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Abstract

The underlying question in localization is where am I? In this thesis a purely image based
approach is proposed to solve this problem. In order to create a complete image based
system, there are many subproblems that have to be addressed. The localization problem
can also be solved in other ways, for example, with a GPS. Two advantages with using
images compared to GPS are that no open sky is needed and that a higher precision is
possible to achieve.

The thesis consists of an introductory chapter followed by six papers. In the first pa-
per, enhancements of Grbner basis techniques to solve systems of polynomial equations
are presented. The new strategies improve the numeric stability with several orders of
magnitudes, compared to previous state of the art. This framework is then applied in
the next three papers to solve several geometrical pose problems relevant for localization.
The main difference between the papers is the level of knowledge of the inner calibration
of the cameras. The calibration knowledge ranges from completely calibrated cameras
to uncalibrated cameras with unknown radial distortion. The fifth paper of the thesis
also treats the pose problem, but the method differs from the previous papers. In this
paper a method is presented that guarantees a globally optimal solution at the price of
computational complexity. To achieve this, the pose problem is reformulated and solved
via a minimal vertex cover. The final paper is devoted to large-scale localization. Methods
from image retrieval are utilized, and extended, to be able to perform city-scale localiza-
tion. Moreover geometry is directly incorporated in the retrieval stage.






Sammanfattning

Var ir bilden tagen? Det 4r en friga som vi ofta stiller oss och som denna avhandling
innehaller matematiska metoder for att lita en dator besvara. Om vi lyckas svara pa frigan
kan metoderna for att hitta svaret anvindas till vitt skilda saker. Det gir att anvinda for
att l3ta robotar navigera med hjilp av kameror men ocks for att sortera privata bilder i
digitala fotoalbum efter var de ir tagna.

For att l6sa lokaliseringsproblemet har flera delproblem studerats. I ett av delprob-
lemen har en tredimensionell modell av Malmé byggts upp utifrin 95 000 bilder tagna
utmed stadens gator. Med hjilp av modellen gir det fér en ny bild, tagen ndgonstans
i Malmé att avgora var fotografen befann sig. Det gors genom att titta pd minga smé
omréden i den nya bilden. De omridena beskrivs sedan med en uppsittning tal sa att
liknande omriden gir att hitta i den tredimensionella modellen. Om tillrickligt mycket
4r kiint om kameran som tagit bilden gir det att rikna ut vilken vinkel det 4r mellan
riktningarna dll tvd punkter som avbildats i bilden, sett frin kameran. Tack vare den
tredimensionella modellen av staden ir det sedan méjligt att rikna ut var i Malmé den
vinkeln kan uppstd mellan punkterna. Med hjilp av det gir det att fi fram en lista pa
platser dir bilden kan vara tagen.

Det som hittills har beskrivits kan fungera som ett forsta steg i en lokaliseringspro-
cess. For att ta reda pd mera om kamerans position, si som riktning, eller for att fi en
hégre precision i resultatet kan man utgd frin resultatet av den forsta delen for att hitta
positioner att undersska noggrannare. Aven de fortsatta algoritmerna for att soka efter
position har utvecklats i avhandlingen. Nir antalet tinkbara platser begrinsats efter det
forsta steget 4r det mojligt att utfora mera resurskrivande berikningar som en dator inte
skulle klara av for en hel stad pa rimlig tid. I arbetet har det utvecklats tva typer av algorit-
mer for detta problem, dels en som 4r optimal, allts3 att det 4r sikert att det inte finns en
bittre 18sning, dels metoder som gir snabbare men som inte garanterat ger ett optimalt
resultat.

Det kan lta konstigt att inte ndja sig med en metod som ger ett optimalt svar, men
dessa algoritmer tar ofta for ling tid att anviinda, och d& fir vi hoppas p4 att kunna ta en
genvig for att hitta en nistan lika bra 16sning. Det visar sig ocksa att det i de flesta fallen
blir fullt tillfredsstillande losningar dven nir den snabba vigen anvinds.



Det arbete som gjorts p& de snabbare metoderna i avhandlingen handlar tll stor del
om berikningar kopplade till hur kameror avbildar omgivningen. Fér olika matema-
tiska modeller av en kamera, som ir beroende av hur mycket som ir kint om kamerans
konstruktion och #ven vilken brinnvidd som anvindes vid fototillfillet, blir det olika
geometriska problem att 16sa. Vid anvindning av de snabba algoritmerna utnyttjas ett
minimalt antal punkter i bilden, som har kopplats samman med punkter i den tredimen-
sionella modellen, for att problemet ska kunna 16sas. Sedan 15ses problemet fér denna
minimala uppsittning punkter. Losningen testas hur vil den stimmer verens med de
ovriga punkterna som kopplats samman mellan bilden och modellen. Ménga tidigare
olosta sddana problem, dir ett minimalt antal punkter dr kopplade mellan kameran och
modellen, presenteras det lsningar pé i avhandlingen. Lésningarna blir d& en viktig
kugge i ett fullstindigt lokaliseringssystem.



Preface

This thesis considers the problem of image based localization. The objective is to find
at what position and in which direction an image was taken relative a world model.
To achieve this several subproblems are studied. These problems range from minimal
cases for camera position estimation in a small model, to city-scale localization. Also
techniques for solving systems of polynomial equations are presented. These methods are
the foundation for many of the problems solved in the thesis.

The work has been funded by the Swedish Research Council through grant no. 2004-
4579 "Image-Based Localisation and Recognition of Scenes” and by the Swedish Founda-
tion for Strategic Research (SSF) through the program Future Research Leaders.
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II K. Josephson, M. Byréd, F Kahl, K. Astrom, Image Based Localization Using
Hybrid Features, submitted to journal of Mathematical Imaging and Vision, 2009.

II Z. Kdkelovd, M, Byrod, K. Josephson, T. Pajdla, K. Astrom, Fast and Robust
Numerical Solutions to Minimal Problems for Cameras with Radial Distortion,
published in Computer Vision and Image Understanding, 114(2):234-244, 2010.

IV K. Josephson, M. Byrod, Pose Estimation with Radial Distortion and Unknown
Focal Length, published at Proc. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Miami, FL, USA, 2009.

V O. Engyist, K. Josephson, E Kahl, Optimal Correspondences, Geometry and the
Vertex Cover Problem, submitted to /nz. Journal of Computer Vision, 2010.

VI K. Josephson, L. Svirm, O. Engyist, E Kahl, City-Scale Localization Using Ge-
ometrical Visual Words, submitted to European Conference on Computer Vision,
2010.
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Introduction

1 Background

The aim of this thesis is to develop new methods for image based localization, the problem
of finding out where an image is taken. This is a problem that researchers have been
working on for a long time and many localization systems have been constructed over
time e.g. [36, 1]. Common for these two are that they only solve the problem in two
dimensions. In this thesis both two and three dimensional localization are treated. GPS
is a competing technique, but GPS has several drawbacks. These include that GPS needs
an open sky to work, and that it gets very expensive for an accuracy below a few meters.

One branch of localization is called global localization, and that branch has been in
focus for this thesis. The global localization problem, or the kidnapped robot problem
as it is called in robotics, is the problem when there is no pre-knowledge of the camera
position. Early systems that solved this problem used lasers to find the position and
navigate a robot [36]. But in recent years more interest has been turned to the use of
images to do the localization and navigation. One major reason for this is that digital
cameras have become a consumer product which is cheap compared to lasers that have to
be custom made for the application.

Another application for global localization is in personal photo collections. In the last
few years cameras have started to be equipped with GPS, and now also compass, to be
able to encode the position and the direction into each image. This has also led to that it
is possible to navigate by the image positions in digital photo albums. But since the GPS
technique just has found its path in to the cameras there exist millions of images that do
not have a geo-position. To be able to tag these images with a position automatically, the
global localization problem needs to be solved.

1.1 Geometry

All papers in this thesis are in the field of geometrical computer vision. The foundation
of this field was long before the computers existed, and probably begun in 1841 with a
paper by Grunert [15]. The paper treats the problem of calculating where a camera was
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INTRODUCTION

posed given three correspondences between the image and a model of the world. The next
relevant paper was presented in 1855 by Chasles [3]. In his paper, Chasles looks at the
problem of finding the geometry between two cameras if seven point correspondences are
known between two images. Another important paper in the field was written by Kruppa
in 1913 [25]. In this paper he almost correctly solves the problem of relative pose between
two cameras when the inner calibration of the cameras is known. A corrected solution of
the problem was presented by Thomson in 1959 [47]. After that the field really took off
and the amount of publications has constantly increased rapidly.

One of the fundamental problems in geometrical computer vision is, given one or
many images of the same object, to infer something about the structure of the imaged
object and/or the camera motion between the images. This problem can be stated in
several different ways depending on what is known about the different entities. In some
problems the placement of two or more cameras is known and the problem is to calculate
the three dimensional structure. This is the so-called #riangulation problem. In other
cases the three dimensional structure of the object is known, but nothing is known about
the camera that took the images. The problem of finding the location of the camera
is then known as the camera pose problem. Another situation is when neither the three
dimensional structure nor the camera positions are known. This is called the structure and
motion problem. A special case of the structure and motion problem consists of calculating
the motion between two images. This is known as the relative pose problem. All these
problems can also be varied depending on the knowledge about the inner parameters of
the cameras used, such as, the focal length.

Of course there are some fundamental limitations in the problem of structure and
motion. Depending on the a priori knowledge of the camera there are different levels
of these ambiguities. For example, if the full inner calibration of a pin-hole camera is
known, that is, the camera can be seen as a tool for measuring angles, then there will only
be an ambiguity in size. In other words, it is impossible to know if both the object and
the movements of the camera are small or if both are large.

1.2 Overview

The papers of this thesis address different aspects of the global localization problem. One
of the fundamental steps, in the construction of a localization system, is to build a model
wherein the search for position is done. In Paper III this problem is addressed, where
problems of relative movement between pairs of images are treated. The relative positions
of cameras need to be known in order to be able to triangulate points and by that construct
a three dimensional model of the search area.

The constructed three dimensional models are then used in different kinds of local-
ization in Papers II, IV and V. The difference between the methods used in these papers
is mainly how much of the inner calibration of the cameras, that is known. They also
differ in demands of computational power. In Paper V, optimality is guaranteed for the
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2. GEOMETRY IN COMPUTER VISION

solution, with the price that more computations need to be done.

The methods presented in Paper II, IV and V only work when the unknown position
is within a few blocks of a city. To be able to handle large scale problems, such as city-scale
localization, a pre-processing step is needed. In Paper VI such an initial step is presented.
In this paper methods from image retrieval are used to reduce the search space from a
complete city to just a few small possible areas, where the image can have been taken.

Papers 1II, IIT and IV of the thesis, all have a step where a system of polynomial
equations needs to be solved. To do that a method based on Grébner basis, from the field
of algebraic geometry is used. The Grobner basis method is known to be a fast way to
solve systems of polynomial equations, but it has been plagued by numerical problems.
In Paper I, these numerical issues are addressed, and methods to significantly reduce these
problems are presented. The first paper is, hence, a base for several of the following papers
in the thesis.

Next in this introduction, the most fundamental concepts of geometrical computer
vision and algebraic geometry will be explained. In the introduction an overview of im-
portant concepts in computer vision will be given, such as how a camera is modeled, the
geometry between two images and some aspects of the triangulation problem. In Sec-
tion 3 the concepts of ideals and varieties in the field of algebraic geometry are explained.
This is followed by the basics on Grébner bases, and an introduction to the important
concept of the action matrix. This is what will be used in Paper I and it will be an
important base in the three subsequent papers.

In Section 4, methods used to solve the correspondence problem are presented. This
includes RANSAC, a common algorithm to remove false matches, and some theory on
four classical geometrical camera resection problems. There is also explanation on how
the correspondence problem can be solved optimally. These techniques result in a graph
problem called vertex cover, so the basics of this problem and how to solve it, are given in
Section 5. The last section of this introduction, Section 6, treats how image search can be
performed, and on how this is used in the thesis to solve the global localization problem.

2  Geometry in Computer Vision

2.1 The Pinhole Camera

One of the foundations of geometrical computer vision is the pinhole camera model.
The modeled pinhole camera consists of two components, the focal point and the image
plane. Figure 1 shows a schematic figure of a pinhole camera, where C is the focal point
and 7 the image plane. Further, X and X are world points and x; and X are projected
image points.

The Pinhole camera can be modeled mathematically with the so called camera equa-
tion,

Ax = PX. (2.1)
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Figure 1: The geometry of a pinhole camera. X; are points in the three dimensional

space projected to the image points, X; on the image plane . C is the focal point, also
referred to as the camera center.

In this equation A holds the distance between the focal point and the world point and
both the image and the world point are in homogeneous/extended coordinates [19]. P
is the camera matrix of size 3 X 4 and holds both the intrinsic and extrinsic parameters
of the camera. To understand why (2.1) models a pinhole camera put the focal point in
the origin and the image plane as z = f where f is the focal length, that is, the distance
between the image plane and the focal point. In this case the setup is as in Figure 2.

As can be seen in Figure 2 a point X = (0,Y, Z)7 is mapped in the camera to the
point (0, fY/Z, f)T. Since it is possible to rotate this setup to include X, with values
different from zero, the mapping becomes,

(X,Y,2)" — (—X — 2.2)

With homogenous coordinates this mapping can be expressed with matrix multiplication
according to

0
— |y | = f 0 (2.3)
0

X

v s
Z

1 Z 1

X
Y
Z
1

The principal point is the orthogonal projection of the focal point on the image plane.
During this derivation it has been assumed that the pinhole camera has its principal point
at the origin of the image plane. This can not be taken for granted so the mapping in (2.3)

16



2. GEOMETRY IN COMPUTER VISION

f

Figure 2: A pinhole camera with the image plane, 7, placed at 2 = f where f is the focal
length of the camera. The focal point C is placed in the origin and the world point X is
projected to the image plane.

can be adjusted to account for different principal points by putting

X X

IX + Zp, / pe Of [y
7|17 Y +2Zpy | = [ py O 7| (2.4)
1 Z 1 0 1

where (pz,py) is the principal point. The camera matrix can now be written as Ax =
K[I'| 0]X, where K is
f P
K = f Py | - (2.5)
1

There are two more calibration parameters, that are associated with the design of the
CCD, the image registration sensor of a digital camera. The first of those is the aspect
ratio of the pixels, v. If the pixels are square than 7 equals 1, which is true for almost
all CCD’s. The second parameter is the skew, s. The skew parameter will be zero if the
x and y axes are perpendicular on the CCD, which for almost all cameras will be true.
These parameters are included in the calibration matrix as follows,

f s pa
K= v oyl - (2.6)
1

This is the full calibration matrix that is used to model a pinhole camera. The only things
that are still needed is to move the camera away from the origin and to incorporate full
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INTRODUCTION

freedom in rotation. This is done by defining the general camera matrix as,
P =KIR|t], 2.7)

where R is an orthogonal matrix and t a translation vector. This is the camera matrix
for an arbitrary pinhole camera. With this camera (2.1) represents a projection through
a pinhole camera in homogenous coordinates. For a more exhaustive derivation of the
camera equation see [19].

2.1.1 Radial Distortion

The pinhole camera model, presented in the previous section, is the model of a camera
used throughout this thesis. In Papers IIT and IV, is this camera model extended to also
model radial distortion, present in camera lenses. The distortion is usually larger in small
lenses, such as those in mobile phones and compact cameras, but it is also present in lenses
used in SLR cameras. The importance of modeling the radial distortion in some problems
was shown in [11]. In that paper examples of two three dimensional reconstructions are
shown, one modeling radial distortion and one not doing that, and only the one taking
radial distortion in consideration manage to get a tractable result.

A common model for radial distortion is to assume that the distortion center coincides
with the image center, then the distortion can be written,

Xd = ‘C(qu”)xua (2.8)

where x4 is the measured image points, X,, the ideal undistorted coordinates from the
camera equation (2.1), and £ the distortion factor. The function £(r) is usually a poly-
nomial, £(1) = 1+ K17+ kor? + k313 +- - -, which can be seen as the Taylor expansion
of an arbitrary smooth function £(r) with £(0) = 1.

This model of radial distortion, called the plumbline model, is the most commonly
used. One problem with the distortion model in (2.8) is that it usually, when applied,
not gives tractable mathematics, since we often want to express X,, in terms of x4. One
way to avoid that problem is to use the similar, but different, division model for the radial

distortion,
Xd

- - 2.
T3 =l 29)

Xu

This model was shown to give an equally good approximation to the radial distortion, if
only Ko was used, as (2.8) in [11].

2.1.2 Different Levels of Camera Calibration

Depending on how much that is known of the inner calibration, different methods are
used to solve the geometrical problems. Ifall the parameters in the matrix K, see (2.6), are
known the camera is said to be calibrated. On the other hand, if none of the parameters

18



2. GEOMETRY IN COMPUTER VISION

are know the camera is called uncalibrated. But it can also be intermediate levels of
calibration. The most frequent case of these semi-calibrated cases is that everything except
the focal length f is known about the inner calibration. This often models a digital
camera well since the principal point is usually centered to the middle of the image. In
some cases this is not the case, especially when the image has been cropped afterwards. In
those cases the principal point moves away from the center of the image, and it has to be
estimated.

2.2 Two View Geometry

Geometrical computer vision often includes several cameras, or several images with differ-
ent views by the same camera. In two-view geometry, the most important property is the
epipolar geometry. The epipolar geometry is the intrinsic geometry between two views.
One main motivation for the study of epipolar geometry is the search for correspondences
in triangulation. The reason for this is that the epipolar geometry defines a line to search
along in the second image to find a corresponding point, given a point in the first image.
But the epipolar geometry is also used the other way around. The epipolar geometry can
be calculated through several correspondences between two images which then can be
used to find the camera matrices in the relative pose problem.

Given two corresponding points x and X’ in two images, then these two points have
a common point X in the three dimensional space. With the information from one of
the images the possible locations of X are reduced to a line Ze. the point is known but
not the depth. This line is projected down to a line in the second image and x’ should be
placed on this line, at least in absence of noise. The line which the corresponding point
can be located on is called the epipolar line.

The geometric entities of the epipolar geometry are shown in Figure 3. The epipoles,
e and €/, are the intersection of the image planes with the baseline joining the camera
centers. Another way to characterize the epipoles is that they are the images of the focal
points of the other. The second entity is the epipolar plane, which is a plane containing
the baseline and the point of interest in the three dimensional space. The last entity is
the epipolar line, which is the intersection of an epipolar plane with the image plane.
If the epipolar geometry is known between two cameras, a point in one image defines
an epipolar line in the other image. Furthermore the epipolar line always intersects the
epipole.

2.2.1 The Fundamental Matrix

To algebraically describe the epipolar geometry between two cameras the fundamental
matrix is used. The fundamental matrix holds the information of how a point in one
of the images generates the corresponding epipolar line in the other image. The 3 x 3
fundamental matrix £’ will map points to lines in homogeneous coordinates according
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o
C e e/ C/

Figure 3: A geometry with two cameras and a point X projected down to x and x/,
respectively, in the cameras. The baseline between the two camera centers, C and C’,
intersect the image planes in the epipoles, € and €’. The lines | and I’ in the images,
given by the plane II, are called epipolar lines. The plane II is defined by the camera
centers and the point X.

to,

I = Fx. (2.10)

Due to the properties of the epipolar geometry described in the last section the corre-
sponding point X’ to x has to be contained in the epipolar line I’, hence

xTV =xTFx =0, (2.11)

has to be fulfilled for all corresponding points. The fundamental matrix has several im-
portant properties. If F is the fundamental matrix of a camera pair (P, P’) then F7 is
the fundamental matrix for the pair (P’, P). This follows directly from (2.11). Further-
more the fundamental matrix is only given up to scale and has rank 2. The reason why F’
has rank 2 can be understood by the fact that the fundamental matrix maps points into
lines and all these lines intersect in the epipole. Hence it is enough to give a point on a
circle around the epipole, to describe the epipolar geometry.

The fundamental matrix has seven degrees of freedom. The nine elements of the
fundamental matrix encode these seven degrees of freedom since it is homogenous and

det(F) = 0 due to the fact that it does not has full rank.

2.2.2 The Essential Matrix

If the cameras are calibrated the degrees of freedom for the fundamental matrix get re-
duced, and the name also changes to the essential matrix. Without calibration the funda-
mental matrix had seven degrees of freedom but the essential matrix only has five. This
can be realized since if the cameras are calibrated the first camera can be set P = [I | O]
and the second to P = [R | t]. Both the translation, t, and the rotation, R, have three
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2. GEOMETRY IN COMPUTER VISION

degrees of freedom, and we also have the remaining freedom to scale the visible system
which leaves five degrees of freedom.
The essential matrix is defined in the same way as the fundamental matrix,

*TEx =0, (2.12)

where X" and X are the coordinates when the effects of the calibration is removed, so-called
normalized coordinates. From this definition and the relation * = K ~'x it follows that
xTK'"TEK'x = 0. This equation gives the connection between the essential and
fundamental matrices to be as follows,

E=KTFK. (2.13)

The reduced number of degrees of freedom gives additional constraints on the essen-
tial matrix compared to the fundamental matrix. These constraints are that the essential
matrix is a matrix where two of the singular values values are equal and the last is zero [19].

In [37] Nistér uses the property,

2EETE — w(EET)E =0, (2.14)

introduced by Demazure [7] and later also used by [8], of the essential matrix. This
property is derived from the fact that two singular values are equal and is used to find the
essential matrix given the minimum set of five correspondences between two calibrated
cameras. This constraint has later been used with different constraints on the calibra-
tion matrix to solve several minimal cases in geometrical computer vision [27, 45]. This
method is also used on several occasions in this thesis.

2.3 The Triangulation Problem

A classical problem in geometrical computer vision is the triangulation problem for points.
The formulation of this problem is:

Problem 2.1 (Triangulation). Given two or more images and corresponding points in those,
Jfind which point in the world that is the source given that the cameras are known.

Figure 4 holds a sketch of the problem of triangulation, where the task of triangulation
is to find the point X that best fulfills the image points.

The triangulation problem is well studied and hence a lot of literature can be found,
see [19, 32] and the references therein. In the absence of noise this problem is trivial and
can be solved with two views by constructing the matrix,

TrPp3 — P1

A= |YPs P2 (2.15)
z p/?, - p/1
Y'Ps — P2
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?
.

Figure 4: Sketch of multiple view triangulation. If there was no noise, all lines would
intersect in a single point, but due to noise this is not true. The problem of triangulation
is to find the point X that is the best approximation to such a point given some type of
measure.

where p;, p; is the i:th row of the camera matrices P and P’, respectively, of the two
views. This matrix will not have full rank and the null space will be the sought after
point, in homogeneous coordinates.

If there is noise in the images the problem becomes more difficult. First of all an
optimization criterion has to be chosen. The most common choice, and the statistically
optimal given gaussian noise in the image data, is the reprojection errors in Lo-norm. In
recent years also the Loo-norm has been given more interest, see e.g. [17, 22].

If the Ly-norm is chosen the most widely used method to triangulate a point is to
use local optimization methods based on gradient decent. After an initialization using a
linear method, so called bundle adjustment is applied [19]. This method is used even
though it is well known that the error function will not be convex in general, and hence
local minima can exists.

To overcome the problem of local minima, global optimal methods are interesting.
Such methods have been given for two and three views. The solution of the two view
case was given by Hartley and Sturm in 1997 [18]. The solution is given by calculating
the stationary points of the cost function. This leads to solving a polynomial of degree
six. The three view case was solved in 2005 by Stewénius ez al. [46]. Also this problem
is solved by calculating the stationary points of the cost function, but in this problem,
the number of those points is 47. To solve that problem Gribner basis methods are used.
The paper of Stewénius e al. was one of the main inspirations for the first paper of this
thesis due to the numerical difficulties they had. The problem of three view triangulation
is used as a benchmarking problem in Paper I.
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3 Algebraic Geometry

Due to the structure of the camera equation (2.1) minimal problems in geometrical com-
puter vision often lead to solving systems of polynomial equations. This is also true if
equation (2.14) is studied. The occurrence of polynomial systems get even more ob-
vious for the camera equation if the camera is calibrated. In this case only the rota-
tion and translation have to be determined. Representing the rotation with a quaternion
q = (a,b,¢,d)T and the translation with a vector t = (z,y, 2)T the calibrated camera
matrix can be described as follows:

a?+b? —c* — d? 2bc — 2ad 2ac + 2bd x
P = 2ad + 2bc a? —b>4c? —d? 2cd — 2ab yl|. (3.1
2bd — 2ac 2ab + 2cd a?—-bv-c+d* =z
Under these prerequisites it is natural that many computer vision problems end up in
solving a system of m polynomial equations in s variables, x = (21, ..., zs), formalized
as,
fl (X) = 07
3.2)
fm(x) = 0.

To solve systems like this many methods exist, see [2] and references therein. In this
thesis methods from algebraic geometry are used to solve these problems. See [5, 6] for
an introduction to the field.

One of the benefits of using methods from algebraic geometry in computer vision
is that these can be solved by fast algorithms under certain conditions. In these cases a
problem specific solver can be constructed that computes a solution in a few milliseconds
on a standard PC. This is a very attractive feature since these solvers often are used in the
core of a hypothesis and test algorithm and hence have to be executed many times.

The two most important objects in algebraic geometry are the variety and the ideal.

Definition 3.1 (Variety). The variety V' is the set of points X where all equations in a system
of polynomial equations vanish.

The variety does not need to be a finite set but in this thesis only varieties consisting of a
finite set of points are considered.

Definition 3.2 (Ideal). 7he ideal I generated of a set of polynomials equation f;(x) = 0 is,
ideal I =", hi(x) fi(x), where h; € C[x].

In this definition C[x] denotes the set of all polynomials over the complex numbers.
The reason to study the ideal I to a set of equation as in (3.2) is that a point X is a

zero of (3.2) iff it is a zero to the ideal. Now the ideal is used to define equivalence of two

polynomials. This is done by saying that two polynomials f and g are equivalent modulo
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Iiff f — g € I, denoted by f ~ g. With this definition a quotient space C[x]/I is
achieved of all equivalent classes modulo I.

It is also possible to construct equivalence classes based on the variety V. Here two
polynomials are said to be equivalent if they are equal on all x € V. It is obvious that
if two polynomials are equivalent modulo I then they are also equal on V. If further-
more the ideal is a radical [6] then the converse is also true and the two structures are
isomorphic. The condition on I to be a radical is that, if f* € I for some m > 1 then
fel

The most important property of the quotient space, C[x]/I, is that the dimension is
equal to the number of solutions of (3.2).

3.1 The Action Matrix

The knowledge of ideals and varieties can be used to solve systems of polynomial equa-
tions. To understand this let us start of by looking at the problem of finding the roots of
a polynomial of degree three. If the polynomial is

q(z) = 2° + as2® + a1z + ao, (3.3)

then the roots to ¢(x) can be found through the so-called companion matrix,
10

—aq 0 1]. (34)
0 0

The eigenvalues of the companion matrix are equal to the zeros of (3.3). This is easily
seen since the characteristic polynomial of (3.4) is equal to (3.3). This is well known and
for example used by the Matlab command roots as it is a numerically stable way to find
the roots.

The method of the companion matrix can be extended to the multivariate case [5, 28].
Consider again the system of polynomial equations in (3.2), and the corresponding ideal
I and variety V. Since the dimension of the quotient space is equal to the number of
solutions to the system, the quotient space forms a linear vector space with the same
dimensionality as the number of solutions. Take p € C[x] and consider the operation
T, : f(x) — p(x)f(x). This operation is now linear and given some basis in C[x]/
it can be represented with a matrix my,. This matrix is called the action matrix and is a
generalization of the companion matrix.

The action matrix m,, has some nice properties. The eigenvalues of m,, are p(x)
evaluated at the points of V. Furthermore, the eigenvectors of m7 are equal to the vector
of the basis elements of C[x]/[ evaluated on V. To understand this consider an arbitrary
polynomial f(x). It can be represented as f(x) = c¢I'b(x), where ¢ is a vector with
coefficients and b a vector of monomials forming a basis of the quotient space. Further,
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let [-] denote the reduction modulo I, then the following holds for any ¢,
[p- ch} = [(mpc)Tb] = [chZb]. (3.5)

Since it holds for any ¢ it holds especially for [pb] = [m'b]. If this is evaluated where
x € V the brackets can be left out and the result becomes,

p(x)b(x) = mgb(x)7 forx e V. (3.6)

This is recognized as an eigenvalue problem for m!. Hence the eigenvalues of m]" are
equal to p(x) evaluated at the points of V" and the eigenvectors are the basis elements of

b evaluated at the zeros.

3.2 Grobner Basis

The difficulties in solving systems of polynomial equations are now reduced to construct-
ing the action matrix since the eigenvalue problem is well studied and several algorithms
to solve the problem exist [13]. One way to find the action matrix is to select a linear
basis B of C[x]/I and for each element of B calculate [p - b;] where b; € B. To do these
calculations it is necessary to be able to represent each equivalence class of C[x]/I by a
well defined representative.

One way to find these representatives is to use so called Grobner bases [6]. The key
idea is to use multivariate polynomial division. A Grébner basis exists for each ideal and
yields a well defined remainder for every polynomial. Well defined, means that for all

f1, f2 € [f] the reduction with the Grobner basis ﬁG = EG. There is also an algo-
rithm called Buchberger’s algorithm [6] that is guaranteed to find this basis. This method
unfortunately only works with exact arithmetics. The Grébner basis is also dependent
on a monomial order, which is needed to define a consistent division of multivariate
polynomials.

The reason why Buchberger’s algorithm only works with exact arithmetics is that in
each step a check is done if a remainder is zero. With floating point arithmetics it is
impossible to check this exactly since the calculations always are plagued by rounding off
errors. There has been work to overcome this problem by Faugere [9]. The main idea of
his work is to do many reductions in one step using well studied methods of numerical
linear algebra. This is done by putting the system in (3.2) on the form,

CX =0, (3.7)

where X = [x*,...,x%]T is a vector holding all occurring monomials and C'is a
coefficient matrix. With this notion all operations may be done on the coefficient ma-
trix C' and the numerics can be enhanced with different methods from numerical linear

algebra [13].
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This method of working with Grobner basis methods has been adopted by the com-
puter vision community and used to write special purpose solvers to several problems
such as relative pose with two calibrated cameras [44], autocalibration with radial distor-
tion [26], relative pose with unknown but common focal length [45], optimal three view
triangulation [46], calculation of the fundamental matrix for a catadioptric camera [12]
and more. Even though the method of Faugere improves the numerical stability it is not
always enough. This becomes obvious in the problem of optimal three view triangulation
where the authors were forced to use 128 bits mantissa in the floating point arithmetics
to be able to get accurate results, which resulted in an extremely slow solver. The first
paper of this thesis presents several methods to overcome this problem.

4 The Correspondence Problem

The correspondence problem between images is, given two or more images of the same
scene, find a set of points which can be identified as images of the same points in different
images. The most commonly used methods in the computer vision community to solve
this problem is to use interest points. This means that points are located with some inter-
est point detector, such as the Maximally Stable Extremal Regions (MSER) detector [31].
This method looks for regions that are consistent under large changes of intensity. These
regions are then used as interest points, where the points are the centers of the regions.
For each such point a descriptor is calculated that makes it possible to locate the point in
a model or another image. The most used descriptor is the SIFT descriptor [30]. The
SIFT descriptor is rotation invariant and moderately scale invariant. The SIFT descriptor
looks at gradients in the region around an interest point and constructs a histogram over
directions of the gradients. This information is stored in 128 element feature vectors that
describes the point and are used for matching. For more information and comparison of
interest point detectors and descriptors see [33, 34].

The correspondence problem can more generally be seen as the problem of finding
matching points between two point sets, with a transformation mapping one of the point
set to the other. Also this correspondence problem will be addressed in the thesis.

4.1 RANSAC

When the matching between a model and a query image has been done there will be a
large number of incorrect matches, outliers, in a vast majority of the cases. One method
to find and remove the outliers is to use the RANSAC method (RANdom SAmple Con-
sensus). RANSAC was introduced by Fischler and Bolles [10]. The method takes a small
random subset, usually minimal, of all correspondences and calculates a possible solution.
The solution is then tested on all correspondences and the number of correspondences
that agree with the solution is counted as inliers. This procedure is performed a large
number of times and the inliers to the solution with most inliers are then considered to

26



4. THE CORRESPONDENCE PROBLEM

Figure 5: Estimation of a line using RANSAC: The open points are outliers and the solid
points inliers. A random minimal set of two points is chosen and an exact fitting is made
to this minimal set. One random set is (a, b) and the other (c, d). In both cases a margin
is added (dashed lines) and the number of points that falls within the margin are counted
as inliers. In this case, the (a, b) set gives ten inliers, whereas (c, d) only results in two.
Hence the inlier set of (a, b) is chosen.

be true inliers. On this larger set it is possible to apply other methods in order to cal-
culate a better solution, typically involving local non-linear optimization. In Figure 5 an
example of line fitting to data with outliers using RANSAC is shown.

4.1.1 Minimal Cases

In RANSAC minimal cases are the standard method to find the solutions for a random-
ized set of correspondences. In Figure 5 the minimal set is two points to give a test line.
In the pose problem this, of course, gets more complicated. Four of the most classical
and most widely used minimal problems will now be described. These are the resec-
tion problem, finding the position of a camera from 2D projections of a 3D model, and
the relative pose problem, finding the transformation between two cameras. Both these
problems have been solved both for calibrated and uncalibrated cameras.

Uncalibrated Resection. The problem of camera resection is,

Problem 4.1. Given a model with known feature points and their corresponding positions in
three dimensions, find where a query image was taken and how the camera was orientated.

If the inner calibration is unknown the camera matrix has eleven degrees of freedom,
the twelve matrix elements minus one due to the unknown scale. Every point corre-
spondence will give three equations by the projection formula (2.1), but also one new
unknown, A. So every new point correspondence gives two new constraints. This gives
that six points are needed to calculate both the camera position and the inner calibration.
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To solve the problem rewrite (2.1) as,
Ajx; — PX; =0. 4.1)
Then collect all points correspondences into a common matrix,
AP =0, (4.2)

where P holds all camera parameters and the point depths, A;, and A contains all mea-
surements. The solution can be found by estimating the null space of A using e.g. singular
value decomposition.

Calibrated Resection. If the camera is calibrated, i.e. K in equation (2.6) is known,
it is enough with three known point correspondences, see [15, 16]. On the other hand,
this does not give a single solution, instead it can give up to four possible solutions. To
solve the problem a polynomial equation of degree four has to be solved. One way of
solving this problem is based on the observation that the angle between any pair of image
points, seen from the camera centre, must be the same as the angle between the corre-
sponding world points. By that three different pairs of points can be used to construct
second orders constraints expressed in the unknown point depths. These three quadratic
polynomial equations can be combined to an eight degree polynomial equation using re-
sultants [6]. In this polynomial the unknown parameter only appears in even powers, and
since the unknown represents the depth, only positive values are valid. Hence up to four
geometrical plausible solutions can exist.

Uncalibrated Relative Pose. Another set of minimal problems are those where the
relative pose is calculated between two cameras with known image correspondences. Since
the global coordinate system can be chosen in this case, one of the cameras can be placed
in the origin and with rotation defined by the identity matrix. The problem of relative
pose can then be formulated as follows:

Problem 4.2 (Relative Pose). Given two images, and a number of point correspondences,
[find the translation and rotation between the cameras used.

If uncalibrated cameras are used, the problem was solved by Chasles [3] in 1855. This
problem requires at least seven corresponding points and can give up to three possible
solutions.

To solve it look at (2.11). In this equation every pair of corresponding points between
the cameras gives one linear constraint on the fundamental matrix. By using singular value
decomposition these seven equations gives a two dimensional null space, that includes the
fundamental matrix. Due to the fact that the fundamental matrix only is determined up
to scale F' can be written,
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The last condition of F' that will be used is that it has rank two, which implies that
det(F') = 0. Since F'is a 3 x 3 matrix this gives an equation of degree three in 4, and
hence three solution to the problem of relative motion. The second camera can then be
retrieved from the fundamental matrix [19].

Calibrated Relative Pose. This problem was as mentioned before almost solved by
Kruppa [25] in 1913 and corrected by Thomson in 1959 [47]. A fast and practical
useable solution to the problem was given by Nistér [37] in 2004. To solve the problem
five correspondences are needed. The first step of the solution mimics the uncalibrated
case by using (2.12), and from that calculating a base for the null space using singular
value decomposition. With the essential matrix written as,

E=xF+yFEs+ zE3 + wEy, (4.4)

where w can be fixed to one due to the scale ambiguity, the next step is to use the trace
constraint (2.14), together with det(E) = 0. This results in ten polynomial equations
of degree three. To solve this system of polynomial equations Nistér [37] proposed to
eliminate all but one variable, and by that get a ten degree polynomial to solve. Later it
has been proposed [44] to use Grobner basis techniques to solve the problem, and by that
get an improved numerical stability.

4.2 Optimal Methods

RANSAC, and variants of it,! is widely used in the computer vision community. In most
cases RANSAC works well but it has one fundamental limitation. Since it is a hypothesis
and test algorithm only statistical estimates of the result can be given. In recent years an
increased attention has been focused on optimal methods that overcome these problems.
One branch of this research has focused on the Lo,-norm [23]. With use of the L -
norm instead of the more regularly used Lo-norm the optimization problems often shift
from being non-convex to quasi-convex. The big advantage of quasi-convex problems
compared to non-convex problem is that it can only exist one local minimum, and hence
it is the global minimum. In the non-convex case, optimization algorithms can get stuck
in a local minimum, and by that not find the global minimum.

One drawback of the L, methods is that the result adjusts to the worst measurement,
and hence is not robust to outliers. This, which at first might look like a severe problem,
can actually be used as an advantage. In [42] Sim ez al. prove that the set of measurements
with the greatest residual must contain an outlier, if any present, for a large class of Log
problems. Thus, the simple method of just throwing the points in this set will lead to a
removal of outliers. This method will not work in general for the La-norm.

These ideas have been used in several papers to remove outliers in geometrical corre-
spondence problems. Li used it for triangulation in [29], and similar methods were used

1Such as: MEKSAC, PROSAC, NAPSAC, LO-RANSAC, and many more.
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in [40]. In the later more complicated geometrical problems were solved, and instead of
giving the algorithm a number of outliers to remove, a predefined threshold was used to
define outliers.

In this thesis the Loo-norm is also used to remove outliers. The problem to solve is:

Problem 4.3. Given a tolerance € and a set of hypothetical correspondences C, find the

transformation T that maximizes |1

, where I C C' is the maximal set of correspondences
consistent with T.

A consistent set is then defined as:

Definition 4.1. Given an error rolerance €, we say that a set of correspondences C'is consistent
with a transformation, T, if any pair (1,7) € C satisfies d(T(x;),y;) < € and if C is
one-to-one.

In Paper V of this thesis 3D-3D registration is studied where the allowed transfor-
mation, T, is a similarity transform and the error residual is the geometric distance. In
that paper is also 2D-3D registration treated, where T is a rigid transformation followed
by a perspective mapping. The error residual in the latter case is the angular reprojection
error.

5 Graph Theory and the Vertex Cover Problem
A undirected graph G is defined as:

Definition 5.1 (Undirected Graph). Let V be a finite nonempty set, and let E C'V x V
where no concern is taken to the order. The pair G = (V, E) is called an undirected graph,
where V' is the set of vertices and E is the set of edges.

In this thesis methods from graph theory are used to solve the problem in the previous
section. We will look at pairs of correspondences, to decide if those can be consistent
under the same transform. If two correspondences are inconsistent with each other they
cannot belong to the same solution. This can be represented by a graph, where each
vertex is a hypothetical correspondence and edges are added between inconsistent pairs of
correspondences.

With this formulation the problem of finding the largest possible set of inliers trans-
forms to remove all edges from the graph by removing as few vertices as possible. This
problem is known as the vertex cover problem and in its decision form it is one of Karp’s
21 NP-complete problems [24] presented in 1972. To define the vertex cover problem
more precisely we first define a vertex cover.

Definition 5.2 (Vertex Cover). A vertex cover for an undirected graph, is a subser S of its
vertices such that every edge of the graph has at least one endpoint in S.
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With this definition of a vertex cover, the vertex cover problem is formulated as fol-
lows:

Problem 5.1. The vertex cover problem is the problem of finding the smallest vertex cover for
a given graph.

One example of a minimal vertex cover is the set {b, e} in the graph in Figure 6.

5.1 NP-Completeness

As said in the previous section the vertex cover problem is an NP-complete problem in
its decision form.

Definition 5.3. A problem having the following two properties is NP-complete:
o Any given solution to the problem can be verified in polynomial time,
o Ifthe problem can be solved in polynomial time, then so can every problem in NI

If only the first property of the NP-complete problems holds the problem is in the class
of NP (nondeterministic polynomial time) problems. The NP problems are decision
problems where the solution can be verified in polynomial time.

One further, and important, characteristic of the NP-complete problems is that there
exist no known solution that gives an answer in polynomial time. But there neither
exist any proof that there do not exist such an algorithm. The question if there exist a
polynomial bounded algorithm is known as the P = NP problem, and is one of the
Clay Institute seven millennium problems.? This problem was formulated by Cook [4]
in 1971. The general assumption among researcher is that P # N P.

Since it does not exists any known polynomial time algorithm to solve the NP-
complete problems, they are often considered hard to solve. This is in the meaning that
they require lots of computational effort to solve, if the problem is large.

Many combinatorial optimization problems belong to the class of NP-complete prob-
lems. Probably the most known of these is the traveling salesman problem. This problem
seeks the order to visits cities for a salesman in such a way that he visit all cities one time
and returns to where he began, and he shall do this in a way such that the path traveled is
as short as possible. This is also one of Karp’s 21 problems, there known as the Undirected
Hamilton Circuit problem.

5.2 Factor-2 Approximation

Since the vertex cover problem is NP-hard, approximation methods are needed. One such
approximation is a factor-k approximation, that for a minimization problem guarantees
to give a solution no worse then k times the optimal value. For the vertex cover problem

Zhttp://www.claymath.org/millennium/
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Figure 6: Example graph for vertex cover.

there is an easy to use, linear time, factor-2 approximation. The approximation algorithm
works by randomly picking an edge in the graph and then putting the two vertices that
the graph connects in the covering. For example, if in Figure 6, the edge between a and b
is chosen these two vertices are added to the solution. After that the edge between d and
e is randomly chosen, this gives us a covering consisting of {a, b, d, e}. This is exactly
twice as big as the minimal vertex cover, {b, e}. Note that if the edge between b and
e would have been randomly chosen, the approximation method would have given the
optimal covering.

5.3 Greedy Algorithm for Vertex Cover

It is not only interesting to find a bound on the optimal solution, it is also interesting
to find a good approximation to the best solution, even if it does not have a theoretical
bound on how close to the optimal solution it will be. The method that will be proposed,
and used in Papers V and VI, is well fitted to the problems that occur in localization. The
vertex cover problems that will appear in the papers will all be used to remove outliers.
Since the outliers have completely random geometrical positions the intuition is that they
will be inconsistent with almost all other correspondences. This will have the consequence
that the outlier correspondences will have the most number of edges connected to the
node representing the correspondence. Founded in this intuition we propose Algorithm 1
to find a good approximation to the vertex cover problem. This algorithm will give a good
approximation to the minimal vertex cover problem for the problems that occurs in this
thesis.

Algorithm 1 Greedy Vertex Cover Approximation

1: Keep track of the number of edges to each vertex.

2: Iterate until no edges remain.

3: Select the vertex with most number of edges.

4 Remove selected vertex.

5 Remove affected edges and reduce the edge-count of all affected vertices.
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6 Image Search

The last paper of the thesis is about large scale image based localization. This paper will
use, and extend, techniques that have been developed in the image retrieval research; the
problem of finding similar images to a query image. The most commonly used method
in image retrieval is based on the concept of bag-of-words. This method tries to mimic
the methods used in text retrieval [43].

The bag-of-words retrieval systems generally employ a number of standard steps,
which are similar to those of text retrieval. These are:

1. Visual words are extracted from the documents (to search among).

2. Each document is represented by a vector with components given by the frequency
of occurrence of the visual words the document contains.

3. The visual words are weighted depending on how common they are.

4. All the data is represented in an inverted file structure to achieve a fast search
routine.

5. The query image is transformed to a vector of visual words and the images with
the most similar feature vectors in the database are returned.

6. The top results of the previous step are re-ranked using more computation de-
manding algorithms, than in the previous step.

The first four of these steps can be made in advance which makes it possible to perform
the retrieval step in around a second even for very large databases.

One problem though when the methods from text retrieval are adjusted to work for
images is that there exists no obvious structure to substitute the words for. One way to
overcome this problem is to use visual words. A visual word is usually derived from a SIFT
feature. The SIFT features are mapped to visual words by a vocabulary. The vocabulary
is constructed from a large set of training images where SIFT features are extracted and
then clustered into different words. The number of clusters used, to achieve good search
results in this method, is around one million words [38].

There also exist other methods of image search. One of the more popular among
those is to use the GIST descriptor [39]. Instead of using several features to describe an
image, this method uses a single feature to describe an image. After that only a nearest
neighbor search is necessary to find similar images.

The last step in the image retrieval scheme presented above, the re-ranking, often
uses geometric verification to find the best matches. One way to do this is to estimate a
homography between the query image and the images in the database. The image that
gets the highest number of inliers in the homography estimation is then ranked in the top.
These type of calculations are relatively time consuming and in the latest years researchers
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have started to look at how to include the geometry already in the earlier steps of the
image retrieval procedure. One approach, presented in [21], is to encode weak geometric
consistency into the inverted files. The weak geometric consistency favors that the scale
and rotation of the feature points have been transformed consistently between the search
image and the query image. Another way to include geometry was presented by Wu ez
al. in [48]. They bundled SIFT features together to enforce close placed features in the
query image to also appear next to each other in the database images. The method uses
MSER interest points to give an area where all SIFT features should be bundled together.
By doing this, and also encode the geometry within the MSER regions, they improve
image retrieval results significantly.

6.1 Solving Localization with Image Search

Image search methods have been used in localization in several articles. In [35] the GIST
descriptor is used to find the most visually similar image with a known position. A similar
approach is used in [41] but instead of the GIST descriptor the bag-of-words framework
is used to perform the image retrieval.

A new approach to the localization problem, that uses an image retrieval step, was
presented by Irschara er 4/ in [20]. Instead of looking at similar images with known
position they created a three dimensional model of the area where the localization was
performed. From the three dimensional model they were able to create synthetic views
of the search area, so instead of searching for visually similar images they searched for
matches within the set of synthetic views.

In Paper VI, a method is presented that is inspired by Irschara’s method, and by the
methods that include geometry in an early step of the search algorithm. The method
creates synthetical views that represent an area of a city. In Paper VI such an area is eight
times eight meters. For each such square is it calculated which points that are visible, but
opposed to the paper by Irschara ez 4l. also the angles between pairs of feature points are
stored and used in the search step.

A re-rank method is also presented in the paper. This re-ranking uses pairwise con-
sistencies in a similar way as in Paper V. So again the vertex cover problem needs to be
solved, and the greedy method in Algorithm 1 is used. The presented re-ranking is fast
and boosts the performance of the localization algorithm.
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7 Summary of the Papers

PAPER I — Fast and Stable Polynomial Equation Solving and Its Ap-
plication to Computer Vision

This paper addresses the problem of numerical instability when systems of polynomial
equations are solved with Grobner basis methods. This is a common problem; e.g. in [46]
Stewénius et al. were forced to use emulated floating point numbers with higher accuracy
than usual, which resulted in a very slow algorithm. Another example of numerical insta-
bility is the paper [27] where Kiikelovd ez a/. were not able to construct a floating point
solver due to numerical problems.

To overcome the numerical problems two new methods are presented, and a combi-
nation of these. The first method truncates the ideal and makes the basis over-redundant.
This gives additional false solutions but we show that all true solution still appear. The
other method used is a change of monomials used for the basis in the quotient space.
This is also extended so that polynomials can be used in the basis instead of monomials.
The combination of these methods is also used with an adaptive step deciding to what
extent the truncation should be done.

The methods are tested on several recently reported problems involving a step where
a system of polynomial equations was solved. On all these problems a significant increase
in numerical stability is shown with a small extra cost in computational complexity.

Author contribution: This is joint work by myself, Martin Byrd and Kalle Astrom.
Martin acted as first author but I carried out most of the experiments and participated
during the development of the new methods.

PAPER II — Image Based Localization Using Hybrid Features

In this paper the camera pose problem is considered. Several new minimal cases are
studied with different degrees of camera calibration. The minimal cases are based on
what we call hybrid features. By hybrid features we mean that both correspondence to
other images and correspondences to known world points are used simultaneously. For
most of these minimal cases upper bounds on the number of solutions are given. Most of
these bounds are found by Grébner basis methods using Macaulay 2 [14]. Some of the
new minimal cases are also solved numerically by Grobner basis techniques and in some
cases the improved strategies of Paper I were necessary to achieve a solution.

Author contribution: This is a joint work by myself, Martin Byrdd and our super-
visors Fredrik Kahl and Kalle Astrom. As first author I developed most of the theory and
carried out the largest part of the experiments with aid primarily by Martin.
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PAPER III — Fast and Robust Numerical Solutions to Minimal Prob-
lems for Cameras with Radial Distortion

This paper is an extension to the paper by Kuakelovd and Pajdla [27]. In their paper they
presented the theory of two minimal problems of relative pose with radial distortion. The
two problems are (i) simultaneous estimation of essential matrix and a common radial dis-
tortion parameter for two partially calibrated views and six image point correspondences
and (ii) estimation of fundamental matrix and two different radial distortion parameters
for two uncalibrated views and nine image point correspondences.

The method presented by Kikelovd and Pajdla only worked with exact arithmetics,
and hence was not useable in practice. In this paper methods to achieve a practically
applicable solver are presented that use regular floating point arithmetics. This required
the use of methods from Paper I, but also other improvements from the original paper
were necessary.

Author contribution: This is a joint work by myself, Martin Byrdd, and Kalle
Astrom, as well as Zuzana Kikelovd and Tomas Pajdla from the Czech Technical Uni-
versity in Prague. I participated actively in the development of the new methods and
implemented the new practical useable solvers. I also carried out parts of the experiments.

PAPER IV — Pose Estimation with Radial Distortion and Unknown
Focal Length

This paper treats the problem of camera pose estimation. For calibrated cameras this can
be solved with three known correspondences between an image and a three dimensional
model. In this paper we instead use four correspondences. The extra correspondence
is used to also be able to estimate the unknown focal length of the camera and a radial
distortion. The paper shows that by making reasonable assumptions on the remaining
inner camera parameters, it is possible to solve the camera pose estimation problem for
uncalibrated cameras as well. The solution to the problem uses Grobner basis methods
developed in Paper I. To be able to use these methods the parametrization of the prob-
lem has to be chosen carefully, so the most important part of the paper is on how to
parametrize the problem. The experiments of this paper show that this can be a practi-
cally useable method to estimate the position of the camera.

Author contribution: This is a joint work with Martin Byrdd. I acted as first author
and developed most of the theory and conducted most of the experiments.

PAPER V — Optimal Correspondences, Geometry and the Vertex
Cover Problem

This paper presents a globally optimal method for two geometrical problems, the 3D-
3D registration problem and the camera pose estimation of a calibrated camera. The
methods can find the transformation that generates the maximum number of inliers for
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a pre-defined error threshold. To achieve this, pairwise constraints are used to transform
the problem into a graph problem. In the end the solution is found by solving the vertex
cover problem on the graph. The vertex cover problem is NP-hard but we show that for
the kind of graphs occurring for these geometrical problems, it can be efficiently solved.

Author contribution: This is a joint work by myself, Olof Enqvist, and our super-
visor Fredrik Kahl. My main contribution to this paper is in the experimental section. I
created a large part of the experiments and implementations of the methods, especially
for the 3D-3D registration problem. I also actively participated in the development of
the methods presented.

PAPER VI — City-Scale Localization Using Geometrical Visual Words

This paper treats the problem of finding the location of where an image was taken in a
city. To make this possible a dataset of 95,000 images of Malmé is used to build a three
dimensional point model of the city. With this model every point can be associated with
an area where it is visible. This is used to create synthetical views for every eight by eight
meters grid of the complete city. In this model, pair of features are used together with
the angle between them to define a geometrical visual word. The use of visual words
makes it possible to apply methods developed in the images retrieval research, to quickly
find possible grid points to look in for the positions. The paper also presents a method
to re-rank the top results of the first search step. This re-ranking procedure uses similar
geometrical conditions as in the previous paper to set up a vertex cover problem, and by
that finding consistent sets of correspondences.

Author contribution: This is a joint work by myself, Linus Svirm, Olof Enqvist and
our supervisor Fredrik Kahl. I acted as first author and is responsible for most of the
work. Linus Svirm added a great effort to the implementation and participated in many
discussions of the methods. Also Olof Enqvist was active in many discussions and helped
with the implementation of small but essential parts.
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Fast and Stable Polynomial Equation
Solving and Its Application to
Computer Vision

Martin Byréd, Klas Josephson, Kalle Astrom

Abstract

This paper presents several new results on techniques for solving systems of polynomial equations
in computer vision. Grobner basis techniques for equation solving have been applied success-
Sully to several geometric computer vision problems. However, in many cases these methods
are plagued by numerical problems. In this paper we derive a generalization of the Gribner
basis method for polynomial equation solving, which improves overall numerical stability. We
show how the action matrix can be computed in the general setting of an arbitrary linear basis
for C[x]/I. In particular, two improvements on the stability of the computations are made
by studying how the linear basis for C[X|/I should be selected. The first of these strategies
utilizes QR factorization with column pivoting and the second is based on singular value de-
composition (SVD). Moreover, it is shown how to improve stability further by an adaptive
scheme for truncation of the Gribner basis. These new techniques are studied on some of the
latest reported uses of Grobner basis methods in computer vision and we demonstrate dramat-
ically improved numerical stability making it possible to solve a larger class of problems than
previously possible.

1 Introduction

Numerous geometric problems in computer vision involve the solution of systems of
polynomial equations. This is particularly true for so called minimal structure and mo-
tion problems, e.g. [11, 29, 42]. Solutions to minimal structure and motion problems
can often be used in RANSAC algorithms to find inliers in noisy data [17, 43, 44]. For
such applications one needs to efficiently solve a large number of minimal structure and
motion problems in order to find the best set of inliers. There is thus a need for fast
and numerically stable algorithms for solving particular systems of polynomial equations.
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Recent applications of polynomial techniques in computer vision include solving for fun-
damental and essential matrices and radial distortion [9], panoramic stitching [4] and
pose with unknown focal length [5].

Another area of recent interest is global optimization used e.g. for optimal triangula-
tion, resectioning and fundamental matrix estimation. Global optimization is a promis-
ing, but difficult pursuit and different lines of attack have been tried, ¢.g. branch and
bound [1], Loo-norm methods [21, 26] and methods using linear matrix inequalities
(LMIs) [27]. An alternative way to find the global optimum is to calculate stationary
points directly, usually by solving some polynomial equation system [22, 41]. So far,
this has been an approach of limited applicability since calculation of stationary points is
numerically difficult for larger problems. By using the methods presented in this paper
it is possible to handle a somewhat larger class of problems, thus offering an alternative
to the above mentioned optimization methods. An example of this is optimal three view
triangulation which has previously not been solved in a practical way [41]. We show that
this problem can now be solved efficiently with an algorithm implemented in standard
IEEE double precision.

Traditionally, researchers have hand-coded elimination schemes in order to solve sys-
tems of polynomial equations. Recently, however, new techniques based on algebraic
geometry and numerical linear algebra have been used to find all solutions, ¢f. [37]. The
outline of such algorithms is that one first studies a specific geometric problem and finds
out what structure the Grébner basis of the ideal I has for that problem, how many
solutions there are and what the degrees of monomials occurring in the Grobner basis el-
ements are. For each instance of the problem with numerical data, the process of forming
the Grobner basis follows the same steps and the solution to the problem can be written
down as a sequence of pre determined elimination steps using numerical linear algebra.

Currently, the limiting factor in using these methods for larger and more difficult
cases is numerical problems. For example in [41] it was necessary to use emulated 128
bit numerics to make the system work, which made the implementation very slow. This
paper improves on the state of the art of these techniques making it possible to handle
larger and more difficult problems in a practical way.

In the paper we pinpoint the main source of these numerical problems (the condi-
tioning of a crucial elimination step) and propose a range of techniques for dealing with
this issue. The main novelty is a new approach to the action matrix method for equation
solving, relaxing the need of adhering to a properly defined monomial order and a com-
plete Grobner basis. This unlocks substantial freedom, which in this paper is used in a
number of different ways to improve stability.

Firstly, we show how the sensitive elimination step can be avoided, by using an overly
large/redundant basis for C[x]/I to construct the action matrix. This method yields the
right solutions along with a set of false solutions that can then easily be filtered out by
evaluation in the original equations. Note that this basis is not a true basis in the sense
that it is linearly dependent.
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Secondly, we show how a change of basis in the quotient space C[x]/I can be used
to improve the numerical precision of the Grébner basis computations. This approach
can be seen as an attempt at finding an optimal reordering or even linear combination of
the monomials and we investigate what conditions such a reordering/linear combination
needs to satisfy. We develop the tools needed to compute the action matrix in a general
linear basis for C[x]/I and propose two strategies for selecting a basis which enhances the
stability of the solution procedure.

The first of these is a fast strategy based on QR factorization with column pivoting.
The Grébner basis like computations employed to solve a system of polynomial equa-
tions can essentially be seen as matrix factorization of an under-determined linear system.
Based on this insight, we combine the robust method of QR factorization from numer-
ical linear algebra with the Gribner basis theory needed to solve polynomial equations.
More precisely, we employ QR factorization with column pivoting in the above men-
tioned elimination step and obtain a simultaneous selection of linear basis and triangular
factorization.

Factorization with column pivoting is a very well studied technique and there exist
highly optimized and reliable implementations of these algorithms in e.g. LAPACK [2],
which makes this technique accessible and relatively straightforward to implement.

The second technique for basis selection goes one step further and employs singular
value decomposition (SVD) to select a general linear basis of polynomials for C[x]/I.
This technique is computationally more demanding than the QR method, but yields
somewhat better stability.

Finally, we show how a redundant linear basis for C[x]/I can be combined with
the above basis selection techniques. In the QR method, since the pivot elements are
sorted in descending order, we get an adaptive criterion for where to truncate the Grébner
basis like structure by setting a maximal threshold for the quotient between the largest
and the smallest pivot element. When the quotient exceeds this threshold we abort the
elimination and move the remaining columns into the basis. This way, we expand the
basis only when necessary.

The paper is organized as follows. After a brief discussion of related techniques for
polynomial equation solving in Section 1.1, we give an overview of the classical theory of
algebraic geometry underlying the ideas presented in this paper in Section 2. Thereafter,
in Section 3, we present the theoretical underpinnings of the new numerical techniques
introduced here. The main contributions in terms of numerical techniques are given in
Sections 4, 5 and 6. In Section 7 we evaluate the speed and numerical stability of the
proposed techniques on a range of previously solved and unsolved geometric computer
vision problems and finally we give some concluding remarks.
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1.1 Related Work

The area of polynomial equation solving is currently very active. See e.g. [10] and refer-
ences therein for a comprehensive exposition of the state of the art in this field.

One of the oldest and still used methods for non-linear equation solving is the
Newton-Raphson method which is fast and easy to implement, but relies heavily on
initialization and finds only a single zero for each initialization. In the univariate case, a
numerically sound procedure to find the complete set of roots is to compute the eigenval-
ues of the companion matrix. However, if only real solutions are needed, the fastest way
is probably to use Sturm sequences [24].

In several variables a first method is to use resultants [13], which using a determinant
construct enables the successive elimination of variables. However, the resultant grows
exponentially in the number of variables and is in most cases not practical for more than
two variables. In some cases, a related technique known as the hidden variable method can
be used to eliminate variables, see e.g. [33]. An alternative way of eliminating variables
is to compute a lexicographical Grobner basis for the ideal generated by the equations
which can be shown to contain a univariate polynomial representing the solutions [13].
This approach is however often numerically unstable.

A radically different approach is provided by homotopy continuation methods [45].
These methods typically work in conjunction with mixed volume calculations by con-
structing a simple polynomial system with the same number of zeros as the actual system
that is to be solved. The simple system with known zeros is then continuously deformed
into the actual system. The main drawback of these methods is the computational com-
plexity with computation time ranging in seconds or more.

At present, the best methods for geometric computer vision problems are based on
eigendecomposition of a certain matrices (action matrices) representing multiplication in
the quotient space C[x]/I. The action matrix can be seen as a direct generalization of the
companion matrix in the univariate case. The factors that make this approach attractive
is that it (i) is fast and numerically feasible, (ii) handles more than two variables and
reasonably large numbers of solutions (up to about a hundred) and (iii) is well suited to
tuning for specific applications. To the authors best knowledge, this method was first
used in the context of computer vision by Stewenius ez 2/. [37] even though Grébner
basis methods were mentioned in [23].

The work presented in this paper is based on preliminary results presented in [6, 7, 8]
and essentially develops the action matrix method further to resolve numerical issues
arising in the construction of the action matrix. Using the methods presented here, it is
now possible to solve a larger class of problems than previously possible.
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2 Review of Algebraic Geometry for Equation Solving

In this section we review some of the classical theory of multivariate polynomials. We
consider the following problem

Problem 1. Given a set of m polynomials f;(x) in s variables x = (z1,...,xs), deter-
mine the complete set of solutions to

(1)

We denote by V' the zero set of (1). In general V' need not be finite, but in this paper we
will only consider zero dimensional V/, i.e. V' is a point set.

The general field of study of multivariate polynomials is algebraic geometry. See [13]
and [12] for a nice introduction to the field and for proofs of all claims made in this
section. In the language of algebraic geometry, V' is an affine algebraic variety and the
polynomials f; generate an ideal I = {g € C[x] : g = X;h;(x)fi(x)}, where h; €
C[x] are any polynomials and C[x] denotes the set of all polynomials in x over the
complex numbers.

The motivation for studying the ideal I is that it is a generalization of the set of
equations (1). A point x is a zero of (1) iff it is a zero of I. Being even more general, we
could ask for the complete set of polynomials vanishing on V. If I is equal to this set,
then [ is called a radical ideal.

We say that two polynomials f, g are equivalent modulo I iff f — g € I and denote
this by f ~ g. With this definition we get the quotient space C[x]/I of all equivalence
classes modulo I. Further, we let [-] denote the natural projection C[x] — C[x]/I, i.e.
by [fi] we mean the set {g; : f; — g; € I} of polynomials equivalent to f; modulo I.

A related structure is C[V], the set of equivalence classes of polynomial functions on
V. We say that a function F' is polynomial on V' if there is a polynomial f such that
F(x) = f(x) for x € V and equivalence here means equality on V. If two polynomials
are equivalent modulo I, then they are obviously also equal on V. If I is radical, then
conversely two polynomials which are equal on V' must also be equivalent modulo I.
This means that for radical ideals, C[x]/I and C[V] are isomorphic. Now, if V' is a point
set, then any function on V' can be identified with a |V'|-dimensional vector and since
the unisolvence theorem for polynomials guarantees that any function on a discrete set
of points can be interpolated exactly by a polynomial, we get that C[V] is isomorphic to
C", where r = |V].
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2.1 The Action Matrix

Turning to equation solving, our starting point is the companion matrix which arises for
polynomials in one variable. For a third degree polynomial

p(z) = 2% + ax2® + a1z + ao, (2)
the companion matrix is
—ag 1 0
—a; 0 1]. 3)
—a 0 0

The eigenvalues of the companion matrix are the zeros of p(x) and for high degree poly-
nomials, this provides a numerically stable way of calculating the roots.

With some care, this technique can be extended to the multivariate case as well,
which was first done by Lazard in 1981 [32]. For V finite, the space C[x]/I is finite
dimensional. Moreover, if I is radical, then the dimension of C[x]/I is equal to |V,
i.e. the number of solutions [13]. For some p € C[x] consider now the operation
T, : f(x) — p(x)f(x). The operator T}, is linear and since C[x]/I is finite dimen-
sional, we can select a linear basis B of polynomials for C[x]/I and represent T}, as a
matrix m,,. This matrix is known as the action matrix and is precisely the generalization
of the companion matrix we are looking for. The eigenvalues of m,, are p(x) evaluated
at the points of V. Moreover, the eigenvectors of mg equals the vector of basis elements
evaluated on V. Briefly, this can be understood as follows: Consider an arbitrary poly-
nomial p(x) = ¢I'b, where ¢ is a vector of coefficients and b is a vector of polynomials
forming a basis of C[x]/I. We then have

[p-c"'b] = [(myc)"b] = [chgb]. 4)

This holds for any coefficient vector ¢ and hence it follows that [pb] = [mgb], which
can be written pb = mgb + g for some vector g with components g; € I. Evaluating
the expression at a zero X € V we get g(X) = 0 and thus obtain

p(X)b(X) = m’ b(x), 5)

T
P

In other words, the eigenvectors of mg yield b(x) evaluated at the zeros of I and the
eigenvalues give p(x) at the zeros. The conclusion we can draw from this is that zeros

which we recognize as an eigenvalue problem on the matrix m; with eigenvectors b(X).

of I corresponds to eigenvectors and eigenvalues of m,,, but not necessarily the opposite,
i.e. there can be eigenvectors/eigenvalues that do not correspond to actual solutions. If 1
is radical, this is not the case and we have an exact correspondence.
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2.2 Grobner Bases

We have seen theoretically that the action matrix my,, provides the solutions to a corre-
sponding system of polynomial equations. The main issue is now how to compute m,,.
This is done by selecting a basis B for C[x]/I and then computing [p-b;] for each b; € B.
To do actual computations in C[x]/I we need to represent each equivalence class [f] by
a well defined representative polynomial. The idea is to use multivariate polynomial di-
vision and represent [f] by the remainder under division of f by I. Fortunately, for any
polynomial ideal I, this can always be done and the tool for doing so is a Grébner basis G
for I [13]. The Grébner basis for I is a canonical set of generators for I with the property

that multivariate division by G, denoted ?G, always yields a well defined remainder. By

well defined we mean that for any fi, fo € [f], we have EG = EG. The Grobner
basis is computed relative a monomial order and will be different for different monomial
orders. As a consequence, the set of representatives for C[x]/I will be different, whereas
the space itself remains the same.

The linear basis B should consist of elements b; such that the elements {[b;]}7_,

together span C[x]/I and b7-G = b;. Then all we have to do to get m,, is to compute the

action pb; ~ for each basis element b;, which is easily done if G is available.

Example 1. The following two equations describe the intersection of a line and a circle

22+92—-1 = 0
Y~ 0 ©)
y = 0.
A Grébner basis for this system is
vz =0 ?)
r—y = 0,

from which we trivially see that the solutions are % (1,1) and % (—1,—1). In this case

B = {y, 1} are representatives for a basis for C[x]/I and we have T, [1] = [z] = [y] and

T.ly] = [zy] = [y?] = [%], which yields the action matrix
0 1}
m; = ) (8)
o
with eigenvalues %, f%. a

2.3 A Note on Algebraic and Linear Bases

At this point there is a potentially confusing situation since there are two different types
of bases at play. There is the linear basis B of the quotient space C[x]/I and there is the
algebraic basis (Grobner basis) G of the ideal I. To make the subsequent arguments as
transparent as possible for the reader we will emphasize this fact by referring to the former
as a linear basis and the latter as an algebraic basis.
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2.4 Floating Point Grobner Basis Computations

The well established Buchberger’s algorithm is guaranteed to compute a Grobner basis in
finite time and works well in exact arithmetic [13]. However, due to round-off errors, it
easily becomes unstable in floating point arithmetic and except for very small examples it
becomes practically useless. The reason for this is that in the Grébner basis computation,
leading terms are successively eliminated from the generators of I by pairwise subtraction
of polynomials, much like Gaussian elimination. This leads to cancellation effects where
it becomes impossible to tell whether a certain coefficient should be zero or not.

A technique introduced by Faugere ez a/. in [16] is to write the system of equations
on matrix form

CX =0, )

o a1l . . . o
where X = [X o0X "} is a vector of monomials with the notation x%* =
¥ - 2% and C is a matrix of coefficients. Elimination of leading terms now trans-

lates to matrix operations and we then have access to a whole battery of techniques from
numerical linear algebra allowing us to perform many eliminations at the same time with
control on pivoting etc.

This technique takes us further, but for larger more demanding problems it is neces-
sary to study a particular class of equations (e.g. relative orientation for omnidirectional
cameras [18], fundamental matrix estimation with radial distortion [30], optimal three
view triangulation [41], etc.) and use knowledge of what the structure of the Grobner
basis should be to design a special purpose Grébner basis solver [37]. The typical work
flow has been to study the particular problem at hand with the aid of a computer algebra
system such as Maple or Macaulay2 and extract information such as the leading terms of
the Grébner basis, the monomials to use as a basis for C[x]/1, the number of solutions,
etc. and work out a specific set of larger (gauss-jordan) elimination steps leading to the
construction of a Grobner basis for 1.

Although, these techniques have permitted the solution to a large number of previ-
ously unsolved problems, many difficulties remain. Most notably, the above mentioned
elimination steps (if at all doable) are often hopelessly ill conditioned [41, 31]. This is in
part due to the fact that one has focused on computing a complete and correct Grébner
basis respecting a properly defined monomial order, which we show is not necessary.

In this paper we move away from the goal of computing a Grébner basis for I and
focus on finding a representative of f in terms of a linear combination of a basis B, since
this is the core of constructing m,. We denote this operation f for a given f € C[x].
Specifically, it is not necessary to be able to compute f for a general f € C[x]. To
construct m,, we only need to worry about finding f for f € pB\ B, which is an easier
task. It should however be noted that the computations we do much resemble those
necessary to get a Grobner basis.

A further advantage of not having to compute a complete Grobner basis is that we
are not bound by any particular monomial order which as we will see, when used right,
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buys considerable numerical stability. In addition to this we introduce an object which
generalizes the action matrix and can be computed even when a true linear basis for
C[x]/I cannot be used.

Drawing on these observations, we investigate in detail the exact matrix operations
needed to compute f and thus obtain a procedure which is both faster and more stable,
enabling the solution of a larger class of problems than previously possible.

3 A New Approach to the Action Matrix Method

In this section we present a new way of looking at the action matrix method for poly-
nomial equation solving. The advantage of the new formulation is that it yields more
freedom in how the action matrix is computed. It should however be noted that a fun-
damental limitation still remains. As is the case with all other floating point methods,
we do not present an algorithm which is guaranteed to work for all situations. To some
extent, the method relies on heuristics and will only work if certain conditions can be
fulfilled. As we show later, it does however expand the domain of application compared
to previous methods. We start with a few examples that we will use to clarify these ideas.

Example 2. In the five point relative orientation problem for calibrated cameras, ¢f". [29,
14, 34, 38], the calculation of the essential matrix using 5 image point correspondences
leads to 10 equations of degree 3 in 3 unknowns. These equations involve 20 monomials.
By writing the equations as in (9) and using a total degree ordering on the monomials we
get a coefficient matrix C of size 10 x 20 and a monomial vector X = [x®1 ... x%]|T
with 20 monomials. It turns out that the first 10 X 10 block C; of C = [C; Cs] is in
general of full rank and thus the first 10 monomials X; can be expressed in terms of the
last 10 monomials X5 as

X; = —C;'CyXo. (10)

This makes it possible to regard the monomials in X as representatives of a linear basis
for C[x]/I. It is now straightforward to calculate the action matrix for T}, (the multi-
plication operator for multiplication by x) since monomials in the linear basis are either
mapped to monomials in the basis or to monomials in X, which can be expressed in
terms of the basis using (10). a

In this example the linear basis X5 was thought of as a basis for the space of remain-
ders after division with a Grébner basis for one choice of monomial order and this is how
these computations have typically been viewed. However, the calculations above are not
really dependent on any properly defined monomial order and it seems that they should
be meaningful irrespective of whether a true monomial order is used or not. Moreover,
we do not use all the Grébner basis properties.

Based on these observations we again emphasize two important facts: (i) We are not
interested in finding the Grobner basis or a basis for the remainder space relative to some
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Grobner basis per se; it is enough to get a well defined mapping f and (ii) it suffices to
calculate f on the elements x - x*, 7.e. we do not need to be able to compute f for all
f € C[x]. These statements and their implications will be made more precise further on.

Example 3. Consider the equations

fQny_‘r+y_1:O7
with solutions (—1, —1), (1,1). Now let B = {x, y, 1} be a set of representatives for the
equivalence classes in C[x] /I for this system. The set BB does not constitute a proper basis
for C[x]/I since the elements of BB represent linearly dependent equivalence classes. They
do however span C[x]/I. Now study the operator T}, acting on B. We have T),[1] = [y],
T,lx] = [zy] = [v —y + 1] and T, [y] = [y?] = [zy] = [z — y + 1] which gives a

multiplication matrix

1 1 0
-1 -1 1
1 1 0

An eigendecomposition of this matrix yields the solutions (—1, —1), (1,1), (—1,0). Of
these the first two are true solutions to the problem, whereas the last one does not satisfy
the equations and is thus a false zero. O

In this example we used a set of monomials 3 whose corresponding equivalence classes
spanned C[x]/I, but were not linearly independent. However, it was still possible to
express the image T}, (B) of the set B under T}, in terms of B. The elements of the
resulting action matrix are not uniquely determined. Nevertheless we were able to use it
to find the solutions to the problem. In this section we give general conditions for when
a set BB can be used to construct a multiplication matrix which produces the desired set of
zeros, possibly along with a set of false zeros, which need to be filtered out.

More generally this also means that the chosen representatives of the linear basis of
C[x]/I need not be low order monomials given by a Grobner basis. In fact, they need
not be monomials at all, but could be general polynomials.

Drawing on the concepts illustrated in the above two examples we define a solving
basis, similar to B in Example 3. The overall purpose of the definition is to rid our selves
of the need of talking about a Grobner basis and properly defined monomial orders,
thus providing more room to derive numerically stable algorithms for computation of the
action matrix and similar objects.

In the following we will also provide techniques for determining if a candidate basis B
constitutes a solving basis and we will give numerically stable techniques for basis selection
in too large (linearly dependent) solving bases, here referred to as redundant bases.
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3.1 Solving Bases

We start off with a set of polynomial equations as in (1) and a (point) set of zeros

V(f1,---, fm) and make the following definition.

Definition 1. Consider a finite subset B C C[x] of the set of polynomials over the com-
plex numbers. If for each b; € B and some p € C[x] we express pb; as a linear combina-
tion of basis elements as

p(x)bi(x) = X;mi;b;(x) (12)
for some (not necessarily unique) coefficients m;; and x € V, then we call B a solving
basis for (1) w.r.t p. m]

We now get the following for the matrix m, made up of the coefficients m;;.

Theorem 1. Given a solving basis B for (1) w.r.t p, the evaluation of p on'V is an eigenvalue
of the matrix my,. Moreover, the vectorb = (b1, ..., b )T evaluated on V. is an eigenvector

of my,
Proof. By the definition of my,,, we get

pb1 Ejmlj bj
px)b(x)=| : | = : = m,b(x) (13)
pb»,- Ej Myj b]‘

forxe V. O

As will become clear further on, when B is a true basis for C[x]/I, then the matrix
m,, defined here is simply the transposed action matrix for multiplication by p.

Given a solving basis, the natural question to ask is now under which circumstances
all solutions to the related system of equations can be obtained from an eigenvalue de-
composition of m;,. We next explore some conditions under which this is possible. A
starting point is the following definition

Definition 2. A solving basis 13 is called a complete solving basis if the inverse image of the
mapping  — b(x) from variables to monomial vector is finite for all points. O

A complete solving basis allows us to recover all solutions from my, as shown in the
following theorem.

Theorem 2. Ler B be a complete solving basis for (1) with r elements and my, as above and

assume that for all eigenvalues \; we have Ny # Xj for © # j. Then the complete set of
solutions to (1) can be obtained from the set of eigenvectors {v;} of M.
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Proof” Due to Theorem 1, we know that the vector of monomials b(x) evaluated on a
point in the set of zeros V' is an eigenvector of m,. The number of eigenvectors and
eigenvalues of m,, is finite. This means that if we compute all eigenvectors {w; } of my,,
then the set of vectors {b(X) : X € V'} must be a subset of {w; }. We now consider b(x)
as a mapping b : R — R" and look at the inverse image b~1(v;). By the requirements,
this is finite for all i and applying b™! to all w; thus yields a finite set of points which
must contain V. Evaluation in (1) allows us to filter out the points of this set which are
not in V' (and hence not solutions to (1)). a

If on the other hand the inverse image is not finite for some v; so that we get a pa-
rameter family X corresponding to this eigenvector, then the correct solution can typically
not be obtained without further use of the equations (1) as illustrated in the following
example.

Example 4. Consider the polynomial system

2-2=0

"
with V' = {(1,v2),(-1,v2), (1,3/2),(~1,—v2),}. Clearly, B = {z,1} with
monomial vector b(z,y) = [z 1]T, is a solving basis w.7.# x for this example since

l-z=zandz-x =22 =10nV. Hence, b(z,y) evaluated on V is an eigenvector of

m, = [‘f (1)] , (15)

which is easily confirmed. However, these eigenvectors do not provide any information
about the y-coordinate of the solutions. We could try adding y to B but this would not
work since the values of 2y on V' cannot be expressed as a linear combination of z and y
evaluated on V. A better choice of solving basis would be B = {zy, z,y, 1}. O

At a first glance, Theorem 2 might not seem very useful since solving for z from
b(z) = v; potentially involves solving a new system of polynomial equations. However,
it provides a tool for ruling out choices of 5 which are not practical to work with. More-
over, there is usually much freedom in the choice of B. In general, B can be a set of
polynomials. However, it is often practical to work with a basis of monomials. We get a
particularly convenient situation if the coordinate variables ; are included in B as seen
in the following straight forward result:

Corollary 1. If{1,x1,..., 25} C B, then all solutions to (1), can be directly read off from

the eigenvectors of M, .

Proof- Since the monomials {1, 21,...,2s} occur in B, they enter in the vector b(z)
and hence the mapping in Definition 2 is injective with a trivial inverse. O
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This fact suggests that we should always try to include the coordinate variables in B
to make for easy extraction of the final solutions. In practice, this is nearly always easy
to do. And even if for some reason a few variables have to be left out, we can often still
express each variable 2}, as a linear combination of the basis elements b;(x) for x € V by
making use of the original equations. We thus again obtain a well defined inverse to the
mapping in Definition 2.

Finally, we show how the concept of solving basis connects to the standard theory of
action matrices in the quotient space C[z]/I.

Theorem 3. [f'the ideal I generated by (1) is radical, then a complete solving basis B w.r.t to
p for (1) with the property that all eigenvalues of m,, are distinct spans Clz] /1.

Proof Since I is radical, C[z]/I is isomorphic to C[V], the ring of all polynomial func-
tions on V. Moreover, since V is finite, all functions on V' are polynomial and hence
C[V] can be identified with C", where 7 = |V|. Consider now the matrix B =
[b(z1),...,b(z,)]. Each row of B corresponds to a (polynomial) function on V.
Hence, if we can show that B has row rank 7, then we are done. Due to Theorem 1,
all b(x;) are eigenvectors of m,, corresponding to eigenvalues p(z;). By the assumption
of distinct eigenvalues we have p(z;) # p(x;) whenever b(z;) # b(z;). Since B is
a complete solving basis we have b(x;) # b(z;) whenever z; # ;. This means that
the 7 points in V' correspond to distinct eigenvalues and hence, since eigenvectors cor-
responding to different eigenvalues are linearly independent, B has column rank 7. For
any matrix row rank equals column rank and we are done. O

The above theorem provides a correspondence between solving bases and linear bases
for C[x]/I and in principle states that under some extra restrictions, a solving basis is
simply a certain choice of linear basis for C[x]/I and then the matrix m,, turns into the
transposed action matrix.

However, relaxing these restrictions we get something which is not necessarily a basis
for C[x]/I in the usual sense, but still serves our needs in terms of equation solving. More
specifically, using the concept of a solving basis provides two distinctive advantages.

(i) For a radical polynomial system with r zeros, C[x]/I is r-dimensional, so a basis
for C[x]/I contains 7 elements. This need not be the case for a solving basis, which
could well contain more than r elements, but due to Theorem 2 still provides the right
solutions. This fact is exploited in Section 4.

(i1) Typically, the arithmetics in C[x]/I has been computed using a Grébner basis for
I, which directly provides a monomial basis for C[x]/I in form of the set of monomials
which are not divisible by the Grébner basis. In this work we move focus from Grobner
basis computation to the actual goal of expressing the products pb; in terms of a set of
linear basis elements and thus no longer need to adhere to the overly strict ordering rules
imposed by a particular monomial order. This freedom is exploited in Sections 5.1 and
5.2.

Finally, (i) and (ii) are combined in Section 5.3.
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3.2 Solving Basis Computations using Numerical Linear Algebra

We now describe the most straight forward technique for deciding whether a candidate
basis B w.r.t. one of the variables z, can be used as a solving basis and simultaneously
calculate the action of T}, on the elements of B.

We start by generating more equations by multiplying the original set of equations by
a hand crafted (problem dependent) set of monomials. This yields additional equations,
which are equivalent in terms of solutions, but hopefully linearly independent from the
original ones. In Example 4, we could multiply by e.g. {z,y, 1}, yielding zy* — 2z, 2 —
x,y® — 2y, 2%y — y,y* — 2,22 — 1. The general question of which and how many
additional equations to generate is a tough one and there exist no watertight answers. This
has to do with the fact that computing a Grébner basis is an NP hard problem in general.
The rule of thumb is to start out with a small set of equations and then sequentially
adding more equations until the computations go through. However, some additional
insight into the difficulty of the problem can be obtained by studying it symbolically
using a computer algebra system, e.g. Macaulay?2 [3].

Given a candidate for a linear basis B of monomials one then partitions the set of all
monomials M occurring in the equations in to three parts M = E|JR U B. The set
R = x;B \ B is the set of monomials that need to be expressed in terms of B to satisfy
the definition of a solving basis and &€ = M\ (R |J B) is the set of remaining (excessive)
monomials. Each column in the coefficient matrix represents a monomial, so we reorder
the columns and write

C=[Ce Cr Cgl, (16)

reflecting the above partition. The £-monomials are not of interest in the action ma-
trix computation so we eliminate them by putting C¢ on row echelon form using LU
factorization

X =0. 17
0 Cgry Cp R 17

X
Ugsi Cra Cm} £
X5

We now discard the top rows and provided that enough linearly independent equa-
tions were added in the first step so that Cry is of full rank, we multiply by C5 from
the left producing

- X
1 Crbc] [ 32| o0 18)
or equivalently
Xr = —CgyCp2Xp, (19)

which means that the R-monomials can be expressed as a linear combination of the basis
monomials. Thus B is a solving basis and the matrix m, can easily be constructed as in
(12). In other words, given an enlarged set of equations and a choice of linear basis B,
the full rank of CRy is sufficient to solve (1) via eigendecomposition of m, . The above
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method is summarized in Algorithm 1 and given the results of Section 3.1 we now have
the following:

Result 1. Algorithm 1 yields the complete set of zeros of a polynomial system, given that the
pre- and postconditions are satisfied.

Proof. The postcondition that Cgy is of full rank ensures that B is a solving basis and
together with the preconditions, Theorem 2 and Corollary 1 then guarantees the state-
ment. O

So far, we have given general conditions for when a candidate basis 3 can be a solving
basis, but we have not said anything about how a candidate basis can be chosen. A set B
which is guaranteed to be a solving basis can be found by fixating a monomial order and
then computing a Grébner basis symbolically using a computer algebra system. One can
then collect all monomials which are not divisible by any leading monomial in the Grob-
ner basis which yields a solving basis. However, any set which includes these monomials
will also be a solving basis and in applications it turns out that a somewhat larger set B
is often beneficial for numerical stability. A strategy which works well in practice is to
start with the lowest order monomials and then sequentially add more monomials until
enough have been added to make it a solving basis and to ensure numerical stability.

Example 5. Consider the equations from Example 1. Multiplying the second equation
by 2 and y yields the enlarged system

.’L'2
1 0 1 0 0 -—-1| |xy
1 =1 0 0 0 o0f /[y _
0 1 -10 0 oflz]"" (20)
00 0 1 -1 0]y
1

with M = {22 2y, y?, 2,9, 1} and since we chose B = {y, 1}, we get R = {xy,x}
and & = {z2,y?}. After Step 11 and 12 of Algorithm 1 we have Cro = [2 9] and
Cpo = [31 _01} and inserting into (19) we obtain

xyl [0 3] [y
HRlE e
which then allows us to construct m,, for this example. a

A typical problem that might occur is that some eigenvalues of m;, are equal, which
means that two or more zeros have equal -coordinate. Then the corresponding eigen-
vectors can not be uniquely determined. This problem can be resolved by computing
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Algorithm 1 Compute a solving basis w.r.t. j, and use it to solve a polynomial system.

Require: List of equations F' = {f1, ..., fim}, set of basis monomials /5 containing the
coordinate variables x1, . .. s, m lists of monomials {L;}1 ;.
Ensure: Cgy is of full rank, eigenvalues of mg, are distinct.
1: Fext — F
: forallfi € Fdo
for all x* € L; do
Fext — Fext U{Xaj : fl}
end for
end for
Construct coefficient matrix C from Fiy.
M « The set of all monomials occurring in Feyt.
10 £ — M\ (RUB)
. Reorder and partition C: C = [C¢ Cr Cp].
12: LU-factorize to obtain Cx9 and Cgs as in (17).
13: Use (19) to express T, - X in terms of 3 and store the coefficients in m,, .
14: Compute eigenvectors of m, and read off the tentative set of solutions.
15: Evaluate in F to filter out possible false zeros.

—_
—_

my,, for several k and then forming a random linear combination Mg, 4, 4. g2, =
aymy, + - -+ + asm,_, which then with very small probability has two equal eigenval-
ues.

As previously mentioned, computing m,, for a larger problem is numerically very
challenging and the predominant issue is expressing pB3 in terms of B, via something
similar to (19). The reason for this is that without proper care, Cr2 tends to become
very ill conditioned (condition numbers of 1019 or higher are not uncommon). This was
also the reason that extremely slow emulated 128 bit numerics had to be used in [41] to
get a working algorithm.

In Sections 4 and 5 we will investigate techniques to circumvent this problem and
produce well conditioned Crg, thus drastically improving numerical stability. But first
we will look at how to construct the action matrix given a solving basis for a polynomial
system.

3.3 Constructing the Action Matrix

Given a solving basis B w.r.t. ), and the corresponding vector Xz for the polynomial
system we wish to solve, it is easy to construct the corresponding action matrix. In short,
this section fleshes out Step 13 of Algorithm 1. After performing Algorithm 1, the solving

60



4. USING REDUNDANT SOLVING BASES - THE TRUNCATION METHOD

basis property of BB together with (19) guarantees 238 \ B = R and the following;
Xr = AX3, (22)

where A is a matrix encoding this relation. To construct my;, , we start with m,, = 0and
sequentially go through all b; € B. For each of them we perform one of two operations

1. Ifzpb; = b; € B, then we simply set position j of column ¢ of mg, to 1.

2. Else we have 21b; = r; € R and we need to use (22) to express 75 in terms of B.
This implies inserting A}W_ (row j of A transposed) as column ¢ in m,;, .

Hence, given A, constructing the action matrix is a computationally cheap operation.

4 Using Redundant Solving Bases - The Truncation
Method

As mentioned in Section 3, the sub matrix C2 which appears in Equation 17 is a large
cause of numerical problems in the equation solving process. A typical situation with an
ill conditioned or rank deficient C Ry is that there are a few problematic monomials where
the corresponding columns in C are responsible for the deteriorated conditioning of
CRra. Astraightforward way to improve the situation is to simply include the problematic
monomials in B3, thus avoiding the need to express these in terms of the other monomials.
In practice this means that some columns of C are moved into Cg. This technique is
supported by Theorem 2, which guarantees that we will find the original set of solutions
among the eigenvalues/eigenvectors of the larger my, found using this redundant basis.
The price we have to pay is performing an eigenvalue decomposition on a larger matrix.

Not all monomials from M can be included in the basis B while still enabling the
calculation of the necessary multiplication matrices. In general it is a difficult question
exactly which monomials can be used or even if there exiszs a set B among M, which can
be used as a solving basis. One can however see that BB has to be a subset of the following
set, which we denote the permissible monomials, P = {b € M : pb € M}. The
permissible monomials P is the set of monomials which stay in M under multiplication
by p.

An example of how the redundant solving basis technique can be used is provided
by the problem of Ly-optimal triangulation from three views [41]. The optimum is
found among the up to 47 stationary points, which are zeros of a polynomial system in
three variables. In this example an enlarged set of 255 equations in 209 monomials were
used to get a Grobner basis. Since the solution dimension r is 47 in this case, the 47
lowest order monomials were used as a basis for C[x]/I in [41], yielding a numerically
difficult situation. In fact, as will be shown in more detail in the experiments section,
this problem can be solved by simply including more elements in B. In this example,
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Figure 1: Eigenvalues of the action matrix using the redundant basis method and actual
solutions to the polynomials system plotted in the complex number plane. The former
are a strict superset of the latter.

the complete permissible set contains 154 monomials. By including all of these in 3
leaving 55 monomials to be expressed in terms of B, we get a much smaller and in
this case better conditioned elimination step. As mentioned above, this leads to a larger
eigenvalue decomposition, but all true solutions can still be found among the larger set
of eigenvalues/eigenvectors. This is illustrated in Figure 1, where the set of eigenvalues
computed from m,,, for one instance are plotted in the complex plane together with the
actual solutions of the polynomial system.

5 Basis Selection

In the previous section we saw how it is possible to pick a “too large” (> r elements)
linear basis PP and still use it to solve the equations. In this section we show how one can
select a true (linearly independent) basis as a subset of P in a numerically stable way and
thus gain both speed and stability. In the following, P denotes any subset of M with the
property that the obtained Cg2 is of full rank, thus making P a solving basis.

Since the set V' of zeros of (1) is finite with r points, P seen as a set of functions
on V contains at most 7 linearly independent elements. It should therefore be possible
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to choose a subset P’ C P such that the elements in P’ can be expressed as linear
combinations of elements in P \ P’. By dropping P’ from the solving basis, the set
B = P\ P’ would thus constitute a new tighter solving basis w.r.t. the same multiplier p
and ideal I as P.

We now present two numerically stable techniques for constructing a true basis B
from a redundant solving basis P.

5.1 The QR Method

We start by selecting P as large as possible, still yielding a full rank Cr2 and form
[Ce Cr Cp]. Any selection of basis monomials B C P will then correspond to a
matrix Cp consisting of a subset of the columns of Cp.

By performing Gaussian elimination we again obtain (17), but with B replaced by
P, letting us get rid of the £-monomials by discarding the top rows. Furthermore, the
R-monomials will all have to be expressed in terms of the P-monomials so we continue
the elimination putting Cr2 on triangular form, obtaining

Ur Cpi| [Xr| _
[ 0 Cm} {XP] -0 =

At this point we could simply continue the Gaussian elimination, with each new pivot
element representing a monomial expressed in terms of the remaining basis monomials.
However, this typically leads to poor numerical performance since, as previously men-
tioned, the elimination might be very ill conditioned. This is where the basis selection
comes to play.

As noted above we can choose which of the p monomials in P to put in the basis and
which to reduce. This is equivalent to choosing a permutation II of the columns of Cps,

CpQH = [Cﬂ(l) ce Cﬂ.(p)] (24)
and then proceed using standard elimination. The goal must thus be to make this choice
so as to minimize the condition number &( [C.,,(l) . cﬂ(p_r)]) of the first p — 7

columns of the permuted matrix. In its generality, this is a difficult combinatorial opti-
mization problem. However, the task can be approximately solved in an attractive way by
QR factorization with column pivoting [19]. With this algorithm, Cypy is factorized as

Cpoll = QU, (25)

where Q is orthogonal and U is upper triangular. By solving for Cps in (25) and sub-

I

stituting into (23) followed by multiplication from the left with [0 QOT] and from the

right with [§ 3], we get

Ur CpIl [ Xz |
o ] o
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We observe that U is in general not square write U = [UP/Q C 32} , where Uprg
is square upper triangular. We also write Cp 1l = [C'pll CBl] and ITXp, =

[Xp1 Xg|' yielding

X
[UR Cpny Cm} R

Xp | =0. 2
0 Upz Cp XZ @7
Finally
-1
XR UR C’P/l CBl
= — X 28
[Xp/] [0 Upis Cpo| B (28)

is analogous to (19) and amounts to solving 7 upper triangular equation systems which
can be efficiently done by back substitution. Given this relation we can now apply the
recipe of Section 3.3 to construct the action matrix.

The reason why QR factorization fits so nicely within this framework is that it si-
multaneously solves the two tasks of reduction to upper triangular form and numerically
sound column permutation and with comparable effort to normal Gaussian elimination.

Furthermore, QR factorization with column pivoting is a widely used and well stud-
ied algorithm and there exist free, highly optimized implementations [2], making this an
accessible approach.

Standard QR factorization successively eliminates elements below the main diagonal
by multiplying from the left with a sequence of orthogonal matrices (usually Householder
transformations). For matrices with more columns than rows (under-determined systems)
this algorithm can produce a rank-deficient U which would then cause the computations
in this section to break down. QR with column pivoting solves this problem by, at
iteration k, moving the column with greatest 2-norm on the last m — k + 1 elements to
position k and then eliminating the last m — k elements of this column by multiplication
with an orthogonal matrix Q. See [19] for more about QR factorization and column
pivoting.

5.2 The SVD Method

By considering not only monomial bases, but more general polynomial bases it is possible
to further improve numerical stability. We now show how singular value decomposi-
tion (SVD) can be used to construct a basis for C[x]/I as r linearly independent linear
combinations of elements in a solving basis P.

As in Section 5.1 we start out by selecting an as large as possible (redundant) solving
basis and perform preliminary matrix operations forming (23), where the aim is now to
construct a linearly independent basis from P. We now do this by performing an SVD
on Cpy, writing

Cpy = ULV’ (29)

64



5. BASIS SELECTION

where U and V are orthogonal and ¥ is diagonal with typically 7 last elements zero
¥ = [%' 9] for a system with r solutions.

Now multiplying from the left with [(I) L?T] and from the right with [} 9] in (23),
we get

[UR C”V] [ Xz }:0. (30)

0 Y || VTXp

The matrix V induces a change of basis in the space spanned by P and we write
Xp = VIXp = [Xp X5 ]T, where P’ and B are now sets of polynomials. Using this
notation we get

Ur 0 Cp| Xz
0o ¥ 0 Xp | =0, (31)
0 0 o0]|Xps

where ¥/ is diagonal with n — r non-zero diagonal entries. The zeros above ¥/ enter
since &/ can be used to eliminate the corresponding elements without affecting any other
elements in the matrix. In particular this means that we have

{Xp, = 0

Xr _U;glCBXB (32)

on V, which allows us to express any elements in span(M) in terms of X5, which makes
B a solving basis.

Computing the action matrix is complicated slightly by the fact that we are now
working with a polynomial basis rather than a monomial one. To deal with this situation
we introduce some new notation. To each element ey, of P = P’ | J B we assign a vector
vg = [0 1. O]T € RI7I, with a one at position k. Similarly, we introduce vectors
up € RIMI ;. € RIBI representing elements of M and B respectively. Further we
define the linear mapping R : span(M) — span(B), which using (32) associates an
element of span(M) with an element in span(B). We now represent R by a | B| x | M|
matrix

R=[-CLU;" 0o 1], (33)

acting on the space spanned by the vectors uy.
We also introduce the mapping M), : span(P) — span(M) given by M,,(f) = p- f
with the representation

(Mp)sj = I(z® =p-x%), (34)

where I(-) is the indicator function. R
M, represents multiplication by p on P. In the basis P induced by the change of
basis aV we thus get

- I 0
M, = [o VT} M, V. (35)
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Finally, we get a representation of the multiplication mapping from B to B as
m, = RM,L, (36)

where L = [$] simply interprets the wy, € RIBl vectors as R!P-vectors. The matrix m,
derived here is the transpose of the corresponding matrix in Section 3.1.

An eigendecomposition of ﬁlg yields a set of eigenvectors ¥ in the new basis. It
remains to inverse transform these eigenvectors to obtain eigenvectors of mZ . To do this,

p
we need to construct the change of basis matrix V4, in the quotient space. Using R and

L, we get V;l = IIVTL, where IT projects from RIP'l o RIBI using (32). From this
we get v = V;Tf) in our original basis.

As will be seen in the experiments, the SVD method is somewhat more stable than
the QR method, but significantly slower due to the costly SVD factorization.

5.3 Basis Selection and Adaptive Truncation

We have so far seen three techniques for dealing with the case when the sub matrix Cps
is ill conditioned. By the method in Section 4 we avoid operating on Cpy altogether.
Using, the QR and SVD methods we perform elimination, but in a numerically much
more stable manner. One might now ask whether it is possible to combine these meth-
ods. Indeed it turns out that we can combine either the QR or the SVD method with
a redundant solving basis to get an adaptive truncation criterion yielding even better sta-
bility in some cases. The way to do this is to choose a criterion for early stopping in the
factorization algorithms. The techniques in this section are related to truncation schemes
for rank-deficient linear least squares problems, ¢f". [28].

A neat feature of QR factorization with column pivoting is that it provides a way
of numerically estimating the conditioning of Cp2 simultaneously with elimination. By
design, the QR factorization algorithm produces an upper triangular matrix U with diag-
onal elements w;; of decreasing absolute value. The factorization proceeds column wise,
producing one |u;;| at a time. If rank(U) = r, then || > 0 and tpy1 41 = -+ =
Unn = 0. However, in floating point arithmetic, the transition from finite |u;;| to zero
is typically gradual passing through extremely small values and the rank is consequently
hard to determine. For robustness it might therefore be a good idea to abort the factor-
ization process early. We do this by setting a threshold 7 for the ratio | 1| and abort the
factorization once the value exceeds this threshold. A value of 7 & 10® has been found to
yield good results'. Note that this produces an equivalent result to carrying out the full
QR factorization and then simply discarding the last rows of U. This is practical since
off-the-shelf packages as LAPACK [2] only provide full QR factorization, even though
some computational effort could be spared by modifying the algorithm so as not to carry
out the last steps.

!Performance is not very sensitive to the choice of 7 and values in the range 10% to 100 yield similar
results.
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Compared to setting a fixed (redundant) basis size, this approach is beneficial since
both rank and conditioning of Cpy might depend on the data. By the above method we
decide adaptively where to truncate and i.e. how large the linear basis for C[x]/I should
be.

In the context of the SVD we get a similar criterion by looking at the singular values
instead and set a threshold for Zt, which for i = rank(Cpy) is exactly the condition
number of Cps. '

6 Using Eigenvalues Instead of Eigenvectors

In the literature, the preferred method of extracting solutions using eigenvalue decompo-
sition is to look at the eigenvectors. It is also possible to use the eigenvalues, but for a
problem with s variables this seemingly requires us to solve s eigenvalue problems since
each eigenvalue only gives the value of one variable. However, there can be an advantage
with using the eigenvalues instead of eigenvectors. If there are multiple eigenvalues (or
almost multiple eigenvalues) the computation of the corresponding eigenvectors will be
numerically unstable. However, the eigenvalues can usually be determined with reason-
able accuracy. In practice, this situation is not uncommon with the action matrix.

Fortunately, we can make use of our knowledge of the eigenvectors to devise a scheme
for quickly finding the eigenvalues of any action matrix on C[x]/I. From Section 2 we
know that the right eigenvectors of an action matrix is the vector of basis elements of
C[x]/I evaluated at the zeros of I. This holds for any action matrix and hence all action
matrices have the same set of eigenvectors. Consider now a problem involving the two
variables x; and ;. If we have constructed m,,, the construction of m,; requires almost
no extra time. Now perform an eigenvalue decomposition m,,, = VD,, V1. Since V
is the set of eigenvectors for m,; as well, we get the eigenvalues of m, ; by straightforward
matrix multiplication and then element wise division from

m,,V=VD, . (37)

This means that with very little extra computational effort over a single eigenvalue decom-
position we can obtain the eigenvalues of all action matrices we need. The observations
in this section also suggest a slightly easier way of filtering out false solutions obtained
using the method in Section 4. If the coordinate variables x; are present in the basis, they
correspond to both eigenvalues and elements in the eigenvectors. Any discrepancy here
implies a false solution which can immediately be discarded.

7 Experiments

In this section we evaluate the numerical stability of the proposed techniques on a range
of typical geometric computer vision problems. The experiments are mainly carried out
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on synthetic data since we are interested in the intrinsic numerical precision of the solver.
By intrinsic precision we mean precision under perfect data. The error under noise is of
course interesting for any application, but this is an effect of the problem formulation
and not of the particular equation solving technique.

In Section 7.1 all the main methods (the standard method, essentially what is out-
lined in Section 3.2, the truncation method, and the SVD and QR methods) are tested
on optimal three view triangulation first studied by Stewénius ez a/. in [41]. They had
to use emulated 128 bit arithmetics to get usable results, whereas with the techniques in
this paper, we solve the equations in standard IEEE double precision. Furthermore, the
improved methods are tested on: the problems of localization with hybrid features [25],
relative pose with unknown but common focal length [39] and relative pose for gener-
alized cameras [40]. Significant improvements in stability are shown in all cases. In the
localization example we failed completely to solve the equations using previous methods
and hence this case omits a comparison with previous methods.

7.1 Optimal Three View Triangulation

The triangulation problem is formulated as finding the world point that minimizes the
sum of squares of the reprojection errors. This means that we are minimizing the like-
lihood function, thus obtaining a statistically optimal estimate given Gaussian noise. A
solution to this problem was presented by Stewénius ez 4/. in [41]. They solved the prob-
lem by computing the stationary points of the likelihood function which amounts to
solving a system of polynomial equations. The calculations in [41] were conducted using
emulated 128 bit arithmetics yielding very long computation times and in the conclu-
sions the authors write that one goal of further work is to improve the numerical stability
to be able to use standard IEEE double-precision (52 bit mantissa) and thereby increase
the speed significantly. With the techniques presented in this paper it is shown that it is
now possible to take the step to double-precision arithmetics.

To construct the solver for this example some changes in the algorithm of [41] were
done to make better use of the changes of basis according to Section 5. The initial three
equations are still the same as well as the first step of partial saturation (w.r.t. ). However,
instead of proceeding to perform another step of partial saturation on the new ideal, we
saturate (w.r.t. ¥ and z respectively) from the initial three equations and join the three
different partially saturated ideals. Finally, we discard the initial three equations and
obtain totally nine equations.

This method does not give the same ideal as the one in [41] were sat(I, zyz) was
used. The method in this paper produces an ideal of degree 61 instead of 47 as obtained
by Stewénius ez al. The difference is 11 solutions located at the origin and 3 solutions
where one of the variables is zeros, this can be checked with Macaulay 2 [20]. The 11
solutions at the origin can be ignored in the calculations and the other three can easily be
filtered out in a later stage.
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To build the solver we use the nine equation from the saturated ideal (3 of degree 5
and 6 of degree 6) and multiply with 2, ¥ and z up to degree 9. This gives 225 equations
in 209 different monomials.

The synthetic data used in the validation was generated with three randomly placed
cameras at a distance around 1000 from the origin and a focal length of around 1000.
The unknown world point was randomly placed in a cube with side length 1000 centered
at the origin. The methods have been compared on 100,000 test cases and the code has
been made available for download?.

7.1.1 Numerical Experiments

The first experiment investigates what improvement can be achieved by simply avoiding
the problematic matrix elimination using the techniques of Section 4. For this purpose
we choose the complete set of permissible monomials P as a redundant basis and perform
the steps of Algorithm 1. In this case we thus get a redundant basis of 154 elements and a
154 x 154 multiplication matrix to perform eigenvalue decomposition on. In both cases
the eigenvectors are used to find the solutions. The results of this experiment are shown
in Figure 2. As can be seen, this relatively straightforward technique already yields a large
enough improvement in numerical stability to give the solver practical value.

Looking closely at Figure 2 one can see that even though the general stability is much
improved, a small set of relatively large errors remain. It is unclear what causes these
errors. However, by doing some extra work using the QR method of Section 5.1 to select
a true basis as a subset of P, we improve stability further in general and in particular
completely resolve the issue with large errors, ¢f. Figure 3.

In Figure 4, the performance of the QR method is compared to the slightly more
stable SVD method which selects a polynomial basis for C[x]/I from the monomials in
P. In this case, errors are typically a factor ~ 5 smaller for the SVD method compared
to the QR method.

The reason that a good choice of basis improves the numerical stability is that the
condition number in the elimination step can be lowered considerably. Using the basis
selection methods, the condition number is decreased by about a factor 105. Figure 5
shows a scatter plot of error versus condition number for the three view triangulation
problem. The SVD method displays a significant decrease and concentration in both
error and condition number. It is interesting to note that to a reasonable approximation
we have a linear trend between error and condition number. This can be seen since we
have a linear trend with slope one in the logarithmic scale. Moreover, we have a y-axis
intersection at about 10713, since the coordinate magnitudes are around 1000 this means
that we have a relative error &~ 107155 = €,,,4c1 K, Where €4 is the machine precision.
This observation justifies our strategy of minimizing the condition number.

’http://www.maths.1th.se/vision/downloads
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Figure 2: Histogram of errors over 100,000 points. The improvement in stability using
the redundant basis renders the algorithm feasible in standard IEEE double precision.

As mentioned in Section 6, it might be beneficial to use the eigenvalues instead of
eigenvectors to extract solutions.

When solving this problem using eigenvalues there are two extra eigenvalue problems
of size 50 x 50 that have to be solved. The impact of the switch from eigenvectors to
eigenvalues can be seen in Figure 6. For this example we gain some stability at the cost
of having to perform three eigenvalue decompositions (one for each coordinate) instead
of only one. Moreover, we need to sort the eigenvalues using the eigenvectors to put
together the correct triplets.

However, we can use the trick of Section 6 to get nearly the same accuracy using only
a single eigenvalue decomposition. Figure 7 shows the results of this method. The main
advantage of using the eigenvalues is that we push down the number of large errors.

Finally we study the combination of basis selection and early stopping yielding a
redundant Grébner basis for the three view triangulation problem. The basis size was
determined adaptively as described in Section 5.3 with a threshold 7 = 10%. Table 1
shows the distribution of basis sizes obtained when this method was used. Since the basis
is chosen minimal in 94% of the cases for the SVD method and 95% for the QR method
the time consumption is almost identical to the original basis selection methods, but as
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Figure 3: Histogram of errors for the standard, redundant basis and QR methods. The
QR method improves stability in general and in particular completely removes the small
set of large errors present in both the standard and redundant basis methods.

can be seen in Table 2 the number of large errors are reduced for the QR method. This
is probably due to the fact that truncation is carried out only when the matrices are close
to being singular. This effect is not present for the SVD method.

To conclude the numerical experiments on three view triangulation two tables with
detailed error statistics are given. The acronyms STD, QR, SVD and TRUNC respectively
denote the standard method, QR method, SVD method and redundant basis method.
The suffixes eig, fast and var respectively denote the eigenvalue method, the fast eigen-
value method (Section 6) and the use of a variable size basis (Section 5.3). Table 2 shows
how many times the error gets larger the some given levels for several solvers. As can be
seen, the QR method with adaptive basis size is the best method for reducing the largest
errors but the SVD method with use of the eigenvalues is the best in general. Table 3
shows the median and the 95:th percentile errors for the same methods as in the previous
table. Notable in here is that the 95:th percentile is improved with as much as factor 107
and the median with a factor 10°. The SVD method with eigenvalues is shown to be the
best but the QR method gives almost as good results.

71



PAPER I

0.351

mmm SV/D basis
1 B EQR basis

0.3

Frequency
o
o (\®)
N (6]

o

=

o
T

o
(=Y
T

O 1
-15 -10 -5 0
Log10 of error in 3D placement

Figure 4: Comparison between the SVD and QR methods. The SVD method improves
somewhat over the QR method at the cost of the computationally more demanding SVD
factorization.

7.1.2 Speed Comparison

The main motivation for using the QR method rather than the SVD method is that the
QR method is computationally less expensive. To verify this the standard, SVD and QR
methods were run and the time was measured. Since the implementations were done
in Matlab it was necessary to take care to eliminate the effect of Matlab being an inter-
preted language. To do this only the time after construction of the coefficient matrix was
taken into account. This is because the construction of the coefficient matrix essentially
amounts to copying coefficients to the right places, which can be done extremely fast in
e.g. a C language implementation.

In the routines that were measured no subroutines were called that were not built-in
functions in Matlab. The measurements were done with the Matlab profiler.

The time measurements were done on an Intel Core 2 2.13 GHz machine with 2 GB
memory. Each algorithm was executed with 1000 different coefficient matrices con-
structed from the same type of scene setups as previously. The same set of coefficient
matrices was used for each method. The result is given in Table 4. Our results show
that the QR method with adaptive truncation is approximately four times faster than the
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Figure 5: Error versus condition number for the part of the matrix which is inverted in
the solution procedure.

SVD method but 40% slower than the standard method. The reason that the redun-
dant basis method is more than twice as slow as the QR method is the larger eigenvalue
decomposition, which dominates the computation time.

7.1.3 Triangulation of Real Data

Finally, the algorithm is evaluated under real world conditions. The Oxford dinosaur [15]
is a familiar image sequence of a toy dinosaur shot on a turn table. The image sequence
consists of 36 images and 4983 point tracks. For each point visible in three or more

50 | 51 | 52 | 53 | 54 | > 55
SVD | 940 | 35| 0.8 | 04 | 03| 1.0
QR | 950 (30|07 |03|02]| 0.8

Table 1: Basis sizes for the QR and SVD methods with variable basis size. The table
shows the percentage of times certain basis sizes occurred during 100,000 experiments.
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Figure 6: Error histograms showing the difference in precision between the eigenvalue

and eigenvector methods.

views we select the first, middle and last view and triangulate using these. This yields a
total of 2683 point triplets to triangulate. The image sequence contains some erroneous
tracks that we deal with by removing any points reprojected with an error greater than
two pixels in any frame. The whole sequence was processed in approximately 45 seconds
in a Matlab implementation on an Intel Core 2 2.13 GHz CPU with 2 GB of memory by
the QR method with variable basis size. The resulting point cloud is shown in Figure 8.
We have also run the same sequence using the standard method, but the errors were
to large to yield usable results (typically larger errors than the dimensions of the dinosaur

itself).

7.2 Localization with Hybrid Features

In this experiment, we study the problem of finding the pose of a calibrated camera
with unknown focal length. One minimal setup for this problem is three point-corre-
spondences with known world points and one correspondence to a world line. The last
feature is equivalent to having a point correspondence with another known calibrated
camera. These types of mixed features are called hybrid features and were introduced
in [25], where the authors propose a parameterization of the problem but no solution
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Figure 7: This graph shows the increase in performance when the fast eigenvalue method
is used instead of the eigenvector method.

was given apart from showing that the problem has 36 solutions.

The parameterization in [25] gives four equations in four unknowns. The unknowns
are three quaternion parameters and the focal length. The equation derived from the line
correspondence is of degree 6 and those obtained from the 3D points are of degree 3.
The coefficient matrix C is then constructed by expanding all equations up to degree 10.
This means that the equation derived from the line is multiplied with all monomials up
to degree 4, but no single variable in the monomials is of higher degree than 2. In the
same manner the point correspondence equations are multiplied with monomials up to
degree 7 but no single variable of degree more than 5. The described expansion gives 980
equations in 873 monomials.

The next step is to reorder the monomials as in (16). In this problem Cp corre-
sponds to all monomials up to degree 4 except f* where f is the focal length, which gives
69 columns in Cp. The part Cg corresponds to the 5:th degree monomials that ap-
pear when the monomials in P are multiplied with the first of the unknown quaternion
parameters.

For this problem, we were not able to obtain a standard numerical solver. The reason
for this was that even going to significantly higher degrees than mentioned above, we did
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Method >103[>102[>1071 ] >1
STD 35633 | 24348 | 15806 | 9703
STD:eig 29847 | 19999 | 12690 | 7610
SVD 1173 562 247 119
SVD:eig 428 222 128 94
SVD:fast 834 393 178 94
SVD:var+fast 730 421 245 141
TRUNC 6712 4697 3339 | 2384
TRUNC fast 5464 3892 2723 | 2015
QR 1287 599 269 127
QR:eig 517 250 149 117
QR:fast 1043 480 229 106
QR:var+fast 584 272 141 71

Table 2: Number of errors out of 100,000 experiments larger than certain levels. The
QR method with adaptive basis size yields the fewest number of large errors but the SVD
method with eigenvalues is the best in general.

not obtain a numerical invertible C matrix. In fact, with an exact linear basis (same num-
ber of basis elements as solutions), even the QR and SVD methods failed and truncation

had to be used.

In this example we found that increasing the linear basis of C[x]/I by a few elements
more than produced by the adaptive criterion was beneficial for the stability. In this
experiment, an increase by three basis elements was used.

The synthetic experiments for this problem were generated by randomly drawing
four points from a cube with side length 1000 centered at the origin and two cameras
with a distance of approximately 1000 to the origin. One of these cameras was treated as
unknown and one was used to get the camera to camera point correspondence. This gives
one unknown camera with three point correspondences and one line correspondence.
The experiment was run 10,000 times.

In Figure 9 the distribution of basis sizes is shown for the QR method. For the SVD
method the basis size was identical to the QR method in over 97% of the cases and never
differed by more than one element.

Figure 10 gives the distribution of relative errors in the estimated focal length. It
can be seen that both the SVD method and the faster QR method give useful results.
We emphasize that we were not able to construct a solver with the standard method and
hence no error distribution for that method is available.
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Method 95th 50th
STD 1.42-10' | 9.85-10~°
STD:eig 5.30-10° | 3.32-107°
SVD 1.19-107% [ 6.09- 1077
SVD:eig 1.20-10°% ] 1.29-107°
SVD:fast 437-107% ] 2.53.107Y
SVD:var+fast | 2.34-107% | 2.50- 1077
TRUNC 6.55-1073 [ 1.40-10~8
TRUNC:fast | 1.87-1073 | 3.27-107°
QR 1.78-10°° | 1.06-10~%
QReeig 1.70-107% [ 2.08 - 1079
QR:fast 6.97-107% | 3.64-107°
QR:var+fast | 3.41-107C¢ | 3.61-107°

Table 3: The 95th percentile and the median error for various methods. The improve-
ment in precision is up to a factor 107. The SVD method gives the best results, but the
QR method is not far off.

Method Time per call / ms | Relative time
SVD 41.69 1
TRUNC 38.11 0.91
QR:var+fast 10.94 0.26
STD 8.03 0.19

Table 4: Time consumption in the solver part for four different methods. The time is an
average over 1000 function calls.

7.3 Relative Pose with Unknown Focal Length

Relative pose for calibrated cameras is a well known problem and the standard minimal
case for this is five points in two views [38]. There are in general ten solutions to this
problem. For the same problem but with unknown focal length, the corresponding min-
imal case is six points in two views, which was solved by Stewénius ez a/. using Grobner
basis techniques [39].

Following the same recipe as Stewénius ez a/. it is possible to express the fundamental
matrix as a linear combination,

F = Fy + Fili + Fls. (38)

Then putting f =2 = p one obtains nine equations from the constraint on the essential
matrix [35]
2EE'E — tr(EE")E = 0. (39)
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Figure 8: The Oxford dinosaur reconstructed from 2683 point triplets using the QR
method with variable basis size. The reconstruction was completed in approximately 45

seconds by a Matlab implementation on an Intel Core 2 2.13 GHz CPU with 2 GB of

memory.

A 10th equation is then obtained by making use of the fact that the fundamental matrix
is singular, z.e. det(F') = 0. These equations involve the unknowns p, /1 and I3 and are
of total degree 5. The problem has 15 solutions in general.

We set up the coefficient matrix C by multiplying these ten equations by p so that
the degree of p reaches a maximum of four. This gives 34 equations in a total of 50
monomials.

The validation data was generated with two cameras of equal focal length of around
1000 placed at a distance of around 1000 from the origin. The six points were randomly
placed in a cube with side length 1000 centered at the origin. The standard, SVD, and
QR methods have been compared on 100,000 test cases and the errors in focal length are
shown in Figure 11. In this case the QR method yields slightly better results than the
SVD method. This is probably due to loss in numerical precision when the solution is
transformed back to the original basis.

7.4 Relative Pose for Generalized Camera

Generalized cameras provide a generalization of the standard pin-hole camera in the sense
that there is no common focal point through which all image rays pass, ¢f. [36]. Instead
the camera captures arbitrary image rays or lines. Solving for the relative motion of a
generalized camera can be done using six point correspondences in two views. This is
a minimal case which was solved in [40] with Grobner basis techniques. The problem
equations can be set up using quaternions to parameterize the rotation, Pliicker repre-
sentation of the lines and a generalized epipolar constraint which captures the relation
between the lines. After some manipulations one obtains a set of sixth degree equations
in the three quaternion parameters v, vy and vs. For details, see [40]. The problem has
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Figure 9: The basis size for localization with hybrid features. The number of solutions
are 36 and since we always add three dimensions to the truncated ideal the minimal
possible basis size is 39.

64 solutions in general.

To build our solver including the change of basis we multiply an original set of 15
equations with all combinations of 1, v1, v, v3 up to degree two. After this we end up
with 101 equations of total degree 8 in 165 different monomials.

We generate synthetic test cases by drawing six points from a normal distribution
centered at the origin. Since the purpose of this investigation is not to study generalized
cameras under realistic conditions we have not used any particular camera rig. Instead we
use a completely general setting where the cameras observe six randomly chosen lines each
through the six points. There is also a random relative rotation and translation relating
the two cameras. It is the task of the solver to calculate the rotation and translation.

The methods have been compared on a data set of 10,000 randomly generated test
cases. The result from this experiment is shown in Figure 12. As can be seen, a good
choice of basis yields drastically improved numerical precision over the standard method.
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Figure 10: The error for localization with hybrid features. The standard method is omit-
ted since we did not manage to construct a standard solver due to numerical problems.

8 Discussion

We have introduced some new theoretical ideas as well as a set of techniques designed
to overcome numerical problems encountered in state-of-the-art methods for polynomial
equation solving. We have shown empirically that these techniques in many cases yield
dramatic improvements in numerical stability and further permits the solution of a larger
class of problems than previously possible.

The technique for solving polynomial equations that we use in this paper can be
summarized as follows. The original equations are first expanded by multiplying the
polynomials with a set of monomials. The resulting equations is expressed as a product of
a coefficient matrix C and a monomial vector X. Here we have some freedom in choosing
which monomials to multiply with. We then try to find a solving basis 3 for the problem.
For a given candidate basis B we have shown how to determine if BB constitutes a solving
basis. If so then numerical linear algebra is used to construct the action matrix and get a
fast and numerically stable solution to the problem at hand. However, we do not know
(i) what monomials we should multiply the original equations with and (ii) what solving
basis B should be used to get the simplest and most numerically stable solutions. Are
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Figure 11: The error in focal length for relative pose with two semi calibrated cameras

with unknown but common focal length.

there algorithmic methods for answering these questions? For a given expansion CX can
one determine if this allows for a solving basis? A concise theoretical understanding and
practical algorithms for these problems would certainly be of great aid in the work on
polynomial problems and is a highly interesting subject for future research.
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Image Based Localization Using Hybrid
Features

Klas Josephson, Martin Byréd, Fredrik Kahl, Kalle Astrém

Abstract

Where am I and what am I seeing? This is a classical vision problem and this paper presents
a solution based on a combination of 2D and 3D features. Given a model of a scene, the
objective is to find the relative camera location of a new input image. Unlike traditional
hypothesize-and-test methods that try to estimate the unknown camera position based on 3D
model features only, or alternatively, based on 2D model features only, we show that using a
mixture of such features, that is, a hybrid correspondence set, may improve performance. We use
minimal cases of structure-from-motion for hypothesis generation in a RANSAC engine. For
this purpose, several new and useful minimal cases are derived for calibrated, semi-calibrated
and uncalibrated settings. Based on algebraic geometry methods, we show how these minimal
hybrid cases can be solved efficiently and in numerically sound way. The whole approach has
been validated on both synthetic and real data, and we demonstrate improvements compared
to the standard methodology. The software for solving hybrid geometry problems will be made
publicly available.

1 Introduction

Localization refers to the ability of automatically inferring the pose and the position of
an observer relative to a model, cf. [3]. We propose to solve the problem using an image-
based approach. The model or the map of the environment can be anything from a single
room in a building to a complete city. In general, one image will be used as a query
image, but in principle several images can be used as input. No prior knowledge of the
observer’s position is assumed and therefore the problem is often referred to as global
localization whereas local versions assume an approximate position. The mapping of the
environment can be regarded as an off-line process since it is generally done once and for
all. Such a mapping can be done using standard Structure from Motion (SfM) algorithms
[13, 19, 25], or by some other means.
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The key idea of this paper is to use a mixture of 2D and 3D features simultaneously
for localization. A 3D feature in this paper refers to a point with known location in
the room with associated features. A 2D feature is a feature point detected in one view
with known camera matrix, this gives a feature with the 3D position known up to a line
in 3D. If one were to rely solely on 3D matches, one is restricting the set of possible
correspondences to relatively few correspondences and a relatively rich 3D model would
be required in order to be successful. On the other hand, using only 2D features requires
relatively many correct correspondences to generate a single hypothesis. In addition, with
existing methods such as the seven point algorithm of two views [13], one is limited to
picking all the 2D correspondences from one single image in the model. Again, one is
restricting the set of correspondences to a relatively small subset. Further, the absolute
scale cannot be recovered solely from 2D correspondences of one query image and one
model image.

Using combinations of 2D and 3D features, what we call hybrid correspondence sets,
for generating hypotheses gives a number of advantages. We can make use of all possi-
ble correspondences simultaneously, even from different 2D model images. Compared
to approaches using only 2D correspondences, the scale relative to the 3D map can be
recovered and, more importantly, the number of correspondences is smaller in a minimal
hybrid set which is a good property when using RANSAC. One can argue that in most
cases, traditional methods would work fine. However, we demonstrate that hybrid cor-
respondence sets are indeed useful and there is simply no reason why this information
should not be used as it leads to improvements.

The three main contributions of this paper are:

1. A complete list of minimal hybrid cases is given. We also list the number of possible
solutions for each problem.

2. Algorithms for efficiently computing the solutions of the minimal problems using
Grobner bases are given for some cases. These are also tested on synthetical and real data.
3. We demonstrate how hybrid feature correspondences (combinations of 2D and 3D
features) can be used for improved image-based localization.

1.1 Related Work

Localization and scene recognition are key components of any autonomous system. In
robotics, (global) localization is also known as the kidnapped robot problem. Successful
solutions have generally been achieved with laser, sonar or stereo vision range sensors
and built maps for controlled robots moving in 2D, e.g., [21]. Another example is the
Deutches Museum Bonn tour-guide robot RHINO [4] where laser sensors are used. An-
other competing technique (at least, for some applications) is GPS. However, the accuracy
is typically only in the order of 10-20 meters and no direction information is obtained.
Image-based localization using special landmarks is a common approach, e.g., [2],
but this severely limits the flexibility and the applicability of the method. Similar to
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our approach, distinctive visual features were utilized in [23] to overcome this limitation.
They also showed that RANSAC is an effective way of generating hypotheses. However,
only 3D model features were used and this requires a rich 3D model to work well.

For large-scale models, an image search technique is required to speed up the process.
This can be seen as a pre-processing step which produces a small number of hypothetical
part-models that need further verification. Possible pre-processing schemes are developed
in [22].

The wealth of research in the SfM field is, of course, related to the present work, in
particular, the work concerned with RANSAC [31] and wide baseline matching [33, 20].
The same approach as proposed in this paper can be used to solve the wide baseline
matching problem to build up 3D models [25].

Understanding of the geometry and the number of solutions of minimal structure
and motion problems has a long history. For the uncalibrated case, the minimal problem
of seven points in two views (which has three solutions) was studied and solved already in
1855, cf. [7]. The corresponding calibrated case was in principle solved in 1913 [15]. The
study of minimal cases has got increased attention with its use in RANSAC algorithms to
solve both for geometry and correspondence in numerous applications [13, 32].

2 Problem Formulation

We are interested in solving the following problem:

Problem 1. Under the assumption that for a query image, there are m potential corre-
spondences to image points in views with known absolute orientation and n potential
correspondences to scene points with known 3D coordinates, find the largest subset of
the correspondences that admits a solution to the absolute orientation problem within a
specified accuracy.

The method that we will use to solve the localization problem is based on hypothesize-
and-test with RANSAC [10] and local invariant features [18]. This involves solving min-
imal structure and motion problem with hybrid correspondence sets. The underlying
idea is as follows. Since exhaustive search for the largest, consistent subset among all pos-
sible correspondence sets is intractible, we will restrict our attention to minimal subsets.
A minimal subset is, by definition, the smallest possible subset of correspondences such
that a hypothetical solution can be generated. Given a hypothetical solution, one can test
how many of the correspondences are consistent with this solution. Still, the number of
minimal subsets abound, so only random subsets will be used for generating hypothetical
solutions.
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3 Minimal Hybrid Correspondence Sets

The classical absolute orientation problem (also known as camera resectioning) for cali-
brated cameras for three known points can be posed as finding the matrix P = [ Rt],
such that \;u; = PU;, i = 1,2,3. Here R isa 3 X 3 rotation matrix and ¢ is a transla-
tion vector with 3-elements. Thus, the camera matrix encodes six degrees of freedom of
unknown parameters. Each point gives two constrains and therefore three points form a
minimal case. In general there are four possible solutions [11, 12, 13].

We will study the absolute orientation problem both for calibrated cameras as above,
for the case of unknown focal length and for the uncalibrated camera case. As explained in
the introduction we will also consider both 2D-2D correspondences (v;, u; ) with features
v; in images of the model and known 3D-2D correspondences (U;, u;) as above. Here
we will assume that the camera matrices of the model images are known, so that a 2D-
2D correspondence can be thought of as a 3D-2D correspondence where the unknown
3D point U; lies on a line in space. In this paper the (m,n) case denotes the case of
m 2D-2D correspondences and n 3D-2D correspondences. Notice that each 2D-2D
correspondence imposes one constraint and each 3D-2D correspondence imposes two
constraints on the camera pose problem.

Calibrated Cameras. For calibrated cameras there are six degrees of freedom, three for
orientation and three for position. One way of parameterizing the camera matrix is to use
a quaternions vector (a, b, ¢, d) for rotation, i.e.

a2+ b2 — 2 — 2 2bc — 2ad 2ac + 2bd T
P= 2ad + 2bc a? —b? +c? — d? 2cd — 2ab yl. (1
2bd — 2ac 2ab + 2cd a?—b—-2+d =z

Potential minimal cases are:

The (0,3) case. This is the well-known resection problem, cf. [11, 12, 13] with up to
four solutions in front of the camera.

The (2,2) case. This case is given a numerical solution in this paper. The algorithm
works equally well if the 2D-2D correspondences are to the same or to different cameras.
There are up to 16 solutions.

The (4,1) case. There are two cases here. In the first case all 2D-2D correspondences
are to the same view. In this first case the problem can be solved by first projecting the 3D
point in the known camera and then using the five point algorithm to solve for relative
orientation, (hence up to 10 solutions), cf. [15]. The scale is then fixed using the 2D-3D
correspondence. The second case is when the 2D-2D correspondences are to at least two
different views. This is studied in this paper and there are up to 32 solutions for this case.
No numerical algorithm is presented.

The (6,0) case. This cannot be solved for absolute orientation if all points are from
the same model view. In this case only relative orientation can be found and only five
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correspondences are needed as discussed above. However, if the correspondences come
from different views, it is in fact equivalent with the relative orientation problem for
generalized cameras, cf. [29], which has up to 64 solutions.

Unknown Focal Length. For calibrated cameras with unknown focal length there are
seven degrees of freedom, three for orientation, three for position and one for the focal
length. One way of parameterizing the camera matrix is as

a?+b? —c? —d? 2bc — 2ad 2ac + 2bd x
P = 2ad + 2bc a’? -2+ —d? 2cd — 2ab y |, @
2f(bd — ac) 2f(ab+ cd) fla> == +d%) fz

where f denotes the (inverted) focal length. Potential minimal cases are:

The (1,3) case. This case is given a numerical solution in this paper. There are up to
36 solutions.

The (3,2) case. This is studied in this paper and we have found the number of solu-
tions to be up to 40 in the general case. No numerical algorithm is presented.

The (5,1) case. There are two cases here. In the first case all 2D-2D correspondences
are to the same view. In this first case the problem can be solved by first projecting the 3D
point in the known camera and then using the six point algorithm to solve for relative ori-
entation and focal length [28]. The scale is then fixed using the 2D-3D correspondence.
There are up to 15 solutions. The second case is when the 2D-2D correspondences are to
at least two different views. This is studied in this paper and with the aid of Macaulay2,
we have found that there are potentially up to 112 solutions. No numerical algorithm is
presented.

The (7,0) case. This cannot be solved for absolute orientation if all points are to the
same view. It can be solved for relative orientation using 6 points as discussed above.
However for the case of correspondences to different views it should be solvable, but to
our knowledge it is still an open problem, and we have not been able to obtain a solution
with our approach.

Uncalibrated Cameras. For the uncalibrated camera case there are 11 degrees of free-
dom. Each 2D-2D correspondence gives one constraint and each 2D-3D correspondence
gives two constraints. Potential minimal cases are:

The (1,5) case. This can be solved by as follows. Using the five 3D-2D corre-
spondences, the camera matrix can be determined up to a one-parameter family P =
Py + vP,, where P; and P; are given 3 X 4 matrices and v is an unknown scalar. The
remaining 2D correspondence can be parameterized as a point on a line U = C' + pD
for some unknown parameter p. The projection equation gives Au x v = u x PU =
ux (P1+vPy)(Uy 4+ uUsz) = 0. Thus we obtain two, second degree constraints in v, .
Using resultants, it follows that there are two solutions for the unknowns v, p.
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The (3,4) case. There are two cases here. In the first case all 2D-2D correspondences
are from the same view. In this first case the problem can be solved by first projecting
the four 3D points in the known view and then using the seven point algorithm to solve
for relative orientation [7]. There are then 3 solutions. The projective coordinate system
is then fixed using the 2D-3D correspondences. The second case is when the 2D-2D
correspondences are to at least two different views. In this case the solutions procedure is
analogous to the previous case and can be obtained using resultants, this method shows
that there can be up to eight solutions. No numerical algorithm is presented.

The (1+2k,5-k) case with k = 2,3, 4. These cannot be solved for absolute orientation
if all points originate from one model view. Relative orientation is still possible using at
least seven points. The remaining case is when the 2D-2D correspondences are to at least
two different views. Once again the methods of the (1,5) case can be used and there are
up to 20172k solutions. No numerical algorithm is presented.

Summary. We conclude this section by summarizing all the minimal cases for hybrid
2D and 3D feature correspondences, see Table 1. We state an upper bound on the number
of physically realizable solutions. In general, as we shall see later in Section 6, the number
of plausible solutions is much smaller. In the next section, we clarify the calculations for
some of these cases. This will also lead to efficient algorithms for computing the solutions.
Algorithms in matlab for solving the (2,2) and (1,3) cases, that later are evaluated in
this paper, will be available for download on http://www.maths.1lth.se/vision/
downloads/.

4  Solving Minimal Cases with Algebraic Geometry

Minimal structure and motion problems typically boil down to solving a system of poly-
nomial equations in a number of unknowns and in this section we describe how these
types of polynomial problems can be solved with a combination of algebraic geometry
and numerical linear algebra. We start by describing how to make symbolic calculations
and after that the numerical method to find the solutions is presented.

4.1 Symbolic Calculations

For a specific application problem the structure of the polynomial system is fixed. Thus
the number of solutions to a structure and motion problem typically depends only on
the type of problem at hand. Common examples are relative orientation for calibrated
cameras, five points in two views, which has ten solutions [27] and fundamental matrix
estimation, seven points in two views, which has three solutions.

Solving systems of polynomial equations is a challenging numerical task and there
is no general method of universal applicability as for linear equation systems. A first
step towards solving a certain class of polynomial systems is to determine the number of
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2D-2D | 2D-3D | number of camera
corresp. | corresp. | solutions setting
0 3 4 calibrated
2 2 16 calibrated
4 1 32 or 10" calibrated
6 0 64 calibrated
1 3 36 unknown focal
3 2 40 unknown focal
5 1 112 or 75* | unknown focal
7 0 ? unknown focal
1 5 2 uncalibrated
3 4 8 or 3* uncalibrated
142k 5—k Q1+2k uncalibrated

Table 1: Minimal hybrid cases for structure from motion. The number of solutions
indicates an upper bound of the number of physically realizable solutions. The solution
numbers marked with asterisk 7*” correspond to cases where all 2D-2D correspondences
originate from a single (model) view, whereas for other cases, it is implicitly assumed that
the correspondence set covers multiple views. Note that one case is still an open problem
(marked with 7?”). In the table italic is used to denote cases which are analogous to well-
known structure and motion problems and bold face is used for cases that are solved in

this paper.

solutions. There are several techniques for doing this. The theory of mixed volumes [8]
can be used to prove the number of solutions for a set of polynomial equations assuming
general coefficients of the polynomial. The software package phc [34] is useful both for
calculating mixed volume and for finding solutions with homotopy methods. Another
method is to calculate the so called Grobner basis of the polynomial system which then
easily yields the number of solutions to the problem. Grébner bases are a concept within
algebraic geometry, which is the general theory of multivariate polynomials over any field.
See, for example, [8, 9] for a good introduction to the field. For problems that are
not synthetic (where the coefficients are represented as floating point approximations)
finding the Grébner basis is numerically difficult due to accumulating round-off errors.
One technique implemented in the computer algebra system Macaulay2 [1] is to work
with integer coefficients and then projecting the equations from C[x] to Z,, x|, where p
represents a large prime number typical 31.991, and computing the Grobner basis there.

In [14] it is shown that an upper bound on the number of solutions to a problem can
be found by solving a single instance of the problem. That is, if you find the solution
to a problem for one instance that gives an upper bound on the number of solutions in
the general case. There can still exist degenerate configurations with a higher number
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of solution but the probability to end up in such a solution is very small for random
coefficients. Based on this theoretical result, it is enough to work with integer coefficient
in Z,[x] to determine the number of solutions.

The use of Grobner basis calculations is not new in the computer vision community.
It has been used for the minimal cases both in [27] and [29].

4.2 Numerical Calculations

As mentioned above, solving a system of polynomial equations is often algorithmically
difficult and there exist no efficient general purpose methods. Instead, specialized solvers
are developed for particular cases. Recently, progress has been made using Grébner basis
techniques [26, 5]. These solvers are known to suffer from numerical problems [30, 16]
in some cases, but fortunately progress has been made on this point [6, 5]. Here, we make
use of these advances to obtain efficient and robust solvers for the equations derived in the
following sections. We choose not to give a self contained treatment of the polynomial
techniques in this paper and this section should be read in conjunction with e.g., [26, 5]
for the method to be fully repeatable.

The goal of the numerical calculations is to find the set of solutions to a system

p1(x) = -+ = pp(x) = 0 of m polynomial equations in s variables. The polyno-
mials p1,...,Dn generate an ideal I in C[x], the ring of multivariate polynomials in
x = (x1,...,2s) over the complex numbers. The Grébner basis method for polyno-

mial solving is based on computing the eigenvalues of multiplication mappings in the
quotient space C[x]/I in analogy with the companion matrix method for one variable
polynomials. One can view C[x]/I as a vector space over the monomials that generate
it. Then multdiplication with a variable, z; modulo I becomes a linear mapping in this
space. Since the space is finite dimensional we can represent the mapping with a matrix
m,;. The eigenvalues of this matrix equal the values of x; evaluated at the zeros of the
system. The key steps in the procedure are to (i) expand the system of equations by mul-
tiplying with a problem dependent set of monomials and then write this on matrix form
as a product between a coefficient matrix C and a vector of monomials X, CX = 0, and
thereafter (ii) to put the system on reduced row echelon form using, for example, Gauss
Jordan elimination which allows one to extract the necessary multiplication mappings.

5 Solving the Hybrid Minimal Cases

We will now go into the details of how the systems of equations are derived and how
numerical Grébner basis solvers can be constructed for the more interesting of the hybrid
minimal problems studied in this paper.
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5.1 Calibrated Cameras

A calibrated camera can be parameterized using quaternions as shown in (1). Assume
now that we have two correspondences between image points and scene points

uy ~ PUy, ug ~ PUs.

Since there is a freedom in choosing coordinate systems both in the scene and in the
images, we can use this to simplify our expressions. In particular we let the origin in
the coordinate frame coincide with U; and we let Us coincide with the point one mea-
surement unit down the x axis. Together with similar choices in the image plane this
yields

U, =

o

0
, Ul = 0 3U2: , U2 =
1

= O O O
<

1
0
0
1
which gives us the following constraints

z=0, y=0, ad = —bc,
2z =u(a? + b? — 2 — d?) — 2bd + 2ac.

As the overall scale of the camera matrix is irrelevant, one can set @ = 1 and eliminate

d according to d = —bc. This makes it possible to parameterize the camera matrix as
(1+b%)(1—c?) 4bc 2¢(1 — b?) 0
P = 0 (1—0%)(1+¢c?) —2b(1+¢c%) 0
—2¢(1 + b?) 2b(1 — ¢?) 1-H)(1—-¢c?) =z

By putting @ = 1 two things happen. First the scale of the camera matrix is fixed,
hence the left-hand 3 x 3 sub-matrix in (1) will only be a rotation matrix up to scale.
This will not have any further impact on the problem since the measurement equations
are homogeneous. The second consequence is that solutions with @ = 0 will not be
included. This may look like a serious problem but we argue that it is not for several
reasons. If the solution is close to a point where a = 0, but not exactly, the solution
will work since the fixed value on a will be compensated by large values of the other
parameters of the camera. If the worst case happens that the solution has exactly a = 0,
then the solver will not work, but since we propose to use the solver in a RANSAC engine
where noise is present not all solutions for a minimal random set will have a = 0 exactly.
Hence a slightly perturbed set of points is likely to exist that will give a solution with
enough inliers to use in a final, local optimization step. It is also possible to derive a
solution with the assumption a = 0, but we choose to not do that.

Now two correspondences remain between an image point in the query image and
a point that has only been seen in one of the model images. Since the camera centre
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is known for every image in the model each point in a model image can be associated
with the line connecting the camera centre and the image point. This gives two image
points associated to two lines [ and I3 in 3D space. If the line is represented with Pliicker
coordinates [13] and the camera is converted to the corresponding Pliicker camera, then
each of the two constraints above converts to a single equation through

UZTPLZZ' =0. (3)

The two polynomial equations generated above are called p; and p,. In the equation Pr,
is the Pliicker camera that is constructed from the usual camera matrix [13]. Through
inspection it is easy to see that the nonzero elements of Py, has the common factor 1+ b2.
After removing the common factor the two polynomial constraints (p1, p2) from (3) are
of order 2 in b and order 4 in c.

By calculation in Z,[x] using Macaulay 2 [1] we find that for the general case the
number of solutions to this problem is 16.

To construct the numerical solver we obtain 8 equations in 24 monomials by multi-
plying the polynomials with {1, b, ¢, bc}. It is then possible to express 8 of the monomials
in terms of the remaining 16 monomials

{bc b3, ¢ be3, b2 b3¢e, ¢3, bc? bPe, b3, 2 be, b ¢, b, 1},

which then form a basis for the quotient space C[b, ¢]/I. From this it is straightforward
to construct the 16 X 16 action matrix m, for the linear mapping C[b,c]/I > p(c) —
ep(c) € Cb, c]/I. From the eigenvalue decomposition of the matrix m, the 16 (some
possibly complex) solutions are obtained.

To find the number of the solutions to the (4,1) case similar calculations are used. In
this case only the first pair Uy, u1 can be chosen as above. The other correspondences are
to 2D features and are hence handled with Pliicker lines as described above. The resulting
four equations in four remaining unknowns, with the extra constraint that the z # 0, are
then used to find the dimension of the quotient space. The constraint z # 0 forces the
focal point of the camera to not be placed in the origin where we already have chosen to
place one of the 3D points. Symbolic calculations with random instances of the problem
in Zj[x] show that the (4,1) problem has 32 solutions.

5.2 Unknown Focal Length

For the case of unknown focal length we have one additional unknown. Thus we need
one extra constraint. There are several interesting minimal cases: (1,3), (3,2) and (5,1).
However for the last case (assuming that all the five points were in correspondence with
the same view) one could solve the relative orientation problem using the six point algo-
rithm [28] and then fix the scale using the known 3D correspondence.
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Using (2) as parameterization for the camera matrix and assuming that two of the 3D
point correspondences have coordinates

1
U, = , U = yur =101, (4)
1

= o O O
= o O =

it is possible to eliminate y = 0 and = zf = g(b,c,d, f). We fix the scale by
setting @ = 1 with the same motivation as in the calibrated case. For both the (1, 3)
case and the (3, 2) case we get polynomial constraints in the four remaining unknowns
(b, ¢, d, f). Symbolic calculations with computer algebra software [1] in Zj,[x], using the
same methods as described in the calibrated case, show that there are 36 solutions for the
(1, 3) case, 40 solutions to the (3, 2) case. In the (5, 1) the same parameterization is used
and the symbolic calculations then show that there can be up to 112 solutions in the case.

Constructing a Solver for the (1, 3) Case

Using the parameterization above, one 3D correspondence and one 2D correspondence
remain. The 2D correspondence is handled as in the (2,2) case by constructing the
Pliicker camera. This results in one equation. The other three required equations are
generated from the last 3D point and from Us. If U is projected through the camera,
two equations appear. By eliminating the depth A one equation remains. The last two
equations are generated through the last 3D point correspondence (Us, u3). Let ug =
(71, 22,1)T and then construct the matrix,

0 -1 xI2
[us]lx = =1 0 1|, (5)
—X9 X1 0

from which three equations can be generated by putting,
[’LL3]><PU3 =0. (6)

These three equations are linearly dependent and only the two first are kept.

The four constructed equations are multivariate polynomials where the equation con-
structed by the Pliicker line will have degree 4 in (b, ¢, d) and degree 2 in f. The maximal
total degree of the polynomials in this equation is 6. For the other three equations derived
from 3D-2D correspondences the total degree is 3 and the maximal for each variable is 2
for (b,¢,d) and 1 for f.

The next step in constructing the solver is to expand the coefficient matrix C. At
this stage the matrix has size 4 X 82. The expansion is made by adding the equations
when the polynomial constructed by the Pliicker line is multiplied with all monomials
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up to degree 4 but with no single variable with a degree higher than 2. The other three
equations are expanded with all monomials up to degree 7 but with no single variable with
a degree higher than 5. After this expansion the coefficient matrix C is of size 980 x 873.

After C is expanded, we follow the method and notation from [5] and divide the
monomials into the three sets £, R and B. The basis B is selected to be all monomials
of degree 4 and lower except for f*. The set R contains the monomials which are not
in BB but are produced when the monomials of B are multiplied with b. The rest of the
monomials are collected in the set £. This partition gives 69 monomials in 3, 34 in R
and the remaining 770 in £.

We use LU-decomposition to eliminate monomials in the set £, which gives a subset
of equations, now with only 103 monomials. The (1,3) problem is numerically signifi-
cantly more challenging than the (2,2) problem and to get a solution a combination of
techniques for improving numerical stability introduced in [5] are used. The techniques
are essentially to (i) use a matrix factorization algorithm to select a numerically well condi-
tioned basis set B and (ii) to add some extra elements to B making it linearly dependent,
but with the advantage that the added elements do not need to be expressed in terms of
the basis since they are now a part of the basis.

6 Synthetic Experiments
6.1 The (2,2)-Solver

The purpose of this section is to evaluate the stability of the algorithm for solving the
(2,2) case introduced in Section 4. To this end we use synthetically generated data in the
form of randomly generated cameras and points. This allows us to measure the typical
errors and the typical number of plausible solutions, over a large range of cases.

The point features are drawn uniformly from the cube £500 units from the origin
in each direction. The cameras (two known and one unknown) are generated at approx-
imately 1000 units from the origin pointing roughly in the direction of the center of the
point cloud.

The algorithm has been tested on 10,000 randomly generated cases as described
above. In the calculations, double precision arithmetics was used . In order to evalu-
ate the accuracy of the solutions we take the square root of the sum of the for reprojection
errors. The result is illustrated in Figure 1. As can be seen, the error typically stays as low
as 10715 to 10719, but occasionally much larger errors occur. However, since the solver
is used as a subroutine in a RANSAC engine, which relies on solving a large number of
different instances, these very rare cases with poor accuracy are not a serious problem.

As shown in Section 4 the (2,2) calibrated case in general has 16 solutions. Since
obviously only one of these solutions is the correct one it is interesting to investigate how
many plausible solutions are typically obtained. With plausible solutions we mean real
valued camera matrices that yield positive depths for all four problem points. In Figure 1 a
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Figure 1: Statistics from the evaluation of the solver for the (2,2) case for calibrated
cameras. The solver was run on 10,000 randomly generated cases. Left: Histogram over
the error in matrix norm between the estimated camera P’ and the true camera P when
double precision arithmetics was used. The error is plotted on a logarithmic scale. Right:
Histogram over the number of real valued solutions yielding positive depths.

histogram which shows the typical number of plausible solutions is given. As can be seen
the most common situation is one to four plausible solutions. In one of the 10,000 cases,
the algorithm was unable to find a real solution with positive depths for all points. This is
probably due to numerical problems when the points and/or cameras are in unfortunate
positions (two or more real solutions irrespective of the sign of the depths were found in
all cases). In three of the cases seven solutions were found and in one case eight plausible
solutions were found. The average number of plausible solutions was 2.6 and the average
number of real solutions was 6.4. In some of the cases all 16 solutions were real.

The stability of the solver was also tested in the presence of noise on the image points.
The noise is Gaussian distributed with standard deviation as given in the table and the
error is measured as the mean of the reprojection errors. The result is shown in Table 2.
Notice that both the median error and the 80th percentile error depends roughly linearly
on the noise. This shows that the solver is robust to noise.

6.2 The (1,3)-Solver

The synthetic experiments for the (1,3) problem were done in the same manner as in
the (2,2) case. Four points were generated by randomly drawing from a cube with side
length 1000 centered at the origin and two cameras with a distance of approximately
1000 to the origin. One of these cameras was treated as unknown and one was used to
get the camera to camera point correspondence. This gives one unknown camera with
three point correspondences and one line correspondence. The experiment was repeated
10,000 times. As in the (2,2) case double precision arithmetics was used.

The result is shown in Figure 2. As can be seen, the error is not as low as in the (2,2)
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Noise level median 80 percentile
0 3.9-1002 | 4.0-10711
0.5 0.60 1.81
1.0 1.20 3.70
1.5 1.81 5.6
2.0 2.44 7.38
2.5 2.94 9.08
3.0 3.45 10.28

Table 2: Errors in the precence of noise on the measured points. The noise is the standard
deviation in pixels and the errors are the mean reprojection for the four points in pixels.
For each noise level, 10000 instances have been evaluated.

Noise level | median error | 80 precentile
0 3.46-10"1T | 1.51-107Y

0.5 1.06-10"% | 4.87-1072
1.0 2.10-1072 | 8.64-102
1.5 2781072 | 1.41-1071
2.0 4.18-1072 | 1.80-1071
2.5 581-1072 | 3.14-1071
3.0 6.60-1072 | 3.40-1071

Table 3: Relative error in focal length for the (1,3)-solver. The noise value is the standard
deviation of Gaussian noise in pixels on a 1000 x 1000 image. Every noise level has been
ran 1000 times.

case but the numerical precision is still good enough and in most cases the error stays
below 107°. The same figure also holds a histogram over the number of solutions that
are real and with positive focal length. The histogram shows that even though there can
be up to 36 real solutions in theory, the actual number of plausible solutions is usually
below ten.

The stability in presence of noise of the solver was also tested and the results are shown
in Table 3. The measured error is the relative error in focal length and the noise values is
the standard deviation of a Gaussian distributed noise given approximately in pixels on a
1000 x 1000 image. The results show that the median value of the solutions are stable
even under a large amount of noise. This is enough if the solver is used as the core of a

RANSAC engine.
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Figure 2: Statistics from the evaluation of the solver for the (1,3) case for calibrated
cameras with unknown focal length. The solver was run on 10,000 randomly generated
cases and double precision was used. Left: Histogram over the error in focal length
between the estimated camera and the true camera. The error is plotted on a logarithmic
scale. Right: Histogram over the number of real valued solutions with positive focal

length.

7 Localization System Experiments

In this section we evaluate the proposed methods under real world conditions by inte-
grating them in a complete localization system. For the data sets used in this section, we
began by constructing a model using the methodology described in [25]. In that work, a
3D model consisting of cameras and triangulated 3D points is built. Here, we addition-
ally keep all detected SIFT features from each image to increase the probability of being
able to correctly localize a new input image. To this end we use the new hybrid minimal
solvers to handle combinations of triangulated 3D points and pure image features in the

RANSAC stage.

For the experiments data sets were used. One data set with pictures of a shopping
street in Lund and the other was the Ziirich building database [24]. For the experiments
on the shopping street two models were constructed of the same area but with slightly
different properties. The first model, called Model 1 in the following, was built from a
sequence of only seven images. These images are taken along a street with approximately
fifty meters baseline between the most separated views. The sparsity of this model makes
it very challenging for a localization system. The second model, called Model 2, was
constructed using thirty images but covers a much shorter distance. The maximal base-
line between two images is approximately 10 meters. Examples of both images used to
construct the model and test images are shown in Figure 3. The test images were taken
approximately two months after the model images and with a different camera. Some
statistics on the two models are given in Table 4.
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Figure 3: To the left is one of the images used to construct the models and to the right
is one of the test images. The test images were taken about two months after the model
images. Different cameras were used when the model and test images were taken.

Model 1 | Model 2
Number of cameras 7 30
Number of SIFT features | 18675 65385
Number of 3D points 593 3199
Number of 2D points 17097 55925

Table 4: Some data about the models. The SIFT features are the complete set of SIFT
features from all images in the model, the 3D points are all triangulated point and the
2D points are all SIFT features which do not correspond to a triangulated 3D point.

The Ziirich building database consists of 201 objects where each object has five train-
ing images taken with two different cameras. There are also 115 testing images of the
objects in the training set but there is no location ground truth for these images. For
neither the training images nor the test images the calibration is known. To construct
the model, our assumptions were that there was no skew, aspect ratio equal to one, the
principal point in the middle of the image and that the focal length was equal to 1000
pixels. The assumption on the focal length is not correct but to get a good estimate of the
focal length the value was optimized during the bundle adjustment.

Using the method mentioned above, we managed to construct a 3D model for 173
of the examples in the Ziirich database. Since the topic of this paper is not model con-
struction we did not do any more work to construct models for the remaining buildings.
This makes it impossible to correctly localize some of the test examples. In the con-
structed models 85% have less than 500 triangulated 3D points and about ten-thousand
2D points.
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7.1 Localization Performance

Two of the new methods given in this paper are tested: the (2,2) solver for calibrated
cameras and the (1,3) solver for calibrated cameras with unknown focal length. In the
(2,2) case the number of inliers is measured after the RANSAC step has been carried out
and is compared with the number of inliers when the three point solver is used in the
same RANSAC loop. All located cameras were also manually examined, since we do not
have any ground truth data, to decide whether the localization was correct.

In the (1,3) case more experiments are done. Due to the fact that the focal length is
calculated this value can be verified. This is done by first calculating the calibration of
the camera with more data than during the localization step. By then normalizing the
coordinates we know that the focal length should be one since the inner calibration is
removed.

The comparison for this method is made with uncalibrated cameras. To do that the
principal point of the camera is assumed to be in the middle of the image, the skew is fixed
to zero and the aspect ratio to one. These assumptions on the camera matrix are true for
almost all digital cameras constructed today, even though the principal point may differ
somewhat in location. Since the (1,3) solver is tested in uncalibrated images the solver is
compared with a linear solver of six three dimensional points. This is not a minimal case,
but it is probably the most commonly used method on uncalibrated images today.

The localization step is carried out as follows for all methods used. First the SIFT
descriptors are calculated for the query image. After that, all these SIFT features are
compared with those in the model to find the closest match. To make this more robust
a distance ratio between the best and the second best match is used. The threshold for
the ratio is fixed to 0.7 and the match is only accepted if the matching score for the first
match is 0.7 better than the second match. For each established point track, we only
match to the best point in the track.

This will give a set of matches between the query image and the model. Some of
these matches are to 3D points and some correspond to 2D features without triangulated
3D points. These matches will also contain a significant number of outliers. To handle
the outliers RANSAC is used with the proposed minimal solvers. When the number of
inliers is counted during the RANSAC iterations the number of 2D correspondences is
divided by 10. This is done to compensate for two sources, first the fact that the number
of 2D points in the model is about ten times as large as the number of 3D points and
secondly since the 3D points are first triangulated using the 2D points. The thresholds
for the reprojection error in the RANSAC algorithm is fixed to 0.6% of the image size as
in [25]. As a final step of the localization, bundle adjustment is performed on the camera
position using the 3D inliers.
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Figure 4: The reprojection of visible 3D points when the (2,2) solver (left) and the three
point solver (right) are used. One out of four model points in Model 2 is reprojected and
both solvers have resulted in a correct position.

Model 1 Model 2 Models 1 & 2
Inliers 2D | Inliers 3D | Inliers 2D | Inliers 3D | Inliers 2D | Inliers 3D
(2,2) solver| 9.83 4.60 7.63 9.41 8.68 7.11
(0,3) solver 4.72 9.88 7.42

Table 5: The mean number of inliers after 500 RANSAC iterations for the (2,2) solver
and the three point solver. Model 1 is a sparse model and Model 2 much denser.

Test of the (2,2) Solver on the Shopping Street Dataset

The (2,2) solver is tested and compared with the three point solver [12]. Both these
methods assumes calibrated cameras. Figure 4 shows an example of a test image which
has been correctly positioned by both methods.

To evaluate the solver, all images that had three or more correspondences to 3D points
are used. On these images, 500 RANSAC iterations were performed and the number of
inliers was counted. For the (2,2) solver, both the numbers of 3D and 2D inliers are
given. The result of this experiment is shown in Table 5. The three point solver gives a
slightly higher number of 3D inliers. The fact that an incorrectly placed image usually
gives the (2,2) solver two inliers but gives the three point solver three inliers is probably
the reason that the three point solver has a slightly higher number of inliers.

Furthermore, the number of correctly located images was counted. For the (2,2)
solver, the number of correctly placed cameras was 55 out of 65 images in Model 1 and
the corresponding figure for the three point solver was 45. The total number of images,
are as before those test images that had at least three 3D correspondences to the model.
The images with fewer correspondences are not counted. In Model 2 the figures are closer.
There were 54 images correctly placed with the (2,2) solver and 53 images with the three
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Inliers 2D | Inliers 3D
(2,2) solver 151.9 15.0
(0,3) solver 17.7

Table 6: The mean number of inliers after 500 RANSAC iterations for the (2,2) solver
and the three point solver on the Ziirich building database.

point method. The total number of images was 71. The reason why the performance
differs more in the first model is probably due to the sparsity of that model. When the
model is sparse the importance of also using the 2D correspondences increases.

Test of the (2,2) Solver on the Ziirich Buildings Database

The same tests were run on the Ziirich building database. As in the experiments on the
shopping street the number of correctly placed images were counted. Since the calibra-
tion of the camera is unknown for these images the (1,3) method was first run and bundle
adjustment was applied to the output of the (1,3) method. The calibration of the esti-
mated camera from the bundle adjustment was then used as the calibration for the (2,2)
and the three point solvers. The outcome of the experiment was that the (2,2) solver was
able to place the camera approximately correct in 44 of 46 images where the (1,3) solver
had given a reasonable result on the focal length and the 3 point solver gave good results
in 42 of the cases. The reason why the (0,3) solver gives worse results than the (2,2) even
though there should be at least three correct 3D points from the (1,3) solver is probably
the fact that the (2,2) solver is helped by the 2D inliers when the size of the consensus
set is counted in the RANSAC engine. Table 6 shows the number of inliers for the (2, 2)
and (0, 3) solver respectively.

Test of the (1,3) Solver on the Shopping Street Data Set

If we assume nominal values for the principal point, skew and aspect ratio, then the (1,3)
solver can be used on uncalibrated images. Making these assumptions, we compare the
result with the six point linear solver for the uncalibrated case. The results of an image
positioned by the (1,3) solver and the six point solver are shown in Figure 5.

As in the previous case, we used all images that had more than six 3D correspondences
and hence could be used in both algorithms. On these images the 500 RANSAC itera-
tions were performed and the number of inliers was counted. For the (1,3) solver both
the numbers of 3D and 2D inliers are given. The result of this experiment is presented in
Table 7. The results are very similar to those of the previous case.

The number of correctly located images was also counted, as in the previous case. For
the (1,3) solver the number of correctly placed cameras was 22 in Model 1, out of 32
images. The six point method on the other hand only managed to locate 4 of these 32
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Figure 5: The reprojection of visible 3D points when the (1,3) solver (left) and the six
point solver (right) is used. In this example Model 1 is used and all points in front of the
camera are reprojected. The (1,3) solver has a correct position but the six point solver has
not.

Model 1 Model 2 Models 1 & 2
Inliers 2D | Inliers 3D | Inliers 2D | Inliers 3D | Inliers 2D | Inliers 3D
(1,3) solver| 14.7 6.52 9.84 11.36 11.42 9.78
(0,6) solver 7.37 12.20 10.63

Table 7: The number of inliers after 500 RANSAC iterations for the (1,3) solver and the
six point solver. Model 1 is a sparse model and Model 2 much denser.

images correctly. In the second model, the (1,3) method succeeded in the localization in
41 out of 62 trials. On the same data, the six point solver managed to place 14 cameras
correctly.

Test of the (1,3) Solver on the Ziirich Buildings Database

When the number of correctly positioned cameras were counted the (1,3) solver managed
to place 46 out of 86 images correctly compared with the six point solver that managed
to place 32 of the images correctly. Once again the number of inliers were compared with
the (0, 6) method. The result of the experiment is shown in Table 8.

Determining the Focal Length

The (1,3) solver also estimates the focal length and this can be used to evaluate the solver
since we can find the calibration of the camera using other data. The experiment is carried
out as follows. The localization step is performed as usual but the calibration dependency
is removed in the beginning by normalizing the image coordinates. The result should
then be that the (1,3) solver returns a focal length equal to one. To test this every image
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Inliers 2D | Inliers 3D
(1,3) solver 131.3 26.0
(0,6) solver 33.4

Table 8: The mean number of inliers after 500 RANSAC iterations for the (1,3) solver
and the six point solver on the Ziirich building database.
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Figure 6: The result of the kernel voting for the focal length. The true focal length in this
experiment is one. In the kernel voting only estimations with more the minimal number,
which is three, of inliers are used in the voting process.

with enough of correspondences was localized. All images that got at least one extra inlier
in 3D were then used in kernel voting [17] to estimate the focal length. The constraint
that one extra inlier should appear is used to remove a large part of the miss placed images.
The result of the kernel voting is shown in Figure 6. As can be seen in the figure, the main
peak is localized close to one.

8 Conclusions

In this paper we have presented new minimal cases for the resection problem. These use
a mixture of correspondences to known 3D points and correspondences to points that
have only been found in one image in the model. In all except one of these minimal cases
we have given an upper bound on the possible number of solutions with Grébner basis
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techniques. In two of the cases we have also presented and evaluated numerical solvers.
The first of these cases is the (2,2) problem that finds the pose for a calibrated camera.
The solution with Grobner basis techniques leads to a very fast and numerically stable
algorithm. We also present a solver for the (1,3) case for cameras with unknown focal
length. This problem is significantly more complicated than the (2,2) problem but we can
still present a numerically sound and computationally efficient algorithm with Grébner
basis methods. Both these methods are tested in a complete localization system and they
are shown to improve on the standard methodology of today. The experiments show
also that the (1,3) solver for pose and unknown focal length can be used on uncalibrated
cameras under some reasonable assumptions. With these assumptions the solver shows
promising results. The improvements are most significant on sparse models.

In the paper all methods are used separately. A convenient way to extend this work
would be to use all methods simultaneously and make an automatic choice of which
method to use depending on the data present. By that our new methods can help to
improve the robustness of any localization system using hybrid cases.
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Fast and Robust Numerical Solutions to
Minimal Problems for Cameras with

Radial Distortion

Zuzana Kikelovd, Martin Byrod, Klas Josephson,
Tomas Pajdla, Kalle Astrém

Abstract

A number of minimal problems of structure from motion for cameras with radial distortion
have recently been studied and solved in some cases. These problems are known to be numeri-
cally very challenging and in several cases there were no practical algorithm yielding solutions
in floating point arithmetic. We make some crucial observations concerning the floating point
implementation of Grobner basis computations and use these new insights to formulate fast and
stable algorithms for two minimal problems with radial distortion previously solved in exact
rational arithmetic only: (i) simultaneous estimation of essential matrix and a common radial
distortion parameter for two partially calibrated views and six image point correspondences
and (ii) estimation of fundamental matrix and two different radial distortion parameters for
two uncalibrated views and nine image point correspondences. We demonstrate on simulated
and real experiments that these two problems can be efficiently solved in floating point arith-
metic. For comparison we have also invented a new non-minimal algorithm for estimating
Sfundamental matrix and two different radial distortion parameters for rwo uncalibrated views
and twelve image point correspondences based on a generalized eigenvalue problem.

1 Introduction

Estimating camera motion and internal calibration parameters from sequences of images
is a challenging computer vision problem with a broad range of applications [11]. One
typically starts with a noisy set of tentative image point correspondences. The first step
then is to make decisions about correct and incorrect matches and get a good initial
estimate to be able to deploy a more sophisticated optimization algorithm on the set of
all correct matches.
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Two robust and widely used techniques for this purpose are RANSAC [8] and kernel
voting [14], both relying on solving a large number of instances of the underlying prob-
lem, each with a small number of point correspondences. There is thus a need to develop
fast and stable algorithms for solving geometric vision problems with a minimal number
of points. Typically this amounts to solving a system of polynomial equations in several
variables. These problems are known to be numerically very challenging and in several
cases there exist no practical algorithm yielding solutions in floating point arithmetic.

Traditionally, minimal problems have been formulated assuming a linear pin-hole
camera model with different restrictions on the internal calibration parameters etc. How-
ever, for some cameras such fish-eye lenses this can be insufficient and one might need to
handle strong radial distortions already from the outset.

The particularly interesting solution to the simultaneous estimation of the funda-
mental matrix and single radial distortion parameter, based on the division model, has
been introduced by Fitzgibbon [9]. His formulation leads to solving a system of algebraic
equations. However, Fitzgibbon did not use the algebraic constraints on the fundamental
matrix. Thanks to neglecting the constraints, he worked with a very special system of al-
gebraic equations which can be solved numerically by using a quadratic eigenvalue solver.
Micusik and Pajdla [16, 17] also neglected the constraints when formulating the esti-
mation of a paracatadioptric camera model from image matches as a quartic eigenvalue
problem.

Li and Hartley [14] treated the original Fitzgibbon’s problem as a system of alge-
braic equations and used the hidden variable technique [4] to solve them. The resulting
technique solves exactly the same problem as [9] but in a different way.

Solving for the fundamental matrix under different radial distortions was first studied
in [2], where a non-minimal algorithm based on 15 point correspondences was given for
a pair of uncalibrated cameras.

More recently, in [12, 13], a number of different minimal problems with radial dis-
tortion have been studied and practical solutions were given in some cases.

The state-of-the-art method for solving polynomial equations is based on calculations
with Grébner bases [18] and has many applications in computer vision, but also in other
fields such as cryptology [7] and robotics [1]. In [21, 3] Grobner bases were used to derive
a fast algorithm for globally optimal three view triangulation under the Ly-norm.

In this paper, we further develop the techniques of numerical Grébner basis compu-
tations. In particular we (i) note the importance of obtaining a single elimination step in
the Grobner basis computation, (ii) give guidelines for how this can be achieved and (iii)
give a new simplified formulation of the Grébner basis computation procedure based on
LU factorization, which reduces the computational burden of the elimination step.

Leveraging on these new insights, we formulate fast and numerically stable algorithms
for two minimal problems with radial distortion previously unsolved in floating point
arithmetic: (i) simultaneous estimation of essential matrix and a common radial distor-
tion parameter for two partially calibrated views and six image point correspondences and
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Figure 1: (Left) Input images with different radial distortions (Top) 66% cutout from
omnidirectional image and (Bottom) image taken with a standard perspective camera
with very mild distortion. (Center) Corrected images. (Right) Distribution of real roots
obtained by kernel voting. Estimated A\ = —0.925625 and Ay = 0.002500.

(ii) estimation of fundamental matrix and two different radial distortion parameters for
two uncalibrated views and nine image point correspondences.

We demonstrate the speed and intrinsic numerical stability as well as robustness to
noise of the proposed algorithms using both synthetic data and real images.

We compare our minimal algorithms with the existing Fitzgibbon’s non-minimal al-
gorithm [9] for estimating fundamental matrix F' and a single radial distortion from 9
point correspondences based on QEP, the Grobner basis minimal algorithm [12] for a
single radial distortion and 8 point correspondences, which uses det(F') = 0, a linear 12
point algorithm for estimating £ and two different radial distortions and finally with the
new non-minimal algorithm for two different radial distortions based on the generalized
eigenvalue problem proposed in this paper.

2 Review of Grobner Basis Techniques for Polynomial
Equation Solving

Solving systems of polynomial equations is a challenging problem in many respects and
there exist no practical numerically stable algorithms for the general case. Instead, special
purpose algorithms need to be developed for specific applications. The state-of-the-art
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tool for doing this is calculations with Grébner bases [4].
Our general goal is to find the complete set of solutions to a system

fi(x) =0,..., fm(x) =0, (1)

of m polynomial equations in n variables x = (x1, ..., ;). The polynomials f1, ..., fm
generate an ideal I in C[x], the ring of multivariate polynomials in x over the field of
complex numbers defined as the set

1= {9(x) : g(x) = Sl () fu(x)}, @

where the h,(x) are any polynomials.

The Grébner basis method for equation solving essentially builds on a generalization
of polynomial division to the multivariate case. A concept arising in multivariate polyno-
mial division which does not exist in the univariate case is division by a sez of polynomials.
See [4] for details. Division by an ideal as given by (2) can then be defined as division by
the set of generators f.

The starting point now is to consider the space of all possible remainders under divi-
sion by I. This space is denoted C[x]/I and referred to as the quotient space. It can be
seen as a generalization of the modulo rings Z,, to polynomials. A famous result from
algebraic geometry now states that if the set of equations (1) has a finite set of zeros, then
C[x]/I will be a finite-dimensional linear space with dimension equal to the number of
zeros of (1) [4].

With the space C[x]/I in hand an elegant trick now yields the solutions to (1).
Consider multiplication by one of the variables . This generates a linear mapping from
C[x]/I to itself and since we are in a finite-dimensional space, by selecting an appropriate
linear basis, this mapping can be represented as a matrix mg, . This matrix is known as
the action matrix and the eigenvalues of m, are exactly the values of z, on the zeros
of (1) [4]. Furthermore, the eigenvectors of mfk correspond to the vector of monomials
evaluated at the zeros of (1).

The crucial step in the process is to compute the remainder arithmetic of C[x]/I.
Multivariate polynomial division by I is complicated by the fact that it is not well defined
for most choices of generators. Consider the operator P : C[x] — C[x]/I representing
division by I for some choice of generators. For P to be well defined we require that
P(f1(x) + f2(x)) = P f1(x) + P f2(x) forall f1(x), f2(x) € C[x].

Fortunately there exist a canonical choice of generators for which P is well defined.
This set of generators of I is known as the Grébner basis of I and allows direct con-
struction of the action matrix, see [3] for details. Calculating the Grébner basis of I is
therefore our main concern. In general, this is accomplished by Buchberger’s algorithm
which works well in exact arithmetic. However, in floating point arithmetic it very easily
becomes unstable. There exist some attempts to remedy this [5, 6], but for more difficult
cases the only reliable approach (so far) is to study a particular class of equations (e.g.
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relative orientation for calibrated cameras [19], optimal three view triangulation [21],
etc.) and use knowledge of what the structure of the Grébner basis should be to design
a special purpose Grobner basis solver. This method has been developed by Stewenius
and others in a number of papers [18, 12, 20]. In the following section we outline how
this is done and provide new insights enabling us to solve the two problems with radial
distortion treated in this paper.

3 A Matrix Version of Buchberger’s Algorithm

The reason why Buchberger’s algorithm breaks down in floating point arithmetic is that
eliminations of monomials are performed successively and this causes round-off errors
to accumulate to the point where it is completely impossible to tell whether a certain
coefficient should be zero or not. The idea introduced by Faugere [5] is to write the list
of equations in a matrix form

x
C|: | =0 3)
x%n
o a 1T . . . . ak g1
where [x -+ x®]" isavector of monomials with the notation x** = 2{** - - .
« . . . . . .
xp"". Elimination of leading terms now translates to matrix operations and we then

have access to a whole battery of techniques from numerical linear algebra allowing us to
perform many eliminations at the same time with control on pivoting etc.

However, as mentioned above, the real power of this approach is brought out by com-
bining it with knowledge about a specific problem obtained in advance with a computer
algebra system such as Macaulay2 [10]. One can then get information about exactly
which monomials occur in Buchberger’s algorithm and the dimension of C[x]/1I.

3.1 Obtaining a Single Elimination Step

With knowledge of the particular problem at hand, the ideal situation is to obtain a
single big elimination step. The reason for this is that each elimination step can be ill
conditioned and with errors accumulating the situation soon becomes hopeless. With a
single elimination step we get maximal control over row pivoting etc. Moreover, the basis
selection method introduced in [3] can further improve stability, but is only applicable
when a single elimination step is possible.

In Buchberger’s Algorithm, two polynomials are picked and the least common mul-
tiple of their leading terms is eliminated by multiplying them with the right monomials
and then subtracting them. This is done a large number of times until convergence. We
mimick this process but aim at completely separating multiplication by monomials and
elimination. The steps are

121



PAPER III

1. Multiply the original set of equations with a large number of monomials yielding
an expanded set of equations.

2. Stack the coefficients of these equations in an expanded coefficient matrix Cexyp.

3. If enough new equations were generated in the previous step, row operations on
Cexp yield the elements of the Grobner basis we need.

An important observation made independently in [3] and [12] is that not all elements of
the Grobner basis are needed. Let 3 denote a selection of basis monomials for C[x]/I.
Then to construct the action matrix m,, we only need to calculate the elements of the
ideal I with leading monomials in the set (zy - B) \ B.

Let M denote the complete set of monomials and let R = (- B) \ B denote
the set of monomials that need to be reduced to C[x]/I. Finally, let £ (£ for excessive)
denote the remaining monomials. We then have a partitioning of the monomials as
M=EURUB.

Now, reorder the columns of Ceyp, and the vector of monomials X to reflect this

Xe
[Ce Cr Cg| |Xr| =0. 4)
Xz

The £-monomials are not in the basis and do not need to be reduced so we eliminate

them performing an LU factorization of Ceyy, yielding the following schematic result:

|:U51 Cr, CBI} Xe

Xz | =0, 5
0 UR2 CBQ XE ( )

where Ug, and Upg, are upper triangular. We can now discard the top rows of the
coefficient matrix producing

[Ur, Cal {XR] 0. ©

From this we see that if the submatrix Ug, is of full rank we get precisely the polynomials
from the ideal I we need by forming

_ X
[I URiCBZ] {XE] =0, (7)
or equivalently
X =-Ux Cp, X5, ®)

which means that the R-monomials can now be expressed uniquely in terms of the B-
monomials. This is precisely what we need to compute the action matrix m,, in C[x]/I.
In other words, the property of Ug, as being of full rank is sufficient to get the part of
the remainder arithmetic of C[x]/I that we need to compute m,, .
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4 Application to Minimal Problems with Radial Distor-
tion

Based on the techniques described in the previous section, we are now able to provide
fast and stable algorithms for two previously untractable minimal problems with radial
distortion:

1. The problem of estimating a one-parameter radial distortion model and epipolar
geometry from image point correspondences in two uncalibrated views with differ-
ent radial distortions in each image.

2. The problem of estimating a one-parameter radial distortion model and epipolar
geometry from image point correspondences in two partially calibrated views.

These two problems were previously studied in [13] and found to be numerically very
challenging. In [13] the authors provided solutions to these problems computed in exact
rational arithmetic only. This results in very long computational times and is not usable
in practical applications. Here we show that these two problems can be efficiently solved
in floating point arithmetic.

4.1 Uncalibrated Case

In our solution we use the same formulation of the problem as in [13]. This formulation
assumes a one-parameter division model [9] given by the formula

Pu ~ Pa/(1+ Ard) )

where py, = (Zu,Yu, 1)T and pg = (z4,ya, 1)T are the corresponding undistorted,
resp. distorted, image points, and rg is the radius of pg w.r.t. the distortion center.

It is known that to get solutions to this minimal problem for uncalibrated cameras
with different radial distortions A; and Ay in each image, we have to use the epipolar
constraint for 9 point correspondences

Pu, A)F P, (A2) =0, i=1,....9 (10)
and the singularity of the fundamental matrix F
det (F) = 0. (11)

Assuming f3 3 7 0 we can set f3 3 = 1 and obtain 10 equations in 10 unknowns.

Eliminating variables

The epipolar constraint gives 9 equations with 16 monomials (f3 11, f32A1, f1,3A2,
fa,302, Mia, fi1, f1,2, f1,3, f2.1, f2,2, f2,3, f3.1, f3,2, A1, A2, 1) and 10 variables ( fi 1,
J1.2: 1,30 f2,15 f2.25 f2.3, f3,1, f3.2, A1, A2).
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Among them, we have again four variables which appear in one monomial only
(f1.15 f1,25 f2,1, f2,2) and four variables which appear in two monomials ( f1 3, f2.3, f3.1,
f3,2). Since we have 9 equations from the epipolar constraint we can use these equations
to eliminate 6 variables, four variables which appear in one monomial only and two of
the variables which appear in two monomials. In this solution we have selected f1 3 and

f2,3-

We reorder the monomials contained in the 9 equations and put the monomials
containing f1,1, f1,2, f2,1, f2,2, f1,3 and f3 3 at the beginning. The reordered monomial
vector becomes X = [f1.1, f1,2, f2,1, f2,2, f1,3A2, f1,3, f2,3)2, f2.3, f3,1 A1, f3,2A1,
A2, f3.1, f3.2, A1, Aa, 1T

We rewrite the 9 equations from the epipolar constraint on matrix form CX = 0,
where C is the coefficient matrix. After performing Gauss-Jordan (G-]) elimination on
the matrix C, we obtain 9 equations on the form

fi=LT(fi) + gi(f3,1, f3,2, A1, A2) = 0, (12)

where LT(f;) = fi,1, f1,2, f2.1, f2,2, f1,302, f1,3, f2,302, fo3 resp. f31 A for i =
1,2,3,4,5,6,7,8 resp. 9 and gi(f3.1, f3.2, A1, \a) are 2"%order polynomials in four
variables f3 1, f3,2, A1, A2. This means that we can express the 6 variables, fi 1, f1,2, f1.3,
f2,1, f2,2, f2,3 as functions of the other four variables f3 1, f3 2, A1, A2.

fii=—g1(fs,1, f3,2, A1, Aa)

(
fi2 = —0g2(f3,1, f3,2, A1, A2)
f13 = —96(f3,1, f3,2, A1, A2)
fo,1 = —g3(f3,1, f3,2, A1, A2)
fa2 = —09a(f3,1, f3,2, A1, A2)
fa3 = —9s8(f3.1, f3.2, A1, A2),

Substituting these expressions into the other three equations from the epipolar con-
straint and also into the singularity constraint for F' gives 4 polynomial equations in 4
unknowns (one of 274 degree, two of 3rd degree and one of Gtk degree)

A2(=9g6(f3.1, f3.2, A1, A2)) + g5(f3.1, f3,2, A1, A2) = 0

A2(—gs(f31, f3.2: M1, A2)) + 97(f3,1, f3,2, A1, A2) =0
f31A1 4 99(f3,1, f3,2, A1, A2) =0

2 (13)

—91 —92 —Ye
det | —g3 —ga —gs | =0. (14)
31 fz2 1

This problem has 24 solutions in general [13].
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The Solver

The numerical solver is constructed starting with the four remaining equations (14) in the
four unknowns f3 1, f3,2, A1 and Ag. The first step is to expand the number of equations,
as outlined in Section 3, by multiplying them by a handcrafted set of monomials in the
four unknowns yielding 393 equations in 390 monomials. See Section 4.1 for details.

The coefficients of the equations are then stacked in a matrix C as in (3). Following
this, the monomials are ordered as in (4). The sets £ and R depend on which variable is
used to create the action matrix. For this problem f3 1 was used as the “action” variable.
The classical method is thereafter to choose the linear basis B of C[x]/I to be the 24
lowest monomials (w.7.z some monomial order). This is enough to get a solution to
the problem, but as mentioned in Section 3 we can use the method introduced in [3] to
select a basis of linear combinations of monomials from a larger set and thereby improve
numerical stability. Empirically, we have found that the linear basis can be selected from
the set of all monomials up to degree four excluding the monomial A\{. The set R then
consists of monomials of degree five that are reached when the monomials of degree four
are multiplied with f3 ;. & is the remaining set of 285 monomials.

Putting the part of C corresponding to £ and R on triangular form by means of an
LU decomposition now produces (5). We can then remove all equations that include
excessive monomials and still have enough information to construct the action matrix.

Finally, we make the choice of representatives for C[x]/I by the method in [3] and do
the last elimination to get the part of the Grébner basis we need to construct the action
matrix.

Details on the Expansion Step for the Uncalibrated Case

We have found experimentally that to construct the necessary elements of the Grobner
basis, we need to generate polynomials up to a total degree of eight. Thus, the ond degree
polynomial has to be multiplied with all monomials up to degree six and monomials with
the corresponding degrees for the 37 and 5" degree polynomials.

Further investigations has shown that not exactly all monomials up to degree eight are
needed, so in the implementation the 2"¢ degree polynomial was only multiplied with
monomials up to degree five and each variable not higher than four. Moreover \; was
not multiplied with degrees higher than two. For the other polynomials it was possible to
limit the degree of each individual variable to one lower than the total degree.

These multiplications yield 393 equations in 390 monomials. Without the last fine
tuning of the degrees, the number of equations and monomials will be larger but all extra
monomials will be in the set £ and will make no real difference to the solver except slightly
longer computation times.
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4.2 Calibrated Case

To solve the minimal problem for calibrated cameras, we make use of the epipolar con-
straint for 6 point correspondences

P, MEP,, (A) =0, i=1,...,6, (15)
the singularity of the essential matrix E
det (E) =0 (16)

and the trace constraint, which says that two singular values of the essential matrix are
equal
2 (EE") E — trace(EET )E = 0. (17)

Again assuming ez 3 7 0, we can set e3 3 = 1 and obtain 16 equations in 9 unknowns.

Eliminating variables

The epipolar constraint gives 6 equations in 15 monomials (Aej 3, Ae2 3, Aes 1, Aes 2,
)\2, €1,1,€1,2,€1,3,€2,1,€22,€2.3,€31,€32, )\, 1) and 9 variables (61717 €1,2,€1,3,€21,
€2,2,€23,€31,€32, >\)'

Using similar a elimination method as in the uncalibrated case we eliminate 5 of these
9 variables. All these variables can be eliminated simultaneously.

We have four variables which appear in one monomial only (e1,1,€1.2,€2,1,€22)
and four variables which appear in two monomials (€1 3, €23, €31, €3,2). Since we have
six equations of which each contains all 15 monomials we can eliminate five of these
nine variables. We select the first four variables €1, €1 2, €21, €22 that appear in one
monomial only (and can be straightforwardly eliminated) and the fifth variable as e; 3
which appears in two monomials.

We reorder the monomials contained in the 6 equations putting monomials contain-
ing e1,1,€1,2,€21,€2,2 and ey 3 at the beginning. The reordered monomial vector will
be X = [61,1, €1,2,€21,€2.2, 61,3)\, €1,3, 62,3)\7 63,1)\7 63,2)\7 >\2, €23, €3,1,€3,2, A, 1]T'

We rewrite 6 equations from the epipolar constraint on matrix form CX = 0. After
performing Gauss-Jordan (G-J) elimination on the matrix C, we obtain 6 equations of
the form

fi=LT(fi)+ gi(e2,3,e3,1,€32,A) =0, (18)

where LT(f;) = e11,€1,2,€2,1,€2,2,€1,3A, resp. e1,3 fori = 1,2,3,4,5 resp. 6 and
gi(e23,€31,€32, ) are 2"%rder polynomials in 4 variables ez 3, €3.1, €32, A. So, the
five variables €1 1,e1,2,€1,3,€2,1,€2,2 can be expressed as functions of the other four
variables €2.3,€3,1,€3,2, A

e11 = —gi(e23,€31,€32,\)
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e12 = —g2(e2,3,€3,1,€32,\)
e1,3 = —gs(€2,3,€3,1,€32,\) (19)
€21 = —93(62,3, €3,1,€3,2, >\)
e22 = —ga(e23,€31,€32,A).

We substitute these expressions into the remaining equation from the epipolar con-
straint and into the singularity and trace constraints for E. In this way we obtain 11
polynomial equations in 4 unknowns (one of degree 3, four of degree 5 and six of degree
6):

One equation from the epipolar constraint
A(—ge(e2,3,€3,1,€32,\)) + g5(e2,3,e31,€32,A) =0, (20)
one equation from the singularity constraint
det (E) =0, (21)

and 9 equations from the trace constraint

2 (EE") E — trace(EET))E = 0, (22)
with
—91 —92 —Ye
E=1| —g3 —g12 e23 |. (23)

e31 es2 1

In [13] it was shown that this problem has 52 solutions.

The Solver

The numerical solution of this problem largely follows that of the uncalibrated version.
In the first expansion, all equations are multiplied with monomials to reach degree eight.
This gives 356 equations in 378 monomials. As in the uncalibrated case it is possible to
reduce the number of monomials by fine tuning the degrees we need to use, in this case
yielding 320 equations in 363 monomials.

The next step is to reorder the monomials as in equation (4). Once again, the linear
basis of C[x]/I can be constructed from the monomials of degree four and lower. R
will then consist of those monomials of degree five that are reached when the degree four
monomials are multiplied with the variable e3 1, which is used as the “action” variable.

As before, C is transformed to triangular form by LU decomposition and after that
we only consider those equations that do not include any of the monomials in £. Now C
holds all necessary information to choose representatives in C[x]/I by the method of [3]
and create the action matrix with respect to multiplication by e3 ;.
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5 Non-minimal solution to the uncalibrated case with
different distortions.

For comparison we have also created a new non-minimal algorithm for estimating funda-
mental matrix and two different radial distortion parameters for two uncalibrated views
and twelve image point correspondences based on the generalized eigenvalue problem.
This algorithm is similar to the well-known algorithm for estimating F" and a single dis-
tortion parameter from nine point correspondences proposed by Fitzgibbon [9] which
was formulated as a quadratic eigenvalue problem.

We also formulate the problem with different distortions as a generalized eigenvalue
problem. We use equations from the epipolar constraint for 12 point correspondences

Py, (M)FP, (X)) =0, i=1,... 12 (24)

Assuming f33 # 0 we can set f33 = 1 and obtain 12 equations with 16 monomials
(f3,11, f3,2A1, f1.3)2, fa,3h2, M Ag, fi1, fi2, f1.3, f2,1, f2,2, f2.3, f3,1, f3,.2, A1, Ae,
1) and 10 variables (f1,1, f1,2, f1,3, f2,15 f2.2, f2,3, f3,1, f3.2, A1, A2).

Using the standard notation for the division model

T
PuN) ~ (Ta,ya, 1+ N3], (25)
we can rewrite the equations from the epipolar constraint as
(D1 + )\2D2) v =0, (26)

where Dy = [, 2, Ta,Yly, Ta,Ya, Ty, Ya, Y, Yd: T, Yo, Ta, T, Ta,Ya, Ta, 1] and
Dy = [00zg,, 00ygry 0000737, 7], i=1,...12, are 12 x 12 matrices
containing only known distorted coordinates and v is the 12 x 1 vector of unknown
monomials v = [f11, fi2, fi3, fo1, fo2, fos, f31, f32, f31 A1, f3,2A1, A1, 1]

The formulation (26) is a generalized eigenvalue problem which can be easily solved
using standard efficient algorithms. For example MATLAB provides the function polyeig.

Because D3 has eight zero columns, this generalized eigenvalue problem leads to eight
“infinite” eigenvalues. Thus, there are at most four finite real solutions to this problem.

6 Experiments

We have tested the algorithms for the uncalibrated and calibrated minimal problems on
synthetic images with various levels of noise, outliers and radial distortions as well as on
real images. For comparison we have also tested non-minimal algorithms on synthetic
images. The time of computation has been measured for both minimal algorithms.

The minimal algorithms proposed in this paper are significantly more stable than the
algorithms presented in [13] which ran in exact rational arithmetic only. Since doing the
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Figure 2: (Left) The number of real solutions for the uncalibrated case. (Right) The
number of real solutions for the calibrated case.

computations in exact arithmetic is extremely slow (minutes instead of milliseconds), a
comparison with the floating point algorithm presented in this paper is not meaningful
and has therefore been omitted.

The problems presented in this paper are solved by finding the roots of a system of
polynomial equations which means that we obtain several potentially correct answers, 52
in the calibrated case, 24 in the uncalibrated minimal case and 4 in the uncalibrated non-
minimal case. In general we obtain more than one real root (Figure 2), in which case we
need to select the best one, z.e. the root which is consistent with most measurements. To
do so, we treat the real roots obtained by solving the equations for one input as real roots
from different inputs and use kernel voting [14] for several inputs to select the best root
among all generated roots. The kernel voting is done using a Gaussian kernel with fixed
variance and the estimates of A1 and A2 in the uncalibrated case and ) in the calibrated
case are found as the positions of the largest peaks [14, 12].

6.1 Tests on Synthetic Images

For all problems treated in this paper, the same synthetic experiments were carried out to
evaluate the quality of the solvers.

In all our simulated experiments we generate our synthetic data using the following
procedure:

1. Generate a 3D scene consisting of 1000 points distributed randomly within a cube.
Project M % of the points on image planes of the two displaced cameras, these are
matches. In both image planes, generate (100 — M )% random points distributed
uniformly in the image, these are mismatches. Altogether, they become undistorted
correspondences, true as well as false matches.
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Figure 3: Uncalibrated case: Relative errors of (Left) A; and (Right) Ay as a function
of noise. Ground truth (Top) A\; = —0.2, A2 = —0.3 and (Bottom) A\; = —0.01,
A2 = —0.7. Blue boxes contain values from 25% to 75% quantile.

2. Apply different radial distortions to the undistorted correspondences in each image
and in this way generate noiseless distorted points.

3. Add Gaussian noise of standard deviation o to the distorted points.

Uncalibrated case

In the first two experiments we study the robustness of our minimal as well as non-
minimal algorithm for the uncalibrated case to Gaussian noise added to the distorted
points.

The first experiment investigates the estimation error of A as a function of noise.
Results for the minimal algorithm are presented in Figure 3 and for the non-minimal
algorithm in the Figure 4. The ground truth radial distortions parameters were A\; =
—0.2, Ay = —0.3 Figure 3 and Figure 4 (Top) in the first case and \; = —0.01,
Ao = —0.7 Figure 3 and Figure 4 (Bottom) in the second case. The noise varied from 0
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Figure 4: Non-minimal “12 point” algorithm for uncalibrated case: Relative errors of
(Left) A1 and (Right) Ay as a function of noise. Ground truth (Top) Ay = —0.2, Ay =
—0.3 and (Bottom) A1 = —0.01, Ay = —0.7. Blue boxes contain values from 25% to
75% quantile.

to 2 pixels. For each noise level relative errors for 2000 \’s (estimated as the closest values
to the ground truth value from all solutions) were computed. The results in Figure 3
and Figure 4 for the estimated A1 (Left) and Ao (Right) are presented by the Matlab
function boxplot which shows values of the 25% to 75% quantiles as a blue box with red
horizontal line at median. The red crosses show data beyond 1.5 times the interquartile
range.

Both algorithms give similar results. For noiseless data we obtain very accurate es-
timates of radial distortion parameters even for very different X’s. For larger noises the
log; relative errors are much higher (mostly around 1071). However obtained \’s are
still satisfactory and mostly differ from the ground truth value in the second decimal
place. The main point though is not to use a one set of points to get a good estimate, but
to repeatedly draw configurations from a larger set of potential matches and then use ¢.g.
kernel voting to get a more reliable estimate. Finally, the result can be further enhanced
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Figure 5: Uncalibrated case, kernel voting: Estimated (Left) A1 and (Right) Ag as a
function of noise, (Top) ground truth A\; = —0.2, Ay = —0.3 (green lines), 90%
of inliers and 100 samples in kernel voting and (Bottom) ground truth A; = —0.01,
A2 = —0.7, 100% of inliers and 50 samples in kernel voting.

using the obtained estimate as a good starting guess in a large scale bundle adjustment.
The effect of kernel voting is studied in the second experiment.

In this experiment we did not select the root closest to the ground truth value for
each run of the algorithm, instead we used kernel voting to select the best X’s among all
generated roots from several runs. The ground truth radial distortion parameters were as
in the previous experiment (A\; = —0.2, Ay = —0.3 in the first case and A\; = —0.01,
A2 = —0.7 in the second case) and the level of noise varied from 0 to 2 pixels. Moreover,
in the first case there were 10% of outliers in the image (M=90).

The testing procedure was as follows:

1. Repeat K times (We use K from 50 to 100 though for more noisy data K from
100 to 200 gives better results).

(a) Randomly choose 9 point correspondences from a set of N potential corre-
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Figure 6: Non-minimal “12 point” algorithm for uncalibrated case, kernel voting: Esti-
mated (Left) \; and (Right) A2 as a function of noise, (Top) ground truth A\; = —0.2,
A2 = —0.3 (green lines), 90% of inliers and 100 samples in kernel voting and (Bottom)
ground truth A\; = —0.01, A2 = —0.7, 100% of inliers and 50 samples in kernel voting.

spondences (6 point correspondences for the calibrated case).
(b) Normalize image point coordinates to [—1, 1].

(c) Find 24 roots using our algorithm (4 roots for the non-minimal algorithm
and 52 for the calibrated case).

(d) Select the real roots in the feasible interval, z.e. —1 < Ay, Ao < 1 and the
corresponding Fs.

2. Use kernel voting to select the best root.

Figure 5 shows \’s computed using our minimal algorithm for the uncalibrated case as
a function of noise and Figure 6 shows X’s computed using our non-minimal algorithm.
In the first case with outliers Figure 5 and Figure 6 (Top) 100 X’s were estimated using
kernel voting for roots computed from 100 (X = 100) 9-tuples of correspondences
randomly drawn for each noise level. In the second case Figure 5 and Figure 6 (Bottom)
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Figure 7: Calibrated case: (Left) relative errors of \ as a function of noise, ground truth
A = —0.3. (Right) kernel voting: Estimated A using kernel voting for roots computed
from 200 6-tuples of correspondences randomly drawn for each noise level. Ground truth

A = —0.3 (green line).

200 \’s were estimated using kernel voting for roots computed from 50 (K = 50) 9-
tuples of correspondences. This means that for each noise level our algorithm ran 10,000
times in both cases.

The results are again presented by the Matlab function boxploz.

For the minimal algorithm the median values for A1 and \g are very close to the
ground truth value for all noise levels from 0 to 2 pixels and also for very different radial
distortion parameters Figure 5 (Bottom) and 10% of outliers Figure 5 (Top).

The median values for the non-minimal “12 point” algorithm are also close to the
ground truth values for all noise levels and also for very different radial distortion pa-
rameters Figure 6 (Bottom) and 10% of outliers Figure 6 (Top). However, the variances
of this “12 point” algorithm are considerably larger, especially for higher noise levels,
than the variances of the minimal algorithm Figure 5. It is significant especially for data
with outliers Figure 6 (Top). This is because for 12 points we have higher probability
of choosing contaminated sample (sample containing outliers) than for 9 points. The
minimal algorithm thus produces higher number of good estimates for the fixed number
of samples. This is good both for RANSAC as well as for kernel voting.

Calibrated case

The same synthetic experiments were carried out for the calibrated solver.

The results of the first experiment which shows relative errors of the estimated A
as a function of noise are shown in Figure 7. The ground truth radial distortion was
A = —0.3. For noiseless data we again obtain very precise estimates of radial distortion
parameter A. For larger noise levels the log;, relative errors are slightly larger than for the
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Figure 8: Real data, 60% cutouts from omnidirectional images. (Left) Input images
with different radial distortions for camera 1 (Top) and camera 2 (Bottom). (Center)
Corrected images. (Right) Distribution of real roots obtained by kernel voting. Estimated

A1 = —0.301250 and Ay = —0.368125.

uncalibrated case. However, using kernel voting we can still obtain good estimates. This
is shown by our second experiment.

In this experiment A was estimated 50 times using kernel voting for roots computed
from 200 6-tuples of correspondences randomly drawn for each noise level, Figure 7. The
median values for \ are again very close to the ground truth value A\ = —0.3 for all noise
levels from 0 to 2 pixels. However the variances of this for the calibrated case are larger,
especially for higher noise levels, than the variances for the uncalibrated case. This means
that for good estimates of A this algorithm requires more samples in the kernel voting
procedure than in the uncalibrated case.

RANSAC experiment

In the last experiment we compare our algorithms with other existing algorithms within
the RANSAC paradigm by showing the number of correct matches recovered as a func-
tion of the number of samples made from a set of tentative matches contaminated by
mismatches. The number of samples used for our experiment was 10, 100 and 1000. We
compare the following algorithms

1. Fitzgibbon’s non-minimal algorithm [9] for estimating fundamental matrix " and
single radial distortion from nine point correspondences based on QEP;
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2. Grébner based minimal algorithm [12] for estimating F' and single radial distor-
tion from eight point correspondences, which uses det(F') = 0;

3. Our new minimal algorithm for estimating F and single radial distortion for

calibrated cameras from 6 point correspondences, which uses det(E) = 0 and
2EETE — trace(EET)E = 0;

4. Linear algorithm for estimating F' and two different radial distortions from 16
point correspondences;

5. Our new non-minimal algorithm for estimating F' and two different radial distor-
tions from 12 point correspondences based on generalized eigenvalue problem;

6. Our new minimal algorithm for estimating F' and two different radial distortions
from nine point correspondences, which uses det(F') = 0.

Two sets of images 11, 12 were generated using the procedure described in Subsec-
tion 6.1, I1 for Ay = Ay and 12 for A\; # A3. Gaussian noise with standard deviation 1
pixel was added to the image coordinates.

The number of correct matches (M % of correct matches) among 1000 tentative
matches was fixed and the image points were corrupted by (100 — M )% of random
mismatches. In our case M varies from 100% to 80%.

Table 1 shows results of the first 3 algorithms (i-iii) for single radial distortion A =
—0.3 and fixed threshold 7 = 1 pixel on the distance of an image point to epipolar
curves. The results were obtain as a mean values from 100 runs of RANSAC for 10,100
and 1000 samples. Table 2 shows results of the last 3 algorithms (iv-vi) for different radial
distortions Ay = —0.2 and Ay = —0.3 and fixed threshold 7 = 1 pixel.

The first row in both tables shows the number of matches K 1 within 7 threshold and
the second row shows the number of correct matches K2 among them.

The results show that the algorithms sampling fewer points faster hit a non-con-
taminated sample than the algorithms sampling more points. Therefore, our minimal
algorithms give better results than non-minimal algorithms. This is significant especially
for higher number of mismatches.

6.2 Time Consumption

To evaluate the speed of the new algorithm a reasonably optimized version of the al-
gorithm for the uncalibrated case was implemented. The implementation was done in
Matlab so rewriting the algorithm in a compiled language such as C should reduce the
execution time further.

The algorithm was run 10,000 times and the time consumption was measured using
the Matlab profiler. The experiments were performed on an Intel Core 2 CPU 2.13 GHz
machine with 2 GB of memory. The estimated average execution time for solving one
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RANSAC experiment for A\; # A2

no mismatches

10% mismatches

20% mismatches

Algorithm 10 | 100 [ 1000 10 | 100 [ 1000 10 [ 100 [ 1000
Linear 16pt K1 || 316.34 | 681.22 | 748.03 || 232.55 | 415.7 | 485.1 [ 86.48 | 322.35 | 328.06
K2 || 31634 | 681.22 | 748.03 | 232.55 | 415.69 | 485.08 | 86.459 | 322.31 | 328.04
Our non-minimal 12pt || 21 418.18 | 697.93 | 763.51 | 242.4 | 546.27 | 546.27 | 14855 | 414.5 | 528.02
K2 || 418.18 | 697.93 | 763.51 | 242.33 | 546.22 | 575.56 | 148.51 | 414.44 | 527.85
Our minimal 9pt K1 | 625.03 | 801.98 | 845.76 | 513.03 | 671.77 | 732.56 | 342.23 | 538.85 | 654.86
K2 || 625.03 | 801.98 | 845.76 || 512.71 | 671.67 | 732.54 | 341.31 | 538.4 | 654.65

Table 2: The comparison of our minimal “different distortion” algorithm and our non-minimal “different distortion” algorithm
with the linear 16 point algorithm within the RANSAC paradigm by showing the number of matches K1 within 7 threshold and
the number of correct matches K2 among them as a function of the number of samples made from a set of tentative matches
contaminated by mismatches. The number of samples was 10, 100 and 1000, noise level was 1 pixel and threshold 7 = 1 pixel.

Number of mismatches varied from 0% to 20%.
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instance of the uncalibrated problem was 16 milliseconds. The corresponding time for the
calibrated problem was 17 milliseconds. The time consuming parts of the algorithms are
the initial LU-factorization and the eigenvalue decomposition and these are of comparable
sizes.

These results are to be compared with the execution times given for the same prob-
lem in [13], where solutions were computed in exact rational arithmetic. There, the
processing time for one problem instance was 30 seconds for the uncalibrated case and
1700 seconds for the calibrated case.

6.3 Tests on Real Images

We have tested our minimal algorithm for uncalibrated cameras with different radial
distortions on several different sets of images. In the first experiment the input images
with different relatively large distortions in each image, Figure 8 (Left), were obtained as
60% cutouts from fish-eye images taken with two different cameras with different radial
distortions. Tentative point matches were then found by the wide base-line matching al-
gorithm [15]. They contained correct as well as incorrect matches. Distortion parameters
A1 and A2 were estimated using our algorithm for uncalibrated cameras with different
radial distortions and the kernel voting method for 100 samples. The input (Left) and
corrected (Center) images are presented in Figure 8. Figure 8 (Right) shows the distribu-
tion of real roots for these images, from which A\; = —0.301250 and A\, = —0.368125
were estimated as the argument of the maximum. The peaks from kernel voting are sharp
and the N’s are estimated accurately.

In the second experiment we tested our algorithm on images with significantly dif-
ferent distortions. The left image Figure 1 (Left), was obtained as a 66% cutout from a
fish-eye image and the right image was taken with a standard perspective camera. Since
these images had a rather large difference in radial distortion, the tentative point corre-
spondences contained a larger number of mismatches. Distortion parameters A; and Ag
were again estimated using our algorithm for uncalibrated cameras with different radial
distortions and the kernel voting method. The input (Left) and corrected (Center) im-
ages are presented in Figure 1. Figure 1 (Right) shows the distribution of real roots for
these images from which A\; = —0.925625 and Ay = 0.002500 were estimated. As can
be seen the peaks obtained by kernel voting are not so sharp but still sufficient to get good
estimates of the X’s even from only 100 samples.

7 Conclusions

In this paper we have given fast and robust algorithms for two minimal problems previ-
ously unsolved in floating point arithmetic. The two problems of simultaneously solving
for relative pose and radial distortion were, due to numerical problems, previously solved
in exact rational arithmetic only, yielding them to time consuming to be of practical value.
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With the floating point algorithm presented in this paper we have reduced the compu-
tation time from minutes to milliseconds. Moreover, we have verified that this is done
without loss of numerical precision by extensive experiments both on synthetic and real
images.

We have also proposed a non-minimal algorithm for estimating F' and two differ-
ent radial distortions from 12 point correspondences based on a generalized eigenvalue
formulation.

In the experiments we have demonstrated that the radial distortion estimation is ro-
bust both to outliers and noise when kernel voting is used over several runs. Finally we
have shown that large differences in distortion between two images can be handled.
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Pose Estimation with Radial Distortion
and Unknown Focal Length

Klas Josephson, Martin Byrod

Abstract

This paper presents a solution to the problem of pose estimation in the presence of heavy radial
distortion and a potentially large number of outliers. The main contribution is an algorithm
that solves for radial distortion, focal length and camera pose using a minimal set of four point
correspondences between 3D world points and image points. We use a RANSAC loop to find a
set of inliers and an initial estimate for bundle adjustment. Unlike previous approaches where
one starts out by assuming a linear projection model, our minimal solver allows us to handle
large radial distortions already at the RANSAC stage. We demonstrate thar with the inclusion
of radial distortion in an early stage of the process, a broader variety of cameras can be handled
than was previously possible. In the experiments, no calibration whatsoever is applied to the
camera. Instead we assume square pixels, zero skew and centered principal point. Although
these assumptions are not strictly true, we show that good results are still obtained and by that

conclude that the proposed method is applicable o uncalibrated photographbs.

1 Introduction

The ability to find the position and the direction in which a camera points is an old
and challenging problem in computer vision. If an image based approach is chosen, as
in this paper, the common way to solve the problem is to find correspondences between
an image taken with a camera with unknown position and a three dimensional model.
This method has for example been used in Photo tourism [25]. In this paper we choose
to follow the same outline of the algorithm but add one extra component to the model,
radial distortion. The enhancement with radial distortion makes it possible to use photos
taken with fisheye lenses and other heavily distorted images, see Figure 1 for an example.

The oldest papers on localization are from the time before the research field of com-
puter vision existed. Already in 1841 Grunert [14] showed that there can be up to four
real solutions to the problem of localization if inner calibration of the camera is known
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Figure 1: Left: An image taken with a fisheye lens. Right: The same image rectified when
kernel voting is used to determine the radial distortion

and there are three correspondences between the images and known three dimensional
points. For an easier description of the problem and how to solve it, [15] is recom-
mended.

If the inner calibration is unknown it is necessary to have six correspondences between
the image and the 3D model. In that case a linear method to find the camera position
exists [16]. This method usually gives poor results since digital cameras have square
pixels and the principal point close to the center of the image. By not imposing these
assumptions to the camera model, too many degrees of freedoms are used which makes
the model unnecessarily unstable. These assumptions can however be incorporated and
the problem is then to find the pose along with an unknown focal length. In 1995 Abidi
and Chandra [1] presented a solution to this problem that worked on planar scenes. Four
years later Triggs [28] gave a solution to the same problem that worked well on non-planar
scenes. In the same paper he also presented a solution to the same problem but without
any assumptions on the principal point of the camera. In 2008 the latest paper [4] on
this problem was presented. In this paper Bujnak ez a/. presents a solution that works on
both planar and non-planar data. In that solution Grébner basis methods were used to
solve the system of polynomial equations that arises in their solution. Grébner bases were
also mentioned in the paper by Triggs and to the authors knowledge this is the first paper
in the computer vision community that uses Grobner basis methods to solve a system of
polynomial equations. This is also the method that will be used in this paper to solve the
systems of polynomial equations arising in the problem.

The problem of pose with unknown focal length is not a true minimal case with
four points, hence no exact solution can be found. In [4] the fact that the problem
is over constrained is resolved by ignoring one equation in an early step of the solver
and then using the last equation to verify which of the multiple solutions to use. An
alternative method to find the focal length was presented by Josephson ez 4/. [18]. In that
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paper a correspondence to another image replaced one of the correspondences to a three
dimensional point. That method can also be used for the four points problem if one of
the points is substituted by an arbitrary line through that point. In this work we instead
choose to include radial distortion into the model. This adds one degree of freedom and
hence the four points problem becomes minimal.

Minimal problems such as those described above and the one presented in this paper
are in computer vision usually used as the key component in a RANSAC engine [10].
RANSAC is the most commonly used method to estimate camera pose from an image,
also used in this paper, works as follows. Start by finding correspondences between the
image and a model, this is usually done by finding interest points in the images and
calculate descriptors of these, see [2, 23, 24]. In this paper SIFT is used. After that the
RANSAC engine is used to find consistent correspondences, so called inliers. The inliers
are in the end used in a local optimization initiated by the camera model given by the
RANSAC engine.

The contribution of this paper is to use radial distortion already in the RANSAC step
in the problem of absolute pose. Radial distortion was introduced to the computer vision
community by Devernay and Faugeras [9] in 1995. But it was used long before that in
the photogrammetry literature, e.g. [3]. In both these paper the so-called “plumb line
model” is used. This model is probably the most used model, e.g. Photo tourism uses this
model. However this model is not well suited for minimal problems. Instead we use the
division model introduced by Fitzgibbon in 2001 [11]. In that paper he shows that this
model is equally powerful as the plumb line model. Due to its simpler form, the division
model has been used on several minimal problems [6, 17, 20].

Although the main focus of this paper is the pose estimation problem, the solver of
the minimal solution can also be used to estimate the focal length and the radial distortion
of a camera lens and by that un-distort an image. A method to find the radial distortion
is to use kernel voting. In [22] Li and Hartley used it to find the radial distortion and
in [21] Li used it to find the focal length.

2 The Camera Model

The basis of the camera model used in this paper is the standard pinhole camera model
[16] where the projection equation is written,

Ax = PX. 1)

Here, P is the so-called camera matrix of size 3 X 4. The camera matrix can be factorized
as,

P = K[R| t]. 2)

In this factorization R is a rotation matrix and holds the information in which direction
the camera is pointing and t gives information of camera position. K is the calibration
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matrix of the camera and compensates for the intrinsic setup of the camera. The K matrix
can be written

f s D
K=10 ~f pyl-. 3)
0 0 1

In this matrix f represents the focal length of the camera. Further on represents s the
skew, for most digital cameras this is zero and the aspect ratio of the pixels described by
7y is very close to one. The principal point of these cameras given by (pg, py ) is also close
to the center of the images. In the rest of the paper a principal point in the center of an
image and square pixels with zero skew are assumed and it will be showed that in practice,
these assumptions yield good results even though they are not strictly true.

In this paper the pinhole camera model is extended with radial distortion. The radial
distortion is modeled by the division model introduced by Fitzgibbon [11]. The reason
to choose this model is that it gives easier calculations than the plumb line model. The
model transforms the distorted coordinates given by the pinhole camera model according
to,

pu = pa/(1 + prg). @)
Here p is the distortion parameter and p,, = (Zy,¥s) and pg = (z4,y4) are the
undistorted and distorted positions, respectively. In this paper, the distortion center is
fixed to coincide with the principal point of the camera and we set rq = ||pql|. To geta

consistent radial distortion independent of image size all images coordinates are initially
scaled with a factor of
2

le =
seate max(width, height) — 1’ ©)

which maps all image coordinates to be between minus one and one.

3 Pose with Radial Distortion

The problem of solving for radial distortion, focal lengths and pose has eight degrees of
freedom; one distortion parameter, focal length, three translation parameters and three
rotation angles. To simplify the calculations the inverted focal length is used, and by that
the calibration matrix will be,

1 0 0
K=10 1 0 (0)
0 0 1/f

This can be done since the camera matrix only is given up to scale. In the following 1/ f
will be substituted by w to simplify the notation.
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The rotation is parameterized with quaternions. This gives the following rotation

matrix,
a?4+v* -2 —d? 2bc — 2ad 2ac + 2bd
R = 2ad + 2bc a2 -2+ —d? 2cd — 2ab . 7)
2bd — 2ac 2ab + 2cd a2 - -2+

Last is the translation given by a vectort = [z y 2] T Composing these, the camera
matrix P will be given according to equation (2). To include the radial distortion in this
model the projection will be modeled by,

Z1
A Zo = PX. (8)
1+ p(2? + 23)

At this stage the number of unknowns is nine. But since the camera matrix is only
defined up to scale, the number of unknowns can be reduced by one by setting the quater-
nion parameter a equal to one. This will result in that the rotation matrix also will include
a scale factor and that the scale of the camera matrix will be fixed. By putting a = 1 the
possibility of a to vanish is also eliminated. This might look like a problem but since
@ is a real number the probability of it to be zero is zero. We have also verified in the
experiments that this does not cause any problems.

The number of unknowns is now down to eight. Every correspondence between an
image point and a world point will now give rise to three equations and one additional
unknown. Hence four correspondences are necessary to solve the problem. This is a true
minimal case were all equations are necessary and in the next two sections it is explained
how to solve this problem.

4 Solving the Minimal Setup

To solve the equations generated by (8) the equation are first simplified by using the
freedom in choice of coordinate system. In the three dimensional space any similarity
transform can be applied. This freedom is used to put the first point in origin and the
secondin [1 0 0]. In the image, only rotation and scaling is allowed since the focal
length is unknown. Due to this, the first point is moved to [1  0]. To summarize the
following point positions will hold for every problem setup,

X = , Xo = )

X1 =

_— o O O
_o O =
— o =

149



PAPER IV

This choice of coordinate system leads to several simplifications of the problem. First
we can express the translation coordinate 2 in measured image points and the quaternion
parameters as follows,

Uy

x = gi(a,b,c,d) = —(2ad + 2bc) — (a® +b* — * — d?). (10)

U2
up and ug are here the  and y coordinates of the second image point. The second
simplification is that y can be set to zero. The last simplification from the choice of the
coordinate system is that the product between the inverted focal length and z can be
expressed in the quaternion parameters and the distortion parameter according to,

zw = go(a,b,c,d, \) = (1 + p), (11)

were  is from equation (10).

The next step is to include the last two point correspondences and the last information
from the second point x3. This is done by eliminating A in equation (8). The elimination
is done by multiplying PX with the following matrix from the left,

0 —T3 X2
B = —x3 0 1| , (12)
—x2 T 0

where x3 = 1+ p(2? +23). This is a rank 2 matrix so not all rows need to be used from
the equation BPX = 0. For the second image point only the second row of B is used
and for the other two the first and the last row are used. This results in five equations in
the five unknowns b, ¢, d, w and p. With use of Grobner basis methods this system of
polynomial equations will be solved.

5 Grobner Basis Solver

To solve the system of polynomial equation Grébner basis methods are used. Grobner ba-
sis methods have successfully been used to solve several systems of polynomial equations
derived from computer vision problem in recent years, e.g. [4, 5, 12, 19, 27]. The advan-
tages of using Grébner basis methods is that if the structure of the system is the same for
a large number of problem some calculations can be done symbolically in advance, which
leads to an efficient method to solve the systems of polynomial equations.

Only the major concepts of Grobner basis methods will be described in this paper.
For basic background theory we recommend [8] and [7] by Cox et a/. For details for the
use in computer vision see [26] for example.

The first step in constructing a Grobner basis solver is to find out the number of
solutions of the system. This can be done once and will hold for all geometrical setups
of the same minimal problem. The method to find the number of solutions is to use a
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symbolic program e.g. Macaulay 2 [13]. The problem of this paper turns out to have 24
solutions with the given formulation. However, it is quadratic in the focal length so it
will never give more than 12 geometrically plausible solutions.

The second step is to expand the initial set of equations. This is done by multiplying
the initial equations with a set of monomials. This results in more linearly independent
equations with the same solution set and by that it is possible to construct the Grébner
basis. In the problem at hand, the two original equations of lowest degree, these resulting
from multiplication with the last row of B in equation (12), are multiplied with z and
w. After that all the nine equations, at this stage, are multiplied with all monomials up
to degree four in the unknowns. The result of this expansion is 1134 equations and 720
different monomials. This can be written as,

C’exp)(exp =0, (13)

where Cexp is a 1134 x 720 matrix holding all coefficients and Xexyp, is a 720 elements
long column vector with all occurring monomials. This equation corresponds to equa-
tion (4) in [5] and the rest of the solver will follow that paper. Those details will not be
given here. Another way to construct the solver is to use the automatic solver generator
by Kukelova ez a/. [19]. We chose the first alternative since it enhances the numerics.

The usual step at this stage is to sort the monomials in a monomial order and then
find the Grobner basis by a Gauss-Jordan elimination. Instead the method from [5]
is followed to enhance the numerics. This means that QR-factorization with column
pivoting is used together with adaptive truncation of the ideal. The truncation threshold
used is 1078,

To construct the action matrix describing multiplication following [5], the permis-
sible monomials and the action variable needs to be given. In this paper we choose all
monomials up to degree three to be in the permissible set and b to be the action variable.
The number of permissible monomials with the given choice is 56.

With this the action matrix can be constructed and the eigenvectors of the transposed
action matrix will hold all solutions to the system, see [5] for details on how to construct
the action matrix with the method chosen in this paper.

Matlab code for the solver used in this paper is available online at
http://www.maths.lth.se/vision/downloads.

6 Experiments on Synthetical Data

In this section we study some basic properties of our new algorithm on synthetic data.
We start off with a straightforward test on noise free data to check stability and the dis-
tribution of plausible solutions. In this experiment, random scenes were generated by
drawing four points uniformly from a cube with side length 1000 centered at the origin.
A camera was then placed at a distance of 1000 from the origin pointing approximately

151



PAPER IV

1500 5000
4000
21000 >
3 S 3000
1 3
1000
9 0
-20 -15 =10 -5 0 5 0123458678910
09, of relative error in u Number of real solutions

Figure 2: Left: Histogram of errors over 10000 runs on noise free data. Right: Histogram
of the number of solutions with real positive focal length found on the same data.

at the center. The camera was calibrated except for the focal length that was set to around
1000. Radial distortion was then added to the projected points and the distortion pa-
rameter was uniformly drawn from the interval [—0.5,0]. Our new minimal solver was
run on 10000 such instances and Figure 2 displays the results of this experiment. The
numerical error stays very low for almost all cases. A very small number of examples show
larger errors, but these do not pose any serious problem since the intended application is
RANSAC where lots of instances are solved and only the best one is kept. As previously
mentioned, the largest possible number of plausible solutions (real positive focal length)
is 12. However, the largest observed number of plausible solutions for the 10000 random
instances was 10 and in all but a few exceptions we got 6 solutions or fewer.

To verify that the solver does give accurate results and not just adapts to noise we
made an experiment where we measured the relative error in focal length as a function of
noise. The setup was the same as in the previous experiment and the standard deviation of
the noise was varied between (the equivalent of) zero and three pixels on a 1000 x 1000
pixel image. For each noise level, 1000 problem instances were tested. The results are
given in Table 1 and show that our method is robust to noise. Even with as large errors
as three pixels, the median error in focal length is less than seven percent.

The time consumed of the solver was also measured. On an Intel Core 2 with clock
rate of 2.13 GHz the average time for a call over 1000 tests was 60 ms when a Matlab
implementation was used.

The next synthetic experiment was designed to investigate how important it is to
include radial distortion in the minimal solver. To do that, a setup with 80 inliers and
120 outliers was constructed. Radial distortion was then added to all image points. Three
different levels of radial distortion were used, 0, —0.07 and —0.2. Zero distortion was
included to test our algorithm compared to a method that assumes no radial distortion.
A distortion of —0.07 was used since the normal lens later used in the real experiments
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Noise Median 75th percentile
00 [1.5-107TT] 5.1-10°1°
05 | 1.4-1072 4.1-1072
1.0 | 2.3-1072 6.8-1072
2.0 | 5.2-1072 1.5-107 1
30 | 6.7-1072 1.5-107T

Table 1: The relative error of the focal length for different levels of noise. The noise is
given in pixels.

roughly has this distortion. This lens is shipped with a consumer level SLR camera.
The last value, —0.2, corresponds to the distortion of the fisheye lens later used in the
experiments. Noise corresponding to one pixel in a 1000 x 1000 image was then added to
each image point. On this dataa RANSAC step was applied and the number of inliers was
counted. In the RANSAC loop a point was considered to be an inlier if the reprojection
error was less than 0.01 times the mean value of all coordinates of all points given that
the origin is in the center of the image. One hundred individual scenes were used for
each distortion level. All distortion levels were tested both on the proposed method and
on the method of Bujnak et a/. [4]. The algorithm of Bujnak ez a/. solves for pose and
focal length using four points. The results of this experiment are shown in Figure 3 with
increasing radial distortion from left to the right. Our method is plotted with a solid blue
line and Bujnak’s with dashed red. The results show as expected that if radial distortion
is zero it is slightly better not to estimate it. The two other plots show that the use of
radial distortion gives a large boost in performance. Note especially the large difference
even with a small distortion of a standard SLR camera lens. These results will also be
confirmed in the experiments with real data.

7 Experiments on Real Data

The real world experiments were done in a leave one out manner. This was done by first
creating a model of a scene using the Photo tourism bundler [25]. To build the model 93
images from a shopping street were used covering around one hundred meters. Example
of one of those images is shown to the right in Figure 4. In all these images a regular lens
was used. For 29 of these images a second image was taken from the exact same position
(a tripod was used to fixate the position) with a fisheye lens. See Figure 4 (left) for an
example. Then one image at a time (of those images with a corresponding fisheye image)
were removed from the model. The pose of the removed image was estimated using the
proposed method both for the fisheye image and the regular image. The positions were
then compared with the positions estimated by Photo tourism. Note that Photo tourism
does not give an exact solution and the authors do not know the precision, but it will still
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Figure 3: Number of inliers given the number of RANSAC iterations for an example with
80 inliers and 120 outliers. Noise was set to correspond to one pixel in a 1000 x 1000
pixels image. The distortion parameter, pt, was fixed to, from left to right, 0, —0.07,
—0.2 and one hundred examples were performed for each level of distortion. The blue
solid line is the method of this paper and the dashed red line is the method proposed by

Bujnak ez al.

be used as ground truth in this paper. The results of this experiment was also compared
with the method by Bujnak ez /.

The pose estimation is done with the following method. First SIFT is applied to the
image for which the pose should be estimated. The next step is to find potential corre-
spondences in the image. This is done by nearest neighbor. A point is considered a cor-
respondence if the distance to the closest point times 0.9 is not smaller than the distance
to the second closest point. When potential correspondences are found, a RANSAC step
is performed to find true correspondences. In the end local optimization is performed.

The first evaluation on the real data experiments was to find the number of inliers
given the number of RANSAC iterations. The threshold for a point to be considered an
inlier is the same as in the corresponding synthetic experiment. In Figure 5 the result is
shown. To the left is the result when the fisheye lens is used and to the right is the result
for the regular lens. The graphs show an average over one hundred trials for the images
shown in Figure 4. The result is typical for most of the images. It is obvious that the use
of radial distortion boosts the performance significantly. In some of the tests the method
without distortion almost fails to get more inliers than the minimal set. This shows that
the use of radial distortion already in the RANSAC step is an important way to increase
the performance of the pose estimation. The result is similar to those in the synthetic
experiments.

The next experiment to evaluate the proposed method is to compare the pose esti-
mated by our new method with the position given by Photo tourism. To do this the
inliers, position, focal length and radial distortion given by the RANSAC engine are used
in a local optimization. The optimization is done for all the unknown parameters. The
result is compared with the result when Bujnak’s method is used. For that method the
same local optimization is performed with the radial distortion initiated with ¢+ = 0. The
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Figure 4: Test images used for the experiment whose results are shown in Figure 5. The
images were taken at the exact same position.

60 60

of b A
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iterations Iterations

Figure 5: The number of inliers given the number of RANSAC iterations. To the left, a
fisheye lens was used and to the right a regular lens was used. The blue solid line is for
the method proposed in this paper and the dashed red line is for the method which does
not include distortion.

scale of the model in this experiment is adjusted so that the errors roughly correspond
to meters in camera position. Each of the 29 camera positions used in the experiment is
estimated one hundred times so the pose estimation has been performed 2900 times. In
Figure 6 the result of this experiment is shown. To the left is the result when the fisheye
lens is used and to the right is the result for the regular lens.

The precision of Photo tourism that is used for the error measurements is unknown
to the authors. Due to that the result for the smallest errors are hard to interpret. We
estimate that on this darta set, Photo tourism achieves roughly an accuracy of one to a
couple of meters. Thus error measurements below that are not reliable. Nevertheless,
one can see clearly that our new minimal algorithm gives much more accurate results
compared to the previous method which does not take distortion into account in the

RANSAC engine.
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Figure 6: The percentage of images with an estimated position further away then a given
distance to the position given by Photo tourism. The error is roughly given in meters.
Notice the logarithmic scale. The blue solid line is for the proposed method and the red
dashed represents method without distortion. The left plot is for the fisheye lens and the
right is for a regular lens.

The results of the pose estimation for the proposed method on a fisheye lens was also
compared with the result when the regular lens was used. In Figure 7 the result is shown.
In the figure, the blue solid line shows the result with the fisheye lens and the red dashed
line shows the result with the regular lens. The plot shows that the amount of radial
distortion gives almost no impact on the result.

The last experiment is a kernel voting experiment where the distorted image in Fig-
ure 1 (left) was used. The image was localized 500 times with the minimal solver and the
results of the estimations of the radial distortion were used in a kernel voting scheme to
find the radial distortion. The results of the kernel voting is shown in Figure 8. The peak
of the curve is at 4t = —0.20 and that value was used to remove the distortion on the
original fisheye image. The undistorted image is shown in Figure 1 (right). Notice how
the curved lines in the original image have been straightened in the undistorted image.
This shows that the estimated radial distortion is reasonably accurate.

8 Conclusions

In this paper a method to estimate the position, rotation, focal length and radial distortion
from a minimal set of correspondences to a 3D model is presented. This is the first
algorithm presented to do this estimation. The parameterization used in this paper gives
a system of polynomial equations. This system is solved with Grébner basis methods.
This gives a fast and numerical stable method that can be used in a RANSAC loop.
Previous methods have not assumed radial distortion in the RANSAC engine and
in this paper it is shown that the benefits of using radial distortion in the core of the
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Figure 7: Error in meters for distorted image and non-distorted image using the proposed
algorithm on a logarithmic scale. The blue line represents the distorted images and the
red show the result for images taken with a regular lens.

RANSAC engine is significant. This is shown both on synthetical and real data when
a fisheye lens is used. That the improvements are large with the fisheye lens comes as
no surprise due to the heavy radial distortion in this case. More surprising are the large
improvements for a regular lens of an SLR camera. The reason for this is that there is
some radial distortion even in those kind of lenses and evidently, that distortion can have
a large effect on the estimated position.

The experiments in the paper also show that the amount of radial distortion has little
impact on the result. Hence can the new method be used both when no radial distortion
is present and on images with heavy radial distortion.
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Optimal Correspondences, Geometry
and the Vertex Cover Problem

Olof Enqpvist, Klas Josephson, Fredrik Kahl

Abstract

Correspondence problems are at the core of many applications in computer vision. Automati-
cally matching features from appearance only is difficult and prone to errors. Geometric con-
sistency is a powerful constraint to identify correct correspondences. Prior work is mainly based
on heuristic methods such as RANSAC or EM-like algorithms to solve this task and hence there
is a risk of getting trapped in a poor, local solution. We remedy this by developing new theory
and algorithms that are guaranteed to find the best solution.

In this paper, geometric correspondence problems are addressed as optimization tasks, trying
to find the transformation that maximizes the number of inliers. It is shown how constraints
on pairs of correspondences induces a graph problem, which is solved in order to find both the
optimal correspondences and the underlying transformation. The ideas are general enough for a
wide range of application problems and are implemented for the basic problems of camera pose
estimation and 3D-3D registration under rigid transformations and similarities. 1o further
[Jacilitate research in this area, an open source implemention of the algorithms is made publicly
available.

1 Introduction

Establishing point-to-point correspondences between images or point sets is a common
problem in both computer vision and photogrammetry, for example, in object recogni-
tion, 3D reconstructions, image-based localization or medical image alignment. Natu-
rally, due to its importance, many different solutions have been proposed, for example,
[5,9, 16, 20, 22, 31, 43]. Essential for many methods is some type of appearance-based
feature matching like SIFT or SURF [32, 4]. However matching local features based on
appearance only is difficult and errors are frequent. Therefore it is generally necessary to
use geometry to remove incorrect matches.

We focus on two basic geometric problems. The first is 2D-3D registration, also
known as calibrated camera pose. Given one set of 2D image points and one set of 3D
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Figure 1: 3D-3D registration of two stereo reconstructions. Green circles and stars are
matched 3D points in a maximal inlier set. Red x-marks and blue dots are unmatched
points in the two models.

points, the task is to estimate a perspective camera mapping, projecting 3D points to
image points. What makes the problem challenging is the difficulty of estimating the
correspondences, that is, which points should be matched between the sets. Hence we
need to estimate the transformation while simultaneously determining which correspon-
dences are correct. The second problem we consider is 3D-3D registration under rigid
transformations and similarity transformations. As in the 2D-3D case, we need to esti-
mate both the correspondences and the transformation. See Figure 1 for an alignment
result based on our method.

Given correct correspondences, it is straightforward to estimate the transformation,
see [20]. For 3D-3D registration, it can even be done in closed form. On the other hand,
given an estimate of the transformation, it is easy to determine likely correspondences. So,
a natural idea is to use an alternating minimization procedure, and there are many such
algorithms in the literature (e.g., [16]), the most famous one being Iterative Closest Point
(ICP) [5]. However, such approaches require a good initial estimate of the transformation
and still there is no guarantee of getting a reasonable solution, especially when there are
lots of outliers.

The aim of this paper is to find a more reliable and if possible faster method to deal
with incorrect matchings. Our goal is to find the largest set of consistent correspondences.
To our knowledge, this is the first approach to be able to optimally compute bozh the
correspondences and the transformation with a provable guarantee of optimality with
proper error modelling. The key idea is to consider point correspondences and check
whether pairs of such correspondences are consistent or not. This leads us to the vertex
cover problem of graph theory. The bad news is that this problem is known to be NP-
hard. The good news is that we are still able to solve instances of the problem for quite
large data sets using a combination of branch-and-bound and approximation algorithms.
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2. RELATED WORK

The outline of the paper is as follows. In the next section, we review related work
and compare to our approach. In Section 3, a mathematical problem formulation is
given together with an introduction to the vertex cover problem and the use of pairwise
constraints. We first apply the framework to a simplified example, namely the estima-
tion of planar rotations, in Section 4. In the following section, some application-adapted
algorithms for solving the vertex cover problem are developed. Then, in Section 6, a
slightly more advanced problem of estimating 3D rotations is analyzed. Next, in Sec-
tion 7, the framework is generalized to incorporate more general transformations. In
Sections 8 and 9, our two main applications are analyzed using the complete framework.
Finally, in Section 10, experimental results are reported and followed by conclusions.

2 Related Work

Graph matching. The idea of using pairwise constraints in combination with vertex
cover for finding mutually consistent correspondences is not new in the vision literature.
The earliest work we have found is [6] where it is used for 2D part location. Pairwise
constraints are also discussed in [17]. In [41], an association graph is built for 2D match-
ing which results in a maximum clique problem. Similarly, the stereo correspondence
problem was formulated as a maximum clique problem in [21]. This is an alternative
formulation of the same graph problem as ours. In [29], the registration problem was
formulated in a graph setting, but solved using a non-optimal spectral technique. Other
graph matching formulations include [9, 40, 43] where the objective is to match corre-
spondences such that pairwise distances within the two point sets are similar. This leads
to a purely combinatorial problem equivalent to the quadratic assignment problem. A
similar approach is pursued in [33]. One advantage (besides being purely combinato-
rial) is that such approaches can be used for solving both rigid and non-rigid registration
problems. However, the underlying transformation mapping one point set to the other is
ignored.

3D-3D registration. For 3D-3D registration, the most popular class of methods are
EM-type algorithms using alternating optimization, such as ICP [5] and SoftAssign [16].
Other non-optimal approaches include the Hough transform, geometric hashing and
hypothesize-and-test algorithms like RANSAC [15]. Recently, in [31], the problem was
solved globally using branch and bound in rotation space. The method requires that
all points are matched and that the translation component is given, which are severe
limitations so this is effectively not solving the complete problem. We have compared
our algorithm to several of these competitors in the experimental section.

In [7], a branch-and-bound algorithm over rigid transformations in the 2D plane is
proposed. This works well as the transformations have only three degrees of freedom, but
the approach becomes computationally infeasible for rigid transformations in 3D space
(which have six degress of freedom).
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2D-3D registration. Camera pose estimation, or 2D-3D registration, is a well studied
problem in both computer vision and photogrammetry [2, 20] and one of the earliest
references on the topic dates back to 1841 [18]. There are several heuristic methods with
no guarantee of optimality such as [12, 24, 35] where RANSAC is perhaps the most
popular one [15]. In multiple view geometry, the camera pose problem is often solved
with DLT [20], but the method optimizes an algebraic cost function and cannot handle
outliers among the correspondences. Another class of methods is based on subdividing
transformation space and aiming for global solutions such as [25] using an affine cam-
era model. The problem is important on its own as a core problem within the field of
multiple view geometry, and moreover, it appears as a subproblem for many other vision
applications, like motion segmentation [35], object recognition [10, 23, 25], and more
generally model matching and fitting problems, see [7, 10, 12, 23, 25, 26, 35]. Yet, pre-
vious approaches for solving the camera pose problem have not been able to solve the
problem in the presence of outliers with a guarantee of global optimality.

The first globally optimal algorithm for this problem using a geometric error norm
was presented in [37]. They also investigate the problem of local minima for the pose
problem and show that this is indeed a real problem for small numbers of correspon-
dences. For larger numbers of correspondence pairs or small noise levels, the risk of
getting trapped in a local minimum is small. This is our experience as well. In their work
the Ly norm of the reprojection errors is used, but the algorithm converges rather slowly.
In [19], the authors choose to work with the Lo, norm instead and present a more effi-
cient algorithm that finds the optimum by searching in the space of rotations and solving
a series of second order cone programs. The reported execution times for both these al-
gorithms are in the order of several minutes, while our algorithm performs the same task
within a few seconds. Perhaps more important though is that our algorithm is capable of
discarding outliers. If some correspondences are incorrect, then fitting a solution to all
data might give a very bad result.

Outliers. A method for detecting outliers for Lo, solutions was given in [38] but it
only applies to quasiconvex problems. The uncalibrated pose problem - often refered to
as camera resectioning - is quasiconvex, but the calibrated pose problem is not. Further,
the strategy in [38] for removing outliers is rather crude - all measurements that are in the
support set are discarded. Hence, inlier correspondences may also be removed. Possible
solutions to this problem was given in [30, 36] for outliers, but they are computationally
expensive and also restricted to quasiconvex problems. Another well-known approach for
estimating camera pose in cases where it is hard to find correct correspondences is to apply
RANSAC-type algorithms [15]. Such algorithms leave no guarantees of optimality.

Our work is also related to the rich body of literature on matching problems, see
[7, 10, 11, 12, 23, 25, 26, 33, 34, 35]. Many of these algorithms are quite sophisticated
and have been an inspiration to our work. However, some do not guarantee any kind
of optimality [11, 12, 35], while others use simplified camera models like affine approx-
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imations [7, 23, 25, 26, 34]. Other drawbacks of these methods include simplified cost
functions not based on reprojection errors.

Unlike many of the above mentioned methods, our framework makes it possible to
generate multiple correspondence hypotheses for a single point, but in the final solution,
it is guaranteed that no conflicting hypotheses are included. Another advantage is that it is
possible to use extra information from the feature extractor, for example, the orientation.

3 Preliminaries

3.1 Formulation

The different geometric problems discussed in this article have many similarities. Given
two point sets, we seek a transformation mapping one set to the other, as well as the
point-to-point correspondences inferred by this transformation. We can assume that we
have a set of hypothetical correspondences. Often, these have been generated by some
appearance-based point matching algorithm such as SIFT, but we can also choose to
consider all possible correspondences. Whatever the case, it is likely that a large portion of
these correspondences are wrong. What this means will of course depend on the problem
we are considering. The following definition will be helpful.

Definition 1. Given an error tolerance €, we say that a set of correspondences C' is consistent
with a transformation, T, if any pair (1,7) € C satisfies d(T(x;),y;) < € and if C is

one-to-one.

Requiring C' to be one-to-one is natural in most applications, but in no way required
for the presented approach.

Having many hypothetical correspondences pure chance can lead to small consistent
sets, but large consistent sets are extremely unlikely to appear by chance and are thus
reflecting the geometry of the problem. Thus it is natural to seek large consistent sets.

Problem 1. Given a tolerance € and a set of hypothetical correspondences C, find the transfor-

mation T that maximizes |I|, where I C C' is the maximal set of correspondences consistent
with T.

To be more concrete, for 3D-3D registration, the transformation 7" is a similarity
transformation and the error residual is the geometric distance. For 2D-3D registration,
T is a rigid transformation followed by a perspective mapping and the error residual is
the angular reprojection error, that is, the angular difference between the measured image
point and the reprojected 3D point.

Note that the popular RANSAC method [15] is one way of solving Problem 1, but
even with exhaustive testing of all minimal subsets, the method will not necessarily obtain
the optimal solution.
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Figure 2: Example graph for vertex cover.

3.2 Pairwise Constraints and Vertex Cover

We approach Problem 1 by considering pairs of correspondences. For each problem we
show how to detect geometric inconsistency of such a pair. Two geometrically inconsis-
tent correspondences cannot both belong to the optimal solution and hence we look for
large sets of pairwise consistent correspondences.

Assume that pairwise inconsistencies have been established. Consider a graph with all
hypothetical correspondences as vertices and edges connecting inconsistent ones. Clearly
a consistent subset according to Definition 1 cannot include any edges. Thus the maximal
subset of pairwise consistent correspondences should be a good candidate for the optimal
solution. Finding this set is equivalent to removing as few vertices as possible while
covering all edges. This is known as the vertex cover problem and it is one of Karp’s 21
NP-complete problems [27] presented in 1972.

Definition 2. A vertex cover for an undirected graph is a subset S of its vertices such that
every edge of the graph has at least one endpoint in S.

Problem 2. The vertex cover problem is the problem of finding the smallest vertex cover for
a given graph.

Factor-2 approximation. For any minimization problem, a factor-k approximation is
an algorithm that gives no worse than k times the optimal value. For the vertex cover
problem there is a well-known linear-time factor-2 approximation [42]. It is obtained by
repeatedly picking a random edge in the graph and then placing both its endpoints in the
covering. Take for example the graph in Figure 2. We start by picking the edge between
vertices a and b, add these vertices to our solution set and remove them from the graph.
In the next step we pick the edge between d and e and remove these two vertices. We have
found a vertex cover {a, b, d, e}. This happens to be exactly twice as big as the minimal
vertex cover {b, e}. Note that starting with the edge between b and e would have yielded
the optimal solution. See also Algorithm 1.

Alternative formulations. Alternatively, the same graph problem could be formulated
as finding the biggest subset containing no edges. This formulation is known as Maxi-

mum Independent Set and is used in for example [8]. We get yet another formulation by
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4. EXAMPLE: PLANAR ROTATIONS

Algorithm 1 Factor-2 approximation

Initialize S = 0.

Repeat until no edges remain:

- Pick a random edge e from the graph.

- Add the two vertices connected to € to S.

- Remove the two vertices and all connecting edges from the graph.

When no edges remain S is a vertex cover for the graph.

having edges between consistent correspondences instead. Finding a consistent set then
amounts to finding the Maximum Clique in the graph.

4 Example: Planar Rotations

To introduce the approach of pairwise constraints we start with a discussion of the rather
elementary problem of estimating the planar rotation between sets of two-dimensional
unit vectors. The problem is presented merely as an example, but it does have practical
interest when working with one-dimensional cameras [1].

Given two sets of two-dimensional unit vectors {z; } and {y; }, and a set of hypothet-
ical correspondences C' = {(m;,n;)}, we seek a rotation R that solves Problem 1. To
achieve this we examine pairwise angles in the following fashion.

Assume (mq,n1) € C and (mg,n2) € C. Let a(x,y) denote the angle - with
sign - between 2D vectors « and y. Consider &(%y,,, Tm,) and &(Yn, , Yn, ). For both
correspondences to be part of the optimal solution we must have

ATy, Tmy) — 26 < (Yny s Yny) < Ty, Tiny ) + 2€. (1)
It turns out that these constraints are actually sufficient.

Theorem 1. Let € be a positive constant < w3 and let C' be a set of correspondences such
that (1) is satisfied for every pair of correspondences in C. Then there exists a rotation R such
that

|a(Rtm, yn)| < € 2

for any (m,n) € C.

Proof- We can parameterize R as a 2D unit vector. In order for such a unit vector to exist,
condition (2) restricts the vector to an interval on the unit circle with length 2e. Let I},
be the interval connected to the kth correspondence. We claim that the intersection of
any pair of such intervals is non-empty. Consider

a(yma Rxm) = a(yma yn) + a(yny Rxn) + Oé(RJZn, Rxm) 3)
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Using (1) and the fact that a(Rzp, Rzp,) = —a(Tm, Ty), it follows
a(Ym, Rxm) = a(yn, Rx,) + e, 4)

for some |e| < 2e. Since within I,, we can choose a(yy,, Rxy,) arbitrary in [—¢, €] there
is some R € I,, () I,,. To complete the proof, we need the following lemma from [14].

Lemma 1. Consider a set of intervals Iy, on the unit circle such that |I,| < 2w /3 for all
k. If the intersection I (1 I, is non-empty for any pair (§, k) , then (\, I is non-empty as
well.

Proof- Pick any interval I}, and let m be the centre of this interval. Note that the distance
between I, and the point m + 7 is larger than 27 /3 and thus m + 7 lies in no interval.
Thus we can cut the unit circle at m 4 7 and map it to the real line R. The theorem now
follows from Helly’s theorem [13]. O

Since € < 7/3, it follows that |I;;| < 27/3. This completes the proof. O

Theorem 1 implies that we can solve the the original problem by finding the largest
set of correspondences such that each pair satisfies (1). As discussed in Section 3.2 this
problem can be formulated as finding the minimal vertex cover for a graph.

5 Basic Algorithms for Vertex Cover

This section presents an approach to the vertex cover problem suitable for registration
problems. Some of the advantages will not be apparent until later. To get started, we
need an upper bound on the size of the minimal vertex cover. Of course, the factor-
2 approximation of Algorithm 1 can be used, but empirically, we have found that in
most cases Algorithm 2 produces better bounds. Having a bound on the minimal vertex
cover, we can start improving this bound. Our strategy is to remove outliers, or in graph
terminology, to remove vertices from the graph that must be part of the minimal vertex
cover. As we shall see later, in many situations we will not need to solve the complete
vertex problem, but it will suffice with a good bound.

Algorithm 2 Finding a vertex cover

Initialize M = (.

Repeat until no edges remain:

- Find the vertex v with most edges. Add v to M.
- Remove all edges connected to v.

When no edges remain M is a vertex cover for the graph.
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5. BASIC ALGORITHMS FOR VERTEX COVER

Algorithm 3 Fast approximation

Initialize U = 0.
For each point z; in the first point set, if any vertex in the graph
represents a correspondence (i, j), then U = U + 1.

When all 2;’s have been checked, then U is an upper
bound for the number of inliers.

Algorithm 4 Removing a vertex

1. Assume that v ¢ S*. Then all vertices
having an edge to v must lie in S*.

2. Remove these and update the graph.
The solution to the reduced problem is the

smallest vertex cover that does not include v.
3. Use Algorithm 3 to compute a fast approximation for the reduced problem.
If this is > N, reject the hypothesis that v ¢ S* and
remove v from the graph.
4. Use Algorithm 1 to compute a factor-2 approximation for the reduced problem.
If this is > N, reject the hypothesis that v ¢ S* and
remove v from the graph.

In addition to the factor-2 approximation of Algorithm 1, an even faster approxima-
tion, but more crude, will be useful. Each point in the first point set can be matched to
at most one point in the other set. This yields an upper bound for the number of inliers,
see Algorithm 3.

Now, let NV be an upper bound for the minimal vertex cover, denoted S*. To prove
that a certain vertex v is an element of S*, we use Algorithm 4.

Branch and bound. Using branch and bound one can get guaranteed optimal solutions
even to NP-hard problems such as vertex cover. Both the fast approximation and the
factor-2 approximation can be used as bounding functions. See Algorithm 5.

To get an algorithm which is fast for simple problems while still able to handle dif-
ficult ones we divide it into two steps. The first step removes obvious outliers while the
second branch-and-bound step is guaranteed to solve any instance. Details are given in

Algorithm 6
Multiple hypotheses. One advantage of our approach to correspondence problems is

that multiple hypotheses can easily be incorporated, that is, several hypothetical corre-
spondences concerning the same point. To avoid getting a solution where one point is
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Algorithm 5 Branch and bound

Initialize the queue with the original graph.

Iterate until convergence.

1. Pick a node from the queue.

2. Compute a fast approximation for the node problem.
If this is > N, then discard the node.

3. Compute a factor-2 approximation for the reduced problem.
If this is > N, then discard the node.

Otherwise

4. Use Algorithm 2 on the reduced problem to improve N.

5. Pick a vertex v and split the problem in the following way.
(1) v belongs to the minimal vertex cover so we can remove all edges to v.
(i) v does not belong to the minimal vertex cover which implies that all
correspondences connected to v does.

6. Add these two nodes to the end of the queue.

& 8

Figure 3: Example graph with multiple hypotheses. Correspondences matching the same

point form a clique in the larger graph.

matched to several points, we simply add edges between any vertices (correspondences)
matching the same point. The set of vertices matching a certain point will thus form a
clique in the graph (Figure 3).

6 Example: 3D Rotations

In this section we will consider the slightly harder problem of estimating a three-dimen-
sional rotation. This problem has its own application when stitching images together to
panoramas, but it will also be important when we discuss 2D-3D registration. Like in the
planar case, we look at angular errors and use constraints based on pairwise angles. For
correct correspondences it must hold that

Z(Yiry;) — 2 < L(wi,x5) < L(yi,y5) + 2e. 5)
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Algorithm 6 Minimal vertex cover

Let NV be an upper bound for the minimal vertex cover.
Iterate until convergence:
1. Pick a vertex v from the graph.
2. Use Algorithm 4 to prove that v lies in the minimal vertex cover.
If this works
- Remove v and update the graph.
Otherwise
- Find a vertex cover S with v ¢ S .
-If|S] < N, update N.
If correspondences remain that are not in the minimal vertex cover:
- Branch on the vertex having most edges.

The most important difference to planar rotations is that even when pairwise con-
straints are satisfied there may not be a 3D rotation consistent with all correspondences.
This forces us to make two alterations to our algorithm.

6.1 Splitting Correspondences

If some outliers cannot be removed with the approach outlined in Section 5, we can split
correspondences to refine our search and eventually remove all outliers. This section will
present a method to perform such a refinement. First we look at the noise-free case.

Theorem 2. Consider two sets of three-dimensional unit vectors ordered such that x; corre-

sponds to y;. If for all i, j the scalar products satisfy

(i, 25) = (Yi,Y5), ©)
then there exists a rotation or a reflection or a combination of both R such that

Rx; = vy, foralli. 7)

Proof Assume that {x1, 22,73} is a basis for R3. The special case when no such triplet
exists can be handled similarly. Let R be a linear mapping such that

Rl’i =Y; fori = 1, 27 3. (8)
Then forj =1,2,3
mZTa:j = yiTyj = (Rmi)Tij = a:ZT(RTR)a:j fori =1,2,3 9)
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so R Rz; = xj. Since this holds for j = 1,2,3 and {x1, g, 23} is a basis, we can
conclude that RT R = I so R is an orthogonal mapping. But an orthogonal mapping on
R3 is either a rotation, a reflection or a combination of the two (see [3]). Moreover

(Rz; — i) "y = (Re;)" (Rax) — y g = 2] o —y] yr = 0 (10)
for k =1,2,3. Since {y1, y2, Y3} is a basis this implies Rz; = y; so (7) holds. O

This shows that in the noise-free case our constraints are sufficient and we are guar-
anteed to find any outdliers. Thus our problems depend on the uncertainty introduced by
the error tolerance € in Problem 1. We look at the following criterion for consistency.

Lemma 2. A set of correspondences C' is consistent with a transformation R if and only if for
each i there exists T; such that /(Z;,x;) < € and

RE; = y; forall (i,7) € C. (11)
Proof
Z(Rxy,y;) < Z(Rai, RE;) + LRTy,y; <€ +0 (12)
which proves the if part. For the only if assume there is an R such that
Z(Rx;,y;) < eforalli. (13)
Then &; = RTy; satisfies
L(wi, ) = L(2s, RTys) = Z(Rai, i) < e. (14)
O

If we can pinpoint the Z;’s, we will get R as well. Initially we have Z(Z;,z;) < €.
This constrains Z; to a small circle S around z;, see Figure 4. The size of this circle will be
refered to as the correspondence uncertainty. The assumption is that Z; lies in this circle
and that RZ; = y;. We can refine our search by dividing this circle into smaller areas
Sk, see Figure 4. This generates new hypotheses of type &; € Sy and Rz; = y;. We
can handle these new hypotheses just like the original correspondences. Simply inscribe
S} in a circle centered at xf with radius 0. Using this form the constraint in (5) can be
sharpened,

L(yiry;) — € — O < (¥, 25) < L(yi,y) + €+ Oy (15)

Algorithm 7 shows how to incorporate this approach into the overall algorithm. The
splitting can be performed in any fashion as long as the diameter of the set is decreased.
On the unit sphere it is most convenient to use spherical triangles, because a spherical
triangle can be easily divided into smaller spherical triangles, see Figure 4.

It seems intuitive that this method will get us closer and closer to the exact case of
Theorem 2. That this is indeed the case is shown by the following theorem, showing that
Algorithm 7 converges in a finite number of iterations.
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B,

Figure 4: The images show a part of the unit sphere. Originally Z; is constrained to the
green circle around z; shown on the left. In the refinement step this circle is divided as
shown on the right, generating new, more precise hypotheses. Working with spherical
triangles simplifies subsequent division steps.

Algorithm 7 Splitting correspondences

While our lower bound is strictly smaller than the upper bound:
1. Pick a correspondence and divide it as described in the text.
2. Update all constraints concerning this correspondence.

3. Compute new lower and upper bounds on the solution.

Theorem 3. Consider two sets of three-dimensional unit vectors ordered such that ; corre-
sponds to y;. In a finite number of iterations, Algorithm 7 will determine if there is a rotation
or a reflection or a combination of both R such that

Z(Rxi,y;) < e. (106)
Proof. Consider the function
h(il,...,f]\/) :H?lE;X|£(jL,.f])—é(y“y])‘ on Z(fq,zq) SE (17)
This is a continuous function, defined on a compact set. Thus it takes a minimum value
0 > 0 in this set. If there is an R satisfying (16) then according to Lemma 2, § = 0.
Otherwise, when the uncertainty of Algorithm 7 is less than /2, the inconsistency will
be detected. 0
6.2 Verifying Consistency

For a planar rotation, we obtained a bound on the optimal solution simply by finding a
small vertex cover, but in the case of three-dimensional rotations it is not certain that a

177



PAPER V

Algorithm 8 Verifying consistency

1. Given a set of correspondences with no pairwise inconsistencies.

2. Use an approximate method to compute a transformation.

3. Apply the transformation and count the number of
correspondences which are consistent according to Definition 1

vertex cover corresponds to a solution to the original problem. We need to verify that the
correspondences are not only pairwise consistent. To do so, we estimate a rotation using
an approximate method and count the number of inliers to this rotation. Algorithm 8
can be used for all problems discussed here and with different approximate solvers. For
3D rotations, Horn’s method using unit quaternions [22] is a natural choice. As we
remove more and more outliers and as the uncertainty of our hypotheses approach zero,
the approximate solutions will tend to the correct one.

7 Parameter Search and Vertex Cover

For many problems a pair of correspondences is not sufficient to establish inconsistency.
We get a straightforward example by adding an unknown scaling factor to the rigid reg-
istration problem discussed previously. Given just two point-to-point correspondences,
there is always a similarity transformation mapping the points perfectly to each other. To
approach this type of problems, we will combine the vertex cover techniques with a search
algorithm over part of the parameter space. For the example of similarity registration, the
parameter space is one-dimensional due to the scaling factor. In this section, we will show
how to solve this type of problems. An overview of our approach is given in Algorithm 9.

We assume that we start with a bounded set in parameter space. For similarity regis-
tration this would be an interval of possible scaling factors and for camera pose a set of
possible camera positions. We also assume that we have some way of establishing consis-
tency of a pair of correspondences given the extra restriction that we are in a specific part
of the parameter space. This gives us a way to discard large parts of the parameter space at
once. The cost of course is an uncertainty in evaluating the constraints. This uncertainty
will be referred to as an approximation uncertainty.

For a given box in the parameter space, it is not necessary that we solve the complete
vertex cover problem. Since we are performing branch and bound, we only require a
bound on the number of inliers. Algorithm 6 does indeed keep track of this bound. The
success of the algorithm is dependent on discarding whole boxes at an early stage without
having to subdivide them many times. Another crucial factor is that if we are able to
discard individual outliers early, because then we will get smaller vertex cover problems
when we subdivide the box.
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Algorithm 9 Parameter Search and Vertex Cover

Initialize the queue with a bounded set in parameter space.
Iterate until desired precision is reached:
1. Pick a box from the queue.
2. Use Algorithm 3 to discard the box.
3. Use factor-2 approximation to discard the box.
4. Use Algorithm 4 to remove outliers
5. If the rate of outliers is over 0.3.
- Use branch and bound to discard the box.
6. If the box cannot be discarded:
- Divide the box and update the queue.
- Use Algorithm 2 to find a small vertex cover.
- Use Algorithm 8 to update the bound on the optimum.
7. Remove the box from the queue.

7.1 Splitting Correspondences

To get guaranteed convergence in Algorithm 9 we might need to include the ideas from
Section 6.1. At each iteration we can chose between keeping the current correspondences
or splitting them as described in Section 6.1. In chosing between the two we can com-
pare the correspondence uncertainty (see Section 6.1) and the approximation uncertainty
caused by the size of the boxes in the parameter search. If the correspondence uncertainty
is considerably larger than the approximation uncertainty, we split correspondences.

8 Application: 2D-3D Registration

8.1 Problem Formulation

Given an image from a calibrated camera and a 3D model of the scene, we want to
estimate the position ¢, and orientation R, of the camera.

Since the camera is calibrated we can choose to represent the image as a sphere (rather
than an image plane) and detected feature points in the image as points on the sphere or
unit vectors, x;. Points in the 3D model will be denoted by X ;. We also have a set of
hypothetical correspondences C. For clarity, we restate Problem 1 for 2D-3D registration:

Problem 3. For a prescribed threshold € > 0, find the rotation R and translation t that
maximizes |I| where I C C'is the largest consistent set of correspondences such that

Z(zi, R(X; —t)) <€ forany(i,j) € 1. (18)
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Figure 5: The points ¢ such that XtY = a.

Like before, Z (u, v) denotes the angle between vectors « and v. To fit this problem
into the framework of Section 7, we need some way to determine pairwise inconsistency.

8.2 Pumpkin Constraints

Assume for a moment that our camera is ideal and noise-free. Given two 3D points, X
and Y, and corresponding image vectors = and y, it follows that

A(X—t,Y—t)zé(x,y):a. (19)

Here X and Y are part of the 3D model and the angle & on the right hand side can
be calculated from the measured image coordinates. We seck a camera position ¢ that
satisfies this constraint.

First consider a plane through X and Y. We know from elementary geometry that
all points on a circular arc through X and Y form the same angle XtY". Thus the points
t such that XtY equals o form two circular arcs in the plane as shown in Figure 5.
Moreover, if for another ¢ the angle XtY is larger than «, then ¢ lies in the set enclosed
by the two arcs.

In space the points ¢ for which XtY = « form a surface, obtained by rotating the
circular arcs around the line through X and Y/, see Figure 6. For angles smaller then
/2 this surface is pumpkin-shaped and non-convex. Like in the planar case inside this
surface form larger angles and points outside form smaller.

Consider the optimal camera pose (R, t) in the sense of Problem 3. Let X and Y be
two points that satisfy (18). The triangle inequality for angles yields,

a—2e< (X —tY —t) < a+ 2, (20)

These constraints have the important characteristic that they do not involve the orienta-
tion of the camera. Thus we can seek the optimal camera centre by a branch and bound
search over a subset of R®. Assuming that we have some bounds on the camera centre, ¢,
we can use the approach from Section 7.
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W

Figure 6: Sets XtY = « for o < 7/2 (lefd) and o > 7/2 (right).

8.2.1 Checking the Constraints

Consider two world points X and Y and their corresponding image points 2 and y.
Given a set S parameter space how can we determine if (20) holds for any t € S.

We assume that S is a sphere. Other sets can always be handled by inscribing them
in a sphere. First we note that if either X or Y lies in the S, then any angle XtY can
be obtained, so (20) is satisfied. In the general case, we can use the following geometric
observation.

Lemma 3. The maximum and minimum for XtY are attained in the plane defined by X,
Y and the sphere centre S..

Proof. Let Sop be the intersection of the mentioned plane and the sphere S. Now, it
is clear that rotating ¢ around the axis given by X and Y will not change the angle
XtY. Thus any point not in the mentioned plane can be rotated into this plane without
changing the problem. But any ¢ € S will be rotated into the Syp, which completes the
proof. O

This means that we only need to consider the plane defined by X, Y and the sphere
centre S.. But in this plane the pumpkin constraint is simply two circular arcs as shown
in Figure 6. Our problem is thus reduced to determining the intersection of the circle
So4 and these circular arcs.

8.3 Sufficiency

In order for the refinement strategy discussed in Section 6.1 to be applicable, we need our
constraints to be sufficient as the correspondences uncertainty tends to zero.
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Theorem 4. Consider 3D points X; and image unit vectors x; ordered such that X; corre-
sponds to ;. If for some camera centre t and all i, j

Z(XZ — t7Xj — t) = 4(%1',.%]')7 (21)

then there exists a rotation or a reflection (or a combination of both) R such that

for all i.

Proof Lety; = (X; —t)/|X; —t|. Then, (21) implies Z(y;, y;) = Z(z;, ;) and since
both x;’s and y;’s are unit vectors (x;, ;) = (y;,y;). This means that Theorem 2 is
applicable and completes the proof. O

Remark 1. If some 3D point X = ¢, then the angles in this proof are not well-defined.
Though this should never be a problem in practice, it may complicate the theoretic dis-
cussion. We eliminate this complication by requiring inliers to have at least some distance
dpnin to the camera.

We also need an equivalent of Theorem 3. The fact that we are performing a search
over camera positions complicates matters somewhat. Because we are considering mul-
tiple camera positions at once, we are not evaluating the left hand side of (21) exactly,
but as we will show, the approximation errors tends to zero. Consider a set of camera
positions

S={t:|t— 8. <r} (23)

To get a bound on the angular uncertainty of X — ¢ given that ¢ € S, we consider a cone
with apex at X circumscribing S. If | X — S;| > r, the opening angle 7y of this cone will
be
r
tan (v/2) = —— (24)
(/) = g

Now 27 is a bound on the approximation error introduced in (21) due to the radius of
S. As the radius tends to zero, so does this error. The only complication is the case when

X = Sc, see Remark 1.

Theorem 5. Consider 3D points X; and image unit vectors x; ordered such that X; corre-
sponds to x;. For any bounded set S C R3, in a finite number of iterations, the algorithm
outlined in Section 7.1 will determine if there is an isometric transformation R and a camera
centret € S such that

Proof. Consider the function
h(i’l, . ,.f?]\/',t) = max |Z(J~31,J~3J) — A(XZ — t,X]‘ — t)| (26)
i,
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on the set Z(Z;,x;) < eand ¢t € S. This is a continuous function, defined on a compact
set. Thus it takes a minimum value 6 > 0 in this set. If there is an R satisfying (25)
then clearly § = 0. Otherwise, when the sum of the correspondence uncertainty and the
approximation uncertainty in (24) is less than ¢ /2, the inconsistency will be detected. [

8.4 [Initialization

To start the parameter search over camera positions, we require some initial bounds on
the camera position, for example ¢; € [—10,10] for¢ = 1,2, 3 or [¢t| < 20. In most cases
we can get this from our knowledge of the scene. In localization, checking which features
are visible tells us approximately where we are. If the aim is recognition we can assume
that the distance to the object is relatively small - otherwise it would not be recognizable
anyhow.

In some cases these bounds can effectively acquired using the pumpkin constraints of
the previous section. Like in Section 8.2.1, let S be the central circle of a pumpkin. The
pumpkin surface can be defined as {x : |z — S| = d}. Since it is easy to get bounds on
the coordinates of points on the central circle, z; < m; this yields bounds on the camera
centre |t;] < m; + d. In presence of outliers some of these bounds can be false, but
recall we are only interested in an approximate bounding box that is certain to contain
the optimal camera centre.

8.5 Updating the Lower Bound

If we fix the camera position to the centre of the current box, it remains only to estimate
the rotation but that is exactly the problem that we discussed in Section 6.2 and the same
algorithm is applicable here.

9 Application: 3D-3D Registration

9.1 Problem Formulation

Given two sets of of 3D points {x; } and {y;} and a set of hypothetical correspondences,
C, we are interested in the following problem.

Problem 4. For a prescribed threshold € > 0, find the rotation R, translation t and scaling
Jactor p that maximizes |I| where I C C is the largest consistent set of correspondences (i, j)
such that

lpR(z; +1) —y;| < e (27)

To solve this problem, we use the method from Section 9. The search space is quite
simply a subset of IR, representing the possible scaling factors. We will also work with the
simpler case of 3D-3D registration with known scaling factor.
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9.2 The Constraints

Consider two hypothetical correspondences (i, j) and (m,n). If they are both correct
then p|x; — 2| = |y; — Yn| provided that there is no noise. This enforces that distances
between corresponding points must be equal in the two point clouds. Thus two inliers in
the optimal solution of Problem 4 must satisfy

|p|3;‘i = Tp| = yj — ynH < 2, (28)

for noise threshold e.

As in Section 6 a set of correspondences can be pairwise consistent even though they
are not consistent according to Definition 1. To verify that a given set of correspondences
is consistent we instead use an approximate method to estimate the transformation and
then check that all correspondences are consistent with this transformation. For the ex-
periments we used the method from [22].

9.3 Sufficiency

Theorem 6. Consider two sets of 3D points ordered such that x; corresponds to y;. If for all
iy J
ples — x| = |y — y;l, (29)

then there exists a rotation or a reflection (or a combination of the two) R and a translation t
such that

pR(z; +1t) = y; for alli. (30)

Proof We can assume y; = 0. Choose t = —x1. Let Z; = p(x; — x1) and note that
|Z;| = |y:|- We seek R such that RZ; = y;. Using (29) we get

2% = & — 3" — 2" — |25 = lyi — y3l” = wil® = lys* = 2095, BD)
so the requirements of Theorem 2 are satisfied and this completes the proof. O

This shows that the constraints are sufficient in the noise-free case. A result similar to
that in Theorem 5 holds as well, with a very similar proof.

Remark 2. In many applications, for example, 3D-3D surface registration, there are
also orientation constraints available. Surface normals at corresponding points should
match. Given an angular threshold € for consistency, such constraints are trivial to incor-
porate and will (generally) speed up the execution time of the algorithm since outliers are
easier to discard in the vertex cover algorithm.
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10 Results

Algorithms for 2D-3D registration and 3D-3D registration were implemented in C and
they are both publicly available for downloading. The implementations follow Algo-
rithm 9. The method for splitting correspondences to get guaranteed convergence was
not implemented. Reported execution times are for a computer with a 3.0 GHz Intel

DualCore CPU and 3 GB RAM.

10.1 2D-3D Registration

Implementation details. To make the experiments easier to repeat, this section will
describe some of the details on how the implementations was done. The overall structure
is that of Algorithm 9. Refining of hypotheses as in Section 6.1 was hardly ever necessary
in practice, so this was not used for this application. Initial bounds on the camera position
are given as input parameters. An upper bound on the minimal vertex cover is also
assumed to be given.

Let us look at steps 2 and 3 of Algorithm 9 in greater detail. First, a factor-2 approxi-
mation is performed for the vertex cover problem. To minimize computations, only those
constraints required for the factor-2 approximation are evaluated. If the box cannot be
discarded at this stage, all constraints are evaluated. For each correspondence Algorithm 3
is used in order to prove that the correspondence in question is an outlier. If this does not
discard the box either we need to decide whether it is more beneficial to divide the box
and continue with the parameter search or to continue with branch and bound in order
to discard the box. If there is a lot of outliers branch and bound might be necessary, but
for lower rates of outliers this might slow down the execution. One way to get round this
is to use branch and bound only if the rate of outliers is high. This method was chosen
for the experiments using a threshold of 30%. To reduce the time spent on branch and
bound, a maximum branch depth for this problem was also set.

Another question is when to stop the algorithm. It was experimented with different
stopping criteria, for example, to consider the number of remaining correspondences not
in the optimal solution. The optimal correspondences are uniquely determined if this
number to be zero, but correspondences very close to being consistent can be hard to
discard so it might be necessary to allow a positive number. Another stopping criterion
could be the remaining volume in parameter space, reflecting the uncertainty in camera
position. The experiments section states what stopping criteria have been used for the
different experiments.

Recognition. The data sets introduced in [28] were used, more specifically, the bear
and the Bournvita objects. The aim was not a complete recognition system but rather to
show that the algorithm is robust enough to work with challenging real world data. It is
also an example of how to use an optimal algorithm to evaluate features for recognition.
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Figure 7: A bear with the 3D model reprojected onto the image.

The goal is still to find the largest consistent set of correspondences. The size shows how
well the 3D model matches the image.

First SIFT features were extracted from the test images. The features were matched
to the stereo model with most overlapping view and for comparison also to three other
models, one of the same object from a different view and two of other objects.

The threshold of the ratio in the SIFT feature matching was set to 0.8. Since we were
interested in the recognition problem, we ran the algorithm until we had tight bounds
on the optimal inlier set. Figure 8 shows the lower and upper bounds in two examples.
For all but one image the difference between lower and upper bound was < 5 and in
this image there were between 252 and 270 inliers. The error threshold used was 0.0015
radians. To initialize our algorithm we put a lower bound on the size of object in the
image yielding a bound on the distance from the camera to the object.

The sizes of the inlier sets are presented in Figs. 9-10. In 2 out of 22 bear images,
there were less than 20 correspondences in the optimal set when matched against the bear
stereo models. For the Bournvita images, all test images had optimal sets larger than 20
correspondences. There was not a single case with more than 20 correspondences in other
cases.

In Figure 7 the 3D model is re-projected for one of the test images in the data set.

The same setup was used in a RANSAC engine where three points were randomly
chosen to estimate the camera position. After 10,000 iterations for each test image, 3 out
of 22 bear images did not get more than 20 inliers and 1 out of 9 images of the Bournvita
objects. So RANSAC may give lower number of correspondences in some cases but more

186



10. RESULTS

200 200

100 100

0 5 10 15 0 5 10 15

Execution time (s) Execution time (s)

Figure 8: Upper and lower bounds for the solution as a function of time in vertex cover
algorithm. (Test images 15 and 16 from [28].)
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Figure 9: Size of the inlier sets for 22 bear images from [28]. Note the axis. Matching
these images to stereo models of the other objects gave inlier sets exclusively in the shaded
area.

importantly, no bounds on the solutions are given.

Shopping street.  The 2D-3D registration was also tested on a data set consisting
of 95 images of a shopping street covering approximately 100 meters. An example of
these images is shown in Figure 14. The experiments were performed in a leave-one-
out fashion. One image was removed and a model consisting of 3D points and camera
matrices were constructed from the remaining views using Photo Tourism [39]. Then the
proposed method was used to find the largest possible inlier set for the removed image.
This procedure was then repeated for each of the 95 images.

To initialize the algorithm, we prescribe that the camera is reasonably close to street,
that is in a cube with side 50m. To get a bound on the optimal solution 50 RANSAC
iterations using a minimal solver was performed. This bound was then used as an initial
guess for the 2D-3D registration algorithm. The algorithm was run until the remaining
volume is less than 0.1 m?, corresponding to a cube with side length 0.5 meters.

10.2 3D-3D Registration

Implementation details. As for the 2D-3D registration problem we describe the im-
plementation details, to make it easier to repeat the experiments. The implementation
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Figure 10: Size of the inlier sets for the 10 Bournvita images from [28]. Note the axis.
Matching these images to models of the other objects gave inlier sets exclusively in the
shaded area.
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Figure 11: Results for the shopping street experiment. Running times for different rate
of outliers. For each image 100 random feature points were used.

follows the outline of Algorithm 9. As for the 2D-3D problem, it was not necessary to do
the refinement described in Section 6.1, so it was not implemented. The initial bound
on the possible scales are given as parameters to the function, in the experiments a scaling
factor between 0.1 and ten was allowed.

Step 2 and 3 of Algorithm 9 are performed as in the 2D-3D registration problem, but
Step 5 is not used. Intervals in the parameter space are split at the geometric average of
their lower and upper bound, since this is natural for a scaling factor.

As in the 2D-3D registration problem the question of when to stop the algorithm
does not have an obvious answer. For the experiments a maximum search depth of ten
levels was predefined.

Street view experiments. For this experiment we use a sequence of 300 street view
images, downloaded from eniro.se. All images are equipped with GPS coordinates of
the camera positions. For pairs of images a 3D model was built using SIFT features in
a RANSAC engine assuming planar motion. Using the presented algorithm for 3D-3D
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Figure 12: Comparison between GPS measurements of translations and results obtained
using our method.

registration, the relative position of consecutive 3D models was calculated.

To verify the results these relative movement was compared to the GPS coordinates.
The relative distance between the first two images and the two last images was calcu-
lated and compared with the relative distances from the GPS data. Figure 12 shows this
comparison and Figure 13 gives some timing info.

Known scale. W tried our algorithm on a 500-point 3D model of the Stanford bunny
(see Figure 14). The same data set was used in [31], though there the translation was as-
sumed known and only the rotation was estimated. To mimic the experiments from [31]
we computed a random rotation and translation and added uniform noise of magnitude
0.1 to the transformed points. The error threshold of Problem 1 was set to 0.3 (approxi-
mately 1% of the bunny length). We then set the algorithm to seek a solution matching
at least 90 % of the points. In all cases the optimal solution was found with the basic
algorithm without splitting any hypotheses.

In this experiment the total number of hypothetical correspondences was 250 000 and
the rate of true correspondences 0.2%, since no correspondences were given and hence
all points were matched against all points.! Our mean execution time was 0.77 seconds.

This means that a basic RANSAC algorithm would have required on average 125 million iterations to
converge.
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Figure 13: The plots show how computation times depend on the number of points (left)
and the rate of outliers (right).

Figure 14: Left: The Stanford Bunny used in the 3D-3D experiments. Right: One of the
images of the shopping street used in the 2D-3D experiments.

Essential to get this low average is that it is never necessary to set up the complete vertex
cover graph.

The algorithm in [31] obtains similar results on this data set as our algorithm, but
they assume that the translation is known and reported execution times are much higher.
The ICP and the SoftAssign algorithms [5, 16] work only when the initial rotation is
within an angle of less than 50 degrees of the correct solution for this data set.

To get more realistic examples, the 3D-3D registration algorithm was also tested on
the data introduced in [28]. An example of those images is shown in Figure 7. Three-
dimensional models were constructed from each stereo pair in the training set. Then the
registration was performed to the two neighboring stereo pairs for each model. The bear,
ball, vase and Bournvita images were used.

To generate the 3D models the training images of the data set were downsampled a
factor four. Then SIFT features [32] were extracted and matched for each stereo pair.
The matching was performed by comparing the ratio between the best and the second
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Figure 15: Execution times for 3D-3D registration with 34 stereo pairs from [28] versus
the ratio of inliers. The bars show the mean execution time and the numbers give the
number of examples in each interval. The optimal solutions have between 6 and 100
inliers.

best match, as proposed by Lowe, with a threshold at 0.6. To construct the actual 3D-
model, points were triangulated using the optimal method described in [20]. Points with
a reprojection error larger than two pixels were removed.

In the matching between two stereo models all SIFT features with a dot product
greater than 0.75 were considered to be hypothetical matches. This results in many
multiple hypotheses. The algorithm was set to seek a solution with 20 inliers. If none was
found this number was divided by two and the algorithm restarted. In all cases an optimal
solution was found and verified, but in a few examples we did not prove uniqueness. This
could have been done using the algorithm discussed in Section 6.1.

In Figure 1 a concatenation of two stereo models of the bear is shown. In Figure 15
the execution times for the model concatenation is given for different ratio of outliers.

11 Conclusions

The vertex cover formalism is not a new idea for correspondence problems, but it has
previously only been used with limited success. Even though it is an NP-hard problem,
we have shown that it is possible to achieve competitive results with sophisticated use of
approximation algorithms in combination with today’s computers. For several state-of-
the-art methods, we have compared the performance to our approach in terms of number
of inliers and running times with good results.

We have also extended the use of graph methods for registration, by showing for a
number of problem classes how convergence to an optimal solution can be guaranteed.
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City-Scale Localization Using
Geometrical Visual Words

Klas Josephson, Linus Svirm, Olof Enqyvist, Fredrik Kahl

Abstract

In this paper a new method for global localization using a single image query is proposed.
We advance current state-of-the-art by one order of magnitude (from town to city scale). The
approach is based on a regular bag-of-words search, but unlike the standard framework, we
encode geometry in the design and in the process of image-based localization search.

Recent work has shown that by adding geometry to weak appearance features, powerful
and discriminant pose features can be obtained. Our work follows this line of research. Each
pair of features, together with the viewing angles between them, form a geometrical visual
word. We show how to construct a 3D city model of triangulated 3D features and how to
appropriately encode all potential viewpoints in the database. Real experiments are reported
on a complete city model with promising results.

1 Introduction

The global localization problem has seen a large increase in potential during the last
decade. In 2002 state of the art systems in robotics still used lasers for navigation, e.g.
[15]. Since then improvements in global localization systems have been rapid. This is
largely due to great advances in large scale structure from motion and image search. The
success of the large scale structure from motion systems, such as Photo Tourism [22] and
fast city scale reconstruction methods like Building Rome in a Day [1], are founded on
the improved methods for wide baseline matching. Cornerstones of the wide baseline
matching methods used today are interest point detectors, such as Maximally Stable Ex-
tremal Region (MSER) [11], and region descriptors, such as the SIFT descriptor [10].
Evaluations of several detectors and descriptors can be found in [12] and [13]".

The second important path of development for large scale localization problems is
image retrieval. The most common approach to this problem is to use visual words [21].

1 Also see www.featurespace.org for up do date feature evaluation.
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This has made it possible to efficiently search millions of images to find one similar to
the query image, e.g., [17]. Image retrieval methods have been used in several previous
papers [26, 7, 20] to perform global localization.

Another method used for image retrieval is to use the GIST descriptor [18] that uses
global images features instead of local features. In [14] they use the GIST descriptor to
make large scale localization where the images cover an area of approximately 20 kilome-
ters.

There are also other methods that do not use local features for the localization prob-
lem. One of these is [16] that uses an epitomic representation of the locations to be able
to find the positions. The method presented in this paper can be used to classify an image
with respect to different image types, such as corridor or kitchen, but also be to find a
specific instance of let us say, a kitchen.

Recent work has focused on adding geometry to the image retrieval systems. Exam-
ples of this are [2, 24, 8]. In the first of these papers a min-hashing technique was used
with a geometrical part that finds closely placed feature points both in the query image
and in the image database. This geometrical part was shown to improve results. In the
second paper a different approach was used but still considering closely placed points. All
points detected by a difference of gaussians detector [10] that were covered by a MSER
were bundled together, which meant that geometry was directly encoded into the image
retrieval. In [8], they used weak geometrical consistency that favor that the scale and ro-
tation of the feature points have been transformed consistently between the search image
and the database images.

In this paper, we develop a system for localization recognition based on a 3D city
model. The bag-of-words approach is adopted, but there are several issues that differ
from a standard image retrieval system. The main features of our system are:

(i) To our knowledge, this is the largest localization system to-date. Our model covers
approximately 20 times more road scenery than in [20] and [14] and approximately
1000 times larger area than in [7].

(ii) Our system is designed for localization retrieval. The result of a database query is
the position of the viewer rather than that of nearby images. The idea is similar to
Irschara et al. [7] where the database is also created for localization retrieval by the
use of so called synthetic views. However, in their approach no spatial information
was utilized during the (online) query phase.

(iif) 3D geometry is directly encoded into the visual words. By combining two 3D
features simultaneously, and the viewing angle between them, a powerful and dis-
criminant localization feature is obtained. In addition, unlike many image retrieval
systems that have large vocabulary sizes (in the order of millions), we can use a
much smaller vocabulary. This makes the system more robust to feature quantiza-
tion.
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2. OVERVIEW OF THE LOCALIZATION METHOD

Figure 1: The image to the left is an example of an image that was used to create the
three-dimensional model to the right.

There are several other methods proposed to do global localization of images [25, 19].
These papers use different methods to make image based global localization, but none of
these can handle problems at a city scale level as can the method proposed in this paper.

2 Overview of the Localization Method

To facilitate localization retrieval, we rely on synthetic views. A synthetic view represents a
small area patch where we keep track of the three-dimensional feature points visible from
the patch. We also calculate the viewing angle between each pair of visible features. After
assigning a visual word to each feature point, each pair of points are bundled together
with their viewing angle to form a new feature that we call a geometrical visual word.
The synthetic views, with their geometrical visual words, can then facilitate search over
positions, much like ordinary bag-of-words facilitate search over images.

To build the database with synthetic views in a way that facilitates queries, quite a few
steps need to be performed. To get an overview over these steps, and to see how they fit
together, see Algorithm 1. To begin with, a three-dimensional model of the search area is
needed. In this paper we use about 95,000 street view images of a city to construct this
model. To generate the synthetic views, we need to know from what locations a certain
feature point is visible. So in the same step we generate a polygon to each feature point,
describing the area from where it is visible. See Algorithm 1.A. To be able to match feature
points, we train a vocabulary for visual words. In this paper we use 1600 visual words. To
generate the synthetic views, we subdivide the city into a dense grid of small patches, each
eight by eight meters. In total we get roughly 1.2 million synthetic views. The details of
how they are built, can be seen in Algorithm 1.C, and in the coming sections.

In the online query phase we start by using the bag-of-words approach to find a few
promising locations. These are then re-ranked by using stricter geometric conditions.
The layout of these steps can be seen in Algorithm 2, and Section 4 will go into the
details.
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Algorithm 1 Construction of the Model

Required
A set of images, taken with known cameras, over the city.

A. Construct Three-Dimensional Model
1. For each pair of close placed images:
2. Extract feature points using MSER and encode them using SIFT.
3. Triangulate matching feature points using the method of [5]
4. For each such point:
5

Generate a polygon representing its area of visibility.

B. Train Vocabulary for Visual Words
1. Select descriptors of all triangulated points.
2. Select half as many descriptors of non-triangulated points.
3. Cluster these into 1600 clusters. Each cluster represents a visual word.
4. Assign to each triangulated point a visual word.

C. Generate Synthetic Views
1. Subdivide the city into a dense grid of small patches (each 8 by 8 meters).
2. For each patch:
For each point within 100 meters from the patch:
Intersect the patch with the points polygon of visibility.
If there is a non-empty intersection, the point is considered visible.
For each pair of visible points:
Calculate the range of angles under which the two are visible.
The visual words of the two points, coupled with the calculated angles,
form a geometrical visual word.

PN A AW

9. Store the geometrical visual word for the patch.
The set of geometrical visual words for a given patch constitutes a synthetic view.

D. Build the Inverted Files
1. Create a list for each pair of visual words.
2. For each patch:
3. For each geometrical visual word in current patch:
4. Save patch-ID and angle interval in the list specific for its visual words.
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3. CONSTRUCTION OF THE MODEL

Algorithm 2 Querying the Model

Required

An image, taken with a camera with known inner calibration.

A. Process Image
1. Extract feature points using MSER and encode them using SIFT.
2. Assign to each feature point a visual word using the trained clusters.
3. For all pairs of points:
4. Measure the angle between the points.
5. Form a geometrical visual word using the visual words and the angle.

B. Rank Patches
1. Keep track of the number of votes given to each patch.
2. For each geometrical visual word in image:
3. Use the inverted file for that visual word pair.
4. For each patch-ID in the inverted file:
5. If the angle in the image lie in the angle-range for the patch:
6. Give current patch a vote.
7. For each patch:
8. Normalize its vote by the number of features in the patch.

C. Re-rank Result
1. Re-rank the top voted patches using a vertex cover based method.

3 Construction of the Model

To perform localization we first need a three-dimensional model of the search area. Our
model consists of a three-dimensional point cloud and to each point a polygon of visibil-
ity. Model points can be calculated by using systems like Photo Tourism [22] or other
similar systems, e.g. [6]. These systems often handle uncontrolled image collections. In
our work the data is more controlled so instead of using Photo Tourism like methods, a
special purpose algorithm is used, designed to fit our data.

3.1 Dataset

The dataset of images used, consists of approximately 95,000 downloaded images of a
city?. These images are street view images taken with roughly an interval of five meters.

2Contact the authors on how to download the dataset.
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Every image has a size of 1288 x 642 pixels and covers the complete visual sphere. An
example image is shown in Figure 1. Each pixel in the images represents a constant
shift in inclination and azimuth, respectively. This makes it possible to calculate the
inner calibration of the cameras, since every pixel in the image can be associated with a
direction on the image sphere, which is exactly the same as a known inner calibration [5].

Not only the inner calibration was possible to find in the downloaded data, also the
position and rotation were available. The position was retrieved from GPS coordinates
associated to the images. The GPS coordinates are given in a reference system that is right
angled and where the distances can be interpreted in meters. Further on, the rotation
between two arbitrary images in the data was zero, since all images were cropped in the
south. This data was not in all cases entirely correct, but we made no efforts to adjust the
positions.

3.2 Keypoint Selection and Triangulation

We now have a complete set of images with all camera parameters known. This made
it easy to triangulate points from the images. We began by finding interest points in all
images. This was done using the MSER keypoint detector [11], where we used a threshold
to only include regions larger than 100 pixels. This bounds the number of features to a
few hundreds per image. After that the SIFT descriptor was applied to the interest points.
To perform these calculations we used the code by Mikolajczyk [12]. With the known
keypoints the triangulation was performed on pairwise images. To perform the two-view
triangulation, the method of Hartley and Sturm [4] was used. Part of the 3D-model is
plotted in Figure 1.

3.3 Construction of Visibility Polygons

To make the search over positions in the city we place a dense grid over the city, with each
square having the side length of eight meters. For every single patch we calculate which
features are visible.

A polygon representing visibility is constructed using the directions to the two cam-
eras, which the point was reconstructed from, together with the distance to the camera
furthest away. See Figure 2 for details.

3.4 Training Vocabulary for Visual Words

A vocabulary for visual words is used to match feature points in the model and the query
image. Usually, query images contain lots of features that are not robust enough to tri-
angulate, e.g. leaves. By using a vocabulary based on only triangulated features, such
unstable features are forced to match features that have been triangulated, and thus adds
noise to the search. To avoid this, we use features from both the three-dimensional points,
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3. CONSTRUCTION OF THE MODEL

Figure 2: Left: Construction of the polygon of visibility. The red dot shows the model
point and the blue polygon the area of visibility. The distance between the point and the
corners furthest away from the point, is the maximum value of 20 meters and the distance
to the most distant camera that the point was triangulated from. The distance between
the point and the closest corners of the polygons are fixed to three meters. The field of
view is the angles to the cameras where the point is visible scaled with 1.2 compared with
the central angle of the visibility cone. This value is not allowed to be greater than 7/2.1.
Right. Intersection of visibility polygons and a patch. The red and the green areas are
visibility polygons, the white area represents a patch. The area inside the dashed line is
where the two feature points are regarded visible at the same time for the given patch. See
Section 3.6.

and points that have not been triangulated. When clustering, twice the number of tri-
angulated points are used compared to the number of non-triangulated ones. By using a
majority of triangulated features for training, we should get a vocabulary well suited for
representing the features we are interested in.

The clustering is done using VLFeat[23]. We choose to cluster the data into 1600
clusters. Results in the image retrieval research suggests, that the vocabulary should con-
tain a million to several million words, to achieve good results. The reason for our much
lower number is twofold. First of all, a lower number of features gives a greater robustness
and generality and the possibility to assign a correct word to a new feature is increased.
Second of all, we will use pairs of features that in practice increase the number of words
to roughly 1.3 million words. The angles between two features will also be used in the
end to further increase specificity.

3.5 Model Reduction

With word and visibility polygon known for each model point, a model reduction is
performed. This is done since we during triangulation did not search for longer point
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tracks between several images; only pairs of images were considered. One downside of
this is that the same physical point can be triangulated twice or more. As a way of reducing
the amount of duplicates, all feature points close to eachother having the same word are
merged, provided that their polygons of visibility intersect.

The result of this process is that groups of closely placed features are merged to single
points, with visibility polygons that cover the same area as all of the original polygons
combined. The process will thereby reduce the number of multiple points describing
the same physical point. In our experiment the number of model points are reduced by
almost 10% by this merging step.

3.6 Generating Synthetic Views

To generate a synthetic view, pairs of features and the corresponding viewing angle for
each pair is considered. Given such a pair of features and a patch in the search space,
see Figure 2, we need to determine under which angles these features can be seen. More
precisely, if X and Y are the 3D positions of the two features, and C is a thought camera
centre within the patch, we want to determine bounds on the angle XCY'.

To do so, the polygons representing the visibility of these two features are intersected
with eachother and with the current patch. This results in a polygon Psp representing
that part of the current patch where both points are visible.

Consider a coordinate system such that the ground plane is perpendicular to the z-
axis. The region P,p restricts the camera in the zy plane, but the sought angle will
also depend on the z-coordinate of the camera centre C'. Using the model images as a
reference, we assume that the z-coordinate of the query images will deviate with at most
two meters. Since the model images are captured using cameras mounted on top of a car,
very few query images should fail to satisfy this constraint.

This means that for any

CGP:{(xa:%Z):(xay)GPQDaZE [_2a2]} (1)

we want to determine bounds for the angle XCY'.

3.7 Calculating Angular Bounds for Polyhedron

We approach the problem of finding the angular bounds in the following manner.
1. Inscribe P in a number of spheres - we use four spheres.
2. For each sphere, determine bounds [I;, u;] on XCY if C lies in the sphere.
3. Take the union of intervals [I;, u;].

It remains to show how to perform Step 2.
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4. SEARCH ROUTINE

Problem 1. Given two 3D points X, Y and a spherical set of camera centers, S = {C' :
|C = S.| < 1}, determine upper and lower bounds for the angle XCY .

First we note that if either X or Y lies in the sphere, then any angle is possible. In
the general case, we can use the following lemma.

Lemma 1. The maximum and minimum for XCY are attained in the plane defined by X,
Y and the sphere centre S.

Proof. Let Sop be the intersection of the mentioned plane and the sphere S. Now, it is
clear that rotating C' around the axis given by X and Y will not change the angle. Thus
any point not in the mentioned plane can be rotated into this plane without changing the
problem. But any C' € S will be rotated into the Sy, which completes the proof. [

This means that we only need to consider the planar case.

Lemma 2. The planar case can be solved by finding all circles through X and Y that is
tangential to Sap.

Proof: We use the same reasoning as in [3]. The angle XCY is equal for all C' on a
circular arc through X and Y and the angle is determined by the radius of the circular
arc. Thus we seek the largest and smallest circles through X and Y such that they intersect
Sap and it is easy to see that these are also tangential to Sap. O

These circles can be found by solving a simple quadratic equation. For brevity, we
exclude the derivation.

3.8 Building the Inverted Files

With all visible pairs of points known for every patch, along with the angle intervals for
all these pairs, it is possible to create a search database to find the right patch. A geometric
visual word is constructed for every pair of features together with the bounds on the angle
interval.

All the geometric visual words are stored in inverted files [17] to make a fast search
after the best patch possible. The inverted files hold, for every given pair of visual words,
the patches were these are visible together with the angular interval for each patch.

4 Search Routine

Given a query image, the search for its camera position is divided into two steps. First
we make a bag-of-words search [17] over all synthetic views. After that, a re-ranking is
performed to improve the result.
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4.1 Bag-of-Words Search Step

In the query image, interest points are extracted using MSER and described using SIFT.
All the descriptors are then assigned words from the clustered vocabulary of the model.
To get the angle between every pair of features, it is necessary to transform the image
coordinates to the visual sphere. To do so, the inner calibration of the camera needs to be
known. With the coordinates on the image sphere given, the angle between every pair of
interest points are calculated.

With the list of word pairs and the angles between them, the inverted files are used to
rank all patches. The search algorithm iterates over all pairs of words in the search image.
For each word pair a list of patches are given where these are visible. Together with the
patch, the angular interval is also returned. If the image angle is inside this interval, one
vote is added to this patch.

To balance the result depending on how many points that are visible in a square, the
value obtained after all words have been tested, is divided by the maximum of the square
root of the number of point pairs in every patch and 50.

4.2 Improved Patch Ranking

The bag-of-word step of the search algorithm manages, in most cases, to rank the correct
patch within the top one hundred of all patches. To improve the result we perform a
second step of ranking on these top results.

As our new measure of how well the image matches an area patch in the city, we want
to count the number of correspondences of the feature points. By correspondence we
mean a match between a specific feature point z; in the image and a specific point X; in
the model, where only points having the same word may match.

Furthermore, we require that the all pairs of correspondences are consistent in terms
of geometry. This means that the angle between the two image points must lie within the
interval of possible angles of the two corresponding model points. Two correspondences
are also considered inconsistent if they try to match the same point in one of the point
sets, to different points in the other set.

To find a consistent set of points a graph with all hypothetical correspondences as
vertices is built. Edges are added between all inconsistent correspondences. The task of
finding the largest set of geometrically consistent correspondences is now equivalent to
removing as few vertices as possible in such a way that all edges are removed. This is the
vertex cover problem; one of Karp’s 21 NP-complete problems [9].

Since this is a NP-complete problem, we confine ourselves to finding a sub-optimal
solution. Intuitively, wrong correspondence should get a lot of edges since they probably
are inconsistent with most other correspondences. This motivates Algorithm 3, which
is a greedy algorithm for efficiently finding a solution. The remaining vertices from the
algorithm represent consistent correspondences.

The number of remaining correspondences is divided by the number of visual points
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Algorithm 3 Greedy Vertex Cover Approximation

1: Keep track of the number of edges to each vertex.

2: Iterate until no edges remain.

3: Select the vertex with most number of edges.

4 Remove selected vertex.

5 Remove affected edges and reduce the edge-count of all affected vertices

in the patch. This is done to compensate for the uneven distribution of points among
patches. If the number of points is lower than 200, we choose to divide by 200 to avoid
favoring patches with few points but relatively many inliers.

5 Experiments

Before the results are presented some details of the implementation of the method are
described to simplify a reimplementation.

5.1 Implementation Details

Dataset Pre-processing. On some streets, the car that captured the photos, has passed
several times. This results in a much higher density of images in those areas. To get a
more uniform distribution of images for the model, we remove images from these dense
areas. To decide which images to remove, a density measure is calculated for each image.
The density measure p for image k is defined as:

o) = @

i€y

where Ij; is all images closer than eight meters from image & and d(k, %) is the distance
in meters between image k and ¢. This value is calculated for all images and the one with
the highest density is removed. The density measure of affected images is recalculated.
This removal process is repeated as long as any image has a density measure larger than an
empirically chosen threshold of 3.7. By doing this approximately 11,000 of the 95,000

images were removed.

Methods to Remove Incorrect Three-Dimensional Points. To reduce the number of
incorrect three-dimensional points, several actions were applied. First only image pairs
with a baseline between four and 15 meters were used to get a stable model. When the
triangulation was done, only points with small reprojection errors were kept. Also positive
depths were required in both images. Points further than one hundred meters or closer
than 3 meters to any of the two cameras are removed.
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Clustering. We used two levels of hierarchical clustering with 40 splits in each level,
resulting in 1600 visual words.

Point Merging. During point merging, presented in Section 3.5, points that are within
half a meter of each other are considered. The merging works as follows. The new point
is given the position equal to the mean of the points to merge. Select the viewing angles
of the new points so that the viewing directions of all merged points are covered. Finally
set the viewing distance to the maximum of the viewing distance of all merged points.

Angle Thresholds. To reduce the amount of data necessary to store, we only save pairs
of features that can be visible with a viewing angle between them less than 90 degrees.
This reduces the amount of data to store significantly, since half of the image sphere is
out of reach for this value. A second motivation for this threshold is that the field of view
for a regular camera usually does not cover more than 90 degrees.

5.2 Results

To evaluate our method, 4202 images were used that had not been used for model con-
struction. These images were coupled with GPS information, which was used as ground
truth. During the evaluation, two results were investigated. First the initial bag-of-words
search and then improvements gained through re-ranking. In our experiments the area
where the localization is done covers approximately eight times ten kilometers, with over
1.2 million patches. But since the bounding box of the city covers more than the urban
areas, not all patches have visible points inside. In our case roughly 460,000 of the patches
have visible feature such that they are electable by the localization method.

The first set of experiments was aimed at testing the performance of the first search
step. For a test image, each patch is ranked based on the number of votes. As a measure
of the result, we used the share of all test images with its ground truth patch within the
top-k ranked ones, for k € {1, 5,10, 25, 50, 100}. Further, it was examined if the results
improved when ground truth was set to be a larger area than one patch. The experiments
also examined if the results improved when an error margin of five pixels were allowed
when measuring angles in the query image. The results from the first set of experiments
are summarized in Table 1. The results shows that for most of the test images, close
localization in the top five ranked patches can be achieved without any re-ranking of the
result. One can also see that allowing for some error in angle measurements improve
results.

The next set of experiments were focused on re-ranking the initial results. Since
the method with error margins worked best in the first phase, we use that as base for
the re-ranking. The 100 best results of the first localization step were used in the re-
ranking. In these tests, the ranking of the first patch that had its center within 16 meters
of the GPS coordinates of the image was counted as a correct localization. The results
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Top-ranked | Hard 0-patches | Hard 3-patches | Soft 0-patches | Soft 3-patches
1 0.162 0.420 0.172 0.439
5 0.346 0.541 0.371 0.558
10 0.411 0.599 0.433 0.607
25 0.481 0.661 0.499 0.668
50 0.524 0.706 0.546 0.712
100 0.570 0.753 0.592 0.756

Table 1: Result without re-ranking. Two different methods have been tried. The first
method, called hard, is when no error margins are used. In the method called soft an
error of five pixels is accepted. 0-patches and 3-patches stands for how far from the
correct patch we consider a correct search. In 0-patches, only the exact patch is accepted,
and in 3-patches a difference of three patches from the correct patch is allowed.

of the re-ranking are plotted to the left in Figure 3. The dashed red line is the result
before re-ranking and the solid blue after. As can be seen, re-ranking improves the result
significantly. To the right in the same figure is a plot showing the result when different
number of patches are re-ranked. The different levels are, 10, 25, 50 and 100 patches.
The solid blue line is the same as in the plot to the left and represents when the top 100 is
re-ranked. Performance of localization improves if more patches is used in the re-ranking.
Hence it is important to re-rank as many patches as possible, which makes time an issue.

5.2.1 Memory and Time Requirements

The inverted files we used for the experiments, covering the entire city, in total required
3.6 GB of memory. The entire amount of data necessary for the re-ranking step was
16 GB. The execution time for one inverted file query was on average 1.5 seconds using
a python implementation, excluding time for feature extraction. The average execution
time for re-ranking was 1.85 seconds per image, when re-ranking the top 100 patches.
Both the inverted file query and the procedure of re-ranking can be fully run in parallell
for faster execution.

6 Conclusions

We have introduced a novel method for global localization on a city-scale level. The
main contributions of the paper are, (i), a method to create synthetic views that holds
a rich level of geometric information that can be used in a fast initial localization step,
and (ii), a new re-ranking procedure that finds a set of geometrically consistent matches
between query image and model. These two contributions combined makes it possible
to do global localization on a larger scale than before.
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Figure 3: Result of re-ranking. In the left figure is a comparison of results without re-
ranking and when the top 100 has been re-ranked. The y-axis is the share of images that
have been ranked close enough to ground truth. The x-axis represents that the x-best
patches are considered. To the right is a comparison when different number of patches

have been re-ranked.

Experiments show that the method is able to find the correct location in 55% of all
cases. And among the top twenty ranked positions, the correct position is present for
almost 70% of the query images.
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