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Abstract

A method is presented for the fast and accurate solution of elliptic boundary value
problems on domains with corners. The method is based on integral equations and
Nyström discretization. Close to corners two representations for the solution coexist
– a pointwise representation and a representation in terms of special basis functions.
Mappings and kernel evaluations are constructed on a symmetric corner panel. In a
numerical example the electrostatic equation is solved for an array of square prisms. A
dramatic improvement in efficiency over previous schemes is observed.
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1 Introduction

The determination of potential fields in domains containing geometric singularities is an
important task in computational mechanics. Corners frequently occur in polycrystalline
aggregates, and more generally as a result of geometric simplification in material design.
V-notches, sometimes nearly atomically sharp, and kinks play a crucial role in fracture
mechanics [1, 2, 3].

Domains with corners are easy to draw. It has been more difficult to resolve potential
fields on them. Many standard numerical methods actually fail to give meaningful results
in the vicinity of singularities such as corners [4]. Poor resolution tends to slow down the
convergence rate of most iterative solvers [5].

Solving an elliptic problem on a domain with corners is seldom an ill-conditioned oper-
ation in itself. A small change in the geometry often does not change the solution much.
Furthermore, asymptotically correct or exact solutions for simple geometries can be found
by analytical methods [4, 6, 7, 8, 9]. Now, if simple corner problems are well conditioned
and easy to solve, should it not be possible to find fast and accurate solutions also for corner
problems that are more involved? As we shall soon see, this is indeed the case.

With “brute force” we mean adaptive mesh refinement for the purpose of approximating
a singular function with polynomials. “Brute force” is an expensive way to achieve accuracy.
One somehow needs to incorporate additional information into a numerical method in order
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to get efficiency for corners. Givoli and Rivkin [10] list a few possibilities: Superposition is
an approximate scheme. An assumed asymptotically valid solution is subtracted from the
original problem. A regular problem is left. In the context of the finite element method
one can simply employ singular elements. A more refined approach is to introduce artificial
boundaries. Szabó and Yosibash [11] use an approximate finite element solution as boundary
condition for a complementary problem on a small subdomain around a singular point.
Singular basis functions are then used to solve the complementary problem. Givoli, Rivkin,
and Keller [4] use a Dirichlet to Neuman map as boundary condition between an analytic
singular solution and a regular finite element solution. This last scheme is believed to be
one of the more accurate [4]. Givoli, Rivkin, and Keller [4] report a relative accuracy in
the solution of about 5 · 10−4 for Laplace’s equation in an example which has an analytical
solution. Givoli and Vigdergauz have subsequently extended the method to the Helmholtz
equation [12].

The leading idea of the present paper is in a sense similar to the ideas listed above.
We will rely on knowledge about the asymptotic form of the solution close to the corners.
However, the artificial boundary is avoided. On the mesh, close to a corner, a regular and a
special representation of the solution coexist. The mapping between the two representations
is made efficient by the introduction of a symmetric corner panel. The paper specializes
to the electrostatic PDE in a two-component composite material. For stability reasons the
PDE is reformulated as an integral equation of Fredholm’s second kind. A careful strategy
for the evaluation of the action of an integral operator in different topological situations
is developed. In a non-trivial example the potential and effective properties of a dense
suspension of square prisms is computed with a relative accuracy estimated to be about
5 · 10−13.

The paper is organized as follows: A basic corner problem is solved by variable separa-
tion in Section 2. The transition to an integral equations takes place in Section 3. Basis
functions for corners are constructed in Section 4. Section 5 introduces the symmetric corner
panel, presents mappings, and discusses the evaluation of the integral operator. Numerical
comparison between our new algorithm and “brute force” is given in Section 6.

2 A basic corner problem

A basic corner geometry is depicted in Figure 1. The computational domain D is a closed
disk with a boundary S and local conductivity σ(r). The disk D is divided into a dark
sector D1 with conductivity σ1 and a light sector D2 with conductivity σ2. The opening
angle of D2 is 2β. We seek the potential Ur at position r in the disk subjected to a Dirichlet
boundary condition f(r). The electrostatic PDE can be written

(∇ · σ∇)Ur = 0 , r ∈ D , (1)

Ur = f(r) , r ∈ S . (2)

Variable separation in polar coordinates φ and r shows that solutions to (1) can be found
as functions Φn and Ψn of the form

Φn =

{

rνn cos[νnφ] , r ∈ D2 ,
anrνn cos[νn(π − φ)] , r ∈ D1 ,

(3)
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Figure 1: A disk D is divided into a dark sector D1 with conductivity σ1 and a light sector D2

with conductivity σ2. The opening angle of D2 is 2β.

Ψn =

{

rλn sin[λnφ] , r ∈ D2 ,
bnrλn sin[λn(π − φ)] , r ∈ D1 .

(4)

In equation (3) an and νn are given as the simultaneous solutions to the equations

cos[νnβ] = an cos[νn(π − β)] ,

−σ2 sin[νnβ] = anσ1 sin[νn(π − β)] . (5)

In equation (4) bn and λn are given as the simultaneous solutions to the equations

sin[λnβ] = bn sin[λn(π − β)] ,

−σ2 cos[λnβ] = bnσ1 cos[λn(π − β)] . (6)

The solution to the electrostatic problem (1-2) can be written as a linear combination
of the functions Φn and Ψn. The coefficients in this combination are determined from the
boundary condition (2) by use of an inner product over the boundary S defined for two
functions f1 and f2 on D as

< f1, f2 >=

∫

S
f1f2σdt , (7)

where t is arclength. The calculation of the coefficients simplifies from the observation that
all Φn and Ψn are mutually orthogonal with respect to the inner product (7).

3 Integral equation and effective properties of a suspension

Consider now a doubly periodic suspension of inclusions with conductivity σ2 embedded in
an infinite matrix filler of conductivity σ1. The material’s geometry is defined in a unit cell
taken to be the square Dunit = (−1/2, 1/2] × (−1/2, 1/2]. The area fraction of the filler
and the inclusions is p1 and p2, respectively. The interfaces between all inclusions and the
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filler is denoted Γ. The restriction of Γ to Dunit is Γunit. The outward unit normal on Γ at
arclength t is nt.

An average electric field e of unit strength is applied to the suspension. This means
that

∫

Dunit

∇Urdxdy = e . (8)

The potential Ur in the suspension can be represented on the form [13]

Ur = −
1

2π

∫

Γ

(nt · (rt − r))

|rt − r|2
Urt

dt −
1

2π

∫

Γ

log |r− rt|(∇Urt
· nt)dt , (9)

where rt denotes r(t). In terms of a scaled potential ur defined by

ur =
(σ2 − σ1)

σ1

Ur, (10)

and with the use of Green’s second identity, equations (1) and (8) can be reformulated as
an integral equation of Fredholm’s second kind [14]

(I − K)ur = 2ρ(e · r) , r ∈ Γ . (11)

Here ρ is the material constant

ρ =
σ2 − σ1

σ2 + σ1

, (12)

and K is the compact integral operator defined by

Kur =
ρ

π

∫

Γ

(nt · (rt − r))

|rt − r|2
urt

dt , r ∈ Γ . (13)

The effective conductivity in the direction e can be computed from ur via

σeff = σ1 + σ1

∫

Γunit

(e · nt)urt
dt. (14)

Remark: There are many ways to represent the electric potential Ur in a suspension.
Equation (9) is just a convenient choice. For a detailed study of the computational properties
of different integral equation reformulations of the electrostatic PDE, see Referece [15].

4 Representation of the potential close to a corner

We shall solve equation (11) with a Nyström scheme [16]. This means approximating
integral operators with matrices and solving a system of linear equations via the following
steps

1. The integral in (11) is discretized according to a quadrature rule. We will chiefly
choose 16-point composite Gaussian quadrature.

2. The scaled potential ur and the right hand side of (11) are represented with pointwise
values at quadrature nodes. If we use N quadrature nodes we will have N unknown
values of ur to solve for.
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Figure 2: Two panels with 16 quadrature points. The panel Γr to the left is intented for a part

of the boundary which is smooth. The symmetric panel Γc to the right is intented for a part of

the boundary which contains a corner.

3. It is required that the discretized integral equation should be satisfied pointwise at
all N quadrature nodes. This gives rise to a system of N linear equations for the N
unknown values of ur.

4. The system of N linear equations is solved with any suitable method. We choose the
GMRES iterative solver [17].

Wherever the interfaces are smooth, the potential ur will be polynomial-like and Gaussian
quadrature will do fine in the Nyström scheme.

Close to a corner the the potential ur will not be polynomial-like. Equations (3) and (4)
suggest that ur should be represented by a power series involving the positive exponents
νn and λn. Let us take a corner with opening angle 2β = π/2 as an example. Solutions νn

and λn to equations (5-6) involve integral as well as non-integral numbers. Furthermore, for
some integral values of νn and λn the functions Φn and Ψn will vanish on the corner interface.
From now on, νn and λn will denote the solutions to equations (5-6), in ascending order,
for which Φn and Ψn do not vanish on the corner interface. As an additional representation
for ur on the interface close to a corner we suggest

ur ≈
8

∑

n=1

cnsνn ± cn+8s
λn , (15)

where cn are 16 coefficients, s is the distance from the corner, and ± indicates that different
signs should be chosen depending on if r is on the right or on the left of the corner.

5 The action of K

Figure 2 depicts two quadrature panels Γr and Γc, each containing 16 quadrature points.
The panel Γr belongs to a regular part of the interfaces. The symmetric panel Γc is centered
around a corner. On Γr the points are placed with a spacing determined by the nodes of the
16th Legendre polynomial. On each of the legs of Γc the points are placed with a spacing
determined by the nodes of the 8th Legendre polynomial. In this section we will explain
how to calculate the action of the operator K of (13) on ur for source- and target points on
panels of the types Γr and Γc.

The evaluation of K is trivial when the source points are located on panels of the type
Γr. This holds irrespective of where the target points are. Let Kor be the part of the
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operator K which describes interaction between target points on a panel of the type Γr

and source points on some other panel. We just follow the Nyström scheme with 16-point
composite Gaussian quadrature and write

Kor
ij = K0or

in W 0
nj , (16)

where K0or
in is a straight-forward discretization of the kernel of Kor and W 0

nj is a diagonal
matrix of scaled Gaussian weights.

When the source points are on a panel of the type Γc we distinguish between two cases.
The first case is when the target points are also on that same panel Γc. We call the part of
the operator K which describes this self-interaction Kcc. The second case is when the target
points are on some other segment. We call the part of the operator K which describes this
interaction Koc.

We now show how to calculate the 16 × 16 entries of the two matrices

Kcc
ij , and Koc

ij , i, j = 1, ..., 16 ,

where Kcc
ij is the mapping of K from target point j on a panel of type Γc to source point i

on that same panel, and where Koc
ij is the mapping of K from target point j on a panel of

type Γc to source point i on some other panel.
Some auxiliary mappings are introduced. For a corner panel where each leg has length

unity, let Aij be the mapping from the coefficient cj in the expansion (15) to the corre-
sponding value of ur at points ti on the panel. For that same corner panel, let Bij be the
action of K on the jth basis function in the expansion of (15) evaluated at ti on the panel.
The entries Bij are integrals of the type

ρ

π

∫ 1

0

ti sin(2β)sνjds

s2 + t2i − 2sti cos(2β)
, and

ρ

π

∫ 1

0

ti sin(2β)sλj ds

s2 + t2i − 2sti cos(2β)
. (17)

Let vij and wij , i, j = 1, ..., 8, be the weights at node xi in an 8-point quadrature rule for
computing the integrals

∫

1

0

f(x)xνjdx ≈
8

∑

i=1

f(xi)vij ,

∫ 1

0

f(x)xλjdx ≈
8

∑

i=1

f(xi)vij , (18)

where f is a smooth function. We are now ready to write

Kcc
ij = (BA−1)ij , (19)

and
Koc

ij =
γc

2
K0oc

in (WA−1)nj , (20)

where γc is the arclength of Γc, K0oc
in is a straight-forward discretization of the kernel of

Koc and W is a full 16× 16 block matrix which contains permutations of the 8× 8 matrices
v and w with positive or negative signs.

Note that the entries of the matrix products BA−1, and WA−1 only depend on the
opening angle of the corners involved in a particular problem. They do not depend on the
orientation or on the size of the corner panel. They can therefore be computed and stored
prior to solving the actual PDE.
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Figure 3: A doubly periodic square array of square prisms. The darker background matrix has

conductivity σ1 = 1. The lighter prisms have conductivity σ2 = 100 and occupy an area fraction

of p2 = 0.49.

6 Numerical examples and conclusion

Figure 3 depicts a periodic square array of square prisms. The conductivity of the filler is
σ1 = 1 and of the prisms σ2 = 100. The volume fraction of the prisms is p2 = 0.49. Solving
equation (11) on this geometry is a non-trivial problem in the sense that there is no known
analytic solution and that some prism corners are close to touching. We prefer to test our
method on a non-trivial problem, rather than on one which has an analytical solution. The
reason for this is that we believe that problems which have analytical solutions sometimes
are rather easy to solve also with numerical methods. Especially so if, as in our algorithm,
the numerical scheme makes heavy use of analytical information. As a consequence, high
accuracy for an example which has an analytical solution does not necessarily prove that
a numerical method is efficient. A drawback with testing on non-trivial problems is, of
course, that one does not know the answer in advance. However, there are indirect ways of
estimating accuracy which, when they are compounded, can become quite convincing. Such
ways include test for stability of the solution under overresolution, test for consistency with
analytical relations for functionals on the solution, and comparison with the predictions
of other, well-tested, codes. These indirect ways will be used for error estimation in this
section.

At least three studies have been performed in the past on solutions to the electrostatic
PDE on the geometry of Figure 3. Milton, McPhedran, and McKenzie [18] used a variational
fractional power series approach and determined the effective conductivity to σeff = 5.15.
Hui and Ke-da [19] used a series expansion approach and improved this result to σeff = 5.147.
Helsing [20] used a second kind Fredholm integral equation approach based on a single layer
representation of Ur together with “brute force” and reported σeff = 5.14729406. The code
used in [20] has been extensively tested for accuracy and consistency against analytical
results [20], against Fourier series based computations [20, 21], on large scale geometries [15],
and against bounds for extreme cases [22]. The typical accuracy in σeff for non-trivial but
well-conditioned problems involving smooth interfaces is twelve digits [20, 21].

We use the evaluation techniques of Section 5 to solve equation (11) adaptively with a
Nyström scheme. The GMRES iterative solver [17] is used for the system of linear equations.
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Table 1: Effective conductivity σeff of the square array of prisms depicted in Figure 3. The
background material has conductivity σ1 = 1. The prisms have conductivity σ2 = 100 and
their area fraction is p2 = 0.49. In the table ’points’ denote the number of discretization
points in the unit cell, ’basis’ refers to the method of this paper, “brute” refers to regular
adaptive mesh refinement, and ’iter’ is the number of iterations required by GMRES to
achieve a residual less than 10−14.

points σeff basis iter basis σeff “brute” iter “brute”

64 5.1 11 5 12

320 5.14729 13 5 14

576 5.1472940563 14 5.15 15

832 5.14729405633 16 5.15 16

1088 5.147294056325 17 5.147 17

1344 5.147294056325 18 5.1473 19

1600 5.147294056325 18 5.1473 20

1856 5.147294056325 19 5.14729 20

2112 5.147294056325 20 5.14729 21

2368 5.147294056325 20 5.1472941 22

2642 5.147294056326 21 5.1472941 23

2880 5.147294056327 22 5.1472941 23

3136 5.147294056325 22 5.14729406 25

The applied average electric field e of (8) is taken to be parallel to the x-axis. We start out
with dividing the interface in the unit cell (and all its periodic images) into four panels of
the type Γc, corresponding to 64 discretization points. This gives the estimate σeff = 5.1.
We then proceed to refine the mesh where needed, that is, chiefly in the corners that point in
the direction of the applied field e, and solve again. A convergence study for σeff is given in
Table 1. The converged value σeff = 5.147294056325 was reached with 1,088 discretization
points and did not change upon overresolution up to over 3,000 points. We also performed
calculations with the applied average electric field e rotated an angle of π/4. The local
electric field then becomes quite different, exhibiting equal magnitudes in all four corners
of each prism. With 1, 984, or more, discretization points on the interface we again reached
the converged value σeff = 5.147294056325. The square array of prisms of Figure 3 has an
isotropic effective conductivity tensor.

For comparison Table 1 also shows computations done with “brute force” according to
my algorithm [20] but with the integral equation in [20] replaced by equation (11). As we
can see, the difference in efficiency between the two approaches is substantial, particularly
so in terms of economy of discretization points, but to a lesser extent also in terms of
achievable accuracy. The converged results for σeff in Table 1 agree completely with the
value σeff = 5.14729406 in [20]. We also observe that the convergence rate of the GMRES
iterative solver does not seem sensitive to whether the corner singularity is well resolved or
not.

In Figure 3 we let the prisms have area fraction p2 = 0.49. If we let p2 → 0.5, some
corners will lie very close to each other. The region, near a corner, where the asymptotic
form for ur of equation (15) is a good approximation will shrink due to interaction with a
neighboring prism. The need for resolution grows while our ability to resolve the interface is

8



Table 2: Effective conductivity σeff of a square array of prisms at various area fractions p2.
The background material has conductivity σ1 = 1. The prisms have conductivity σ2 = 100.
The entry ’points’ denotes the smallest number of discretization points in the unit cell
needed for the reported accuracy of σeff . The entry ’iter’ denotes the number of iterations
required by the GMRES solver for that calculation.

p2 points σeff iter

0.49 1088 5.147294056325 17

0.499 1088 6.96143566063 17

0.4999 1088 8.1830855833 16

0.49999 1344 8.944642384 17

0.499999 1600 9.39762485 17

0.4999999 1856 9.6596761 18

0.49999999 2112 9.808851 18

0.499999999 2368 9.89299 18

limited by the IEEE double precision standard. The problem becomes more ill-conditioned.
A study of the behavior of σeff under this limiting process is presented in Table 2. Note
that good accuracy can be achieved also for values of p2 that are rather extreme.

We conclude that it is certainly possible to find geometries for which elliptic problems
are difficult to solve. A very dense suspension is one example. However, the presence of a
geometric singularity, such as a corner, should not cause any additional loss of accuracy.
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