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Summary

To contribute to an understanding of the evolutionary
processes that shape variation in immune responses, we
compared several components of the innate and acquired
arms of the immune system in five related, but ecologically
diverse, migratory shorebirds (ruff Philomachus pugnax
L., ruddy turnstone Arenaria interpres L., bar-tailed
godwit Limosa lapponica L., sanderling Calidris alba
Pallas and red knot C. canutus L.). We used a
hemolysis—hemagglutination assay in free-living
shorebirds to assess two of the innate components (natural
antibodies and complement-mediated lysis), and a
modified quantitative enzyme-linked immunosorbent
assay in birds held in captivity to assess the acquired
component (humoral antibodies against tetanus and
diphtheria toxoid) of immunity. Ruddy turnstones showed

the highest levels of both innate and acquired immune
responses. We suggest that turnstones could have evolved
strong immune responses because they scavenge among
rotting organic material on the seashore, where they might
be exposed to a particularly broad range of pathogens.
Although ruffs stand out among shorebirds in having a
high prevalence of avian malaria, they do not exhibit
higher immune response levels. OQur results indicate that
relationships between immune response and infection are
not likely to follow a broad general pattern, but instead
depend on type of parasite exposure, among other factors.

Key words: complement, habitat selection, humoral response,
immunocompetence, immunoecology, natural antibodies, scavenging,
shorebirds, wetlands, wildlife disease.

Introduction

The immune system is one of the most important defense
mechanisms of vertebrates for protection against pathogens
and parasites (e.g. see Zuk and Stoehr, 2002; Schmid-Hempel,
2003). Besides the obvious benefits, immune responses also
convey costs, including greater risk of autoimmune disease
(Réberg et al., 1998; Finch and Crimmins, 2004) and the
depletion of energy that could otherwise be used in other
activities (Nelson et al., 2002). Such costs, which potentially
even reduce survival (Hanssen et al., 2004), will mould the
evolution of the immune defence (e.g. Raberg et al., 2000).
Therefore, maximising parasite resistance must be balanced by
minimising damage to the host (Raberg et al., 1998; Segel and
Bar-Or, 1999). This benefit/cost balance should depend on
environmental conditions. For instance, relative benefits will
increase with parasite density or parasite diversity (Réberg,
2002), while in habitats with high rates of infection, repeated

activation of the immune response might select for strategies
that minimise the risk of collateral damage and place a
premium on optimising the immune responses (Segel and Bar-
Or, 1999). The balance between benefit and cost is likely to
lead to variation in immune response and indeed, within
individuals of the same species, the immune function can vary
with sex, age and season (Hasselquist et al., 1999; Duffy et al.,
2000; Lorenzo and Lank, 2003; Nelson et al., 2002). In
comparisons between species, immune response variation may
also reflect the optimization of phenotype responses to the
environment (Ricklefs and Wikelski, 2002); variation among
species might thus represent phenotypic plasticity or
genotype—environment interactions.

In vertebrates, the immune system consists of two arms, a
non-specific, innate arm and a more specific, acquired arm
(Male and Roitt, 2000; Doan et al., 2005). The innate immune
system provides initial protection to a wide variety of foreign
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organisms. The acquired immune system confers delayed, but
more specific, protection against foreign antigens; in the blood
stream it acts through specific antibodies that attach to its target
pathogen. Higher levels of one component of the immune
system need not imply greater overall resistance (Adamo,
2004); hence one should strive to assay the different parts of
the immune system. In the present study, we collected several
measurements of both the innate and the acquired (humoral)
arm of the immune system.

Migratory shorebirds share many of the life-history traits
that are thought to correlate with well-developed immune
response, such as low reproductive rate and relatively long
lifespan (Tella et al., 2002). However, this group of birds also
varies with respect to migration strategy, habitat choice and
foraging style (Piersma, 2003). While migration strategies
might affect immune response through competition for limited
energy resources (Piersma, 1997; Mgller and Erritzge, 1998),
habitat choice also can create differences in disease risk
(Moore, 2002; Mendes et al., 2005). In effect, while positive
relationships between disease risk and immune response have
been found in several studies (Lindstrom et al., 2004; Apanius
et al., 2000), the relationship between migration and immunity
may prove to be more difficult to uncover.

In this study, we use a combination of immunological assays
that measure different branches of the immune system (innate
as well as acquired) in a comparative and experimental study
of five related Scolopacidae, including four Arctic-breeding
and coastal wintering species: red knot Calidris canutus
Linnaeus 1758, bar-tailed godwit Limosa lapponica Linnaeus
1758, sanderling Calidris alba Pallas 1764 and ruddy turnstone
Arenaria interpres Linnaeus 1758, and the temperate-breeding
ruff Philomachus pugnax Linnaeus 1758. Unlike the other
species, the ruff is confined to freshwater wetlands year-round.
Ruddy turnstones breed at more southerly latitudes than the
other marine wintering species and they routinely scavenge
among human and other refuse along seashores (Piersma et al.,
1996). Among coastal shorebirds, ruddy turnstones seem to be
particularly affected by wildlife diseases (Hansson, 2003), as
are species using freshwater habitats in the tropics, such as ruff
(Mendes et al., 2005).

Materials and methods

Wild shorebirds were caught along the East Atlantic
flyway (Smit and Piersma, 1987; van de Kam et al., 2004).
Coastal/marine shorebirds were caught at night with mistnets
in the Parc National du Banc d’ Arguin, northern Mauritania,
ca. 20°N,16°W, during November—December 2002 and in the
western Wadden Sea, The Netherlands, 53°,5°E, between
1999 and 2002 during northward and southward migration,
and also during winter. In addition, we captured birds during
the day using so-called ‘wilsternets’ (see Jukema et al., 2001)
in the meadows of the Dutch province of Fryslan (ca. 53°N,
5°30'E) in April-May 2002. In total, we caught 54 red knots,
33 sanderlings, 15 ruddy turnstones, 8 bar-tailed godwits and
12 ruffs. Birds captured with wilsternets were bled within ca.

10 min after capture; those captured in mistnets within ca.
3 h.

Individuals of all five species to be held in captivity were
caught in The Netherlands during the nonbreeding season.
Three species were caught with mistnets at night during
southward migration in the western Wadden Sea (53°16'N;
5°08’E): 10 red knots of the African wintering subspecies C.
c. canutus and 11 sanderlings in July—August 2001, and two
sets of ruddy turnstones, the first group with 24 individuals
during August 2001 and the second with 11 individuals during
November 2002, after post-breeding moult in the Wadden Sea
(Meltofte et al., 1994). Fourteen bar-tailed godwits and ten
ruffs were trapped with wilsternets in daytime during
northward migration (Jukema et al., 2001). The bar-tailed
godwits were caught in meadows on the island of Texel
(53°05'N, 4°75'E) in May 2001, and the ruffs, in the province
of Fryslan during April-May 2003. All birds were individually
ringed, measured, weighed and aged as being in their first year
of life or older on the basis of plumage characteristics (Prater
et al., 1977).

Measuring immune responses

We chose assays to examine both the innate and the acquired
arms of the immune system. Innate immunity was investigated
in free-living individuals by measuring two of its most
important components, i.e. natural antibodies and the
complement cascade (Matson et al., 2005). Natural antibodies
recognise and attach to invading organisms and are also
responsible for initiating the complement cascade (Ochsenbein
and Zinkernagel, 2000). The complement cascade recognises
and kills extracellular foreign organisms (Wilson et al., 2002).
To assess the acquired immune response, we challenged wild
birds kept under identical aviary conditions with two antigens
widely used in immunoecology studies, i.e. tetanus and
diphtheria toxoid (inactivated toxin; e.g. Svensson et al., 1998;
Réberg et al., 2003; Hanssen et al., 2004). In the present study,
we considered antibody binding separately before vaccination
and after primary and secondary immune responses, because
these involve different mechanisms and molecules (Doan et al.,
2005). In the humoral immune response, specific antibodies are
responsible for neutralizing the intracellular pathogens by
blocking cell binding/entry and preventing the spread of
pathogenic organisms; they also neutralize toxins produced by
bacteria such as diphtheria and tetanus (Roitt et al., 2000).

Hemolysis—hemagglutination assay in free-living shorebirds

A blood sample of ca. 160 .l was obtained by puncturing
the brachial vein of wild shorebirds with a sterile 23-gauge
needle; blood was collected in two 80 wl heparinized
microhematocrit capillary tubes. Samples were stored on ice
and were centrifuged for 10 min at 6900 g within 2 h. Plasma
was stored at —20°C until analysis at the University of
Missouri-St Louis.

To estimate the levels of circulating natural antibodies and
complement we used the hemolysis—hemagglutination assay
described in detail by Matson et al. (2005). The agglutination
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reaction measures the interaction between natural antibodies
and antigens, which results in blood clumping. The lytic
reaction measures the amount of hemoglobulin released from
the lysis of exogenous erythrocytes (e.g. rabbit), which is a
function of the amount of lytic complement proteins present in
the sampled blood. In both cases, quantification is achieved by
serial dilution of plasma samples and assessment of the dilution
step at which either the agglutination or lysis reaction stopped.
For this assay, we placed 25 wl of plasma in six of the eight
wells of the first row of a 96-well polysterene plate (Corning
Costar #3795, Corning, NY, USA; 8 columns by 12 rows). The
same amount of 0.01 mol I"! sterile phosphate solution (PBS;
Sigma #P3813, St Louis, MO, USA) was set in the first well
to serve as the negative control; 25 pl of plasma of a well-
known high responder (a chicken standard sample) was added
to the last well as a positive control. Next, we used a multi-
channel pipette to dilute with PBS all six plasma samples, the
negative control and the positive standard sample up to 1:1024,
through a set of ten 1:2 serial dilutions. After the addition of
25 wl of 1% of rabbit blood cell suspension to each well, each
plate was sealed with a polystyrene plate lid. Plates were
vortexed for 10 s at a low speed, and set to incubate at 37°C
for 90 min. After incubation plates were tilted at a 45° angle
along their long axis for 20 min at room temperature, then
plates were scanned (Microtek Scanmaker 5900, Carson, CA,
USA) using the positive transparency (top-lit) option and a
full-size image (300 d.p.i.). We then quantified agglutination
(which gives a measure of natural antibody levels) and
complement-mediated lysis by assessing the dilution stage (on
a scale from 1 to 12) at which these two reactions stopped (for
further details, see Matson et al., 2005).

Humoral immune assays on wild birds held in captivity

With the exception of the 24 ruddy turnstones caught during
August 2001 that were challenged with antigens 5 months after
capture; all other birds were challenged within a month of
capture.

To avoid the possibility of confounding effects of sex and
age on the immune response, we attempted to restrict our
experimental animals to adult females. Upon capture we
selected bar-tailed godwits with the longest bills (Piersma and
Jukema, 1990), red knots and sanderlings with long bills and
the clearest brood patches (Nebel et al., 2000), and small-sized
ruffs (van Rhijn, 1991). There are no external criteria for
distinguishing female ruddy turnstones, and therefore we
determined sex by a molecular PCR-DNA technique verified
for red knots (Baker et al., 1999), and tested for sex and age
differences in the group with enough individuals to compare
between sexes or ages, the first group of ruddy turnstones (9
males and 15 females; 10 adults and 14 juveniles). We found
no differences in diphtheria antibody levels between males
and females or between first year and older birds (sex:
repeated-measures ANOVA: F;20=0.13; P=0.73; age:
F120=0.29; P=0.60; sexXage: Fj0=1.22; P=0.28) or in
tetanus antibody levels (sex: repeated-measures ANOVA:
F120=0.11; P=0.75; age: F;30=0.63; P=0.44; sexXage:

F10=0.42; P=0.52). Therefore, in the context of interspecific
comparisons, sex and age differences in antibody production
are probably negligible.

Birds were kept in single-species flocks in large aviaries at
the Royal Netherlands Institute for Sea Research (NIOZ) under
the ambient natural light:dark cycle. The size of the aviaries,
which had running freshwater and seawater, ranged from
I mX3 m and 2.5 m high, to 7mX7 m and 3.5 m high. Bar-
tailed godwits, red knots, sanderlings and ruddy turnstones
were fed trout pellets ad [libitum, and ruffs also received
mealworms Tenebrio sp. By 2 weeks after capture, body mass
had stabilised and we presumed that birds had acclimated to
captivity. At the time of testing, body masses as a percentage
of the level at capture were 81+11% for bar-tailed godwits
(mean capture mass=316 g, N=14), 87t11% for red knots
(mean=137 g, N=10), 86+£14% for sanderlings (mean=52 g,
N=11), 90£15% for the first group of ruddy turnstones
(mean=117 g, N=24), 98+£14% for the second group of ruddy
turnstones (mean=114 g, N=11), and 98+8% for the ruffs
(mean =108 g, N=10).

Primary immune responses were elicited through
vaccination with 120 pl of the combined tetanus and diphtheria
toxoid in the pectoral muscle using a 0.5 ml sterile syringe (for
further details of procedures, see Hasselquist et al., 2001).
Secondary immune responses were elicited through a second
vaccination with 100 wl of the same vaccine combination.
Blood samples were taken prior to the first injection, and with
the exception of the second group of ruddy turnstone, which
were sampled 1 week later, at day 14 after the first injection
and day 7 after the second injection, respectively (Feldman,
2000; Hasselquist et al., 1999, 2001; Owen-Ashley et al.,
2004). Blood was centrifuged for 12 min at 6900 g and the
plasma preserved at —30°C until analysis.

Antibody levels against tetanus and diphtheria toxoid were
determined by using a modified quantitative enzyme-linked
immunosorbent assay (ELISA; Hasselquist et al., 2001).
Individual polysterene 96-well plates (Costar) were coated
with either a diphtheria toxoid or with a tetanus toxoid {both
diluted to 3 pgml™' with 0.06 mol1I™! of carbonate buffer
[37ml NaHCO; (1moll!) mixed with 13 ml Na,COs
(1 mol I'Y) diluted in dH,O to a total volume of 200 ml], at
pH 9.6} and left to incubate overnight at 4°C. After washing
three times with a buffer (0.01 mol I"! PBS containing 0.05%
Tween 20), all plates were blocked with 3% milk powder,
diluted in the same buffer, for 2 h at room temperature. Plates
were then washed twice and 100 wl of a 1:1600 diluted plasma
sample was added (plasma was diluted in a 1:2 serial dilution
with 1% milk powder mixed in PBS/Tween20) and left
incubating overnight at 4°C. After three buffer washes, 100 .l
of a 1:1000 diluted rabbit anti-passerine Ig antibody (produced
against redwinged blackbird Agelaius phoeniceus antibodies;
Hasselquist et al., 1999) was added to the wells and left to
incubate for 1 h at 37°C. Plates were washed again two times
and a diluted peroxidase-labelled goat anti-rabbit antibody
(Catalogue no. A 6154, Sigma) was added and incubated for
30 min at 37°C. Plates were washed twice and thereafter the
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substrate solution [200 wl of 0.2 mmol I"! ABTS (Catalogue
no. A 1888, Sigma) and 80 pl of 30% H,0, (diluted 1:40 in
distilled H,O) mixed in 20 ml of citrate buffer, pH 4.0] was
added to achieve colour reaction. We used a Vmax microplate
reader (Molecular Devices, Sunnyvale, CA, USA) to read the
kinetics of colour reactions at 405 nm every 30 s for 14 min.
Calculation of antibody titers was based on the slope of the
substrate conversion, in millioptical density units min™'
(mOD min™).

Statistical analysis

All samples from the specific antibody measurements were
run in duplicate. Repeatability (intersample variability) was
estimated as a percentage of the total variability; interplate
variability was based on the series of diluted reference samples
(1:600 to 1:76800) run on each plate. Intersample variability
was 2% and interplate variability was 16%. We used the
average values of the duplicate samples in all analyses. To
account for interplate variation we adjusted all values to be
comparable with a reference plate, using plasma from one red
knot (known to be a high responder) as reference sample on
all plates.

Natural antibody data were log,-transformed, to achieve
normality (samples were 1:2 serial diluted). We tested for
interspecific differences in natural antibody levels with
analysis of covariance (ANCOVA), with body mass entered as
a covariate. Complement activity data was not normally
distributed, and therefore we used Kruskal-Wallis (multiple
species) and Kolmogorov—Smirnov tests (two species), to test
for interspecific differences (Sokal and Rohlf, 1995).

Humoral antibody titers were logo-transformed to normalize
the residuals (Sokal and Rohlf, 1995). We accounted for the
unwanted variability caused by interspecific differences in body
mass by using an ANCOVA, with body mass entered as a
covariate. Furthermore, to identify which species exhibited the
highest antibody response, we performed a post hoc Tukey test.

To investigate whether immune responses exhibit a general
pattern, we correlated the different immune measurements at
the individual and the species levels. We used the parametric
Pearson correlation coefficient to determine the relationships
between complement activity and natural antibody levels
(innate components) and between tetanus and diphtheria
humoral response (acquired components). Because the innate
and acquired measurements were taken in different individuals,
we used Spearman rank correlations to see whether species
average response values correlated among and between the two
arms of the immune system. All tests were performed in
SYSTAT 9 for Windows.

Results
Natural antibodies and complement activity of wild birds
Natural antibodies levels only differed among species when
we corrected for body mass (ANCOVA: species Fu 21=1.41;
P=0.23, body mass F| 2;=1.24; P=0.27; speciesXbody mass
Fy4121=2.63; P=0.04; Fig. 1). The level of complement activity
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Fig. 1. (A) Natural antibody levels and (B) complement-mediated
lysis in five species of shorebirds, estimated from the log,-
transformation of the score of the 1:2 serial dilution of the shorebirds’
sera. Natural antibody levels were calculated at the step where
agglutination stops and complement at the step at which lysis stops
(see text for details). Values are means + s.e.m.

varied significantly among species (Kruskal-Wallis U=43.36,
d.f.=4; P=0; Fig.1). The non-parametric Kolmogorov—
Smirnov test revealed that ruddy turnstones had the highest
level of complement-mediated lysis (all species: P<0.05; see
also Fig. 1).

Humoral immune assays on wild birds held in captivity

The two groups of ruddy turnstones differed with respect to
diphtheria pre-vaccination antibody levels (ANCOVA: trial
F131=6.40, P=0.02; body mass F; 3;=2.06, P=0.16) and tetanus
primary immune response (ANCOVA: trial F)3,=4.92,
P=0.03; body mass F;3;=0.15, P=0.70), but not with respect
to the primary immune response against the diphtheria toxoid
(ANCOVA: trial F;3;=0.92, P=0.35; body mass F;3=0.41,
P=0.53), or the secondary immune response (ANCOVA: trial
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F131=0.84, P=0.37; body mass F;3=0.13, P=0.73) (Fig. 2).
The same was true for the pre-vaccination (ANCOVA: trial
F131=0.29, P=0.60; body mass F;3=0.27, P=0.61) and
secondary antibody titers against the tetanus antigen
(ANCOVA: trial F;3,=0.05, P=0.82; body mass F;3=0.22,
P=0.65). Although the absolute magnitudes of these
differences were small compared to the differences between
the shorebird species (Fig. 2), we nonetheless included only the
group of ruddy turnstones that were challenged within a month
of capture in the interspecific analysis.

All species responded positively to vaccination by
producing antibodies against the diphtheria toxoid (repeated-
measures ANOVA: ruff F,3=17.96, P=0; ruddy turnstone
Fr16=111.39, P=0; bar-tailed godwit F;,c=12.39, P=0;
sanderling F20=8.93, P=0; red knot F; ;3=10.11, P=0) and the
tetanus toxoid (repeated-measures ANOVA: ruff F, 5=26.37,
P=0; ruddy turnstone F;;¢=81.26, P=0; bar-tailed godwit
F26=18.26, P=0; sanderling F,»0=14.44, P=0; red knot
F>15=23.92, P=0; see also Fig. 2).

Diphtheria antibody levels differed between species, even
before vaccination (ANCOVA: species F49=4.54, P=0; body
mass Fj49=0.07, P=0.79). The interspecific differences in
diphtheria antibody levels widened during the primary
(ANCOVA: species F447=6.23, P=0; body mass F;47=0.09,
P=0.77) and the secondary immune responses (ANCOVA:
species F447=16.92, P=0; body mass F47=2.95, P=0.09). In
contrast, tetanus antibody levels did not differ between species,
either before vaccination (ANCOVA: species Fj449=1.00,

P=0.39; body mass F| 49=0.29, P=0.59), or during the primary
immune response (ANCOVA: species F447=0.90, P=0.47,
body mass Fj 47=0.06 P=0.82), but they did differ during the
secondary immune response (ANCOVA: species Fy47=9.94,
P=0; body mass F;47=2.68, P=0.11). Post hoc Tukey tests
revealed that the ruddy turnstone had (in the case of
diphtheria), or developed (in the case of tetanus), higher
antibody levels to the same amount of vaccine than the other
species. Pre-vaccination, primary and secondary antibody
levels against diphtheria and secondary antibody levels against
tetanus did not differ among the other species (see also Fig. 2).

Relation between the different immune measurements

The two innate components measured in this study, i.e.
natural antibody level and complement-mediated lysis, were
not correlated (+=0.09, N=127, P=0.17), but the two
measurements of the acquired arm of the immune system
(antibody titers against diphtheria and tetanus) were positively
correlated during pre-injection (r=0.66, N=44, P=0), primary
response (r=0.63, N=54, P=0) and especially secondary
immune response (r=0.82, N=55, P=0).

Even though the correlations between innate and acquired
immune components were based on the data points for the five
species and were never significant at the 5% level, there was a
tendency for a positive correlation between natural and
background antibodies against diphtheria and between
complement activity and secondary tetanus antibody titers
(Table 1).
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Table 1. Spearman rank correlation coefficients (rs) based on humoral immune response values, calculated from the species

averages
Diphtheria Tetanus
Background Primary Secondary Background Primary Secondary
Natural antibodies 0.7 0.1 0.1 0.5 0.4 0.3
Complement-mediated lysis 0.3 0.1 0.4 0.4 0.1 0.7

All correlations were positive, but none were significant at the 5% confidence level; when rg>0.7, then 0.05<P<0.1 (N=5).

Discussion

Although we found considerable interspecific variation in
both innate and humoral immune components, differences
were most pronounced for complement-mediated lysis and
primary and secondary humoral immune responses. This result
suggests that not all immune components are under the same
pressure to be internally regulated. Indeed, the levels of natural
antibodies varied little, even among species with such different
body masses as the sanderling and the bar-tailed godwit. This
is consistent with the idea that natural antibody production
is largely independent of internal and external stimuli
(Ochsenbein and Zinkernagel, 2000). However, although
natural antibodies are present in relatively low densities, they
play an important role in the initial recognition of foreign
particles and they support subsequent defense by the
complement cascade and the acquired humoral response
(Ochsenbein and Zinkernagel, 2000; Turner, 2000). Therefore,
organisms may benefit by maintaining a minimum level of
immunoglobulins, as these molecules likely convey benefits in
terms of earlier detection of parasites. With respect to the
innate immune system, we found no difference between the
five shorebird species in natural antibody levels, whereas ruddy
turnstones showed a higher complement system activity than
the four other species. For the humoral responses of the
acquired immune system, pre-injection, primary and secondary
antibody titers against diphtheria toxoid and secondary
antibody titers against tetanus were higher in ruddy turnstones,
whereas there were no differences in antibody responses
between any of the other shorebird species.

The hemolysis—hemagglutination assay measurements of
natural antibodies and complement activity were well within
the range of values found for other bird groups (Matson et al.,
2005). With respect to the ELISA assay of antibody levels
against tetanus and diphtheria, we found that the primary and
secondary antibody titers in all five shorebird species were
significantly higher than pre-injection values. Hence, despite
the ELISA being designed for passerine birds, it apparently
also works well in shorebirds. Among all five shorebird
species, antibody responses against diphtheria were lower than
those against tetanus, which is in accordance with other studies
on wild birds (e.g. Westneat et al., 2003; Owen-Ashley et al.,
2004).

We did not find any correlation between the two innate
components (natural antibody level and complement-mediated
lysis), nor between innate and acquired components. This

result underlines the problem of obtaining a ‘general’ measure
of immunocompetence and emphasizes the importance of
measuring different aspects of the immune system (Adamo,
2004; Matson et al., 2005). There was a tendency for a
relationship between natural antibodies and background
antibody titers, which suggests that they both might reflect the
basic level of (polyclonal) natural antibodies in the circulation.

Ruddy turnstones stand out as high responders in three of
the four immune measurements taken (complement-mediated
lysis, humoral responses to tetanus and diphtheria toxoid). This
difference is not likely to be explained by phylogeny because
turnstone’s closest relatives (sanderling, red knot and ruff)
were as low responders as the more distantly related bar-tailed
godwit (see Piersma et al., 1996). Thus, the high responder is
embedded in a clade of low responders in our study, and
presumably evolved from a low-response state. Furthermore,
neither habitat choice per se nor migration strategy can explain
the exceptionally strong immune responses observed in the
ruddy turnstone, since this species shares coastal wetlands and
long-distance migration with other low responders, such as the
bar-tailed godwit, the sanderling and the red knot. Ruddy
turnstones do stand out, however, by their scavenging habits.
They often feed on decomposing food remains, including dead
fish and mammals (Piersma et al., 1996), and as a consequence
they are often found close to human settlements, e.g. in
harbours, where they are likely to benefit from an abundance
of such food items. This opportunistic feeding style might
expose them to infections, particularly diseases that are
transmitted by contaminated dead animals, e.g. Avian Cholera
or Herpes virus (Friend and Franson, 2001). Indeed, in the
eastern USA, ruddy turnstones carried 67.5% of Avian
Influenza Virus (AIV) infections, even though they accounted
only for 12.4% of 2162 individuals from 15 different shorebird
species in a study by Hansson (2003).

We suggest that in the nonbreeding season ruddy turnstones
might be exposed to a particularly broad range of disease
organisms, and that they therefore require high responsiveness
in several parts of the immune system. A similar conjecture
was made for populations of the Darwin’s finch Geospiza
fuliginosa, in which islands with the highest prevalence of
avian pox and feather mites supported host populations with
the highest natural and humoral immune responses (antibody
levels; Lindstrom et al., 2004).

It is perhaps surprising that ruffs exhibited low levels of
immune response, as they occur in inland freshwater habitats
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where the likelihood of avian malaria infection is high (Mendes
et al., 2005). This environment presumably would select ruffs
to invest strongly in their immune systems (Piersma, 1997), but
this hypothesis was not supported here. Note, however, that we
did not measure cell-mediated immunity, a type of response
known to be involved in the control of malaria parasites
(Wakelin, 1998; Doan et al., 2005).

To the best of our knowledge, this is the first time that a suite
of immune system measures has been applied to shorebirds in
a comparative study of immunocompetence between species. In
brief, our findings emphasize the need to study several immune
components, preferably from different arms of the immune
system, when assessing ‘general immunocompetence’.
Furthermore, we suggest that the relationships between immune
response and infection patterns are particular, rather than
general, and depend strongly on the range and strength of
exposures and the precise variety of parasite types.
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