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Complex variable boundary integral equationsfor perforated in�nite planesJohan Helsing and Anders JonssonDepartment of Solid Me
hani
s and NADA, Royal Institute of Te
hnology,SE-100 44 Sto
kholm, SwedenEmail: helsing�nada.kth.se, andersj�hallf.kth.seDe
ember 5, 2000Abstra
tA fast and stable numeri
al algorithm is presented for the elastostati
 problem ofa linearly elasti
 plane with holes, loaded at in�nity. The holes are free of stress. Thealgorithm is based on an integral equation whi
h is intended as an alternative to the
lassi
 Sherman-Lauri
ella equation. The new s
heme is argued to be both simpler andmore reliable than s
hemes based on the Sherman-Lauri
ella equation. Improvementsin
lude simpler geometri
al des
ription, simpler relationships between mathemati
aland physi
al quantities, simpler extension to problems involving also in
lusions and
ra
ks, and more stable numeri
al 
onvergen
e.Key words: Linear elasti
ity, holes, integral equation of Fredholm type, fast multipolemethod, Sherman-Lauri
ella equation, e�e
tive elasti
 moduli, stress 
on
entration fa
tor,numeri
al methods, stable algorithms1 Introdu
tionPerforated stru
tures are 
ommonly en
ountered in me
hani
al engineering and materialss
ien
e. An important reason for perforation in me
hani
al design is to redu
e weight.Other reasons are to fa
ilitate ventilation and inspe
tion. In materials s
ien
e an obje
tiveis to redu
e the o

urren
e of voids in order to improve material performan
e.Perforation of a stru
ture or a material often in
reases the lo
al stress. Stress 
on
en-trations due to holes may result in redu
ed fatigue enduran
e or even in global stru
tural
ollapse. Several engineering textbooks deal with stress 
on
entration around holes (Neuber1937; Savin 1961; Radaj and S
hilberth 1977). In materials s
ien
e, the over-all materialproperties are of interest. These properties are often des
ribed by a non-isotropi
 
onstitu-tive equation, whi
h relates the average stress to the average strain by means of so 
allede�e
tive elasti
 moduli. The pro
ess of determining e�e
tive moduli is referred to as ho-mogenization (Persson et al. 1993; Dvorak and Srinivas 1998). For a re
ent appli
ation tomi
rome
hani
al modeling of 
ast iron, see M�anson and Nilsson (2000).1



In this paper we study perforated loaded planes numeri
ally and 
ompute lo
al stressesand displa
ements. Also, we 
ompute the e�e
tive elasti
 moduli using periodi
 bound-ary 
onditions. For reasons of stability and speed we prefer a method based on integralequations. There are several 
hoi
es here, involving real variable notation with Green'sfun
tions for the stress and the displa
ement (Be
ker 1992) and 
omplex variable notationwith potential representation for the Airy stress fun
tion (Muskhelishvili 1953). The latterapproa
h, whi
h is our 
hoi
e, may lead to the 
lassi
 Sherman-Lauri
ella equation. SeeGreengard, Kropinski and Mayo (1996) for a 
omprehensive review.The Sherman-Lauri
ella equation is a se
ond kind Fredholm integral equation with 
om-pa
t operators. Despite its virtues, su
h as brevity of notation and that it gives stable nu-meri
al algorithms, we 
onsider it awkward for two reasons. First, the Sherman-Lauri
ellaequation requires the introdu
tion of sour
e terms at arbitrary points inside the holes andseveral arbitrary 
onstants. This arbitrariness 
an substantially redu
e numeri
al eÆ
ien
y.It may be diÆ
ult to �nd the optimal 
hoi
es of points and 
onstants in pra
ti
al appli-
ations. Se
ond, the Sherman-Lauri
ella equation is based on representations of the Airystress fun
tion whi
h depend on the boundary 
onditions, and whi
h are di�erent from whathas previously been used in 
ra
k- and bimaterial problems (Helsing and Peters 1999).We will derive an integral equation for stress- and strain problems in a perforated planethat improves on the Sherman-Lauri
ella equation in four ways- Uni�
ation of formulations: the same potential representation is used as in establishedequations for 
ra
k- and bimaterial problems.- Simpli�ed geometri
al des
ription: arbitrarily pla
ed sour
e points are not needed.- Simpli�ed post-pro
essing: the layer density (unknown quantity) is related to physi
alquantities by simple expressions.- Improved numeri
al eÆ
ien
y: iterative algorithms based on the new equation requirefewer iterations and exhibit slightly better stability.The paper is organized as follows: Se
tion 2 and 3 des
ribe the elastostati
 problem in wordsand in terms of partial di�erential equations. Se
tion 4 introdu
es potential theory. Thederivation of possible integral equations is outlined. Se
tion 5 presents the 
lassi
 Sherman-Lauri
ella equation. Se
tion 6 presents our proposal for a new equation, whi
h 
an beviewed as a spe
ial 
ase of a bimaterial equation due to Sherman. The two equations are
ompared from a mathemati
al viewpoint in Se
tion 7. Se
tion 8 deals with the extra
tionof stress intensity fa
tors and e�e
tive moduli from the solution. Se
tion 9 
ontains detailsabout numeri
al implementation. A numeri
al 
omparison between the two equations isundertaken in Se
tion 10. The paper ends with Se
tion 11 where we improve greatly on are
ent numeri
al result (Ting, Chen, and Yang 1999) for two 
ir
ular holes, and illustratethe extreme numeri
al stability of our s
heme on a more 
hallenging geometry.2 The elastostati
 problemAn in�nite, linearly elasti
 plane is perforated with holes. The plane has two-dimensionalelasti
 bulk and shear moduli � and �. There are N holes in the plane. The boundaries2



of the holes are denoted �j, j = 1; : : : ; N . The union of all boundaries is denoted �. Theinterior of the perforated plane is D1 and the interior of all holes is D2. Stress or strain isapplied at in�nity so that the average stress is �� = (��xx; ��yy; ��xy), or so that the averagestrain is �� = (��xx; ��yy; ��xy). The boundaries of the holes are free of stress.We would like to 
ompute displa
ement (ux; uy) and the stress- and strain �elds inthe material subje
t to three di�erent imposed average stresses, namely ��I = (1; 0; 0),��II = (0; 1; 0), and ��III = (0; 0; 1), or to three di�erent imposed average strains, namely��I = (1; 0; 0), ��II = (0; 1; 0), and ��III = (0; 0; 1). We would also like to 
ompute e�e
tiveelasti
 moduli.3 Partial di�erential equation formulationWe begin with a partial di�erential equation formulation for our problem. We present it asa mathemati
ally equivalent alternative to the integral equations used later on.Insertion of the de�nition of the linear strain tensor and the 
onstitutive equation relat-ing the strains to the stresses into the equation of stati
 equilibrium yields a 
oupled systemof se
ond order ellipti
 equations for the displa
ement �eld (Navier's equation)�ui;jj + �uj;ji = 0 ; i = 1; 2 : (1)The boundary 
ondition on � is(�(ui;j + uj;i) + (�� �)uk;kÆij)nj = 0 ; i = 1; 2 ; (2)where (nx; ny) is the normal unit ve
tor on �. The plane is loaded by stress or strain whi
his applied at in�nity so that their area averages assume pres
ribed values��ij �< �(ui;j + uj;i) + (�� �)uk;kÆij >= �pres
ij ; i; j = 1; 2 ; (3)or ��ij �< (ui;j + uj;i)=2 >= �pres
ij ; i; j = 1; 2 : (4)The 
omponents of �pres
ij or �pres
ij are given by the 
omponents of the applied load ��I, ��II,��III, ��I, ��II, or ��III.4 Potential representationIt is natural to introdu
e the Airy stress fun
tion U , whi
h solves the equation of stati
equilibrium by de�nition. From the assumption that 
ertain sequen
es of partial derivativeoperators 
ommute when a
ting on ux and on uy (
ompatibility equations), it follows thatU is biharmoni
 (ex
ept for at �). Airy's stress fun
tion 
an be represented asU = <e f�z�+ �g ; (5)where the potentials � and � are single valued analyti
 fun
tions of the 
omplex variablez = x + iy. For a thorough dis
ussion of the 
omplex variable approa
h to elasti
ityproblems, see Muskhelishvili (1953), Sokholniko� (1956), Mikhlin (1957), or Parton and3



Perlin (1982). For our purposes it is suÆ
ient to observe a few relations that link the
omplex potentials to quantities of physi
al interest. The displa
ement (ux; uy) in thematerial satis�es ux + iuy = � 12� + 1���� 12� �z�0 +  � ; (6)where  = �0. The integral of the tra
tion (tx; ty) along a 
urve 
(s) with normal (nx; ny)
an be obtained from Z ss0 (tx + ity)ds = �����ss0i ��+ z�0 +  � ; (7)where s denotes ar
length along 
(s).The 
omponents of the stress tensor 
an be 
omputed via�xx + �yy = 4<ef�0g ; (8)�yy � �xx + 2i�xy = 2(�z�00 +  0) : (9)A standard starting point for elastostati
 problems is to represent the potentials � and in the form of Cau
hy-type integrals�(z) = 12�i Z� !(�)d�(� � z) + �z2 ; z 2 D1 ; (10)and  (z) = 12�i Z� �(�)d�(� � z) + �z ; z 2 D1 ; (11)where ! and � are unknown layer densities and � and � are for
ing terms. Values of � and on � are de�ned as limits of � and  in D1 as � is approa
hed. Sin
e the equations ofelasti
ity now are satis�ed everywhere, it remains only to solve the problem whi
h 
onsistsof enfor
ing the boundary 
ondition of zero tra
tion along �.The 
onstants � and � in (10) and (11) represent the for
ing terms at in�nity. Whenaverage stress is imposed, the 
onstants take the values � = 1=2 and � = �1=2 for ��I, thevalues � = 1=2 and � = 1=2 for ��II, and the values � = 0 and � = i for ��III. When averagestrain is imposed, the 
onstants take the values � = � and � = �� for ��I, the values � = �and � = � for ��II, and the values � = 0 and � = 2i� for ��III. Thus, � 
an always be assumedto be real, while � is either a real or an imaginary number.5 The Sherman-Lauri
ella integral equationThe 
lassi
al way of solving the elastostati
 equation is by expressing � of (11) in terms of! of (10) in a way whi
h makes  assume the form (z) = 12�i Z� !(�)d��(� � z) + 12�i Z� !(�)d�(� � z) � 12�i Z� ��!(�)d�(� � z)2 + NXj=1 bjz � zj + �z ; (12)
4



where zj is an arbitrary point inside the hole bounded by �j and the sour
e terms bj=(z�zj)are needed to ensure that the resulting integral equation is solvable. The real 
onstants bjare related to ! by bj = k=m�Z�j !(z)d�z� ; (13)where k is an arbitrary real non-zero 
onstant, usually 
hosen as k = �2. The representa-tions (10) for � and (12) for  were �rst derived by Lauri
ella (1909) and further developedby Sherman (1940).The 
hoi
e of the representation (12) for  
an be motivated by the fa
t that it leadsto an equation of Fredholm's se
ond kind. The requirement of zero tra
tion on �j gives,via (7), (10) and (12), the Sherman-Lauri
ella integral equation(I �MSL)!(z)� NXj=1 bj�z � �zj � Cj = �z + ���z ; z 2 �j ; (14)where MSL is a 
ompa
t integral operator given byMSL!(�) = 12�i "Z� !(�)d�� � z � Z� !(�)d���� � �z � Z� !(�)d��� � �z + Z� (� � z)!(�)d��(�� � �z)2 # ; z 2 � ;(15)and Cj are 
omplex 
onstants, related to ! viaCj = kj Z�j !(�(s))ds ; (16)where kj are arbitrary non-zero 
omplex 
onstants, usually 
hosen as kj = 1.The displa
ement of (6) at �j is given byux + iuy = �1� + 1��� 12�i Z� !(�)d�(� � z) � !(z)2 + �z2 �� Cj2� ; z 2 �j : (17)Proofs of solvability and uniqueness of (14) 
an be found in Muskhelishvili (1953),Mikhlin (1957), and Parton and Perlin (1982). The parti
ular 
hoi
es of zj in (12), kin (13), and kj in (16) do not 
hange the value of the potentials � and  in the interior ofthe perforated plane. They do, however, 
hange the value of !, and they will in
uen
e theperforman
e of iterative numeri
al s
hemes based on equation (14). The standard 
hoi
esk = �2 and kj = 1 seem to be reasonably eÆ
ient from a numeri
al viewpoint.Remark 5.1 Sherman has three di�erent 
hoi
es for  depending on the boundary 
ondi-tions, leading to three di�erent integral equations. If the holes are free from stress and theloads are applied only at in�nity, the equation for pres
ribed stress (14) 
an handle boththe 
ase of pres
ribed average stress and the 
ase of pres
ribed average strain.Remark 5.2 Representations for the potentials � and  do not ne
essarily have to be onthe form of Cau
hy-type integrals and lead to integral equations. Another possibility isto represent the potentials in terms of Laurent series and to derive algebrai
 equations fortheir 
oeÆ
ients. See Vigdergauz (1999) for a re
ent example.5



6 The Sherman bimaterial equationAn interesting option, introdu
ed by Sherman (1959) for bimaterials, is to extend the valid-ity of � of (10) and  of (11) into the holes D2, and to 
hoose the unknown layer densities! of (10) and � of (11) in su
h a way that the expression for the integral of tra
tion (7) is
ontinuous over �. This requirement allows us to express � in terms of !, and  assumesthe form  (z) = 12�i Z� !(�)d��(� � z) � 12�i Z� !(�)d�(� � z) � 12�i Z� ��!(�)d�(� � z)2 + �z : (18)The requirement of zero tra
tion along � leads to the integral equation for !(M1 �M2)!(z) = ��z � ���z � 
j ; z 2 �j ; (19)where 
j are 
omplex 
onstants of 
onsisten
y, and M1 andM2 are integral operators givenby M1!(z) = 1�i Z� !(�)d�(� � z) ; z 2 � ; (20)andM2!(�) = 12�i "Z� !(�)d�(� � z) � Z� !(�)d��(�� � �z) + Z� !(�)d�(�� � �z) � Z� (� � z)!(�)d��(�� � �z)2 # ; z 2 � :(21)Two properties of M2 are easy to proveM2
 = 
 ; (22)M2iz = iz ; (23)where 
 is a 
onstant. Sin
e 
onstants and iz are eigenfun
tions with eigenvalue unity alsoto the operator M1, equations (22) and (23) imply that (19) is not uniquely solvable, butthat is has two simple null-fun
tions. We therefore add the uniqueness 
ondition(I +M1)!(z) = ��z � (1� dj)
j ; z 2 �j : (24)where dj is an arbitrary 
onstant. Linear 
ombinations of (19) and (24) gives that ! satis�es(I + djM1 + (1� dj)M2)!(z) = �dj�z + (1� dj) ���z ; z 2 �j ; (25)whi
h is our proposal for a new equation. Note that the 
onstants of 
onsisten
y, 
j , of (19)and (24) do not appear in (25). That (25) is uniquely solvable follows from Fredholm'salternative and the dis
ussion in paragraph 4 of Sherman (1959). In fa
t, equation (25)
an be derived dire
tly from the Sherman bimaterial equation (1959) by letting the bulkand shear moduli �j and �j of in
lusion j in the bimaterial approa
h zero in su
h a waythat their ratio is 
onstant. The Sherman bimaterial integral equation then assumes theform (25) with dj = �j=(�j + �j). 6



The displa
ement of (6) at the boundary �j is parti
ularly easy to evaluate in our setting,ux + iuy = �!j � 1� + 1��+ 
j2 �(dj � 1)� + dj� � : (26)The solution ! to (25) is independent of dj (up to a 
onstant on ea
h �j). In the limitsdj ! 0 and dj ! 1, however, equation (25) be
omes singular. For 
ertain values of dj the
onditioning of (25) is optimal. An interesting 
hoi
e is dj = �=(�+ �). This 
hoi
e makesthe displa
ement of (26) dire
tly proportional to !. More generally, we have found thatdj > 0:5 
an 
ause an unne
essary large number of iterations in the pro
ess of solving (25)iteratively. A value in the range 0:10 < dj < 0:35 seems to be a good general 
hoi
e.Remark 6.1 The equation (25) 
ontains the Cau
hy singular operator M1 whi
h is non-
ompa
t on a single, 
losed 
ontour. This is not a problem from a 
omputational viewpoint.The operator M1 resembles the identity. Further, it is possible to transform equation (25)into a Fredholm se
ond kind equation with 
ompa
t operators by appli
ation of the operator(I � djM j1 )=(1� d2j ), where M j1 denotes the restri
tion of M1 to �j . The part of M1 whi
hdes
ribes intera
tion between di�erent 
ontours is always 
ompa
t.7 Relationships between equationsThe Sherman-Lauri
ella equation (14) and equation (25) look di�erent. The Sherman-Lauri
ella equation 
ontains the 
hoi
e of N arbitrarily pla
ed points and N +1 arbitrarily
hosen 
onstants, while equation (25) 
ontains only N arbitrarily 
hosen 
onstants. TheSherman-Lauri
ella equation only 
ontain 
ompa
t operators, while equation (25) 
ontainsthe Cau
hy singular operatorM1. The expression for the displa
ement (17) in the Sherman-Lauri
ella framework is more 
ompli
ated to evaluate than our expression (26).A relation between the layer densities of the two equations 
an be derived by equat-ing (17) and (26). The 
hoi
e dj = �=(�+ �) gives the simplest form of this relation!(z) = 12 (I �M1)!SL(z)� �z2 � Cj2(1 + �=�) ; z 2 �j; (27)where !SL denotes the layer density of the Sherman-Lauri
ella equation and ! denotesthe layer density of equation (25). Equation (27) 
an not be inverted, that is, give !SLas a fun
tion of !. The density !SL has, in general, a more 
ompli
ated stru
ture thanthe density !. As a 
onsequen
e, we expe
t iterative algorithms based on the Sherman-Lauri
ella equation to 
onverge slower than iterative algorithms based on equation (25).See Se
tion 10 for examples where su
h a di�eren
e in 
onvergen
e rate is observed.8 E�e
tive moduli and stress tensor on the boundaryE�e
tive elasti
 moduli are parti
ularly simple to de�ne and 
ompute in the setting of adoubly periodi
 material with a square unit 
ell of unit area. The e�e
tive 
omplian
e7



moduli of a material 
an be de�ned through the following relations between average stressand average strain 0� ��xx��yyp2��xy 1A = 0� s�1 s�2 s�3s�2 s�4 s�5s�3 s�5 s�6 1A0� ��xx��yyp2��xy 1A : (28)The 
omponents of the e�e
tive 
omplian
e tensor S are s�k, k = 1; : : : ; 6.In order to 
ompute the e�e
tive 
omplian
e tensor S, equation (25) is solved threetimes for the imposed average stresses ��I, ��II and ��III. The 
orresponding solutions aredenoted as !I, !II and !III. Let nowaK = 12 � 1� + 1��Z�u !K(z)dz ; K = I; II; III ; (29)and bK = 12 �1� + 1��Z�u !K(z)d�z ; K = I; II; III : (30)With this notation, the e�e
tive 
omplian
e tensor of equation (28) 
an be 
omputed asS = 14�� 0� �+ � �� � 0�� � �+ � 00 0 2� 1A+ =m0B� bI � aI bII � aII 1p2(bIII � aIII)aI + bI aII + bII 1p2(aIII + bIII)ip2aI ip2aII iaIII 1CA : (31)The inverse of the e�e
tive 
omplian
e tensor is the e�e
tive sti�ness tensor C whose
omponents 
�k, k = 1; : : : ; 6, are de�ned through the following relation0� ��xx��yyp2��xy 1A = 0� 
�1 
�2 
�3
�2 
�4 
�5
�3 
�5 
�6 1A0� ��xx��yyp2��xy 1A : (32)In order to 
ompute the e�e
tive sti�ness tensor, equation (25) is solved three times for theimposed average strains ��I, ��II and ��III. The 
orresponding solutions are denoted as !I, !IIand !III. Let now aK = �1 + ���Z�u !K(z)dz ; K = I; II; III ; (33)and bK = �1 + ���Z�u !K(z)d�z ; K = I; II; III : (34)The e�e
tive sti�ness tensor of equation (32) 
an then be 
omputed asC = 0� �+ � �� � 0�� � �+ � 00 0 2� 1A�=m0B� bI � aI bII � aII 1p2(bIII � aIII)aI + bI aII + bII 1p2(aIII + bIII)ip2aI ip2aII iaIII 1CA : (35)The 
omponents of the stress tensor �ij in (8) and (9) take the following form on theboundary � in terms of our density !�xx + �yy = �4<e�d!dz� ; (36)8



�yy � �xx + 2i�xy = �4 �nn<e�d!dz� : (37)The tra
tion (tx; ty) on the boundary � 
an be obtained fromtx + ity = �4in<e�d!dz� : (38)Other quantities, useful when dealing with the stress �elds in the vi
inity of the holes, arethe normalized tangential stress �tn and the stress 
on
entration fa
tor Kt. The normalizedtangential stress is de�ned as the ratio of the tangential stress on the boundary of a hole tothe tra
e of the applied stress tensor�tn = 4<efd!dz gTrf��applg : (39)The stress 
on
entration fa
tor is de�ned as the maximum absolute value of the normalizedtangential stress Kt = maxz2� j�tnj : (40)9 Nystr�om algorithm and singular integralsIn the next two se
tions we solve equations (14) and (25) for a variety of geometries andloads. In most examples we shall use a \matrix-free" Nystr�om algorithm based on 
omposite16-point Gaussian quadrature, the GMRES iterative solver (Saad and S
hultz 1986), thefast multipole method (Rokhlin 1985; Greengard and Rokhlin 1987; Carrier et al. 1988),and a spe
ial s
heme for the evaluation of layer potentials 
lose to their sour
es (Helsing1996). Compensated summation (Kahan 1965; Higham 1996) is used for the 
omputationof inner produ
ts in the GMRES solver and for the evaluation of the integrals appearingin the formulas for e�e
tive moduli. We refer to Greengard and Helsing (1998) for furtherimplementational details. Here we will dis
uss a parti
ular re�nement implemented in thepresent 
ode. It 
on
erns the regularization of the singular integral appearing in (20).It is easy to verify the following: Let f(z) be a smooth fun
tion on � and let a and bbe two points on �. Then 1�i Z ba f(�)d�(� � z) =1� Z ba f(�)<e� d�i(� � z)�+ i� Z ba (f(�)� f(z))=m� d�i(� � z)�+ f(z)�i <e�ln�a� zb� z �� :(41)The �rst integral on the right hand side of (41) has a smooth kernel. The se
ond integralhas a smooth integrand. The third term is easy to evaluate.Now, let z be a target point on a quadrature panel �0 on �. Further, let �0�left and�0�right be quadrature panels adja
ent to �0. Let �0�other be the union of all other quadra-ture panels. For the evaluation of1�i Z� f(�)d�(� � z) ; z 2 �0 ;9
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Figure 1: The von Mises e�e
tive stress distribution for an in�nite plate with a star�sh-shapedhole under imposed stress �I . The stress 
on
entration fa
tor of (40) for the hole is Kt =9:233388765.we distinguish between two 
ases. For the part of the integral that 
ontains 
ontributionsfrom �0�other, we evaluate the integral as it stands. For the part of the integral that 
ontain
ontributions from �0�left, �0, and �0�right, we use the right hand side of (41), with a beingthe starting-point on �0�left and with b being the end-point on �0�right.10 Numeri
al 
omparison between equationsSome di�eren
es between the Sherman-Lauri
ella equation (14) and equation (25) havebeen pointed out in Remark 6.1 and in Se
tion 7. In this se
tion we undertake a detailed
omparison between algorithms based on the two equations, to see what 
onsequen
es thesedi�eren
es have for numeri
al eÆ
ien
y. The experiments presented indi
ate that equa-tion (25) leads to a better algorithm.For setups with analyti
al solutions, su
h as loaded plates with a single hole in theshape of a 
ir
le or an ellipse, it is hard to say whi
h equation leads to the best algorithm.Algorithms based on the two equations both require only a few GMRES iterations for full
onvergen
e. A non-trivial example is needed. We therefore 
onsider a plate with one singlehole in the shape of a nine-armed star�sh parameterized byz(t) = 0:36(1 + 0:36 
os 9t)eit ; �� � t < � ; (42)under the imposed average stress �I , see Figure 1. This shape might seem spe
ta
ularat �rst glan
e, but similar shapes are used in, for example, spline 
ouplings (a ma
hineelement). Figure 1 also shows 
ontours of the distribution of the von Mises e�e
tive stress10
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Figure 2: Convergen
e of the referen
e quantities q2 of (44) and qmax of (45) for algorithmsbased on equations (14) and (25). Corre
t values, 
omputed in quadruple pre
ision arithmeti
,are q2 = 0:6540490820646557 and qmax = 0:3762294219389333. The relative error for valuesof q2 and qmax that 
oin
ide with the 
orre
t value is displayed as 1:11 � 10�16.�eM . The von Mises e�e
tive stress is used to predi
t the o

urren
e of plasti
 deformationin a multiaxial state of stress. For plane stress, it is de�ned by�eM =q�2xx + �2yy � �xx�yy + 3�2xy : (43)When 
omparing the performan
e of the algorithms below, we need referen
e quantitiesto measure a

ura
y against. We have de
ided to use the L2 norm of a normalized boundarydispla
ement q2 = ���+ � �Z� �u2x(z) + u2y(z)� ds�12 ; (44)and also the maximum value of a normalized boundary displa
ementqmax = ���+ � maxz2� �u2x(z) + u2y(z)� 12 ; (45)as su
h referen
e quantities. One 
ould, of 
ourse, also use some Sobolev norm of theboundary displa
ement, or measure the 
onvergen
e of the displa
ement �eld itself. Usingsu
h pro
edures, it would be harder to dete
t di�eren
es between the algorithms. Numeri
aldi�erentiation and interpolation between meshes introdu
e additional error.The quantity q2 is parti
ularly simple to 
ompute and tells us, perhaps, most about thequality of the solution. The quantity q2 
an be extra
ted from the solutions !SL to (14)and ! to (25) via (17) and (26) and with the use of integration at the nodes where !SLand ! have support. The quantity qmax requires more post-pro
essing. This is so sin
e themaximum displa
ement does not ne
essarily o

ur at a quadrature node. We extra
t qmaxby 15th order polynomial interpolation followed by golden se
tion sear
h. The bulk andshear moduli are 
hosen so that �=(�+ �) = 0:23.An algorithm based on equation (25) requires 1760 dis
retization points for a relativeerror in q2 smaller than 10�14 and for a relative error in qmax smaller than 10�13, see Figure 2.11
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Figure 3: The iteration history from GMRES for the di�erent integral formulations. 2080dis
retization points were used.Solving the system of linear equations at full resolution, that is with 2080 dis
retizationpoints, requires 30 GMRES iterations with the 
hoi
e d1 = 0:23. The parti
ular 
hoi
e ofd1 = 0:23 seems in this 
ase quite good. Other values of d1 also work well for this geometryand load. Numeri
al experiments show that values in the range 0:004 < d1 < 0:76 yield asolution with a relative error in q2 smaller than 10�14. For values of d1 below 0:1 and above0:3, however, the number of GMRES iterations in
reases.An algorithm based on the Sherman-Lauri
ella integral equation (14), with standard
hoi
es of the 
onstants k of (13) and k1 of (16) and the arbitrary point z1 pla
ed at theorigin, also requires 1760 dis
retization points to rea
h a relative error in q2 of about 10�14and a relative error in qmax of about 10�13. The number of GMRES iterations requiredwith 2080 points is 33. This performan
e, however, 
an be slightly improved. In fa
t, inthis example, it is possible to 
hoose k1 = 0. This 
hoi
e redu
es the number of GMRESiterations needed to 30 without a�e
ting the a

ura
y. Most other 
hoi
es of k1 withinreasonable limits (jk1j < 100) give 33 GMRES iterations without a�e
ting the quality ofthe solution. Note that the 
hoi
e k1 = 0 is possible here be
ause the geometry and loadare su
h that the integral in (16) vanishes. Note also that k1 = 0 renders the integralequation (14) singular with rank de�
ien
y two. It allows for null-solutions being 
omplex
onstants. The system of linear equations is, obviously, unsolvable with a dire
t method.In our 
ase, a 
orre
t solution is obtained sin
e an iterative solver is used. The right handside of (14) lies in the range of the integral operator of the modi�ed equation. The 
hoi
esfor the premultiplying fa
tor k are more restri
ted. Only k in the interval 1 � jkj � 4 givean a

urate solution.The star�sh in Figure 1 is symmetri
 with respe
t to the origin. A natural 
hoi
e forthe arbitrary point is therefore z1 = 0. In more 
ompli
ated geometries there might not be12



Figure 4: A unit 
ell 
onsisting of a plate with eight ellipti
al holes (bla
k) of aspe
t ratio 2:1at ellipse area fra
tion 0:7.su
h a simple and natural 
hoi
e. The numeri
al performan
e of the Sherman-Lauri
ellaequation is sensitive to the 
hoi
e of z1. If we set z1 = 0:1, whi
h still is far away from theboundary of the star�sh 
ontour, the number of GMRES iterations doubles, see Figure 3,and the relative errors in q2 and qmax in
rease.Further di�eren
es in the numeri
al performan
e of the two algorithms, and for the
hoi
es d1 = 0:23, k = �2, k1 = 1, z1 = 0, 
an be pointed out. First, the algorithmbased on equation (25) requires fewer iterations than the algorithm based on the Sherman-Lauri
ella equation for rea
hing a given residual in the GMRES solver. It is also possibleto rea
h a lower residual with equation (25). This is illustrated in Figure 3. Se
ond, the
onvergen
e of the solution with the number of dis
retization points is initially somewhatslower for the algorithm based on equation (25) than that for the algorithm based on theSherman-Lauri
ella equation. Third, the algorithm based on equation (25) seems to be morestable in the sense that when the number of dis
retization points is in
reased beyond 1760,the referen
e quantity q2 
onverges more stably when 
omputed from ! of (25) than from!SL of the Sherman-Lauri
ella equation. The e�e
t on qmax is similar, but less pronoun
ed.This is illustrated in Figure 2.We 
on
lude that an algorithm based on equation (25) is generally slightly more eÆ
ientthan an algorithm based on the Sherman-Lauri
ella equation (14). The 
hief reason for thisis that we have omitted the need for the arbitrary point z1. A poor 
hoi
e of z1 
an greatlydeteriorate the performan
e of algorithms based on the Sherman-Lauri
ella equation.11 Numeri
al examplesIn this se
tion we shall present more examples of numeri
al solutions to equation (25).We shall �rst establish agreement with results of previous investigators. Then we shalldemonstrate the extreme stability of our algorithm.13



Table 1: Center 
oordinates x
ent, y
ent, and rotations � for the eight ellipses depi
ted inFigure 4.ellipse no. x
ent y
ent �1 0.096558008044553 0.180606440983544 1.7930694567769032 -0.312317331860957 0.328928705317157 0.1035272368619623 0.020093822024223 -0.326279205482295 -1.6310994915552914 0.426052439830122 -0.422860540089244 -0.4731831350863235 0.323978421616729 0.254064864498771 -1.2048778406522086 -0.266711719264471 0.070034693393812 -0.1623929237882977 0.370486724007364 -0.116660224915378 0.0343006083348778 -0.254250775518318 -0.294308693171502 1.979465648427812Table 2: Converged values of e�e
tive elasti
 moduli for the plate with ellipti
al holes in Figure 4.The elasti
 moduli of the plate are � = 1 and � = 313 . Digits within parentheses are un
ertain.
�1 0.1671838860540(3)
�2 0.1159038641252(6)
�3 -0.0334596680291(2)
�4 0.2145913741192(2)
�5 -0.0541949785279(8)
�6 0.0500907100757(7)11.1 Two 
ir
ular holes in an in�nite plateWe start out with a very simple 
on�guration: an in�nite plate with two 
ir
ular holes ofradius unity, aligned with the x-axis, and separated with a distan
e of 0:2. The stress ��II isapplied. This setup has been studied by Haddon (1967) and more re
ently by Ting, Chen,and Yang (1999). Quantities studied by these authors in
lude the normalized tangentialstress �tn of (39) and the stress 
on
entration fa
tor Kt of (40). The value of the stress
on
entration fa
tor is reported as Kt = 6:106 by Haddon (1967) and as Kt = 6:107 byTing, Chen, and Yang (1999). With 80 uniformly pla
ed dis
retization points on ea
h ofthe two hole boundaries we reprodu
e Haddon's estimate Kt = 6:106. A more a

urateestimate is Kt = 6:106040764542, whi
h we get with 400 uniformly pla
ed dis
retizationpoints on ea
h hole boundary.11.2 Eight ellipti
al holes in a doubly periodi
 arrangementFigure 4 shows a unit 
ell of a plate with eight equi-sized ellipti
al holes. The unit 
ell isperiodi
ally repeated as to tile the entire plane. The aspe
t ratio of the axes of the ellipsesis 2:1. The area fra
tion of the ellipti
al holes is 0:7. The elasti
 moduli of the plate are14
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Figure 5: Convergen
e of the Eu
lidean norm of a ve
tor with e�e
tive elasti
 moduli, de�nedin (32), for the geometry in Figure 4, under uniform overresolution. Stars refer to 
al
ulationswhere a spe
ial s
heme for the evaluation of layer potentials 
lose to their sour
es is used whenneeded. Open 
ir
les refer to 
al
ulations without this spe
ial s
heme. The values in Table 2are used as referen
e.� = 1 and � = 313 . Ea
h ellipse has the parameterizationz(t) = z
ent +r 0:716�ei�(2 
os t+ i sin t); �� � t < �: (46)The eight ellipse 
enters z
ent and rotations � are given in Table 1. The e�e
tive elasti
moduli of (32) are 
omputed by pla
ing an in
reasing number of equi-sized quadraturepanels on ea
h ellipse. Estimated 
onverged values for the e�e
tive moduli are presented inTable 2.Figure 5 shows a 
onvergen
e study of the Eu
lidean norm of the ve
tor of elasti
 moduli(
�1; 
�2; 
�3; 
�4; 
�5; 
�6) as the dis
retization is uniformly re�ned. The values in Table 2are used as referen
e values when 
omputing this norm. Note, in Figure 5, how stablethe algorithm is. The estimated relative error 
onverges to about 2 � 10�13. The 
losestgap between two ellipse boundaries in the unit 
ell is approximately 0:001. This meansthat quantities related to the narrow ne
k between these two ellipses 
an be resolved with arelative a

ura
y of 0:001. On geometri
al grounds we therefore estimate that the 
onditionnumber of the problem is at most 103. As a 
onsequen
e, we expe
t that it is possible, withan ideal algorithm, to 
ompute e�e
tive elasti
 moduli with a relative a

ura
y not worsethan 103 � �ma
h � 1 � 10�13 in IEEE DP arithmeti
. Our algorithm is 
lose to this ideal.The �ne details of the 
urve in Figure 5 are, of 
ourse, dependent on how we 
hoose thereferen
e values of Table 2. Even though we get rather stable values for e�e
tive moduli15
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Figure 6: Normalized tangential stress �tn on the boundary of the eight ellipses of the geometryin Figure 4 under applied average stress ��I = (1; 0; 0).already at 10,000 dis
retization points, 
orresponding to 80 panels on ea
h ellipse, we believethat the values for around 100,000 dis
retization points are the most reliable. The reasonfor this is that our s
heme for the evaluation of layer potentials 
lose to their sour
es mayintrodu
e some ina

ura
y in the last digits. At above 100,000 dis
retization points theinterfa
es are so overresolved that this s
heme is not a
tivated. In Figure 5, the starsrefer to 
al
ulations done with the s
heme a
tivated, and open 
ir
les refer to 
al
ulationswithout this s
heme. The GMRES iterations are terminated when the norm of the residualis smaller than 2 � 10�15. This takes between 280 and 283 iterations for ea
h of the appliedaverage strains ��I, ��II, and ��III. The number of iterations needed is virtually independent ofthe number of dis
retization points used.We also 
ompute the normalized tangential stress �tn of (39). Figure 6 shows thenormalized tangential stress on the boundaries of the eight ellipses for applied averagestress ��I.12 Con
lusions and outlookThe main advantage of equation (25) over the 
lassi
 Sherman-Lauri
ella equation (14)is that we have omitted the need for the pla
ement of the arbitrary points zj. This, inturn, 
an substantially redu
e the number of iterations needed to rea
h a given residual in16



an iterative numeri
al algorithm. Other advantages in
lude the redu
tion of the numberof arbitrary 
onstants, uni�
ation of formulations, simpli�ed post-pro
essing, and a morestable 
onvergen
e.Further, we 
on
lude that the performan
e of our numeri
al algorithm based on equa-tion (25) is very good. We establish agreement with previous authors (Haddon 1967; Ting,Chen, and Yang 1999) and greatly improve on the a

ura
y of their numeri
al results. Also,we demonstrate the stability of our algorithm on a setup involving eight 
losely spa
ed el-lipti
al holes in a unit 
ell. The problem is resolved with a relative error smaller than 10�12and the algorithm exhibits stability under extreme overresolution, extending up to half amillion dis
retization points.Still, for a plate with a single hole and with an underresolved 
al
ulation, the 
lassi
Sherman Lauri
ella (14) with an optimal pla
ement of the arbitrary point zj may giveinitially faster 
onvergen
e than equation (25). The reason for this we as
ribe to that, in ourimplementation, the part of the operator M1 that des
ribes self-intera
tion is implementedwith 15th order a

urate quadrature, while the operators M2 and MSL and the part ofM1 that des
ribe intera
tion between di�erent holes are 31st order a

urate. We thereforespe
ulate that it might be possible to �nd an even more eÆ
ient formulation, that alwayssimultaneously improve on both (25) and (14).13 Notation�; � = for
ing termsD1 = the interior of the perforated planeD2 = the interior of all holes��ij = averaged 
omponents of strain, i; j = x or y�� = ve
tor of averaged strain, �� = (��xx; ��yy; ��xy)��I; ��II; ��III = three fundamental ve
tors of pres
ribed average strain�; �;  = elasti
 potentials,  = �0�j = the boundary of hole j� = the union of all boundariesKt = stress 
on
entration fa
tor� = two-dimensional elasti
 bulk modulusM1;M2;MSL = integral operators� = two-dimensional elasti
 shear modulusN = number of holes in the plane(nx; ny) = normal unit ve
tor on �!; !SL; � = unknown layer denities�ij = 
omponents of stress, i; j = x or y��ij = averaged 
omponents of stress, i; j = x or y�� = ve
tor of averaged stress, �� = (��xx; ��yy; ��xy)��I; ��II; ��III = three fundamental ve
tors of pres
ribed average stress�tn = normalized tangential stress(tx; ty) = tra
tion ve
tor along a 
urveui = displa
ement 
omponents, i = x; yRemark 13.1 The two-dimensional bulk modulus � is not identi
al to the three-dimensional17



bulk modulus. For plane strain 
onditions, we have� = �1� 2� ;where � is Poison's ratio. For plane stress 
onditions, we have� = �1 + �1� � :A
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