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and Mattias Hoglund'™

Abstract

Background: Urothelial carcinoma of the bladder (UC) is a common malignancy. Although extensive transcriptome
analysis has provided insights into the gene expression patterns of this tumor type, the mechanistic underpinnings
of differential methylation remain poorly understood. Multi-level genomic data may be used to profile the regulatory
potential and landscape of differential methylation in cancer and gain understanding of the processes underlying
epigenetic and phenotypic characteristics of tumors.

Methods: We perform genome-wide DNA methylation profiling of 98 gene-expression subtyped tumors to identify
between-tumor differentially methylated regions (DMRs). We integrate multi-level publically available genomic data

generated by the ENCODE consortium to characterize the regulatory potential of UC DMRs.

Results: We identify 5453 between-tumor DMRs and derive four DNA methylation subgroups of UC with distinct
associations to clinicopathological features and gene expression subtypes. We characterize three distinct patterns
of differential methylation and use ENCODE data to show that tumor subgroup-defining DMRs display differential
chromatin state, and regulatory factor binding preferences. Finally, we characterize an epigenetic switch involving
the HOXA-genes with associations to tumor differentiation states and patient prognosis.

Conclusions: Genome-wide DMR methylation patterns are reflected in the gene expression subtypes of UC.
UC DMRs display three distinct methylation patterns, each associated with intrinsic features of the genome and
differential regulatory factor binding preferences. Epigenetic inactivation of HOX-genes correlates with tumor
differentiation states and may present an actionable epigenetic alteration in UC.

Background

Urothelial carcinoma of the bladder (UC) is one of the
most common epithelial malignancies in the industrial-
ized world and is characterized by heterogeneity in
terms of the underlying molecular mechanisms. With re-
spect to histopathology, UC can broadly be subdivided
into non-muscle-invasive (NMI, stages Ta and T1) and
muscle-invasive (MI, stage > T2) disease. NMI disease is
generally associated with a good prognosis despite fre-
quent recurrences while MI disease has a decidedly
worse prognosis [1]. Pioneering studies on phenotypic
characterization of tumors using gene expression profil-
ing have provided valuable insight into tumor biology
and allowed for clinically relevant patient stratification
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with respect to targeted therapies [2,3]. We have previ-
ously established a molecular classification system for
UC based on global gene expression patterns (Lund sub-
types), and defined five major biologically distinct classes
of tumors [4]. The Lund gene expression subtypes of UC
include: (1) the low stage and grade Urobasal A tumors
characterized by frequent FGFR3 mutations and a good
prognosis; (2) high stage and grade Urobasal B tumors
that are likely progressed Urobasal A tumors; (3)
Genomically Unstable tumors characterized by high
tumor grade and genomic instability; (4) the poor prog-
nosis squamous cell carcinoma-like (SCC-like) tumors
characterized by expression of basal cell markers; and
(5) Infiltrated tumors in which the intrinsic gene expres-
sion subtype is partially confounded by infiltrating im-
mune and stromal cells [4,5].

Alterations in DNA methylation and chromatin modi-
fication patterns are linked features that underlie many
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of the phenotypic changes observed in cancer cells [6].
In recent years, the interrelations between the gene ex-
pression phenotype, the genome, as well as the DNA
methylation landscape has been extensively investigated
across different malignancies [7,8]. Few studies have in-
vestigated the epigenomic landscape of UC. These have
highlighted aberrant expression of epigenetic writers,
silencing of developmental genes, as well as topological
effects on the level of histone modifications as promin-
ent features of aggressive UC [9-11]. Importantly, a
broad range of epigenetic modifiers are frequently inacti-
vated by somatic mutations in UC, further highlighting
the role of epigenetic perturbations in UC development
and disease progression [12-14]. In a recent landmark
publication on MI UC by The Cancer Genome Atlas
project (TCGA), 34% of tumors were found to exhibit a
CpG Island methylator phenotype [15], consistent with
previous reports by us and others [11,16]. The TCGA
study confirmed many of our findings on the gene ex-
pression subtypes of UC and validated their subtypes
using our data. Although this study used mRNA expres-
sion data to stratify the tumors, it did not report on the
interrelations between the gene expression phenotype
and the underlying DNA methylation subtypes of UC,
but instead focused on the mutation and genomic
landscapes.

To address this gap and investigate the interrelations
between gene expression and DNA methylation profiles,
we identified differentially methylated regions (DMRs)
from methylated DNA immunoprecipitation on chip
(MeDIP-chip) data generated for 98 UC tumors. We
show that DMR methylation patterns stratify UC tumors
into clinically and biologically coherent subgroups, and
provide a detailed description of associations to gene
expression subtypes of UC. Our main findings were
validated using TCGA data. To characterize the
underlying regulatory potential of UC DMRs and show
that differential methylation occurs in distinct se-
quence contexts, we leverage ENCODE data on chro-
matin states across nine cell lines [17]. Furthermore,
by integrating multi-level genomic data, we are able to
assign genomic context regarding chromosomal distri-
bution, chromatin state preference, and regulatory
factor (RF) binding potential to the methylation sub-
group defining DMRs. These intrinsic features of the
genome may have the potential to dictate the observed
DNA methylation changes [18], and provide a descrip-
tion of the genomic processes underlying differential
DNA methylation in cancer. Finally, we characterize
an epigenetic switch involving the HOXA/HOXB loci,
previously described in the context of stem-cell differenti-
ation [19], and show that the state of the epigenetic switch
correlates with the level of tumor differentiation and
aggressiveness.
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Methods

Tumor samples

In total 98 tumor and four macroscopically normal
urothelium samples were included in the study. Detailed
sample selection criteria and collected sample annota-
tions are described in Additional file 1. Informed con-
sent was obtained from all patients in accordance with
national statutes and use of the patient material is ap-
proved by the ethical review board at Lund University.
The study conformed to the Declaration of Helsinki.
Gene expression data generated on Illumina HT-12 ex-
pression arrays (Illumina, San Diego, CA, USA) was
available for all samples included in the study and nor-
malized for technical biases as previously described [4].
Gene expression data processing steps as well as DMR
matching procedures are described in Additional file 1.

Methylated DNA immunoprecipitation and array
hybridization

Methylated DNA immunoprecipitation [20], quality con-
trol, and purification steps, as well as PCR amplifications
were performed as described in Additional file 1. Sample
labeling and hybridizations to NimbleGen Human DNA
Methylation 3 x 720 K CpG Island Plus RefSeq Promoter
Arrays (Roche Nimblegen, Madison, WI, USA) were per-
formed by the NimbleGen genomics facility on Iceland.

Data filtering, normalization, and variance-based detection
of DMRs

The raw probe signal intensities of the full array (Cy5
and Cy3) were extracted for each sample. Probes map-
ping to the 22 autosomes were kept and the remaining
probes discarded from further processing. A five-step
normalization scheme was applied to the data and a per-
mutation based approach that controls for local CpG
density was used to define between-tumor differentially
methylated regions (Additional file 1).

Clustering of tumor samples and DMRs

As the individual DMRs contained varying numbers of
probes, we calculated the mean value of the probe scores
for each DMR and tumor. We applied a bootstrap hier-
archical clustering method [21] to derive stable methyla-
tion subgroups of UC tumors (Additional file 1). All
calculations of sample and class enrichment and deple-
tion with respect to clinicopathological and molecular
annotations were performed using a one-versus-rest
Fisher’s exact test. Survival analysis with respect to
HOX-cluster subtypes was performed using the logrank
test on the entire cohort with disease specific survival as
endpoint and was not corrected for clinicopathological
variables or treatment.
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Annotation of genomic features to DMRs

RefSeq tracks for genes, CpG-islands, chromatin tracks
for nine ENCODE cell lines [17], as well as the Repeat-
Masker track for hgl8 were downloaded from the UCSC
genome browser. Evolutionarily constrained elements
throughout the genome, defined using the GERP algo-
rithm [22], were obtained from the Sidow-lab web
page. The MSigDB v3.1 database was downloaded
from the GSEA web page. All processing steps related
to genomic feature annotation of UC DMRs are de-
scribed in Additional file 1.

TCGA data validation

For all samples included in the study (N =234), data on
DNA methylation (Illumina Infinium HM450 arrays),
somatic variants (exome sequencing), and gene-level
RNA sequencing were downloaded from the TCGA ftp
server. We also obtained methylation data for 21 adja-
cent normal samples from TCGA. All raw file names are
listed in Additional file 2: Table S1. The normalized
gene-level expression estimates were processed by add-
ing the constant 1 to all expression estimates followed
by log2 transformation and median centering. The
methylation data matrix was filtered for all probes with a
SNP-annotation or a missing value in any tumor sample
(final N =322,425 probes). For the somatic mutation
data, silent variants were filtered out and the mutation
status of each gene was dichotomized on the sample
level. For details on data processing steps, see Additional
file 1.

Processing and analysis of ENCODE data

For compatibility reasons the UC DMRs were mapped
to the hg19 build of the human genome using the UCSC
liftover tool and resulted in a successful conversion for
all but three DMRs (N =5,450). Data on regulatory fac-
tor ChIP-seq peak calls as well as DNasel-sites generated
by the ENCODE consortium were obtained through the
UCSC genome browser and processed as described in
Additional file 1.

Statistical analyses and data visualization

All data manipulation, normalization, and calculation
steps were carried out in the R statistical programing en-
vironment. All data visualization was produced using
base graphics in R, and the UCSC genome browser.

Data access

The data generated through this study have been de-
posited into the Gene Expression Omnibus (GEO)
under the accession number GSE58256. The previ-
ously published gene expression data are available
under the accession number GSE32894. The data gen-
erated by TCGA are available through the project ftp
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site. and ENCODE data through the UCSC genome
browser.

Results

Tumor-intrinsic DMR methylation patterns define four UC
subgroups

We profiled 98 UC samples representative of the full
clinicopathological spectrum using MeDIP followed by
hybridization to Nimblegen 3 x 720 K RefSeq promoter
and CpG Island (CGI) arrays to identify between-tumor
differentially methylated regions (DMRs). We identified
5,453 high-confidence regions throughout all autosomes
(Median size 780 bp, range 500 to 4,610 bp; Methods,
Additional file 3: Table S2).

To define subgroups of UC based on their DMR
methylation profiles, we used the 25% most varying
DMRs (N =1,363) and a bootstrap hierarchical cluster-
ing approach for tumor sample clustering [21]. The ap-
proach vyielded four robust methylation subgroups
(subgroups 1 to 4, Methods) which differed with re-
spect to both clinical (pathological stage and grade) and
molecular characteristics, including the Lund gene ex-
pression and the Lauss et al. [11] DNA methylation
epitypes (epitype A-C) of UC as well as FGFR3 and
TP53 mutation frequencies (Table 1) [4,11].

Subgroups 1 and 2 were enriched for stage Ta tu-
mors (P <5x 107 and P=0.047, respectively, Fisher’s
exact test) and tumors of lower pathological grade
(subgroup 1 for grade 1, P <2 x 10 and subgroup 2
for grade 2, P=0.038). Both groups exhibited enrich-
ment for the Urobasal A gene expression subtype
(P <6 x 10 and P =0.0071, respectively) and the pre-
viously defined epitype A (P <8 x 10 and P = 0.047).
Moreover, subgroup 1 was enriched for activating
FGFR3 mutations (P =0.0026). Subgroup 3 was
enriched for pathological grade 3 tumors (P =0.0008)
and exhibited a strong association with the Genomi-
cally Unstable gene expression subtype (P <2x10°)
and epitype C tumors (P <4 x 10”). This subgroup did
not differ significantly with respect to TP53 mutation
frequency, but was depleted of FGFR3 mutations (1 of
24 tumors, P =0.0002). Subgroup 4 was characterized
by an association to MI (P =0.0043) and pathological
grade 3 (P=0.012) disease, enriched for the poor
prognosis SCC-like gene expression subtype (P =
0.011) and also included the majority (78%) of epitype
B samples (P =0.021). Subgroup 4 did not differ sig-
nificantly from the other subgroups with respect to
FGFR3 or TP53 mutation status. The identified methy-
lation subgroups therefore correspond well to previ-
ously established molecular and epigenetic subtypes,
as well as to pathologically, clinically, and genetically
distinct classes of tumors.
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Table 1 Patient characteristics for all 98 UC samples included in the study

Patient characteristics Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4
Total N N N N
Samples N 98 18 21 24 35
Gender Male 69 12 16 19 22
Female 29 6 5 5 13
WHO 1999 Stage Ta 45 16 14 5 10
T 25 2 5 9 9
M 27 0 1 10 16
Tx 1 0 1 0 0
WHO 1999 Grade Grade 1 19 11 5 1 2
Grade 2 32 7 " 4 10
Grade 3 47 0 5 19 23
TP53 mutation Mutation 29 0 4 11 14
Wild type 69 18 17 13 21
FGFR3 mutation Mutation 34 12 1 1 10
Wild type 64 6 10 23 25
Lund subtype Urobasal A 44 18 15 2 9
Urobasal B 12 0 5 2 5
Genom Unst 29 0 0 17 12
SCC-ike 13 0 1 3 9
Lauss epitype A 17 9 6 0 2
B 9 1 1 0 7
@ 17 0 1 1 5
D 7 0 1 0 6
NA? 48 8 12 13 15
Age (years) Median aws 68.5 703 706 754
Range (43.5-94.8) (43.9-84.3) (49.7-93.0) (59.0-94.8) (43.5-93.5)
2Samples not included in the Lauss et al. [11] study.

The genomic characteristics of subgroup defining DMRs
We then applied ANOVA on the full set of 5,453 UC
DMRSs to identify regions with subgroup-specific methy-
lation patterns. ANOVA significant DMRs (N = 2,697, P
<0.05, FDR corrected) exhibited a higher median CpG
density compared to DMRs without subgroup-specific
methylation patterns (median = 0.022 and 0.011 CpG/bp,
respectively, P <7 x 102, Mann-Whitney U test, Additional
file 4: Figure S1A). We observed a significant difference in
CpG density between UC DMRs that are hyper- (high CpG
density) and hypomethylated (low CpG density) in tumor
samples compared to normal urothelium (Additional file 4:
Figure S1B). Hierarchical clustering of the subgroup specific
DMRSs revealed three main methylation patterns across the
data (Figure 1 and Additional file 5: Figure S2A to C), here-
after referred to as methylation pattern 1 (672 DMRs), 2
(650 DMRs), and 3 (1,375 DMRs).

Pattern 1 DMRs showed a gradual drop in methylation
levels with increasing tumor grade (r =-0.46, P=2x 10°)
and across the four methylation subgroups. These DMRs

were predominantly located in CpG-poor regions of the
genome as measured by CpG/bp (median = 0.014 CpG/bp)
as well as by depletion of overlaps with CGIs (P <2 x 107,
Fisher’s exact test, Figure 1). As evolutionary conservation
predicts functionality, we also calculated the basewise over-
lap of each DMR with non-coding evolutionarily conserved
(NCEC) elements defined by the GERP algorithm [22]
(Methods). Pattern 1 DMRs exhibited a significant deple-
tion of NCEC element overlaps (P <4 x 10>, Figure 1). We
also quantified the basewise overlap of DMRs with HIESC
chromatin states and assigned each DMR a consensus
chromatin state by majority vote (Figure 1). The 15 chro-
matin states were derived by Ernst et al. [17] using data on
genome-wide histone modification patterns as well as
CCCTC-binding factor (CTCF) occupancy. The chromatin
states accurately captured the regulatory potential associ-
ated with genomic segments and were named according to
associated sequence functions, for example, ‘Active pro-
moter’ for transcription start site (TSS) related sequences
or ‘Poised promoter’ for regions displaying bivalent [23]
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Figure 1 Patterns of DNA methylation across UC methylation
subgroups. The methylation levels for subgroup-specific DMRs are
shown for 98 UC samples (columns) divided into the four methylation
subgroups. The subgroup-specific DMRs (rows) are grouped into
patterns 1 to 3. Relative DNA methylation levels are shown as a heat
map pseudo-colored blue (unmethylated) to red (methylated). The
Lund gene expression subtypes of the UC samples are shown at the
top of the heat map. Characteristics of DMRs are shown in five panels
to the right of the heatmap: DMR methylation profiles in four normal
urothelium samples (Normal); CpG Island (CGl; green); NCEC overlap
(GERP; yellow); Lee et al. 2006 Polycomb targets (PCG; red); chromatin
states according to Ernst et al. [17] (HMM; 1, "Active promoter’; 2,
‘Weak promoter’; 3, 'Inactive/poised promoter’; 4 to 5, ‘Strong
enhancer’; 6 to 7, 'Weak enhancer’; 8, ‘Insulator’; 9, Transcriptional
transition’; 10, Trancriptional elongation’; 11, ‘Weak transcribed’;

12, 'Polycomb repressed’; 13, ‘Heterochromatin/low signal’; 14 to

15, ‘Repetitive/CNV').

marks. Pattern 1 DMRs showed significant depletion of
marks associated with functional sequences such as ‘Active
promoter, Poised promoter, and ‘“Weak/poised enhancer;,
but were instead strongly enriched for the ‘Heterochroma-
tin/low signal’ state (P <1 x 10°%9).

Pattern 2 DMR methylation stood out as the defining
characteristic of subgroup 3 tumors (Figure 1). These
DMRs were enriched for high CpG content (median =
0.048 vs. 0.014 CpG/bp, P <4 x 10™**3, Mann-Whitney U
test), CGI (P <4 x 10™2, Fisher’s exact test) and CGI-shore
overlaps (P <2 x 10™**). We observed a high degree of over-
lap between pattern 2 DMRs and NCEC elements (P <5 x
102"). With respect to HIESC chromatin states, pattern 2
DMRs exhibited a robust enrichment for overlaps with the
‘Inactive/poised promoter’ state (P <1 x 10%). In order to
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further substantiate the link between pattern 2 methylation
and the ‘Inactive/poised promoter’ chromatin state in em-
bryonic stem cells, we also mapped DMR overlaps with the
H9ESC-derived polycomb repressive complex 2 (PRC2) tar-
get signature characterized by Enhancer of Zeste Homolog
2 (EZH2), SUZ12 Polycomb Repressive Complex 2 Subunit
(SUZ12), and Embryonic Ectoderm Development (EED)
binding [24], and again found high levels of enrichment
among pattern 2 DMRs (P <8 x 10", Figure 1).

Pattern 3 DMRs displayed an inverse correlation with
pattern 1 DMRs, that is, an increasing level of methyla-
tion with higher tumor grade. DMRs exhibiting pattern
3 methylation were depleted of CGI- and enriched for
CGl-shore overlaps (P <2 x 10™* and P <4 x 107, re-
spectively). Pattern 3 DMRs showed a weak enrichment
for NCEC sequence overlaps (P=0.0074). Moreover,
pattern 3 DMRs showed an association with functional
regions such as ‘Active promoter’ (P =0.033), “Weak
promoter’ (P <7 x 10™'°) and ‘Inactive/poised promoter’
(P =0.0002), while being depleted of overlaps with the
‘Heterochromatin/low signal’ state (P <6 x 10°9). Pat-
tern 3 DMRs were enriched for both ‘Strong enhancer’
as well as ‘Weak/poised enhancer’ states (P <3 x 107
and P <3 x 107, respectively).

Hypomethylation of DNA has been shown to occur at
LINE1l and LTR elements in immortalized fibroblasts
and at chromosome ends in a subset of glioblastoma tu-
mors with potential implications for genome function
[25,26]. To explore this further, we quantified the local
(2 kb window) LINE1 and LTR element content and
mapped the distance to the nearest chromosome end for
each DMR. In total 1,523 (28%) of all DMR regions con-
tained LINE1 or LTR repetitive elements and the median
overlap, when present, was 326 bp. When considering
only the subgroup-specific DMRs; pattern 1 DMRs
showed significant enrichment of repetitive sequence
overlaps (P <3 x10™"), while pattern 2 DMRs were
strongly depleted of local repetitive element overlaps
(P <4 x 10*®, Additional file 6: Figure S3A). Pattern 1
DMRs exhibited enrichment in subtelomeric regions of
the genome measured as distance to nearest chromo-
some end (P <3 x 103%, Kruskal-Wallis test, Additional
file 5: Figure S3B), or relative enrichment of elements
within the first or last 5 Mb of chromosomes (P <2 x 102,
Fisher’s exact test, Additional file 5: Figure S3C). Taken to-
gether, by integrating data from multiple levels, we show
that subgroup-specific differential DNA methylation occurs
in distinct genomic contexts.

The biology of DMR-associated genes and correlations to
gene expression

Overall we were able to match 3,685 (68%) of all DMRs to
[lumina microarray gene expression data [4] (Methods).
We used a resampling-based method to derive empirical
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significance thresholds for correlations between DMR
methylation and gene expression (Methods). In total, 708
DMR-gene correlation coefficients, mapping to 668 unique
DMRs, were found to be significant (18% of all gene expres-
sion matched DMRs). Among the 708 significant DMR-
gene correlations, 477 (67%) were negative. When only
considering gene expression matched DMRs, 16.2% of the
pattern 1 DMRs and 14.2% of pattern 2 DMRs exhibited
significant correlations to gene expression. By contrast,
31.4% of pattern 3 DMRs exhibited significant correlations
to gene expression. We observed a substantial difference
between pattern 2 and pattern 3 DMRs with respect to
methylation-gene expression correlations in loci marked by
the ‘Inactive/Poised Promoter’ state in HIESC. Pattern
3 ‘Inactive/Poised Promoter’ state DMRs were four
times more likely to be significantly associated with
gene expression than were pattern 2 ‘Inactive/Poised
Promoter’ state DMRs (37.9% vs. 9.4%, P <5 x 107?%)
compared to approximately two-fold when considering
pattern 2 and 3 DMRs irrespective of chromatin state
in HIESC. An analysis of biological themes related to
the methylation patterns observed across UC DMRs
was conducted using the signatures contained in the
MSigDB v3.1 database (Methods) and highlighted dif-
ferential enrichment of stem cell and developmental
gene related signatures [27,28] (Additional file 7: Table S3).
Taken together, pattern 3 DMR methylation highlights re-
gions of active transcriptional regulation in UC, whereas
pattern 2 DMRs accrue methylation in a subset of tumors
with an absence of corresponding effects on gene ex-
pression patterns. Pattern 1 DMR methylation did not
affect coordinated and biologically relevant gene ex-
pression programs.

Validation of DMR methylation patterns using TCGA data

We sought to validate the main observed methylation
patterns in independent data generated by TCGA. We
obtained methylation data for 234 MI tumors as well as
21 adjacent normal samples. We confirmed the high
variance nature of UC DMR methylation by comparing
the standard deviation of DMR overlapping (N =9,969)
and non-overlapping probes (N =308,871). Probes within
DMRs exhibited substantially higher variability in the
external dataset (Figure 2A, P <2.2 x 10'°, Mann-Whitney
U test).

We extracted the most variable probe for all covered
UC DMRs (3,361 probes) and investigated the average
methylation state in tumors versus adjacent normal tis-
sue (21 samples). These results confirm the platform
(Ilumina vs. Nimblegen) and cohort (NMI and MI vs.
MI only) independent nature of our findings with re-
spect to the three DMR patterns (Figure 2B), that is, de-
methylation of pattern 1 DMR overlapping probes,
hypermethylation of pattern 2 DMR overlapping probes,
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as well as elevated methylation levels of pattern 3 DMR
overlapping probes.

To evaluate whether UC DMR methylation is repre-
sentative of the overall variation structure of the full
dataset, we clustered the top 25% most varying DMR-
overlapping probes (N =841 of 3,361) as well as the
2,000 most varying probes from the full platform using
K-means consensus clustering [29]. We were able to de-
rive stable subgroups using both datasets and found that
a three-group split captured well the main structure of
the data (Figure 2C). Despite a limited overlap between
the two probe sets (N =279), the respective tumor co-
clustering results were highly concordant (P <3 x 10,
Chi-square test, Figure 2D). These results confirm that
the UC DMRs defined in our MeDIP-experiment cap-
ture the main variation structure in an exclusively MI
cohort generated on a different platform.

Clustered heatmap visualization of the 2,000 most varying
probes in relation to consensus cluster subgroups derived
using the same data revealed two opposing patterns driving
sample stratification: de novo methylation of high CpG
density regions and demethylation of CpGs in lower density
regions. The major methylation patterns were robustly
associated with H1IESC chromatin states and the UC
DMR methylation patterns defined in the discovery
MeDIP-set. The row (probe) dendrogram indicated
four major branches with 448, 840, 258, and 454
probes, respectively (Figure 2E). We tested each of the
four branches for skewness with regard to UC DMR
overlaps. We found that two branches (N =840 and
454 probes) marked by HIESC active/weak/poised
promoter (states 1 to 3) or transcription and enhancer
(states 9 to 11 and 6 to 7) associated states respect-
ively, were enriched for pattern 3 DMRs (P <0.0003
and P <0.0007, respectively (Fisher’s exact test). A
branch (N =448) that was dominated by probes in re-
gions with bivalent marks (state 3) in H1ESC displayed
enrichment of pattern 2 DMRs (P <5.4 x 10™"). Finally a
HI1ESC ‘heterochromatin/low signal-dominated branch
(N =258 probes) showed a significant enrichment of pat-
tern 1 DMR overlaps (P <9.6 x 10™"?), confirming the ex-
istence of at least three distinct and pervasive sequence
contexts that are differentially methylated in UC.

Thus we were able to validate our main findings on dif-
ferential methylation in an independent data-set of 234 MI
UC tumors run on Illumina Methylation 450 K arrays by
TCGA. We show that probes overlapping UC DMRs dis-
play higher variance than non-overlapping probes, that
probes overlapping pattern 1 to 3 DMRs exhibit the same
directionality of differential methylation with respect to ad-
jacent normal tissue, that UC DMR overlapping probes
capture the variation structure of the data as a whole, and
that unsupervised hierarchical clustering of probes identi-
fies pattern 1 to 3 methylation in the validation data.
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Figure 2 External validation in TCGA data. (A) Standard deviation of probes overlapping UC DMRs and those that are outside of UC DMRs. (B)
Differences in mean methylation levels between tumors and adjacent histologically normal tissue stratified by methylation patterns. (C) Heatmap
of co-clustering frequencies of tumors derived by K-means consensus clustering of the 2,000 most variable probes in the TCGA data. (D) Tumor
subgroupings derived using K-means clustering on the 25% most varying DMR-overlapping probes or the 2,000 most variable probes. (E) Hierarchical
clustering of probes and heat map visualization of the three methylation clusters. The plot shows four main clusters of differentially methylated probes
(leftmost annotation bar) and the associated chromatin states in H1ESC (middle bar, states as in Figure 1). The average methylation level in adjacent normal
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Chromatin state characterization of UC DMRs across
ENCODE cell lines

To further characterize the regulatory potential associated
with UC DMRs, we mapped the overlaps of HI1ESC
chromatin states UC DMRs. The distribution of chromatin
states at UC DMRs exhibited a clear pattern of decreasing
‘Heterochromatin/low signal’ marks and a corresponding
increase in states associated with promoter and gene

regulatory regions towards DMR midpoints (Figure 3A).
The ‘Inactive/poised promoter’ as well as ‘Weak promoter’
and ‘Weak enhancer’ states showed increased frequencies
towards the midpoint of DMRs while the “Weak transcrip-
tion, ‘Polycomb repressed, and ‘Active promoter’ state over-
laps exhibited decreases.

We also mapped the chromatin context at auto-
somal RefSeq transcription start sites in aggregate
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Figure 3 Chromatin state characterization of UC DMRs. (A) Frequency of H1ESC chromatin states for all UC DMRs (N = 5,453) calculated per
base across 4 kb windows centered on each DMR midpoint. (B) Frequency of H1ESC chromatin states for all human RefSeq promoters calculated
per base across 4 kb windows centered on each RefSeq TSS (N =27,397). The corresponding frequency of UC DMR overlaps is also shown (solid

black line). (C) Frequency of H1ESC chromatin states from RefSeqgs having a UC DMR in the 4 kb window centered on its TSS (N = 5,290). (D)
Chromatin states for H1ESC and eight additional cell lines (listed in panel E; Ernst et al. [17]). For UC DMRs in a H1ESC chromatin state, the
frequencies of the typical chromatin state in the eight other cell types are shown. (E) For UC DMRs in the ‘Inactive/poised promoter’ state in
H1ESC, the frequencies of other chromatin states are shown for the eight additional cell types. The 15 Chromatin states are color coded as in
Figure 1 (chromatin states 13 to 15 are represented by a dashed line in panels A to C).

(TSSs, Figure 3B) and in regions with UC DMRs
(Figure 3C). Average chromatin state frequencies dif-
fered between promoters with DMRs and all auto-
somal RefSeq promoters (Figure 3B and C), in that an
increase of ‘Inactive/poised promoter’ marks, mainly
at the expense of the ‘Active promoter’ mark, was ob-
served in areas having DMR overlaps. The average
pattern of DMR overlaps around TSSs revealed a
steady increase towards the TSS and a clear plateau
covering approximately -700 to +700 relative to the
TSS (Figure 3C).

Ernst ef al. [17] also derived chromatin state maps for
eight additional cell lines representative of different em-
bryonal lineages and differentiation states. We mapped
alternate chromatin states in these cell lines onto UC
DMRs, yvielding eight transition states for each UC DMR
(Methods). The co-occurrence frequencies of alternate
states in relation to the H1ESC states are shown in
Figure 3D and highlight the relative stability of a subset

of chromatin states, for example, ‘Active promoter’ and
‘Heterochromatin/low signal, as well as the dynamic na-
ture of others such as the “Weak enhancer’ and ‘Inactive/
poised promoter’. As UC DMRs were frequently marked
by the ‘Inactive/poised promoter’ state in embryonic
stem cells (Figure 3A), we investigated the range of
states of HIESC ‘Inactive/poised promoter’-marked loci
in the additional eight cell lines. The analysis revealed
that most UC DMRs marked by ‘Inactive/poised promoter’
marks resolve to a monovalent, predominantly H3K27Me3
marked (‘Polycomb repressed’) state across all eight cell
lines (Figure 3E), consistent with observations in stem-cell
differentiation [23,27]. In contrast to the other cell lines,
the two cancer-derived cell lines (HepG2 and K562) fre-
quently exhibit heterochromatin marks at HIESC bivalent
loci (Figure 3E). Our results highlight the dynamic nature
of chromatin modifications across cell types and differenti-
ation states while providing independent evidence of regu-
latory function for UC DMRs.
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Regulatory factor occupancy of UC DMRs

We then utilized ChIP-seq data generated by the EN-
CODE consortium [30], to gain further insights into the
basic gene regulatory and genomic context of regions as-
sociated with methylation changes in UC and to analyze
our data from a regulatory factor (RF)-based perspective.
We focused on the five cell lines for which the largest
amount of data on RFs was available and restricted our
analysis to UC DMRs (Methods). We extracted a core
set of 18 RFs for which data were available in all five cell
lines (90 RE-cell tracks in total) and constructed a binary
matrix of DMR-ChIP-seq peak overlaps, which we sub-
sequently clustered (Figure 4A, Methods). Fifty-five per-
cent of all UC DMRs had at least one overlapping ChIP-
seq peak. While 88% of pattern 2 and 71% of pattern 3
DMRs had at least one overlapping ChIP-seq peak, this
was only the case for 27% of pattern 1 DMRs.

A subset of UC DMRs clustered together mainly due
to the influence of CTCF and RAD21 homolog (RAD21)
binding (Figure 4A). CTCF/RAD21 co-binding may im-
plicate these regions as functional elements in a process
such as cohesin recruitment [31]. Specific co-occurrence
of CTCF and RAD21 peaks at UC DMRs was assessed
by identifying all instances in which a DMR overlapped
both CTCF and RAD21 peaks in at least one cell line
(N =516). Pattern 2 DMRs exhibited significant enrich-
ment for CTCE-RAD21 co-binding (P <3 x 102, Fisher’s
exact test, Figure 4B), and the enrichment was mainly at-
tributable to the HIESC cell-line.

In total, 1,548 DMRs (28.4%) were bound by RNA
polymerase 2 (POLR2A) in at least one cell line.
POLR2A binding exhibited three main patterns across
the UC DMRs: (1) ubiquitous and exclusive POLR2A
binding characterized by enhancer states in all cell lines;
(2) ubiquitous POLR2A binding with active promoter
states and frequent RF binding across multiple cell lines;
and (3) patterns of POLR2A co-binding with RFs and
enhancer/promoter states in a cell type specific context
(Figure 4A). Nearly 40% (37.3%) of the DMRs overlap-
ping POLR2A sites exhibited pattern 3 methylation (P
<3 x 107%, Figure 4B), while at the other extreme, pat-
tern 1 DMRs were strongly depleted of POLR2A binding
(P <6x107, Figure 4B). The transcription-associated
RFs TATA-binding protein (TBP) and Transcription ini-
tiation factor TFIID subunit 1 (TAF1) always clustered
together in a cell-type specific manner (Figure 4A). For
each of the five cell-lines, co-binding of all three
transcription-associated RFs in any of the cell lines was
recorded and enrichment statistics were calculated for
the three DMR categories. Only pattern 3 DMRs exhib-
ited significant enrichment for regions bound by all
three factors (P <3 x 10°%, Figure 4B).

For sites bound by the RE1-Silencing Transcription
Factor (REST) in any of the cell lines (N =511), pattern
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2 DMRs exhibited significant enrichment for overlaps (P
<4 x 10, Figure 4C). The enrichment was further ac-
centuated in the subset of DMRs that were bound by
REST in all five cell lines (N =60, P <3 x 10®). A large
number of UC DMRs exhibited EZH2 binding, consist-
ent with chromatin state annotations showing frequent
overlaps with bivalent state marked regions in H1ESC
(Figure 4A). As expected pattern 1 DMRs were strongly
depleted of EZH2 binding (P <2 x 10", Figure 4B)
while pattern 2 DMRs exhibited robust enrichment
(P <7 x 107155, Figure 4B). In addition to establishing
the differential binding landscape of RFs with respect
to UC DMRs, we highlight the connection between RF
binding and chromatin states in both a cell-type
specific and independent context. Our results provide
evidence in favor of multiple genomic processes
underlying the DMR methylation patterns 1 to 3 ob-
served across UC tumors, and implicate pattern 1
DMRs as infrequent sites of RF binding, pattern 2
DMRs as frequent sites of CTCF/RAD21 as well as
EZH2 binding, and pattern 3 DMRs as sites of fre-
quent POLR2A occupancy.

Spatial patterns of regulatory factor binding at UC DMRs

DNasel hypersensitive sites (DHSs) define regions of
open chromatin and are frequently associated with regu-
latory factor binding. We mapped DHS-peak bases lo-
cally in a 10 kb window centered on UC DMRs and
explored the spatial patterns of ENCODE ChIP-seq RF
binding in relation to DMR positioning. Chromatin ac-
cessibility, as measured by DHS, increased towards
DMR midpoints and the most frequent UC DMR-DHS
overlaps were observed in the H1ESC cell line (Figure 5A).
A general trend of decreasing DHS levels across all UC
DMR patterns was observed in the more differentiated
and cancer-derived-cell lines compared to HIESC,
however this was most accentuated among pattern 2
DMRs (Figure 5A). While pattern 1 DMRs did not
exhibit specificity in DHS peak distributions when
assessed by aggregation plots (APs), pattern 2 DMRs
were centered on DHS sites, and pattern 3 DMRs
showed a consistent tendency towards a local depletion
of DHSs towards the DMR midpoints. EZH2 binding
was strongly associated with DHSs in H1ESC and
exhibited a sharp peak centered on pattern 2 DMR
midpoints, a feature seen to a lesser extent in
GM12878 and HepG2 but lacking entirely in K562 and
HeLa-S3 cells (Figure 5B). The observed patterns are
consistent with H3K27-trimethylation-mediated re-
pressive/poised state as ‘default’ for pattern 2 DMRs in
ESC with a successive transition to stable modes of re-
pression in response to differentiation cues or immor-
tality (Figure 4A). POLR2A binding across pattern 2
DMRs was associated with local DHS density in all cell
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lines except H1ESC, indicating a decoupling of open
chromatin status and gene transcription in ESCs

(Figure 5C).

We observed a tendency towards local depletion of
POLR2A peak coverage towards pattern 3 DMR mid-

points, a feature also observed among a number of RFs
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across all cell lines and resulting in decidedly bimodal
APs (Figure 5C and D). Bimodal AP-plots are com-
monly the result of non-oriented feature alignments
[32]. However, the depletion of RF-binding at pattern
3 DMR midpoints may reflect true features of genome
organization as the RF-binding patterns are recapitu-
lated in the patterns of CGI and CGI-shore base over-
laps (Figure 5E and F).

HOX-gene silencing in UC exhibits gene expression
subtype specificity

We identified 12 DMRs in the HOXA- and 15 DMRs in
the HOXB locus (Figure 6A), of which a majority exhib-
ited significant negative correlations to mRNA expres-
sion. The same effect was observed for a minority of
HOXC and HOXD cluster genes. We noticed that the
entire HOXB locus behaved as one block with respect to
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DNA methylation and gene expression. Conversely,
there was a distinct anti-correlation between the 5’ (pos-
terior) and 3’ (anterior) HOXA genes across samples on
both the methylation and gene expression levels.

In order to capture the nature of the switch-like ap-
pearance and to derive aggregate sample-level HOXA-
consensus profiles, we performed k-means clustering
(k=3) on all DMRs contained within the HOXA locus
(Figure 6B). The consensus profiles captured the aggre-
gate structure of the locus and provided readily interpret-
able methylation patterns. In terms of sample stratification,
tumors could be subdivided based on the methylation pat-
terns into those that display ‘posterior-only, ‘anterior-only,
and ‘pan’ HOXA DMR methylation (Figure 6B). A strong
link was also observed between anterior HOXA (HOXAI-6)
gene expression and expression patterns across the entire
HOXB-locus (Figure 6C).

Tumor stratification based on HOXA-DMR methyla-
tion was also reflected in the global DNA methylation
patterns described above. The ‘posterior-only’ group of
tumors displayed significantly higher levels of pattern 1
methylation compared to each of the other two HOX-
methylation-based groups (both P <0.001, t-test, FDR
corrected). Pattern 2 methylation was significantly
higher in both ‘anterior-only’ as well as ‘pan-HOXA’
compared to ‘posterior-only’ tumors (both P <0.05)
but did not differ significantly between the former
two, indicating that HOX-methylation does not simply
recapitulate global methylation patterns. High levels of
pattern 3 methylation was characteristic of both ‘an-
terior-only’ and ‘pan-HOXA’ tumors, and differentiated
both groups from the tumors displaying ‘posterior-
only’ methylation (both P <5 x 10™'"). The absence of a
clear difference in pattern 2 methylation suggests that
the processes underlying the different epigenetic states
within the HOX-gene loci are distinct from the ones
giving rise to pattern 2 methylation.

With respect to the Lund gene expression subtypes,
‘posterior-only’ tumors corresponded to the Urobasal A
gene expression subtype (33/36, P <4 x 107", Fisher’s
exact test) and belonged to methylation subgroups 1 and
2 (31/36, P <4 x107'%). Within the ‘posterior-only’ tu-
mors, loss of anterior HOXA gene expression and in-
creasing posterior HOXA-associated DMR methylation
was evident and agreed well with the original subdivision
of Urobasal A tumors into two subgroups; MSla
(Molecular subtype 1a) and MS1b (Molecular subtype
1b) [4]. Therefore, anterior HOXA gene expression is a
feature of the MS1la subset of Urobasal A tumors, while
the remaining tumors (mainly MS1b) only exhibit spor-
adic HOXA gene expression (Figure 6C). The notion of
HOX-cluster methylation patterns being related to tumor
differentiation states was substantiated by the observa-
tion that ‘posterior-only’ tumors were almost exclusively
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of pathological grade 1 or 2 (34/36). In addition 83%
were of pathological stage Ta. ‘Anterior-only’ tumors dif-
fered with respect to HOXA gene expression patterns.
Although near ubiquitous HOXA9-expression was the
common denominator among these tumors, HOXA10-
13 gene expression was absent in tumors of the Lund
SCC-like gene expression subtype of UC (Figure 6C).
‘Anterior-only’ tumors were also enriched for the poor-
prognosis SCC-like gene expression subtype of UC (9/13
SCC-like, P <0.001) and methylation subgroup 4 tumors
(17/27, P <0.001). The majority of ‘anterior-only’ tumors
(22/27) were of pathological grade 3 while the remaining
five were of grade 2, indicating low levels of differenti-
ation. In terms of pathological stage, 21/27 (78%) were
invasive (=T1). Pan-HOXA’ tumors were predominantly
of the Lund Genomically Unstable subtype (19/35,
P <0.001) and were weakly enriched for methylation
subgroup 3 tumors (14/35, P=0.013). This group of tu-
mors also tended to be invasive (25/35 = T1) and of high
grade (23/35 grade 3).

As expected from the Lund subtype as well as clinical
associations, the methylation profiles across the HOXA-
locus stratify the tumors into low- (‘posterior-only’) as
well as high-risk (‘pan-HOXA  and ‘anterior-only’) groups
in terms of disease-specific survival (Figure 6D, P =8.7 x
107, logrank test). Thus the coordinated shift in HOXA/
HOXB loci methylation is strongly associated with a
similar shift at the HOXA/B expression levels, with
genome wide methylation patterns, as well as with
previously described molecular (gene expression) sub-
types of UC.

Expression of retinoic acid responsive genes correlates
with HOXA methylation patterns

The observed pattern of anterior-posterior HOXA ex-
pression has previously been described in the setting of
retinoic acid (RA) induced neuronal differentiation of
pluripotent progenitor cells in which undifferentiated
cells express the posterior- while repressing the anterior
HOXA-genes and vice versa [19]. To further investigate
the HOX-cluster methylation patterns, we performed t-tests
for differential methylation and gene expression using the
‘posterior-only’ as a reference group against which ‘anterior-
only’ and ‘pan-HOXA' tumors were compared.

The dominant pattern for significant pairs (gene ex-
pression and methylation P <0.01, FDR corrected) was
coordinated increased methylation and reduced gene ex-
pression (72/98 in ‘pan-HOXA’ and 59/76 in the ‘anter-
ior-only’ comparison, Figure 6E and F, Additional file 8:
Table S4). In addition to HOX genes HOXB2-5, HOXBS,
and HOXAI, additional genes with concomitant gain of
methylation and loss of expression in both ‘pan-HOXA’
and ‘anterior-only’ tumors included the retinoic acid re-
sponsive genes GPRC5C [33] and ITM2B [34] as well as
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the transcription factors SMAD3 and SLIT3. A gene sig-
nificantly methylated and repressed in ‘pan-HOXA tu-
mors only was PHF23, a frequent fusion partner with
NUP98 in acute myeloid leukemia (AML) that has been
shown to enforce HOXA9-10 expression by protecting
activating H3K4Me3 marks and blocking EZH2 mediated
HOX-gene repression [35]. Tumors with ‘pan-HOXA
methylation patterns also displayed downregulation and
methylation of FABPS, a key protein in directing the cellu-
lar response to RA [36]. Genes exhibiting specific methyla-
tion and downregulation in ‘anterior-only’ tumors included
additional HOX-genes HOXAS, HOXD4, and HOXB7 as
well as AHR which has been shown to modulate retinoic
acid receptor/retinoid X receptor (RAR/RXR) mediated cel-
lular responses to RA [37]. Consistent with developmental
gene silencing through methylation being the primary
factor underlying HOXA methylation patterns, few genes
exhibited lower methylation levels with concomitant high
gene expression levels in either of the two comparisons.
Five genes exhibited this pattern for ‘pan-HOXA’ tumors;
CDCA3, FBN2, GRMS, CDKN2A, and KRT20, the latter a
marker of terminal urothelial differentiation. For ‘anterior-
only’ tumors the same pattern was observed for HOXA9
and HOXA11 as well as CDKN2A. In addition, we noted
that within the ‘posterior-only’ set of tumors, one of the
most significantly upregulated genes among tumors
expressing the anterior HOXA genes (Lund MSla) versus
tumors without anterior HOXA expression was RXRA
(P <5 x107), providing further evidence in favor of a link
between retinoic acid signaling and HOXA-gene expression
patterns in UC.

KDM6A mutations are depleted in HOXA9-expressing
tumors

We validated our observations on HOXA/B cluster
methylation and gene expression patterns in external
data generated by the TCGA consortium (Methods). Or-
dering of tumors with respect to the balance of anterior
and posterior HOXA-DMR methylation validated our
observations on the dynamics of HOX-gene expression.
As the validation dataset only consists of high grade MI
tumors, the low-grade associated anterior HOX gene ex-
pression pattern could only be observed in a small sub-
set of samples, but with retained HOXB gene expression
as in our own data (Figure 7A).

The trithorax complex and its vertebrate homologs are
crucial regulators of homeotic gene expression [38]. The
H3K27 demethylase KDM6A is among the most fre-
quently mutated genes in UC [14] and its homolog Utx
has been shown to be a trithorax group regulator in
Drosophila [39]. In addition, the trithorax complex com-
ponent MLL-genes, encoding H3K4 methyltransferases,
are frequently mutated in UC [15]. We therefore investi-
gated the relationship between the HOXA methylation
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subgroups and the trithorax complex linked genes MLL,
MLL2, and MLL3, as well as KDM6A. While little skew-
ness in MLL-gene mutation rates could be observed,
KDM6A mutations were depleted in tumors that exhib-
ited unmethylated posterior HOXA DMRs (Figure 7A).
We also noted that KDM6A mutated tumors exhibited
significantly lower HOXA9 gene expression levels (P =
0.00035, Wilcoxon rank sum test) and that methylation
of the HOXA9 promoter DMR exhibited a strong
negative correlation to gene expression (Figure 7B,
Spearmans Rho =-0.78, P <2.2x 10'°). In summary,
we validate HOX-gene methylation- and expression
patterns in an independent cohort of MI UC, and high-
light a connection between HOXA9 gene expression
patterns and KDM6A mutations.

Discussion

DNA methylation is a multifaceted process with context
dependent functions in genome regulation and wide-
ranging clinical implications [40,41]. Previous studies of
epigenetic alterations in UC have been conducted on
low-coverage platforms and have been focused on
markers of aggressive disease [10,16,42-44]. Studies that
have explored the interrelation of global changes on the
epigenetic and gene expression levels have often restricted
their analyses to the individual CpG-gene level instead of
addressing the associations between global phenotypes
[9,11,43,44]. The current study aims at describing the links
between gene expression and DNA methylation subtypes of
UC as well as investigating the RF binding and chromatin
state associations of UC DMRs.

We conducted a comprehensive analysis of differential
methylation using MeDIP-chip on 98 UC tumor samples
subtyped according to the Lund molecular taxonomy for
UC [4]. Bootstrap hierarchical clustering analysis strati-
fied the samples into four subgroups with distinct asso-
ciations to histopathological groups (stage and grade),
mutations (FGFR3 and TP53 mutations), as well as Lund
gene expression subtypes (Urobasal A, Urobasal B, Gen-
omically Unstable, or SCC-like). The present cluster
analysis highlights a clear split between the low grade,
non-invasive Urobasal A tumors and the high grade, in-
vasive tumors characterized by genomic instability or a
keratinized phenotype (Genomically Unstable and SCC-
like tumors, respectively). However, the analysis also re-
vealed that differences in DNA methylation patterns can
exist within a group of tumors of the same gene expres-
sion phenotype, for example, the presence of Genomi-
cally Unstable tumors in methylation subgroups 3 and 4.
Importantly we were able to validate our findings in a
platform (Nimblegen vs. Illumina) and cohort (Lund vs.
TCGA) independent dataset.

Our previous characterization of DNA methylation
patterns on low-coverage Illumina 27 K methylation
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arrays revealed three main methylation subgroups, termed
epitypes (A to C) [11]. In the present investigation, sub-
group 1 and 2 corresponded to epitype A and exhibited
similar histopathological (low pathological stage and grade)
and mutational (frequent FGFR3 and infrequent TP53
mutations) associations. Subgroup 3 tumors were highly
enriched for epitype C tumors, linking this methylation

phenotype to the Genomically Unstable gene expression
subtype of UC. Finally, subgroup 4 was enriched for epitype
B, characterized by extensive demethylation of low CpG
density promoter, as well as tumors of the SCC-like gene
expression subtype [4,11].

Previous studies into epigenetic changes in UC have
mainly been focused on characterizing differential
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methylation [11,16,42-44]. However, the functional
genomic context of differential methylation remains
less well studied. We used multi-level genomic data gener-
ated through the ENCODE consortium to characterize the
regulatory potential of UC DMRs and show that the identi-
fied regions exhibit biologically coherent chromatin state
and RF-binding preferences in ENCODE cell-lines. We
found that subgroup-defining DMRs exhibit three distinct
patterns of methylation across tumors (summarized in
Figure 8A). Pattern 1 DMRs are located in low CpG-
density, repeat-rich, subtelomeric regions of the genome
and are depleted of functional chromatin states and RF-
binding across ENCODE cell lines. Methylation of pattern
1 DMRs is inversely correlated with pathological grade and
may represent stochastic demethylation of heterochromatic
DNA through a loss of a maintenance-like process, or may
be a product of the formation of partially methylated do-
mains (PMDs) [45] in a subset of tumors. The implications
of subtelomeric and repetitive sequence demethylation for
genome stability are not well understood but may contrib-
ute to UC pathogenesis and disease progression.

De novo methylation of high CpG-density positions is
a common feature of an aggressive subset of UC tumors
[11,16]. Pattern 2 DMRs are enriched for conserved,
high CpG-density (CGI), repeat-depleted, regions marked
by bivalent domains in embryonic stem cells. This pattern
of DMR methylation does not correlate with gene expres-
sion, is present in a subset of high grade tumors and is
tightly linked to the Genomically Unstable gene expres-
sion subtype of UC. We identified pattern 2 DMRs as sites
of EZH2 and REST binding, as well as CTCF/RAD21
binding, in HIESC (summarized in Figure 8B). EZH2 is a
core component of PRC2 that mediates polycomb silen-
cing of developmental genes [23,24,27,46]. REST is in-
volved in repression of differentiation associated genes in
the neural lineage, is essential for embryonic development
[47] and has been implicated in the process of carcinogen-
esis [48,49]. Evidence for a direct role for DNA methyla-
tion in NRSF/REST mediated gene suppression has also
been reported [50] and a connection between REST bind-
ing and polycomb mediated gene repression has been
established [51]. The CTCE/RAD21 binding patterns may
implicate disruption of cohesin function as either the
cause or consequence of cluster 2 methylation at a subset
of UC DMRs. Whereas a large proportion of CTCF/
RAD21 marked sites were devoid of additional RF bind-
ing, a subset displayed near ubiquitous POLR2A and RF
binding with accompanying active marks in the four cell
lines for which chromatin tracks were available. The ob-
served patterns may reflect different modes of cohesin
involvement in gene regulation [52]. In support of a func-
tional role for differential methylation at sites of CTCF
and cohesin co-localization, Parelho et al. have shown that
differential DNA methylation of CTCF motifs at cell type
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specific cohesin sites can abrogate CTCF mediated cohe-
sin binding [31]. As we found specific enrichment of
CTCF/RAD21 colocalization across pattern 2 DMRSs, this
methylation pattern may identify a subset of tumors with
actionable defects in cohesin function [53]. Our findings
link pattern 2 methylation to developmental gene silencing
as well as disruption of factors mediating higher-order
chromatin structure.
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Pattern 3 DMRs were enriched for CGI shore overlaps
and captured the dynamic regulatory nature of DNA
methylation in terms of identifying sequences associated
with active and gene-regulatory chromatin states as well
as transcription and enhancer function related RF-
binding. These findings are in line with observations on
tissue-specific CpG island shore methylation in colorec-
tal cancer [54]. With respect to HIESC polycomb marks,
pattern 3 DMRs displayed a wider range of active
chromatin marks across eight cell lines with a more
differentiated phenotype than did pattern 2 DMRs.
Methylation at pattern 3 DMRs was also frequently cor-
related with gene expression. These findings are consist-
ent with the notion of pattern 3 methylation being
involved in active gene regulation. Pattern 2 and pattern
3 DMRs differed with respect to the spatial binding of
regulatory factors in five ENCODE cell lines. Whereas
ChIP-seq binding peaks were centered on pattern 2
DMRs, pattern 3 DMRs exhibited a marked depletion of
RF-binding. This points towards differential regulatory
function or modular organization at sites of pattern 2
and 3 DMRs (Figure 8C). An interpretation of RF
binding at pattern 3 DMRs with respect to CpG-density
is that RF binding occurs in regions of elevated CpG-
density, with coordinated methylation changes in adjacent
lower CpG-density regions. Consistent with this notion,
tissue-specific DMRs associated with developmental pro-
cesses tend to overlap CGI shores [55]. Pattern 2 DMRs ex-
hibit high CpG densities and display lower regional DNasel
hypersensitivity and RF occupancy in non-ES cell lines.
Whereas methylation at pattern 2 DMRs may represent a
more permanent inactivation with subsequent heterochro-
matinization of developmental gene loci, pattern 3 DMR
methylation may serve as a dynamic readout of local tran-
scriptional activity.

We characterize a switch-like pattern, previously unre-
ported in the context of UC, involving the anterior and
posterior HOXA as well as the entire HOXB locus. The
switch-like pattern is likely a consequence of differential
activation of conserved topologically associating do-
mains (TADs) that divide the HOXA-locus into separate
regulatory units [56]. TAD boundaries are frequently
marked by CTCF binding, and the HOXAS5 promoter
DMR that demarcates the switching-point overlaps EN-
CODE CTCF ChIP-seq binding peaks. The epigenetic
states of HOX-gene promoter DMRs are reflected in the
mRNA expression patterns and are associated with tumor
grade. We therefore hypothesize that HOX-gene expression
patterns in UC may reflect the differentiation competency
or state of the tumor cells. In support of this conclusion, a
similar epigenetic switch has been described in the context
of RA-induced differentiation in the non-malignant setting
[19]. Multiple RA-responsive genes exhibited coordinated
changes in promoter methylation and mRNA expression
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with respect to the different patterns of HOX-gene expres-
sion, consistent with RA being a crucial mediator of urothe-
lial differentiation [57,58]. Anterior HOXA-gene silencing
has previously been observed in the context of multiple re-
gional epigenetic silencing and was shown to identify a
poor-prognosis subgroup of UC [10]. The study did not
however report on the switch-like behavior of anterior and
posterior HOXA-genes present in a subset of high grade tu-
mors allowing further stratification of the poor-prognosis
group. The mechanisms of differential activation of the
posterior and anterior HOXA TADs in UC have not been
explored, but may provide insight into the processes
underlying tumor differentiation states. In this con-
text, a differential response to all-trans retinoic acid
(ATRA) or demethylating agents in tumors with ‘an-
terior-only’ or ‘pan-HOXA’  methylation patterns could
be clinically significant.

With respect to tumor stratification the two schemes
based on HOX-gene and global DMR methylation re-
spectively exhibited broad commonalities. While the low
stage and grade subgroup 1 and 2 tumors corresponded
to the ‘posterior-only’ group, subgroup 3 tumors only ex-
hibited a slight bias towards the ‘pan-HOXA’ group. Sub-
group 4 included the majority of SCC-like tumors as did
the ‘anterior-only’ group. Global DNA methylation pat-
terns were however only moderately captured by the
HOX-based stratification arguing in favor of separate
mechanisms underlying global- and HOX-locus methy-
lation patterns (Figure 8D). The finding that tumors of a
given gene expression subtype can express different sets
of HOX-genes was particularly evident for the Genomi-
cally Unstable subtype (Figure 8E) and could indicate
that the same aggregate gene-expression phenotype
can be reached through different paths. Alternatively,
expression of different sets of HOX-genes may reflect a
positional identity as differential HOX-gene expression
within the genitourinary system has been described pre-
viously [59,60], or be a readout of the local balance of
developmental morphogen signaling.

We were also able to provide independent validation
of HOX-gene silencing patterns in TCGA data and high-
light a potential connection between the absence of
KDM6A mutations and posterior HOXA methylation
patterns. The most prominent driver of the three cluster
split in the validation set was the HOXA9-promoter-as-
sociated DMR. Methylation of the HOXA9 DMR was
incompatible with HOXA9 expression, although an
unmethylated state did not strictly translate into ex-
pression. KDM6A modulates HOX-gene expression
through removal of H3K27Me3-marks [61,62] and ex-
hibits differential HOX-gene occupancy patterns with
respect to cellular origin as well as differentiation
states [62]. Although KDM6A mutations were not
mutually exclusive with any of the posterior HOXA
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expression patterns, further investigations into differ-
ential HOX-gene expression patterns are warranted in
light of confounding factors such as tumor heterogen-
eity and gene functional redundancy. Inactivation of
polycomb-related epigenetic modifiers through gene
mutations are likely early events in UC formation
[13,14]. The selection pressures and processes leading
to differential mutation and epigenetic landscapes
across tumor subgroups are however unknown. In-
quiries connecting the developmental biology of the
bladder with the tumor biology of UC are beginning to
provide insight into these basic questions [57,63-65]
and future investigations should be directed at under-
standing epigenetic changes in the context of molecu-
lar subgroups and underlying biological processes.

Conclusions

In summary, we leverage multi-level genomic data to
characterize regions of the genome associated with
differential methylation in UC. We provide insight
into the functional genomic context underlying differ-
ential methylation, validate our findings with inde-
pendent data, and describe novel connections between
the epigenetic, genetic, and phenotypic levels in UC.
Our current work integrates ENCODE data and con-
nects distinct features of the genome to three broad
methylation patterns with strong phenotypic associa-
tions. Finally, we characterize a putative actionable
epigenetic switch involving HOX-genes with strong correla-
tions to tumor differentiation states and propose that a link
exits between KDM6A mutations and HOXA9 gene expres-
sion patterns.
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