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Experimentally activated immune defence in female
pied � ycatchers results in reduced breeding success
Petteri Ilmonen1*, Terho Taarna1 and Dennis Hasselquist2

1Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku, Finland
2Department of Animal Ecology, Ecology Building, S-223 62 Lund, Sweden

Traditional explanations for the negative ¢tness consequences of parasitism have focused on the direct
pathogenic e¡ects of infectious agents. However, because of the high selection pressure by the parasites,
immune defences are likely to be costly and trade o¡ with other ¢tness-related traits, such as reproductive
e¡ort. In a ¢eld experiment, we immunized breeding female £ycatchers with non-pathogenic antigens
(diphtheria^tetanus vaccine), which excluded the direct negative e¡ects of parasites, in order to test the
consequences of activated immune defence on hosts’ investment in reproduction and self-maintenance.
Immunized females decreased their feeding e¡ort and investment in self-maintenance (rectrix regrowth)
and had lower reproductive output (£edgling quality and number) than control females injected with
saline. Our results reveal the phenotypic cost of immune defence by showing that an activated immune
system per se can lower the host’s breeding success. This may be caused by an energetic or nutritional
trade-o¡ between immune function and physical workload when feeding young or be an adaptive
response to `infection’ to avoid physiological disorders such as oxidative stress and immunopathology.

Keywords: cost of immune defence; ecological immunology; Ficedula hypoleuca;
host^parasite interactions; life-history trade-o¡s; parental e¡ort

1. INTRODUCTION

Life-history theory assumes that there is a trade-o¡
between an organism’s current reproductive e¡ort and its
future survival and reproductive success (Ro¡ 1992;
Stearns 1992). This concept of the costs of reproduction
is based on physiological trade-o¡s between resource-
demanding functions within an individual. Recently, the
costs of immune defences, traits essential for an
organism’s survival in pathogenic environments, have
been emphasized (Sheldon & Verhulst 1996). Allocation
decisions between reproductive e¡ort and immune
defence are suggested to be targets for optimizing
selection, favouring individuals which allocate their
resources in a way which maximizes their lifetime repro-
ductive success.

Parasites are often known to reduce the reproductive
success of their avian hosts (Loye & Zuk 1991; MÖller
1997). The decreased reproductive output of hosts can
either be a direct pathogenic e¡ect of the parasite or a
consequence of the adaptive adjustment of reproductive
e¡ort to reduce the indirect negative impact of the para-
site on the host’s physiology (Forbes 1993; MÖller 1997).
Traditional explanations for how parasites a¡ect hosts are
that parasites cause dysfunction of somatic systems and
reduce metabolic e¤ciency (e.g. Schall et al. 1982;
Thompson 1990; Chapman & George 1991) or that para-
sites deplete resources essential for host reproduction and
self-maintenance (Connors & Nickol 1991). However, as
parasites evidently exert high selection on hosts, it is
probable that immune defences have evolved to such an
extent that they become costly (Keymer & Read 1991;
Sheldon & Verhulst 1996). However, direct evidence for
costly immune defences is still lacking.

In this study, we experimentally investigated the costs
of mounting an immune response on the parental e¡ort
and breeding success of the hosts. We challenged breeding
female pied £ycatchers (Ficedula hypoleuca) with novel anti-
gens and measured their investment in reproduction and
somatic functions (immune response and feather
regrowth). By using killed pathogens (human diphtheria^
tetanus vaccine) we excluded the direct negative e¡ects of
parasites and, thus, tested only for the e¡ects of activating
the host immune defence.

We also wanted to study whether the costs of activating
immune defence depend on environmental stress, as any
trade-o¡ is more likely to be uncovered in stressful condi-
tions (Tuomi et al. 1983; Bell & Koufopanou 1986). For
this, we carried out the experiment within two subgroups
of a population of £ycatchers, one breeding close to and
the other breeding far from a copper smelt, i.e. in high-
and low-pollution stress environments, respectively.

2. MATERIAL AND METHODS

(a) Study species
The pied £ycatcher is a small (ca. 12^13 g) insectivorous

passerine bird which ranges over most of northern and eastern
Europe. Males arrive at our study area from wintering grounds
in West Africa in May, approximately one week earlier than
females. In our study population egg laying starts at the end of
May and females lay a clutch of three to nine eggs (mean of six
eggs). The female incubates alone for approximately two weeks.
Both sexes feed the young, which £edge at the age of 14^16
days. Females rear only one brood per breeding season.

(b) Study area
The study was conducted in the surroundings of the city of

Harjavalta (618200 N, 228100 E), south-west Finland in 1998. The
study was carried out in two areas; at six sites within 3 km of a
copper smelter complex (centre) and at another six sites more
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than 5 km away from the smelter (background). Each site
contained 30^50 nest-boxes, in total 490 nest-boxes. Elevated
heavy metal concentrations occur at the sites in the centre area
due to the current and long-term e¡ects of atmospheric deposi-
tion from the copper smelter. The metal contents decrease expo-
nentially with increasing distance from the factory complex and
approach normal background levels at sites greater than 5 km
from the centre (e.g. Jussila & Jormalainen 1991; Koricheva &
Haukioja 1995). Pied £ycatchers breeding in the centre su¡er
from low breeding success (Eeva & Lehikoinen 1996; Eeva et al.
1997) and they have reduced survival rates (Eeva & Lehikoinen
1998) compared to birds breeding in the background area. The
two-area design, together with the fact that the breeding season
in 1998 was exceptionally rainy, with the highest monthly rain-
fall in June during the last ten years (unpublished data from
Peipohja Meteorological station), provided a good opportunity
of investigating possible allocation trade-o¡s, because organisms
are more likely to face such trade-o¡s under environmental
stress (Tuomi et al. 1983; Bell & Koufopanou 1986).

(c) General methods
Nest-boxes were visited at least once a week to determine the

clutch initiation date, clutch size, hatching date and the number
of hatched and £edged young. Females were captured a ¢rst
time ¢ve days before their clutch hatched. To investigate the
ability of the females to allocate resources for self-maintenance,
we removed one of their outermost tail feathers. Females were
captured a second time when their chicks were seven days old
and a third time when their chicks were 13^14 days old (close to
£edging). Parents and 13^14-day-old chicks were ringed,
weighed to the nearest 0.1g with a Pesola spring balance and
their tarsus length measured to the nearest 0.1mm with sliding
callipers. As a measure of female body condition, we used the
ratio of body mass on tarsus length. Female subcutaneous fat
was scored into ¢ve classes (0^4) following Busse & Kania
(1970). We used the mean body mass of 13^14-day-old chicks
and £edging success (the number of £edglings per hatched
young) as a measure of female reproductive success.

(d) Immunization protocol
Females with clutch sizes of ¢ve to seven eggs were immu-

nized ¢ve days before the expected hatching day of their clutch
by intramuscular injection in the pectoral muscle with 100 ml of
diphtheria^tetanus vaccine (Finnish National Public Health
Institute; diphtheria 38 Lf (limit of £occulation) and tetanus
10 Lf, mixed with the adjuvant aluminium phosphate at
1.0 mg ml71). Control females with similar laying dates
(mean § s.e. for females in the centre area, vaccine group
29.20§1.64 and control group 31.21 §1.64 and mean§ s.e. for
females in the background area, vaccine group 32.20§1.58 and
control group 31.64 §1.64; 1 ˆ 1 May) and clutch sizes
(mean § s.e. for females in the centre area, vaccine group
6.33 § 0.19 and control group 6.29 § 0.20 and mean s.e. for
females in the background area, vaccine group 6.00 § 0.19 and
control group 5.93 § 0.19; in both cases the e¡ects for the main
factors and their interaction in two-way ANOVAs were non-
signi¢cant) were injected with 100 ml of saline. Females were
blood sampled (120^150 ml in heparinized capillary tubes by
brachial venipuncture) prior to injection and 12^13 days after
the injection (when their chicks were approximately seven days
old) to measure activation of the humoral immune system. The
blood was transferred into Eppendorf tubes containing 3 ml of
heparin. The tubes were immediately stored in an icebox and

centrifuged within 3 h at 3000 rpm for 8 min. Plasma was
extracted and stored at 720 8C until later enzyme-linked
immunosorbent assay (ELISA) analysis.

(e) ELISA assay
We measured humoral immune system activation as the

antigen-speci¢c antibody levels in the females’ sera using an
ELISA previously developed for red-winged blackbirds (for
details of the methods, see Hasselquist et al. (1999)), and this
assay has also been proved to work with high accuracy for other
passerines (D. Hasselquist, unpublished data). This ELISA
method provides sensitive measures of the amount of passerine
antibodies which speci¢cally bind to a certain antigen (here
diphtheria or tetanus toxoid).

Ninety-six-well ELISA plates were ¢rst coated with antigen
(diphtheria or tetanus toxoid). Diluted pre- and post-injection
serum samples from female pied £ycatchers were added to the
wells and the plates were then incubated overnight at 4 8C. After
washing the plates, a secondary rabbit anti-red-winged blackbird
immunoglobulin (Ig) antiserum was added. After a second incu-
bation (1h at 37 8C) and wash, a commercial peroxidase-labelled
goat anti-rabbit-Ig antiserum diluted 1:2000 (cat. A6154,
SIGMA; Sigma-Aldrich Sweden AB, Lund, Sweden) was added
to the plates. Following incubation (30 min at 37 8C) and wash,
peroxidase substrate (2,2-azino-bis-3-ethylbenzthiazoline-6-
sulfonic acid, ABTS; cat. A1888, SIGMA) and peroxide were
added and the plates were immediately transferred to a Vmax
(molecular dynamics) kinetics ELISA reader. The plates were
read at 30 s intervals for 14 min using a 405 nm wavelength ¢lter.
All antibody concentrations are given as the slope of the substrate
conversion (in 1073£ optical densities (OD); mOD) over time
(mOD min71), with a higher slope indicating a higher concentra-
tion of antigen-speci¢c antibodies in a sample.

We used a diluent of 1% powdered milk in 0.01 phosphate-
bu¡ered saline (pH 7.2) to produce 1:1600 dilutions of each pre-
and post-injection serum sample. To avoid between-plate
variation, we ran serum samples from all studied females on
three 96-well ELISA plates for each of the two antigens and
analysed all plates on the same day. Pre-injection serum samples
from each female were run in order to investigate each indivi-
dual’s background level of antigen-speci¢c antibodies. For each
individual, post-injection serum samples were added to the plate
in duplicate and the average of these was our measure of anti-
body titre for each dilution.We ran at least two wells with blank
samples on each plate (these wells were treated in the same way
as the test sample wells except for not adding any bird serum).
As our measure of pre- and post-injection antibody titres of indi-
vidual females, we subtracted the mean value of these blanks
from the measured antibody concentration. We ran three stan-
dard samples covering the range of antibody titres for the
injected females on each plate. We used the di¡erences between
the standard curves to adjust pre- and post-injection antibody
titres to control for between-plate variation.

The antibody production against diphtheria and tetanus in
the post-injection samples was at least two times higher than the
pre-injection samples in all but one case among immunized
females. By investigating the plots of substrate conversion over
time, we con¢rmed that the antibody titres of all individuals
were within the linear range of the ELISA reader.

(f) Monitoring feeding rates
The parental feeding rates (feedings per hour) were docu-

mented with video cameras when the nestlings were ten days old.
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Cameras were placed ca. 10 m from the nest-boxes between 8.00
and 18.00 h. Each nest was monitored for 80 min. Monitoring was
done only during rainless periods. The ¢rst 15 min and last 5 min
of the video recordings were excluded from the analyses to
prevent possible e¡ects of disturbance.

(g) Statistical analyses
To meet the requirements of parametric tests, we log10

transformed the female and male feeding rates and the values of
the antibody titres against diphtheria and tetanus toxoids.
Treatment (vaccination or saline injection) and area (centre or
background) and their interactions were entered into ANCOVA
models. Brood size at the time of the video recordings was used
as a covariate in the analyses of parental feeding rates and
laying date as a covariate in the analysis of £edgling body mass.
The logistic regression procedure in SPSS (Noruµsis 1993) was
used to estimate the likelihood of the rectrix regrowth probabil-
ities of females relative to treatment and area. In logistic regres-
sions, treatment and area were treated as categorical (dummy)
variables. The model with the best ¢t was chosen using back-
ward (stepwise) model selection. The GENMOD procedure in
SAS statistical software (SAS Institute, Inc. 1989) was used to
estimate the likelihood of £edging success (number of £edged
young/number of hatched chicks). We used a scale parameter to
control for the e¡ects of over-dispersion on the binomial
variance (McCullagh & Nelder 1989). Polygynous males and
their nests were excluded from the analyses. All results are
reported with two-tailed probability values.

3. RESULTS

Females immunized with diphtheria^tetanus vaccine
showed a clear increase in both their diphtheria- and
tetanus-speci¢c antibody titres, whereas among the
saline-injected control females their antibody levels
sustained at low, close to initial levels (ANCOVA, initial
level as covariate F1,42 ˆ 4.42 and p ˆ 0.04, e¡ect of treat-
ment on diphtheria F1,42 ˆ 44.1 and p 5 0.001 and least
square mean ( § s.e.) of log10-transformed antibody titres,
saline group 0.04 § 0.09 and vaccine group 0.84 § 0.07;
ANCOVA, initial level as covariate F1,42 ˆ 3.19 and
p ˆ 0.08, e¡ect of treatment on tetanus F1,42 ˆ 125.1 and
p 5 0.001 and saline group 0.31§0.08 and vaccine group
1.40 § 0.06). Neither the area nor the area^treatment
interaction had a signi¢cant e¡ect on the diphtheria- or
tetanus-speci¢c antibody titres (all p-values4 0.1). The
antibody responses for diphtheria and tetanus were highly
correlated within immunized birds (r ˆ 0.62, p 5 0.001
and n ˆ 28).

(a) E¡ects of immunization on female body
condition, fat stores and rectrix regrowth

The treatment, area or their interaction did not have
any signi¢cant e¡ect on female body condition at the end
of the nestling period (ANCOVA, incubation body condi-
tion as covariate F1,42 ˆ 5.13 and p ˆ 0.03, treatment
F1,42 ˆ 0.18 and p ˆ 0.68, area F1,42 ˆ 0.79 and p ˆ 0.38,
and treatment £area F1,42 ˆ 0.13 and p ˆ 0.72) (table 1).

The treatment, area or their interaction did not have
any signi¢cant e¡ect on female subcutaneous fat at the end
of the nestling period (ANCOVA, incubation fat as
covariate F1,42 ˆ 13.76 and p ˆ 0.001, treatment F1,42 ˆ 2.16
and p ˆ 0.15, area F1,42 ˆ 0.00 and p ˆ 0.94, and treatment
£area F1,42 ˆ 0.01and p ˆ 0.93) (table1).

Only 17.0% of females (n ˆ 47) started to regrow
removed tail feathers during the nestling period (table 1).
Control females near the centre had a higher rectrix
regrowth probability compared to immunized females
breeding in the same area (treatment £area w2 ˆ 4.95,
d.f. ˆ 1 and p ˆ 0.03) (table 1).

(b) E¡ects of immunization on parental e¡ort and
breeding success

Immunized females tended to feed their young less
intensively than control females (ANCOVA, brood size
during recordings as covariate F1,39 ˆ 3.35 and p ˆ 0.08,
and treatment F1,39 ˆ 3.77 and p ˆ 0.06) (¢gure 1), but area
(F1,39 ˆ 1.30 and p ˆ 0.26) or treatment£area (F1,39 ˆ 1.33
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Table 1. Body condition (body mass/tarsus length) and subcutaneous fat at the end of the nestling period and percentage of
individuals regrowing their removed rectrix for female pied £ycatchers injected with saline and diphtheria^tetanus vaccine close to the
centre and in the background area in 1998

close to the centre backgroundarea

control vaccine control vaccine

sample size 9 11 13 14
body condition 7.2 § 0.09 7.1 § 0.09 7.3 § 0.07 7.2 § 0.08
subcutaneous fat 0.8 § 0.31 1.2 § 0.29 0.8 § 0.26 1.2 § 0.24
rectrix regrowth (%) 44.4 9.1 15.4 7.1
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Figure 1. Feeding rates (feedings per hour, log10-transformed
least-square means § s.e.) of female pied £ycatchers injected
with saline and diphtheria^tetanus vaccine. The ¢gures
denote the sample sizes.



and p ˆ 0.26) were not signi¢cant. Male feeding rates were
not signi¢cantly a¡ected by treatment (ANCOVA, brood
size F1,39 ˆ 2.80 and p ˆ 0.10, and treatment F1,39 ˆ 2.62
and p ˆ 0.11) or area (F1,39 ˆ 0.08 and p ˆ 0.78), but males of
the vaccinated females in the background area tended to
feed their chicks less intensively than males of control
females (area£treatment F1,39 ˆ 3.59 and p ˆ 0.07).

Vaccinated females produced £edglings in poor condi-
tion (body mass) compared to control females (ANCOVA,
laying date as covariate F1,45 ˆ 5.19 and p ˆ 0.03, and treat-
ment F1,45 ˆ 4.10 and p ˆ 0.05) (¢gure 2), whereas area
(F1,45 ˆ 0.03 and p ˆ 0.86) or treatment£area (F1,45 ˆ 0.72
and p ˆ 0.40) had no signi¢cant e¡ect on £edgling body
mass.

The £edgling success of females (£edglings/hatched
chicks) was a¡ected both by treatment, area and their
interaction (GENMOD, treatment w2 ˆ 12.71, d.f. ˆ 1 and
p ˆ 0.0004, area w2 ˆ 25.82, d.f. ˆ 1 and p ˆ 0.0001 and
treatment £area w2 ˆ 11.27, d.f. ˆ 1 and p ˆ 0.0008)
(¢gure 3). Pairwise comparisons within areas revealed
that, in the background area, vaccinated females
produced signi¢cantly less £edglings than control females
(treatment w2 ˆ 4.88, d.f. ˆ 1 and p ˆ 0.0001), whereas in
the centre area, treatment had no e¡ect on £edgling
success (treatment w2 ˆ 0.01, d.f. ˆ 1 and p ˆ 0.92).

4. DISCUSSION

We investigated the phenotypic costs of mounting an
immune defence by examining trade-o¡s between
immune system activation and reproductive e¡ort.
Breeding pied £ycatcher females which were challenged
with non-pathogenic diphtheria^tetanus vaccine showed
reduced feeding rates compared to control birds injected
with saline. As a result of the reduced female parental
e¡ort, immunized females produced £edglings in poorer
condition compared to control females, manifesting the
cost. Among the birds breeding in the background area
una¡ected by deposition from a copper smelter, vacci-
nated females produced fewer £edglings per hatchling
than control females. The lowered reproductive success of
vaccinated females in the background area may also have

been a¡ected by a reduction in feeding rates by the males
as a response to the vaccination of their females. Among
the birds breeding in the centre area close to the copper
smelter, vaccinated females were less likely to regrow
removed tail feathers than control ones, but there was no
di¡erence in £edging success between female treatment
groups. Although any trade-o¡ between immune defence
and reproduction can be expected to be more pronounced
under stressful rather than benign conditions (Wiehn &
KorpimÌki 1998; Ilmonen et al. 1999; Wiehn et al. 1999),
the exceptionally rainy breeding season in 1998 (see ½ 2)
may have made the conditions bad enough for birds
breeding in the background area. However, near the
smelter the e¡ects of our immune challenge were
apparently overridden by stronger e¡ects of heavy metal
pollution on nestling mortality.

The most straightforward explanation for the observed
reduction in parental e¡ort and rectrix regrowth of vacci-
nated females is that experimental activation of the
humoral immune defence decreased the females’
resources available for other functions. As we excluded
the direct negative e¡ects of parasitism on host resources
by using non-pathogenic antigens, our study shows that
activation of the immune defence can be costly per se. This
is in agreement with the general belief among evolu-
tionary ecologists that immunological defences against
pathogens compete for the host’s resources (energy and
nutrients) needed for other resource-demanding
processes, such as reproduction and self-maintenance
(Keymer & Read 1991; Sheldon & Verhulst 1996).
Recently, there has been some direct and indirect
evidence for the physiological costs of immune function
(for a review, see Lochmiller & Deerenberg (2000), but
also see Klasing (1998)) and it has been shown that
increases in a birds’ parental e¡ort can result in immuno-
suppression (Deerenberg et al. 1997; Nordling et al. 1998;
Moreno et al. 1999). All this evidence supports the idea
that both immune defence and reproductive e¡ort may
not be maximized simultaneously within an individual.

However, the strongest evidence for energetic costs of
immune defence so far comes from the biomedical
literature and is mainly based on studies of human or
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laboratory mammal models (see the review in Lochmiller
& Deerenberg (2000)) and, thus, may not be extended to
¢eld situations on wild birds. In the only study where
energetic costs of mounting an immune response has been
measured in wild birds, Svensson et al. (1998) found no
increase in the basal metabolic rates (BMR) of blue tits
(Parus caeruleus) immunized with diphtheria^tetanus
vaccine as compared with saline controls. This and other
results have made several authors suggest that mechan-
isms other than energy limitation should be examined as
possible explanations for the trade-o¡ between immune
defence and reproduction e¡ort (Klasing 1998; RÔberg et
al. 1998; Svensson et al. 1998; Von Schantz et al. 1999).
Alternative or additive to the energetic cost scenario is
the fact that immunized pied £ycatcher females reduced
their reproductive e¡ort in order to avoid oxidative stress
caused by deleterious free oxygen radicals (see Von
Schantz et al. 1999) or the risk of immunopathology
(RÔberg et al. 1998; Svensson et al. 1998). Hence, by redu-
cing parental workload individuals could avoid immuno-
pathological e¡ects when mounting an immune response
against the vaccine or during an infection they could
decrease their net production of free radicals (see Coyle
& Puttfarken 1993; Liebler 1993; Packer et al. 1994) and,
thus, keep oxidative stress within critical limits for the
body to function without disorders.

Whatever the physiological mechanisms for the
observed reduction in parental e¡ort of immunized
female pied £ycatchers, hosts are expected to alter their
current reproductive e¡ort adaptively in order to mini-
mize the negative e¡ects of parasitism on their lifetime
reproductive success (Forbes 1993). If so, the bene¢ts in
terms of lifetime reproductive success have to o¡set the
short-term costs. On the one hand, immunized females
paid the cost of mounting an immune response by
producing fewer o¡spring of poorer quality. However, the
bene¢ts of reduced parental workload may, during a real
pathogen challenge, accrue if it allows an increased para-
site resistance. The contracted infection will be kept
under control, allowing parent birds to produce at least a
few o¡spring during the current reproductive event and
at the same time increase the prospects for survival and
successful future reproduction. Furthermore, due to the
development of long-term immunological memory after
initial exposure, subsequent re-exposure to the same
pathogen results in enhanced e¤ciency in defence
response (e.g. Wakelin & Apanius 1997), most likely with
positive e¡ects on hosts’ lifetime expectations.

Our results suggest that birds, as a response to
exposure to parasitism, can reduce their investment in
self-maintenance and parental e¡ort, in the latter case
even at the expense of current reproductive success. More
speci¢cally, we were able to show that an activated
immune system per se can lead to reduced investment in
parental e¡ort and other somatic functions and, hence,
the phenotypic costs of immune defence. No doubt, future
studies will show the proximate mechanisms behind the
observed trade-o¡s and the possible genotypic basis for
the costs of immune defence.
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