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Te
hni
al note: Evaluation of the mode I stressintensity fa
tor for a square 
ra
k in 3DJohan Helsing�, Anders Jonssony, and Gunnar PeterszDe
ember 21, 1999, revised August 8, 2000Abstra
tAn algorithm for the 
omputation of mode I stress intensity fa
tors of a square 
ra
ktogether with an error estimate is presented. The algorithm is based on a hypersingularintegral equation. The leading singular behavior of the 
ra
k opening displa
ementin the 
orners is taken into a

ount. The maximum value of the normalized stressintensity fa
tor, Fmax, is estimated to Fmax = 0:7534� 0:0002. Previous investigatorshave estimated this quantity in the interval Fmax = 0:725 to Fmax = 0:756.Key words: square 
ra
k, stress intensity fa
tors, hypersingular integral equation, 
ornersingularity1 Introdu
tionFra
ture me
hani
s has traditionally used two-dimensional models in its theoreti
al develop-ment [1℄. Reasons for this are that su
h models 
over the predi
tion of the general behaviorof through-thi
kness 
ra
ks in plates and shells, and that powerful mathemati
al and nu-meri
al tools are available. Often, like when studying part-through 
ra
ks or embedded
ra
ks su
h as delaminations in 
omposites, a full three-dimensional model is required. Inthree dimensions the analyti
al and numeri
al situation is more 
ompli
ated.Ellipti
al 
ra
ks, referred to as penny-shaped 
ra
ks, have been thoroughly treated. See,for example, [2, 3, 4℄. Studies of penny-shaped 
ra
ks involve numeri
al 
al
ulations of stressintensity fa
tors [6, 7, 8℄ and simulations of 
ra
k growth [9℄. Studies of other 
ra
k shapesare less 
ommon. Methods that work well for penny-shaped 
ra
ks tend to give poorerresults in more general situations. Re
tangular 
ra
ks are treated in [10, 11, 12, 13℄.Here we fo
us on a square 
ra
k. The non-smooth nature of the 
ra
k opening dis-pla
ement is an obsta
le whi
h, if not taken into a

ount, destroys a

ura
y. Our mainresult is an algorithm for the 
omputation of mode I stress intensity fa
tors. The quantitywhi
h is solved for is a reasonably smooth fun
tion. Leading singular behavior is 
aptured�Department of Solid Me
hani
s and NADA, Royal Institute of Te
hnology, SE-100 44 Sto
kholm, Swe-den, Fax: +46-8-4112418, (helsing�nada.kth.se).yDepartment of Solid Me
hani
s, Royal Institute of Te
hnology, SE-100 44 Sto
kholm, Sweden.zDepartment of Mathemati
s, Royal Institute of Te
hnology, SE-100 44 Sto
kholm, Sweden.1
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xFigure 1: The square 
ra
k 
losed (left) and opened by a uniformly distributed normal stressat in�nity (right).by a weight. Numeri
al results with unpre
edented a

ura
y and error estimates are pre-sented. The problem of 
omputing stress intensity fa
tors in three dimensions is generi
allywell-
onditioned. Very a

urate 
al
ulations should be possible. At present, however, theanalyti
al diÆ
ulties make it hard to obtain as a

urate results as in two dimensions.2 Ba
kground2.1 Formulation of the general problemA linearly elasti
 3D material with a plane 
ra
k in the xy-plane is subje
ted at in�nityto a uniformly distributed normal stress, �1, in the z-dire
tion, see Figure 1. The 
ra
ksurfa
e is denoted S and its boundary is denoted �S. We want to 
ompute the displa
ement�eld inside the material. This problem 
an be redu
ed to a hypersingular integral equationwhi
h reads [11, 12, 13℄ 12� ZS u(r0)d�0jr0 � rj3 = �1 ; r 2 S ; (1)where u is proportional to the 
ra
k opening displa
ement and d� is an in�nitesimal areasegment. The integral in (1) should be understood in terms of Hadamard �nite parts andCau
hy prin
ipal values [14℄. For a square 
ra
k with side length 2a the relation between uand the 
ra
k opening displa
ement uCOD isuCOD = 8a�1E (1� �2)u ; (2)where E is Young's modulus for the material and � is Poisson's ratio. The relation (2) alsoholds for a 
ir
le with radius 2a.Equation (1) is equivalent to the pseudo-di�erential equation(��) 12u(r) = �1 ; r 2 S ; (3)where � is the Lapla
ian in the plane and (��) 12 is a non-lo
al pseudo-di�erential oper-ator [15℄. From this we 
on
lude that the integral operator in (1) is unbounded. Upon2



uniform dis
retization the 
orresponding matrix will have a 
ondition number that growslike N , where 1=N is the distan
e between two dis
retization points.Equation (1) must be a

ompanied by a boundary 
ondition to be uniquely solvable.We use the 
losure of the 
ra
k along the boundaryu(r) = 0 ; r 2 �S ; (4)as a uniqueness 
ondition.Stress intensity fa
tors 
an be extra
ted on
e the solution to (1) is known. We de�nethe normalized mode I stress intensity fa
tor F as the limitF (r) = limd!0 u(r+ d)jdj 12 ; r 2 �S ; r+ d 2 S ; (5)where d is a ve
tor perpendi
ular to �S at the point r. The fa
tor F is related to the stressintensity fa
tor KI by KI = F�1p�l, where l is a typi
al length dimension of the 
ra
k.2.2 Spe
ial 
ases: ellipse and unit squareEquation (1) a

ompanied by (4) has an analyti
al solution for a 
ra
k in the shape of anellipse [2℄. For a unit disk the solution simpli�es tou(r) = 2� (1� jrj2) 12 ; (6)and F = 2=�. An ellipse with major axis a and minor axis b has a normalized stressintensity fa
tor that varies along its boundary. The maximum value is given byFmax = 1E(p1� b2=a2) ; (7)where E(�) is the 
omplete ellipti
al integral of the se
ond kind [16℄.Interestingly, the integral operator in (1) has an expli
it inverse for the ellipse [5℄. Forthe unit disk this inverse, operating on a fun
tion f , is given by� 1�2 ZS f(r0)jr0 � rj ar
tan (1� jrj2) 12 (1� jr0j2) 12jr0 � rj !d�0 ; r 2 S : (8)One of the simplest non-trivial plane 
ra
k geometries that has been studied is theunit square. Close to a point on the smooth part of the boundary, the 
ra
k openingdispla
ement u approa
hes zero as the square root of the distan
e to the boundary. In a
orner u approa
hes zero at a rate governed by the leading 
orner singularity �. A weightthat is proportional to u 
lose to all parts of the boundary of the unit square, 
entered atthe origin, is �(r) = (1=4 � x2) 12 (1=4 � y2) 12(1=2 � x2 � y2)1�� : (9)A dis
ontinuous and asymptoti
ally in
orre
t alternative weight is�(r) = ( (1=2�maxfjxj; jyjg) 12 ; jxj 6= jyj ;(1=2 � jxj) 12 (1=2 � jyj) 12 ; jxj � jyj : (10)3



The exponent � has to be 
al
ulated numeri
ally. There are di�erent approa
hes and re-sults. Ba�zant [17℄ formulates an eigenvalue problem for Lapla
e's equation, uses symmetry,partial variable separation, and estimates � = 0:816. Morrison and Lewis [18℄ use full vari-able separation together with a singular perturbation te
hnique and estimate � = 0:8146.P�aiv�arinta and Rempel [15℄ use Mellin-operator-
al
ulus and estimate � = 0:7723. B�orjeAndersson at The Aeronauti
al Resear
h Institute of Sweden uses a �nite element pro-gram [19℄ and estimates � = 0:81465 (private 
ommuni
ation 1999).Previous investigators use di�erent weights in their 
al
ulations. Weaver [12℄ uses aweight of the type (10) together with pie
e-wise quadrati
 basis fun
tions and reports avalue of Fmax = 0:736, see [10℄. Murakami and Nemat-Nasser [20℄ also use a weight ofthe type (10) together with pie
e-wise 
onstant basis fun
tions and also report a value ofFmax = 0:736. Isida, Yoshida, and Nogu
hi [10℄ use a weight of the type (9) with � = 1together with pie
e-wise 
onstant basis fun
tions and report a value of Fmax = 0:756 basedon linear extrapolation. Pihua and Taihua [13℄ use no weight at all, pie
e-wise 
onstant basisfun
tions and report a value of Fmax = 0:7558 based on quadrati
 least-squares interpolationand extrapolation. This value is not 
omputed from (5), but via an integral over S.3 Our algorithmThe singular behavior of the solution to (1) will be a sour
e of error in any numeri
al s
hemewhi
h does not take it into a

ount. A large number of dis
retization points, N2, will beneeded for good resolution. This limits the possibilities of a

urate 
omputations sin
e the
ondition number of the dis
retized problem in
reases as N .The leading behavior of the solution u at the boundary is known. We may writeu(r) = �(r)!(r) ; (11)where � is the weight in (9) and ! is a reasonably smooth fun
tion. The quantity ! 
anbe better approximated, than the quantity u, with a given number of polynomial basisfun
tions. The integral equation (1) now reads12� ZS !(r0)�(r0)d�0jr0 � rj3 = �1 ; r 2 S : (12)Equation (12) will be solved with a 
ollo
ation s
heme. We dis
retize using pie
e-wise
onstant basis fun
tions on a uniform squareN�N mesh. This leads to a system ofN2 linearequations for ! whi
h we solve with the GMRES iterative solver [21℄. The iterations areterminated when the residual is less than 10�11. This typi
ally requires 10+N/2 iterations(a little less if point-Ja
obi pre
onditioning is used), whi
h is 
onsistent with our assumptionthat the 
ondition number grows linearly with N .Equation (12) is singular and the integrand needs to be regularized. We do this asfollows. Let Sj be a square area segment in the mesh tesselating S. Let rj be the 
enterof that square segment and let ri be the 
enter of some arbitrary segment. We write the
orresponding matrix element as ZSj �(r0)d�0jr0 � rij3 =4
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Figure 2: Estimates for the normalized stress intensity fa
tor Fmax at the midpoint of a side ofa square 
ra
k with normal load 
omputed with 
orner singularity � = 0:81465 (upper 
urve)and � = 1 (lower 
urve). The number of dis
retization points is N2. The symbols '*' indi
atenumeri
al results. The two 
urves are seventh order polynomial interpolations.ZSj (�(rj) + ((r0 � rj) � r)�(rj) + ((r0 � rj) � r)2�(rj)=2)d�0jr0 � rij3+ ZSj (�(r0)� �(rj)� ((r0 � rj) � r)�(rj)� ((r0 � rj) � r)2�(rj)=2)d�0jr0 � rij3 : (13)The terms in the �rst integral on the right hand side 
an be evaluated analyti
ally [13℄.The se
ond integral, whi
h does not appear in [13℄, has a 
ontinuous integrand and 
an beevaluated using a quadrature rule. We use adaptive 16-point Gauss-Legendre quadrature.4 Results and error estimatesThe maximum value of the stress intensity fa
tor will o

ur at the mid-points of the squaresides. We denote by Fmax(1=N) the maximum stress intensity fa
tor 
omputed on an N�Nmesh. Using (5), (9), and (11) we obtainFmax(1=N) = (1=2)(2��1)!(x = 0:5� 0:5=N; y = 0) : (14)Then we 
ompute Fmax as the limitFmax = limN!1Fmax(1=N) : (15)We use eight meshes ranging from N = 29 to N = 99, interpolate Fmax(1=N) with a seventhdegree polynomial, and estimate Fmax by extrapolation.5



−0.5

0

0.5

−0.5

0

0.5

1.17

1.18

1.19

1.2

1.21

1.22

1.23

1.24

1.25

1.26

x

lambda=0.81465

y

om
eg

a

−0.5

0

0.5

−0.5

0

0.5
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

lambda=1

y

om
eg

a

Figure 3: Estimates for the density !, related to the 
ra
k opening displa
ement via (2) and (11),for a unit square 
ra
k under unit normal load. The left plot refers to 
orner singularity � =0:81465. The density ! only varies a few per 
ent over the area of the square. The right plotrefers to 
orner singularity � = 1. Note that ! diverges in the 
orners.Our estimate of the maximum stress intensity fa
tor is Fmax = 0:7534 � 0:0002, seeFigure 2. We 
onsider three sour
es of errors for our 
omputation of Fmax(1=N) in (14):The dis
retization error, the error in the 
omputation of the matrix elements via (13), andthe error in the GMRES solver. In addition, for 
omputing Fmax in (15) we need to 
onsiderthe trun
ation error and the extrapolation error.The dis
retization error for pointwise values of ! behaves like 1=N . This is so sin
e ourregularization lowers the order of the 
omposite midpoint rule. The quadrature error ofFmax(1=N) 
lose to the boundary has a better behavior, see Figure 2.The absolute error in the 
omputation of the individual matrix elements, due to theadaptive quadrature, is estimated to be at most 10�7. The dominating e�e
t of this errorin the values for Fmax(1=N) seems to be a term independent of N . The magnitude of thiserror term in Fmax(1=N) is estimated to 5� 10�7.The error from the GMRES iterative solver is negligible. This is explained by the low
ondition number, estimated to be less than 100.The trun
ation error in the limiting pro
ess of (15) depends on the 
hoi
e of 
ornersingularity � in the weight fun
tion �. Figure 2 shows that the 
omputations involvingthe in
orre
t singularity � = 1 
onverge faster than the 
omputations involving the more
orre
t singularity � = 0:81465. The same behavior for � = 1 
an be dis
erned in Figure 3of Isida, Yoshida, and Nogu
hi [10℄. A quadrati
, rather than linear, �t to the data ofthese authors would de
rease their extrapolated estimate. That � = 1 gives a lo
ally betterweight fun
tion at r = (0:5; 0) than � = 0:81465 is further illustrated in Figure 3.The extrapolation error is the dominating error in our 
al
ulations. By extrapolationerror we mean the aggregate e�e
t of trun
ating the interpolation at seventh order and theampli�
ation of various errors in Fmax(1=N) due to the extrapolation. By experimentalperturbation analysis we estimate the extrapolation error in Fmax to be about 10�4.The variation of the stress intensity fa
tor along the side of the 
ra
k is presented inFigure 4. The results were obtained using the 
orner singularity � = 0:81465 and 99 � 996



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/a

F

2a

2a

x

Present authors 
Isida et al.    
Pihua and Taihua
Bui             

Figure 4: Variation of the normalized stress intensity fa
tor F along the side of a square 
ra
k.The results of the previous authors were obtained from graphs in [10, 11, 13℄dis
retization points. The relative error is estimated to be less than 0:5%. The resultspresented by previous authors agree in prin
iple with the present, more a

urate, results.5 Con
lusionsVirtually all attempts to 
ompute F for a planar square 
ra
k in the literature are based onhypersingular integral equations. We 
on
lude that previous estimates have been overopti-misti
 in terms of pre
ision. What has been la
king is 
hie
y error analysis.The problem of 
omputing F is well-
onditioned. High a

ura
y 
ould, theoreti
ally,be a
hieved. Better algorithms 
ould in
lude the use of a non-uniform mesh, higher orderbasis fun
tions, and pre
onditioning involving an analyti
al inverse su
h as (8).A
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