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Complex variable boundary integral equationsfor perforated in�nite planesJohan Helsing and Anders JonssonDepartment of Solid Mehanis and NADA, Royal Institute of Tehnology,SE-100 44 Stokholm, SwedenEmail: helsing�nada.kth.se, andersj�hallf.kth.seDeember 5, 2000AbstratA fast and stable numerial algorithm is presented for the elastostati problem ofa linearly elasti plane with holes, loaded at in�nity. The holes are free of stress. Thealgorithm is based on an integral equation whih is intended as an alternative to thelassi Sherman-Lauriella equation. The new sheme is argued to be both simpler andmore reliable than shemes based on the Sherman-Lauriella equation. Improvementsinlude simpler geometrial desription, simpler relationships between mathematialand physial quantities, simpler extension to problems involving also inlusions andraks, and more stable numerial onvergene.Key words: Linear elastiity, holes, integral equation of Fredholm type, fast multipolemethod, Sherman-Lauriella equation, e�etive elasti moduli, stress onentration fator,numerial methods, stable algorithms1 IntrodutionPerforated strutures are ommonly enountered in mehanial engineering and materialssiene. An important reason for perforation in mehanial design is to redue weight.Other reasons are to failitate ventilation and inspetion. In materials siene an objetiveis to redue the ourrene of voids in order to improve material performane.Perforation of a struture or a material often inreases the loal stress. Stress onen-trations due to holes may result in redued fatigue endurane or even in global struturalollapse. Several engineering textbooks deal with stress onentration around holes (Neuber1937; Savin 1961; Radaj and Shilberth 1977). In materials siene, the over-all materialproperties are of interest. These properties are often desribed by a non-isotropi onstitu-tive equation, whih relates the average stress to the average strain by means of so allede�etive elasti moduli. The proess of determining e�etive moduli is referred to as ho-mogenization (Persson et al. 1993; Dvorak and Srinivas 1998). For a reent appliation tomiromehanial modeling of ast iron, see M�anson and Nilsson (2000).1



In this paper we study perforated loaded planes numerially and ompute loal stressesand displaements. Also, we ompute the e�etive elasti moduli using periodi bound-ary onditions. For reasons of stability and speed we prefer a method based on integralequations. There are several hoies here, involving real variable notation with Green'sfuntions for the stress and the displaement (Beker 1992) and omplex variable notationwith potential representation for the Airy stress funtion (Muskhelishvili 1953). The latterapproah, whih is our hoie, may lead to the lassi Sherman-Lauriella equation. SeeGreengard, Kropinski and Mayo (1996) for a omprehensive review.The Sherman-Lauriella equation is a seond kind Fredholm integral equation with om-pat operators. Despite its virtues, suh as brevity of notation and that it gives stable nu-merial algorithms, we onsider it awkward for two reasons. First, the Sherman-Lauriellaequation requires the introdution of soure terms at arbitrary points inside the holes andseveral arbitrary onstants. This arbitrariness an substantially redue numerial eÆieny.It may be diÆult to �nd the optimal hoies of points and onstants in pratial appli-ations. Seond, the Sherman-Lauriella equation is based on representations of the Airystress funtion whih depend on the boundary onditions, and whih are di�erent from whathas previously been used in rak- and bimaterial problems (Helsing and Peters 1999).We will derive an integral equation for stress- and strain problems in a perforated planethat improves on the Sherman-Lauriella equation in four ways- Uni�ation of formulations: the same potential representation is used as in establishedequations for rak- and bimaterial problems.- Simpli�ed geometrial desription: arbitrarily plaed soure points are not needed.- Simpli�ed post-proessing: the layer density (unknown quantity) is related to physialquantities by simple expressions.- Improved numerial eÆieny: iterative algorithms based on the new equation requirefewer iterations and exhibit slightly better stability.The paper is organized as follows: Setion 2 and 3 desribe the elastostati problem in wordsand in terms of partial di�erential equations. Setion 4 introdues potential theory. Thederivation of possible integral equations is outlined. Setion 5 presents the lassi Sherman-Lauriella equation. Setion 6 presents our proposal for a new equation, whih an beviewed as a speial ase of a bimaterial equation due to Sherman. The two equations areompared from a mathematial viewpoint in Setion 7. Setion 8 deals with the extrationof stress intensity fators and e�etive moduli from the solution. Setion 9 ontains detailsabout numerial implementation. A numerial omparison between the two equations isundertaken in Setion 10. The paper ends with Setion 11 where we improve greatly on areent numerial result (Ting, Chen, and Yang 1999) for two irular holes, and illustratethe extreme numerial stability of our sheme on a more hallenging geometry.2 The elastostati problemAn in�nite, linearly elasti plane is perforated with holes. The plane has two-dimensionalelasti bulk and shear moduli � and �. There are N holes in the plane. The boundaries2



of the holes are denoted �j, j = 1; : : : ; N . The union of all boundaries is denoted �. Theinterior of the perforated plane is D1 and the interior of all holes is D2. Stress or strain isapplied at in�nity so that the average stress is �� = (��xx; ��yy; ��xy), or so that the averagestrain is �� = (��xx; ��yy; ��xy). The boundaries of the holes are free of stress.We would like to ompute displaement (ux; uy) and the stress- and strain �elds inthe material subjet to three di�erent imposed average stresses, namely ��I = (1; 0; 0),��II = (0; 1; 0), and ��III = (0; 0; 1), or to three di�erent imposed average strains, namely��I = (1; 0; 0), ��II = (0; 1; 0), and ��III = (0; 0; 1). We would also like to ompute e�etiveelasti moduli.3 Partial di�erential equation formulationWe begin with a partial di�erential equation formulation for our problem. We present it asa mathematially equivalent alternative to the integral equations used later on.Insertion of the de�nition of the linear strain tensor and the onstitutive equation relat-ing the strains to the stresses into the equation of stati equilibrium yields a oupled systemof seond order ellipti equations for the displaement �eld (Navier's equation)�ui;jj + �uj;ji = 0 ; i = 1; 2 : (1)The boundary ondition on � is(�(ui;j + uj;i) + (�� �)uk;kÆij)nj = 0 ; i = 1; 2 ; (2)where (nx; ny) is the normal unit vetor on �. The plane is loaded by stress or strain whihis applied at in�nity so that their area averages assume presribed values��ij �< �(ui;j + uj;i) + (�� �)uk;kÆij >= �presij ; i; j = 1; 2 ; (3)or ��ij �< (ui;j + uj;i)=2 >= �presij ; i; j = 1; 2 : (4)The omponents of �presij or �presij are given by the omponents of the applied load ��I, ��II,��III, ��I, ��II, or ��III.4 Potential representationIt is natural to introdue the Airy stress funtion U , whih solves the equation of statiequilibrium by de�nition. From the assumption that ertain sequenes of partial derivativeoperators ommute when ating on ux and on uy (ompatibility equations), it follows thatU is biharmoni (exept for at �). Airy's stress funtion an be represented asU = <e f�z�+ �g ; (5)where the potentials � and � are single valued analyti funtions of the omplex variablez = x + iy. For a thorough disussion of the omplex variable approah to elastiityproblems, see Muskhelishvili (1953), Sokholniko� (1956), Mikhlin (1957), or Parton and3



Perlin (1982). For our purposes it is suÆient to observe a few relations that link theomplex potentials to quantities of physial interest. The displaement (ux; uy) in thematerial satis�es ux + iuy = � 12� + 1���� 12� �z�0 +  � ; (6)where  = �0. The integral of the tration (tx; ty) along a urve (s) with normal (nx; ny)an be obtained from Z ss0 (tx + ity)ds = �����ss0i ��+ z�0 +  � ; (7)where s denotes arlength along (s).The omponents of the stress tensor an be omputed via�xx + �yy = 4<ef�0g ; (8)�yy � �xx + 2i�xy = 2(�z�00 +  0) : (9)A standard starting point for elastostati problems is to represent the potentials � and in the form of Cauhy-type integrals�(z) = 12�i Z� !(�)d�(� � z) + �z2 ; z 2 D1 ; (10)and  (z) = 12�i Z� �(�)d�(� � z) + �z ; z 2 D1 ; (11)where ! and � are unknown layer densities and � and � are foring terms. Values of � and on � are de�ned as limits of � and  in D1 as � is approahed. Sine the equations ofelastiity now are satis�ed everywhere, it remains only to solve the problem whih onsistsof enforing the boundary ondition of zero tration along �.The onstants � and � in (10) and (11) represent the foring terms at in�nity. Whenaverage stress is imposed, the onstants take the values � = 1=2 and � = �1=2 for ��I, thevalues � = 1=2 and � = 1=2 for ��II, and the values � = 0 and � = i for ��III. When averagestrain is imposed, the onstants take the values � = � and � = �� for ��I, the values � = �and � = � for ��II, and the values � = 0 and � = 2i� for ��III. Thus, � an always be assumedto be real, while � is either a real or an imaginary number.5 The Sherman-Lauriella integral equationThe lassial way of solving the elastostati equation is by expressing � of (11) in terms of! of (10) in a way whih makes  assume the form (z) = 12�i Z� !(�)d��(� � z) + 12�i Z� !(�)d�(� � z) � 12�i Z� ��!(�)d�(� � z)2 + NXj=1 bjz � zj + �z ; (12)
4



where zj is an arbitrary point inside the hole bounded by �j and the soure terms bj=(z�zj)are needed to ensure that the resulting integral equation is solvable. The real onstants bjare related to ! by bj = k=m�Z�j !(z)d�z� ; (13)where k is an arbitrary real non-zero onstant, usually hosen as k = �2. The representa-tions (10) for � and (12) for  were �rst derived by Lauriella (1909) and further developedby Sherman (1940).The hoie of the representation (12) for  an be motivated by the fat that it leadsto an equation of Fredholm's seond kind. The requirement of zero tration on �j gives,via (7), (10) and (12), the Sherman-Lauriella integral equation(I �MSL)!(z)� NXj=1 bj�z � �zj � Cj = �z + ���z ; z 2 �j ; (14)where MSL is a ompat integral operator given byMSL!(�) = 12�i "Z� !(�)d�� � z � Z� !(�)d���� � �z � Z� !(�)d��� � �z + Z� (� � z)!(�)d��(�� � �z)2 # ; z 2 � ;(15)and Cj are omplex onstants, related to ! viaCj = kj Z�j !(�(s))ds ; (16)where kj are arbitrary non-zero omplex onstants, usually hosen as kj = 1.The displaement of (6) at �j is given byux + iuy = �1� + 1��� 12�i Z� !(�)d�(� � z) � !(z)2 + �z2 �� Cj2� ; z 2 �j : (17)Proofs of solvability and uniqueness of (14) an be found in Muskhelishvili (1953),Mikhlin (1957), and Parton and Perlin (1982). The partiular hoies of zj in (12), kin (13), and kj in (16) do not hange the value of the potentials � and  in the interior ofthe perforated plane. They do, however, hange the value of !, and they will inuene theperformane of iterative numerial shemes based on equation (14). The standard hoiesk = �2 and kj = 1 seem to be reasonably eÆient from a numerial viewpoint.Remark 5.1 Sherman has three di�erent hoies for  depending on the boundary ondi-tions, leading to three di�erent integral equations. If the holes are free from stress and theloads are applied only at in�nity, the equation for presribed stress (14) an handle boththe ase of presribed average stress and the ase of presribed average strain.Remark 5.2 Representations for the potentials � and  do not neessarily have to be onthe form of Cauhy-type integrals and lead to integral equations. Another possibility isto represent the potentials in terms of Laurent series and to derive algebrai equations fortheir oeÆients. See Vigdergauz (1999) for a reent example.5



6 The Sherman bimaterial equationAn interesting option, introdued by Sherman (1959) for bimaterials, is to extend the valid-ity of � of (10) and  of (11) into the holes D2, and to hoose the unknown layer densities! of (10) and � of (11) in suh a way that the expression for the integral of tration (7) isontinuous over �. This requirement allows us to express � in terms of !, and  assumesthe form  (z) = 12�i Z� !(�)d��(� � z) � 12�i Z� !(�)d�(� � z) � 12�i Z� ��!(�)d�(� � z)2 + �z : (18)The requirement of zero tration along � leads to the integral equation for !(M1 �M2)!(z) = ��z � ���z � j ; z 2 �j ; (19)where j are omplex onstants of onsisteny, and M1 andM2 are integral operators givenby M1!(z) = 1�i Z� !(�)d�(� � z) ; z 2 � ; (20)andM2!(�) = 12�i "Z� !(�)d�(� � z) � Z� !(�)d��(�� � �z) + Z� !(�)d�(�� � �z) � Z� (� � z)!(�)d��(�� � �z)2 # ; z 2 � :(21)Two properties of M2 are easy to proveM2 =  ; (22)M2iz = iz ; (23)where  is a onstant. Sine onstants and iz are eigenfuntions with eigenvalue unity alsoto the operator M1, equations (22) and (23) imply that (19) is not uniquely solvable, butthat is has two simple null-funtions. We therefore add the uniqueness ondition(I +M1)!(z) = ��z � (1� dj)j ; z 2 �j : (24)where dj is an arbitrary onstant. Linear ombinations of (19) and (24) gives that ! satis�es(I + djM1 + (1� dj)M2)!(z) = �dj�z + (1� dj) ���z ; z 2 �j ; (25)whih is our proposal for a new equation. Note that the onstants of onsisteny, j , of (19)and (24) do not appear in (25). That (25) is uniquely solvable follows from Fredholm'salternative and the disussion in paragraph 4 of Sherman (1959). In fat, equation (25)an be derived diretly from the Sherman bimaterial equation (1959) by letting the bulkand shear moduli �j and �j of inlusion j in the bimaterial approah zero in suh a waythat their ratio is onstant. The Sherman bimaterial integral equation then assumes theform (25) with dj = �j=(�j + �j). 6



The displaement of (6) at the boundary �j is partiularly easy to evaluate in our setting,ux + iuy = �!j � 1� + 1��+ j2 �(dj � 1)� + dj� � : (26)The solution ! to (25) is independent of dj (up to a onstant on eah �j). In the limitsdj ! 0 and dj ! 1, however, equation (25) beomes singular. For ertain values of dj theonditioning of (25) is optimal. An interesting hoie is dj = �=(�+ �). This hoie makesthe displaement of (26) diretly proportional to !. More generally, we have found thatdj > 0:5 an ause an unneessary large number of iterations in the proess of solving (25)iteratively. A value in the range 0:10 < dj < 0:35 seems to be a good general hoie.Remark 6.1 The equation (25) ontains the Cauhy singular operator M1 whih is non-ompat on a single, losed ontour. This is not a problem from a omputational viewpoint.The operator M1 resembles the identity. Further, it is possible to transform equation (25)into a Fredholm seond kind equation with ompat operators by appliation of the operator(I � djM j1 )=(1� d2j ), where M j1 denotes the restrition of M1 to �j . The part of M1 whihdesribes interation between di�erent ontours is always ompat.7 Relationships between equationsThe Sherman-Lauriella equation (14) and equation (25) look di�erent. The Sherman-Lauriella equation ontains the hoie of N arbitrarily plaed points and N +1 arbitrarilyhosen onstants, while equation (25) ontains only N arbitrarily hosen onstants. TheSherman-Lauriella equation only ontain ompat operators, while equation (25) ontainsthe Cauhy singular operatorM1. The expression for the displaement (17) in the Sherman-Lauriella framework is more ompliated to evaluate than our expression (26).A relation between the layer densities of the two equations an be derived by equat-ing (17) and (26). The hoie dj = �=(�+ �) gives the simplest form of this relation!(z) = 12 (I �M1)!SL(z)� �z2 � Cj2(1 + �=�) ; z 2 �j; (27)where !SL denotes the layer density of the Sherman-Lauriella equation and ! denotesthe layer density of equation (25). Equation (27) an not be inverted, that is, give !SLas a funtion of !. The density !SL has, in general, a more ompliated struture thanthe density !. As a onsequene, we expet iterative algorithms based on the Sherman-Lauriella equation to onverge slower than iterative algorithms based on equation (25).See Setion 10 for examples where suh a di�erene in onvergene rate is observed.8 E�etive moduli and stress tensor on the boundaryE�etive elasti moduli are partiularly simple to de�ne and ompute in the setting of adoubly periodi material with a square unit ell of unit area. The e�etive ompliane7



moduli of a material an be de�ned through the following relations between average stressand average strain 0� ��xx��yyp2��xy 1A = 0� s�1 s�2 s�3s�2 s�4 s�5s�3 s�5 s�6 1A0� ��xx��yyp2��xy 1A : (28)The omponents of the e�etive ompliane tensor S are s�k, k = 1; : : : ; 6.In order to ompute the e�etive ompliane tensor S, equation (25) is solved threetimes for the imposed average stresses ��I, ��II and ��III. The orresponding solutions aredenoted as !I, !II and !III. Let nowaK = 12 � 1� + 1��Z�u !K(z)dz ; K = I; II; III ; (29)and bK = 12 �1� + 1��Z�u !K(z)d�z ; K = I; II; III : (30)With this notation, the e�etive ompliane tensor of equation (28) an be omputed asS = 14�� 0� �+ � �� � 0�� � �+ � 00 0 2� 1A+ =m0B� bI � aI bII � aII 1p2(bIII � aIII)aI + bI aII + bII 1p2(aIII + bIII)ip2aI ip2aII iaIII 1CA : (31)The inverse of the e�etive ompliane tensor is the e�etive sti�ness tensor C whoseomponents �k, k = 1; : : : ; 6, are de�ned through the following relation0� ��xx��yyp2��xy 1A = 0� �1 �2 �3�2 �4 �5�3 �5 �6 1A0� ��xx��yyp2��xy 1A : (32)In order to ompute the e�etive sti�ness tensor, equation (25) is solved three times for theimposed average strains ��I, ��II and ��III. The orresponding solutions are denoted as !I, !IIand !III. Let now aK = �1 + ���Z�u !K(z)dz ; K = I; II; III ; (33)and bK = �1 + ���Z�u !K(z)d�z ; K = I; II; III : (34)The e�etive sti�ness tensor of equation (32) an then be omputed asC = 0� �+ � �� � 0�� � �+ � 00 0 2� 1A�=m0B� bI � aI bII � aII 1p2(bIII � aIII)aI + bI aII + bII 1p2(aIII + bIII)ip2aI ip2aII iaIII 1CA : (35)The omponents of the stress tensor �ij in (8) and (9) take the following form on theboundary � in terms of our density !�xx + �yy = �4<e�d!dz� ; (36)8



�yy � �xx + 2i�xy = �4 �nn<e�d!dz� : (37)The tration (tx; ty) on the boundary � an be obtained fromtx + ity = �4in<e�d!dz� : (38)Other quantities, useful when dealing with the stress �elds in the viinity of the holes, arethe normalized tangential stress �tn and the stress onentration fator Kt. The normalizedtangential stress is de�ned as the ratio of the tangential stress on the boundary of a hole tothe trae of the applied stress tensor�tn = 4<efd!dz gTrf��applg : (39)The stress onentration fator is de�ned as the maximum absolute value of the normalizedtangential stress Kt = maxz2� j�tnj : (40)9 Nystr�om algorithm and singular integralsIn the next two setions we solve equations (14) and (25) for a variety of geometries andloads. In most examples we shall use a \matrix-free" Nystr�om algorithm based on omposite16-point Gaussian quadrature, the GMRES iterative solver (Saad and Shultz 1986), thefast multipole method (Rokhlin 1985; Greengard and Rokhlin 1987; Carrier et al. 1988),and a speial sheme for the evaluation of layer potentials lose to their soures (Helsing1996). Compensated summation (Kahan 1965; Higham 1996) is used for the omputationof inner produts in the GMRES solver and for the evaluation of the integrals appearingin the formulas for e�etive moduli. We refer to Greengard and Helsing (1998) for furtherimplementational details. Here we will disuss a partiular re�nement implemented in thepresent ode. It onerns the regularization of the singular integral appearing in (20).It is easy to verify the following: Let f(z) be a smooth funtion on � and let a and bbe two points on �. Then 1�i Z ba f(�)d�(� � z) =1� Z ba f(�)<e� d�i(� � z)�+ i� Z ba (f(�)� f(z))=m� d�i(� � z)�+ f(z)�i <e�ln�a� zb� z �� :(41)The �rst integral on the right hand side of (41) has a smooth kernel. The seond integralhas a smooth integrand. The third term is easy to evaluate.Now, let z be a target point on a quadrature panel �0 on �. Further, let �0�left and�0�right be quadrature panels adjaent to �0. Let �0�other be the union of all other quadra-ture panels. For the evaluation of1�i Z� f(�)d�(� � z) ; z 2 �0 ;9
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Figure 1: The von Mises e�etive stress distribution for an in�nite plate with a star�sh-shapedhole under imposed stress �I . The stress onentration fator of (40) for the hole is Kt =9:233388765.we distinguish between two ases. For the part of the integral that ontains ontributionsfrom �0�other, we evaluate the integral as it stands. For the part of the integral that ontainontributions from �0�left, �0, and �0�right, we use the right hand side of (41), with a beingthe starting-point on �0�left and with b being the end-point on �0�right.10 Numerial omparison between equationsSome di�erenes between the Sherman-Lauriella equation (14) and equation (25) havebeen pointed out in Remark 6.1 and in Setion 7. In this setion we undertake a detailedomparison between algorithms based on the two equations, to see what onsequenes thesedi�erenes have for numerial eÆieny. The experiments presented indiate that equa-tion (25) leads to a better algorithm.For setups with analytial solutions, suh as loaded plates with a single hole in theshape of a irle or an ellipse, it is hard to say whih equation leads to the best algorithm.Algorithms based on the two equations both require only a few GMRES iterations for fullonvergene. A non-trivial example is needed. We therefore onsider a plate with one singlehole in the shape of a nine-armed star�sh parameterized byz(t) = 0:36(1 + 0:36 os 9t)eit ; �� � t < � ; (42)under the imposed average stress �I , see Figure 1. This shape might seem spetaularat �rst glane, but similar shapes are used in, for example, spline ouplings (a mahineelement). Figure 1 also shows ontours of the distribution of the von Mises e�etive stress10
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Figure 2: Convergene of the referene quantities q2 of (44) and qmax of (45) for algorithmsbased on equations (14) and (25). Corret values, omputed in quadruple preision arithmeti,are q2 = 0:6540490820646557 and qmax = 0:3762294219389333. The relative error for valuesof q2 and qmax that oinide with the orret value is displayed as 1:11 � 10�16.�eM . The von Mises e�etive stress is used to predit the ourrene of plasti deformationin a multiaxial state of stress. For plane stress, it is de�ned by�eM =q�2xx + �2yy � �xx�yy + 3�2xy : (43)When omparing the performane of the algorithms below, we need referene quantitiesto measure auray against. We have deided to use the L2 norm of a normalized boundarydisplaement q2 = ���+ � �Z� �u2x(z) + u2y(z)� ds�12 ; (44)and also the maximum value of a normalized boundary displaementqmax = ���+ � maxz2� �u2x(z) + u2y(z)� 12 ; (45)as suh referene quantities. One ould, of ourse, also use some Sobolev norm of theboundary displaement, or measure the onvergene of the displaement �eld itself. Usingsuh proedures, it would be harder to detet di�erenes between the algorithms. Numerialdi�erentiation and interpolation between meshes introdue additional error.The quantity q2 is partiularly simple to ompute and tells us, perhaps, most about thequality of the solution. The quantity q2 an be extrated from the solutions !SL to (14)and ! to (25) via (17) and (26) and with the use of integration at the nodes where !SLand ! have support. The quantity qmax requires more post-proessing. This is so sine themaximum displaement does not neessarily our at a quadrature node. We extrat qmaxby 15th order polynomial interpolation followed by golden setion searh. The bulk andshear moduli are hosen so that �=(�+ �) = 0:23.An algorithm based on equation (25) requires 1760 disretization points for a relativeerror in q2 smaller than 10�14 and for a relative error in qmax smaller than 10�13, see Figure 2.11
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Figure 3: The iteration history from GMRES for the di�erent integral formulations. 2080disretization points were used.Solving the system of linear equations at full resolution, that is with 2080 disretizationpoints, requires 30 GMRES iterations with the hoie d1 = 0:23. The partiular hoie ofd1 = 0:23 seems in this ase quite good. Other values of d1 also work well for this geometryand load. Numerial experiments show that values in the range 0:004 < d1 < 0:76 yield asolution with a relative error in q2 smaller than 10�14. For values of d1 below 0:1 and above0:3, however, the number of GMRES iterations inreases.An algorithm based on the Sherman-Lauriella integral equation (14), with standardhoies of the onstants k of (13) and k1 of (16) and the arbitrary point z1 plaed at theorigin, also requires 1760 disretization points to reah a relative error in q2 of about 10�14and a relative error in qmax of about 10�13. The number of GMRES iterations requiredwith 2080 points is 33. This performane, however, an be slightly improved. In fat, inthis example, it is possible to hoose k1 = 0. This hoie redues the number of GMRESiterations needed to 30 without a�eting the auray. Most other hoies of k1 withinreasonable limits (jk1j < 100) give 33 GMRES iterations without a�eting the quality ofthe solution. Note that the hoie k1 = 0 is possible here beause the geometry and loadare suh that the integral in (16) vanishes. Note also that k1 = 0 renders the integralequation (14) singular with rank de�ieny two. It allows for null-solutions being omplexonstants. The system of linear equations is, obviously, unsolvable with a diret method.In our ase, a orret solution is obtained sine an iterative solver is used. The right handside of (14) lies in the range of the integral operator of the modi�ed equation. The hoiesfor the premultiplying fator k are more restrited. Only k in the interval 1 � jkj � 4 givean aurate solution.The star�sh in Figure 1 is symmetri with respet to the origin. A natural hoie forthe arbitrary point is therefore z1 = 0. In more ompliated geometries there might not be12



Figure 4: A unit ell onsisting of a plate with eight elliptial holes (blak) of aspet ratio 2:1at ellipse area fration 0:7.suh a simple and natural hoie. The numerial performane of the Sherman-Lauriellaequation is sensitive to the hoie of z1. If we set z1 = 0:1, whih still is far away from theboundary of the star�sh ontour, the number of GMRES iterations doubles, see Figure 3,and the relative errors in q2 and qmax inrease.Further di�erenes in the numerial performane of the two algorithms, and for thehoies d1 = 0:23, k = �2, k1 = 1, z1 = 0, an be pointed out. First, the algorithmbased on equation (25) requires fewer iterations than the algorithm based on the Sherman-Lauriella equation for reahing a given residual in the GMRES solver. It is also possibleto reah a lower residual with equation (25). This is illustrated in Figure 3. Seond, theonvergene of the solution with the number of disretization points is initially somewhatslower for the algorithm based on equation (25) than that for the algorithm based on theSherman-Lauriella equation. Third, the algorithm based on equation (25) seems to be morestable in the sense that when the number of disretization points is inreased beyond 1760,the referene quantity q2 onverges more stably when omputed from ! of (25) than from!SL of the Sherman-Lauriella equation. The e�et on qmax is similar, but less pronouned.This is illustrated in Figure 2.We onlude that an algorithm based on equation (25) is generally slightly more eÆientthan an algorithm based on the Sherman-Lauriella equation (14). The hief reason for thisis that we have omitted the need for the arbitrary point z1. A poor hoie of z1 an greatlydeteriorate the performane of algorithms based on the Sherman-Lauriella equation.11 Numerial examplesIn this setion we shall present more examples of numerial solutions to equation (25).We shall �rst establish agreement with results of previous investigators. Then we shalldemonstrate the extreme stability of our algorithm.13



Table 1: Center oordinates xent, yent, and rotations � for the eight ellipses depited inFigure 4.ellipse no. xent yent �1 0.096558008044553 0.180606440983544 1.7930694567769032 -0.312317331860957 0.328928705317157 0.1035272368619623 0.020093822024223 -0.326279205482295 -1.6310994915552914 0.426052439830122 -0.422860540089244 -0.4731831350863235 0.323978421616729 0.254064864498771 -1.2048778406522086 -0.266711719264471 0.070034693393812 -0.1623929237882977 0.370486724007364 -0.116660224915378 0.0343006083348778 -0.254250775518318 -0.294308693171502 1.979465648427812Table 2: Converged values of e�etive elasti moduli for the plate with elliptial holes in Figure 4.The elasti moduli of the plate are � = 1 and � = 313 . Digits within parentheses are unertain.�1 0.1671838860540(3)�2 0.1159038641252(6)�3 -0.0334596680291(2)�4 0.2145913741192(2)�5 -0.0541949785279(8)�6 0.0500907100757(7)11.1 Two irular holes in an in�nite plateWe start out with a very simple on�guration: an in�nite plate with two irular holes ofradius unity, aligned with the x-axis, and separated with a distane of 0:2. The stress ��II isapplied. This setup has been studied by Haddon (1967) and more reently by Ting, Chen,and Yang (1999). Quantities studied by these authors inlude the normalized tangentialstress �tn of (39) and the stress onentration fator Kt of (40). The value of the stressonentration fator is reported as Kt = 6:106 by Haddon (1967) and as Kt = 6:107 byTing, Chen, and Yang (1999). With 80 uniformly plaed disretization points on eah ofthe two hole boundaries we reprodue Haddon's estimate Kt = 6:106. A more aurateestimate is Kt = 6:106040764542, whih we get with 400 uniformly plaed disretizationpoints on eah hole boundary.11.2 Eight elliptial holes in a doubly periodi arrangementFigure 4 shows a unit ell of a plate with eight equi-sized elliptial holes. The unit ell isperiodially repeated as to tile the entire plane. The aspet ratio of the axes of the ellipsesis 2:1. The area fration of the elliptial holes is 0:7. The elasti moduli of the plate are14
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Figure 5: Convergene of the Eulidean norm of a vetor with e�etive elasti moduli, de�nedin (32), for the geometry in Figure 4, under uniform overresolution. Stars refer to alulationswhere a speial sheme for the evaluation of layer potentials lose to their soures is used whenneeded. Open irles refer to alulations without this speial sheme. The values in Table 2are used as referene.� = 1 and � = 313 . Eah ellipse has the parameterizationz(t) = zent +r 0:716�ei�(2 os t+ i sin t); �� � t < �: (46)The eight ellipse enters zent and rotations � are given in Table 1. The e�etive elastimoduli of (32) are omputed by plaing an inreasing number of equi-sized quadraturepanels on eah ellipse. Estimated onverged values for the e�etive moduli are presented inTable 2.Figure 5 shows a onvergene study of the Eulidean norm of the vetor of elasti moduli(�1; �2; �3; �4; �5; �6) as the disretization is uniformly re�ned. The values in Table 2are used as referene values when omputing this norm. Note, in Figure 5, how stablethe algorithm is. The estimated relative error onverges to about 2 � 10�13. The losestgap between two ellipse boundaries in the unit ell is approximately 0:001. This meansthat quantities related to the narrow nek between these two ellipses an be resolved with arelative auray of 0:001. On geometrial grounds we therefore estimate that the onditionnumber of the problem is at most 103. As a onsequene, we expet that it is possible, withan ideal algorithm, to ompute e�etive elasti moduli with a relative auray not worsethan 103 � �mah � 1 � 10�13 in IEEE DP arithmeti. Our algorithm is lose to this ideal.The �ne details of the urve in Figure 5 are, of ourse, dependent on how we hoose thereferene values of Table 2. Even though we get rather stable values for e�etive moduli15
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Figure 6: Normalized tangential stress �tn on the boundary of the eight ellipses of the geometryin Figure 4 under applied average stress ��I = (1; 0; 0).already at 10,000 disretization points, orresponding to 80 panels on eah ellipse, we believethat the values for around 100,000 disretization points are the most reliable. The reasonfor this is that our sheme for the evaluation of layer potentials lose to their soures mayintrodue some inauray in the last digits. At above 100,000 disretization points theinterfaes are so overresolved that this sheme is not ativated. In Figure 5, the starsrefer to alulations done with the sheme ativated, and open irles refer to alulationswithout this sheme. The GMRES iterations are terminated when the norm of the residualis smaller than 2 � 10�15. This takes between 280 and 283 iterations for eah of the appliedaverage strains ��I, ��II, and ��III. The number of iterations needed is virtually independent ofthe number of disretization points used.We also ompute the normalized tangential stress �tn of (39). Figure 6 shows thenormalized tangential stress on the boundaries of the eight ellipses for applied averagestress ��I.12 Conlusions and outlookThe main advantage of equation (25) over the lassi Sherman-Lauriella equation (14)is that we have omitted the need for the plaement of the arbitrary points zj. This, inturn, an substantially redue the number of iterations needed to reah a given residual in16



an iterative numerial algorithm. Other advantages inlude the redution of the numberof arbitrary onstants, uni�ation of formulations, simpli�ed post-proessing, and a morestable onvergene.Further, we onlude that the performane of our numerial algorithm based on equa-tion (25) is very good. We establish agreement with previous authors (Haddon 1967; Ting,Chen, and Yang 1999) and greatly improve on the auray of their numerial results. Also,we demonstrate the stability of our algorithm on a setup involving eight losely spaed el-liptial holes in a unit ell. The problem is resolved with a relative error smaller than 10�12and the algorithm exhibits stability under extreme overresolution, extending up to half amillion disretization points.Still, for a plate with a single hole and with an underresolved alulation, the lassiSherman Lauriella (14) with an optimal plaement of the arbitrary point zj may giveinitially faster onvergene than equation (25). The reason for this we asribe to that, in ourimplementation, the part of the operator M1 that desribes self-interation is implementedwith 15th order aurate quadrature, while the operators M2 and MSL and the part ofM1 that desribe interation between di�erent holes are 31st order aurate. We thereforespeulate that it might be possible to �nd an even more eÆient formulation, that alwayssimultaneously improve on both (25) and (14).13 Notation�; � = foring termsD1 = the interior of the perforated planeD2 = the interior of all holes��ij = averaged omponents of strain, i; j = x or y�� = vetor of averaged strain, �� = (��xx; ��yy; ��xy)��I; ��II; ��III = three fundamental vetors of presribed average strain�; �;  = elasti potentials,  = �0�j = the boundary of hole j� = the union of all boundariesKt = stress onentration fator� = two-dimensional elasti bulk modulusM1;M2;MSL = integral operators� = two-dimensional elasti shear modulusN = number of holes in the plane(nx; ny) = normal unit vetor on �!; !SL; � = unknown layer denities�ij = omponents of stress, i; j = x or y��ij = averaged omponents of stress, i; j = x or y�� = vetor of averaged stress, �� = (��xx; ��yy; ��xy)��I; ��II; ��III = three fundamental vetors of presribed average stress�tn = normalized tangential stress(tx; ty) = tration vetor along a urveui = displaement omponents, i = x; yRemark 13.1 The two-dimensional bulk modulus � is not idential to the three-dimensional17
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