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Quantification of the variability in response to
propofol administration in children

Klaske van Heusden, J. Mark Ansermino, Kristian Soltesza dnosravi,Student Member, IEERJicholas West,
Guy A. Dumont,Fellow, IEEE

Abstract—Closed-loop control of anesthesia is expected to livery systems known as Target Controlled Infusion (TCI)

decrease drug dosage and wake up time while increasing patie
safety and decreasing the work load of the anesthesiologisthe
potential of closed-loop control in anesthesia has been dem-
strated in several clinical studies. One of the challengeshithe
development of a closed-loop system that can be widely actegd
by clinicians and regulatory authorities is the effect of irter-
patient variability in drug sensitivity. This system uncertainty
may lead to unacceptable performance, or even instability fo
the closed-loop system for some individuals. The developme
of reliable models of the effect of anesthetic drugs and charc-
terization of the uncertainty is therefore an important step in
the development of a closed-loop system. Model identificain
from clinical data is challenging due to limited excitation and
the lack of validation data. In this paper, approximate modds
are therefore validated for controller design by evaluatirg the
predictive accuracy of the closed-loop behavior. A set ofi7
validated models that describe the inter-patient variabilty in
the response to propofol in children is presented. This modeset
can be used for robust linear controller design provided tha the
experimental conditions are similar to the conditions during data
collection.

Index Terms—Anesthesia, System identification, Robust con-
trol.

I. INTRODUCTION

systems are commercially available for adult patients. In
this open-loop control setting, the target concentratieads

to be adjusted by the anesthesiologist to maintain adequate
anesthesia, due to widely varying individual patient reses

to propofol. The use of TCI systems in children is limited
due to the large inter-patient variability of PKPD behaviior
children and the debated validity of pediatric PKPD models
[2]. Closed-loop control of propofol infusion using feedka
from a measure of the depth of hypnosis (DOH) can reduce the
effect of inter-patient variability and improve control BOH

[3]. At the same time, this variability introduces a chatien

for closed-loop control in anesthesia [4]. Uncertaintyitgm
the achievable control bandwidth and characterizatiorhef t
uncertainty is required to ensure stability and perforneaoic

the closed-loop system [4].

The goal of this study is to identify models of the effect of
propofol on the DOH in children that describe the inter-gatti
variability in children age 6 to 16y, for the purpose of robus
linear controller design. ThB AV: s index® (NeuroSENSE
monitor, NeuroWave Systems, Cleveland Heights, USA) is
used as measure of the clinical effect. The NeuroSENSE
monitor was developed specifically for use in closed-loop

Propofol is an intravenously administered anesthetic drggntrol. It does not introduce a delay and its dynamic begravi

characterized by its fast redistribution and metabolisimis |

is consistent and well characterized [5], [6].

commonly used for induction and maintenance of anesthesiaModel identification from clinical data from propofol anes-

Inter-patient differences in pharmacokinetics (Pl&hd phar-

thesia introduces fundamental challenges [7]. Propoffu-in

macodynamics (PB)affect individual responses to propofolsion profiles in clinical practice provide limited excitai,

infusion. Administration of propofol therefore requiresntin-

propofol is often used in combination with fast acting opi-

and adjusting of drug dosing to the individual need.

response to propofol infusion is nonlinear. Nonlinear dyita

Traditionally the propofol infusion rate is controlled man Model structures are generally not identifiable from chhic
ally by the anesthesiologist. Computer aided open-loop déata. If the data is not sufficiently rich, a good fit of the

model with the data is insufficient for model validation. In
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1pharmacokinetics describe the transport and metabolisendoéig.

2pharmacodynamics relate plasma drug concentration tizadlieffect.

are identified from clinical data from open- and closed-loop
induction of anesthesia. In addition to evaluating the nhode
fit, the models are validated for the design of linear cotgrel
by comparing the predicted closed-loop behavior to meadsure
responses under the same controller.

PKPD models that are traditionally used to describe the
effect of propofol contain a third order linear PK model,
and a PD model consisting of a first-order linear transfer

3The W AV ng index is a number betweeh and 100, where the mea-
sured effect in the absence of drugs is approxima@éland W AVeons = 0
corresponds to the maximum DOH. The rarji¢@—60] corresponds to general
anesthesia.



function and an output nonlinearity (a Wiener model) [2]. !

Simplifications in the model structure have been proposéd u(® p (Ol ke g, | Ce) / B
to improve identifiability from clinical data: PKPD model ! s + ka :
structures with some parameters fixed [2], [8], [9], firstier e PD Model |
plus time-delay (FOPTD) models with an output nonlinearity

[7], [10], piecewise linear models [11] and a simplified mbde® T E()
for the effect of both propofol and remifentanil including | s+ ¢ /

an output nonlinearity [12]. Identifiability of these proyeul

structures has not been evaluated. Normally only one setFif 1. B'gﬁk d;é?ramz ?f_thf/} Fﬁropojeg m%delpstt)ructuae?- weB m;fdel
I . . . . e structure. e model IS Tollowe: y the model congist a

clinical dgta is available per subject apd I_dem'f'e_d mod?eds linear first-order transfer function and the nonlinear Hliihction. B: FOPTD

often validated based on the model fit with the identificatiofiructure. The dynamics of the effect of propofol on the DQE grouped

data set [10], [12], [7], [11]. Due to the limited excitationthe into a FOPTD transfer function. The nonlinearity is deseritby the Hill

clinical data, the predictive capacity of these modelsdaatd "¢t

based on the identification data is difficult to evaluate. Ten

and fifteen minute ahead predictions were considered by {3k effect siteC..(¢), and the nonlinear Hill function defined

to evaluate the model quality for its intended use, i.e-tiea¢ 5q

prediction of individual responses. Co(t)

ECg, +C2(t)

The models identified in this study are developed for the
design of robust linear controllers. It is well known thahgie describing the relation betweef,(¢) and the clinical effect
(t). ECs is the effect-site concentration at which half of the

linear models are often sufficient to achieve good contr
performance, even for systems with nonlinear behavior.[1 a‘ximum effect is achieved anddetermines the nonlinearity.
&h this study, the PK model is fixed to reduce the number

Such a linear approximate model depends on the experiment
conditions [14], and can be considered a good model f8f variables to identify. Only the PD parameters are ideadifi
Cf%llowing the approach in [8]. The Paedfusor PK model [17]

E(t) = Ey — Ey @)

a system controlled by a specific controller if the distan
between the predi.c.ted and achieved closed_—loo_p SyStemis'Sused to predicC,(t). The parameters of the PD model,
small for that specific controller [15], [16]. Validation diie Eo ko Ty ECeo and~. are identified from data
model set identified in this study therefore includes ewima ~ 0’ "¢~ 4~ ~50 i '
of the predicted closed-loop response and a comparisorisof th
response to clinical closed-loop data. Two model strusturB- FOPTD model structure
(PKPD and FOPTD) are considered. It is shown that the FOPTD models are commonly used for controller design
predicted closed-loop performance is comparable for thesed their use to describe the effect of propofol on the DOH
structures. The parameters for both model sets are givetforhas been proposed [7], [10]. The FOPTD model directly relate
subjects. Both validated model sets can be used for coatrokhe infusion rate to the clinical effect, as shown in Fig. 11B.
design, provided the experimental conditions are simdaghé this model structure, the nonlinear Hill function is defires
conditions during data collection [16]. EL(b)
The PKPD and FOPTD model structures are described in E(t) = Ey — Bg——"— |
Section 1l. Section Il discusses the clinical data that was Ego + Lz (1)
available for identification and highlights the charactits where Epr;(¢) is the effect as predicted by the LTI block,
of this data and their effect on model identification. Settiosee Fig. 1B. The system gain is modeled uskyg and the
IV describes the identification procedure and Section V sumenlinearity is parameterized by. The unknown parameters
marizes the results. Model validation is discussed in 8ectiFy, k, Ty, F5y and~ are identified. Note that the number of

®3)

VI. Concluding remarks are given in Section VII. unknown parameters in this FOPTD structure is the same as
the number of unknown parameters in the PKPD structure
II. MODELING THE EFFECT OF PROPOFOL where the PK model is fixed.

A. PKPD model structure

The effect of propofol on the DOH is traditionally mod-
eled using compartmental PKPD models [4], whose modt%I
structure is shown in Fig. 1A. The PK model relates the
drug infusion rateu(t) to the plasma concentratiof,(t),
C,(s) = PK(s)u(s), where PK (s) can be written as A. Open-loop data

1 (s + kot)(s + kar) Following approval from the institutional research ethics
= — , (1) board (REB), data was analyzed for thirty (30) children

Vi(s+7)(s+a)(s+5) undergoing elective general surgery using total intrausno
using the central compartment voluieand the pharmacoki- anesthesia. Fig. 2A shows the data collection setup. Propo-
netic distribution time constants, «, 8, ko1 andks;. The PD fol and remifentanil were administered as an initial bolus
model consists of a FOPTD transfer function, describing ttiellowed by a continuous infusion, manually controlled by
dynamics betwee,(¢) and the concentration of propofol atthe anesthesiologist. Propofol infusion is represented (by.

IIl. CLINICAL DATA

Data from both open-loop and closed-loop controlled anes-
esia was available for this identification study.

PK(s)



The clinical effectE(t) is affected by the opioid infusion due * oets, 10 L l fm ,
to the synergistic effect of remifentanil. The clinical et u®) intusion| | Patient—>+: + Of oo WAVes(t)
E(t) is measured as the/ AV s index [6]. The measured B

DOH is affected by stimulation from the proceduré(),

and measurement noisgt). The monitor dynamics, relating © P”w 4 n(t)
the clinical effect E(¢) to the measuredVAVeoys index, @ + conroed ] miusion| [0 ]+ PN DOH |WAVews(t)
are determined by the trending filter [6], and correspond to - pump B(t) monitor

Gu(s) = 1/(8s + 1) for a 30 second filter [8]. Propofol

infusion rates were recorded manually. THeAV ys index

was recorded every second throthOUt the case. Fig. 2. Schematic view of the setup used for data collectitig. A: Open-
loop setup, where(t) is the infusion rate, set directly by the anesthesiologist.

The infusion pump delivers propofol to the patient. The sgistic effect
B. Closed-loop data of opioids is indicated with the dashed line. The DOH monipoovides

Propofol infusion rates and recordings of thEAVoys 3 measure of Cz?:)f) C"”i;?a' EffeCWAVtCNS_(t))(-@?O”f‘r Stti“:#'aﬁon ffomd
. . . . € proceaure and measurement noise arrec € measure
index were available from a clinical pilot study of closembb 1,y "o "8’ Closed-loop setup for control of DOH, wherét) is

control of propofol anesthesia in children [1]. FollowindEBR  the reference DOH set by the anesthesiologist.
approval, and informed consent/assé&dtchildren age 6-16y
(11y+3, 34 male, 43kg:15, 150cmt=17) ASA I-114, requiring 100
anesthesia for elective upper and/or lower gastrointaistir
endoscopic investigations were enrolled for this study.

Fig. 2B shows the setup for closed-loop control of DOF
The setpoint is defined by the anesthesiologist and the fwbpc
infusion rate is calculated by the controller. The closedp! ‘ ‘ ‘ ‘
system uses feedback from the NeuroSENSE DOH monit 0 5 10 15 20 25 30 35 40 45
Propofol is delivered by an Alaris TIVA infusion pump (Care:
Fusion, San Diego, USA) connected to an intravenous lir
In addition to the robust PID controller, the control syster
contains necessary safety layers and alarms. During thes,ca
both information from the control system and the physiaagi
monitors is recorded every second. Remifentanil was adm
istered as a bolu®)(Gug/kg) prior to propofol administration 0oy o Ut e e
followed by continuous infusion0(03ug/kg/min). 20 25 30 35 40 45

Closed-loop data was recorded 28 cases using an initial Time fmin]
robust PID controller design [1]. The observed responsesp 3. measured DOH (top figure) and corresponding propiafasion rates
these23 cases indicated sufficient robustness and the control{esttom figure) collected during two typical cases. Solittliin this case the

was retuned to improve the speed of induction of anesthegi%pOfo' infusion was controlled manually by the anesiblesist. An initial
us was followed by a continuous infusion. A bolus was gireresponse to

and the response to stimulation (PKPD models id(:"miﬁ%amulation after approx. 12 minutes. Drug infusion wapptd after approx.
from data of these23 cases were used for the controllens minutes. Dashed line: in this case the propofol infusiate was closed-

redesign). This retuned system was evaluatetsiadditional loop controlled. Drug infusion was stopped after approx.nfbutes.
cases. Consequently, data from a totabBfcases of closed-
loop control of propofol anesthesia were available for exyst
identification.
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to be zero mean. Nociceptive stimulation caused by the
procedure decreases the clinical effect and cannot be assum

- - to be zero mean. The data from the open-loop controlled case
C. Characteristics of clinical data from propofol anesties shows an example of the effect of stimulation on the measured

Clinical data collected during typical cases of both opemOH after 12 minutes. The anesthesiologist gave a bolus of

loop and closed-loop controlled anesthesia are shown in Rigopofol after noticing the response to stimulation. Theseb-

3. The effect of propofol depends on the remifentanil indsi |oop controlled case shows several responses to stimuyjatio

due to the synergistic effect of these drugs. This synergpis the start of the case (after abouininutes) and during main-
taken into account and the identified models will be affetied tenance of anesthesia (arouhd and 23 minutes). Surgical

the remifentanil infusion. Consequently, the models caly onstimulation cannot be measured, and because the associated
be validated for similar experimental settings and comiplara disturbances are not zero mean, the effect of stimulatidh wi
remifentanil administration. introduce a bias in model identification.

As indicated in Fig. 2, the clinical data contains measure- During induction of anesthesia, nociceptive stimulatien i
ment noisen(t), as well as disturbances due to stimulatiogenerally limited, and data from induction of anesthesia ca
from the procedure(t). The measurement noise is assumege used for identification to limit the effect of disturbasce

4 _ _ o _ L on the identified model [8], [10]. However, initial scope

American Society of Anesthesiologists physical statusdifecation sys- . . . - .
tem. ASA I: normal healthy patient, ASA II: patient with milgystemic NSertion during endoscopic procedures and the insertion o
disease. airway devices during general surgery can cause nocieeptiv
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Fig. 4. RecordedV AVc s and propofol infusion rate for 14 subjects (greyFig. 5. Recorded closed-loop controll@f AV s and propofol infusion
thin lines) in open-loop protocol. One fast (dash-dot) and slow response rate for36 subjects used for identification (grey thin lines). Differelynamic

(solid line) are highlighted. The dashed lines highlight tawerage responses. responses to propofol infusion are highlighted: two respsnthat show a
gradualWW AV s decrease (dashed lines) and two cases that show a more

abrupt decrease (dash-dot and solid line).

stimulation. Cases that show a significant reaction during
induction of anesthesia need to be discarded to limit the bia 2) Closed-loop dataThe speed of induction of anesthesia
in the identified model. was slower in the closed-loop study than in the open-loop
Nonlinear model structures including the structures shovetudy, therefore the first0 minutes after the start of propofol
in Fig. 1 are generally not identifiable from clinical dat2]1 infusion were used for identification. Recordings3afout of
[10]. During induction of anesthesia, th& AVy s changes the original 69 cases show a strong reaction to stimulation
from ~ 90 (awake) to50 (adequate anesthesia), correspondirduring the firstl0 minutes after the start of propofol infusion
to a step response. The effect of the nonlineasitgannot and were discarded after visual inspection. Data from the
be distinguished from the dynamic paramet&ts and k; remaining36 subjects, shown in Fig. 5, were used for model
(or k) due to the limited excitation in the step responsédentification.
However, a linear approximation of the system identifiearfro Note that some reaction to stimulation due to insertion of
the step response can provide an adequate approximate madelay devices or scope insertion during endoscopic ivest
for controller design [13]. gations is common. The large number of cases discarded to
avoid bias in the identified model as a result of stimulation
is related to the low dose of remifentanil administered migiri
IV. M ODEL IDENTIFICATION FROM CLINICAL DATA these procedures. It is not a result of the use of closed-loop

) control.
A. Data selection

The quality of models identified from data depends strongB. Identification of the model parameters
on the quality of that data. The clinical data was therefore |n a two-step identification approach, a linear approxiovati
inspected visually and manually selected before identiioa is initially identified. This linear approximation of theegt
To achieve this, we took clear signs of response to stimarati response is expected to provide an adequate approximation
in the measured AVcy s into account as well as additionalfor controller design [13]. In a second step, the model fit
observations and information collected in the operati@nTo is improved through optimization of the nonlinearity In

1) Open-loop data:The first eight (8) minutes after thethe first step, identifying the linearized model, the monito
start of propofol infusion were used for model identificatio dynamics and the PD model are commutative and the infu-
Data was incomplete for six (6) cases. Induction of ane&thesion profile or the plasma concentration can be filtered by
required volatile anesthetics in two (2) cases. Five (5gsad7,, to account for these dynamics [8]. The nonlinearity is
were discarded due to corrupted data or insufficient dagapected to be underestimated because the nonlinear behavi
quality. Three (3) cases were discarded because they stowéslapproximated by a linear model in the first step. The trade-
strong reaction to stimulation during induction of anesthe off between the dynamic parametefs and k4 (or k) and
The recorded data for the remaining 14 cases is showntie nonlinearityy is therefore expected to tend towards larger
Fig. 4. Data interpolation at a stabl® AV- g index was time delays, slower dynamics and smaller valuesyfor
performed in four cases whebeseconds (1 case)() seconds  For each set of open- and closed-loop d#gjs estimated
(2 cases) and0 seconds (1 case) of data were missing. Thes the average effect measured during the Jilsteconds after
recordings in Fig. 4 clearly show the inter-patient varibi the start of propofol infusion (no response is expectednduri
observed in the response to propofol anesthesia in childrerthis period). In some data sets tHéAV ys index increased



at the start of the case, possibly related to pain on injeatio 100 100
propofol. This increase can lead to overestimatiod gf The
time delay is therefore limited t@y; < 120s. The models are
discretized using the Euler method.
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The FOPTD models are identified as follows: The infusio

0 200 400 0 200 400
profile is filtered by the dynamics of the monité#,,. A 100 100
linearization of the model is identified using the outpuber 2 | & |
method [18]. In a second optimization stegs identified. g oo | o |
Identification of the PKPD models requires calculation ¢ § 40 1 40 1

N
o

the plasma concentratio,(¢) corresponding to the infusion m s 20, ~ =

profile u(t). The Paedfusor population PK model [17] is use Time [s] Time [s]
to predictC,(t). The Cp(t) profiles are filtered byG . In

the first optimization step, a linearization of the PD model £i9: 6.  Response of the identified models compared to the fatéhe
ur cases highlighted in Fig. 4. The figures show the prediautput of

. o . 0
'dem'f'e_d IUS.II’IQ the outpu_t-errpr .methOd' In a second step t}ﬁe FOPTD models (dashed lines), the predicted output oP#®@D models
model fit is improved by identifyingy in eq. (2). (thick solid lines) and the measured response (thin lines).

o

Remark: Direct identification from closed-loop data us-
ing the output-error approach is known to result in biased V. RESULTS
models. When _the data is collected in closed-loop, the mp}{[ Open-loop data
to the system is correlated to the noise. In that case, d|rectF h of thel4 | PKPD gel and
identification using the system input (controller outputda or each of thel4 open-loop cases, a model an

output (measuretl” AV v s) is unbiased with respect to noise & FOPTD model were identified. F&rout of the14 cases,

only if both the system model and the noise model are me FOPTD models achieve a better fit with the data than the

the model set [19]. Identification of the noise model or tthPD models. The average of the roqt mean square residual
use of indirect identification could be considered to previo‘g'"ors between the data and the predicted model output was
a consistent estimate. For the identification of models wif)hm(io'%) (mean rms¢ std)) for the FOPTD models and

a fixed structure, i.e. the PKPD models or FOPTD mode:f’s79(i0'85) for the PKPD models.

considered in this study, “tailor-made” parameterizagioould B
be used. However, when undermodeling of the plant is present
these methods will also introduce bias.

Closed-loop data

For each of the36 closed-loop cases, a FOPTD model and
] ] o o ] o ) a PKPD model were identified. The FOPTD models achieve a
Direct identification and indirect identification differ die  patter fit than the PKPD models 85 out of the36 cases. The
choice of noise model [19]. If there is no undermodeling of erage of the root mean square (rms) residual errors (mean
the plant, an unbiased plant model can be obtained whegps std)) between the data and the predicted model output
the structure of the noise model is chosen correctly. In CaRBs3.55(+0.82) for the FOPTD models angl68(-£0.79) for
of undermodeling of the plant, there will be a bias for alhe PKPD models.
methods. The frequency weighting of this bias depends ongor hoth the open- and closed-loop data, the FOPTD models
the identification method and corresponding noise model. dEnieve a better fit on average than the PKPD models. This

the signal-to-noise ratio is large or if the feedback noisgnfirms the results of [10]. Note that the differences are no
contribution to the input of the identified model is smalle th¢jinjcally relevant.

bias due to noise in the direct approach will be small [19].

. s . L VI. M ODEL VALIDATION

When identifying a linear approximation of the response to
propofol infusion during induction of anesthesia, a noedin A. Comparing the model prediction to the identification data
plant is approximated by a linear model and undermodelingThe predicted output for each model is compared to the
will be present. All closed-loop identification methods Iwilidentification data and the fit is inspected visually. The fisw
therefore introduce bias [19]. Direct identification usitig deemed sufficient for both the PKPD and the FOPTD models
output-error approach was chosen because the optimization49 out of the50 subjects and thest) models are validated
problem is relatively simple and the bias due to noise [Eased on the fit with the identification. Examples of a suffitie
expected to be small. The high-frequency noise is low-pafiisare shown in Fig. 6 and 7. Fig. 8 shows the fit obtained
filtered by G . In the PKPD model structure additional low-for the 50th subject. The rms residual error for this subject
pass filtering by the PK model removes most of the noise cos-5.25 for the FOPTD model and.08 for the PKPD model.
tribution to the input of the identified PD model. AdvantageAfter visual inspection, it is concluded neither the FOPTD
of alternative closed-loop identification methods (diélerbias nor the PKPD model captures the dynamics of the response.
weighting) are not expected to outweigh the cost of incr@as€he data shows response to stimulation afte’5 minutes.
complexity of the optimization problem, the increased nembThe models are biased because of this disturbance. This case
of parameters to be identified and the increased risk of fqndiaccentuates the variability in response to stimulation tued
local minima. Validation of the predicted closed-loop r@spe need for visual inspection of both the data and the model
supports this choice. predictions.
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Fig. 9. Comparison of the simulated closed-loop respon$dkeod7 PKPD and FOPTD models (thin lines) and the recorded closep-data from36
cases under the same controller (grey thin lines). The dakhe indicates the control setpoint. Data where the exantroller configuration differed from
the simulated configuration or where occlusion of the irdndines occurred were discarded. Note thatof the 47 models were identified from data in this
data set. The closed-loop response of the PKPD models isrsledty the response of the FOPTD models is shown right. Theetli3) outliers as discussed

in Section VI-B are highlighted (thick lines).

validation based on rms errors and visual inspection of the fi

__ 100 100
§ 80 ] 80 therefore insufficient. To overcome this limitation, the dets
S e 1 60 identified in this study are validated for robust linear cotér
T . 40 design. A good model for a system controlled by a specific
° 20 o o 20 o o controller achieves a small distance between the predardd
achieved closed-loop system for that controller [15], [14]
- 100 100 minimal requirement for a validated model is therefore that
g 80 1 80 1 the model achieves a small distance between the predicted
2 60 ] 60 1 and measured responses for the controller that was cliyical
§ 40 1 40 1 evaluated. In the following, the models are therefore \aéd
20, 200 200 20, 200 200 based on the predicted glosed-loop performance of the. modgl
Time [s] Time [s] controlled by the redesigned PID controller as described in

Section 1lI-B.

Fig. 7. Predicted response of the identified models compardéce data for Fio. 9 sh h . lated cl d-| f th
the four cases highlighted in Fig. 5. The figures show theipted output of 19. shows t _e Slm_u ated closed-loop response O_ the
the FOPTD models (dashed lines), the predicted output oP#D models complete set ob0 identified models controlled by the clin-

(thick solid lines) and the measured response (thin lines). ically evaluated PID controller. The measured closed-loop
responses under the same controller are shown for compariso
100 The induction timé for the PKPD and FOPTD models are

similar (mean £ std) 3.6 min (+£42s) and 3.7 min (£44s)

respectively). The overshoot upon inductior8ist:3) for the

PKPD models an®(=+4) for the FOPTD models. The PKPD

models shows less variability in the predicted settlingefim

13 min (+3.4 min) for the PKPD models]3.4 min (£5.3

100 200 200 200 =00 500 min) for the FOPTD models. The response of the FOPTD
Time [s] models that contain an integrator is not realistic (cortstan

Fig. 8. Predicted response of the identified models comptretie data WAVens ~ 30 and zero |nfu5|on). L.

for the subject for which the fit was deemed insufficient basedvisual The responses of the PKPD models show three (3) distinct

inspection. The figure shows the predicted output of the ADRodel outliers, highlighted in Fig. 9. One of these outliers cerre

t(ﬁgsrgi‘;;'l:‘r?a tr';‘;p‘gﬁgg:t(‘fgmoﬁggf of the PKPD model (tsekd line) and - g5y 10 the models for the subject shown in Fig. 8, for which

the model fit was insufficient. The simulated response of the
two other outliers was compared to the observed response. Th
simulated response for the case shown in Fig. 10 corresponds

(o]
o

DOH [WAVcns]
D
o

IS
o

N
o
o

B. Closed-loop response

Du? to. the. .“m.lt.ed. eXCItathn in_ clinical da’_[a and the 5Defined as the time from the start of propofol infusion utté W AVo g
resulting identifiability issues, different models withetBame reaches 60 and stays below 60 for as least 30 seconds.
structure can provide an adequate fit with the data. ModePDefined as the time to stabilize in the range— 55W AVons.
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0 5 10 15 %?me [mﬁﬁ 80 35 40 45 Fig. 11. Bode diagrams of models linearized for inductionanésthesia.

Bode diagrams of thel7 PKPD models are shown in solid lines, Bode
diagrams of thet7 FOPTD models are shown dashed. The input and output

Fig. 10. Comparison of the simulated (thick line) and the sneed (thin units areyug,/kg/min and100 — W AVens respectively.

line) closed-loop responses for one of the cases hightighteFig. 9. The
PKPD model was used for simulation. The dashed line indictite setpoint.

segments used for identification. For intermediate freqissn
to the measured response for upl® minutes, but deviates the dynamics of the FOPTD and PKPD models are similar
after these 0 minutes. The oscillation in the simulated systerand the gain and the phase shift of the identified models
indicates smaller robustness margins than observed itiggac are comparable around the intended closed-loop bandwidth
Similar dynamics were observed for the third outlier. The ugbetween10—3 and 3 x 10~2 rad/s). The variability is also
of these three models in controller design would lead tolgvercomparable in this bandwidth. The closed-loop behavior of
conservative controllers, the three outliers highlighiedrig. the FOPTD and PKPD models is therefore similar under the
9 are therefore considered invalid for controller design.  same controller.

Comparison of the simulated closed-loop response of theA complete list of the identified parameters for both the
remaining47 models to the measured responses under tRKPD and the FOPTD structure is given in Table I. The
same controller shows that the model set captures the @gtbe®"OPTD model set shows more variability although the dif-
inter-patient variability and provides a good descriptidrihe ference is marginal. The time response of the PKPD models
system’s response to induction of anesthesia. Note that ibenore realistic than the time response of the FOPTD models.
measured data is affected by nociceptive stimulation aat tflBoth model sets are appropriate for the design of linearsbbu
the setpoint for the controller was changed@an some cases controllers. Depending on the controller design methodthad
after 10 or more minutes (the anesthesiologist considered thisquirements imposed by that method, either the FOPTD or
lighter anesthetic state sufficient in these cases). the PKPD model set can be favored. For these models based

The identified models are based on a linear approximatian a linear approximation:

The inter-patient variability is therefore largely desed by the model validity is limited to experimental conditions

the linear dynamics of the models. This variability in the  \here the linearization is expected to provide a good
linear dynamics can be used for the design of robust linear 455 roximation of the system behavior. If the experimen-
controllers. The model sets af7 models are validated for tal settings change significantly, for example significant

the design of robust linear controllers for induction and changes in speed of induction or significant changes in
maintenance of anesthesia, provided that the experimental pioid infusion, the models may not be adequate for

conditions are similar to the experimental conditions dgri controller design.

data collection. « the identified PD parameters in the PKPD structure have
limited physiological meaning.

C. Model sets for robust linear controller design « the identified parameters in the FOPTD models have

Fig. 11 shows the Bode diagrams for both the PKPD and limited physiological meaning.
the FOPTD models. The models are normalized with respectt the time delay in the FOPTD models represents the phase
to the subject's weight and the model gains are linearized fo  Shift between the propofol infusion and the observed
induction of anesthesiaAt high frequencies, the roll-off of clinical effect and does not provide a realistic estimate
the PKPD models is higher than the roll-off of the FOPTD of t_he time delay observe_d clinically for example during
models, as expected due to the different model orders. The Maintenance of anesthesia.
differences in dynamics at low frequencies reflect inadeura
steady state gain estimates, due to the limited length afakee VII. CONCLUSION

"The gain is calculated a8 — 50)/us0, Whereus is the steady state This paper pre§ents_ a .Set Qf models that de;crib_e; the
infusion rate corresponding to the setpolfitAVo s = 50. effect of propofol infusion in children age 6-16y, identifie



TABLE |
MODEL PARAMETERS AND PATIENT DEMOGRAPHICSMODELS FOR SUBJECTL—14ARE IDENTIFIED FROM OPENLOOP DATA. MODELS FOR SUBJECT
15—47ARE IDENTIFIED FROM CLOSEDBLOOP DATA. THE k4 VALUES THAT ARE ADJUSTED BECAUSE OF NEGATIVE DISCRETE POLESRE HIGHLIGHTED.
SINCE THE SAME DATA SET IS USED TO IDENTIFY THEPKPDMODELS AND THE FOPTDMODELS, Eg HAS THE SAME VALUE FOR BOTH MODEL
STRUCTURES THE PRESENTEDPD PARAMETERS FOR THEPKPDMODELS ARE IDENTIFIED BASED ON PLASMA CONCENTRATION PREDITIONS USING
THE PAEDFUSOR MODEL[17] AND SHOULD BE USED IN COMBINATION WITH THISPK MODEL.

PKPD models FOPTD models
Patient | Age  Weight Height Genden T, kq ECs50 Eo 107 Ty k Eso ¥
[yl [kg] [em] [s] [min~'l [mg/] [s] [min~'l [pg/kg/min]

1 15 71 180.5 M 3 1.15 3.95 93.11 1.74 35 0.152 217 1.77

2 7 25.1 132 M 52 1.34 4.24 92.46 190 82 0.135 316 1.91

3 10 41.1 139 F| 11 60 3.83 9246 217 21 0.254 385 1.94

4 8 22 128 F| 44 10.71 5.77 9147 156 48 0.188 515 1.57

5 7 26.9 131.5 F 10 1.12 4.84 91.60 158 41 0.108 315 1.58

6 10 33.6 138 M 36 60 3.88 88.45 1.89| 40 0.214 365 1.80

7 14 82.1 177 M| 56 3.84 397 9291 1.64 68 0.194 282 1.63

8 16 52.5 154.9 F| 98 60 8.80 88.89 1.49| 94 0.212 473 153

9 8 23.4 118.7 0 1.89 3,57 9458 157 16 0.132 263 171
10 6 23 121 M | 105 4.55 4.81 92.89 1.5 115 0.177 415 1.56
11 11 58.5 0 1.46 3.71 91.68 1.7 29 0.133 267 1.83
12 8 25.3 130 M 0 1.16 544 90.30 152 4 0.058 228 1.64
13 13 56.1 168 M| 44 7.41 3.60 9138 1.8 41 0.131 229 201
14 13 47.3 171.8 F| 51 45.91 434 9276 199 58 0.251 400 1.81
15 15 48 169 M| 107 53.97 3.85 9178 1.83 117 0.288 282 1.81
16 8 31 135 F 90 13.62 3.60 91.06 1.49 119 0.344 404 1.48
17 11 30 145 F 86 43.09 3.72 92.13 1.54 119 0.385 429 1.55
18 15 54 166 F| 104 2.81 4.62 87.11 1.50 119 0.207 295 1.52
19 15 61 168 F| 75 1.88 3.23 9198 1.84 100 0.202 204 1.79
20 14 47 163 F| 119 2.17 3.70 8859 1.64 119 0.121 204 1.74
21 6 30 128 F 79 60 3.71 88.92 1.38| 90 0.289 391 1.50
22 15 59 160 F 3 0.46 3.27 92.33 159 33 0.052 99 1.72
23 15 59 163 F| 111 5.32 442 90.81 1.53 119 0.215 285 1.56
24 15 54 166 M| 119 1.74 5,58 87.69 1.50Q 119 0.133 291 1.62
25 10 49 157 F| 28 1.15 3.71 9140 154 59 0.133 273 1.62
26 13 65 151 M 79 3.13 3.45 91.20 1.58 119 0.341 346 1.64
27 9 30 131 F| 119 1.33 4.00 88.09 1.50 119 0.074 206 1.62
28 10 36 149 M 61 1.25 3.73 8861 1.54 93 0.157 305 1.65
29 11 31 145 F 0 0.49 277 9140 143 35 0.042 100 1.60
30 13 61 175 M 31 16.20 441 8922 159 25 0.147 309 1.53
31 16 55 167 F 42 1.73 7.14 92.01 1.59 56 0.155 339 1.54
32 16 66 176 M 9 0.37 2.75 94.02 1.71 66 0.078 99 1.78
33 10 38 156 F| 10 1.30 275 9344 164 32 0.124 197 1.82
34 15 52 167 F 8 0.88 3.23 9277 154 39 0.133 171 1.81
35 7 24 132 M 80 60 5.41 91.23 1.85| 73 0.075 265 1.53
36 10 43 145 F 65 6.93 3.45 91.67 1.6 70 0.155 270 1.60
37 12 33 144 M 8 0.70 2.61 92.69 1.5 41 0.082 150 1.82
38 7 24 121 M 0 0.59 3.64 9334 159 32 0.069 193 1.76
39 7 21 129 M 0 0.33 3,57 8930 1584 30 0.000 0 170
40 14 63 167 M 63 2.54 3.80 90.18 1.5 87 0.218 284 1.53
41 15 50 159 F 25 0.62 4.88 90.88 1.6 66 0.099 219 1.76
42 8 33 137 F 16 0.46 3.66 92.79 1.61 49 0.039 126 1.70
43 10 26 129 M 81 1.87 543 8861 1.71 91 0.084 295 157
44 13 58 169 F| 11 0.73 3,58 90.18 1.54 45 0.096 206 1.62
45 16 58 156 F 46 1.48 3.71 92.54 170 71 0.168 183 1.88
46 16 55 162 F 27 0.87 7.57 90.83 1.57 58 0.142 355 1.61
47 16 55 171 F| 15 0.47 544 90.79 1.5 50 0.075 182 171

from clinical data of induction of anesthesia. Identifioati physiological meaning. Care should be taken in the inter-
of nonlinear models from clinical data is challenging dupretation of simulation results in experimental settinbatt

to limited excitation in the signals. Furthermore, when thare significantly different from the conditions during data
data is not sufficiently exciting, a good fit of the model witltollection. Both model sets provide a realistic indicatifrthe

the identification data is not sufficient for model validatio inter-patient variability in the response to propofol isifon.

To overcome these identifiability issues, control relevapr

proximate models are identified and validated for controlle

design by evaluating the predictive accuracy of the cldseg- ACKNOWLEDGEMENTS

response under a known controller. A PKPD structure with a . . o .
timg delay and output nonlinearity and a FOPTD structuré wit The authors thank J. Stinson for his contribution to this
an output nonlinearity are considered. The presented mod%rleect.

are validated for the design of robust linear controllers.
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