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Tehnial note: Evaluation of the mode I stressintensity fator for a square rak in 3DJohan Helsing�, Anders Jonssony, and Gunnar PeterszDeember 21, 1999, revised August 8, 2000AbstratAn algorithm for the omputation of mode I stress intensity fators of a square raktogether with an error estimate is presented. The algorithm is based on a hypersingularintegral equation. The leading singular behavior of the rak opening displaementin the orners is taken into aount. The maximum value of the normalized stressintensity fator, Fmax, is estimated to Fmax = 0:7534� 0:0002. Previous investigatorshave estimated this quantity in the interval Fmax = 0:725 to Fmax = 0:756.Key words: square rak, stress intensity fators, hypersingular integral equation, ornersingularity1 IntrodutionFrature mehanis has traditionally used two-dimensional models in its theoretial develop-ment [1℄. Reasons for this are that suh models over the predition of the general behaviorof through-thikness raks in plates and shells, and that powerful mathematial and nu-merial tools are available. Often, like when studying part-through raks or embeddedraks suh as delaminations in omposites, a full three-dimensional model is required. Inthree dimensions the analytial and numerial situation is more ompliated.Elliptial raks, referred to as penny-shaped raks, have been thoroughly treated. See,for example, [2, 3, 4℄. Studies of penny-shaped raks involve numerial alulations of stressintensity fators [6, 7, 8℄ and simulations of rak growth [9℄. Studies of other rak shapesare less ommon. Methods that work well for penny-shaped raks tend to give poorerresults in more general situations. Retangular raks are treated in [10, 11, 12, 13℄.Here we fous on a square rak. The non-smooth nature of the rak opening dis-plaement is an obstale whih, if not taken into aount, destroys auray. Our mainresult is an algorithm for the omputation of mode I stress intensity fators. The quantitywhih is solved for is a reasonably smooth funtion. Leading singular behavior is aptured�Department of Solid Mehanis and NADA, Royal Institute of Tehnology, SE-100 44 Stokholm, Swe-den, Fax: +46-8-4112418, (helsing�nada.kth.se).yDepartment of Solid Mehanis, Royal Institute of Tehnology, SE-100 44 Stokholm, Sweden.zDepartment of Mathematis, Royal Institute of Tehnology, SE-100 44 Stokholm, Sweden.1
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xFigure 1: The square rak losed (left) and opened by a uniformly distributed normal stressat in�nity (right).by a weight. Numerial results with unpreedented auray and error estimates are pre-sented. The problem of omputing stress intensity fators in three dimensions is generiallywell-onditioned. Very aurate alulations should be possible. At present, however, theanalytial diÆulties make it hard to obtain as aurate results as in two dimensions.2 Bakground2.1 Formulation of the general problemA linearly elasti 3D material with a plane rak in the xy-plane is subjeted at in�nityto a uniformly distributed normal stress, �1, in the z-diretion, see Figure 1. The raksurfae is denoted S and its boundary is denoted �S. We want to ompute the displaement�eld inside the material. This problem an be redued to a hypersingular integral equationwhih reads [11, 12, 13℄ 12� ZS u(r0)d�0jr0 � rj3 = �1 ; r 2 S ; (1)where u is proportional to the rak opening displaement and d� is an in�nitesimal areasegment. The integral in (1) should be understood in terms of Hadamard �nite parts andCauhy prinipal values [14℄. For a square rak with side length 2a the relation between uand the rak opening displaement uCOD isuCOD = 8a�1E (1� �2)u ; (2)where E is Young's modulus for the material and � is Poisson's ratio. The relation (2) alsoholds for a irle with radius 2a.Equation (1) is equivalent to the pseudo-di�erential equation(��) 12u(r) = �1 ; r 2 S ; (3)where � is the Laplaian in the plane and (��) 12 is a non-loal pseudo-di�erential oper-ator [15℄. From this we onlude that the integral operator in (1) is unbounded. Upon2



uniform disretization the orresponding matrix will have a ondition number that growslike N , where 1=N is the distane between two disretization points.Equation (1) must be aompanied by a boundary ondition to be uniquely solvable.We use the losure of the rak along the boundaryu(r) = 0 ; r 2 �S ; (4)as a uniqueness ondition.Stress intensity fators an be extrated one the solution to (1) is known. We de�nethe normalized mode I stress intensity fator F as the limitF (r) = limd!0 u(r+ d)jdj 12 ; r 2 �S ; r+ d 2 S ; (5)where d is a vetor perpendiular to �S at the point r. The fator F is related to the stressintensity fator KI by KI = F�1p�l, where l is a typial length dimension of the rak.2.2 Speial ases: ellipse and unit squareEquation (1) aompanied by (4) has an analytial solution for a rak in the shape of anellipse [2℄. For a unit disk the solution simpli�es tou(r) = 2� (1� jrj2) 12 ; (6)and F = 2=�. An ellipse with major axis a and minor axis b has a normalized stressintensity fator that varies along its boundary. The maximum value is given byFmax = 1E(p1� b2=a2) ; (7)where E(�) is the omplete elliptial integral of the seond kind [16℄.Interestingly, the integral operator in (1) has an expliit inverse for the ellipse [5℄. Forthe unit disk this inverse, operating on a funtion f , is given by� 1�2 ZS f(r0)jr0 � rj artan (1� jrj2) 12 (1� jr0j2) 12jr0 � rj !d�0 ; r 2 S : (8)One of the simplest non-trivial plane rak geometries that has been studied is theunit square. Close to a point on the smooth part of the boundary, the rak openingdisplaement u approahes zero as the square root of the distane to the boundary. In aorner u approahes zero at a rate governed by the leading orner singularity �. A weightthat is proportional to u lose to all parts of the boundary of the unit square, entered atthe origin, is �(r) = (1=4 � x2) 12 (1=4 � y2) 12(1=2 � x2 � y2)1�� : (9)A disontinuous and asymptotially inorret alternative weight is�(r) = ( (1=2�maxfjxj; jyjg) 12 ; jxj 6= jyj ;(1=2 � jxj) 12 (1=2 � jyj) 12 ; jxj � jyj : (10)3



The exponent � has to be alulated numerially. There are di�erent approahes and re-sults. Ba�zant [17℄ formulates an eigenvalue problem for Laplae's equation, uses symmetry,partial variable separation, and estimates � = 0:816. Morrison and Lewis [18℄ use full vari-able separation together with a singular perturbation tehnique and estimate � = 0:8146.P�aiv�arinta and Rempel [15℄ use Mellin-operator-alulus and estimate � = 0:7723. B�orjeAndersson at The Aeronautial Researh Institute of Sweden uses a �nite element pro-gram [19℄ and estimates � = 0:81465 (private ommuniation 1999).Previous investigators use di�erent weights in their alulations. Weaver [12℄ uses aweight of the type (10) together with piee-wise quadrati basis funtions and reports avalue of Fmax = 0:736, see [10℄. Murakami and Nemat-Nasser [20℄ also use a weight ofthe type (10) together with piee-wise onstant basis funtions and also report a value ofFmax = 0:736. Isida, Yoshida, and Noguhi [10℄ use a weight of the type (9) with � = 1together with piee-wise onstant basis funtions and report a value of Fmax = 0:756 basedon linear extrapolation. Pihua and Taihua [13℄ use no weight at all, piee-wise onstant basisfuntions and report a value of Fmax = 0:7558 based on quadrati least-squares interpolationand extrapolation. This value is not omputed from (5), but via an integral over S.3 Our algorithmThe singular behavior of the solution to (1) will be a soure of error in any numerial shemewhih does not take it into aount. A large number of disretization points, N2, will beneeded for good resolution. This limits the possibilities of aurate omputations sine theondition number of the disretized problem inreases as N .The leading behavior of the solution u at the boundary is known. We may writeu(r) = �(r)!(r) ; (11)where � is the weight in (9) and ! is a reasonably smooth funtion. The quantity ! anbe better approximated, than the quantity u, with a given number of polynomial basisfuntions. The integral equation (1) now reads12� ZS !(r0)�(r0)d�0jr0 � rj3 = �1 ; r 2 S : (12)Equation (12) will be solved with a olloation sheme. We disretize using piee-wiseonstant basis funtions on a uniform squareN�N mesh. This leads to a system ofN2 linearequations for ! whih we solve with the GMRES iterative solver [21℄. The iterations areterminated when the residual is less than 10�11. This typially requires 10+N/2 iterations(a little less if point-Jaobi preonditioning is used), whih is onsistent with our assumptionthat the ondition number grows linearly with N .Equation (12) is singular and the integrand needs to be regularized. We do this asfollows. Let Sj be a square area segment in the mesh tesselating S. Let rj be the enterof that square segment and let ri be the enter of some arbitrary segment. We write theorresponding matrix element as ZSj �(r0)d�0jr0 � rij3 =4
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Figure 2: Estimates for the normalized stress intensity fator Fmax at the midpoint of a side ofa square rak with normal load omputed with orner singularity � = 0:81465 (upper urve)and � = 1 (lower urve). The number of disretization points is N2. The symbols '*' indiatenumerial results. The two urves are seventh order polynomial interpolations.ZSj (�(rj) + ((r0 � rj) � r)�(rj) + ((r0 � rj) � r)2�(rj)=2)d�0jr0 � rij3+ ZSj (�(r0)� �(rj)� ((r0 � rj) � r)�(rj)� ((r0 � rj) � r)2�(rj)=2)d�0jr0 � rij3 : (13)The terms in the �rst integral on the right hand side an be evaluated analytially [13℄.The seond integral, whih does not appear in [13℄, has a ontinuous integrand and an beevaluated using a quadrature rule. We use adaptive 16-point Gauss-Legendre quadrature.4 Results and error estimatesThe maximum value of the stress intensity fator will our at the mid-points of the squaresides. We denote by Fmax(1=N) the maximum stress intensity fator omputed on an N�Nmesh. Using (5), (9), and (11) we obtainFmax(1=N) = (1=2)(2��1)!(x = 0:5� 0:5=N; y = 0) : (14)Then we ompute Fmax as the limitFmax = limN!1Fmax(1=N) : (15)We use eight meshes ranging from N = 29 to N = 99, interpolate Fmax(1=N) with a seventhdegree polynomial, and estimate Fmax by extrapolation.5
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Figure 3: Estimates for the density !, related to the rak opening displaement via (2) and (11),for a unit square rak under unit normal load. The left plot refers to orner singularity � =0:81465. The density ! only varies a few per ent over the area of the square. The right plotrefers to orner singularity � = 1. Note that ! diverges in the orners.Our estimate of the maximum stress intensity fator is Fmax = 0:7534 � 0:0002, seeFigure 2. We onsider three soures of errors for our omputation of Fmax(1=N) in (14):The disretization error, the error in the omputation of the matrix elements via (13), andthe error in the GMRES solver. In addition, for omputing Fmax in (15) we need to onsiderthe trunation error and the extrapolation error.The disretization error for pointwise values of ! behaves like 1=N . This is so sine ourregularization lowers the order of the omposite midpoint rule. The quadrature error ofFmax(1=N) lose to the boundary has a better behavior, see Figure 2.The absolute error in the omputation of the individual matrix elements, due to theadaptive quadrature, is estimated to be at most 10�7. The dominating e�et of this errorin the values for Fmax(1=N) seems to be a term independent of N . The magnitude of thiserror term in Fmax(1=N) is estimated to 5� 10�7.The error from the GMRES iterative solver is negligible. This is explained by the lowondition number, estimated to be less than 100.The trunation error in the limiting proess of (15) depends on the hoie of ornersingularity � in the weight funtion �. Figure 2 shows that the omputations involvingthe inorret singularity � = 1 onverge faster than the omputations involving the moreorret singularity � = 0:81465. The same behavior for � = 1 an be diserned in Figure 3of Isida, Yoshida, and Noguhi [10℄. A quadrati, rather than linear, �t to the data ofthese authors would derease their extrapolated estimate. That � = 1 gives a loally betterweight funtion at r = (0:5; 0) than � = 0:81465 is further illustrated in Figure 3.The extrapolation error is the dominating error in our alulations. By extrapolationerror we mean the aggregate e�et of trunating the interpolation at seventh order and theampli�ation of various errors in Fmax(1=N) due to the extrapolation. By experimentalperturbation analysis we estimate the extrapolation error in Fmax to be about 10�4.The variation of the stress intensity fator along the side of the rak is presented inFigure 4. The results were obtained using the orner singularity � = 0:81465 and 99 � 996
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Figure 4: Variation of the normalized stress intensity fator F along the side of a square rak.The results of the previous authors were obtained from graphs in [10, 11, 13℄disretization points. The relative error is estimated to be less than 0:5%. The resultspresented by previous authors agree in priniple with the present, more aurate, results.5 ConlusionsVirtually all attempts to ompute F for a planar square rak in the literature are based onhypersingular integral equations. We onlude that previous estimates have been overopti-misti in terms of preision. What has been laking is hiey error analysis.The problem of omputing F is well-onditioned. High auray ould, theoretially,be ahieved. Better algorithms ould inlude the use of a non-uniform mesh, higher orderbasis funtions, and preonditioning involving an analytial inverse suh as (8).AknowledgementThis work was supported by NFR, TFR, and The Knut and Alie Wallenberg Foundationunder TFR ontrats 98-568 and 99-380.Referenes[1℄ Erdogan, F., Frature mehanis, International Journal of Solids Strutures, 2000, 37,171-183. 7
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