a computational viewpoint.
The operator M; resembles the identity. Further, it is possible to transform equation (25)
into a Fredholm second kind equation with compact operators by application of the operator
(I —d;M7)/(1 —d3), where M{ denotes the restriction of M; to I'. The part of M; which
describes interaction between different contours is always compact.

7 Relationships between equations

The Sherman-Lauricella equation (14) and equation (25) look different. The Sherman-
Lauricella equation contains the choice of N arbitrarily placed points and N + 1 arbitrarily
chosen constants, while equation (25) contains only N arbitrarily chosen constants. The
Sherman-Lauricella equation only contain compact operators, while equation (25) contains
the Cauchy singular operator M;. The expression for the displacement (17) in the Sherman-
Lauricella framework is more complicated to evaluate than our expression (26).

A relation between the layer densities of the two equations can be derived by equat-
ing (17) and (26). The choice d; = p/(1 + k) gives the simplest form of this relation

w(2) =%(I—M1)w5L(z)—%—2(1+JM/K), very, (27)
where wgy, denotes the layer density of the Sherman-Lauricella equation and w denotes
the layer density of equation (25). Equation (27) can not be inverted, that is, give wgr,
as a function of w. The density wgr, has, in general, a more complicated structure than
the density w. As a consequence, we expect iterative algorithms based on the Sherman-
Lauricella equation to converge slower than iterative algorithms based on equation (25).

See Section 10 for examples where such a difference in convergence rate is observed.

8 Effective moduli and stress tensor on the boundary

Effective elastic moduli are particularly simple to define and compute in the setting of a
doubly periodic material with a square unit cell of unit area. The effective compliance



moduli of a material can be defined through the following relations between average stress
and average strain

€xz Skl Sx2  Sx3 Orz
Eyy = 842 Sid  Si5 Oyy . (28)
\/§€:ry Sx3  Sx5  Sx6 ﬂaxy
The components of the effective compliance tensor S are s,x, Kk =1,...,6.

In order to compute the effective compliance tensor S, equation (25) is solved three
times for the imposed average stresses o1, orr and ory;. The corresponding solutions are
denoted as wr, wir and wyrr. Let now

1/1 1

2\k p
and
b L(1 + ! / (z)dz K=1LILIII (30)
=—(—-—4+- wk (2)dz = .
K 2\« 1 ’ K ) 3+
With this notation, the effective compliance tensor of equation (28) can be computed as
! kK4+p p—k O br —ar b —an %(bm — ar)
= — pw—K K+p 0 + Sm ar +br am +big %(GIH + bH[) . (31)
4k . . .
0 0 2k iv2ar  iv2an 14111
The inverse of the effective compliance tensor is the effective stiffness tensor C whose
components ¢, k= 1,...,6, are defined through the following relation
Ora Cyxl Cx2 Cy3 €xa
Oyy = Cx2 Cyx4 Cy5 Eyy . (32)
\/ia'acy C«3 Cy5  Cx6 ﬁgxy

In order to compute the effective stiffness tensor, equation (25) is solved three times for the
imposed average strains €, €; and €rp. The corresponding solutions are denoted as wr, wir
and wipp. Let now

ax = (1+2) / wk(2)dz,  K=1ILIII, (33)
K Ty
and
by = <1 + f) / wi(z)dz, K =LILII. (34)
H u
The effective stiffness tensor of equation (32) can then be computed as
k+p k—p 0 br—ar b —an %(bIII_GIH)
C = K—p k+p 0 — Sm ar+br am+bir %(CLH[ + bIII) . (35)
0 0 2u iV2ar  iv2an Larr

The components of the stress tensor o;; in (8) and (9) take the following form on the
boundary I' in terms of our density w

d
Opz + Oyy = —4Re {d—j} , (36)

8



n d
Oyy — Og + 2004y = —4%%6 {d—j} . (37)

The traction (tz,t,) on the boundary I' can be obtained from

d
te + ity = —dinRe {d—‘;’} . (38)

Other quantities, useful when dealing with the stress fields in the vicinity of the holes, are
the normalized tangential stress o, and the stress concentration factor K;. The normalized
tangential stress is defined as the ratio of the tangential stress on the boundary of a hole to
the trace of the applied stress tensor

_ 4§Re{g—“z)}
Tr{ﬁappl} -

The stress concentration factor is defined as the maximum absolute value of the normalized
tangential stress

(39)

Otn

K, = . 4
t glgglaml (40)

9 Nystrom algorithm and singular integrals

In the next two sections we solve equations (14) and (25) for a variety of geometries and
loads. In most examples we shall use a “matrix-free” Nystrom algorithm based on composite
16-point Gaussian quadrature, the GMRES iterative solver (Saad and Schultz 1986), the
fast multipole method (Rokhlin 1985; Greengard and Rokhlin 1987; Carrier et al. 1988),
and a special scheme for the evaluation of layer potentials close to their sources (Helsing
1996). Compensated summation (Kahan 1965; Higham 1996) is used for the computation
of inner products in the GMRES solver and for the evaluation of the integrals appearing
in the formulas for effective moduli. We refer to Greengard and Helsing (1998) for further
implementational details. Here we will discuss a particular refinement implemented in the
present code. It concerns the regularization of the singular integral appearing in (20).

It is easy to verify the following: Let f(z) be a smooth function on T" and let ¢ and b
be two points on I'. Then

1 [ f(r)dr .

i J, (T—2)

%/abf(r)ﬂ%e {Z(fijz)} v /ab(f(r) - f(z))%m{i(TdZ 7 } + 2 {ln [Z:z] %4'1)

The first integral on the right hand side of (41) has a smooth kernel. The second integral
has a smooth integrand. The third term is easy to evaluate.

Now, let z be a target point on a quadrature panel I'y on I". Further, let T'g_jo and
[o_right be quadrature panels adjacent to I'g. Let ['g_otner be the union of all other quadra-
ture panels. For the evaluation of

1 [ fr)dr

mi Jp (T — 2)

, ZGF(),

9



Figure 1: The von Mises effective stress distribution for an infinite plate with a starfish-shaped
hole under imposed stress ;. The stress concentration factor of (40) for the hole is K; =
9.233388765.

we distinguish between two cases. For the part of the integral that contains contributions
from I'g_other, we evaluate the integral as it stands. For the part of the integral that contain
contributions from T'_jeg;, I'g, and T'g_right, we use the right hand side of (41), with a being
the starting-point on I'g_jer; and with b being the end-point on I'g_right-

10 Numerical comparison between equations

Some differences between the Sherman-Lauricella equation (14) and equation (25) have
been pointed out in Remark 6.1 and in Section 7. In this section we undertake a detailed
comparison between algorithms based on the two equations, to see what consequences these
differences have for numerical efficiency. The experiments presented indicate that equa-
tion (25) leads to a better algorithm.

For setups with analytical solutions, such as loaded plates with a single hole in the
shape of a circle or an ellipse, it is hard to say which equation leads to the best algorithm.
Algorithms based on the two equations both require only a few GMRES iterations for full
convergence. A non-trivial example is needed. We therefore consider a plate with one single
hole in the shape of a nine-armed starfish parameterized by

2(t) = 0.36(1 + 0.36 cos 9t)e’t —r<t<m, (42)

under the imposed average stress &7, see Figure 1. This shape might seem spectacular
at first glance, but similar shapes are used in, for example, spline couplings (a machine
element). Figure 1 also shows contours of the distribution of the von Mises effective stress

10
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Figure 2: Convergence of the reference quantities go of (44) and gmax of (45) for algorithms
based on equations (14) and (25). Correct values, computed in quadruple precision arithmetic,
are g9 = 0.6540490820646557 and qmayx = 0.3762294219389333. The relative error for values
of g2 and gmax that coincide with the correct value is displayed as 1.11 - 1076,

oen- The von Mises effective stress is used to predict the occurrence of plastic deformation
in a multiaxial state of stress. For plane stress, it is defined by

Oorf = \/O'%x + 02, — OuzOyy + 3032, . (43)

When comparing the performance of the algorithms below, we need reference quantities
to measure accuracy against. We have decided to use the L? norm of a normalized boundary

displacement
1
Pk 2
=2 ([ 02+ e as) (@4

and also the maximum value of a normalized boundary displacement

K

L ma (u2(2) + () (45)

Gmax =

as such reference quantities. One could, of course, also use some Sobolev norm of the
boundary displacement, or measure the convergence of the displacement field itself. Using
such procedures, it would be harder to detect differences between the algorithms. Numerical
differentiation and interpolation between meshes introduce additional error.

The quantity g9 is particularly simple to compute and tells us, perhaps, most about the
quality of the solution. The quantity ¢o can be extracted from the solutions wgr, to (14)
and w to (25) via (17) and (26) and with the use of integration at the nodes where wgr,
and w have support. The quantity gmax requires more post-processing. This is so since the
maximum displacement does not necessarily occur at a quadrature node. We extract ¢max
by 15th order polynomial interpolation followed by golden section search. The bulk and
shear moduli are chosen so that u/(pu + k) = 0.23.

An algorithm based on equation (25) requires 1760 discretization points for a relative
error in ¢o smaller than 10~ and for a relative error in gmay smaller than 10713, see Figure 2.

11



—— Proposed eq. (25)
SL, k,=0

- - SL, standard
_._ SL, zl=0.1

Residual

40 50 60 70 80
Iteration

Figure 3: The iteration history from GMRES for the different integral formulations. 2080
discretization points were used.

Solving the system of linear equations at full resolution, that is with 2080 discretization
points, requires 30 GMRES iterations with the choice d; = 0.23. The particular choice of
di = 0.23 seems in this case quite good. Other values of d; also work well for this geometry
and load. Numerical experiments show that values in the range 0.004 < d; < 0.76 yield a
solution with a relative error in g, smaller than 10~ . For values of d; below 0.1 and above
0.3, however, the number of GMRES iterations increases.

An algorithm based on the Sherman-Lauricella integral equation (14), with standard
choices of the constants & of (13) and k; of (16) and the arbitrary point z; placed at the
origin, also requires 1760 discretization points to reach a relative error in ¢» of about 10~
and a relative error in g¢max of about 10713, The number of GMRES iterations required
with 2080 points is 33. This performance, however, can be slightly improved. In fact, in
this example, it is possible to choose k1 = 0. This choice reduces the number of GMRES
iterations needed to 30 without affecting the accuracy. Most other choices of k; within
reasonable limits (|k1| < 100) give 33 GMRES iterations without affecting the quality of
the solution. Note that the choice k1 = 0 is possible here because the geometry and load
are such that the integral in (16) vanishes. Note also that k1 = 0 renders the integral
equation (14) singular with rank deficiency two. It allows for null-solutions being complex
constants. The system of linear equations is, obviously, unsolvable with a direct method.
In our case, a correct solution is obtained since an iterative solver is used. The right hand
side of (14) lies in the range of the integral operator of the modified equation. The choices
for the premultiplying factor k& are more restricted. Only & in the interval 1 < |k| < 4 give
an accurate solution.

The starfish in Figure 1 is symmetric with respect to the origin. A natural choice for
the arbitrary point is therefore z; = 0. In more complicated geometries there might not be
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Figure 4: A unit cell consisting of a plate with eight elliptical holes (black) of aspect ratio 2:1
at ellipse area fraction 0.7.

such a simple and natural choice. The numerical performance of the Sherman-Lauricella
equation is sensitive to the choice of z;. If we set z; = 0.1, which still is far away from the
boundary of the starfish contour, the number of GMRES iterations doubles, see Figure 3,
and the relative errors in g9 and gmax increase.

Further differences in the numerical performance of the two algorithms, and for the
choices di = 0.23, k = =2, ky = 1, 21 = 0, can be pointed out. First, the algorithm
based on equation (25) requires fewer iterations than the algorithm based on the Sherman-
Lauricella equation for reaching a given residual in the GMRES solver. It is also possible
to reach a lower residual with equation (25). This is illustrated in Figure 3. Second, the
convergence of the solution with the number of discretization points is initially somewhat
slower for the algorithm based on equation (25) than that for the algorithm based on the
Sherman-Lauricella equation. Third, the algorithm based on equation (25) seems to be more
stable in the sense that when the number of discretization points is increased beyond 1760,
the reference quantity go converges more stably when computed from w of (25) than from
wgr, of the Sherman-Lauricella equation. The effect on ¢max is similar, but less pronounced.
This is illustrated in Figure 2.

We conclude that an algorithm based on equation (25) is generally slightly more efficient
than an algorithm based on the Sherman-Lauricella equation (14). The chief reason for this
is that we have omitted the need for the arbitrary point z;. A poor choice of z; can greatly
deteriorate the performance of algorithms based on the Sherman-Lauricella equation.

11 Numerical examples

In this section we shall present more examples of numerical solutions to equation (25).
We shall first establish agreement with results of previous investigators. Then we shall
demonstrate the extreme stability of our algorithm.
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Table 1: Center coordinates Zcent, Ycent,

and rotations « for the eight ellipses depicted in

Figure 4.
ellipse no. Teent Ycent a
1 0.096558008044553  0.180606440983544  1.793069456776903
2 -0.312317331860957  0.328928705317157  0.103527236861962
3 0.020093822024223 -0.326279205482295 -1.631099491555291
4 0.426052439830122 -0.422860540089244 -0.473183135086323
5 0.323978421616729  0.254064864498771 -1.204877840652208
6 -0.266711719264471  0.070034693393812 -0.162392923788297
7 0.370486724007364 -0.116660224915378  0.034300608334877
8 -0.254250775518318  -0.294308693171502  1.979465648427812

Table 2: Converged values of effective elastic moduli for the plate with elliptical holes in Figure 4.
The elastic moduli of the plate are 4 =1 and kK = 3%. Digits within parentheses are uncertain.

e 0.1671838860540(3)
cro 0.1159038641252(6)
i3 -0.0334596680291(2)
c 0.2145913741192(2)
s -0.0541949785279(8)
cis 0.0500907100757(7)

11.1 Two circular holes in an infinite plate

We start out with a very simple configuration: an infinite plate with two circular holes of
radius unity, aligned with the z-axis, and separated with a distance of 0.2. The stress ayy is
applied. This setup has been studied by Haddon (1967) and more recently by Ting, Chen,
and Yang (1999). Quantities studied by these authors include the normalized tangential
stress o, of (39) and the stress concentration factor K; of (40). The value of the stress
concentration factor is reported as K; = 6.106 by Haddon (1967) and as K; = 6.107 by
Ting, Chen, and Yang (1999). With 80 uniformly placed discretization points on each of
the two hole boundaries we reproduce Haddon’s estimate K; = 6.106. A more accurate
estimate is K; = 6.106040764542, which we get with 400 uniformly placed discretization
points on each hole boundary.

11.2 Eight elliptical holes in a doubly periodic arrangement

Figure 4 shows a unit cell of a plate with eight equi-sized elliptical holes. The unit cell is
periodically repeated as to tile the entire plane. The aspect ratio of the axes of the ellipses
is 2:1. The area fraction of the elliptical holes is 0.7. The elastic moduli of the plate are
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Convergence under extreme uniform overresolution
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Figure 5: Convergence of the Euclidean norm of a vector with effective elastic moduli, defined
in (32), for the geometry in Figure 4, under uniform overresolution. Stars refer to calculations
where a special scheme for the evaluation of layer potentials close to their sources is used when
needed. Open circles refer to calculations without this special scheme. The values in Table 2
are used as reference.

p=1and k = 3%. Each ellipse has the parameterization

0.7 .
2(t) = zcent + 1/ Kem@ cost +isint), —nm<t< . (46)
T

The eight ellipse centers zcent and rotations « are given in Table 1. The effective elastic
moduli of (32) are computed by placing an increasing number of equi-sized quadrature
panels on each ellipse. Estimated converged values for the effective moduli are presented in
Table 2.

Figure 5 shows a convergence study of the Euclidean norm of the vector of elastic moduli
(Cs1, C42, €3, Cod, Cs5, Cxg) as the discretization is uniformly refined. The values in Table 2
are used as reference values when computing this norm. Note, in Figure 5, how stable
the algorithm is. The estimated relative error converges to about 2 - 1073, The closest
gap between two ellipse boundaries in the unit cell is approximately 0.001. This means
that quantities related to the narrow neck between these two ellipses can be resolved with a
relative accuracy of 0.001. On geometrical grounds we therefore estimate that the condition
number of the problem is at most 103. As a consequence, we expect that it is possible, with
an ideal algorithm, to compute effective elastic moduli with a relative accuracy not worse
than 103 - €pacn ~ 1 - 107 in IEEE DP arithmetic. Our algorithm is close to this ideal.

The fine details of the curve in Figure 5 are, of course, dependent on how we choose the
reference values of Table 2. Even though we get rather stable values for effective moduli
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Figure 6: Normalized tangential stress oy, on the boundary of the eight ellipses of the geometry
in Figure 4 under applied average stress a1 = (1,0, 0).

already at 10,000 discretization points, corresponding to 80 panels on each ellipse, we believe
that the values for around 100,000 discretization points are the most reliable. The reason
for this is that our scheme for the evaluation of layer potentials close to their sources may
introduce some inaccuracy in the last digits. At above 100,000 discretization points the
interfaces are so overresolved that this scheme is not activated. In Figure 5, the stars
refer to calculations done with the scheme activated, and open circles refer to calculations
without this scheme. The GMRES iterations are terminated when the norm of the residual
is smaller than 2-107'°. This takes between 280 and 283 iterations for each of the applied
average strains €r, €7, and €. The number of iterations needed is virtually independent of
the number of discretization points used.

We also compute the normalized tangential stress oy, of (39). Figure 6 shows the
normalized tangential stress on the boundaries of the eight ellipses for applied average
stress of.

12 Conclusions and outlook

The main advantage of equation (25) over the classic Sherman-Lauricella equation (14)
is that we have omitted the need for the placement of the arbitrary points z;. This, in
turn, can substantially reduce the number of iterations needed to reach a given residual in
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an iterative numerical algorithm. Other advantages include the reduction of the number
of arbitrary constants, unification of formulations, simplified post-processing, and a more
stable convergence.

Further, we conclude that the performance of our numerical algorithm based on equa-
tion (25) is very good. We establish agreement with previous authors (Haddon 1967; Ting,
Chen, and Yang 1999) and greatly improve on the accuracy of their numerical results. Also,
we demonstrate the stability of our algorithm on a setup involving eight closely spaced el-
liptical holes in a unit cell. The problem is resolved with a relative error smaller than 10712
and the algorithm exhibits stability under extreme overresolution, extending up to half a
million discretization points.

Still, for a plate with a single hole and with an underresolved calculation, the classic
Sherman Lauricella (14) with an optimal placement of the arbitrary point z; may give
initially faster convergence than equation (25). The reason for this we ascribe to that, in our
implementation, the part of the operator M; that describes self-interaction is implemented
with 15th order accurate quadrature, while the operators My and Mg, and the part of
M, that describe interaction between different holes are 31st order accurate. We therefore
speculate that it might be possible to find an even more efficient formulation, that always
simultaneously improve on both (25) and (14).

13 Notation

«, B = forcing terms
D¢ = the interior of the perforated plane
D5 = the interior of all holes
€;j = averaged components of strain, 4, j = x or y
€ = vector of averaged strain, € = (€4, €yy, €xy)
€1, €11, €111 = three fundamental vectors of prescribed average strain
¢, X, = elastic potentials, 1 = x’
IV = the boundary of hole j
I' = the union of all boundaries
K; = stress concentration factor
k = two-dimensional elastic bulk modulus
My, My, Mg1, = integral operators
i = two-dimensional elastic shear modulus
N = number of holes in the plane
(ng,ny) = normal unit vector on I'
w, wsr,, p = unknown layer denities
0;j = components of stress, i, j = x or y
0;; = averaged components of stress, 7,j = z or y
o = vector of averaged stress, & = (0ya, Oyy, Tuy)
o1, 011, 0111 = three fundamental vectors of prescribed average stress
otn = normalized tangential stress
(tz,ty) = traction vector along a curve
u; = displacement components, ¢ = x,y

Remark 13.1 The two-dimensional bulk modulus & is not identical to the three-dimensional
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bulk modulus. For plane strain conditions, we have

_ 1%
1—2v"

K

where v is Poison’s ratio. For plane stress conditions, we have

14+v
1—v’

K=U
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