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Technical note: Evaluation of the mode I stress
intensity factor for a square crack in 3D

Johan Helsing* Anders Jonsson! and Gunnar Peters?

December 21, 1999, revised August 8, 2000

Abstract

An algorithm for the computation of mode I stress intensity factors of a square crack
together with an error estimate is presented. The algorithm is based on a hypersingular
integral equation. The leading singular behavior of the crack opening displacement
in the corners is taken into account. The maximum value of the normalized stress
intensity factor, Fiax, is estimated to Fihax = 0.7534 + 0.0002. Previous investigators
have estimated this quantity in the interval Fihax = 0.725 to Fihax = 0.756.
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1 Introduction

Fracture mechanics has traditionally used two-dimensional models in its theoretical develop-
ment [1]. Reasons for this are that such models cover the prediction of the general behavior
of through-thickness cracks in plates and shells, and that powerful mathematical and nu-
merical tools are available. Often, like when studying part-through cracks or embedded
cracks such as delaminations in composites, a full three-dimensional model is required. In
three dimensions the analytical and numerical situation is more complicated.

Elliptical cracks, referred to as penny-shaped cracks, have been thoroughly treated. See,
for example, [2, 3, 4]. Studies of penny-shaped cracks involve numerical calculations of stress
intensity factors [6, 7, 8] and simulations of crack growth [9]. Studies of other crack shapes
are less common. Methods that work well for penny-shaped cracks tend to give poorer
results in more general situations. Rectangular cracks are treated in [10, 11, 12, 13].

Here we focus on a square crack. The non-smooth nature of the crack opening dis-
placement is an obstacle which, if not taken into account, destroys accuracy. Our main
result is an algorithm for the computation of mode I stress intensity factors. The quantity
which is solved for is a reasonably smooth function. Leading singular behavior is captured
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Figure 1: The square crack closed (left) and opened by a uniformly distributed normal stress
at infinity (right).

by a weight. Numerical results with unprecedented accuracy and error estimates are pre-
sented. The problem of computing stress intensity factors in three dimensions is generically
well-conditioned. Very accurate calculations should be possible. At present, however, the
analytical difficulties make it hard to obtain as accurate results as in two dimensions.

2 Background

2.1 Formulation of the general problem

A linearly elastic 3D material with a plane crack in the xy-plane is subjected at infinity
to a uniformly distributed normal stress, o, in the z-direction, see Figure 1. The crack
surface is denoted S and its boundary is denoted 0S. We want to compute the displacement
field inside the material. This problem can be reduced to a hypersingular integral equation

which reads [11, 12, 13]
1 [ u(r)do'
— | - =1, S 1
2 /5 |t/ —r|? r (M)
where u is proportional to the crack opening displacement and do is an infinitesimal area
segment. The integral in (1) should be understood in terms of Hadamard finite parts and
Cauchy principal values [14]. For a square crack with side length 2a the relation between u

and the crack opening displacement ucop is
UCOD = SaUﬁ(l —P)u, (2)

E

where F is Young’s modulus for the material and v is Poisson’s ratio. The relation (2) also

holds for a circle with radius 2a.
Equation (1) is equivalent to the pseudo-differential equation

(—A)2u(r)=—-1, res, (3)

where A is the Laplacian in the plane and (—A)% is a non-local pseudo-differential oper-
ator [15]. From this we conclude that the integral operator in (1) is unbounded. Upon



uniform discretization the corresponding matrix will have a condition number that grows
like N, where 1/N is the distance between two discretization points.

Equation (1) must be accompanied by a boundary condition to be uniquely solvable.
We use the closure of the crack along the boundary

u(r) =0, r €S, (4)

as a uniqueness condition.
Stress intensity factors can be extracted once the solution to (1) is known. We define
the normalized mode I stress intensity factor F' as the limit

F(r) = lim ulr +d)

— reads, r+des, (5)
d—0 |d|§

where d is a vector perpendicular to 9S at the point r. The factor F is related to the stress
intensity factor K1 by K1 = FosV7l, where [ is a typical length dimension of the crack.

2.2 Special cases: ellipse and unit square

Equation (1) accompanied by (4) has an analytical solution for a crack in the shape of an
ellipse [2]. For a unit disk the solution simplifies to

2 1
u(r) = =(1—[r[*)2, (6)
T
and F = 2/n. An ellipse with major axis ¢ and minor axis b has a normalized stress
intensity factor that varies along its boundary. The maximum value is given by
1
E(J/1-b%/a?)’

where E(n) is the complete elliptical integral of the second kind [16].
Interestingly, the integral operator in (1) has an explicit inverse for the ellipse [5]. For
the unit disk this inverse, operating on a function f, is given by

1 f(x") s ((1 )i - |r/|2)%> do’ | res. (8)

w2 s e —r |/ —r|

Fma,x = (7)

One of the simplest non-trivial plane crack geometries that has been studied is the
unit square. Close to a point on the smooth part of the boundary, the crack opening
displacement u approaches zero as the square root of the distance to the boundary. In a
corner u approaches zero at a rate governed by the leading corner singularity A. A weight
that is proportional to u close to all parts of the boundary of the unit square, centered at
the origin, is

2y1 2y2
(1/4 —2%)=(1/4 —y°)>

= ) 9
p(r) (1/2 2 y2)17)\ ( )
A discontinuous and asymptotically incorrect alternative weight is
1
1/2 — 2
o(r) = { (1/2 = max{lal, ly})2 . o] # Iyl (10)
(1/2—lzDz(1/2=1lyhz,  |z] =yl



The exponent A has to be calculated numerically. There are different approaches and re-
sults. Bazant [17] formulates an eigenvalue problem for Laplace’s equation, uses symmetry,
partial variable separation, and estimates A = 0.816. Morrison and Lewis [18] use full vari-
able separation together with a singular perturbation technique and estimate A = 0.8146.
Paivérinta and Rempel [15] use Mellin-operator-calculus and estimate A = 0.7723. Borje
Andersson at The Aeronautical Research Institute of Sweden uses a finite element pro-
gram [19] and estimates A = 0.81465 (private communication 1999).

Previous investigators use different weights in their calculations. Weaver [12] uses a
weight of the type (10) together with piece-wise quadratic basis functions and reports a
value of Fnax = 0.736, see [10]. Murakami and Nemat-Nasser [20] also use a weight of
the type (10) together with piece-wise constant basis functions and also report a value of
Fmax = 0.736. Isida, Yoshida, and Noguchi [10] use a weight of the type (9) with A =1
together with piece-wise constant basis functions and report a value of Fyax = 0.756 based
on linear extrapolation. Pihua and Taihua [13] use no weight at all, piece-wise constant basis
functions and report a value of Fi,,x = 0.7558 based on quadratic least-squares interpolation
and extrapolation. This value is not computed from (5), but via an integral over S.

3 Our algorithm

The singular behavior of the solution to (1) will be a source of error in any numerical scheme
which does not take it into account. A large number of discretization points, N2, will be
needed for good resolution. This limits the possibilities of accurate computations since the
condition number of the discretized problem increases as V.

The leading behavior of the solution u at the boundary is known. We may write

u(r) = p(r)w(r), (11)

where p is the weight in (9) and w is a reasonably smooth function. The quantity w can
be better approximated, than the quantity «, with a given number of polynomial basis
functions. The integral equation (1) now reads

1 [ w)p(x)do .
/57 — 1, €s. (12)

2 v/ — r|?

Equation (12) will be solved with a collocation scheme. We discretize using piece-wise
constant basis functions on a uniform square N x N mesh. This leads to a system of N? linear
equations for w which we solve with the GMRES iterative solver [21]. The iterations are
terminated when the residual is less than 10~ !'. This typically requires 10+N/2 iterations
(a little less if point-Jacobi preconditioning is used), which is consistent with our assumption
that the condition number grows linearly with N.

Equation (12) is singular and the integrand needs to be regularized. We do this as
follows. Let S; be a square area segment in the mesh tesselating S. Let r; be the center
of that square segment and let r; be the center of some arbitrary segment. We write the

corresponding matrix element as
/ p(r')do’
s; e’ = r;[?
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Figure 2: Estimates for the normalized stress intensity factor Fi,,x at the midpoint of a side of
a square crack with normal load computed with corner singularity A = 0.81465 (upper curve)
and A = 1 (lower curve). The number of discretization points is N2. The symbols '*' indicate
numerical results. The two curves are seventh order polynomial interpolations.

/ (p(rj) + ((r" —rj) - V)p(r;) + (' — ;) - V)?p(r;)/2)do’
S

) |I" _ ri|3
N /S (p(r) = p(rj) = (& —rj) - Zzpﬁri3|; (¢ —rj) - V)*p(r;)/2)do’” (13)

The terms in the first integral on the right hand side can be evaluated analytically [13].
The second integral, which does not appear in [13], has a continuous integrand and can be
evaluated using a quadrature rule. We use adaptive 16-point Gauss-Legendre quadrature.

4 Results and error estimates

The maximum value of the stress intensity factor will occur at the mid-points of the square
sides. We denote by Finax(1/N) the maximum stress intensity factor computed on an N x N
mesh. Using (5), (9), and (11) we obtain

Frax(1/N) = (1/2)*A V(2 = 0.5 — 0.5/N,y = 0). (14)
Then we compute Fi,,x as the limit

Fiax = lim Foae(1/N). (15)
N—o00

We use eight meshes ranging from N = 29 to N = 99, interpolate Fi,ax(1/N) with a seventh
degree polynomial, and estimate Fi,,x by extrapolation.
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Figure 3: Estimates for the density w, related to the crack opening displacement via (2) and (11),
for a unit square crack under unit normal load. The left plot refers to corner singularity A =
0.81465. The density w only varies a few per cent over the area of the square. The right plot
refers to corner singularity A = 1. Note that w diverges in the corners.

Our estimate of the maximum stress intensity factor is Fi.x = 0.7534 4+ 0.0002, see
Figure 2. We consider three sources of errors for our computation of Fi,(1/N) in (14):
The discretization error, the error in the computation of the matrix elements via (13), and
the error in the GMRES solver. In addition, for computing Fi,,x in (15) we need to consider
the truncation error and the extrapolation error.

The discretization error for pointwise values of w behaves like 1/N. This is so since our
regularization lowers the order of the composite midpoint rule. The quadrature error of
Fmax(1/N) close to the boundary has a better behavior, see Figure 2.

The absolute error in the computation of the individual matrix elements, due to the
adaptive quadrature, is estimated to be at most 10~7. The dominating effect of this error
in the values for Fihax(1/N) seems to be a term independent of N. The magnitude of this
error term in Fyax(1/N) is estimated to 5 x 1077,

The error from the GMRES iterative solver is negligible. This is explained by the low
condition number, estimated to be less than 100.

The truncation error in the limiting process of (15) depends on the choice of corner
singularity A in the weight function p. Figure 2 shows that the computations involving
the incorrect singularity A = 1 converge faster than the computations involving the more
correct singularity A = 0.81465. The same behavior for A = 1 can be discerned in Figure 3
of Isida, Yoshida, and Noguchi [10]. A quadratic, rather than linear, fit to the data of
these authors would decrease their extrapolated estimate. That A = 1 gives a locally better
weight function at r = (0.5,0) than X\ = 0.81465 is further illustrated in Figure 3.

The extrapolation error is the dominating error in our calculations. By extrapolation
error we mean the aggregate effect of truncating the interpolation at seventh order and the
amplification of various errors in Fa(1/N) due to the extrapolation. By experimental
perturbation analysis we estimate the extrapolation error in Fj.x to be about 1074.

The variation of the stress intensity factor along the side of the crack is presented in
Figure 4. The results were obtained using the corner singularity A = 0.81465 and 99 x 99
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Figure 4: Variation of the normalized stress intensity factor F' along the side of a square crack.
The results of the previous authors were obtained from graphs in [10, 11, 13]

discretization points. The relative error is estimated to be less than 0.5%. The results
presented by previous authors agree in principle with the present, more accurate, results.

5 Conclusions

Virtually all attempts to compute F' for a planar square crack in the literature are based on
hypersingular integral equations. We conclude that previous estimates have been overopti-
mistic in terms of precision. What has been lacking is chiefly error analysis.

The problem of computing F' is well-conditioned. High accuracy could, theoretically,
be achieved. Better algorithms could include the use of a non-uniform mesh, higher order
basis functions, and preconditioning involving an analytical inverse such as (8).
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