Prosumenter i våra hus

Pyrko, Jurek

2015

Link to publication

Citation for published version (APA):

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Prosumenter i våra hus
Konsekvenser för befintliga och nya byggnader

Red. Jurek Pyrko
Projektrapport
Energihushållning
Institutionen för Energivetenskaper
Lunds Tekniska Högskola | Lunds Universitet
Prosumenter i våra hus
Konsekvenser för befintliga och nya byggnader

Red. Jurek Pyrko

Juni 2015
Lund
FÖRORD

Detta projekt har utförts vid Lunds Universitet - LTH, Institutionen för Energivetenskaper, med professor Jurek Pyrko som projektledare. Studien har finansierats av Byggrådet.

Ett antal personer har varit engagerade i utförargruppen och genomfört delstudier som ingår i rapporten - Sara Eriksson, Karin Hansson och Sara Olsson, Li Wiberg och Juliane Albrecht, Love Jonsson och Jonas Persson, Johan Bergfalk och Olof Bohgard.

En referensgrupp knuten till projektet har bestått av:

- Prof. Bertil Fredlund, LU-LTH, Byggnadskonstruktionslära,
- Univ. lektor Birgitta Nordquist, LTH, Installations- och klimatiseringslära,
- Univ. lektor Jörgen Svensson, LU-LTH, Industriell elektroteknik och automation,
- Univ. lektor Patrick Lauenburg, LU-LTH, Energivetenskaper.

Resultaten från detta projekt har redan blivit publicerade som konferensbidrag samt som artiklar och notiser i branschtidskrifter.

Rapporten används som en del av kurslitteraturen i vår undervisning inom energiteknik på Lunds Universitet-LTH.

TACK

Dessutom ett varmt tack till alla våra kontaktpersoner som har bidragit med sina kunskaper och expertis samt till informanter som har ställt upp på intervjuer och enkäter i samband med våra studier.

Ett stort tack till Byggrådet som har möjliggjort att denna studie blivit till genom att sponsra projektet finansiellt.

Prof. Jurek Pyrko,
projektledare och redaktör

Lund, juni 2015
Innehållsförteckning

FÖRORD ... iii
TACK .. iii

1. INLEDNING ... 1

2. BEGREPP OCH DEFINITIONER ... 2

 2.1 Prosument .. 2
 2.2 Smarta nät .. 2
 2.3 Boverkets byggregler (BBR) ... 2
 2.4 Lågenergihus ... 4
 2.4.1 Passivhus .. 4
 2.4.2 Minienergihus ... 5
 2.4.3 Nollenergihus ... 5
 2.4.4 Nära nollenergihus ... 5
 2.4.5 Plusenergihus .. 6
 2.4.6 Smarta hus .. 6

3. SYSTEM .. 9

 3.1 Solel .. 9
 3.2 Vindkraft .. 11
 3.3 Övrig småskalig elproduktion ... 12
 3.4 Penetrationspotential för mikroproduktion .. 13

 Referenslista till Kapitel 2 ... 14

4 ENERGILAGRING .. 15

 4.1 Vattenlager ... 15
 4.2 Tryckluftslager .. 18
 4.3 Termisk energilagring genom fasändring .. 21
 4.4 Kryogenisk energilagring ... 24
 4.5 Batterier .. 27
 4.6 V2G - Elbilar som energilager ... 33
 4.7 Superkondensatorer ... 37
 4.8 Supraledare .. 39
 4.9 Svänghjul .. 40
 4.10 Diskussion om energilager ... 43

Referenslista till Kapitel 3 .. 44

V
Referenslista till Kapitel 4 ..46
5. VILKOR OCH REGLER ...49
 5.1 Mål och direktiv för byggnadsektorn ..49
 5.1.1 Mål på EU-nivå ...49
 5.1.2 Direktivet om byggnadens energiprestanda ...49
 5.1.3 Mål på nationell nivå ...50
 5.2 Lagstiftning ...51
 5.2.1 Nuvarande lagstiftning i Sverige ..51
 5.2.2 Den administrativa processen vid installation ...56
 5.2.3 Specifikt för installation av vindkraft ..57
 5.3 Producera egen el ..57
 5.3.1 Installation av en elproduktionsanläggning ..57
 5.3.2 Mikroproduktion ..58
 5.3.3 Anledningar till att bygga för elproduktion ..59
 5.4 Prissättning av egenproducerad elektricitet ...59
 5.4.1 Köpa och sälja el ..59
 5.4.2 Nettodebitering ..60
 5.4.3 Skattelättnad ..60
 5.4.4 Feed-in tariff (Inmatningstariff) ...60
 5.4.5 Elcertifikat ..61
 5.4.6 Statligt och kommunalt stöd till solcellssystem ...62
Referenslista till Kapitel 5 ..62
6. HINDER FÖR ELPRODUKTION I BYGGNADER ...66
 6.1 Byggnadstekniska krav ...66
 6.2 Utformningen av Boverkets byggregler (BBR) ..67
 6.2.1 Marknadsbaserade eller regulativa krav ...67
 6.2.2 Detaljerade krav och funktionskrav ..68
 6.2.3 Tillgodoräknande av solenergi ..69
 6.3 Osäkra situationer för byggherrar ..69
 6.3.1 Solcellsstödet ...70
 6.3.2 Framförhållning ..70
 6.3.3 Olika definitioner av nollenergihus ...70
 6.4 Kommunala särkrav ..72
6.5 Stadsplanering .. 73
 6.5.1 Detaljplaner .. 73
 6.5.2 Solenergiöptimering i stadsplaneringen .. 74
6.6 Kunskapsläget ... 76
 6.6.1 Brist på övergripande kunskap i byggbranschen .. 76
 6.6.2 Kunskapsutbyte mellan byggherrar ... 76
 6.6.3 Kunskapströskel för prosumenter ... 77
6.7 Hinder för elproduktion i befintliga byggnader .. 78
 6.7.1 Praktiska hinder .. 78
 6.7.2 Framtida hinder .. 79
6.8 Ekonomiska hinder .. 79
6.9 Krav som rör nätanslutningen .. 81
 6.9.1 Påverkan på elnätet .. 81
 6.9.2 Koncessionsplikten ... 81
Referenslista till Kapitel 6 ... 85
7. INTERNATIONAL UTBLICK .. 89
 7.1 Australien ... 89
 7.2 Danmark .. 89
 7.3 Nederländerna .. 90
 7.4 Norge .. 90
 7.5 Nya Zeeland .. 91
 7.6 Storbritannien ... 91
 7.7 Tyskland ... 92
 7.8 Spanien .. 93
 7.9 USA .. 93
 7.10 Belgien .. 93
Referenslista till Kapitel 7 ... 94
BILAGA 1 - FALLSTUDIE A .. 97
 Mikroproduktion av el av Love Jonsson & Jonas Persson ... 97
BILAGA 2 - FALLSTUDIE B .. 98
 Solel på Solbjer av Li Wiberg och Juliane Albrecht .. 98
BILAGA 3 - FALLSTUDIE C .. 100
 Micro-generation in local power grids av Karin Hansson och Sara Olsson 100
1. INLEDNING
Vårt sätt att omvandla, distribuera och använda energi, främst elektricitet håller på att ändras. Utvecklingen går mot så kallade ”smarta” elnät (smart grids) och mer spriden småskalig elproduktion (distributed micro-generation). Lägre priser på solcellssystem och ger privatpersonen nya möjligheter att samspela med elsystemet. Samtidigt förändras förutsättningar för att anpassa elbehovet till eltillgång, styra elanvändningen med hjälp av smarta tjänster och att bli en prosument – det vill säga en energikund som både konsumerar och producerar el (eller andra energislag).

Fler privatpersoner som producerar egen el kommer att utgöra en viktig beståndsdel i det smarta nätet och det energieffektiva samhället i framtiden. Därför är det viktigt med kunskap om vilka förutsättningar som främjar, eller hindrar, privatpersoner och byggföretag att bygga nya bostäder med elproduktionsmöjligheter. Vilka konsekvenser har dagens utveckling för byggnadssektorn? En byggnad kan ha en ansenlig livslängd, vilket gör att de beslut som tas idag får konsekvenser under lång tid framöver.

Eftersom det finns betydligt fler befintliga än nya bostäder är det viktigt att det också finns goda förutsättningar för att installera och driva elanläggningar på befintliga bostäder.

Med detta i åtanke är det intressant att göra en sammanställning av de aspekter som påverkar uppkomsten av nya byggnader med möjligheter till egenproduktion av el samt möjligheter att installera elproduktionsanläggningar på befintliga byggnader.

Följande frågor besvaras i rapporten:

• Vilka begrepp och definitioner används i detta sammanhang?
• Vilka elproducerande system kan användas av prosumenter i bostäder?
• Vilka villkor och regler gäller för prosumenter?
• Vilka hinder finns enligt olika aktörer och vilka åtgärder krävs för att förbättra situationen?

De typer av byggnader som tas upp i rapporten är svenska bostäder – småhus och flerbo- stadshus. En kortfattad genomgång av läget i vissa andra länder finns också redovisad.

Tre fallstudier ingår också i avrapporteringen och deras sammanfattande slutsatser redovisas i Bilaga A-C:

• Love Jonsson och Jonas Persson: Mikroproduktion av el (Bilaga A)
• Li Wiberg och Juliane Albrecht: Solel på Solbjer (Bilaga B)
• Karin Hansson och Sara Olsson: Micro-generation in local power grids (Bilaga C)

Samtliga rapporter kan laddas ner från hemsidan: www.ees.energy.lth.se/publikationer.
2. BEGREPP OCH DEFINITIONER
Ett antal definierade begrepp används i rapporten. Detta kapitel ger en översyn av dessa termer (Eriksson, 2014).

2.1 Prosument

Begreppet kan också innebära en sammanslagning av orden professionell + konsument, det vill säga en person som ställer mycket höga krav på sin tekniska utrustning – exempelvis sin kamera.

En tredje definition är proaktiv + konsument. Med detta menas någon som har ett aktivt förhållande till ett företag och påverkar det och dess produkter med sin feedback och sina klagomål (ComputerSweden u.å.).

2.2 Smarta nät

2.3 Boverkets byggregler (BBR)
Boverkets byggregler anger vilka krav som ska ställas på byggnader och de system och installationer som ingår. Kraven rör exempelvis brandskydd, tillgänglighet, hygien, buller och energihushållning (Boverket 2013). I avsnittet om energihushållning står att finna att

<table>
<thead>
<tr>
<th></th>
<th>Klimatzon I</th>
<th>Klimatzon II</th>
<th>Klimatzon III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomsnittlig värmegenomgångskoefficient [W/(m²·K)]</td>
<td>0,40</td>
<td>0,40</td>
<td>0,40</td>
</tr>
<tr>
<td>Bostäder med annat uppvärmningssätt än elvärme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byggnadens specifika energianvändning [kWh/(m²·år)]</td>
<td>130</td>
<td>110</td>
<td>90</td>
</tr>
<tr>
<td>Bostäder med elvärme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byggnadens specifika energianvändning [kWh/(m²·år)]</td>
<td>95</td>
<td>75</td>
<td>55</td>
</tr>
</tbody>
</table>

Den area som avses i minimikraven är den tempererade arean, det vill säga ”Arean av samtliga våningsplan, vindsskåp och källarplan för temperaturreglerade utrymmen, avsedda att värmas till mer än 10 °C, som begränsas av klimatskärmens insida. Area som upptas av innerväggar, öppningar för trappa, schakt och dylikt, inräknas. Area för garage, inom byggnaden i bostadshus eller annan lokalbyggnad än garage, inräknas inte.” (BFS 2011:26 s.142). Den specifika energianvändningen är den levererade (köpta) energin till en byggnad under ett normalår, fördelat på tempererad area och uttryckt i kWh. Den energi som ingår i begreppet är energi för uppvärmning, komfortkyla, varmvatten, fastighetsenergi och eventuell golvvärme, handduktork och dylikt. Hushållsel ingår alltså inte (BFS 2011:26).

2.4 Lågenergihus

2.4.1 Passivhus

Tabell 2.2. Krav för passivhus, efter SCNH 2012.

<table>
<thead>
<tr>
<th></th>
<th>Klimatzon I</th>
<th>Klimatzon II</th>
<th>Klimatzon III</th>
</tr>
</thead>
<tbody>
<tr>
<td>All passivhus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximala värmeförluster [W/m²]</td>
<td>17</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Elvärmda passivhus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximal levererad årsenergi [kWh/(m²·år)]</td>
<td>29</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>Icke elvärmda passivhus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximal levererad årsenergi [kWh/(m²·år)]</td>
<td>58</td>
<td>54</td>
<td>50</td>
</tr>
<tr>
<td>Passivhus med icke renodlade system för värme och varmvatten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximal levererad viktad årsenergi [kWh/(m²·år)]</td>
<td>73</td>
<td>68</td>
<td>63</td>
</tr>
</tbody>
</table>

Ett passivhus är i princip en byggnad som inte kräver något installerat system för värmedistribution, såsom radiatorer. Värmedistribution sker istället med hygienluftflödet. Uppvärmdningen sker främst via de apparater och personer som vistas i byggnaden, samt

Den maximalt tillåtna värmeödlusten varierar beroende på vilken klimatzon byggnaden är uppförd i, då värmeödlusten beror av den dimensionerade lägsta utetemperaturen. Utöver detta ställs krav på levererad årsenergi. Även byggnadstekniska krav ställs, se Tabell 2.2. Den area som avses är den tempererade arean (SCNH 2012).

2.4.2 Minienergihus
Kraven som ställs på minienergihus är utformade på samma sätt som för passivhus med krav på maximala värmeödluster och levererad energi. Nivån på kraven ligger mellan de för passivhus och Boverkets byggregler, se Figur 2.1 (SCNH 2012). Till skillnad från passivhuset är inte hygienluftflödet i ett minienergihus tillräckligt för att klara värmefördelningen eftersom högre värmeödluster kan tillåtas (Blomsterberg 2009). Värmeödlusterna tillåts vara 5 W/m² högre än för passivhus. Den levererade årsenergin för minienergihus som är icke elvärmda eller saknar renodlade system för värme- och varmvattenförsörjning tillåts eventuellt vara 20 kWh/(m²·år) högre än för passivhus. För elvärmda minienergihus tillåts den levererade årliga energin vara 8 kWh/(m²·år) högre (SCNH 2012).

Figur 2.1. Energianvändningen för minienergihus i relation till passivhus och boverkets byggregler (SCNH 2013b).

2.4.3 Nollenergihus

2.4.4 Nära nollenergihus
Som beskrivet ovan definierar EU-direktiv 2010/31/EU om byggnaders energiprestanda att nära nollenergibyggnaderna ska ha mycket hög energiprestanda, och att nära noll mängden

2.4.5 Plusenerghus

Plusenerghus är likt passivhus och nollenerghus energieffektiva med låga värmeffektroster, men producerar över ett år mer energi än vad som köps in. Vanliga energigenereringsystem är solceller, solvärme, biobränsle och vindkraft (Blomsterberg 2009).

2.4.6 Smarta hus

Ett smarta hus utnyttjar informationsteknik för att optimera driften och låta de boende styra byggnaden efter sina egna specifika behov. Det kan handla om att belysning och spis stängs av automatiskt och att värmen sjunker när byggnaden lämnas. Det kan också handla om att kunna styra ventilation och värme på olika sätt i olika rum eller att kunna visualisera energianvändningen (Schneider Electric 2013). Smarta hus kan ge de boende en signal om när elpriset och efterfrågan på el är låg. På så sätt kan de exempelvis köra tvättmaskinen då istället för på tider då priset och efterfrågan på el är hög. På så sätt hjälper kunden till med effektregleringen. Smarta hus är därmed viktiga för en framtida smartare utnyttjning av elnätet och underlättar för konsumenter att bli prosumenter. Smarta hus kan alltså vara en bidragande på olika lågenerghus där de anpassas till, och är en del av, ett smart elnät (E.ON 2010).

Att de boende får möjlighet att i högre utsträckning anpassa sin innemiljö till sina egna behov och önskningar innebär dock inte nödvändigtvis en lägre energianvändning. Det mest energieffektiva sättet för de boende att styra sitt smarta hus kanske går stick i stäv mot deras önskan att exempelvis minimera buller eller ha en hög innetemperatur. Hur insatta brukarna är i de smarta systemen och hur de uppfattar och reagerar på den variabel som
styrs, exempelvis värmen eller luftflödet, påverkar hur de använder dem (Nordquist 2014). Nordquist menar att det därför är viktigt att ta hänsyn till brukarnas beteende när de smarta systemen utformas; både för att minimera energianvändningen och för att faktiskt beakta brukarnas vilja.

Referenslista till Kapitel 2

3. SYSTEM
I detta kapitel beskrivs kortfattat de system som använts för mikroelproduktion - solel, vindkraft, andra alternativa lösningar samt energilagring. Texten är hämtad ur en bok ”Smart om smarta nät” [14] och omredigerad.

3.1 Solel
Solen strålar med en effekt på 1 367 W/m² på en vinkelrät yta vid jordens atmosfär. Detta tal kallas för solarkonstanten och är medelvärdet fördelat på hela jordens area. Solinstrålningen och därmed även mängden energi som kan träffa en solcell varierar kraftigt beroende på geografisk placering. Vid ekvatorn kan genomsnittsenergin vara över 2 300 kWh/m² per år medan den i södra Sverige ligger på ungefär 1 000 kWh/m² per år. Viktigt att notera är även skillnaderna i solinstrålningens infallsvinkel beroende på geografisk placering. Vid ekvatorn är det optimalt med solpaneler parallella med markplanet medan det i Sverige lämpar sig bättre att vinkla solcellerna upp från markplanet och mot söder p.g.a solens bana på norra halvklotet [6].

![SOLAR PHOTOVOLTAICS (PV)](image)

Figur 3.1. Den globala effekten installerad solel mellan 1995-2012 [1].
Likenande utveckling syns även i Sverige, där den kumulativa installerade effekten har ökat (se Figur 3.2) samtidigt som priserna per installerad W har minskat (Figur 3.3).

![Diagram](image)

Figur 3.2. Kumulativ installerad effekt solel i Sverige från 1992 till 2012 [2].

![Diagram](image)

Figur 3.3. Kostnad per W för olika typer av solcellssystem [2].

framsida, exciteras en elektron från den P-dopade sidan och rör sig mot solcellens N-dopade framsida, se Figur 3.4. Solcellen polariseras alltså - framsidan blir negativt laddad och baksidan positivt. Denna laddning tas upp i form av elektrisk ström av metallkontakter som sitter på respektive sida.

Figur 3.4. Tekniken i en solcell [5].

Strömmen av elektroner från alla individuella celler tas om hand av en ledare som via en last leder den vidare ut från panelen [6]. Spänningen i varje enskild solcell ligger på ungefär 0,5-0,7 V. För att överhuvudtaget få ut någon ström består en solcelspanel, som tidigare nämnt, av ett flertalet seriekopplade celler, vanligtvis 36 eller 72 stycken, som ger antingen 12 V eller 24 V [7]. Då cellerna är seriekopplade påverkas verkningsgraden avsevärt om en enda cell är trasig eller ligger i skugga. En vanlig lösning för att kringgå detta är användning av så kallade bypass-dioder som strömmen kan ledas genom, istället för genom den trasiga solcellen [6]. Verkningsgraden skiller sig mellan de olika typerna av solceller - monokristallint kisel ligger på runt 15 %, polykristallint kisel på 13 %, tunnfilm kisel på 6 % och tunnfilm SIGS på 10 %, för att nämna några [13]. För att kunna koppla solcelspanelen till elnätet krävs en växelriktare som omvandlar den producerade likströmmen till växelström. Det finns växelriktare som skickar strömmen ut på näten via en fas eller tre faser [8].

3.2 Vindkraft

Att utnyttja vindens energi för kraftförsörjning är inte något nytt. Vindsnurror för att driva kvarnar och vattenpumpar har funnits i många år. Efter att utbyggnad av vindkraft för att generera el under en tid främst skett storskaligt, uppmärksammas nu möjligheter för en eventuell ökning av småskalig vindkraft.

Då vindens effekt är proportionerlig mot vindhastigheten i kubik är det av största vikt att man försäkrar sig om att det råder gynnsamma vindförhållanden där man tänkt uppföra vindkraftverket. Även luftfuktighet och temperatur påverkar visserligen det teoretiskt
möjliga effektuttaget, eftersom de är relaterade till luftens densitet, men de är av lägre betydelse.

\[
V = \left(\frac{H}{H_0}\right)^\alpha \cdot V_0 \quad (3.1)
\]

Vindkartorna har ofta upplösningen 1 km vilket innebär att det med största sannolikhet kan finnas lokala variationer inom området. Därför kan det vara lämpligt att, utöver att studera vindkartor, undersöka om det i nuläget finns några uppenbara hinder för vinden i närheten av vindkraftverkets tänkta position samt beakta eventuell tillväxt av vegetation eller uppförande av byggnader i området.

Medan de flesta storskaliga vindkraftverken är av horisontell typ kan det för småskalig produktion i många fall vara fördelaktigt med en vertikalt. Detta grundar sig delvis i lager som styr bygglov för småskaliga anläggningar, vilka bland annat tillåter en maximihöjd på kraftverket till 20 meter och en maximal diameter på rotorn om 3 meter. Själva geometrin av ett vertikalkaxlat verk tillåter en större svept area för samma diameter eftersom vingarna kan göras längre. Detta är önskvärt eftersom den teoretiskt tillgängliga effekten i vinden skalar linjärt med den svepta areaen. Vidare har de fördelar i att de hanterar intermittent vindbelastning bättre samt är oberoende av vindriktning [9].

3.3 Övrig småskalig elproduktion

Förutom solceller och vindkraft kan man givetvis använda sig av övriga typer av elproduktionstekniker och tillämpa dem på en mikroproduktionsnivå. Småskalig vattenkraft använder sig av samma teknik som i vanliga vattenkraftverk vilket innebär att omvandla vattnets lägesenergi till el via en turbin som är kopplad till en generator och en transformator. Vattenkraftanläggningar med en effekt under 1 500 kW definieras i Sverige som småskaliga [10].

Figur 3.5 visar hur man kan producera el via olika omvandlingsprocesser av biomassa. Alla dessa går teoretiskt sett att applicera på mikroproduktion av el, men många av dem blir i praktiken kostnadsnära helt orimliga.
Kraftvärmeanläggningar är ett av exempen i Figur 3.5 på el- och värme-produktion som går att tillämpa på en mikroskala; biomassa används ofta som bränsle här. Ett alternativ till den klassiska ångcykeln är ORC (Organic Rankine Cycle) som använder en organisk vätska som arbetande medium istället för vatten. Fördelen med denna teknik är att man kan utvinna arbete vid lägre temperaturer, vilket lämpar sig bra för just biomassa och således mikroproduktion. Denna teknik är på frammarsch idag [12].

![Diagram](image)

3.4 Penetrationspotential för mikroproduktion
Vattenkraft är beroende av närliggande vattendrag och olika typer av kraftvärmeanläggningar är inte bara beroende av biomassa som input, utan är även relativt tekniskt komplexa. Detta gör att tillgängligheten på en mikroproduktionsnivå är avsevärt mindre än för mikroproduktion från vindkraft och solceller. Därför bedöms övrig mikroproduktion inte få samma genomslag inom en överskådlig framtid som vindkraft och solceller har.
Referenslista till Kapitel 3

4 ENERGILAGRING

4.1 Vattenlager

Att omvandla lägesenergi till rörelseenergi är en väldigt gammal energiomvandlingsmetod. Både Sverige och Norge har omfattande vattenkraft som utgör basen i vårt energiförsörjningssystem som tillämpar just omvandling av lägesenergi till elektricitet.

Funktion

Pumpkraftverk är som sagt den absolut vanligaste tekniken för att lagra energi. I Figur 4.2 syns det tydligt att pumpkraften har en ohotad första plats i världen som den största formen av energilager [2].
Anledningen till att pumpkraftverkstekniken är så utbredd beror främst på att det är en erkänd och välbeprövad teknik. Den har använts mycket och branschen har en god uppfattning över kostnader och när tekniken är fördelaktig att använda. Generellt anges en totalverkningsgrad på 80 % som riktvärde för ett pumpkraftverk[1, 2]. Med totalverkningsgrad menas att hela anläggningen har en verkningsgrad på ungefär 80 %, med andra ord fås ungefär 80 % av den el som används för att pumpa upp vatten tillbaka i form av elektricitet till konsumenter. Förlusterna uppkommer bland annat från generatorer, friktion och turbinverkningsgrad.

![Diagram of Pumped-Storage Plant](image)

Figur 4.1. Skiss över pumpkraftverk [1].

Figur 4.2. Effektfördelning mellan de vanligaste energilagringsteknikerna [2].

Pumpkraftverken idag är förhållandevis stora, de används ofta för att balansera hela elnät och det finns egentligen inget småskaligt tänk med denna lagringsmetod. Dels är det allt som
oftast inte lönsamt att bygga om det inte finns en naturlig höjdskillnad att dra nytta av och dels så krävs stora investeringar både i pumpar, turbiner och dammar.

Kapacitet

En vanlig villa som inte har direktverkande el brukar ha en årskonsumtion på upp till 10 000 kWh [29], eller cirka 27 kWh per dag. Det antas att hälften av totalsumman går till varmvatten och resterande till hushållsel. För hela kvartter blir detta en konsumtion på 540 kWh per dag. Ponera nu att villaområdet vill ha energiagring för lite över 50 % av sitt dagsbehov. En tank på 50 m³ vatten måste placeras på en orimligt hög höjd av ca 2 000 m.

Ifall det antas att villaområdet lyckas få bygglov för ett pumpkraftverk så högt som 50 meter, hur mycket vatten måsten tanken då rymma? Svaret blir 2 200 m³, vilket också är ganska orimligt. Det krävs med andra ord ett förhållandevis stort pumpkraftverk för att få ekonomin att gå ihop om inte en naturlig höjdskillnad eller vattenreservoar kan användas.

Användningsområden

En lösning på detta, som föreslås av ett amerikanskt entreprenörsföretag, är att gräva ner pumpkraftverken under jord [2]. Tanken är att borra ett stort cirkulärt hål och låta en stor cementkolv föras upp och ner i hålet genom att ömsom pumpa in och släppa ut vatten.
Enligt företagets beräkningar ska det vara möjligt att lagra uppemot 200 MWh energi på detta sätt.

Ett annat intressant projekt testas utanför Norge [3]. Idén kommer från en grupp tyska forskare och företag. Genom att sänka ner betongkolor djupt ner i hav eller sjöar och sedan pumpa dem tomma, tills nästan vacuum uppstår, kan energi lagras och återfås när vatten tillåts strömma tillbaka in i kulan. Inom tre år förväntas gruppen testa med kolor på uppemot 30 meter i diameter och på 700 meters djup. Blir detta verklighet kommer de att kunna lagra uppemot 20 MWh i varje kula.

4.2 Tryckluftslager

Att använda tryckluft för att utföra olika typer av arbeten är en gammal och väl beprövad metod. Redan under 1800-talet fanns det stadsnät med tryckluft för att utföra olika typer av arbetsuppgifter, till exempel drevs mekaniska klockor [2]. I industrin används tekniken väldigt ofta. Tillverkningsindustrin använder den för att driva olika former av verktyg och därmed göra dem lättare och i det långa loppet förhindra arbetsskador på sina anställda. Även kraftverk använder oehörda mängder tryckluft, till exempel drivs ofta mätinstrument och ventiler av tryckluft. Vid termiska kraftverk används det också ofta för att blåsa rent olika typer av filter vid rökgasrening.

Funktion

När luft komprimeras höjs dess temperatur, mestadels på grund av friktion. Denna temperaturhöjning gör det möjligt att använda den nu varma luften i en gasturbin, se Figur 4.3 som exempel.

Att blanda tryckluften med gas för att få ut mer energi är ett sätt att utvinna den lagrade energin. Dock finns det tankar om att slipa tillföra det extra bränslet. Att då istället komprimera luften till en så pass hög temperatur att den kan köras genom en turbin utan att behöva tillsätta mer energi i form av bränsle [2].
Figur 4.3. Processschema över CAES med gasturbin [2].

Detta görs på bästa sätt genom att en använda en process som är adiabatisk, vilket innebär att det inte tillförs eller bortförs någon värme (processen visas grafiskt i Figur 4.4). Det skulle då vara möjligt att komma upp i 70 % verkningsgrad [4]. Ur miljösynpunkt är denna teknik den mest intressanta då det i praktiken innebär ett helt utsläppsneutralt energilager.

Figur 4.4. CAES utan tillsats av bränsle i gasturbinen [4].

Kapacitet

Själva hastigheten på energilagringen bestäms utifrån hur många och hur stora kompressorer som används. Själva tekniken i sig sätter inga begränsningar för hur snabbt eller hur mycket energi som kan lagras, utan det bestäms utifrån designen på varje anläggning.

Kostnaden för en CAES-anläggning bedöms variera mellan 250-500 USD per kWh [2], vilket med dagens (i juni 2015) växlingskurs blir ca 1 600-3 200 kr. Ju mer som går att återanvända, i form av ”lagerlokal” desto billigare blir det. Sedan kommer produktionskostnaden att variera kraftigt beroende på om det tillsätts naturgas, vilket i dagsläget är väldigt dyrt, eller om endast tryckluften i sig kommer att vara den drivande kraften.

Användningsområden
Som nämnts tidigare, används CAES både i Europa och i USA dock är det just USA som går i bräschen för tekniken. Det pågår projekt på flera olika platser i landet där en av de största ligger i Iowa [2] och är tänkt att dra nytta av en underjordisk sandstensreservoar. Lokalise-
ringen av Iowa-projektet är mycket fördelaktig då det både är nära till naturgasnätet och distributionsnätet.

4.3 Termisk energilagring genom fasändring
Med termiska energilager förs tankarna gärna till olika former av varmvattenlager, ofta i samband med ett fjärrvärmennät. Dock är det en stor utmaning att kunna lagra varmvatten eller kallvatten från årstid till årstid, så kallad säsongslagring. När det kärvs energilagring under en så pass lång tid börjar PCM (Phase change material)-energilager att komma in i bilden som ett lönsamt alternativ. De har till exempel haft framgång i att lagra kyla från vintern till sommaren med goda resultat, bland annat i Sundsvall.

Funktion
För att skapa ett LTES-lager (Latent thermal energy storage) krävs en temperaturskillnad mellan materialet, som ska ändra fas, och dess värme eller kylkälla. En källa kan antingen manipuleras för att påverka dess temperatur, till exempel genom att värma luften kring ett PCM, eller så är källan naturligt varm eller kall.

PCM

![PCM diagram](image)

Figur 4.5. Indelning av PCM [6].

PCM:en delas alltså in efter vilka faser de går mellan vid energimottagning eller energiavgivning. Vidare brukar dessa huvudklasser också delas upp i organiska och oorganiska material, då sådana existerar. Figurer 4.6 och 4.7 visar en sammanställning över olika PCM-material egenskaper, fördelar och nackdelar.
Figur 4.7. Jämförelse mellan olika typer av PCM [6].

Användningsområden

Det som främst kan lagras med PCM är antigen värme eller kyla. Att spara andra former av energi är i och för sig möjligt men i så fall måste den omvandlas till värme eller kyla. Ett exempel på detta finns i Japan där PCM laddas med kyla under natten med el, då elen är billigare, och används sedan under dagen då elen stiger i pris i och med att efterfrågan ökar.

Det finns en mängd användningsområden för PCM men för LTES och TES (Thermal energy storage) finns det ett antal som är mer lämpliga. För att lagra värme i ett par dagar upp emot en vecka, fungerar olika varmvattenlager tillfredsställande och till en förhållandevis låg kostnad. Detta gäller framförallt värmelager; vid kyllagring är PCM effektivare [6].

När det krävs så kallad säsongslagring, från vinter till sommar eller tvärtom, fungerar inte vattenlagring i tankform lika bra och då kan PCM:en börja konkurrera på allvar. De flesta studier som har gjorts har dock jämfört LTES med andra former av energilagring, som till exempel kylanläggningar med värmepumpsteknik.

En av dessa studier kommer från USA [6] och visar på att ett förhållandevis stort hus, över 200 m², kan få en väldigt god kylning med hjälp av PCM istället för vanlig luftkonditionering. Jämförelsen gjordes genom att jämföra vanlig kyltechnik med samma kyltechnik men med ett PCM som hjälpmedel. Detta skulle enligt Benz och Valenta [6], som genomförde studien, vara möjligt och dessutom skulle det vara möjligt att spara 240 000 kr på att välja ett system med PCM istället för en vanlig kylanläggning.

Ett exempel på en verklig kylanläggning med PCM är Sundsvalls sjukhus som använder snö från vintern till att kyla sina lokaler under sommaren [6]. Snön isoleras med hjälp av sågspån och värmeutbytet mellan kallvattnet och sjukhuset sker via en värmeväxellare på 1000 kW. Systemet gör en driftskostnadsbesparing på 150 000 kr per år jämfört med den tidigare luftkonditioneringsutrustningen.

Figur 4.8. Integrerat PCM i byggsmaterial [8].

Tanken med att integrera PCM i byggnadsmaterial är att öka byggnadens förmåga att lagra solvärme under dagen och sedan kunna värma upp sig själv under natten. De studier som har gjorts konstaterar att användandet av PCM i tegelstenar ökar kraftigt deras förmåga att lagra solvärmen [8].

Kapacitet

För att få ett lönsamt energilager står valet av PCM i huvudfokus. Ifall anläggningen som behöver kyla har fri tillgång till snö så bör det användas. Har anläggningen ett sätt att få billig el, till exempel via ett vindkraftverk, bör ett glykolbaserat PCM användas för att få bättre energidensitet [6].

4.4 Kryogenisk energilagring

Kryogenisk energilagring går ut på att omvandla vanligt syre till flytande syre. Precis som ett PCM som föregående stycke handlade om. Redan under sent 1800-tal fanns det bilar som drevs med flytande syre. Verkningsgraden var däremot för dålig för att kunna konkurrera

Funktion
Detta är en teknik som till skillnad från många andra som tas upp i denna del är explicit designad för att lagra överskottselectrikitet från elnätet, se Figur 4.9.

När det finns ett överskott av el, till exempel nattetid, så används den för att tillverka flytande syre. Syret hämtas vid atmosfäriskt tryck och temperatur. Första gången detta sker går det inte att dra nytta av ”cold store” (4) som visas i Figur 4.9, då detta inte existerar under första cykeln [9, 10].

Efter att processen har tagit fram flytande syre mellanlagras den i en tryckbehållare, vilket också är en välanvänd LNG-teknik. För att tillslut pumpas upp till ett högt tryck och expandera igenom en turbin som driver en generator och kan leverera tillbaka elen till elnätet. Figur 4.9 föreställer en väldigt förenklad bild över processen som är bra för att få en överblick.

![Diagram](image)

Figur 4.9. Förenklad bild av kryogeniska processen [9].

I Figur 4.10 visas processen mer utförligt vilket krävs när detaljerna, så som vad som egentligen händer i ”power recovery”, ska förklaras.
Figur 4.10. Detaljerad bild över den kryogeniska processen [10].

Förutsatt att processen återanvänder kyla som tas ut i förångaren kan totalverktygsgraden komma upp emot 50 % för hela processen. Verktygsgraden kan förbättras ytterligare om det dessutom används spillerme i värmeverktyg.

Kapacitet
Tekniken är ganska obeprövat men det finns egentligen inget som tyder på att det finns någon övre begränsning på hur stora energilager som kan byggas. Det bör gå att bygga anläggningarna från 1-2 MW upp till storskaliga anläggningar på 100 MW eller större [12].
Tekniken är inte tänkt att användas för att ta hand om stora och tidsmässigt korta effekttopper utan snarare för att lagra energi då efterfrågan är låg till ett tillfälle då efterfrågan är större.

Lagringen bör kunna ske både dygnsvis och veckovis dock finns inga uppgifter på hur effektiv tekniken är för till exempel säsongslagring. Det saknas även tillförlitliga kostnadsuppgifter för LAES (Liquid air energy storage). Det finns en anläggning i Storbritannien som den brittiska staten sponsrade som kostade 1,1 miljoner GBP [14], vilket kanske kan ses som en fingervisning. Dock kommer kostnaderna att sjunka ju mer beprövad tekniken blir.

Användningsområden

4.5 Batterier

Funktion

Batterier kan delas in i två olika grupper, de primära och de sekundära. Skillnaden är att de sekundära batterierna är uppladdningsbara. Dessa är därmed de relevanta för energilagring. För båda typerna har den industriella utvecklingen gått snabbt framåt de senaste årtionden [16].

Anoden är oftast en metall och katoden en jonledare. Mellan elektrodernas yta och elektrolyten uppstår en potential skillnad. Battericellens elektro motoriska kraft (EMF) är summan av de båda elektrodernas potential [18]. Ett vanligt batteri består av flera seriekopplade battericeller [19].

Blybaserade batterier är de som varit i kommersiellt bruk under längst tid. I över 100 år har blybatterier använts som en del av nationella och regionala elnät. Ungefär 80 % av de installerade industriella batterierna är blybatterier. De är robusta och inte särskilt känslig för påverkan från omgivningen.

Litiumbaserade batterierna har varit i kommersiellt bruk sedan 1990-talet. Utvecklingen för litiumbatterier har gått fort framåt sedan dess och har tagit över mer än 50 % av marknaden för mindre portabla batterier. Största fördelen med litiumbaserade batterier är att de är lätt att anpassa till olika spännings och uteffekter.

Nickelbaserade batterier såsom nickel-kadmium, nickel-metall hydrier och nickel-zink är de näst mest använda elektrokemiska ellagringen efter blybatterier. De är till stor nytta för speciella marknader där klimatet ställer höga krav på lagringen och en snabb laddning [20].

Användningsområden

Batterier används också i stor utsträckning för ”off-grid” applikationer. Allt från mindre öar till enstaka hushåll som använder batterier för att skapa en säkerhet i elförsörjningen [21]. Figur 4.13 visar hur den installerade kapaciteten i energilagren (BES - Battery Energy Storage) fördelar sig mellan de olika batterityperna och vilka uteffekter som är möjliga totalt.
Enligt Figur 4.13 är det natrium-svavel batterier som dominerar den installerade effektkapaciteten.

Figur 4.13. Installerad effekt för BES (Battery energy storage) [21].

För installerade energilager dominerar natrium-svavel batterierna ännu mer, se Figur 4.14.

Figur 4.14. Installerade energilager för BES (Battery energy storage) [21].

Kapacitet
Kapacitet för batterier skiljer sig åt mycket mellan vilken sorts batteri det är. De parametrar som är viktiga för att beskriva kapacitet för batterier är kapaciteten (Ah), energidensiteten
(kWh/kg), verkningsgraden, batteriets livslängd och hur många cykler batteriet håller för. Det finns således två sätt att mäta ett batteris livslängd, antal cykler och livslängd i kalenderår. Antalet cykler räknas som en urladdning för batteriet till 80 %. I Tabell 4.1 finns en sammanställning över de vanligaste batterityperna och deras nyckelparametrar.

Tabell 4.1. Sammanställning av batteriegenskaper [20, 21].

<table>
<thead>
<tr>
<th>Batteri</th>
<th>Bly</th>
<th>Litium</th>
<th>Nickel</th>
<th>Natrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapacitet/cell (Ah)</td>
<td>4 000</td>
<td>100</td>
<td>3 000</td>
<td>38</td>
</tr>
<tr>
<td>Energidensitet (kWh/kg)</td>
<td>0,025-0,050</td>
<td>0,14</td>
<td>0,02-0,08</td>
<td>0,12</td>
</tr>
<tr>
<td>Verkningsgrad (%)</td>
<td>85</td>
<td>Nästan 100</td>
<td>>90</td>
<td>92</td>
</tr>
<tr>
<td>Livslängd (cykler)</td>
<td>>2 000</td>
<td>>5 000</td>
<td>>3 000</td>
<td>>4 500</td>
</tr>
<tr>
<td>Livslängd (år)</td>
<td>20</td>
<td>>20</td>
<td>25</td>
<td>>10</td>
</tr>
</tbody>
</table>

I Figur 4.15 visas sammanställning över fler batterityper, deras lagrade energi relativt massa och volym.

![Figur 4.15. Energidensitet och energitäthet av olika energilager [2].](image)

Av figuren framgår även hur andra energilagers teknologier ligger till och hur länge de olika batterityperna funnits. Utöver dessa parametrar är urladdning- och uppladdningstider
Kostnaderna för batterier i dagsläget skiljer sig väldigt mycket mellan de olika typerna. De med lägst investeringskostnader är bly och flödesbatterier som ligger på lite mer än 1 000 EUR/kWh. De dyraste är litium-jon batterierna där investeringskostnader kan sträcka sig ända upp till 6 500 EUR/kWh [2].

Huvudsyftet med rapporten är att hitta ett energilager som är lämpligt för elkonsumtion i en villa. Enligt E.ON är en normal elförbrukning (hushållsel och varmvatten) för en svensk villa ca 10 000 kWh [30]. I detta ingår inte värme vilket gör att den genomsnittliga förbrukningen kan antas vara ungefär densamma under hela året. Den genomsnittliga dagsförbrukningen blir ca 28 kWh. Låt oss anta att ett lager bör ha kapacitet för 50% av denna förbrukning d.v.s. 14 kWh. Beroende på vilken typ av batteri som väljs som lager, kommer storlek och kostnad för lagret att variera. Enligt Figur 15 har litium-jon batterierna högsta energitäthet av de typer som är tillgängliga på marknaden. Avläsning från figuren ger att litium-jon batterierna kan ha som högst 300 Wh/l och 280 Wh/kg. För att kunna lagra 14 kWh skulle det behövas ett batteri med volymen 46 l som väger 50 kg, vilket helt klart är ett energilager som är möjligt att ha för ett hushåll, med tanke på utrymme och kapacitet.

Litium-jonerna är de batterierna som för tillfället är dyrast. Priserna varierar väldigt mycket och kostnaden är allt från 2 000 EUR/kWh till över 6 000 EUR/kWh. Vilket skulle innebära en kostnad på totalt ca 28 000-72 000 EUR per batterilager.

Framtidsutskikter

Den europeiska batteriindustrin har valt att inrikta sig och prioritera två huvudområden för utveckling av användningen av batterier. Decentralisering av energilager för skötsel av elnät och förvaltning av energi för hus och byggnader. I takt med att de stora förnybara produktionsanläggningarna byggs ut kommer även Europas lågspännings distributionsnät att vara beroende av medium- och småskaliga energilager. I de nya distributionsnäten kommer energi inte bara att flöda åt ett håll utan då konsumenter själva uppmanas till egen elproduktion kommer även detta ställa krav på att denna kan lagras. BES (Battery Energy
Storage) är en perfekt lösning för att kunna bibehålla stabilitet och flexibilitet i distributionsnätet.

Då elproduktionen hos konsumenter kommer att öka kommer också efterfrågan på lokala energilager för hushåll att bli större, då detta ger konsumenten större möjlighet att använda mer av sin egenproducerade el från till exempel solceller eller små vindkraftverk. Typiska storlekar för batterier är 2 kWh per kW installerad produktion. I framtiden kommer dessa energilager att utgöra stöd för elnätet.

På lång sikt kommer batterier att utvecklas ännu mer och kommer att vara en betydelsefull faktor i centrala energilager på produktion- och transmissionssidan [20].

I valet av vilka batterier som kommer att få störst kommersiell framgång spelar återvinningen en viktig roll. För de äldre typerna av batterier, som de blybaserade, finns redan återvinningsmetoder på plats. För den yngre generationen batterier saknas fortfarande välutarbetade processer. Detta beror på att utvecklingen av dessa batterier fortfarande pågår och vissa av de materiaalkombinationer som ska användas inte är fastställda ännu [2].

4.6 V2G - Elbilar som energilager

Hur många elbilar behövs?
Elbilar har i rapporten visat sig vara mycket funktionsdugliga i rollen som reglerräätt. Med ett enkelt räkneexempel, där elbilar förvaltar effekttoppar från förnyelsebar energi, beräknas hur många elbilar som krävs för att klara av detta.

I ett teoretiskt räkneexempel, som visas i Tabell 4.2, antas att vi har en elbilsflotta som kan hantera effekttoppar producerade av förnyelsebar energi. I Sverige står vindkraften för majoriteten av den förnyelsebara energin vilket uppgår till 4,2 GW installerad effekt mostvarande cirka 11,6 % av Sveriges totala effektkapacitet efter tredje kvartalet 2013. Svenska hem har idag en enfasspänning på 230 volt och säkringar finns att tillgå på uppemot 20 ampére. Antalet bilar i Sverige är 4,3 miljoner, nästan en bil per två invånare vilket kan jämföras med världsmedel som är en bil per 6,3 invånare eller USA där det finns en bil per 1,3 invånare [22].

Vissa reservationer och förenklingar finns i räkneexemplen så som att samtliga av Sveriges vindkraftsverk ska nå nominell effekt samtidigt vilket vore högst osannolikt med endast 2 500 fullasttimmar under ett år (Svensk vindenergi, 2013). Det antas också att alla bilarna är inkopplade på trefas vilket är i ovankant för dagens standard men inte helt osannolikt om flera elbilsägare i framtiden investerar i detta för att få kortare laddtider. Inte heller kan alla elbilar antas stå parkerade och tillgängliga för elnätet samtidigt. Exemplet belyser, trots sina brister, att 7 % av Sveriges personbilsflotta skulle räcka att elektrifiera för att kunna hantera
stora variationer på elnätet skapad av förnyelsebar energi. Siffran ärväldigt högt räknad då verkligheten påvisar långt lägre nivå av vindkraftseffekt jämfört med dess nominella kraft. Detta kan istället tolkas som att även vid större förnyelsebar penetration skulle en liten andel elbilar kunna reglera effektoppar i nätet även i framtiden.

Tabell 4.2. Beräkning av antal elbilar motsvarande förnyelsebar energi i Sverige [23, 32].

<table>
<thead>
<tr>
<th>Maxeﬀekt från elbil (kW)</th>
<th>13,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svensk maxeﬀekt (GW)</td>
<td>36,42</td>
</tr>
<tr>
<td>Andel vindenergi (GW)</td>
<td>4,2</td>
</tr>
<tr>
<td>Personbilar i Sverige</td>
<td>4 300 000</td>
</tr>
<tr>
<td>Antal elbilar som krävs</td>
<td>304 347,8</td>
</tr>
<tr>
<td>Andel elbilar som tillgodoser behovet</td>
<td>0,07</td>
</tr>
</tbody>
</table>

Ekonomiska incitament för elbilsägare kan åskådliggöras med summorna som finns att tillgå i den svenska reglermarknaden. Ett kort räkneexempel beaktar marknaden som den ser ut idag och hur penetrationen av elbilar kan innebära inkomster för bilägarna.

I Sverige är behovet av frekvensregleringseﬀekt 1 000 MW och kostnaden uppgår till 37,5 miljoner Euro per år. Maximal eﬀekt som går att använda från en elbil idag är enligt exemplet ovan 13,8 kW om den är inkopplad på trefas med 20 A säkring. I ett nytt räkneexempel, som visas i Tabell 4.3, antas att endast 80 % av alla elbilar finns tillgängliga under varje givn (33).

Tabell 4.3. Beräkning av möjlig intäkt från frekvensreglering [7].

<table>
<thead>
<tr>
<th>Frekvensregleringseﬀekt (MW)</th>
<th>1 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxeﬀekt från elbil (kW)</td>
<td>13,8</td>
</tr>
<tr>
<td>Andel tillgängliga elbilar</td>
<td>80 %</td>
</tr>
<tr>
<td>Nyköpta bilar per år</td>
<td>300 000</td>
</tr>
<tr>
<td>Sammanlagda värdet för eﬀektreglering under ett år (Meuro)</td>
<td>37,5</td>
</tr>
<tr>
<td>Antal bilar i Sverige</td>
<td>4 300 000</td>
</tr>
<tr>
<td>Antal elbilar som täcker behovet</td>
<td>90 600</td>
</tr>
<tr>
<td>Vinst per bil (euro/månad)</td>
<td>34,5</td>
</tr>
<tr>
<td>Antal år för att täcka behovet med elbilar</td>
<td>0,30</td>
</tr>
</tbody>
</table>

Resultatet visar på lovande siffror dels för elbilsägarna och dels för den svenska frekvensregleringen även om felmarginalen kan vara betydande beroende på antaget scenario. Maxeﬀekten från respektive elbil ligger i dagens mått ovan rakt om inte alla elbilsägare kan antas använda sig av trefas med högsta kapabla säkringen. Detta medför att

35
används som ett ellager. Elbilarna behöver en liknande modell för att inte förlora pengar på elen som köps och säljs med låg vinstmarginal fast med höga kostnader i energiförluster och slitage. Risken då är att man till slut hamnar i en situation där både elbilsägare och solcellsägare har massa innestående kWh som de har rätt till via nettodebiteringssystemet. Vid ett produktionsunderskott innebär detta att priset inte får öka, samtidigt som någon måste bära kostnaden av att extra kraftverk får starta. Om alltför många omfattas av ett nettodebiteringssystemet förstörs marknadsdynamiken, vilket innebär att de kraftverk som startas för att leverera el under produktionsunderskott i sin tur måste subventioneras. När försäljningen av elbilarna tar fart på allvar med en massproduktion av batterier som följd, kombinerat med utveckling av batteritekniken, kan priset och prestandan på batterierna förväntas förbättras avsevärt. Detta i kombination med att människors beteende inte ändras, så som att avstånd till och från jobb kommer att vara det samma, skulle kunna leda till att elbilarna kommer att kunna konkurrera mer effektivt med att leverera stora mängder energi, och därmed kunna bidra till höglastutjämning.

Frågan är dock hur viktig denna tjänst kommer att bli. Om behovet av reglerkraft växer sig väldigt kommer även marknadsvärde att öka. Man kan även resonera kring att den stamnätsföretagets köp går in och subventionera elbilsägarna för att tillhandahålla denna funktion när den i viss mån gör nåtet en tjänst. Någon typ av energilagring blir nödvändig i det smarta elnätet, och det är även väldigt resurseffektivt att kombinera bilarna som transportmedel med den värdefulla funktionen att agera reglerkraft.

Slutsatser

• En övergång till elbilar kommer att leda till ökad påfrestning på elnätet. Laddningskoordinering av elbilar är nödvändig för att inte påfresta näten mer än nödvändigt.
• Elbils batterier kan med idag befintlig teknik fungera som energilager som både kan laddas och ladda ur när bilarna är inaktiva och inkopplade i näten. Det är dock osäkert huruvida det kommer att finnas tillräckliga incitament för detta.
• Reglermarknaden kan vara lönsam för elbilsägare, men kan behöva struktureras om. I Sverige är vattenkraften ett bättre alternativ så länge den har nog med kapacitet att klara av regleringen.
• Peak load utjämning är inte lönsam då energiförluster och batterislitaget blir för stora, ett bättre alternativ idag är att förflytta laster. Framtida prisfall och teknikutveckling kan förändra detta.

4.7 Superkondensatorer

Superkondensator - funktion

Kondensatorer kan lagra energi genom att det på en av plattorna samlas laddningar som skapar ett elektriskt fält i det dielektriska materialet. Över plattorna skapas en spänning. Den lagrade energin ges av uttrycket \[W = C \cdot U^2 \], där C är kondensatorns kapacitans och U är spänningen över kondensatorn [23].
Superkondensatorer är relevanta för energilagring och utveckling av deras energidensitet visar större potential än för de konventionella kondensatorerna. Tekniken för superkondensatorer har varit känd i över 60 år [21].

Figur 4.16. Plattkondensator - principskiss [23].

Det som skiljer superkondensatorerna från konventionella kondensatorerna är att superkondensatorer har mycket högre, upp till 1000 gånger större, kapacitans än elektrostatiska och elektrolytiska kondensatorer, vilket gör att superkondensatorerna kan lagra mycket mer energi. Figur 4.17 visar en principkonstruktion av en superkondensator som bygger på användning av elektrolyter och elektroder.

Denna konstruktion påminner om tekniken för batterier, som också använder sig av elektrolyter och elektroder, skillnaden är att det i en superkondensator inte sker någon kemisk reaktion utan denna teknik medför endast att mer energi kan lagras i kondensatorn [2]. Vanligen används en kolbaserad elektrolyt på grund av att den är organisk och lätt att framställa [24]. Det finns två olika sorters superkondensatorer, de symmetriska och de asymmetriska. För den symmetriska är elektrodena i kondensatorn lika medan för den asymmetriska skiljer sig materialen för de två elektrodena åt och därmed deras egenskaper [25].

Superkondensatorer - kapacitet

4.8 Supraledare

Funktion

Supraledande energilager är uppbyggt av en spole som det leds en ström igenom och som genererar ett magnetfält. I över 100 år har de supraledande egenskaperna varit kända och från början krävdes det temperatur kring 4 K för att material skulle uppnå dem. Med gedigen forskning har en höjning av denna temperatur kunnat göras upp till 100 K (-173 °C), vilket fortfarande är en väldigt låg temperatur. För att kunna bygga ett supraledande energilager krävs det en spole och ett kylsystem [21].

Supraledare - kapacitet

Fördelarna med supraledarna är många. Ett högt effektuttag är möjligt och verkningsgraden för energilagringen är högre än de flesta andra alternativen; det ligger kring 85-90 %. En annan praktisk fördel är att alla väsentliga delarna är fixerade vilket minskar slitage på energilagret. Teoretiskt sätt kan energi lagras i en oändligt lång tid så länge lagrets kylsystem fungerar som det ska [21]. Den teoretiskt möjliga storleken för ett supraledande energilager påstås vara 2 000 MW [2].
Användningsområden
Användningsområdena för superkondensatorerna inom smarta nät är än så länge väldigt små. Eftersom energidensiteten är relativt låg och på grund av den höga självurladdning är superkondensatorerna inte lämpade som långtidslager [21]. Inom smarta nät används de främst för att förbättra elkvalitén men även i vissa fall för att styra effektuttagen i vindkraftverk för att undvika skador [2].

Marknaden för superkondensatorer har dock växt väsentligt den senaste tiden, främst på grund av att de kommit till bra användning inom portabel elektronik, medicinsk utrustning och hybridfordon [25].

De större superledande lagren används idag för att säkerställa en god effektkontroll och används inom högeffektfysik såsom partikelacceleratorer [21]. Det finns flertalet mindre energilager för kommersiellt bruk som används för att skapa stabilitet i elnätet vid stora laststörningar [2].

Framtidsutsikter

Det forskas intensivt på utvecklingen av superledare och en ambition är att kunna ta fram större energilagringssystem som kan användas i kommersiellt bruk och vara konkurrenskraftiga med blybatterier [2].

4.9 Svänghjul

Funktion
Svänghjul lagrar energi i form av rörelseenergi. Tekniken går ut på att energin som tillförs systemet accelererar ett hjul så att dess rotationshastighet ökar. När energi sedan tas från system minskar rotationshastigheten. [26]

Energin E möjlig att lagra i svänghjulet ges av E = I v^2/2 där I är objektets tröghet, som beror av massan, och v är objektets rotationshastighet [27].

Moderna höghastighetssvänghjul använder sig av en stor och tung roterande massa som är fäst vid en axel med stöd av ett magnetiskt kullager. För att inte få för stora förlust på grund av luftmotstånd monteras systemet i vakuum. I Figur 4.18 visas hur ett svänghjuls uppbyggnad kan se ut i detalj.

När svänghjul används måste ett val göras av vilket material den roterande massan ska vara gjord av, antingen av stål eller kolkomposit. Valet av material avgör hur hög kostnaden och funktionen för hjulet ska bli. Kolkomposit är lättare och starkare än stål, högre rotationshastigheter kan därmed användas. I och med att den lagrade energin beror av rotationshastigheten i kvadrat så kan en kolkompositfälge lagra mer energi [28].

De avancerade svänghjulssystemen som har roterer gjorda av kolkomposit med väldigt hög hållfasthet kan uppnå mycket höga rotationshastigheter, mellan 20 000-50 000 rpm. De främsta fördelarna med svänghjulssystemen är stabiliteten, den långa livslängden, den höga effektdensiteten och, inte minst, obetydligt underhåll [21].

Användningsområden
Idag används svänghjul framförallt för att frekvensreglera. Svänghjulen ger ett snabbt svar på störningar vilket gör dem lämpade för detta. Svänghjulsanvändning är än så länge mycket begränsad och det finns få exempel på användning inom ellagring i smarta nät. Mycket av utvecklingsarbete har pågått i USA. I New York har ett 20 MW svänghjulsverk installerats (se Figur 4.20). Verket består av 200 svänghjul och har under 6 månaders bruk kunnat användas till 97,5 %. Företaget Beacon Power äger och ansvarar för underhåll av verket [28].

Även i New England har 3 MW verk satts i bruk. Svänghjul används också mycket inom fordonsindustrin [2].

Figur 4.20. Svänghjulsverk i New York [30].
Kapacitet
Som vi har konstaterat i tidigare avsnitt, har en genomsnittlig villa årsförbrukning av el på ca 10 000 kWh/år (hushållsel och varmvatten) [30], ca 28 kWh per dygn. Om ett ellager för ca 50 % av denna energi behövs, skulle lagrets kapacitet vara på ca 14 kWh.

Svänghjulets massa som behövs för att lagra energi E kan beräknas som \(m = 4E / (r^2 \omega^2) \) där \(r \) är svänghjulets diameter och \(\omega \) är dess rotationshastighet. En beräkning för ett svänghjul med en diameter på 1 meter som ska lagra 14 kWh energi vid hastigheten 16 000 rpm ger en massa på 288 kg. Om hänsyn tas till svänghjulets verkningsgrad på ca 85 % [29], blir massan ca 340 kg. För lägre rotationshastigheter skulle hjulet behöva vara tyngre. I de verk som använder sig av svänghjul idag är oftast flera svänghjul i bruk för att kunna lagra mer energi. Tabell 4.4 visar några exempel på svänghjulstillämpningar och lagrad energi beroende på massan, rotationshastigheten och diametern.

Tabell 4.4. Exempel på svänghjulsager [31].

<table>
<thead>
<tr>
<th>Svänghjulstyp</th>
<th>Massa (kg)</th>
<th>Diameter (cm)</th>
<th>Rot.hastighet (rpm)</th>
<th>Lagrad energi (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Littet batteri</td>
<td>100</td>
<td>60</td>
<td>20 000</td>
<td>2,7</td>
</tr>
<tr>
<td>Bromssystem i tåg</td>
<td>3000</td>
<td>50</td>
<td>8 000</td>
<td>9,1</td>
</tr>
<tr>
<td>Elkraftsreserv</td>
<td>600</td>
<td>50</td>
<td>30 000</td>
<td>26,0</td>
</tr>
</tbody>
</table>

Som lagringsmetod under längre perioder är svänghulen inte ekonomiskt försvarbara men deras egenskap att absorbera energi snabbt och kunna avge den lika snabbt är värdefull [2].

Framtidsutsikter
Enligt producenter av svänghjul finns det många fler användningsområden inom elnätet som svänghul kan användas till. Dels som reservlagering av energi men även som support för reaktiv effektkompensering och utjämning av produktion för förnyelsebar energi [31].

4.10 Diskussion om energilager
Tabell 4.5 visar en sammanställning över de olika lagertyperna som beskrivits i Kapitel 4 och om de uppfyller krav på att användas i småhus och bostadsområden.

Tabell 4.5. Sammanställning över energilager [7].

<table>
<thead>
<tr>
<th>Lagringstyp</th>
<th>Applicerbart för <1MW</th>
<th>Applicerbart för >1MW</th>
<th>Verkningsgrad</th>
<th>Uppfyller krav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vattenlager</td>
<td>Nej</td>
<td>Ja</td>
<td>80 %</td>
<td>Nej</td>
</tr>
<tr>
<td>Tryckluftslager</td>
<td>Nej</td>
<td>Ja</td>
<td>70 %</td>
<td>Nej</td>
</tr>
<tr>
<td>Fasändring</td>
<td>Ja</td>
<td>Nej</td>
<td>(varierande)</td>
<td>Nej</td>
</tr>
<tr>
<td>Kryogenisk</td>
<td>-</td>
<td>Ja</td>
<td>50 %</td>
<td>Nej</td>
</tr>
<tr>
<td>Batterier</td>
<td>Ja</td>
<td>Ja</td>
<td>85-99 %</td>
<td>Ja</td>
</tr>
<tr>
<td>Superkondensatorer</td>
<td>Ja</td>
<td>Ja</td>
<td>90 %</td>
<td>Nej (inte ännu)</td>
</tr>
<tr>
<td>Supraledare</td>
<td>Ja</td>
<td>Ja</td>
<td>85 %</td>
<td>Nej (inte ännu)</td>
</tr>
<tr>
<td>Svänghjul</td>
<td>Ja</td>
<td>Ja</td>
<td>85 %</td>
<td>Ja (på kort sikt)</td>
</tr>
</tbody>
</table>

TES har även använts för att lagra elektricitet förutom vad gäller kryogenisk energilagring. Det finns stora fördelar med den kryogeniska energilagringstechniken. En viktig egenskap är att det är en helt utsläppsfri process. Utnyttjas ett kylkärl kan dessutom verkningsgraden komma upp till 50 % vilket förvisso är sämre än för till exempel vatten och tryckluftslager. Dock krävs det ingen höjdskillnad och lagret kommer att ha atmosfäriskt tryck i sina tryckkärl vilket gör tekniken enklare och därmed konkurrenskraftig. Att dessutom dra nytta av spillvärme från kraftverk och industri där det inte finns ett fjärrvärmenät att försörja skulle höja dessa anläggningars verkningsgrad ytterligare. Dessutom skulle det vara möjligt att kombinera processen med en fordonsgasfabrik för vägås. Då luften tas in från omgivningen så kommer det att finnas en viss procentandel vatten i luften som potentiellt...

Redan idag är användningen av batterier relativt stor. Det är det tredje största energilagret efter CAES och pumpkraft som är installerat för elektricitet lagring. Batteriernas användningsområde i elnätet idag är främst för att frekvensreglera och för att kunna jämna ut snabba skillnader i elproduktion.

Svänghjul har många goda egenskaper som kommer väl till nytta inom elnätet. Som småskaligt ellager på konsumentnivå är det möjligt men än så länge inte lönsamt. Svänghjulens egenskap är att ge snabba svar vid behov, hög verkningsgrad och lång livslängd gör att det ändå kommer att finnas behov av dessa i de smarta elnätten både för att frekvensreglera och som stöd för elproduktionen vid effektoppar.

Följande slutsatser kan dras angående olika energilagringsmetoders kapacitet att vara användbara i småhus och bostadsområden:

- Vattenlager anses inte praktiskt användbart.
- Tryckluftslager anses inte praktiskt användbart.
- Kryogeniska lager anses inte praktiskt användbara.
- Termisk energilagring med fasändringsteknik anses inte praktiskt användbart.
- Batterier anses vara praktiskt användbara.
- Superkondensatorer och supraledare anses inte vara praktiskt användbara.
- Svänghjul anses vara praktiskt användbara men ännu ej lönsamma.

Referenslista till Kapitel 4

17. Battery University. When was the battery invented ?. http://batteryuniversity.com/learn/article/when_was_the_battery_invented (28 oktober 2013)

5. VILLKOR OCH REGLER

5.1 Mål och direktiv för byggnadsektorn

Globalt sett står byggnader för 32 % av världens energianvändning (OECD/IEA 2014). I Sverige återfinns en något högre siffra: sektorn bostäder och service står för ca 38 % av den totala energianvändningen, varav 90 % används i byggnader (Energimyndigheten 2013a). Ungefär samma siffror gäller för EU i stort, varför byggnadssektorn är ett prioriterat område för EU:s mål om energieffektivisering och energibesparing (EU 2010).

5.1.1 Mål på EU-nivå

5.1.2 Direktivet om byggnaders energiprestanda

I direktivet (2010/31/EU) fastslås att EU:s medlemsstater ska sätta minimikrav på energiprestandan i nya byggnader, byggnadselement och installationssystem (system för värme, vatten och luftkonditionering). Förutom utifrån termiska egenskaper ska energiprestandan beräknas med hänsyn till bland annat värmeeffekten, användandet av förnybar energi, luftkvalitet och påverkan från exempelvis solinstrålning och skugga. Även befintliga byggnader ska följa minimikraven på energiprestanda när de undergår större renoveringar. Direktivet fastslår även att från och med sista december 2020 ska alla nya byggnader vara nära nollenergibyggnader. En nära nollenergibyggnad definieras som en...

Utöver detta direktiv har även ekodesigndirektivet och energieffektiviseringssdirektivet betydelse för byggnadens energieffektivisering och energianvändning (Energimyndigheten 2012).

5.1.3 Mål på nationell nivå

De styrmedel som i Sverige styr mot minskade klimatutsläpp i sektorn bostäder och lokaler är ofta kopplade till EU-direktiv. Exempel på styrmedel i sektorn är lagen om energiskatt, lagen om koldioxidskatt, stöd till solceller, stöd till forskning, stöd till Hållbara städer, lagen om ekodesign och Boverkets byggregler (BBR). Handel med utsläppsrätter påverkar sektorn indirekt, då den påverkar priset på el och fjärrvärme (Energimyndigheten 2012).

5.2 Lagstiftning

5.2.1 Nuvarande lagstiftning i Sverige

Ellagen

Ellagen är den mest grundläggande och den minst detaljerade delen av det regelverk som styr anslutning och drift av elektriska produktionsanläggningar. Dessa lagar ändras sällan och ligger till grund för mer detaljerade regler, såsom standarder och branschpraxis (Svensk Energi 2011).

Energiskatt

EU har etablerat ett ramverk för beskattning av energi, inkluderat el, kallat Energiskattedirektivet. Grunden i detta är att el ska beskattas och att denna skattemivå inte får understiga vissa gränser, Här finns dock undantag, exempelvis el som framställs ombord på fartyg och el som används för att framställa el är befriad från energiskatt. Energiskattedirektivet ger även möjlighet till medlemsstaterna att ge skattebefrielse i andra situationer, Detta är relevant eftersom det bland annat kan tillämpas för solel, vindkraft och vägkraft för att på så sätt ge länderna möjlighet att själva främja ökad produktion av förnybar el.

Ett svenskt exempel på detta är att el som framställs i ett vindkraftverk av en producent som inte yrkesmässigt levererar el är undantagen energiskatt (11 kap, 2 § LSE). Detta infördes för att fungera som ett incitament för en ökad utbyggnad av decentraliserad elproduktion med vindkraft. Idag föreligger en problematik med lagstiftningen i att fastighetsägare, vars huvudsakliga affärsverksamhet inte är elproduktion, kan sätta upp stora vindkraftverk för att producera el till hyresgästerna eftersom ingen kapacitetsbegränsning finns. Det bidrar till en snedvriden marknad där energibolag, vars primära näringsverksamhet är att producera el, belastas med påtagligt större skattesatser än exempelvis fastighetsbolag. Fjärrvärmebranschen är en av energimarknadens aktörer som är missnöjda med systemet och menar att det måste ändras. Att elen i och med denna skattelättnad blir så billig att producera, även i större skala, innebär en stor konkurrenshindring för fjärrvärmarna eftersom värmeappar kan bli jämförelsevis oproportionerligt gynnsamma även för större byggnader i städer där fjärrvärmenätet är väl utbyggt (Skatteverket 2013a).
Skatteverket presenterade, i november 2011, ett ställningstagande (Skatteverket 2013b) om undantagen skatteplikt för el som produceras i en anläggnings utan generator. Detta gäller därmed prosumenten med solceller på taket med främsta syfte att använda elen för egen bruk.

Subventioner och bidrag
Sedan 1 april 2010 behöver en mikroproducent inte betala någon nätavgift för sin inmatning förutsatt att denne har ett årligt uttag som överskrider inmatningen (Energimarknadsinspektionen 2010).

• Högst 35 % ges i investeringsstöd,
• De stödberättigade kostnaderna får uppgå till högst 46 250 kr/kW, inklusive moms,
• Högst 1,2 miljoner kronor lämnas i stöd per system,
• Stöd får endast lämnas för ett solcelssystem per byggnad eller för ett solcelssystem per fastighet om systemet är byggt på marken,
• Installationen ska vara slutförd senast 31 december 2016.

Elcertifikat
Elcertifikatsystemet, som funnits i Sverige sedan 2003 och är gemensamt med Norge sedan 2012, har som uppgift att främja förnybar elproduktion i länderna. För nya anläggningar har man rätt till elcertifikat i 15 år, dock längst till 2035. Om en elproducent är ansluten till systemet erhåller denne ett elcertifikat för varje MWh förnybar el som producerats. Värdet för dessa elcertifikat uppkommer av en kvotplikt som innebär att de berörda aktörerna, bland annat elleverantörer och vissa elanvändare, åtar sig att köpa en viss andel elcertifikat per övrig el de hanterat. På så vis prissätts elcertifikaten genom tillgång och efterfrågan vilket bland annat medför att det är ekonomiskt mer gynnsamt att producera förnybar el om marknaden har ett underskott på elcertifikat.

All el som produceras förnybart hos prosumenten har rätt till elcertifikat. I praktiken är det dock få mikroproducenter som är anslutna till systemet, främst av ekonomiska och administrativa skäl.

Installation av mindre produktionsanläggning

En produkt som ingår i en produktionsanläggning måste vara CE-märkt för att få lanseras på marknaden. Dessutom ska installationen av densamma utföras av en behörig elektriker enligt Elsäkerhetsverkets föreskrifter (Energimarknadsinspektionen 2010).
Enligt Ellagen (3 kap, 9§) ska överföringen av el vara av god kvalitet (Riksdag 1997). Ansvaret för att detta upprätthålls hamnar på nätövertagaren som i sin tur ställer krav på producenter för att säkerställa överföringens kvalitet. Nedan nämns några av kraven som hamnar på en prosument när denne önskar ansluta sig till det befintliga elnätet.

EMC och eltekniska krav vid nätanslutning av mikroproduktion

Elektromagnetisk kompabilitet (Electro Magnetic Compability) är apparatens förmåga att arbeta utan att störa andra apparater på nätet, detta innebär krav på både nätet och själva apparaten.

Vid anslutning av prosumentens mikroanläggning till lågspänningsnätet måste elnätsbolagets godkännande erhållas, i flera fall måste man även ha ett bygglov för själva anläggningen. Elnätsbolaget måste godkänna en ansökan som uppfyller alla formella krav, däremot kan de ta ut en nätanslutningsavgift som kompenserar för eventuella kostnader som uppstått i samband med förstärkningar av nätet. En beskrivning av denna administrativa process finns i längre ner i detta avsnitt.

Vid anslutning av mikroproduktion av el från en mikroproduktionsanläggning finns följande krav angivna av Energimarknadsinspektionen samt återges även av branschorganisationen Svensk Energi (2011):

Långvariga spänningsvariationer

En kund får inte orsaka mer än 5 % spänningsvariationer av den för kunden nominella spänningen vid kundens anslutningspunkt eller 3 % av den för punkten nominella spänningen vid närmsta gemensamma sammankopplingspunkt. Detta innebär en maximal tillåten spänning på 253 V och en minimal på 207 V. Vid spänningar över 255 V som varar längre än 60 sekunder skall en ansluten mikroproduktionsanläggning bryta sin anslutning.

Kortvariga spänningsvariationer

På samma sätt som för långvariga spänningsvariationer skall en mikroproduktionsanläggning bryta sin anslutning till nätet om spänningen överstiger 265 V eller understiger 196 V (230 V +- 15 %) fast här för en tidsperiod på 0,2 sekunder. De kortvariga spänningsvariationerna delas in i tre underkategorier: enstaka spänningsvariationer, flimmer och transienter.

Enstaka spänningsvariationer

Enstaka spänningsvariationer i sin tur kan delas in i tre ytterligare underkategorier; kortvariga spänningsändringar (<90 % av referensspänningen), kortvariga spänningshöjningar (>110 % av referensspänningen) och snabba spänningsändringar. Tabell 5.1 och 5.2 återger gränsvärden för kortvariga spänningsändringar respektive kortvariga spänningshöjningar; det gäller att det inte ska uppstå några kortvariga spänningsändringar eller höjningar med varaktighet och kvarstående spänning enligt område C. För område B
gäller att nätägaren är skyldig att åtgärda förändringarna i den utsträckning åtgärderna är rimliga i förhållande till påverkan orsakad av spänningsförändringen.

Tabell 5.1 Gränsvärden för kortvariga spänningssänkningar (Energimarknadsinspektionen 2013).

<table>
<thead>
<tr>
<th>U (%)</th>
<th>Varaktighet (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90>u≥80</td>
<td>10>t≥200</td>
</tr>
<tr>
<td>80>u≥70</td>
<td></td>
</tr>
<tr>
<td>70>u≥40</td>
<td></td>
</tr>
<tr>
<td>40>u≥5</td>
<td></td>
</tr>
<tr>
<td>5>u</td>
<td></td>
</tr>
</tbody>
</table>

Snabba spänningsändringar kan inverka på känslig elektronisk utrustning samt ge upphov till störande belysningsvariationer. En plötslig förändring av spänningens effektivvärde med mer än 0,5 % per sekund definieras som en snabb spänningsändring. Dessa bestäms av maximal (U_{max}) och stationär (U_{stationär}) spänningsändring under ett spänningsändringsförlopp. Detta visualiseras i Figur 5.2. Tabell 5.3 visar gränsvärden för dessa snabba spänningsändringar.

Tabell 5.2 Gränsvärden för kortvariga spänningshöjningar (Energimarknadsinspektionen 2013).

<table>
<thead>
<tr>
<th>U (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u≥135</td>
</tr>
<tr>
<td>135>u≥115</td>
</tr>
<tr>
<td>115>u≥111</td>
</tr>
<tr>
<td>111>u≥110</td>
</tr>
</tbody>
</table>

Figur 5.2 En snabb spänningsförändring definieras som \(\Delta U_{max} - \Delta U_{stationär} \) (Berg & Estenlund 2013).
Tabell 5.3 Gränsvärden för snabba spänningsändringar (Energimarknadsinspektionen 2013).

<table>
<thead>
<tr>
<th>Snabba spänningsändringar</th>
<th>Maximalt antal per dygn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta Ustationär >- 3 %</td>
<td>24</td>
</tr>
<tr>
<td>Delta Umax >- 5 %</td>
<td>24</td>
</tr>
</tbody>
</table>

Flimmer
Flimmer (flicker) uppstår vid olika mycket inmatad och uttagen effekt på nätet. Detta fenomen förekommer bland annat hos vindkraftverk, där uteffekten påverkas av vindskugga när rotorbladet passar tornet. Gränsvärden för flimmer återfinns i Tabell 4.

Tabell 5.4 Rekommenderade gränsvärden för tillåten flimmeremission (Svensk Energi 2011).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rekommenderat gränsvärde</th>
<th>Impedans för referensnät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enfas</td>
<td>Pₚₑ,₂₅</td>
<td>Zₑₚₑ = 0,4 + j 0,25 Ohm</td>
</tr>
<tr>
<td></td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>Trefas</td>
<td>Pₚₑ,₂₅</td>
<td>Zₑₚₑ = 0,24 + j 0,15 Ohm</td>
</tr>
<tr>
<td></td>
<td>0,35</td>
<td></td>
</tr>
</tbody>
</table>

Transienter
Transienter är spänningsspikar i form av korta, stora amplitudskillnader i nätet och slår helt ut annan utrustning i nätets närhet. Transienter kan uppstå av t.ex, åska och nätomkopplingar (Berg & Estenlund 2013) men även av LED-lampor som slås av och på hela tiden (Vågbrytaren 2013). Att anpassa ett nät så att det inte ger upphov till transienter är inte ekonomiskt försvarbart, därför finns det istället föreskrifter på konsumentelektroniksidan gällande krav på produkters tålighet för transienter (Berg & Estenlund 2013).

Osymmetri
Osymmetri kan uppstå om till exempel för många enfasiga solcellsanläggningar är inkopplade på samma fas. Enligt 5 § i Energimarknadsinspektionens författningssamling skall de uppmätta tio-minutersvärdena av spänningssymmetrin under en period motsvarande en vecka vara mindre än eller lika med två procent (Energimarknadsinspektionen 2013).

Övertoner
Övertoner uppstår då frekvensen på nätet avvikar från de normala 50 Hz och orsakas av alla olinjära laster som är uppkopplade till det lokala nätet. För nätnätslutna anläggningar på upp till 16 A per fas gäller Tabell för största tillåtna ström per överton (Standardiseringskommisionen 2006). Den totala harmoniska spänningsdistortionen (THD) är kvoten mellan störleken av övertonen och den grundfrekventa spänningen. Denna kvot får inte överstiga 8 % under 95 % av de mätningar som utförs var tionde minut (Vågbrytaren 2013).
Tabell 5.5 Gränsvärden för största tillåtna ström per överton (Standardiseringskommissionen 2006).

<table>
<thead>
<tr>
<th>Jämna övertoner</th>
<th>Udda övertoner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Överton (n)</td>
<td>Överton (n)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>8 < -n < -40</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>15 < -n < -39</td>
<td>-</td>
</tr>
</tbody>
</table>

5.2.2 Den administrativa processen vid installation
Med bakgrund i att elnätsföretagen, enligt Ellagen, inte bara är skyldiga att ansluta en produktionsanläggning utan även är ansvariga för elräknet och leveranskvalitet, fordras att de meddelas när en produktionsanläggning planeras. Då undersökningar, och i vissa fall förstärkningar och installationer, måste göras medför detta viss administration från samtliga inblandade parter. Figur 5.2 beskriver arbetsflödet i en anslutningsprocess av en produktionsanläggning.

Figur 5.2 Flödesschema för den administrativa processen vid anslutning av en mikro-produktionsanläggning (Svensk Energi 2011).
Offertförfrågan
Om det lokala elnätet måste förstärkas inför en eventuell installation av en produktionsanläggning fordras en skriftlig offertförfrågan från prosumenten för att elnätsföretaget ska kunna lämna en bindande offert. Offertförfrågan ska, förutom prosumentens personuppgifter och underskrift, bland annat innefatta produktionsanläggningens fabrikat och typ samt en rad tekniska detaljer gällande anläggningen, styrka av leverantörs eller tillverkares underskrift. Även installatören av anläggningen ska signera dokumentet.

Föranmälan
När prosumenten erhållit en bindande offert från elnätsföretaget ska en skriftlig anmälan göras till detsamma. Elnätsföretaget anger vem som ska lämna den skriftliga anmälan, normalt behörig elinstallatör, vilka krav som ska vara uppfyllda för anslutningen samt vilka övriga uppgifter som ska lämnas.

Färdiganmälan
Innan anläggningen kopplas in ska ett nätavtal signeras samt en färdiganmälan utfärdas av behörig elinstallatör, eller av tillverkaren av anläggningen om denne står som ansvarig för installationen. De elektriska skyddsfunktionerna, såsom säkringar och reläer, ska ha testats och ett protokoll över dessa funktionsprov ska bifogas. Om förändringar av utförandet skett sedan föranmälan skall även färdiganmälan innehålla information om dessa för godkännande av elnätsbolaget. När färdiganmälan delgivits elnätsföretaget har detta rätt att utföra kontroll av anslutnings- och mätanordning, delta vid funktionsprov av eventuell reläanläggning samt delta vid inkoppling av anläggningen. Först när elnätsbolaget lämnat godkännande får produktionsanläggningen tas i drift (Svensk Energi 2011).

5.2.3 Specifikt för installation av vindkraft
Större vindkraftverk som kräver bygglov behandlas inte vidare i denna studie, då dessa passar bäst i rurala områden. De kan därmed inte nå en tillräckligt hög penetrationsnivå i Sverige för att påverka de lokala elnätens nämnvärt. De flesta vindkraftverk som uppförs för den typ av produktion av den skala som den här studien omfattar kan klassas som så kallade minivindkraftverk. Ett sådant är bygglovsbefriat om endast ett vindkraftverk uppförs och det uppfyller nedanstående kriterier (Karlowski & Andersson 2012). Vindkraftverket får inte:

- ha en höjd som överskrider 20 meter,
- ha en rotordiameter som överskrider 3 meter,
- placeras närmare tomgränsen än sin totala höjd,
- placeras i ett vattenområde,
- monteras på en byggnad.

5.3 Producera egen el
5.3.1 Installation av en elproduktionsanläggning
Det finns olika sätt att producera egen el. År 2012 var solceller den vanligaste metoden, men även små vindkraftverk, små vattenkraftverk och små kraftvärmeverk, där biomassa omvandlas till el och värme, förekommer (Svensk Energi 2012). Också bränsleceller, vågkraft
och tidvattenkraft skulle kunna användas för mikroproduktion (Proposition 2013/14:151). Följande regler gäller för den som vill ansluta en egen elproduktionsanläggning till elnätet och sälja överskottet till ett elbolag:

Slutligen måste kunden också ha en elmätare som kan mäta både produktion och konsumtion varje timme. Denna installerar gratis av elbolaget om anläggningen har en huvudsäkring på max 63 Ampere, en inmatningseffekt på max 43,5 kW och om kunden över ett år konsumerar mer el än vad som köps (Energimyndigheten 2013b). Uppfylls dessa krav behöver kunden heller inte betala någon nättariff för inmatningen av el (SFS 1997:857 4 kap. § 10).

5.3.2 Mikroproduktion

Kunden kan fritt välja vilket elbolag den vill teckna avtal med för att sälja elen. Ofta kräver elbolagen att konsumenten måste vara mikroproducent för att få sälja el, men med olika definitioner av vad mikroproducent är. En definition är, likt ovan, en producent vars anläggning har en huvudsäkring på max 63 Ampere, en inmatningseffekt på max 43,5 kW och som är nettokonsument av el över ett år (Vattenfall u.ä., Skånska Energi u.ä.). En annan definition är huvudsäkring på max 63 Ampere och inmatningseffekt på max 43,5 kW men inga krav på om kunden är nettokonsument eller nettoproducent av el (E.ON u.ä., Värnamo Energi u.ä.). En tredje variant återfinns i utredningen ”Beskattning av mikroproducerad el m.m.” som syftade till att ta fram ett lagförslag om nettodebitering. Där föreslogs att en mikroproducent ska definieras som en elanvändare som kompletterar sitt uttag av el från
elsystemet med egen elproduktion som levereras i samma inmatnings- och uttagspunkt (SOU 2013:46).

5.3.3 Anledningar till att bygga för elproduktion
En enkät genomfördes av Eriksson (2014) angående driftkrafter och hinder för att bygga bostäder med möjlighet till elproduktion.

Fem företag svarade att de inte ser några hinder alls för att bygga nya bostäder med elproduktionsmöjligheter. Alla utom ett av dessa har antingen byggt eller beslutat att bygga för elproduktion.

Uppfyllandet av interna miljömål och utveckling av företaget är viktiga anledningar till att bygga för elproduktion bland företagen i enkäten. Därfor dras slutsatsen att faktorer som sporrar företag att arbeta mer med detta hade gynnat utvecklingen av bostäder med elproduktion; exempelvis ökade kundkrav och tydliga nationella mål och visioner.

5.4 Prissättning av egenproducerad elektricitet
5.4.1 Köpa och sälja el
5.4.2 Nettodebitering
Vid nettodebitering kvittas den el som matas in på elnätet mot den el som kunden tar emot under en viss tidsperiod (SOU 2013:46). Denna period kan vara exempelvis en timme, en månad eller ett år (Elforsk 2010). Kunden betalar därmed endast för nettoelförbrukningen under den givna perioden (SOU 2013:46). Att kunden endast betalar för nettoförbrukningen av el innebär dock att denne inte betalar energiskatt och moms på all el som förbrukas under debiteringsperioden. Regeringen har gjort tolkningen att detta inte är förenligt med mervärdesskattedirektivet, varför nettodebitering inte kommer att genomföras i Sverige (SOU 2013:46).

5.4.3 Skattelättnad

5.4.4 Feed-in tariff (Inmatningstariff)
En feed-in tariff innebär ett avtal mellan elkund och elbolag, där elkunden är garanterad ett visst pris för den el den producerar under en lång tidsperiod, vanligtvis 15-20 år. Elbolaget är också skyldigt att ta emot elen från kunden oberoende av efterfrågan på el (NREL 2010). Det finns många olika sätt att utforma feed-in tariffer och den ersättning som betalas ut. Tre grundvariabler finns: ersättningen består av en grundsumma med ett tillägg som beror på elpriset, ersättningen består av en grundsumma där det tillägget har ett min- och maxvärde, samt ersättningen är fast (Ragwitz et al 2012), se Figur 5.3.
Figur 5.3. Feed-in tariffer och den ersättning som betalas ut. Från vänster till höger: ersättningen till elkunden varierar med elpriset, ersättningen varierar inom vissa gränser (cap and floor), ersättningen är fix. (Ragwitz et al, 2010).

5.4.5 Elcertifikat

Elcertifikat tilldelas för varje MWh producerad el men först när ett helt elcertifikat kan delas ut till varje innehavare av anläggningen. Detta innebär att om en anläggning har två ägare
som äger 75 respektive 25 % var, utfärdas elcertifikat först när anläggningen har producerat 4 MWh (3 respektive 1 certifikat delas ut) (Energimyndigheten 2013d). Elcertifikat kan säljas genom en elmäklare, elhandlare eller direkt till en köpare (Energimyndigheten u.å.b). År 2013 var genomsnittspriset 202 kr per elcertifikat (Svenska Kraftnät 2014).

5.4.6 Statligt och kommunalt stöd till solcellssystem

• Maximalt 35 % av kostnaderna för material, arbete och projektering täcks.
• Stödet har ett tak på 37 000 kr/kW exklusive moms för solcellssystem och 90 000 kr/kW exklusive moms för hybridssystem.
• Varje system kan få maximalt 1,2 miljoner kronor i ersättning
• Stödet betalas ut till system som är färdiginstallerade senast 31 december 2016, eller så länge de avsatta 210 miljoner kronorna räcker.

Ett annat statligt stöd med syfte att främja mikroproduktion är bestämmelsen i ellagen som säger att så länge mikroproducenten (prosumenten) på årsbasis tar ut lika mycket eller mer el än vad den matar in på elnätet behöver ingen nätavgift för inmatningen betalas (Elforsk 2014).

Referenslista till Kapitel 5

E.ON, u.å. Frågor och svar, Att producera egen el, Vad menas med mikroproduktion?, http://www.eon.se/privatkund/Produkter-och-priser/Elnat/Producera-din-egen-el/FragorSvar/, [30 mars 2014].

Europeiska kommissionen, 2011. Meddelande från kommissionen till europaparlamentet, rådet, europeiska ekonomiska och sociala komitén och regionkomitén – Färdplan för ett konkurrens-

SOU 2013:46, Beskattning av mikroproducerad el m.m., Betänkande av Utredningen om nettodebitering av el, Stockholm 2013, http://www.regeringen.se/content/1/c6/21/94/09/723fd0a5.pdf, [28 februari 2014].

6. HINDER FÖR ELPRODUKTION I BYGGNADER

6.1 Byggnadstekniska krav

När boende går från att vara konsumenter av el till att också producera el och bli prosumenter, når de blir en del av det smarta elnätet och får behov av smarta lösningar och styrningar i hemmet, kan det antas att mycket kommer att krävas av själva byggnaderna. Krav kan tänkas behöva ställas på exempelvis byggnaders tekniska utformning, ingående material, installationer och energiprestanda.

Rikard Roth (2014) på Roth Fastigheter har uppfört lågenergihus anpassade för ett smart nät i den framväxande stadsdelen Hylle i Malmö. Det framkommer att inte heller anpassning av bostäder till det smarta elnätet ställer krav på själva byggnationen som inte kan mötas idag; principerna är desamma som vid byggnation av ett konventionellt hus, även om komplexiteten ökar. Det blir fler saker att kopplas in, dyrare och högre sannolikhet att något går fel. De extra hänsynstaganden som Roth Fastigheter har behövt ta speciellt för att byggnaderna ska integreras i det smarta nätet har varit få. En del i derasスマート system är att E.ON ska kunna stänga av värmén i byggnaderna några timmar vid tider då efterfrågan på värme är hög. Detta för att undvika att starta oljelandade värmekraftverk. För att temperaturfallet inte ska bli för högt måste byggnaderna vara täta med en ”tung stomme”. På så sätt kan temperaturfallet endast bli runt 0,5 grader. Andra aspekter som har behövt tas hänsyn till är att se till att fönstren är energieffektiva. I övrigt menar Roth att principerna för byggnationen har varit desamma som vid byggnation av konventionella bostäder.
Något som ökar komplexiteten i smarta hus är att de kräver mycket styrning. I Roth Fastigheters bostäder styras värmen. Roth drar en parallell till E.ON:s kvarter Hållbarheten i Västra hamnen i Malmö, vilket han menar har mycket mer styrning, bland annat också av ventilation och belysning. År styrningen trådbunden måste mycket kabel dras i väggarna. År styrningen trådlös blir installationerna enklare, även om man fortfarande måste dra ström på ovanliga ställen i byggnaden. Att tekniken för smarta hus ännu inte är så vanlig visar sig i att olika apparater och installationer inte alltid klarar att samverka. Roth Fastigheter har erfarenheter av detta i Hyllie; signalerna för mätning och visualisering kunde till en början inte ta sig ut från elskåpet till resten av bostaden eftersom elskåpet hade en dörr i plåt istället för i plast. För att möta den ökade komplexiteten och behovet av samverkan tror Roth att det behövs mer utbildning bland entreprenörer och att elbolagen behöver se till att deras olika apparater och installationer kan kommunicera.

Slutsatsen dras att den tekniska kunskapen om hur våra byggnader ska anpassas till prosumenter finns och redan tillämpas av de som bygger bostäder för elproduktion. Det har därför inte identifierats något behov av ytterligare krav på byggnadsteknisk utformning i elproducerande och smarta bostäder. Dock behöver kunskapen om byggnation av dessa mer komplexa bostäder i större utsträckning spridas till de olika aktörerna i byggningsbranschen och kontinuerlig utbildning behövs troligen. I takt med att erfarenheten av smart lösningar blir större kommer antagligen problemet att olika apparater inte kan kommunicera att bli mindre.

6.2 Utformningen av Boverkets byggregler (BBR)
6.2.1 Marknadsbaserade eller regulativa krav
6.2.2 Detaljerade krav och funktionskrav

Däremot finns en önskan bland ungefär hälften av enkätrespondenterna och vissa intervjuupptagningspersoner om mer strikta krav i byggreglerna, speciellt vad gäller energiprestanda. Dagens minimikrav på energiprestanda för icke eluppvärmda bostäder i klimatzon III är 90 kWh/(m²·år). Rikard Roth tror att alla bygger bättre än det i dagsläget. Likaså Helen Wiklund (2014), miljöbyggstrateg på Lunds kommun, som menar att en nivå som de allra flesta projekterar till idag är 70 kWh/(m²·år). Det vill säga, definitionen för icke eluppvärmda minienerghus i klimatzon III. Jouri Kanters (2014) pekar på att medan det finns krav på energianvändning i bostäder, finns inga krav alls på energiproduktion. Inga lagstiftade krav ställs på att en byggnads energibehov måste tillgododes av en viss andel förnybar, lokalt producerad energi. Krav på egenproduktion av el kan dock ställas av privata och kommunala markägare för att ett företag ska få bygga. Lägre energiprestanda i bostäder och lokalt producerad energi tror Kanters är avgörande för att nå målet om nära nollenergi byggnader. Även en av enkätrespondenterna tar upp frågan om man bör ställa krav på elproduktion i byggnader. Denne tycker att:

"...man ska ha enhetliga och tydliga systemgränser där man ser byggnader utifrån energiprestanda och energiproduktion var för sig."

Slutsatsen dras att funktionskraven är uppskattade i byggbranschen och att mer detaljerade krav i Boverkets byggregler för att gynna uppkomsten av bostäder med elproduktionsmöjligheter inte hade tagits emot väl. Däremot finns ett stöd för, och ett behov av, en skärpning av de krav som finns. Hårdare krav på energiprestanda ger dock främst inte
effekter på elproduktionen i bostäder, eftersom krav på egen elproduktion inte ingår i dagens byggregler. Vad ett krav på en viss andel egen elproduktion i nybyggda bostäder skulle innebära och om det är önskvärt har inte utretts tillräckligt i detta arbete för att dra en slutsats om det borde finnas eller inte. Det är däremot något som är intressant att titta vidare på.

6.2.3 Tillgodoräknande av solenergi
BBR 19 (BFS 2011:26) slår fast att:
"Byggnadens specifika energianvändning får reduceras med energin från solfångare eller solceller placerade på huvudbyggnad, uthus eller byggnadens tomt, i den omfattning byggnaden kan tillgodogöra sig energin"

Ur ett elproduktionsperspektiv borde Boverket i nästa uppdatering av byggreglerna (år 2015) ta hänsyn till dessa osäkerheter och verka för att i större utsträckning ta hänsyn till prosumenters produktion av elektricitet.

6.3 Osäkra situationer för byggherrar
Tre olika "osäkra situationer" har identifierats som hindrar byggnation av nya bostäder med egenproducerad el. För att gynna byggnationen av bostäder med egenproduktion av el, exempelvis plus- och nollenergihus, kan staten och kommunerna ställa krav på byggherrar och ge goda förutsättningar genom planering och förberedelse. I slutändan är det dock byggherrar, fastighetsägare och privatpersoner som måste ta beslutet om investering och byggnation av plusenergihus och dylikt, och detta beslut grundar sig i hög utsträckning på ekonomiska aspekter. I investeringsögonblicket behöver byggherren, fastighetsägaren och privatpersonen ha goda kunskaper om intäkter, kostnader och vilka förutsättningar
bostaden uppförs under – hur den politiska situationen ser ut och kommer att utvecklas behöver vara känd.

6.3.1 Solcellesstödet
Åse Togerö (2014) menar att en aspekt som försvårar investeringen är utformningen av solcellesstödet. I investeringsögonblicket vet inte byggherren om denne kommer att få bidraget eller hur mycket denne i så fall skulle få – det är ”allt eller inget” som utbetalas. På grund av dessa osäkerheter räknas inte det positiva ekonomiska bidraget från solcellesstödet med i investeringskalkylen, vilket gör att solcellesstödet inte fungerar som morot för byggnation i så stor utsträckning som det skulle kunna göra. Samma syn på bidraget ges av ett av de företag som besvarade enkäten. Respondenten menar att det faktum att de inte vet om de kommer att få bidraget eller inte är en anledning till att de ännu inte har byggt bostäder med möjlighet till elproduktion.

”Kan tänka oss att bygga men ekonomin är en utmaning. Då bidragen inte är garanterade kan dessa inte tas med i investeringsbeslut. Då faller investeringen.”

Slutsatsen dras att solcellesstödets utformning gör att det inte är tillräckligt effektivt som incitament för elproduktion. De sökande bör få besked om stödet betalas ut eller inte i ett tidigt skede, vilket kan åstadkommas genom att stödet betalas ut under en viss tidsperiod, istället för att det som idag finns en bestämd summa som ska fördelas.

6.3.2 Framförhållning
En annan osäker situation identifieras av Helen Wiklund, Lunds kommun. Hon anser att de nationella byggreglerna ändras med för dålig framförhållning, vilket enligt hennes erfarenhet gör att byggherrarna inte kan planera i förväg så mycket som de behöver och att byggreglerna på så sätt utgör ett hinder. Hon lyfter fram Danmark som ett gott exempel, där det är känt hur kraven kommer att se ut olika år fram tills att målet om nära nollenergibyggnader är nått år 2020. Tydliga nationella krav och god framförhållning pekas ut som en mycket viktig aspekt för att gynna plusenergihus och dylika bostadshus (Wiklund 2014).

6.3.3 Olika definitioner av nollenergihus
Att det finns olika definitioner av nollenergihus är en faktor som försvårar och gör det krångligt för dem som vill bygga nollenergihus (Togerö 2014). Ett nollenergihus energianvändning kan specificeras med avseende på olika typer av energi, se Figur 6.1. Levererad viktad energi är det som avses i SCNH:s (Sveriges Centrum för Nollenergihus) definition. I begreppet ”levererad viktad energi” ingår den energi som levereras till en byggnad (även kallad ”köpt” energi) inklusive förluster mellan anslutningspunkten och byggnaden. Att

Internationellt sett kan en byggnads energiprestanda utöver levererad energi och primärenergi också baseras på energikostnad, växthusgasutsläpp eller exergi. Mellan olika definitioner varierar det också vilken typ av energianvändning som ingår; ibland inkluderas endast uppvärmningsenergi, ibland inkluderar all energi utom hushållsenergi eller verksamhetsel, och ibland inkluderar all energi. Det finns också olika åsikter om vilka elproduktionsanläggningar som får användas för att minska byggnadens specifika energibehov. SCNH:s regler tillåter att elproduktionsanläggningar på fastigheten får minska den specifika energianvändningen. Ett annat alternativ är att även el producerad utanför tomträskapen får tillgodosättas, exempelvis el producerad vid ett vindkraftverk som uppfördes i samband med byggnaden (Berggren et al 2012) eller el från ett vindkraftverk som den boende är delägare i (Togerö 2014). En av enkätreponderenterna som inte har byggt med möjlighet till elproduktion, men som överväger det, anser precis som Togerö att de olika definitioner som finns är ett hinder för byggnation av bostäder med möjlighet till elproduktion.

I EU:s direktiv om byggnadens energiprestanda står att finna att medlemsstaternas definition av nära nollenergibyggnader ska baseras på primärenergianvändningen (2010/31/EU). Det finns kritik mot att dagens svenska byggregler inte i tillräckligt stor utsträckning tar hänsyn till primärenergi (Motion 2011/12:C13). Flera svenska aktörer i byggbranschen, däribland Skanska, anser att definitionerna bör ta hänsyn till primärenergi (Togerö 2014). Att nollenergidefinitionerna både nationellt och internationellt är jämförbara, tydliga och tar hänsyn till bland annat de faktorer som har tagits upp ovan (systemgränser,
energianvändning, tillgodoräknande av el) är viktigt för byggnationen av nollenergihus och för att förenkla kunskapsutbytet mellan länder (Berggren et al 2012). IEA står bakom ett projekt för att utveckla en internationell definition av nollenergihus och göra en sammanställning av olika demonstrationsprojekt för att sprida kunskapen i byggbyrången (SHC 2014a).

En definition av nollenergihus (och dylikt) bör för att underlätta byggnation och jämförelser av projekt ta hänsyn till både systemgränser, vilken energianvändning som ingår, hur elproduktion får tillgodoräknas, prestandakrav och vilken tidsperiod som avses. Olika definitioner gynnar olika aktörer, vilket försvårar arbetet för en enda definition.

6.4 Kommunala särkrav

SKL (Sveriges Kommuner och Landsting) har arbetat för att samordna kommunernas särkrav genom att ge rekommendationer på hur kraven kan se ut. Detta för att kommunerna ska kunna fortsätta ställa särkrav samtidigt som de underlätta för bygibranschen (SKL 2013b). Wiklund (2014) är positiv till en samordning. Det krav på energibehov i byggnader som SKL föreslår, 70 kWh/m² och år, menar hon är fullt uppnåeligt för nästan alla projekt. Skansa stödjer SKL:s arbete att harmonisera kraven (Togerö 2014).

Två alternativ finns:

1. De kommunala särkraven slopas. Därmed kommer samma byggregler att gälla överallt, vilket underlättar standardiserad tillverkning av byggnads-komponenter och pressar priserna. BBR och PBL skulle i så fall ensamma ställa krav på byggnationen och driva mot målet om nära nollenergibyggnader, vilket ställer högre krav på att BBR behöver skärpas.

2. De kommunala särkraven behålls, i kombination med SKL:s samordning, vilket ger möjlighet för kommunerna att styra utvecklingen mot mer hållbara städer. I vissa kommuner kan detta leda till att fler byggnader anpassas till prosumenter än i dagsläget.

6.5 Stadsplanering

6.5.1 Detaljplaner

Detaljplaner antas och utformas av kommunerna, med syftet att bestämma hur mark och vatten ska användas inom ett visst område samt hur bebyggelsen ska se ut (Boverket 2012a). Bestämmelser kring de kommunala detaljplanerna finns i plan- och bygglagen, PBL (Boverket 2012b). Detaljplanerna kan bland annat ange krav på husens höjd, deras avstånd till tomtrikten och deras storlek (Boverket 2012c).

Eftersom detaljplanerna påverkar byggnadens utformning påverkar de förutsättningarna för prosument. Karin Adalberth (2014) har erfarenhet av hur detaljplaner kan påverka

Hur stort hindrer kommunala detaljplaner utgör för byggnation av bostäder med elproduktionsmöjligheter är osäkert. Troligen varierar det mellan olika kommuner. Flera olika, kanske motstridiga, intressen behöver tas hänsyn till vid utformningen av detaljplanerna, inte enbart möjligheterna till elproduktion. Dock kan slutsatsen dras att elproduktionsmöjligheter i alla fall bör vara en av de faktorer som bör beaktas när detaljplanerna utformas. Detta är tätt kopplat till solenergioptimering i stadsplaneringen, vilket beskrivs nedan i Avsnitt 6.5.2.

6.5.2 Solenergioptimering i stadsplaneringen

I Sveriges kommuner är hänsyn till produktion av solel något som generellt inte får utrymme i planprocessen (Elforsk 2011). Inte heller i Lunds kommun är solenergioptimering den viktigaste aspekten för utformningen av detaljplaner, detta vägs in i alla andra hänsyn som planen måste ta i beaktande (Wiklund 2014). Ett gilt exempel på solenergioptimering i Lund

Slutsatsen dras att bristen på solenergiöptimering av stadsdelar hindrar nuvarande och framtida elproduktion på byggnedele. Hur stadsplanerare arbetar med solenergihäsens påverkas av kommunens visioner, arbetsprocessen i kommunen och av motstridiga intressen som ska tas hänsyn till. Därmed behövs tydliga visioner i kommuner om hur småskalig förnybar energi ska inkluderas planprocessen. Det behövs också förbättrade förutsättningar för stadsplanerarna att inkludera solenergiöptimering i sitt arbete och den kunskap och de råd som finns kring solenergiöptimering bör spridas.
6.6 Kunskapsläget

6.6.1 Brist på övergripande kunskap i byggbranschen
Kompetensbrist som ett hinder för prosumenters småskaliga elproduktion verkar främst gälla om det rör sig om en bostad som samtidigt är mycket energieffektiv, såsom nollenergihus och plusenergihus.

Båda de intervjupersoner som har byggt privata plus- eller nollenergihus upplever en viss kompetensbrist i byggbranschen; Johannes Igelström i högre utsträckning än Karin Adalberth, då hans erfarenhet är att kunskapsbristen är mycket utbredd. Han menar att vid bygge av nollenergihus är det mer att tänka på vad gäller ventilation och andra installationer, energiberäkningar, väggar med mera än i ett konventionellt hus. Detta leder enligt Igelström till problem eftersom byggbranschen i stor utsträckning är beroende av flera olika konsulter; det är upp till beställaren att hitta de med rätt kompetens för bygget, vilket är en komplext och kostsamt process. Han menar att det saknas personer med övergripande kunskap om vad som behövs under hela bygghprocessen för nollenergihus, från design till drift (Igelström 2014).

6.6.2 Kunskapsutbyte mellan byggherrar
Ett gott exempel på hur delande av kunskap kan bidra till utvecklingen av smarta städer finns i Hyllie i Malmö. Byggherrarna har där med hjälp av Malmö stad kunnat ansöka om ekonomiskt stöd från EU-projektet BuildSmart, vilket syftar till att demonstera hur energieffektiva byggnader kan byggas kostnadseffektivt och bidra till att normalisera dessa metoder. De byggnader som ingår i projektet karakteriseras av bland annat energi-
produktion på/i närheten av byggnaden och av att de integreras i ett smart elnät (Buildsmart u.ä.). Detta har lett till diskussionsforum för byggCerrarna och en möjlighet att få insyn i vad andra företag som jobbar med samma saker gör. Roth (2014) menar att sammanhang där olika byggherrar kan kompetensutveckla varandra och utbyta erfarenheter är avgörande för framväxten av hållbara och smarta städer. Det minskar osäkerheterna för att bygga, då det ger dem med mindre erfarenhet styrka och visar att byggnation för smarta städer fungerar, och hur.

6.6.3 Kunskapströskel för prosumenter
Enligt Kraftringens erfarenhet kan personer som funderar på att producera egen el hindras av att de inte vet hur de ska gå vidare och av att det verkar krångligt. De behöver en leverantör de känner sig trygga att vända sig till och information som visar att det är enkelt – vilket är anledningen till att Kraftringen erbjuder färdiga solcellspaket (Johannesson & Skarrie 2014). Detta är i linje med en engelsk studie, där slutsatsen dras att för att kunder ska investera i egen elproduktion är det viktigt att elbolagen informerar om och marknadsför elproduktion – viktigare än med rena finansiella incitament. Orsaken var att kunder saknade information, exempelvis var det vanligt att de överskattade investeringskostnaden och underskattade produktionspotentialen för en solcellsanläggning. Också kunders uppfattningar om att en teknik är otäcklad och att installatörer är oerfarna, samt brist på kunskap om att driva elproduktionsanläggningar identifierades som hinder för investeringar (Sauter & Watson 2007).

Att installation och drift av en elproduktionsanläggning verkar krångligt samt missuppfattningar om intäkter och kostnader kan minska privatpersoners incitament för en investering i en anläggning. Detta kan dock tänkas få allt mindre betydelse om allt fler i samma bostadsområde installerar exempelvis solceller. Också initiativ likt Kraftringens kan hjälpa prosumenter att ta steget mot elproduktion genom att öka tryggheten och kunskapen.

Ett annat alternativ för att göra elproduktion mer lättillgängligt, mindre krångligt och säkrare (om än mindre lönsamt) är att elbolag lanserar fler sätt att producera el – exempelvis att prosumenten lånar ut sitt tak till elbolaget eller leasar elproduktionsanläggningen.
6.7 Hinder för elproduktion i befintliga byggnader

6.7.1 Praktiska hinder

"Finns delar där det är intressant, samtidigt föredrar vi storskalig elproduktion framför lokal där vi samtidigt riskerar att försvåra drift och underhåll av tak."

6.7.2 Framtida hinder

Slutsatsen dras att ett system för att hantera framtida konflikter kring solpaneler och andra elanläggningar behöver utarbetas.

6.8 Ekonomiska hinder
Att antalet installationer av solceller har ökat på senare år är en effekt av att priset på solceller har sjunkit, både internationellt och i Sverige (Energimyndigheten 2014). Den ekonomiska lönsamheten är avgörande för om en privatperson ska investera i en anläggning för att producera egen förnybar elektricitet eller inte (Fredlund 2014). Dock visar flera studier att konsumenter inte alltid betar sig rationellt ur ett ekonomiskt perspektiv; en investering i en elproduktionsanläggning kan falla på grund av höga investeringskostnader, trots att systemet betalar tillbaka sig under rimlig tid. Detta kan bero på okunskap om kostnader och intäkter (Sauter & Watson 2007), hur olika individer tolkar information och personliga prioriteringar (Darby 2010).

Adalberth (2014) menar att dålig lönsamheten för att sälja och köpa el är den största nackdelen för plusenergihusägare. Hon anser att ett enkelt nettodebiteringssystem vore bäst, där gererader el kvittas mot producerad el på åtminstone halvårssbasis. I dagsläget jämförs Karins producerade el mot den konsumerade elen varje timme. I ett sådant system kan inte en solig dag med hög elproduktion kvittas mot en mulen dag där ingen el produceras. Istället får hon sälja elen den soliga dagen till ett pris som är lägre än det pris hon betalar för elen den mulna dagen. Med det kommande systemet med skattelätnad istället för nettodebitering blir skillnaden i pris mindre, men hon kommer fortfarande att
betalta mer för köpt el än vad hon tjänar på producerad el. Kostnaden för 1 kWh köpt el är generellt högre än intäkten för 1 kWh egenproducerad el, eftersom inköpspriset innefattar fler delar. Detta i kombination med att nettodebitering inte tillämpas gör att det inte blir särskilt lönsamt att investeri i en stor anläggning och sälja överskottsetel, utan mer lönsamt att dimensionera produktionssystemet för att minska mängden köpt el (Scandinavian Heartland 2011, Berg & Estenlund 2013). Något som minskar lönsamheten ytterligare är låga elpriser, eftersom det blir allt mindre lönsamt att producera egen el jämfört med att köpa el ju lägre elpriset blir (Elforsk 2014).

"Nettodebitering är önskvärd eftersom elproduktion från solceller sker dagtid när efterfrågan är hög och konsumtion sker på kvällstid när efterfrågan är lägre."

7 av de 8 företag som inte har byggt eller beslutat att bygga bostäder med möjlighet till elproduktion uppgav att orsaken var att det var för dyrt. Samma anledning återfinns hos Roth Fastigheter; Rikard Roth berättar att kostnaden för ett solcellssystem som övervägdes för de nybyggda fastigheterna i Hyllie hade en årlig produktion av 20 000 kWh. Systemet skulle kosta 350 000 kr, medan det skulle kosta runt 23 000 kr att köpa samma mängd el, dessutom skulle en dyr inkopplingsavgift behöva betalas årligen. Detta ansågs vara en dålig investering. Kalkylen bedömdes inte gå ihop heller om de skulle ansöka om solcellsstödet (Roth 2014).

- Vad gäller investeringskostnad finns en möjlighet att den fortsätter att sjunka i takt med ökade produktionsvolymer av exempelvis solceller. Ett förbättrat solcellsstöd skulle också hjälpa.

Förbättrade möjligheter att ta vara på överskottselen hade ökat lönsamheten; detta kan ske om ellagring blir mer prisvärt eller om koncessionsreglerna ses över.

6.9 Krav som rör nätanslutningen
I detta avsnitt identifieras några problem som prosumenter kan orsaka på elnätet och även ett exempel på hur bestämmelser på elnätsområdet kan hindra prosumenter från att producera el.

6.9.1 Påverkan på elnätet
Hur elnätet påverkas när fler hushåll installerar elproduktionsanläggningar är en viktig fråga. Kraftringen menar att de kan ta emot en hel del solceller i sitt nät utan problem. Om många inom samma elnätsstation installerar en anläggning kan de dock behöva förstärka nätet, men detta är något de kan förbereda sig för; de har god kunskap om begränsningarna i sitt nät och nya producenter måste anmäla sin elproduktion (Johannesson och Skarrie 2014).

6.9.2 Koncessionsplikten
För att bygga en elledning krävs tillstånd – koncession. Koncessionsplikten regleras i ellagen och ärenden prövas av Energimarknadsinspektionen. Koncessionsplikten för elnät infördes för att förhindra byggnation av flera parallella nät, eftersom det är mest effektivt att överföra el på ett enda nät, och för att skydda människor, djur och natur från ledningar som byggs på ett skadligt sätt. Den som har koncession inom ett område har monopol på att bygga elledningar där enligt vad koncessionen föreskriver och är skyldig att ge alla som vill tillgång till nätet. Flera undantag finns från koncessionsplikten; exempelvis får en fastighetsägare fritt dra ledningar inom byggnaden och (oftast) på tomten, såvida ledningen
inte dras till en annan byggnad som används som bostad. På så sätt är det möjligt att installera en elproduktionsanläggning på tomten, i anslutning till bostadshuset. Koncessionsplikten kan dock hindra prosumenter från att ta tillvara på den el de producerar, vilket leder till försämrad lönsamhet (Elforsk 2014).

Hinder för samfälligheter
Elledningar får inte dras mellan bostäder som är fysiskt åtskilda, oavsett om de ägs av samma fastighetsägare eller inte. Däremot får två fastighetsägare som delar byggnad ha gemensam elproduktion eftersom det är tillåtet att överföra el för någon annans räkning i en byggnad. Detta innebär alltså att två fastighetsägare i samma byggnad kan installera gemensamma solceller och att en bostadsrättsförening kan det, medan en samfällighet av flera villaägare inte kan det – om de vill leda in elen i husen (Elforsk 2014).

Hinder för ägare av flera fastigheter
Koncessionsplikten är ett hinder för en fastighetsägare som äger flera bostäder och vill överföra el från en byggnad med goda produktionsmöjligheter till en med dåliga, exempelvis en byggnad som ligger i skugga och därmed saknar solpaneler. Hade det varit möjligt att dra en egen elledning mellan byggnaderna hade det varit mer lönsamt att investera i större elproduktionsanläggningar, eftersom produktionsöverskottet i så fall hade kunnat nyttjas för att ersätta köpt el i byggnaden utan egen elproduktion (Elforsk 2014).

Just detta poängteras i en av de avslutande kommentarerna på enkäten av en byggherre som bygger och förvaltar bostäder, har byggt passivhus och installerat solceller. De största hinder denne upplever för att installera och driva elproduktionsanläggningar på sitt befintliga bostadsbestånd är ekonomiska. Det är dyrt och krångligt att få betalt för överproduktionen av el, vilket gör att företaget istället för att sälja elen skulle vilja använda den i sina andra byggnader.

Att koncessionsplikten kan motverka elproduktion på platser där det finns störst potential tas upp längre ner, under rubrik ”Lokalisering av en elproduktionsanläggning”.

Utformningen av elavtal styr lönsamheten

![Figur 6.2. Påverkan av utformning av elavtal. Rutorna är elmätare: F står för fastighet, L står för lägenhet.](image)

Lokalisering av en elproduktionsanläggning
Som beskrivet leder koncessionsplikten till att en ägare av en elproduktionsanläggning kan använda den el som produceras för att ersätta köpt el endast om anläggningen är lokalisera

Vissa önskar gå ett steg längre och anser att mikroproduktion utanför tomtränsen ska kunna räknas bort från byggnadens specifika energianvändning. På så sätt kan elproduktionen bidra till att uppfylla byggreglerna eller annan standard. Åse Togerö (2014) tar upp frågan om var gränsen ska dras – ska el producerad precis utanför tomten räknas bort från den specifika energianvändningen, ska delägande i exempelvis ett vindkraftverk räknas, och i så fall hur långt bort från bostaden? Skanska förordrar ett byggnadsperspektiv i frågan. För definitionen av nollenerghus menar de att som mest 50 % av kraven borde få nås genom delägarskap i elproduktion, resten ska uppnås av el producerad på byggnaden eller tomten.

Nybyggda områden

En ändrad koncessionsplikt skulle ge nya möjligheter vid byggnation av nya bostadsområden; elnätet skulle från början kunna anpassas mer för småskalig elproduktion genom att ha färre inkopplingspunkter till det koncessionspliktiga elnätet och istället anpassas för överföring mellan olika byggnader. På så sätt skulle bostädernas behov av köpt el minska (Elforsk 2014).

Den slutsats som dras är att koncessionsplikten hindrar egen elproduktion på två punkter; hinder för elproduktion på platser med störst produktionspotential och hinder för fullt utnyttjande av produktionsöverskottet.

Vad gäller ”icke-optimalt utnyttjande av produktionsöverskottet” berörs främst ägare av flera flerbostadshus eftersom de inte kan överföra egenproducerad el mellan sina olika byggnader. Villaägare berörs först om de vill gå samman i en samfällighet, något som inte bedöms särskilt vanligt i dag.

Att endast el producerad på byggnaden eller tomten kan räknas som egenproducerad el är ett hinder för både villaägare och ägare av flerbostadshus. Utifrån litteratur, intervjuer och enkät går det dock inte att dra någon slutsats om hur den geografiska gränssnittningen för egenproduktion bör se ut, och om det ens är önskvärt att el producerad (långt) utanför tomtränsen ska kunna räknas. Ut ett rent byggnadsperspektiv bör dock elen produceras nära/på byggnaden.
Regelverket kring koncession för elledningar skrevs inte med prosumenter eller ett decentraliserat och flexibelt energisystem i åtanke. Den bör därför ses över; en totalöversyn, ökade möjligheter till dispens eller fler/färre undantag är tre alternativ (Elforsk 2014). En totalöversyn, med främst ägare av flera flerbostadshus i åtanke och även de möjligheter som finns i nybyggda områden för anpassning till småskalig elproduktion, verkar mest angeläget.

Följande tre åtgärdsvi förslag bedöms ha störst effekt för att motverka hinder för elproduktion på nya och befintliga bostäder:

- En omstrukturering av solcellsstödet där de sökande i ett tidigt skede får veta om, och i så fall med hur mycket, de beviljas stöd.
- Ett ökat arbete med solenergiplanering i kommunerna.
- En översyn av koncessionsplikten där det i större utsträckning tas hänsyn till prosumenters möjlighet att tillgodogöra sig den egenproducerade elen istället för att sälja den.

Referenslista till Kapitel 6

Darby, S., 2010. How active can an active electricity consumer be?, rapport presenterad vid den årliga konferensen för ”the International Association for Research into Economic Psychology and the Society for the Advancement of Behavioural Economics”, [opublicerat manuskript].

SKL, 2014. Välkomna till konferens på SKL 9 april, http://www.skl.se/BinaryLoader.axd?OwnerID=4901e389-e927-407b-9ef2-aa20c18adba1&OwnerType=0&PropertyName=EmbeddedImg_93de27f0-0503-4e0b-8402-7c9c55ec1244&FileName=SKL+Energikrav+uppf+c3%6ljning+140409.pdf&Attachment=False, [8 maj 2014].

7. INTERNATIONELL UTBLICK

Som en jämförelse med den svenska metoden för att prissätta egenproducerad el, skattelättnad, beskrivs i detta kapitel hur den el som prosumenter producerar prissätts i ett urval av andra länder (Eriksson 2014).

7.1 Australien

I Australien finns också två typer av elcertifikat; ett för storskaliga anläggningar för förnybar elproduktion och ett för småskaliga. De sistnämnda certifikaten (small-scale technology certificates) delas ut till ägare av små solpaneler, vindkraftverk och vattenkraftverk för varje MWh el som generas. De delas även ut till ägare av solvärmeanläggningar och värme pompor för varje MWh el deras anläggning ersätter. Certifikaten måste sedan köpas av främst elbolag (Clean Energy Regulator 2013), likt i Sverige.

7.2 Danmark

Ett timbaserat nettodebiteringssystem att överskottssel som inte kvittas inom en timme, inte kan kvittas mot el till det ordinarie danska elpriset. Denna el, som inte förbrukats direkt eller kvittats inom en timme, säljs istället till ett lägre pris.

7.3 Nederländerna

El som inte förbrukas momentant av prosumenten ger upphov till ett överskott som levereras ut på det allmänna nätet. Denna levererade överskottssel fungerar som en elkonsumtionsbuffert för prosumenten, vars köp av el minskas med den el som denne levererat ut på nätet. Prosumeten åläggs endast betala energi och mervärdesskatt på mellanskillingen av köpt och levererad el. Ytterst begränsad administration krävs för att ansluta sig till systemet - i allmänhet kräver endast elhandelsföretagen att prosumenten meddelar att de i framtiden kommer att leverera förnybar el till nätet.

7.4 Norge
Norge tillämpar varken nettodebitering, feed-in tariffer eller skattereduktion för egenproducerad förnyelsebar el (RES LEGAL 2013). Den typ av stöd som norska prosumenter kan få för sin elproduktion är elcertifikat – något som dock inte är anpassat till småskaliga elproducenter och därmed inte heller lönsamt (Sprenger 2013). För att göra det enklare för privatpersoner att mata ut el på nätet infördes år 2013 dispenser från gällande regelverk för ”plusskunder”; kunder som över ett år konsumerar mer el än de producerar, men som under vissa timmar av året är nettoproducenters. Konventionella elproducenter måste betala för all el som matas in på nätet, men i och med dispensorerna är det nu tillåtet att ”plusskunden” endast betalar för nettoproduktionen. På samma sätt är det nu tillåtet att ”plusskunden” endast betalar för sin nettokonsumtion av el. Nettoproduktion och -konsumtion mäts på timbasis, vilket är anledningen till att det krävs en elmätare som mäter både uttag och inmatning varje timme (NVE 2013). Elnätsbolagen i Norge är skyldiga att ta emot el från kunder som vill mata in el, men om de vill utnyttja dispensorerna beskrivna ovan och betala kunden för el är frivilligt (Sprenger 2013). Det pris prosumenten kan få för el bestäms i
ett avtal mellan kunden och elnätsbolaget, men bör följa marknadspriserna (NVE 2013). Ändringar diskuteras för att garantera ”plusskunder” ersättning för den inmatade elen. År 2011 började Norges första privatperson sälja el till elnätet (Sprenger 2013).

7.5 Nya Zeeland

7.6 Storbritannien

År 2010 införde Storbritannien feed-in tariffer. Dessa ersatte det tidigare investeringsstödet Low Carbon Buildings Programme för småskaliga produktionsanläggningar (Hammond et al

Storbritannien har som mål att år 2016 ska alla nybyggda bostäder vara ”net zero carbon homes”. Detta innebär att nettoutsläppen av koldioxid från uppvärmning, kyla, ventilation, varmvatten och fastighetsel för övriga årsutsläpp ska vara noll. Definitionen innebär också att se till att energieffektiv byggnad ska vara, uttryckt i kWh/(m²·år). Det finns olika tillåtna sätt att uppnå nettonollutsläpp. Antingen kan byggherren nå nollutsläpp av koldioxid genom att bygga energieffektivt och installera värmekällor och elsystem med låga utsläpp, exempelvis solceller. Eller kan byggherren välja att uppnå utsläpp av max 10 kg CO₂/(m²·år) (för friliggande hus, gränsen varierar med byggnadstyp) och kompensera den mängd koldioxid som släpps ut med så kallade “allowable solutions”. Det vill säga, byggherren kan välja att investera i projekt som leder till utsläppminskningar och tillgodoräkna sig dessa. Vilka projekt som räknas till ”allowable solutions” är inte fastställt ännu, men det skulle kunna vara att använda smarta lösningar i byggnaden, investera i gatubelysning med låga koldioxidutsläpp eller betala in pengar till en fond som utför godkända projekt (Zero Carbon Hub 2013).

7.7 Tyskland

De tyska feed-in tarifferna har lett till snabb och kraftig utbyggnad av anläggningar för förnyelsebar elproduktion. År 2012 hade över 1 miljon tyskar installerat solceller på taket, en trend som har accelererat de senaste åren (Hansson 2012). Samma år ägdes 47 % av den installerade effekten förnyelsebar energi av tyska hushåll och kooperativ (Energy Transition 2014b). De ekonomiska stöden för förnyelsebar elproduktion hamnar dock på hushållens elräkningar, vilket har lett till att Tyskland har bland de högsta elpriserna i Europa – något som också har ett brett stöd hos invånarna (Hansson 2012).
7.8 Spanien

Prosumenter egenproduktion av el blev alltså en förlustaffär för energi- och elnätsbolagen. I ljuset av detta ansågs inte fördelnarna med lägre nätförluster och underhållskostnader överväga de extra kostnaderna förnyelsebar mikroproduktion ger i form av nätförstärkningar och behov av reservkraft (Mir-Artigues 2013). Istället för feed-in tariffer ger nuvarande lagstiftning ägare av elproduktionsanläggningar med en effekt lägre än 100 kW möjlighet att ansluta till elnätet och sälja el till marknadspriserna (pv magazine 2014).

7.9 USA

7.10 Belgien
Belgien använder, vid mikroproduktion, ett liknande system med mätare som kan backa men aldrig visa negativ konsumtion. Detta innebär att prosumentens eventuella överskott levereras ut på nätet utan ersättning. Mikroproducenten är helt befridd från energiskatt så länge anläggningen har en kapacitet som understiger 10 kW (5 kW i Brysselregionen) och mervärdesskatt samt nätavgift betalas enbart på den positiva skillnaden i elmätaren.
Elnätsföretaget förmedlar informationen om leveransvolymerna till elhandelsföretagen som i sin tur baserar fakturorna på dessa uppgifter. Detta system har mött kritik från marknadens parter, men ingen förändring verkar vara planerad i nuläget (SOU 2013:46).

Referenslista till Kapitel 7

SOU 2013:46, Beskattning av mikroproducerad el m.m., Betänkande av Utredningen om nettodebitering av el, Stockholm 2013, http://www.regeringen.se/content/1/c6/21/94/09/723fd0a5.pdf, [28 februari 2014].

BILAGA 1 - FALLSTUDIE A
Mikroproduktion av el av Love Jonsson & Jonas Persson

Slutsatser
• Utifrån de studerade rapporterna kring mikroproduktionens påverkan på elnätet, tekniska aspekter, samt de studerade lagtexterna kan några generella slutsatser dras:
• En hög penetrationsnivå av mikroproduktion i ett lågspänningsnät i Sverige kan tolereras innan gränsvärden uppnås.
• På grund av rådande tekniska och ekonomiska förutsättningar bedömer författarna penetrationsnivån av mikroproduktion från vindkraft i Sverige som låg inom en överskådlig tidsperiod.
• Baserat på den studerade litteraturen kring solinstrålning, tillgänglig teknik och ekonomiska incitament finner författarna det inte som troligt att penetrationsnivån av solceller för mikroproduktion i Sverige inom en överskådlig tidsperiod kommer att vara så hög att den påverkar lågspänningsnäten.
BILAGA 2 - FALLSTUDIE B
Solel på Solbjer av Li Wiberg och Juliane Albrecht

Slutsatser

Elbehov i byggnaderna

Elbehovet i byggnaderna på Solbjer följer olika riktlinjer och certifieringssystem. Det skulle kunna sänkas antingen genom att Lunds kommun ställer krav på en lägre elanvändning istället för att endast sätta upp mål och visioner, eller genom att endast ge erbjudande om att få bygga på Solbjer till byggherrar som, likt Solbjer Bostad AB, själva tar initiativ att hålla elanvändningen låg.

Relevanta solcellstekniker

Utvecklingen av nya solcellstekniker som är billigare och har högre verkningsgrad är på snabb frammarsch, men dessa kommer inte att vara aktuella för byggnationen på Solbjer. Detta beror på att byggherrarna i allmänhet ser trygghet hos leverantören som en väldigt viktig faktor, och byggherrarna anser att detta är svårt att uppnå med nya, otestade solcellstekniker. För Solbjer rekommenderas monokristallina solceller, vilket är den teknik som är störst på marknaden i dagsläget.

Installations- och driftskostnader

Installationskostnaderna i denna rapport är relativt höga, och är det som begränsar byggherrarnas vilja att installera större mängder solceller på Solbjer. Driftskostnaderna bedöms i praktiken som obefintliga, och är en stor anledning till varför byggherrarna ställer sig positivt till installation av solceller, speciellt om byggherren ska fortsätta att förvalta fastigheten efter det att byggnationen är färdig.

Potential för solelproduktion

Potentialen för all planerade byggnader på Solbjer uppgår till 6,1 GWh/år, vilket motsvarar 70 % av områdets elbehov. Då de byggnader som i dagsläget saknar byggherrar exkluderas från beräkningarna är potentialen för solelproduktion istället 4,5 GWh/år, vilket motsvarar 62 % av elbehovet för dessa byggnader. Potentialen för solel på Solbjer är hög. Den är inte så hög att den når upp till de mål och visioner som finns om ett energibehov som helt täcks av
förnybar energi, men då solceller inte är det enda alternativet för produktion av förnybar el på Solbjer bör potentialen för förnybar el på Solbjer kunna nära sig målen och visionerna.

Solelproduktion enligt byggherrarnas förutsättningar

Solelproduktionen uppgår enligt förutsättningar från byggherrarna till 3,3 GWh/år, vilket motsvarar 46 % av deras byggnaders elbehov. Detta jämförs med siffrorna då de byggnader som inte har tilldelats några byggherrar exkluderas i Kapitel 12.4. Då hänsyn tas till byggherrarnas förutsättningar och önskemål är solelproduktionen, som väntat, lägre än potentialen. Här gäller ett liknande resonemang som för elbehov i byggnaderna, nämligen att en högre faktisk solelproduktion skulle kunna uppnås om de mål och visioner som finns gällande området övergick i krav, eller att byggherrar som själva tar initiativ till att installera solceller med större exklusivitet erbjuds de byggrätter som finns.

Goda förutsättningar för att solcellssatsning genomförs

BILAGA 3 - FALLSTUDIE C

Micro-generation in local power grids av Karin Hansson och Sara Olsson

Denna rapport har fokuserat på hur laststyrning och energilager kan balansera variationerna i ett lokalt elnät med en hög andel mikroproduktion från solceller och småskaliga vindkraftverk. För att undersöka detta, har både en litteraturstudie av möjliga lösningar, samt en fallstudie av en planerad stadsdel i Malmö, d.v.s. Hyllie, utförts.

De viktigaste resultaten från denna studie är att belastningen från mikroproduktionen i ett bostadsområde väsentligt kan komma att överstiga efterfrågan vid vissa tillfällen, huvudsakligen mitt på dagen under sommartid. Om området däremot består av en blandning av bostäder och kommersiella verksamheter, kommer belastningen inte att överskrida kapacitetsgränsen i nätet. De mest lovande lösningarna för att hantera laster som överstiger nätkapaciteten i ett lokalt elnät, är batterier och kritisk topp-prissättning. För närvarande, och troligen inom den närmaste framtiden, är batterier betydligt dyrare än nätutbyggnad. Dessutom är ägandet av energilager begränsat för nätagaren.

Rekommendationer för framtiden är att mikroproduktion bör tas i beaktning vid planeringen av ett lokalt elnät med bostadslast, då produktionen i detta fall kan överstiga nätkapaciteten.

Nyckelord: Mikroproduktion, nätagare, energilager, laststyrning, effektvariationer

Research questions

The following questions have been in focus and are answered throughout the report:

- How does a typical load profile look like for a local grid with residential and commercial activities as well as a high penetration of micro-generation?
- Is the conventional electricity grid dimensioned to handle micro-generation or does further measures have to be taken in the future?
- What are the most promising sustainable energy storage possibilities for a local grid with a high penetration of micro-generation?
- Which Demand Response method is the most suitable for peak reductions?
- Is Demand Response and/or energy storage enough to balance the intermittent micro-generation?
- Can energy storage be an economically viable solution compared to reinforcements in the grid?
- How are the solutions regulated and how does this affect the implementation of the solutions?

Conclusions

The main conclusions from both the literature study and the case study are:
In a residential area with a high penetration of micro-generation, the load from production will exceed the demand load during some occasions. Therefore, consideration has to be taken regarding micro-generation when planning a local grid with undiversified demand profiles.

In a more diversified area, like Hyllie, the conventional dimensioning of the grid will be able to support a high penetration of micro-generation as the total load will not increase.

The Energy Storage technologies that are most suitable for local peak shaving in an area with high micro-generation are NaS and Li-ion batteries because of their favourable technical and environmental aspects.

The Demand Response method that is the most promising for peak shaving is Critical Peak Pricing.

With the prices of today, investments in battery storages in a local grid, as an alternative to T&D upgrades are not economical without subsidies. However, DR is a more economical solution but this is not sufficient to reduce all intermittencies.

The business-case for balance solutions in a more diverse area is rather to smooth the load duration curve with ES and DR in order to be able to connect more customers to the same loop. It would then be possible to avoid investment in T&D upgrade.

Presently, the legislations regarding the ownership of energy storages regulate the DSO’s possibilities to operate storages as electricity trading is prohibited for a DSO.