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Abstract

The method of moments is used to solve electromagnetic boundary value problems
numerically. It is known that the choice of basis functions is crucial for the
numerical efficiency. Fast convergence is achieved provided the basis functions
efficiently approximate the unknown function. In this paper the far field (incl. RCS)
of a thin conducting square plate is calculated. Basis functions with correct edge and
corner singularities are shown to greatly enhance the convergence compared to
ordinary “rooftop” functions. The calculations of the matrix elements as well as the
right side of the matrix equation and the scattered field are simplified by the use of a
multipole technique.

1 Introduction

The method of moments (MoM) [1] has been used extensively during the last two
decades to solve electromagnetic boundary value problems. By a projection technique a
linear operator equation is replaced by a finite dimensional matrix equation suited for
numerical treatment. MoM involves the expansion of an unknown function in terms of a
set of basis functions. The choice of these basis functions is of great importance for the
efficiency of the numerical computations.
It is desirable that the set of basis functions meet the following three properties:
1. They should allow simple and fast computations of the matrix elements.
2. They should be adaptable to different shapes of the domain.
3. They should efficiently approximate the unknown function, thus reducing the
truncation size of the matrix.
Entire domain (global) basis functions have been shown to give excellent approximations
when known properties of the function to determine are taken into account [2]-[4].
However, it seems difficult, especially in the three dimensional case, to adapt these basis
functions for more general problems.
Subdomain basis functions of simple structure, e.g., so-called “rooftop” functions are
often used to expand the current density [5], [6]. These functions are adapted to different
shapes of the domain and easy to handle numerically, but in cases when the unknown
function has a singular behaviour, e.g., at edges and corners of a thin scatterer, the
subsections have to be very small to get high accuracy.
In the two-dimensional case, the use of rooftop functions in the interior of the domain in
conjunction with singular basis functions at the edges, clearly improves the accuracy
[71, [8]. Basis functions with correct edge behaviour have also been used in some three-
dimensional cases [9], [10]. Recently, a three-dimensional static case where the corner
singularity was incorporated in the basis functions was treated by the author [11]. The
use of basis functions with both correct edge and corner singularities was shown to
greatly enhance the convergence. To facilitate the numerical treatment a multipole method
was adopted. The free space Green function for the Helmholtz equation was expanded in
terms of the spherical scalar wave functions. Using subdomain basis and testing
functions, the non-diagonal matrix elements could be expressed as a series of multipole
moments [11].
In this paper, the multipole approach is applied to a canonical dynamic case - scattering
by a perfectly conducting, infinitely thin, square plate. Basis functions with singularities
corresponding to the known behaviour of the source distributions at the edges and
corners are used. The multipole method is shown to be an efficient tool, not only for



calculating the matrix elements, but also for calculating the right side of the matrix
equation. Moreover, the scattered field and the radar cross section can be expressed and
efficiently handled numerically by the means of the multipole method.

The plan of the paper is as follows. In Section 2 the scattering equation is derived and the
testing procedure is defined. In Section 3 the basis and testing functions are described.
The calculation of the matrix elements is treated in Section 4. This section contains an
overview of the multipole technique and its implementation in this dynamic case together
with a method to calculate the self-patch terms. In Sections 5 and 6 the multipole concept
is applied to calculate the right side of the matrix equation and to calculate the scattered
field. Numerical results are presented in Section 7 illustrating the enhanced convergence
due to the singular basis functions and also showing the radar cross section for various
frequencies and angles of incidence. Some conclusions are given in Section 8. Appendix
A contains some mathematical details, while definitions and formulas concerning the
scalar spherical wave functions are presented in Appendix B.

2 Scattering equation and testing procedure
In this section an integral equation for the surface current induced by an incident
electromagnetic wave on a thin conducting scatterer is formulated. By expanding the
current in a set of basis functions and applying a testing procedure this equation is
replaced by a matrix equation suited for numerical treatment. The formulation is well-
known, cf., e.g., Refs. [5] and [6], but for the sake of completeness and to introduce our
notation an outline of the derivation is given for a flat thin conducting scatterer.

Let § denote a surface in the x-y-plane, which coincides with the thin perfectly
conducting scatterer, cf. Fig. 1. The permeability and permittivity of surrounding media
are i and &, respectively. Ei» denotes the electric field of the incident wave in the absence
of the scatterer. The induced surface current density J generates a scattered field Esc. J
represents the vector sum of the surface current densities on the opposite sides of the

scatterer. A harmonic time dependence is assumed and the time factor @ is suppressed
everywhere.

A
X nL

Fig. 1. The thin conducting scatterer and the Cartesian coordinates.

The integral equation
The scattered electric field Es¢ due to the induced current density J can be expressed as

Esc=~W+imA (1)



where the scalar potential V and the magnetic vector potential A are given by

v =2 [ o) Garry as’ @)
€5
and
AW =p [JG) Grr) ds’ (3)
S

respectively.
The surface charge density ois related to surface divergence of J through the equation of
continuity,

Vs' J
io

4

The surface divergence Vg- J is here 0,J, + d,J, since § is a surface in the x-y-plane.
The free space Green function G(r,r) is defined as

iklr-r'l

G(r,r') = ZMT'T (5)

where the wave number &k = @\ ue = 2x/A.

The total electric field E is obtained as the vector sum of the incident field and the
scattered field

E = En+ Esc (6)
Enforcing the boundary condition ZxE=0onS$ , one obtains the integral equation
A . A .
Zx(W-iwA)=Z xE», ronS$ @)}

where V and A are given by Egs. (2) and (3).

Notice that the limits on the left-hand side of Eq. (7) are well-defined quantities, since
A(r) and the tangential derivatives 2 x VV are continuous on the surface S. The
mathematical details of these limits can be found in, e.g., [12].

The matrix equation

The MoM is now applied to Eq. (7). This method is a projection method in which the
integral equation is approximated by a matrix equation. This approximation is outlined
below.

Expand the surface current density J in terms of a set of vector basis functions Jp with

unknown coefficients ap, ie.,

J=Xa,f, (8)
p



. . . . A
It is assumed that the basis functions f, are tangential to §, i.e., they have no z-
component. To satisfy the equation of continuity, Eq. (4), the expansion of the surface
charge density o will then become

1
L V. 9
° iw%a" s-Jp )

In the numerical treatment all summations have to be truncated.
The next step is to define a testing procedure. Let w, be a set of testing functions and
define a symmetric product as

e>= [frgds (10)
S

Testing of Eq. (7) yields
<VVw> - in<A,w > = <E"",wq> (1D

The testing functions w, are also assumed to be tangential to S. In addition to this
requirement on w, we chose testing functions such that

wq-?zL=O onL (12)

where L is the boundary of S and n 1. 1s the unit normal to L, cf. Fig. 1. Using the vector
identity

Ve (V wq) = VSV-wq+ %4 Vsw, (13)
and Gauss’ theorem in two dimension

[vs(vwpds= [vw, B (14)
S L

one gets

<VsVw>=- [V Vsgw, dS (15)
h)

As <VSV,wq> = <VV,wq> on S, the matrix equation may now be explicitly expressed
as

2a, SI Sf (=Vsfp(r) Vswy(r) + K f,(r)w(r) ) G(r,r) dS'dS =
p

=iwe [Ein(ryw,(r) dS g=123... (16)
S

2 2
where k” = @ eu.



3 Basis and testing functions

In the introduction of this paper the importance of the choice of the basis functions is
pointed out. One conventional choice is subdomain basis functions, i.e., basis functions
that only differ from zero over subsections of the domain. Due to the simplicity, we have
chosen rectangular subsections. This limits the adaptation compared to subsections of
triangular shape [6], [9]. However, the implementation of the main ideas to triangular
subsections is possible, but has to be made to the price of a higher complexity in the
analysis and the numerical treatment.

An overlapping technique is used to assure continuity of the current density in the
direction of flow and thus preventing fictitious line charges at the connections of the basis
functions. The scatterer is divided into equally sized “sub-squares”. A basis function
consists of two or three “sub-functions”, each having support in one sub-square. The
number of sub-squares necessary to achieve a certain accuracy of the solution depends on
the ability of the basis functions to approximate the unknown function. As in our case,
the behaviour of the unknown function, J, differs over the domain we use different basis
functions in the interior, at the edges and at the corners of the plate.

Interior basis functions

In the interior of the plate we use rooftop functions to approximate the surface current
density J. A rooftop function consists of two linear sub-functions, cf. Fig. 2. The
resulting basis functions for the charge density will have the form of pulse doublets.

@ (b)

Fig. 2. The interior basis functions. The current is approximated by rooftop
functions (a) and the charge by pulse doublets (b).

Edge basis functions

The singular behaviour of the surface current density and the surface charge density at
the edge of an infinitely thin conducting scatterer has been investigated analytically [13]
and is well-known. As the behaviour depends of the direction of the current in relation to
the edge, two kinds of basis functions are needed.



Tangential current

To approximate the current tangential to an edge we use basis functions with the
singularity 1/N'd , where d represents the perpendicular distance to the edge, but have a
rooftop character in the direction along the edge, i.e., in the direction of flow. The
principle form of the basis functions for the current density and the corresponding basis
functions for the charge density are illustrated in Fig. 3.

@ ' (b)

Fig. 3. The basis functions used to approximate the current tangential to an edge (a)
and the corresponding charge distribution (b). Both functions have the singularity
1A d near the edge.

Perpendicular current

The first order approximation of the behaviour of the current flowing perpendicular to the
edge is Vd, which agrees with 1/\/d for the charge. We use basis functions with these
singularities and which are constant in the direction along the edge. The continuity of the
current density in the direction of flow at the connections to the interior sections, is
guarantied by adding a half rooftop function, cf. Fig. 4.

(a) (b)

Fig. 4. The basis functions used to approximate the current perpendicular to an edge
(2) and the corresponding charge distribution (b). The current basis function goes to
zero as vd near the edge resulting in the singularity 1/v/d for the charge.



Corner basis functions

The field singularities at the tip of a conducting cone and as a limiting case, at the corner
of a plane conducting sector, have been studied by some authors, i.e., [14], [15]. An
exhaustive review of the subject can be found in [16]. The analysis shows that both the
electric and the magnetic fields have singular properties. We use two sets of basis
functions corresponding to these two different singularities. The first set is used to
expand the current density flowing in the radial direction and the related accumulated
charge density. These basis functions are constructed to give the correct singularity of the
electric field. The second set is used to expand the current density flowing in the
tangential direction and is constructed to give the correct singularity of the magnetic field.

Radial current
Introduce a local polar coordinate system with origin at the corner, cf. Fig. 5. Denote the
sub-function for the radial current on the corner sub-square by fC’.

Fig. 5. The polar coordinate system used at corner sub-squares.

Define

v

fCr=__r___A (17)
\] sing cos¢@

and the corresponding basis sub-function for the charge density becomes

(1) P70

\/ sing cos@

These functions have the correct singular behaviour both at the edges and at the corner.
The corner singularity of the charge density is given by the exponent V-1 with v=0.30
according to [15]. The complete radial current basis functions are constructed by adding
half rooftop functions with correct edge singularity at the adjacent edge sub-sections, cf.
Fig. 6. The numerical treatment is simplified if the edge current basis sub-functions
described above are used. This choice introduces a small discontinuity in the current
density along the two lines connecting the sub-squares. The basis functions are

V.fCr= (18)



normalized such that the total current across these lines is continuous. With this
normalization the discontinuity along the lines is less than 8%. This type of discontinuity
could, however, be remedied but to the price of a higher complexity in the analysis.

; jl%f;

7

()
Fig. 6. The comer basis functions used to obtain the correct electric singularity. The

Cartesian components of the basis function for the radial current are llustrated by (a)
and (b). The corresponding basis function for the charge distribution is shown in

©).

Tangential current
Using the same polar coordinates as above introduce a potential @ as

d>=rr\] sing cos¢@ (19)
Define a sub-function f¢* for the tangential current on the comner sub-square as

fCt=7 x Vo (20)



where Z denotes the unit normal to the surface S. This definition implies that V.fCt=(
and the curves @ = constant are lines of current. The equipotential lines are shown in
Fig. 7. The lines do well agree with the corresponding lines of current presented in Ref.
[15]. By the explicit expression of fCt,

. 2 2
fCr= 180 PCOS Oy /! \ sing cosp § (21)
2 \/ sing cos¢@

it is evident that the correct edge behaviour is obtained. The numerical value of the
singularity exponent is given by [15] as 7= 0.82. The complete tangential current basis
function is constructed in the same way as in the radial case described above by adding
singular sub-functions at the adjacent edge sub-squares, cf. Fig. 8. The discontinuity of
the current density along the two lines connecting the sub-squares will in this case be

\\\\Wﬁ

Fig. 7. Equipotential lines, i.e., lines of current. The difference of & between the
lines is constant which implies that they enclose the same amount of current, cf.
Appendix A.

Testing functions

The testing functions have to fulfil the requirements specified by Eq. (12), i.e., the
normal component has be zero at the edges of the scatterer. As all the basis functions
described above have this property they can be used as testing functions. In the numerical
treatment we have made two choices: 1.Testing functions equal to the basis functions,
i.e., Galerkin’s method. 2.Testing functions equal to rooftop functions. The results are
presented and discussed in Section 7.
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(b)

Fig. 8. The comer basis functions used to obtain the correct magnetic singularity.
The Cartesian components of the basis function for the tangential current are
illustrated by (a) and (b). The corresponding basis function for the charge
distribution is shown in (c).

4 Calculation of the matrix elements

The use of complicated basis and testing functions like those described above, makes it is
essential to find numerically efficient methods to calculate the matrix elements given by
Eq. (16). Each of our basis and testing functions consists of two or three sub-functions.
Each matrix element is the sum of the contributions from such sub-functions. The
calculation of these “sub-elements” will now be addressed.

Non self-patch terms
As mentioned in the introduction, a multipole method was introduced by the author in
Ref. [11] to facilitate the calculation of the matrix elements. Here, an overview of this
method is given, see also [11].
The analysis is presented here in three dimensions. The analogous two-dimensional
formulation is straightforward. Denote by f and w two functions with compact support



V¢ and V,,, respectively. Let the symbol “#” denote multiplication in the case of scalar
functions and the scalar product in the case of vector functions, and consider

[ [y we Gy dv' dv 22)
Vi Vi

Introduce two spheres circumscribing the volumes Vr and V,,, respectively, and let the
centra of these spheres define the origins of two local spherical coordinate systems
denoted by Ky and K,,, respectively. Denote space vectors referring to K by rrand those
referring to K,, by r,,.

Expressed in the coordinates of K the free space Green function can be expanded in the
spherical scalar wave functions y,,; and u/i,m, as [17]

Grar) = ik X, Wh(r) W) re> 1t (23)
n

where the summation over n denotes a triple sum over /, m and o. The definition of the
spherical scalar wave functions can be found in Appendix B. Provided the two
circumscribing spheres are disjunct the translation properties of the spherical scalar wave
functions imply, cf. [11],

[ Jreywe Gerydotdo = ik Y, Po(R) gu(D*quw) 24)
V Vf nn’

where R denotes the space vector from the origin of Kf to the origin of K,,. The matrix
P, 1s defined in Appendix B. The functional g,(f) is given by

4= [fr) yiry dv (25)
Ve

and g,(w) is defined analogously. These functionals express the multipole moments
associated with the functions fand w.

Eq. (24) can obviously be applied to calculate the bulk of the matrix elements given by
Eq. (16) when subdomain basis and testing functions are used. The calculations can be
further 31mp11ﬁed by expanding the spherical Bessel function jj(kr) which is a factor in
the function y/om,, cf. Appendix B, in a power series as [18]

i) =g cq (k)2 @6

Hence g,,(f) can be written

4 = Z,O K2 gt Q7

11
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In our case the domain of the integral in Eq. (25) is a flat sub-square. Define a local
spherical coordinate system with origin at the centre of sub-square according to Fig. 9.

Sy

Fig. 9. The local spherical coordinate system used at sub-square when describing
the multipole moments.

The volume integrations in the equations above then become surface integrals and we

denote the surfaces Srand S,,, respectively, in analogy with the volume notation above.
The multipole moments g,,(f) can now be expressed as

GomiD) = K jf() . (°f’s’”"’j ds (28)

sinm¢

. d .
where the coefficients k,,; are given by

d _ 1 (SAZHI (I-m)! ]1/2 P O) 29)

K., =
" cfdr @2deit 2T 2 (e

Here P} is the associated Legendre function and ¢,=2-3,,, [=0,1,...,, m=0,...] and
o=e,o (even,odd).

As our sub-squares are small compared to the wavelength it is numerically efficient to
calculate g,(f) using Eq. (27). The functionals qn(f) do not depend on the wavelength,
hence they can be calculated and stored for a certain sub-function. Moreover, g,(f) can be
calculated analytically for all sub-functions described in Section 3 applying the technique
developed to calculate the static term q,(l)(f) in Ref, [11].

The summations in Eq. (24) have to be truncated in the numerical implementation. When
n and n’ are truncated equally, the reciprocity of the expression (22) is preserved by the
multipole method. Hence, the matrix of Eq. (16) will be symmetric when Galerkin’s
method is used. This leads to increasing efficiency in the numerical treatment.

Special attention has to be paid to the treatment of the matrix sub-elements corresponding
to adjacent sub-squares. In general, Eq. (24) does not hold for these elements, since the
convergence of the multipole expansion cannot be guarantied. Numerical experiments, cf.
[11], show, however, that reasonable accuracy can be obtained.

Self-patch terms

A matrix sub-element containing self-patch terms can be expressed as a power series in

the wave number k. Expand the exponential function included in the free space Green
function as



1klr—r'l z (lklr—r l) (30)

Now, using the notation above, a sub-element can be expressed

[ [rayswe) Garry as' ds = Zk
S Sf a=0 47[(1'

j w(r)* jf(r Y Ir-r1?7lds s (31)
As the sub-squares are small compared to the wavelength, this series converges fast and
is numerically efficient. The integrals can be computed and stored for relevant
combinations of fand w.

The singularity 1/lr—r'l when d=0 can be eliminated by evaluating the inner integral using
a polar coordinate system centred at the field point r.

It should be noticed that for odd values of d the inner integral can be expressed as

0
[faryir-r"as = Teo g1 07 (32)
Ko,d-1

where the notation “r¢” implies that the multipole moments should be evaluated in a
coordinate system centred at the field point r and not at the centre of the sub-square which
is the case in Eq. (28). These shifted multipole moments can easily be calculated from the
non-shifted moments given by Eq. (28) using the translation properties of static
multipoles described in Ref. [11].

5 Calculation of the right side

The multipole approach presented above can be used to simplify the calculation of the
right side of Eq. (16). It is not difficult to see that when the incident electric field Ei» is
due to a known source distribution at finite distance from the scatterer, the technique
described in Section 4 to calculate the matrix elements can be applied to compute the right
side elements of Eq. (16). However, in this paper plane wave incidence is considered and
a related technique is described below.

Plane wave incidence
Define the incident electric field Ei as

Ein(r)=Ey " (33)

This field can be expressed as the field from a point source at infinity.

13
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Fig. 10. Definition of the notation of the space vectors.

The vector R,, denotes the position of the centre of a sub-square S,, which contains the
support of a testing sub-function w, see Fig. 10. The vectors r,, and r,, denote the field
point and the source point, respectively, referring to a local origin at the centre of the sub-
square.

Taking the limit as Ir| — oo the incident electric field can be written

iklr, -1 |

. . —iklR, +r. | wow
En(n= lim Eye "™ 1| &—0u (34)

Ir | —s00 lr,,—r,)

if we identify k = —kf'\;v. This limit is easily seen from the approximations
R, +rl~Ir|+ R, I, (35)
and
I ’ 14 A’
r,—ri=lrl —r,r, (36)

The free space Green function can be expanded in the scalar spherical wave functions, cf.
Eq. (23), as

. ’
iklr,,~r; |

=4k, wi) W) 37)

’
lr,~r,)

The asymptotic behaviour of the spherical Hankel function h(l), cf. the definition of y/iml
in Appendix B and [18], implies

) R

e ’ . -

Vomi(R) = (<) Tz Yul=k) (38)
Finally, using that

R+, =r) ~A R, (39)



as I, — oo, Eq. (34) can be rewritten

. kR, N A
En()=Eg4m e X (=) Wy(r) V() (40)
n
Hence, each testing sub-function w will contribute to the right side of Eq. (16) by

[EnG) wry ds =Eq -4z & X o' R g @)
S n

w

where the vector functional ¢, is defined by Eq. (25).

6 The scattered field

When the source distributions are found by solving the matrix equation (16), the scattered
field can be calculated by Eq. (1). This can be done by simply adding the contributions
from the multipoles described in Section 4. At field points very close to the scatterer
attention has to be taken not to violate the regions of convergence, i.e., if the field point is
inside a circumscribing sphere of one of the sub-squares on the scatterer, the contribution
from that sub-square has to be calculated by other means, e.g., numerical integration.
However, in this paper only the calculation of the far scattered field is addressed.

The far scattered field
Define a vector function F@ by
—ik'r-r’ q

FO= [Jr) e S’ (42)
S

Using the approximation Ir—r1 = IH — 7' in the far zone, the magnetic vector potential,
cf. Eq. (3), can be written

iklr!

A =p Z — F@ (43)

It can be shown that the far scattered field, given by Eq. (1), can be expressed as

iklri
e

- (F@E) - (FF)-P)F) (44)

Esc(r) =iou

Denote by F f(ﬁ the contribution to F (f'\) given by the basis sub-function f with support
in the sub-square Ss. Let the space vector R denote the position of the centre of the sub-
square Sp. Ff(ﬁ can be expressed using the multipole moments associated with the basis
sub-function f. To see this, compare Eq. (42) with the Eqgs. (33) and (41). This results in

F(M) =4n e R Y Y,(r) 4,00 (45)

15
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where the vector functional g,,(f) is defined by Eq. (25).

7 Numerical results

In this paper we have chosen to study the numerical performance by calculating the radar
cross section (RCS). However, the advantages of the basis functions described in
Section 3 are likely to be most accentuated when calculating near field quantities. The
RCS is, however, important in many practical applications and, hence, efficient methods
to compute the RCS is of great interest.

We employ the definition in Ref. [19] for the RCS

2
[Esc|

.2
IE™

o8,¢) = lim 4’ (46)
¥ —o0

where E™ is the electric field of an incident plane wave and E* is the scattered field at the
observation point (r,6,4).
Using Eq. (44) the RCS can be expressed

o’ 1 IFSHF
A |’

o(6,¢) = (47)

The monostatic RCS is calculated using three combinations of basis and testing functions:

LL  Linear (rooftop) basis and testing functions all over the plate.

SL  Singular basis functions at edges and corners, cf. Section 3, and linear testing

functions all over the plate.

SS  Singular basis and testing functions at edges and corners.
As the basis functions are the same as the testing functions in the combinations LL and
SS these methods agree with Galerkin’s method.
The RCS is calculated varying the number of sub-squares from 9 to 256. The results for
four different frequencies, normal incidence, are presented in Fig. 11. Two
corresponding examples of the RCS, grazing incidence, are showed in Fig. 12. The
convergence is, as seen, greatly enhanced when singular basis functions are used.
The basis functions are designed to match the singular properties of the static fields.
Hence, the sub-squares have to be small compared to the wave length. This is clearly
illustrated by the present results. At low frequencies very few sub-squares are needed to
achieve high accuracy, while at higher frequencies the use of few sub-squares give less
accurate values.
It can also be noticed that the SS method converges faster than the SL combination at low
frequencies, while the opposite seems to be the case at higher frequencies. This is not
unexpected as the SS method exaggerate the influence of the sources near the edges and
corners which are dominating at low frequencies but are of less importance at higher
frequencies.
The current distribution on the plate is plotted in Figs. 13 and 14 using 15x15 sub-
squares. The SS distributions are not presented as they are in almost completely
agreement with the SL distributions. When the length of the side is 0.5 A the variation in
the direction transverse to the flow of current still has a typical “static” character while at



1 A the edge behaviour is restricted to a smaller region. It is therefore clear that using just
a few sub-squares, the singular basis functions will not approximate the current
distribution at higher frequencies well.

Fig. 15 shows the calculated monostatic RCS versus frequency. Also shown are
measurements of the RCS presented in Ref. [20]. There is an excellent agreement in the
Rayleigh region but a small difference at higher frequencies. The method described in
Ref. [6] seems to generally produce slightly lower values than ours, probably due to
slower convergence using linear basis functions.

In Figs. 16 and 17 the bistatic RCS is plotted. Two cases of incidence are considered. In
Fig. 16 the incidence is normal to the plate while in Fig. 17 the incident angle is 45
degrees. The polarization of the electric field is in both cases parallel to two of the edges
of the plate (the polarization is perpendicular to the plane of incidence).

The numerical computations presented in this section clearly show the importance of
choosing the appropriate basis functions. The singular basis functions give, in general,
more accurate results and also faster convergence. These phenomena are also born out in
the computations of the current distribution in Fig. 13, where the use of LL functions
leads to anomalies near the edge. The use of singular basis functions does not produce
such irregularities.

8 Summary and conclusions

The method of moments is a well-known approach to solve integral equations. The un-
known function is expanded in a set of basis functions and a testing procedure is applied.
The integral equation is replaced by a truncated matrix equation suited for numerical
treatment. When the unknown function has a singular behaviour, the choice of basis
functions is of great importance, especially in cases where high accuracy is needed.

In this paper we have treated a canonical problem, the electromagnetic scattering by a thin
conducting square plate. We have designed basis functions with correct edge and comner
properties. The electric as well as the magnetic singularities have been taking into
account. A multipole technique has been applied to simplify the calculation of the matrix
elements, the right side of the matrix equation, and the far scattered field. Results have
been presented, illustrating the improvement of the numerical convergence when well-
suited basis functions are used, and thus reducing the truncation size of the matrix.

The presented combination of singular basis functions and the multipole technique may
obviously be applied to a wide range of scattering and transmission problems. The
advantages of the method are likely to be still more obvious when near field quantities are
studied. Investigations in this area are in progress and will be presented in a forthcoming
paper.
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Fig. 11. Calculated values of the monostatic radar cross section, normal incidence,
for 4 sizes of the plate: (a) length of side = 0.1 A, (b) length of side = 0.5 A and on
the following page (c) length of side = 1 A and (d) length of side = 2 1. N is the
number of sub-squares at each side of the plate, i.e., the total number of sub-squares
on the plate is N X N.
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Fig. 12. Calculated values of the monostatic radar cross section, grazing incidence,
for 2 sizes of the plate: (a) length of side = 0.1 4, (b) length of side = 0.5 A. N is the
number of sub-squares at each side of the plate, i.e., the total number of sub-squares
on the plate is N X N.
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Fig. 13. The current density parallel to the incident electric field, i.e., Jy. The mean
values of the current density on the sub-squares in the middle row ransverse to the
direction of the current are shown, i.e., along the y-axis. The length of the side of
the plate is (a) 0.5 A and (b) 1 A. In both cases the plate is divided into 15 x 15 sub-
squares.
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Fig. 14. The current density parallel to the incident electric field, i.e., J,. The mean
values of the current density on the sub-squares in the middle row parallel 10 the
direction of the current are shown, i.e., along the x-axis. The length of the side of

the plate is (a) 0.5 A and (b) 1 A. In both cases the plate is divided into 15 x 15 sub-
squares.
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Appendix A

In the caption of Fig. 7, Section 3, it is claimed that the equipotential lines in Fig. 7
enclose equal amount of current due constant difference of potential between the lines.
The statement will be shown in this appendix.

Suppose we have a surface current density J on a surface S that can be written

J=nx VD (A1)

where 7 denotes the unit normal to S and @ denotes a scalar potential.

Fig. Al

It is obvious from Eq. (A1) that the equipotential lines D=, and P=Pp represent lines
of current, see Fig. Al. The total current / '4p €nclosed by the curves becomes

IAB= _[J/'\lLdl (A2)
L

Using Eq. (A1) and the vector identity
(a X b)c=(xa)b (A3)

the current can be written as
Lip= [ xm) Vo di= [Vodli= b, - @, (A4)
L L

Note that the current /3 is independent of the choice of line L between A and B. Every
line L will give the same result. As the potential difference is constant between the lines
of current in Fig. 7 they enclose the same amount of current.

Appendix B

This appendix contains the definitions of the spherical scalar wave functions and the
translation matrix P,,. An exhaustive review of the transformation properties of the
scalar wave functions can be found in Ref. [17].



The spherical scalar wave functions
The spherical scalar wave functions are defined as

Yot (F) = jy(kP) ¥ i) (B1)
Yo (r) = BV kr) ¥ giP) (B2)

where jj is the spherical Bessel function, h;l) the spherical Hankel function of the first
kind and Y, is the spherical harmonic defined by

€, 21+1 (I-m)! /2
e

Here P]" is the associated Legendre function and g,=2-3,, ,/=0,1,..., m=0,...I and

0=¢e,0 (even,odd). We employ the definitions in Ref. [18] for the Bessel, Hankel and
associated Legendre functions.

The translation matrix P,
Using spherical coordinates with R = (R,7,¢) the matrix P, (R) is given by [17]

P ot om1(R) = (-1)m’ B, mAR,M) cos(m-m’)@

+ (-1)° By R, 1) cos(m+m) (B4)
Pomt,cmt®) = (-1 By (R,1) sin(m-m")

+ By (R,M) sin(m+m") e oc=0 (BS)

(-1)6={ 1 O=e¢e

1 o=0

where

and
I+0

, NV )
By mr®R1) = (-1 (8"‘%) ¥ (DY 0401y
A=IL-11

o (RD@IADAtnmNN2 pm 2N 1 A
( (A (m-m))! J (00 0)(m ' mm)

x hy (k R) P™"™ (cos) (B6)

The definition of the Wigner 3-j symbol ( ' ) can be found in, e.g., [21].
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