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Long-range solvation properties of strongly coupled dipolar systems simulated using the Ewald and
reaction field methods are assessed by using electric fluctuation formulas for a dielectric medium.
Some components of the fluctuating electric multipole moments are suppressed, whereas other
components are favored as the boundary of the simulation box is approached. An analysis of
electrostatic interactions in a periodic cubic system suggests that these structural effects are due to
the periodicity embedded in the Ewald method. Furthermore, the results obtained using the reaction
field method are very similar to those obtained using the Ewald method, an effect which we attribute
to the use of toroidal boundary conditions in the former case. Thus, the long-range solvation
properties of polar liquids simulated using either of the two methods are nondielectric in their
character. © 2009 American Institute of Physics. �doi:10.1063/1.3250941�

I. INTRODUCTION

Coulombic and dipole-dipole interactions play important
roles in most molecular systems. One preferred method of
studying the various effects of these interactions is the use of
computer simulations such as Monte Carlo and molecular
dynamics �MD� simulations. However, the long-range nature
of the electrostatic potentials �r−1 and r−3, respectively�
makes it crucial to handle the energy calculations of the
simulations with great care.

The standard way of avoiding surface effects in molecu-
lar simulation is the use of so-called toroidal boundary
conditions,1 often also referred to as periodic boundary con-
ditions. The easiest way of handling the electrostatic interac-
tions in toroidal systems is to simply apply a spherical trun-
cation to the electrostatic potential, thus ignoring the long-
range part of the interaction. Although this method seems
appealing from a computational perspective, it has been
shown to create more or less serious artifacts, depending on
the cutoff distance and various other technical details of the
cutoff scheme.2 Another closely related approach is the mini-
mum image �MI� convention, where one employs a cubic
cutoff together with toroidal boundary conditions, implying
that each molecule interacts with all other particles of the
simulation box. Although this approach has been shown to
eliminate some of the artifacts of the ST method,3 the neglect
of the long-range nature of the potentials in the MI conven-
tion still makes it inadequate for studying strongly electro-
statically coupled systems.4–6

Among the methods that take into account the infinite
range of the electrostatic potential, the lattice summation
method originally developed by Ewald7 in 1921 is probably
the most widespread. The basic idea behind the Ewald sum-
mation is to include the long-range part of the electrostatic

interaction through an infinite cubic lattice of replicas of the
central simulation box. Thus, one respects the long-range
character of the interactions, albeit while imposing a long-
range ordering of the system. Furthermore, using a rigorous
analysis of conditionally convergent lattice sums, de Leeuw
et al.8 showed that the addition of a surface term Usurf given
by

Usurf =
2�

�2�RF + 1�V
M2, �1�

where M is the total dipole moment of the simulation box
and V its volume, to the electrostatic energy of the system
corresponds to embedding the “supersystem” of simulation
cells in a dielectric medium with a dielectric constant �RF.
The two common choices of �RF are �RF=1, usually referred
to as vacuum boundary conditions, and �RF=�, referred to as
tin-foil boundary conditions. Some highly optimized compu-
tational schemes, such as the O�N log N� particle-particle
particle-mesh Ewald9 and O�N� fast multipole10 methods,
have been developed, although these still retain the basic
assumption of long-range periodicity of the original Ewald
scheme.

An alternative approach for taking into account the long-
range part of the electrostatic interactions is the reaction field
�RF� method due to Barker and Watts.11 Within this scheme,
the pairwise interactions are subject to a spherical truncation
beyond a cutoff radius Rc, whereas the molecules outside the
cutoff radius are represented by a dielectric continuum with
the dielectric constant �RF yielding an Onsager-like reaction
field ER on the molecular system given by12

ER =
2��RF − 1�

�2�RF + 1�Rc
3MS, �2�

where MS is the total dipole moment of the cutoff sphere.
The simplicity of the RF method, together with the avoid-a�Electronic mail: joakim.stenhammar@fkem1.lu.se.
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ance of any long-range periodicity of the system, makes it an
appealing alternative to the Ewald summation and related
methods. One drawback, however, is the need of knowing, at
least approximately, the dielectric constant �RF of the system
before the simulation.

The different computational schemes for treating electro-
static interactions in dipolar systems have been reviewed and
evaluated several times before, focusing on different struc-
tural and thermodynamic properties.6,13–16 In the present
work, we will use formulas describing the electric fluctua-
tions in dielectric media derived in a recent paper17 to assess
the long-range solvation properties of strongly polar liquids
simulated using the Ewald and RF methods, and try to shed
some more light on the effects of system periodicity on these
properties.

II. THEORY

A. Electric fluctuations in dielectric media

In a previous paper,17 we derived expressions describing
the electric multipole moment fluctuations in a dielectric me-
dium. One of the main results was that the probability distri-
bution P�Q�0� of the axial component of a spherical 2�-pole
moment of a spherical volume Q�0 �M� in our previous no-
tation� in a dielectric medium is described by the Gaussian
function

P�Q�0� = ãe−�̃Q�0
2

, �3�

with the exponent �̃ given by

�̃ =
�2� + 1�2�

2�� − 1����� + 1�� + ��
1

R2�+1kT
, �4�

with R representing the radius of the dielectric sphere, � the
dielectric constant of the medium, k the Boltzmann constant,
T the absolute temperature, and the spherical multipole mo-
ment Q�m defined by

Q�m � �
V

dr��r�r�C�m��� . �5�

In Eq. �5�, ��r� represents the volume charge density at r and
C�m��� Racah’s unnormalized spherical harmonics. The
derivation given in Ref. 17 can be extended to nonaxial com-
ponents of the spherical multipole moments, i.e., Q�m,
m�0, in a fully equivalent manner, yielding

��Re�Q�m��2� = ��Im�Q�m��2� =
1

2
�Q�0

2 �, m � 0, �6�

where we have used the mean-square quantities, related with
the exponent �̃ through the relationship

�Q�0
2 � = �2�̃�−1. �7�

Furthermore, the solvation free energy Asolv related with the
interaction of a fluctuating 2�-pole moment with the sur-
rounding dielectric continuum is given by17

Asolv

kT
= −

��� + 1��� − 1�2

2�2� + 1�2�
. �8�

Equation �8� is valid for both axial and nonaxial components
of Q�m and reduces to a value of Asolv /kT	� /8 for strongly
dielectric systems.

B. Electrostatic self-interactions in a primitive cubic
lattice

In this section, we will derive an expression describing
the interaction between the spherical multipole moment Q�m

and its replicas in an infinite primitive cubic lattice. We will
henceforth refer to this interaction energy as the self-
interaction or self-energy of Q�m.

For a given value of �, the spherical multipole moment
Q�m possesses 2�+1 independent components, namely,

Q�m
R � Re�Q�m�, m = 0,1, . . . ,� , �9a�

Q�m
I � Im�Q�m�, m = 1,2, . . . ,� . �9b�

In Eq. �9�, we have arbitrarily chosen the components with
m�0 as the independent ones, as the components with
m�0 are related with these through the symmetry relation

Q�−m = �− 1�mQ�m
� , �10�

where � denotes complex conjugation.
Generally, the electrostatic interaction energy Uel be-

tween two nonoverlapping charge distributions �1 and �2 is
given by18

Uel = 

�1=0

�



�2=0

�



m1=−�1

�1



m2=−�2

�2

f̂��1,�2,m1,m2�

	Q1,�1m1
Q2,�2m2

1

RL+1CLM
� ��� , �11�

where Qi,�imi
denotes the multipole moment of �i about its

origin, R and � are defined in Fig. 1, L=�1+�2, and

M =m1+m2. Furthermore, we have defined the function f̂
according to

f̂��1,�2,m1,m2� � �− 1��1+M� �2L�!
�2�1� ! �2�2�!�1/2

	2L + 1� �1 �2 L

m1 m2 − M
� , �12�

with �¯ � representing the Wigner 3j symbol.

We now consider the electrostatic self-energy Ũ�m
self be-

tween a central multipole Q�m in an infinite primitive cubic
lattice and all of its correlated replicas.19 According to Eqs.

FIG. 1. Illustration of two nonoverlapping charge distributions �1 and �2.
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�10� and �11� and using the fact that f̂�� ,� ,m ,m�
= f̂�� ,� ,−m ,−m�, the self-interaction of the different compo-
nents can be written as

Ũ�0
self,R = f̂��,�,0,0��Q�0

R �2R̃2�,0
� , �13a�

Ũ�m
self,R = 2 f̂��,�,m,m��Q�m

R �2R̃2�,2m
�

+ 2�− 1�mf̂��,�,m,− m��Q�m
R �2R̃2�,0

� , m 
 0,

�13b�

Ũ�m
self,I = 2 f̂��,�,m,m��Q�m

I �2R̃2�,2m
�

+ 2�− 1�m+1 f̂��,�,m,− m��Q�m
I �2R̃2�,0

� , m 
 0,

�13c�

where we have defined the effective interaction tensor R̃LM

according to

R̃LM = 

n�0

CLM���
�sn�L+1 . �14�

In Eq. �14�, n= �nx ,ny ,nz� defines the indices of the unit cells
of the primitive cubic lattice, and s denotes the side length of
the unit cell. It can be shown that as a consequence of the

primitive cubic symmetry, R̃LM is �i� real and �ii� nonzero
only for L=4+2n, n=0,1 ,2 , . . ., and M =0, �4, . . . , �L.
This means that for a given ��4, the 2�+1 components of
Q�m for a given � are energetically decoupled from each

other. Another consequence of these properties of R̃LM is that
the total dipole-dipole interaction in an infinite primitive cu-
bic lattice is zero. Henceforth, we will refer to the 2�+1
independent components of Q�m as fluctuation modes.

III. MODEL AND METHODS

A. Model

For the simulation studies, we consider a model system
composed of N particles in a cubic volume V at a tempera-
ture T. The potential energy U of the system is assumed to be
pairwise additive according to

U = 

i=1

N−1



j=i+1

N

uij�rij� . �15�

The interaction between molecules i and j, uij, is composed
of a Lennard-Jones �LJ� and a dipole-dipole potential �also
referred to as a Stockmayer potential� according to

uij�rij� = uij
LJ�rij� + uij

dip�rij� , �16�

with

uij
LJ�rij� = 4��� 

rij
�12

− � 

rij
�6� , �17�

uij
dip�rij� =

1

4��0
��i · � j

rij
3 −

3��i · rij��� j · rij�
rij

5 � , �18�

where the size parameter  and interaction parameter � char-
acterize the LJ interaction, �i denotes the dipole vector of

particle i, rij is the vector between particles i and j, and
rij = �rij�.

In this study, we have used the LJ parameters
=2.8863 Å and �=1.970 23 kJ mol−1. The magnitude of
the molecular dipole moments equaled �=0.343 97 eÅ
�corresponding to 0.65 a.u.�, and the number density
was held fixed at �=0.038 446 Å−3. The temperature was
kept constant at T=315.8 K. In reduced units, the system
is characterized by the quantities ����3=0.9244,
T��kT /�=1.333, and ���� / �4��0�3�1/2=1.863. Some
completing studies using N=10 000 were also performed for
particles with dipole moments of �=0.238 13 eÅ �0.45 a.u.,
��=1.290� and �=0.105 84 eÅ �0.20 a.u., ��=0.5732� with
the same LJ parameters as those described above. The physi-
cal parameters of all the systems are identical to those used
in Ref. 4.

B. Simulation aspects

The properties of the model systems were determined by
performing MD simulations at constant number of particles,
volume, and temperature. The particles were enclosed in a
cubic box of length a, and periodical boundary conditions
were applied. The number of particles N in the system
was N=1000 �a=29.629 Å�, N=10 000 �a=63.833 Å�,
N=100 000 �a=137.52 Å�, and N=300 000 �a=198.34 Å�,
where N=10 000 was used for most of the simulations.

For most of our studies, the long-range dipole-dipole
interactions were treated using either �i� the Ewald summa-
tion adapted to dipolar systems7 using conducting as well as
vacuum boundary conditions or �ii� the RF method of Barker
and Watts.11 The former approach formally involves an infi-
nite periodic system where the dipole-dipole interaction en-
ergy is divided into several terms. For the simulations with
N=10 000, an Ewald convergence parameter �=3.2 /Rcut

was used in conjunction with the spherical cutoff distance
Rcut=19 Å in real space and the spherical cutoff ncut=11 in
reciprocal space. The LJ interactions were subjected to the
same spherical cutoff as the dipole-dipole interaction in real
space. For the RF simulations, a cutoff equal to half the
length of the simulation box was used with the dielectric
constant �RF=130 of the surrounding dielectric medium.

In addition to the Ewald and RF methods, some simula-
tions were performed using the MI convention.1 The other
parameters describing this system were identical to those
used in conjunction with the Ewald and RF methods with
N=10 000.

The MD simulations were performed using the velocity
Verlet algorithm with the orientations described by quater-
nions using a time step �t=0.001 ps, corresponding to a
reduced time step �t�=�t / �m2 /��1/2=0.0011, where the
mass m=18 g mol−1 was used. The particles were treated as
spherical tops with the components of the moment of inertia
Ixx= Iyy = Izz=1 g Å2 mol−1. Each simulation involved 105 or
106 time steps, hence extending over tsim=100 or 1000 ps.
Berendsen’s approach20 of coupling the system to an external
bath to preserve the temperature was used with a time cou-
pling constant of 100�t. This weak coupling only suppresses
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the potential energy drift and does not affect the dynamics of
the system. The integrated Monte Carlo/MD/Brownian dy-
namics simulation package MOLSIM �Ref. 21� for molecular
systems was employed throughout.

C. Fluctuating multipole moment analyses

The magnitude of the fluctuating multipole moments
was evaluated after every 100th time step with the con-
tribution from a dipole Q1m located at R= �R ,�� to the mo-
ment Q�M given by Eq. �A4� in the Appendix. For each
evaluated configuration, the values of Q�m

X and �Q�m
X �2, where

X� �R , I�, 1���4, and 0�m��, were sampled for
spheres of radii R between 10 Å and a /2. Every particle was
taken as the origin of a sphere, meaning that for each value
of R, N values of Q�m

X and �Q�m
X �2 were sampled per analyzed

configuration.
The simulated values ��Q�m

X �2�sim were reexpressed as
reduced mean-square multipole moments ��m

2 , as defined by

��m
2 �

��Q�m
X �2�sim

��Q�m
X �2�theor

, �19�

where the theoretical values ��Q�m
X �2�theor were obtained using

Eqs. �4�, �6�, and �7�. Neumann’s22 formula

� = 1 +
4�

3

�M2�
VkT

, �20�

relating � to the mean-square dipole moment �M2� of the
entire simulation box for a system treated using Ewald sum-
mation with conducting boundaries, was used to obtain the
approximate value �=130 of the system, which was subse-
quently used for the evaluation of ��Q�m

X �2�theor.

D. Evaluation of lattice self-interaction energies

Equation �13� was used to numerically evaluate two

types of lattice self-energies for 1���4. First, Ũ�m
self was

calculated using a lattice of unit length, i.e., s=1, containing
the multipole components �Q�0

R �2=1 and �Q�m
R �2= �Q�m

I �2

=1 /2 for m
0, to harmonize with the relative values of Eq.
�6�. Furthermore, ��Q�m

X �2�sim, together with putting s=a, was

used to evaluate the actual self-interaction energies �Ũ�m
self� of

the studied molecular systems. It should be stressed that

while Ũ�m
self represents an unweighted energy where the mul-

tipole moment distributions are represented by delta func-

tions, �Ũ�m
self� represents a weighted energy calculated using

Boltzmann-weighted distributions of Q�m
X .

IV. RESULTS AND DISCUSSION

A. Qualitative behavior of probability distributions

Figure 2 shows the probability distributions of three qua-
drupolar fluctuation modes obtained using the Ewald sum-
mation technique, the RF method, and the MI convention.
From the Ewald results, it can be seen that the distributions
clearly follow the expected Gaussian behavior, something
which is also true for the RF results. The distributions ob-
tained using the MI convention are, however, severely dis-
torted compared with the expected appearance, even though
the radius of the sampled sphere �R=10 Å� is much smaller
than the length scale of the simulation box �a /2=31.9 Å�.
Furthermore, it should be noted that by symmetry, the distri-
butions of Q21

R and Q21
I should be identical. This is the case

for the Ewald and RF methods, but not for the MI conven-
tion, demonstrating that the latter system is nonergodic.
Thus, using the MI convention for simulating strongly dipo-
lar systems gives rise to an unphysical behavior of the sys-
tem. This fact has been established several times before4–6

and we will therefore not consider the MI results any further.

B. Ewald summation

The values of the reduced mean-squared multipole mo-
ment ��m

2 of various fluctuation modes as a function of the
radius R of the sampling volume are given in Figs. 3 and 4
using vacuum and tin-foil boundaries, respectively. From
these results, we make the following observations:

-200 0 200

Q2m (eÅ
2
)

P
(Q

2m
)

Q
R
20

Q
R
21

Q
I
21

-400 0 400

Q2m (eÅ
2
)

P
(Q

2m
)

Q
R
20

Q
R
21

Q
I
21

a) b)

FIG. 2. Probability distributions for three components of the quadrupole moment obtained from simulations using �a� Ewald summation �curves� and the RF
method �symbols� and �b� the MI convention using N=10 000 particles and R=10 Å.
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FIG. 3. Reduced mean-squared multipole moment ��m
2 as a function of the radius R of the sampling volume for 1���4 obtained using Ewald summation

with vacuum boundaries for a system with N=10 000 particles. The error bars represent one standard deviation.
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FIG. 4. Reduced mean-squared multipole moment ��m
2 as a function of the radius R of the sampling volume for 1���4 obtained using Ewald summation

with tin-foil boundaries for a system with N=10 000 particles. The error bars represent one standard deviation.
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�1� For small values of R, all the curves have a positive
slope, indicating that the dielectric response is develop-
ing gradually.

�2� As the radius of the sampling volume approaches the
boundaries of the simulation box, some fluctuation
modes are suppressed, whereas others are enhanced.

�3� The effect of the boundaries is more pronounced for
even than for odd multipole moments.

�4� Vacuum and tin-foil boundaries give different results
for the dipole moment, but within the statistical uncer-
tainties identical results for the higher moments.

�5� The reduced multipole moment fluctuations for ��2
are in general less than 1, meaning that these moments
are not fully developed as compared with the dipole
moment in the system simulated using tin-foil bound-
ary conditions, for which the reduced fluctuations are
�1 near the box boundary.

Furthermore, in Table I we give the values of Ũ�m
self and

�Ũ�m
self�. A comparison between the values of the unweighted

quantity Ũ�m
self and the curves of Figs. 3 and 4 shows that the

order of the curves representing the different fluctuation
modes as well as their relative separation follows extremely

well the values of Ũ�m
self. More specifically, the modes that

exhibit a net repulsive self-interaction are suppressed, and
those interacting attractively are favored near the boundary.

This excellent agreement between Ũ�m
self and the simulated

data indicates that the self-interaction constitutes an impor-

tant part of the long-range solvation. Looking at the

weighted values �Ũ�m
self�, where the simulated values of

��Q�m
X �2� have been used, it is clear that the suppression �en-

hancement� of the repulsively �attractively� interacting mo-
ments is effective, in that the net self-interaction summed
over all values of m is considerably attractive, whereas the

sum of the unweighted values Ũ�m
self is identically zero. Fur-

thermore, we clearly see that the net interaction for �=3 is an
order of magnitude smaller than that for �=2 and �=4, in
accordance with the comparatively small m-dependence for
�=3 in Figs. 3�c� and 4�c�.

An interesting comparison can be made between �Ũ�m
self�

in Table I and the values of Asolv as predicted from Eq. �8�.
Assuming that �=130 for the studied system, we would ex-
pect Asolv	−40 kJ /mol for each fluctuation mode, which is
of the same order of magnitude as the most strongly attrac-
tive energies of Table I. In making this comparison, we have
neglected the energy contributions coming from other inter-
actions than the self-interaction, i.e., from the interaction be-
tween the weakly correlated fluctuation modes, which are
included in the theoretical value. Assuming that this is a

good approximation, the similarity between �Ũ�m
self� and the

theoretical value of Asolv shows that the periodicity of the
Ewald method indeed reproduces attractive long-range inter-
actions that are of the same order of magnitude as for a
dielectric system, albeit in a different manner. However, as

was stated above, the existence of repulsive �Ũ�m
self� terms still

remains as a consequence of the periodicity. It should also be
mentioned that the effects described in this section are also
observed when simulating significantly less coupled dipolar
systems with reduced dipole moments of ��=1.29 ��	15�
and 0.57 ��	2.3�. However, the effects are not as strong as
for the systems described here.

The system-size dependence of the reduced mean-
squared quadrupole moment �2m

2 was studied by simulating
systems of four different sizes. Figure 5 shows the reduced
quadrupole moments as a function of the scaled radius
R / �a /2� of the sampling volume. From these results, we
make the observations that upon a homogenous size scaling
of R and a, �i� the magnitude of �2m

2 increases as the length
scale of the system is increased, �ii� the onset of the splitting
between the different fluctuation modes appears at
R /a	0.25, regardless of the length scale of the system, and
�iii� the splitting in terms of �2m

2 is independent of the length
scale of the system. Observation �i� indicates that the dielec-
tric coupling is able to become more developed in the larger
systems, and hence the dielectric limit has not yet been
reached, even for the inner volumes �i.e., for R�a /2� of the
simulation box where the effects from the lattice interactions
ought to be small. Observations �ii� and �iii� should be ex-
pected, since Uel�Q�m

2 R−�2�+1� according to Eq. �11�, and
�Q�m

2 ��R2�+1 according to Eqs. �4� and �7�, meaning that the
self-interaction of the fluctuation modes should be invariant
under size scaling.

Figure 6 displays the same data as in Fig. 5 plus the
corresponding data for a system with N=300 000 dipoles as
a function of the radius R of the sampling volume with a
logarithmic representation on the abscissa. If we now merge

TABLE I. Self-energies of the independent components of the multipole

moments Ũ�m
self and �Ũ�m

self� according to Eq. �13�. The values used for Q�m and
s are described in Sec. III D, and the simulated values were obtained from
an Ewald simulation with vacuum boundaries and N=10 000.

Mode
Ũ�m

self

�a.u.�
�Ũ�m

self�
�kJ/mol�

Q20
R 18.6 17.7

Q21
R �12.4 �29.4

Q21
I �12.4 �30.0

Q22
R 18.6 17.9

Q22
I �12.4 �31.2

Sum 0.0 �55.0
Q30

R �11.5 �5.3
Q31

R 8.6 3.4
Q31

I 8.6 3.8
Q32

R 20.6 7.6
Q32

I �27.5 �14.4
Q33

R 0.6 0.2
Q33

I 0.6 0.2
Sum 0.0 �4.7
Q40

R 228.2 10.6
Q41

R �182.5 �23.0
Q41

I �182.5 �23.4
Q42

R 182.5 10.2
Q42

I 0.0 0.0
Q43

R �26.1 �2.6
Q43

I �26.1 �2.6
Q44

R 215.1 10.6
Q44

I �208.6 �27.8
Sum 0.0 �48.0
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the data for R / �a /2��0.25, which approximately defines the
region where no splitting appears, for each system size,
we find an essentially linear dependence ranging up to
R	40 Å. Hence, the reduced mean-squared quadrupole mo-
ments depend logarithmically on the radius of the sampling
volume up to �2m

2 	0.8. A corresponding analysis of the di-
pole moment fluctuations �1m

2 �not shown here� shows a
similar logarithmic dependence in the dielectric behavior of
the inner volumes as the system size is increased.

In Table II, we give the values of �Ũ2,attr
self � and �Ũ2,rep

self � for
the attractive and repulsive modes of the quadrupole moment
for the three different system sizes. The magnitudes of

�Ũ2,attr
self � and �Ũ2,rep

self � increase somewhat as the system size is
increased, whereas the dielectric behavior as predicted by
Eq. �8� implies that they should be invariant under size scal-
ing. From the present data, it is difficult to say anything

certain about the convergence of �Ũ�m
self�, although the attrac-

tive components seem to approach a limiting value.

C. Reaction field

In Fig. 7, we present the results from the RF simulations.
An immediate observation is the striking similarity with the
results obtained using the Ewald summation; the behavior of
the higher order moments �i.e., with �
1� is virtually iden-
tical to those presented in Figs. 3 and 4. This indicates that
the technical details of the RF approach lead to effects that
are highly similar to those of the long-range periodicity in
the Ewald summation method. One plausible origin of this
similarity is the effect stemming from the use of toroidal
boundary conditions in the RF method. As depicted in Fig. 8,
the fact that each molecule interacts only with the nearest
image of the other molecules within the cutoff sphere should
give rise to an effective suppression/enhancement of certain

multipole moments, in a manner which is highly similar to
the periodicity effects in the Ewald method. Although the
similarities between the Ewald and RF methods have been
somewhat highlighted before,23 the assumption that the ef-
fects arising from periodicity in the Ewald summation tech-
nique can be avoided by using the RF method has to be
questioned given the near equivalence of the results pre-
sented for the two methods.

V. CONCLUSIONS AND OUTLOOK

In the present work, we have presented results that ana-
lyze the effect of periodicity and toroidal boundary condi-
tions when simulating strongly dipolar liquids. From the re-
sults presented previously,17 we know that for a dielectric
medium, the coupling of higher order moments to the sur-
roundings is energetically at least as important as that of the
dipole moment. This implies that it is essential that the long-
range solvation properties are correct for all moments, if one
intends to simulate a system that behaves as a dielectric me-
dium. However, the results presented here show that this is
clearly not the case for a system simulated using the Ewald
and RF methods. Indeed, there is a net stabilization of the
system arising from the inherent periodicity, as can be seen
from the negative net interaction energies in Table I. How-
ever, this net solvation is entirely artificial, in the sense that it
appears from an imposed periodicity of the system, which is

TABLE II. �Ũ2,attr
self � and �Ũ2,rep

self � calculated from the simulated values of
�Q2m

2 � for systems of three different sizes. The attractive and repulsive val-
ues are mean values of the three attractive �Q21

R , Q21
I , and Q22

I � and two
repulsive �Q20

R and Q22
R � modes, respectively.

N=1000 N=10 000 N=100 000

�Ũ2,attr
self � �kJ/mol� �20.3 �30.2 �35.8

�Ũ2,rep
self � �kJ/mol� 9.6 17.8 27.4
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FIG. 5. Reduced mean-squared quadrupole moment �2m
2 as a function of the

reduced radius R / �a /2� of the sampling volume obtained using Ewald sum-
mation with tin-foil boundaries at the indicated system sizes. The color
labeling is the same as in Fig. 4�b�. The error bars represent one standard
deviation.
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R / Å

0

0.5

1

1.5

∆2 2m

N = 1000

N = 10000

N = 100000

N = 300000

FIG. 6. Reduced mean-squared quadrupole moment �2m
2 as a function of the

radius R of the sampling volume obtained using Ewald summation with
tin-foil boundaries at the indicated system sizes. The color labeling is the
same as in Fig. 4�b�. The error bars represent one standard deviation.
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not present in a real bulk liquid. Furthermore, the solvation
energies for several of the fluctuation modes are positive,
meaning that these modes are suppressed compared with a
system in vacuum, an effect which is clearly unphysical.

From the results of Fig. 5, we draw the conclusion that
the strong nondielectric effects near the box boundary do not
become smaller as the size of the simulated system is in-
creased. However, since the onset of these effects occurs at
R /a	0.25, regardless of the system size, one possible strat-
egy would be to simulate a system where the inner volumes
�R�0.25a� are large enough to exhibit a fully developed
dielectric response. Using only the inner volume for the cal-
culation of the dielectric properties of interest should then
give reliable results. However, from the results of Fig. 6, we
found �i� that ��m

2 depends logarithmically on the sampling
volume up to ��m

2 	0.8 for �=1 and 2, and �ii� that the
dielectric response is not yet fully developed at a distance of
40 Å. At the present stage it is not possible to judge whether
��m

2 in general diverges, converges, or converges to unity as
predicted by dielectric theory. Regardless of whether there
exists a divergence or not, it is obvious that the dielectric
response is far from fully developed at 15 Å, which has been
reported before from MD simulations of water.24

Furthermore, given the limiting behavior ��→�� of Eq.
�8�, we do not expect the nondielectric effects to become
considerably smaller for moments of higher order than those
studied here �1���4�, an assumption that gains support
from the fact that the effects for the hexadecupole ��=4� are
essentially as large as those for the quadrupole ��=2�. Given
the strong “selective solvation” effects observed using the
above-mentioned techniques, one must ask the question
whether these methods are really suitable for calculating di-
electric constants and other properties that depend strongly

on the long-range coupling in the system. The strong
suppression/enhancement of certain moments originates
from the creation of an artificial structuring in the system,
which should clearly affect its dielectric properties. Some of
these effects have been observed before for
biomolecules,25,26 simple charge distributions,27 and ionic
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FIG. 7. Reduced multipole moment ��m
2 as a function of the radius R of the sampling volume for 1���4 obtained using the RF approach for a system with

N=10 000 particles. The error bars represent one standard deviation.

FIG. 8. Illustration of a possible mechanism behind the suppression of fluc-
tuations in the RF method: dipole 1 in the central box interacts repulsively
with the nearest image of dipole 2 �labeled with a star�, leading to the
suppression of the depicted quadrupole moment of the central box. A rota-
tion of the depicted structure by 45° would instead lead to an attractive
interaction, which would favor the corresponding fluctuation mode.
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systems28 using the Ewald technique. Furthermore, some
general criticism of the periodicity effects present in the
Ewald technique was put forward by Valleau and
Whittington29 in the 1970s. However, to our knowledge no
similar study has been carried out using the RF technique or
using the Ewald technique for dipolar systems.

Since the described periodicity effects are expected to be
present in all simulation methods employing toroidal bound-
ary conditions, an interesting question is whether it would be
feasible to instead use nonperiodic methods for simulating
dielectric systems. This also makes it possible to use simu-
lation cells of any geometry, where spherical geometry is
probably the most natural choice. Simulating a spherical cav-
ity, where the molecular system is solvated by a surrounding
dielectric medium, would avoid many of the problems de-
scribed in this paper, albeit while introducing a surface in the
system. One possible way to accomplish this is the image
charge approach developed by Friedman,30 where one en-
closes the particles in a spherical cavity and adds the effect
of the surrounding dielectricum through Onsager-like image
charges and dipoles. In a forthcoming study, we will assess
the usability of this method for studying dielectric properties
of systems similar to those that have been described here.
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APPENDIX: TRANSLATION OF MULTIPOLE
EXPANSION CENTER

We consider the set of multipole moments Q�1m1
of the

charge distribution � about the origin according to

Q�1m1
= �

V

dr1��r1�r1
�1C�1m1

��1� . �A1�

The multipole moments of �, but with respect to R= �R ,��,
are denoted as QLM� and are given by

QLM� = �
V

dr2���r2�r2
LCLM��2� , �A2�

where r2=r1−R. Substitution of r2
LCLM��2� by

�r1−R�LCLM��2�, and using the expansion of
�r1+r2�LCLM��� �Ref. 31�, leads to

QLM� = 

�1,�2=0

�



m1=−�1

�1



m2=−�2

�2

f̂��1,�2,m1,m2�

	Q�1m1
R�2C�2m2

��� , �A3�

where we have also made the substitutions ���r2�=��r1�,
dr2=dr1, �1+�2=L, and m1+m2=M. In the case when in-
stead QLM� is placed in the origin and Q�1m1

at R, we get an

extra phase factor �−1��2. Using this, together with restricting
ourselves to the special case when Q�1m1

=Q1m��11, i.e., a
dipole translated from R to the origin, we obtain after some
manipulations

Q�M� = 

m=−1

1

�− 1��+M���2� − 1��2� + 1��1/2

	� � − 1 � 1

M + m − M − m
�Q1,−mR�−1C�−1,M+m��� .

�A4�
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