
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Cost minimization of network services with buffer and end-to-end deadline constraints

Millnert, Victor; Bini, Enrico; Eker, Johan

Published in:
Real-time computing and distributed systems in emerging applications 2016

2016

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Millnert, V., Bini, E., & Eker, J. (2016). Cost minimization of network services with buffer and end-to-end deadline
constraints. In Real-time computing and distributed systems in emerging applications 2016: REACTION 2016
http://www.it.uc3m.es/mvalls/Reaction2016_Procs.pdf

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 20. Sep. 2024

https://portal.research.lu.se/en/publications/fbd57009-74b7-4fd6-8ea5-2e6855a3641a
http://www.it.uc3m.es/mvalls/Reaction2016_Procs.pdf


Cost minimization of network services
with buffer and end-to-end deadline constraints

Victor Millnert
Lund University, Sweden

Enrico Bini
Scuola Superiore Sant’Anna,

Pisa, Italy

Johan Eker
Ericsson Research, Sweden

Lund University, Sweden

ABSTRACT
Cloud computing technology provides the means to share
physical resources among multiple users and data center ten-
ants by exposing them as virtual resources. There is a strong
industrial drive to use similar technology and concepts to
provide timing sensitive services. One such is virtual net-
working services, so called services chains, which consist of
several interconnected virtual network functions. This al-
lows for the capacity to be scaled up and down by adding
or removing virtual resources. In this work, we develop a
model of a service chain and pose the dynamic allocation
of resources as an optimization problem. We design and
present a set of strategies to allot virtual network nodes in an
optimal fashion subject to latency and buffer constraints.

1. INTRODUCTION
Over the last years, cloud computing has swiftly transformed
the IT infrastructure landscape, leading to large cost-savings
for deployment of a wide range of IT applications. Some
main characteristics of cloud computing are resource pool-
ing, elasticity, and metering. Physical resources such as com-
pute nodes, storage nodes, and network fabrics are shared
among tenants. Virtual resource elasticity brings the ability
to dynamically change the amount of allocated resources, for
example as a function of workload or cost. Resource usage
is metered and in most pricing models the tenant only pays
for the allocated capacity.

While cloud technology initially was mostly used for IT ap-
plications, e.g. web servers, databases, etc., it is rapidly
finding its way into new domains. One such domain is pro-
cessing of network packages. Today network services are
packaged as physical appliances that are connected together
using physical network. Network services consist of intercon-
nected network functions (NF). Examples of network func-
tions are firewalls, deep packet inspections, transcoding, etc.
A recent initiative from the standardisation body ETSI (Eu-
ropean Telecommunications Standards Institute) addresses
the standardisation of virtual network services under the
name Network Functions Virtualisation (NFV) [1]. The ex-
pected benefits from this are, among others, better hard-
ware utilisation and more flexibility, which translate into re-
duced capital and operating expenses (CAPEX and OPEX).

c©Copyright retained by the authors

A number of interesting use cases are found in [2], and in
this paper we are investigating the one referred to as Virtual
Network Functions Forwarding Graphs, see Figure 1.

VNF3

VNF1 VNF1

VNF1

VNF1

VNF1VNF1

VNF4

VNF2

VNF3

VNF5

NFVI

Packet flow
Mapping to
physical 
hardware

Logical 
network
links

m1 m2

m4

m5

m5

Figure 1: Several virtual networking functions (VNF) are
connected together to provide a set of services. Packet
flow through a specific path the VNFs (a virtual forward-
ing graph). The VNFs are mapped onto physical hardware
referred to as NFVI.

We investigate the allocation of virtual resources to a given
packet flow, i.e. what is the most cost efficient way to allo-
cate VNFs with a given capacity that still provide a network
service within a given latency bound? The distilled problem
is illustrated as the packet flows in Figure 1. The forwarding
graph is implemented as a chain of virtual network nodes,
also known as a service chains. To ensure that the capac-
ity of a service chain matches the time-varying load, the
number of instances mi of each individual network function
VNFi may be scaled up or down.

The contribution of the paper is

• a mathematical model of the virtual resources support-
ing the packet flows in Figure 1,

• the set-up of an optimization problem for controlling
the number of machines needed by each function in the
service chain,

• solution of the optimization-problem leading to a control-
scheme of the number of machines needed to guarantee
that the end-to-end deadline is met for incoming pack-
ets under a constant input flow.

Related work
There are a number of well known and established resource
management frameworks for data centers, but few of them



explicitly address the issue of latency. Sparrow [3] presents
an approach for scheduling a large number of parallel jobs
with short deadlines. The problem domain is different com-
pared to our work in that we focus on sequential rather than
parallel jobs. Chronos [4] focuses on reducing latency on the
communication stack. RT-OpenStack [5] adds real-time per-
formance to OpenStack by usage of a real-time hypervisor
and a timing-aware VM-to-host mapping.

The enforcement of an end-to-end (E2E) deadline of a se-
quence of jobs to be executed through a sequence of comput-
ing elements was addressed by several works, possibly under
different terminologies. In the holistic analysis [6, 7, 8] the
schedulability analysis is performed locally. At global level
the local response times are transformed into jitter or offset
constraints for the subsequent tasks.

A second approach to guarantee an E2E deadline is to split
a constraint into several local deadline constraints. While
this approach avoids the iteration of the analysis, it requires
an effective splitting method. Di Natale and Stankovic [9]
proposed to split the E2E deadline proportionally to the lo-
cal computation time or to divide equally the slack time.
Later, Jiang [10] used time slices to decouple the schedula-
bility analysis of each node, reducing the complexity of the
analysis. Such an approach improves the robustness of the
schedule, and allows to analyse each pipeline in isolation.
Serreli et al. [11, 12] proposed to assign local deadlines to
minimize a linear upper bound of the resulting local demand
bound functions. More recently, Hong et al [13] formulated
the local deadline assignment problem as a Mixed-Integer
Linear Program (MILP) with the goal of maximizing the
slack time. After local deadlines are assigned, the processor
demand criterion was used to analyze distributed real-time
pipelines [14, 12].

In all the mentioned works, jobs have non-negligible exe-
cution times. Hence, their delay is caused by the preemp-
tion experienced at each function. In our context, which
is scheduling of virtual network services, jobs are executed
non-preemptively and in FIFO order. Hence, the impact of
the local computation onto the E2E delay of a request is
minor compared to the queueing delay. This type of delay is
intensively investigated in the networking community in the
broad area queuing systems [15]. In this area, Henriksson et
al. [16] proposed a feedforward/feedback controller to adjust
the processing speed to match a given delay target.

Most of the works in queuing theory assumes a stochastic
(usually markovian) model of job arrivals and service times.
A solid contribution to the theory of deterministic queuing
systems is due to Baccelli et al. [17], Cruz [18], and Parekh
& Gallager [19]. These results built the foundation for the
network calculus [20], later applied to real-time systems in
the real-time calculus [21]. The advantage of network/real-
time calculus is that, together with an analysis of the E2E
delays, the sizes of the queues are also modelled. As in the
cloud computing scenario the impact of the queue is very
relevant since that is part of the resource usage which we
aim to minimize, hence we follow this type of modeling.

2. PROBLEM FORMULATION
Section 1. We consider a service-chain consisting of n func-

tions F1, . . . , Fn, as illustrated in Figure 2. Packets are flow-
ing through the service-chain and they must be processed by
each function in the chain within some end-to-end deadline,
denoted by Dmax. A fluid model is used to approximate
the packet flow and at time t there are ri−1(t) ∈ R+ pack-
ets per second (pps) entering the i’th function and the the
cumulative arrived requests for this function is

Ri−1(t) =

∫ t

0

ri−1(τ) dτ. (1)

In a recent benchmarking study it was shown that a typical
virtual machine can process around 0.1–2.8 million packets
per second, [22]. Hence, in this work the number of packets
flowing through the functions is assumed to be in the order
of millions of packets per second, supporting the use of a
fluid model.

r0(t) F1 F2
. . . Fn rn(t)

r1(t) r2(t) rn−1(t)

Figure 2: Illustration of the service-chain.

2.1 Service model
As illustrated in Figure 3, the incoming requests to function
Fi are stored in the queue and then processed once it reaches
the head of the queue. At time t there are mi(t) ∈ Z+ ma-
chines ready to serve the requests, each with a nominal speed
of s̄i ∈ R+ (note that this nominal speed might differ be-
tween different functions in the service chain, i.e. it does not
in general hold that s̄i = s̄j for i 6= j ). The maximum speed
that function Fi can process requests at is thus mi(t)s̄i. The
rate by which Fi is actually processing requests at time t is
denoted si(t) ∈ R+. The cumulative served requests is de-
fined as

Si(t) =

∫ t

0

si(τ) dτ. (2)

At time t the number of requests stored in the queue is
defined as the queue length qi(t) ∈ R+:

qi(t) =

∫ t

0

(ri−1(τ)− si(τ))dτ = Ri−1(t)− Si(t). (3)

Each function has a fixed maximum-queue capacity qmax
i ∈

R+, representing the largest number of requests that can be
stored at the function Fi.

The queueing delay, depends on the status of the queue as
well as on the service rate. We denote by Di,j(t) the time

ri−1(t)

qi(t) ≤ qmax
i

...

fi

mi(t)

fi

+

Service Function Fi

si(t)

Figure 3: Illustration of the structure and different entities
of the service chain.



taken by a request from when it enters function Fi to when
it exits Fj , with j ≥ i, where t is the time when the request
exits function Fj :

Di,j(t) = inf {τ ≥ 0 : Ri−1(t− τ) ≤ Sj(t)}.

The maximum queueing delay then is D̂i,j = maxt≥0 Di,j(t).
The requirement that a requests meets it end-to-end dead-
line is D̂1,n ≤ Dmax.

To control the queueing delay, it is necessary to control the
service rate of the function. Therefore, we assume that it is
possible to change the maximum service-rate of a function by
changing the number of machines that are on, i.e. changing
mi(t). However, turning on a machine takes ∆on

i time units,
and turning off a machine takes ∆off

i time units. Together
they account for a time delay, ∆i = ∆on

i + ∆off
i , associated

with turning on/off a machine.

In 2012 Google profiled where the latency in a data center
occurred, [4]. They showed that less than 1% (≈ 1µs) of
the latency occurred was due to the propagation in the net-
work fabric. The other 99% (≈ 85µs) occurred somewhere
in the kernel, the switches, the memory, or the application.
Since it is difficult to say exactly which of this 99% is due to
processing, or queueing, we make the abstraction of consid-
ering queueing delay and processing delay together, simply
as queueing delay. Furthermore, we assume that no request
is lost in the communication links, and that there is no prop-
agation delay. Hence the concatenation of the functions F1

through Fn implies that the input of function Fi is exactly
the output of function Fi−1, for i = 2, . . . , n, as illustrated
in Figure 2.

2.2 Cost model
To be able to provide guarantees about the behaviour of the
service chain, it is necessary to make hard reservations of the
resources needed by each function in the chain. This means
that when a certain resource is reserved, it is guaranteed to
be available for utilization. Reserving this resource results
in a cost, and due to the hard reservation, the cost does not
dependent on the actual utilisation, but only on the resource
reserved.

The computation cost per time-unit per machine is denoted
c
i, and can be seen as the cost for the CPU-cycles needed by

one machine in Fi. This cost will also occur during the time-
delay ∆i. Without being too conservative, this time-delay
can be assumed to occur only when a machine is started.
The average computing cost per time-unit for the whole func-
tion Fi is then

J c
i (mi(t)) = lim

t→∞
c
i

t

t∫
0

mi(s) + ∆i · (∂−mi(s))+ds (4)

where (x)+ = max(x, 0), and ∂−mi(t) is the left-limit of
mi(t):

∂−mi(t) = lim
a→t−

mi(t)−mi(a)

t− a ,

that is, a sequence of Dirac’s deltas at all points where the
number of machines changes. This means that the value of
the left-limit of mi(t) is only adding to the computation-cost
whenever it is positive, i.e. when a machine is switched on.

The queue cost per time-unit per space for a request is de-
noted q

i . This can be seen as the cost that comes from the
fact that physical storage needs to be reserved such that a
queue can be hosted on it, normally this would correspond
to the RAM of the network-card. Reserving the capacity of
qmax
i would thus result in a cost per time-unit of

Jq
i (qmax

i ) = q
iq

max
i . (5)

2.3 Problem definition
The aim of this paper is to control the number mi(t) of ma-
chines running in function Fi, such that the total average
cost is minimized, while the E2E constraint Dmax is not vi-
olated and the maximum queue sizes qmax

i are not exceeded.
This can be posed as the following problem:

minimize J =

n∑
i=1

J c
i (mi(t)) + Jq

i (qmax
i )

subject to D̂1,n ≤ Dmax

qi(t) ≤ qmax
i , ∀t ≥ 0, i = 1, 2, . . . , n

(6)

with J c
i and Jq

i as in (4) and (5), respectively. In this paper
the optimization problem (6) will be solved for a service-
chain fed with a constant incoming rate r.

A valid lower bound J lb to the cost achieved by any feasible
solution of (6) is found by assuming that all functions are
capable of providing exactly a service rate r equal to the
input rate. This is possible by running a fractional number
of machines r/s̄i at function Fi. In such an ideal case, buffers
can be of zero size (∀i, qmax

i = 0), and there is no queueing

delay (D̂1,n = 0) since service and the arrival rates are the
same at all functions. Hence, the lower bound to the cost is

J lb =

n∑
i=1

c
i
r

s̄i
. (7)

Such a lower bound will be used to compare the quality of
the solution found later on.

In Section 3 we make a general consideration about the
on/off scheme of each machine in presence of a constant
input rate r. Later in Section 4, the optimal design problem
of (6) is solved.

3. MACHINE SWITCHING SCHEME
In presence of an incoming flow of requests at a constant
rate r0(t) = r, a number

m̄i =

⌊
r

s̄i

⌋
(8)

of machines running in function Fi must always stay on. To
match the incoming rate r, in addition to the m̄i machines
always on, another machine must be on for some time in
order to process a request rate of s̄iρi where ρi is the nor-
malized residual request rate:

ρi = r/s̄i − m̄i, (9)

where ρi ∈ [0, 1).

In our scheme, the extra machine is switched on at a desired
on-time ton

i :



• off → on: function Fi switches on the additional ma-
chine when the time t exceeds ton

i .

Since the additional machine does not need to always be on,
it could be switched off after some time. The off-switching
is also based on a time-condition, the desired stop-time toff

i ,
i.e. the time-instance that the machine should be switched
off, and is given by:

toff
i = ton

i + T on
i .

where T on
i is the duration that the machine should be on for,

and something that needs to be found. The off-switching is
then triggered in the following way:

• on → off: function Fi switches off the additional ma-
chine when the time t exceeds toff

i .

Note that this control-scheme, in addition with the constant
input, result in the extra machine being switched on/off pe-
riodically, with a period Ti. We thus assume that the extra
machine can process requests for a time T on

i every period
Ti. The time during each period where the machine is not
processing any requests is denoted T off

i = Ti − T on
i . Notice,

however, that the actual time the extra machine is consum-
ing power is T on

i + ∆i due to the time-delay for starting a
new machine.

In the presence of a constant input, it is straight-forward to
find the necessary on-time during each period—in order for
the additional machine to provide the residual processing
capacity of r − m̄is̄i, its on-time T on

i must be such that

T on
i s̄i = Ti(r − m̄is̄i),

which implies

T on
i = Tiρi, T off

i = Ti − T on
i = Ti(1− ρi). (10)

With each additional machine being switched on/off period-
ically, it is also straightforward to find the computation cost
for each function. If m̄i + 1 machines are on for a time T on

i ,
and only m̄i machines are on for a time T off

i , then the cost
J c
i of (4) becomes

J c
i = c

i

(
T on
i + ∆i

Ti
+ m̄i

)
= c

i

(
m̄i + ρi +

∆i

Ti

)
(11)

if T off
i ≥ ∆i. If instead T off

i < ∆i, that is if

Ti < T i :=
∆i

1− ρi
, (12)

then there is no time to switch the additional machine off
and then on again before the new period start. Hence, we
keep the last machine on, even if it is not processing packets,
and the computing cost becomes

J c
i = c

i

(
m̄i + ρi +

T off
i

Ti

)
= c

i(m̄i + 1). (13)

Next, using this control-scheme, the optimization problem
of (6) will be studied and solved under the assumption that
every function will switch on/off its additional machine with
the same period, T .

T on
i

T on
i−1T off

i−1

Ti = Ti−1 = T

r

qi(t)

si(t)

si−1(t)

qmax
i

Figure 4: Example of an on/off-switching scheme when func-
tion Fi and Fi−1 switch on/off their additional machine with
the same period and how it affects the queue-size qi(t) of the
functions.For this example: r = 17, s̄i−1 = 6, s̄i = 8, T = 120,
T on
i−1 = 100, T on

i = 15, qmax
i = 90.

4. DESIGN OF MACHINE-SWITCHING PE-
RIOD

In this section we solve the optimization problem (6) under
the assumption of a constant input. In order to somewhat
reduce the complexity of the solution we also make the as-
sumption of letting every function switch its additional ma-
chine on/off with the same period, Ti = T . The common
period T of the schedule, by which every function switches
its additional machine on/off, is the only design variable in
the optimization problem (6). In Lemma 1 and Lemma 2
below, the maximum queue size qmax

i of any function Fi and
the end-to-end delay D̂1,n are both shown to be propor-
tional to the switching period T . The intuition behind this
fact is that the longer the period T is, the longer a function
will have to wait with the additional machine being off, be-
fore turning it on again. During this interval of time, each
function is accumulating work and consequently both the
maximum queue-size and the delay grows with T .

Figure 4 illustrate how two functions in a service-chain, Fi

and Fi−1, switch on/off their additional machine with the
same period T . However, one should note that they are
not on for the same duration. In this example, the input
rate to the service-chain is r = 17, the nominal service-rate
of the first and second function is s̄i−1 = 6 and s̄i = 8
respectively. The machine-switching period is T = 120, and
the on-time for the two additional machines are T on

i−1 = 100
and T on

i = 15 respectively. The maximum queue-size needed
for the second machine is qmax

i = 90.

In order to solve the optimization problem one need two
ingredients. The first ingredient is the expression for the
maximum queue-size needed for a given period T :

Lemma 1. With a constant input rate r0(t) = r, along
with all functions switching on/off their additional machine
with a common period T , the maximum queue size qmax

i at
function Fi is

qmax
i = T × αi, (14)



where

αi = max
{
ρi
(
s̄i(1− ρi)− s̄i−1(1− ρi−1)

)
,

(1− ρi−1)(s̄i−1ρi−1 − s̄iρi),
ρi−1

(
s̄i−1(1− ρi−1)− s̄i(1− ρi)

)
,

(1− ρi)(s̄iρi − s̄i−1ρi−1)
}
,

with ρi as defined in (9), and T being the period of the
switching scheme, common to all functions.

Proof. Due to limited space the proof is shown in a tech-
nical report published at Lund University Publications, [23].
1

The expression of qmax
i in Eq. (14) suggests a property that

is condensed in the next Corollary.

Corollary 1. The maximum queue qize qmax
i at any function

Fi is bounded, regardless of the rate r of the input.

Proof. From the definition of ρi in Eq. (9), it always
holds that ρi ∈ [0, 1). Hence, from the expression of (14), it
follows that qmax

i is always bounded.

The second ingredient needed to solve the optimal design
problem is the expression of how the end-to-end delay relate
to the switching period T .

Lemma 2. With a constant input rate, r0(t) = r, the longest

end-to-end delay D̂i,n for any request passing through func-
tions F1 thru Fn is

D̂1,n = T ×
n∑

i=1

δi. (15)

with δi being an opportune constant that depends on r, s̄i,
and s̄i−1.

Proof. Due to limited space the proof is shown in a
technical report published at Lund University Publications,
[23].

Solution to the optimization problem
With these hypothesis, the cost function of the optimization
problem (6) becomes

J(T ) = aT +
∑

i:T<T i

c
i(1− ρi) +

∑
i:T≥T i

c
i
∆i

T
+ J lb, (16)

where J lb is the lower bound given by (7) and a =
∑n

i=1 j
q
iαi,

where αi is given by Lemma 1. Furthermore, T i (defined
in (12)) represents the value of the period below which it is
not feasible to switch the additional machine off and then
on again (T < T i ⇔ T off

i < ∆i). In fact, ∀i with T < T i

we pay the full cost of having m̄i + 1 machines always on.

The deadline constraint in (6), can be simply written as

T ≤ c :=
Dmax∑n
i=1 δi

,

1https://lup.lub.lu.se/search/publication/
8c7b837e-bca3-4375-bb9d-28ce6bbc889a

with δi given in Lemma 2.

The cost J(T ) of (16) is a continuous function of one variable
T . It has to be minimized over the closed interval [0, c].
Hence, by the Weierstaß’s extreme-value theorem, it has a
minimum. To find this minimum, we just check all (finite)
points at which the cost is not differentiable and the ones
where the derivative is equal to zero. Let us define all points
in [0, c] in which J(T ) is not differentiable:

C = {T i : T i < c} ∪ {0} ∪ {c}. (17)

We denote by p = |C| ≤ n + 2 the number of points in C.
Also, we denote by ck ∈ C the points in C and we assume
they are ordered increasingly c1 < c2 < . . . < cp. Since the
cost J(T ) is differentiable over the open interval (ck, ck+1),
the minimum may also occur at an interior point of (ck, ck+1)
with derivative equal to zero. Let us denote by C∗ the set of
all interior points of (ck, ck+1) with derivative of J(T ) equal
to zero, that is

C∗ = {c∗k : k = 1, . . . , p− 1, ck < c∗k < ck+1} (18)

with

c∗k =

√∑
i:T i<ck+1

c
i∆i

a
.

Then, the optimal period is given by

T ∗ = arg min
T∈C∪C∗

{J(T )}. (19)

Next, we illustrate an example of how to use this to find a
solution to the design problem (6).

Example. We use an example to illustrate the solution
of the optimization problem of a service chain with two func-
tions. The input rate of the service-chain is r0(t) = r = 17.
Every request has an E2E-deadline of Dmax = 0.02. The
parameters of the two functions are reported in Table 1.

i s̄i c
i q

i ∆i

1 6 6 0.5 0.01
2 8 8 0.5 0.01

Table 1: Parameters of the example.

The input r0(t) = r can be seen as dummy function F0

preceding F1, with s̄0 = r, m̄0 = 1, and ρ0 = 0. From (8)
and (9) it follows that m̄1 = m̄2 = 2, and ρ1 = 5

6
, ρ2 = 1

8
,

implying that both functions must always keep two machines
on, and then periodically switch a third one on/off. This
leads to T 1 = 60.0×10−3 and T 2 = 11.4×10−3, where T i is
the threshold period for function Fi, as defined in (12). From
Lemma 1 it follows that the parameter a of the cost function
(16) is a = 0.792, while from Lemma 2 the parameters δi
determining the queuing delay introduced by each function,
are δ1 = 49.0 × 10−3 and δ2 = 22.1 × 10−3, which in turn
leads to

c =
Dmax

δ1 + δ2
=

0.02

71.1× 10−3
= 281× 10−3.

Since T 2 < T 1 < c, the set C of (17) containing the boundary
is

C = {0, 0.00114︸ ︷︷ ︸
T2

, 0.060︸ ︷︷ ︸
T1

, 0.281︸ ︷︷ ︸
c

}.



To compute the set C∗ of interior points with derivative
equal to zero defined in (18), which is needed to compute
the period with minimum cost from (19), we must check all
intervals with boundaries at two consecutive points in C. In
the interval (0, T 2) the derivative of J is never zero. When
checking the interval (T 2, T 1), the derivative is zero at

c∗1 =

√
c
2∆2

a
= 0.318,

which, however, falls outside the interval. Finally, when
checking the interval (T 1, c) the derivative is zero at

c∗2 =

√
c
1∆1 + c

2∆2

a
= 0.421 > c = 0.281.

Hence, the set of points with derivative equal to zero is C∗ =
∅. By inspecting the cost at points in C we find that the
minimum occurs at T ∗ = c = 0.281, with cost J(T ∗) = 34.7.
To conclude the example we show the state-space trajectory
for the two queues in Figure 5. Again, it should be noted
that this example is meant to illustrate how one can use the
design methodology of this section in order to find the best
period T . In a real setting the incoming traffic will likely be
around millions of requests per second, [24].

qmax
1

qmax
2

(on, off)

(o
n,

on
)

(on, off)

(off, off) q1(t)

q2(t)

Figure 5: State-space trajectory for the example in Section 4.
(on, off) correspond to F1 having its additional machine on,
while F2 has its extra machine off.

5. SUMMARY
In this paper we have developed a general mathematical
model for a service-chain residing in a Cloud environment.
This model includes an input model, a service model, and
a cost model. The input-model defines the input-stream
of requests to each NFV along with end-to-end deadlines
for the requests, meaning that they have to pass through
the service-chain before this deadline. In the service-model,
we define an abstract model of a NFV, in which requests
are processed by a number of machines inside the service
function. It is assumed that each function can change the
number of machines that are up and running, but doing so is
assumed to take some time. The cost-model defines the cost
for allocating compute- and storage capacity, and naturally
leads to the optimization problem of how to allocate the
resources. We analyze the case with a constant input-stream
of requests and derive control-strategies for this. This is a
simplified case it will constitute the foundation of adaptive
schemes to time-varying requests in the future.

We plan to extend this work by allowing for a dynamic in-
put as well as uncertainties in the true performance of the
machines running in the functions, leading to the need of us-
ing a more advanced feedback loop to guarantee the desired
performance.

Acknowledgements. The authors would like to thank
Karl-Erik Årzén and Bengt Lindoff for the useful comments
on early versions of this paper.

Source code. The source code used to compute the
solution of the example in Section 4 can be found on Github
at https://github.com/vmillnert/REACTION-source-code.

6. REFERENCES
[1] ETSI, “Network Functions Virtualization (NFV),”

https://portal.etsi.org/nfv/nfv white paper.pdf,
October 2012.

[2] ——, “Network Functions Virtualization (NFV); Use
Cases,” October 2013.

[3] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica,
“Sparrow: Distributed, low latency scheduling,” in
Proceedings of the 24th ACM Symposium on Operating
Systems Principles. ACM, 2013, pp. 69–84.

[4] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat, “Chronos: Predictable low latency for data
center applications,” in Proceedings of the Third ACM
Symposium on Cloud Computing, ser. SoCC ’12. New
York, NY, USA: ACM, 2012, pp. 9:1–9:14. [Online].
Available:
http://doi.acm.org/10.1145/2391229.2391238

[5] S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. Phan,
I. Lee, and O. Sokolsky, “RT-Open Stack: CPU
resource management for real-time cloud computing,”
in Cloud Computing (CLOUD), 2015 IEEE 8th
International Conference on. IEEE, 2015, pp.
179–186.

[6] K. W. Tindell, A. Burns, and A. Wellings, “An
extendible approach for analysing fixed priority hard
real-time tasks,” Journal of Real Time Systems, vol. 6,
no. 2, pp. 133–152, Mar. 1994.

[7] J. Palencia and M. G. Harbour, “Offset-based response
time analysis of distributed systems scheduled under
EDF,” in 15th Euromicro Conference on Real-Time
Systems, Porto, Portugal, July 2003.

[8] R. Pellizzoni and G. Lipari, “Holistic analysis of
asynchronous real-time transactions with earliest
deadline scheduling,” Journal of Computer and System
Sciences, vol. 73, no. 2, pp. 186–206, Mar. 2007.

[9] M. Di Natale and J. A. Stankovic, “Dynamic
end-to-end guarantees in distributed real time
systems,” in Proceedings of the 15-th IEEE Real-Time
Systems Symposium, Dec. 1994, pp. 215–227.

[10] S. Jiang, “A decoupled scheduling approach for
distributed real-time embedded automotive systems,”
in Proceedings of the 12th IEEE Real-Time and
Embedded Technology and Applications Symposium,
2006, pp. 191–198.

[11] N. Serreli, G. Lipari, and E. Bini, “Deadline
assignment for component-based analysis of real-time
transactions,” in 2nd Workshop on Compositional
Real-Time Systems, Washington, DC, USA, Dec. 2009.

[12] ——, “The demand bound function interface of
distributed sporadic pipelines of tasks scheduled by
EDF,” in Proceedings of the 22-nd Euromicro
Conference on Real-Time Systems, Bruxelles,
Belgium, July 2010.



[13] S. Hong, T. Chantem, and X. S. Hu, “Local-deadline
assignment for distributed real-time systems,” IEEE
Transactions on Computers, vol. 64, no. 7, pp.
1983–1997, July 2015.

[14] A. Rahni, E. Grolleau, and M. Richard, “Feasibility
analysis of non-concrete real-time transactions with
edf assignment priority,” in Proceedings of the 16-th
conference on Real-Time and Network Systems,
Rennes, France, Oct. 2008, pp. 109–117.

[15] L. Kleinrock, Queueing Systems. John Wiley & Sons,
1975.

[16] D. Henriksson, Y. Lu, and T. Abdelzaher, “Improved
prediction for web server delay control,” in Proceedings
of the 16th Euromicro Conference on Real-Time
Systems, June 2004, pp. 61–68.

[17] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P.
Quadrat, Synchronization and linearity. Wiley New
York, 1992, vol. 3.

[18] R. L. Cruz, “A calculus for network delay, part I:
Network elements in isolation,” IEEE Transactions on
Information Theory, vol. 37, no. 1, pp. 114–131, Jan.
1991.

[19] A. K. Parekh and R. G. Gallager, “A generalized
processor sharing approach to flow control in
integrated services networks: the single-node case,”

IEEE/ACM Transactions on Networking, vol. 1, no. 3,
pp. 344–357, June 1993.

[20] J.-Y. Le Boudec and P. Thiran, Network Calculus: a
theory of deterministic queuing systems for the
internet, ser. Lecture Notes in Computer Science.
Springer, 2001, vol. 2050.

[21] S. Chakraborty and L. Thiele, “A new task model for
streaming applications and its schedulability analysis,”
in Design, Automation and Test in Europe Conference
and Exposition, Mar. 2005, pp. 486–491.

[22] R. Bonafiglia, I. Cerrato, F. Ciaccia, M. Nemirovsky,
and F. Risso, “Assessing the performance of
virtualization technologies for nfv: a preliminary
benchmarking,” in 2015 Fourth European Workshop on
Software Defined Networks. IEEE, 2015, pp. 67–72.

[23] V. Millnert, J. Eker, and E. Bini, “Cost minimization
of network services with buffer and end-to-end
deadline constraints,” p. 11, 09 2016. [Online].
Available: https://lup.lub.lu.se/search/publication/
8c7b837e-bca3-4375-bb9d-28ce6bbc889a

[24] W. Zhang, T. Wood, and J. Hwang, “Netkv: Scalable,
self-managing, load balancing as a network function,”
in Proceedings of the 13th IEEE International

Conference on Autonomic Computing, 2016.


