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Abstract

The scattering from a layered sphere with any number of layers and admit-

tance sheets at the interfaces is calculated in this work. By utilizing spherical

vector wave expansion and matching of the tangential �elds at each inter-

face, and introducing a surface admittance to the magnetic �eld boundary

condition, the transition matrix components are determined. A numerical im-

plementation of the derived analytic expressions is utilized to determine the

monostatic radar cross section from a sphere, of varying radius, coated with a

number of di�erent electromagnetic absorbers. When the monostatic scatte-

ring from a sphere coated by an absorber is normalized with the monostatic

scattering, either from the uncoated structure or from an enclosing perfect

electric conductor, a comparison can be made to the planar absorber perfor-

mance. The impact of curvature on the absorber performance is evaluated

from these results. It is concluded that absorbers based on bulk losses are less

sensitive to curvature than absorbers based on single or multiple layers of thin

sheets.

1 Introduction

Electromagnetic scattering from a sphere is a subject with a long and distinguished
history. It can be argued who was �rst in presenting a solution to the problem, but
today it is commonly referred to as the Mie series, named after Gustav Mie from his
work in [16]. Since then the topic has been studied extensively, and the results are
summarized in many textbooks [2, 3, 14, 21, 27]. The Mie series is used in a wide
variety of applications such as optics, climate modelling, astro physics, nano science
and biomedical imaging [2, 10, 17, 24].

When the spherical scatterer is much smaller than the wavelength of the incident
wave, the Rayleigh scattering approximation can be applied [28]. When the size
of the scatterer exceeds about 10% of the wavelength of the incident wave, this
approximation breaks down and the Mie series solution has to be applied. Since the
advent of modern computers, much work has been done on implementing stable and
reliable algorithms of Mie series calculations [5, 7, 9, 15, 23, 30]. This has resulted in
e�cient calculations of Mie series with size parameters on the order of 10 000. Some
examples of scenarios that have been considered are: Spheres of di�erent dielectric
and magnetic materials, layered spheres, anisotropic spheres, distorted spheres and
spheres in an absorbing medium [10]. Recently, a summarizing article was presented
[24] where the history of the Mie series is presented in detail. Analytic expressions for
scattering from a layered sphere and the numerical implementation of the problem
was presented in [24]. The authors of this report were surprised to �nd no reference
to prior work that considers the scattering from a layered sphere with an arbitrary
number of layers, and with admittance sheets at the interfaces. This type of problem
has much use in the analysis of electromagnetic absorbers, which commonly consists
of single or multiple layers of dielectric or magnetic materials, resistive sheets and
circuit analog structures [18].
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Electromagnetic absorbers are commonly used to attenuate electromagnetic sig-
nals and reduce the re�ection and transmission from particular objects. Examples of
areas where absorbers are used are in free space measurement setups for electromag-
netic characterization of antennas or other objects [29], and in defense applications
such as radar cross section (RCS) reduction [13, 21]. Most absorbers are designed
for a planar structure of in�nite extent, while most real applications involve that
the absorberis applied to a curved structure, such as the body of an aircraft. Surpri-
singly little work exists with respect to the degradation of the absorber performance
due to curvature. In [4] a Luneberg-Kliene expansion of the scattered �eld from a
cylinder and a sphere is carried out to identify a correction term proportional to the
radius of curvature of the scatterer, and in [12] the performance degradation of a
�ve layer Jaumann absorber applied to a cylinder is calculated. In [26] a series of
di�erent absorbers are evaluated when applied to a perfect electric conductor (PEC)
cylinder, and a conclusion in this work is that by normalizing the monostatic scatte-
ring from a coated cylinder with either the scattering from the uncoated structure,
or the scattering from an enclosing PEC structure, a comparison can be made to a
corresponding planar absorber design.

In this work, the scattering from a multilayered sphere is calculated by expanding
the electric and magnetic �elds in spherical vector waves. The structure of the
speci�c scattering problem implies that all information of the scattered �elds are
stored in the transition matrix (or T -matrix), the mapping matrix between the
incident and scattered �elds. Once this mapping has been determined, the scattered
�elds are easily calculated. In the special case of scattering of a linearly polarized
plane wave from a layered sphere with isotropic materials the T -matrix is diagonal,
which greatly simpli�es the solution of calculating the scattered �elds. We use the T -
matrix to determine the monostatic RCS of a PEC sphere coated by di�erent types
of classical electromagnetic absorbers, such as the Salisbury screen [22], Jaumann
absorber [12], Chambers-Tennant absorber [6], conductive dielectric absorber, thin
magnetic absorber and di�erent types of circuit analog absorbers (CAA). By utilizing
the normalization scheme that was �rst presented in [26] the monostatic RCS of the
coated spheres can be compared to the corresponding planar design of the absorber
under test. This study gives information of the performance degradation of absorbers
due to curvature, and it is observed that electromagnetic absorbers of the same type
display similar behavior when exposed to curvature.

This report is organized as follows: In Section 2 the theory of spherical vector
waves is presented and in Section 3 the theory of scattering from layered spheres
with admittance sheets at the interfaces is presented. This content is based on the
notation and approach used in [14], where scattering from a PEC sphere, dielectric
sphere, and layered spheres without thin sheets at the interfaces are considered. A
numerical implementation of the theory in Sections 2-3 is presented in Section 4. In
Section 5 simulation results of the implementation in Section 4 are presented, where
the monostatic RCS of di�erent electromagnetic absorbers applied to a sphere is
calculated, and some concluding remarks are presented in Section 6. In Appendix
A a detailed analytic derivation is presented of the scattering from a layered sphere
with admittance sheets at the interfaces, and in Appendix B the implemented code
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is benchmarked against di�erent commercial software.

2 Spherical vector waves

The theory and notation presented in this section is based on the work in [14]. The
time convention ejωt is used throughout this report.

2.1 Expansion of �elds

In order to construct an orthogonal set of spherical vector waves with the right
properties one needs to introduce a vector valued version of the ordinary scalar
spherical harmonics [14]

Yσml(θ, φ) =

√
εm
2π

√
2l + 1

2

(l −m)!

(l +m)!
Pm
l (cos θ)

{
cosmφ
sinmφ

}
(2.1)

where the Neumann factor εm is de�ned as

εm = 2− δm0, i.e. ε0 = 1, εm = 2, m > 0. (2.2)

The spherical vector harmonics are here denoted Aτσml(r̂), where τ = 1, 2, 3 is the
spherical vector wave index, σ is the even/odd mode index, m = 0, 1, 2, .., l − 1, l is
the azimuthal mode index, and l = 0, 1, 2, ...,∞ is the spherical harmonics index.
In order to simplify the notation, we introduce a multiindex n = (σ,m, l) which
results in the spherical vector harmonics being denotedAτn(r̂). The spherical vector
harmonics are generated from the relations

A1n(r̂) =
1√

l(l + 1)
∇Yn(r̂)× r̂

A2n(r̂) =
1√

l(l + 1)
r∇Yn(r̂)

A3n(r̂) = r̂Yn(r̂)

(2.3)

where A1n, A2n, and A3n are orthogonal, and A1n and A2n are tangential to spher-
ical surfaces. A far �eld vector can be expanded in spherical vector waves using the
Fourier expansion

F (r̂) =
3∑

τ=1

∑
n=σ,m,l

aτnAτn(r̂), (2.4)

where the Fourier coe�cients aτn are determined through the relation

aτn =

∫
Ω

F (r̂) ·Aτn(r̂) dΩ. (2.5)
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We are now ready to introduce the spherical vector waves used to describe the
electric- and magnetic �eld on a spherical surface. The out-going spherical vector
waves are given by

u1n(kr) = h
(2)
l (kr)A1n(r̂)

u2n(kr) =
(krh

(2)
l (kr))′

kr
A2n(r̂) +

√
l(l + 1)

h
(2)
l (kr)

kr
A3n(r̂).

(2.6)

and the regular spherical vector waves are
v1n(kr) = jl(kr)A1n(r̂)

v2n(kr) =
(krjl(kr))

′

kr
A2n(r̂) +

√
l(l + 1)

jl(kr)

kr
A3n(r̂),

(2.7)

where jl(kr) is the spherical Bessel function, h
(2)
l (kr) is the spherical Hankel function,

de�ned as h
(2)
l (kr) = jl(kr)− jyl(kr), and yl(ka) is the spherical Neumann function.

We construct a sphere enclosing the scatterer and expand the total electric �eld
outside the sphere as

E(r, ω) = Ei(r, ω)+Es(r, ω) =
3∑

τ=1

∞∑
l=0

l∑
m=0

∑
σ=e,o

(aτσmlvτσml(kr) + fτσmluτσml(kr))

=
3∑

τ=1

∑
n

(aτnvτ (kr) + fτnuτn(kr)) (2.8)

where aτn are the incident �eld coe�cients and fτn are the scattered �eld coe�cients.

3 Sphere scattering

The theory and notation presented in this section is based on the work in [14]. The
theoretical addition of this section in relation to [14] is the treatment of surface
currents at the interfaces between the layers of the sphere in Section 3.5.

3.1 Solution method

To solve a Mie series scattering problem, we use the boundary conditions of the
electric and magnetic �elds at each side of an interface

n̂× (E2 −E1) = 0, n̂× (H2 −H1) = JS (3.1)

where E1, H1 are the �elds in region 1, E2, H2 are the �elds in region 2, JS is the
surface current at the interface, and n̂ is the normal vector of the surface pointing
from region 1 towards region 2. If the materials in the two regions are linear, a
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linear mapping exists between the incident �eld coe�cients aτn and the scattered
�eld coe�cients fτn

fτn = tτlaτn, τ = 1, 2. (3.2)

The mapping matrix between the incident and scattered �eld coe�cients in (3.2) is
called the transition matrix or the T -matrix, and its coe�cients tτl are determined
from the boundary conditions of the speci�c problem, as is shown in Sections 3.3�3.5.
An incident, monochromatic, plane wave is represented in spherical vector waves as

Ei(r, ω) = E0e−jk̂i·r =
2∑

τ=1

∑
n

aτnvτn(kr)

H i(r, ω) = H0e−jk̂i·r =
j

η0η

2∑
τ=1

∑
n

aτnvτ̄n(kr)

(3.3)

where η0, η are the free space and relative wave impedance. The expansion coe�-
cients are 

a1n = 4π(−j)lE0 ·A1n(k̂i)

a2n = 4π(−j)l−1E0 ·A2n(k̂i)

a3n = 4π(−j)l−1E0 ·A3n(k̂i) = 0,

(3.4)

where since a3n = 0 the τ = 3 terms in (3.3) does not contribute and have been
excluded. The dual index τ̄ is indicating that τ = 1→ τ̄ = 2, and τ = 2→ τ̄ = 1. If
the plane wave is incident along the z-axis, i.e. = k̂i = ẑ, the expansion coe�cients
are 

a1n = (−j)lδm1

√
2π(2l + 1)E0 · (δσox̂− δσeŷ)

a2n = (−j)l−1δm1

√
2π(2l + 1)E0 · (δσex̂ + δσoŷ)

a3n = 0,

(3.5)

where δσo = 1 if σ = o and δσo = 0 if σ 6= o, and in the same manner δm1 = 1 if
m = 1 and δm1 = 0 if m 6= 1. Using this representation of the incident �eld, the
scattered �eld can be determined.

3.2 The scattering parameters

The scattering dyadic is given by

S(r̂, k̂i) = −4π

jk

∑
nn′

a∗n(r̂)Tnn′an′(r̂) (3.6)

where in this context the multiindex n = (τ, σ,m, l) is used (as opposed to n =
(σ,m, l) which is used in the rest of the report), and where Tnn′ is the T -matrix
de�ned as

fn =
∑
nn′

Tnn′an′ , (3.7)

and where the complex vector spherical harmonics an(r̂) are de�ned as

an(r̂) = jτ−l−1An(r̂), (3.8)



6

with the parity condition a∗n(r̂) = an(−r̂). From the T -matrix, and thus alterna-
tively from the scattering matrix, speci�c scattering properties of an object can be
calculated. For example, the di�erential cross section of a scatterer is de�ned as

dσ

dΩ
(r̂, k̂i) =

|F (r̂)|2
k2|E0|2

= 4π|S(r̂, k̂i) · p̂e|2, (3.9)

where p̂e = E0/|E0|, E0 is the incident �eld, and F (r̂) is the scattered far�eld.
From the di�erential cross section, the scattering cross section is de�ned as

σs =
1

4π

∫
dσ

dΩ
(r̂, k̂i) dΩ =

∑
nn′n′′

b∗n′′(k̂i)T
†
n′′nTnn′bn′(k̂i) (3.10)

where bn(k̂i) = −j4πan(k̂i) · p̂e, and from the scattering cross section, σs, the total
cross section of a scatterer is de�ned as

σt = σs + σa, (3.11)

where σa is the absorption cross section of the scatterer. In this work, we are
especially interested in the monostatic scattering properties of the object under
study. The scattering dyadic in the backscattering direction, r̂ = −k̂i, is

S(−k̂i, k̂i) = −4π

jk

∑
nn′

a∗n(k̂i)Tnn′an′(k̂i), (3.12)

and the di�erential cross section is

dσ

dΩ
(−k̂i, k̂i) =

64π3

k2

∣∣∣∣∑
nn′

an(k̂i)Tnn′an′(k̂i) · p̂e

∣∣∣∣2. (3.13)

For a spherical scatterer, the T -matrix is diagonal with respect to all indices n =
(τ, σ,m, l), and (3.10) simpli�es to

σs =
2π

k2

∞∑
l=1

(2l + 1)(|t1l|2 + |t2l|2), (3.14)

the scattered far�eld F (r̂) is in this case given by

F (r̂) =
2∑

τ=1

∑
n

jτ−l−1fτnAτn(r̂), (3.15)

and the monostatic RCS of a spherical scatterer simpli�es from (3.13) to

dσ

dΩ
(−k̂i, k̂i) =

π

k2

∣∣∣∣ ∞∑
l=1

(−1)l(2l + 1)(t1l − t2l)
∣∣∣∣2 (3.16)

which is the main scattering quantity of interest in this work.
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3.3 Scattering from a perfectly conducting sphere

The most simple case of Mie scattering is the scattering from a PEC sphere, see
Figure 1. The total electric �eld outside of the scatterer is expanded in the regular
and out-going spherical vector waves as in (2.8), where the coe�cients of the incident
plane wave aτn are known, see (3.5), and the coe�cients of the scattered �eld fτn
are unknown.

a
k î

 z

"     ,¹0 0"     ,¹2 2 =

r ̂ k î
 = -

Figure 1: Electromagnetic scattering of a plane wave from a PEC sphere with ra-
dius a. In this work the main focus is on �nding the monostatic scattering, which
corresponds to r̂ = −k̂i.

This �eld representation is inserted into the boundary conditions in (3.1) where
inside the conducting sphere the electric �eld is zero, resulting in the relations{

a1njl(ka) + f1nh
(2)
l (ka) = 0

a2n(kajl(ka))′ + f1n(kah
(2)
l (ka))′ = 0,

(3.17)

where a is the radius of the scatterer. The expression (3.17) can be rewritten as

fτn = tτlaτn, τ = 1, 2 (3.18)

which is a linear mapping between aτn and fτn, where

t1l = − jl(ka)

h
(2)
l (ka)

, t2l = − (kajl(ka))′

(kah
(2)
l (ka))′

. (3.19)

From the T -matrix elements in (3.19) the scattered monostatic RCS is given by the
expression in (3.16). The scattered electric �eld outside of the scatterer is given by

Es(r, ω) =
2∑

τ=1

∑
n

fτnuτn(kr). (3.20)

3.4 Scattering from a dielectric sphere

The scattering from a dielectric sphere is calculated using the same approach as for
the PEC sphere, the main di�erence being that in this case the continuity of both
the electric and magnetic �elds at the surface of the scatterer are utilized in the
calculation of the scattered �eld coe�cients, see Figure 2. As in Section 3.3, the
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a

k î
 z

"     ,¹0 0"     ,¹2 2 =

"     ,¹1 1

r ̂ k î
 = -

Figure 2: Electromagnetic scattering of a plane wave from a dielectric sphere with
radius a.

incident �eld is given by

Ei(r, ω) = E0e−jkz =
2∑

τ=1

∑
n

aτnvτn(kr) (3.21)

where the coe�cients aτn for a plane wave, incident in the z-direction, are given in
(3.5) as 

a1n = (−j)l
√

2π(2l + 1)E0 · (δσox̂− δσeŷ)

a2n = −(−j)l+1
√

2π(2l + 1)E0 · (δσex̂ + δσoŷ)

a3n = 0.

The unknown scattered �eld is given by

Es(r, ω) =
2∑

τ=1

∑
n

fτnuτn(kr), r > a, (3.22)

and the total �elds outside the scatterer are
E(r, ω) =

2∑
τ=1

∑
n

(aτnvτn(kr) + fτnuτn(kr))

H(r, ω) =
j

η0η

2∑
τ=1

∑
n

(aτnvτ̄n(kr) + fτnuτ̄n(kr))

(3.23)

while the total �elds inside the scatterer, which we denote E1 and H1, are
E1(r, ω) =

2∑
τ=1

∑
n

ατnvτn(k1r)

H1(r, ω) =
j

η0η1

2∑
τ=1

∑
n

ατnvτ̄n(k1r).

(3.24)

The boundary conditions at the surface of the sphere are{
r̂ ×E1(r, ω)|r=a = r̂ ×E2(r, ω)|r=a
r̂ ×H1(r, ω)|r=a = r̂ ×H2(r, ω)|r=a

(3.25)
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which result in the system of equations

α1njl(k1a) = a1njl(ka) + f1nh
(2)
l (ka)

α2n
(k1ajl(k1a))′

k1a
= a2n

(kajl(ka))′

ka
+ f2n

(kah
(2)
l (ka))′

ka
1

η1

α1n
(k1ajl(k1a))′

k1a
=

1

η

(
a1n

(kajl(ka))′

ka
+ f1n

(kah
(2)
l (ka))′

ka

)
1

η1

α2njl(k1a) =
1

η

(
a2njl(k1a) + f2nh

(2)
l (ka)

)
.

(3.26)

The expression (3.26) can be written as a T -matrix relation

fτl = tτlaτn =

(
t1l 0
0 t2l

)(
a1n

a2n

)
. (3.27)

If the terms in (3.26) are rearranged, and the coe�cients ατn are eliminated, the
�nal expression of the T -matrix elements is

tτl =
jl(ka)(k1ajl(k1a))′ − γτjl(ka)(kajl(ka))′

h
(2)
l (ka)(k1ajl(k1a))′ − γτjl(k1a)(kajl(ka))′

(3.28)

where γτ = δτ1(µ1/µ)+ δτ2(ε1/ε), and where ε1, ε, µ1, µ are the relative permittivity
and permeability of the scatterer and the surrounding medium, respectively. The
result (3.28) implies that the scattered �eld looks as if it comes from an electric
multipole (τ = 1), and a magnetic multipole (τ = 2).

3.5 Scattering from layered spheres with resistive sheets

We are now ready to treat the more general scattering case of multilayered spheres
with resistive sheets at the interfaces, such as the structure in Figure 3. Let r1 ≤ r2 ≤
... ≤ rN be the radii of the N layers of the sphere, and let εi and µi, i = 1, 2, ..., N
be the (relative) permittivity and permeability, respectively, of the layers. The
outmost radius is rN , and outside this sphere we have free space, i.e. εN+1 = ε0 and
µN+1 = µ0. The total �elds in each region are given by

E(i)(r, ω) =
2∑

τ=1

∑
n

A(i)
τn(vτn(kir) + t(i−1)

τn uτn(kir))

H(i)(r, ω) =
j

η0ηi

2∑
τ=1

∑
n

A(i)
τn(vτ̄n(kir) + t(i−1)

τn uτ̄n(kir))

ri−1 < r < ri

(3.29)
where i = 1, 2, ..., N + 1 correspond to each region in space, N is the number of
layers of the scatterer, ki = k0

√
εiµi, ηi =

√
µi/εi, ηN+1 =

√
µ0/ε0, and t

(i)
τl are

the unknowns. We de�ne t
(0)
τl = 0 since E(0)(r, ω) is non-singular at r0 = 0. The

boundary conditions at the interfaces are in this case n̂×E(i)(r, ω)|r=ai = n̂×E(i+1)(r, ω)|r=ai
n̂×H(i)(r, ω)|r=ai − n̂×H(i+1)(r, ω)|r=ai = J

(i)
S (r, ω)|r=ai

(3.30)
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a

kir ̂ ^ 

"     ,¹

z

0 0

k î
 = -

"     ,¹2 2

"     ,¹3 3

"     ,¹4 4 =

3a2

a1

Y =0S

YS

YS

(3)

(2)

(1)

Figure 3: Electromagnetic scattering from a layered sphere with a PEC core and
possibly with admittance sheets at the interfaces. In this example, a PEC sphere
with radius a1 is coated with two dielectric/magnetic layers with thicknesses a2−a1,

a3−a2, and an in�nitely thin admittance sheet Y
(3)

S is located at the outer boundary.

where J
(i)
S = Y

(i)
S n̂×(E(i)×n̂)|r=ai = Y

(i)
S n̂×(E(i+1)×n̂)|r=ai . In the same manner

as in Section 3.4, the boundary conditions (3.30) result in a system of equations for
each interface of the layered sphere. The solution to this system is found by �rst
�nding the T -matrix elements of the innermost interface, and then iterating through
each interface of the layered sphere. This results in a recursion relation of the T -
matrix elements, see Appendix 6 for a detailed derivation, in form of a Möbius
transform

t
(i)
τl = −a

(i)
τ t

(i−1)
τl + b

(i)
τ

c
(i)
τ t

(i−1)
τl + d

(i)
τ

. (3.31)

To simplify the expressions of the coe�cients in (3.31), we introduce the Riccati-
Bessel functions and their derivatives [1, 19]

ψl(z) = zjl(z), ξl(z) = zh
(2)
l (z)

ψ′l(z) = jl(z) + zj′l(z), ξ′l(z) = h
(2)
l (z) + zh

′(2)
l (z).

(3.32)

For τ = 1 the coe�cients are

a
(i)
1 =

ηi
ηi+1

ξl(kiri)ψ
′
l(ki+1ri)− ξ′l(kiri)ψl(ki+1ri)− jηiY

(i)
S ξl(kiri)ψl(ki+1ri)

b
(i)
1 =

ηi
ηi+1

ψl(kiri)ψ
′
l(ki+1ri)− ψ′l(kiri)ψl(ki+1ri)− jηiY

(i)
S ψl(kiri)ψl(ki+1ri)

c
(i)
1 =

ηi
ηi+1

ξl(kiri)ξ
′
l(ki+1ri)− ξ′l(kiri)ξl(ki+1ri)− jηiY

(i)
S ξl(kiri)ξl(ki+1ri)

d
(i)
1 =

ηi
ηi+1

ψl(kiri)ξ
′
l(ki+1ri)− ψ′l(kiri)ξl(ki+1ri)− jηiY

(i)
S ψl(kiri)ξl(ki+1ri),

(3.33)
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and for τ = 2 the coe�cients are (3.33)

a
(i)
2 =

ηi+1

ηi
ξl(kiri)ψ

′
l(ki+1ri)− ξ′l(kiri)ψl(ki+1ri)− jηi+1Y

(i)
S ξ′l(kiri)ψ

′
l(ki+1ri)

b
(i)
2 =

ηi+1

ηi
ψl(kiri)ψ

′
l(ki+1ri)− ψ′l(kiri)ψl(ki+1ri)− jηi+1Y

(i)
S ψ′l(kiri)ψ

′
l(ki+1ri)

c
(i)
2 =

ηi+1

ηi
ξl(kiri)ξ

′
l(ki+1ri)− ξ′l(kiri)ξl(ki+1ri)− jηi+1Y

(i)
S ξ′l(kiri)ξ

′
l(ki+1ri)

d
(i)
2 =

ηi+1

ηi
ψl(kiri)ξ

′
l(ki+1ri)− ψ′l(kiri)ξl(ki+1ri)− jηi+1Y

(i)
S ψ′l(kiri)ξ

′
l(ki+1ri).

(3.34)
It can be seen that the expressions in (3.33)�(3.34) reduce to the same recursive
relations presented in [14, Ch. 8] if no surface currents are present at the interfaces.
If a general homogeneous material is located at the center of the scatterer, the
iteration starts by i = 1. However, If the innermost layer is a PEC then the iteration
starts at i = 2, and it is initialized by

t
(1)
1l =

ψl(k2r1)

ξl(k2r1)
, t

(1)
2l =

ψ′l(k2r1)

ξ′l(k2r1)
. (3.35)

4 Numerical implementation

4.1 Python code

The theory described in Sections 2-3 was implemented in Python as a function
that calculates the scattered �elds of a multilayer sphere with N layers of dielec-
tric/magnetic materials, possibly with resistive sheets at the interfaces. The input
parameters to the code are:

a material = [[ε1, µ1], [ε2, µ2], ...., [εN+1, µN+1]], d = [d1, d2, ...., dN+1]

a adm = [YS1, YS2, ...., YSN+1] f = linspace(f1, f2, Nf)

where material is an array consisting of N + 1 vectors containing the material
parameters of the layered sphere, the material parameters of the medium at the
center (which in this work is replaced by PEC boundary conditions) are [ε1, µ1], and
[εN+1, µN+1] are the material parameters of the surrounding medium. The thickness
of each layer is de�ned by the vector d and the surface admittance at each interface is
given by the vector adm. The code was also speci�cally modi�ed to treat dispersive
materials and reactive surfaces, such as capacitive and/or inductive sheets, using
extended input arguments for each frequency:

a Material = [material(f1), material(f2), ...., material(fNf
)]

a Adm = [adm(f1), adm(f2), ..., adm(fNf
)]

where the parameters adm and material are de�ned as in the previous, non-dispersive
case.

The numerical implementation is organized as follows: The spherical Bessel and
Hankel functions are imported from standard packages in Python. The mathcal



12

package is used for higher accuracy (�oat precision of the special functions). A
function called Mobius() is de�ned that takes the input parameters listed above,
uses the expressions (3.31)-(3.34) to iterate through the T -matrix coe�cients from
the center layer outwards one layer at a time, and returns the T -matrix coe�cients
of the outermost layer of the scatterer. When these T -matrix coe�cients have been
extracted, all scattering information of the layered sphere can be calculated from the
relations presented in Section 3.2, such as the scattering cross section, the extinction
cross section and the monostatic cross section.

The numerical implementation was veri�ed through a number of benchmarking
simulations in Comsol Multiphysics, Computer Simulation Technology Microwave
Studio (CST-MWS), and FEKO. The results, presented in Appendix 6, indicate
good agreement between the code and the full wave simulation software. It was con-
cluded that the Method of Moments (MoM) solver in CST-MWS is not capable of
treating dielectric materials, and the �nite element solvers of Comsol Multiphysics
and CST-MWS are not well suited for scattering simulations of object larger than a
few wavelengths in size due to high memory requirements. Due to the aforementi-
oned reasons, out of the three software FEKO seems to be the best suited for RCS
simulations of three dimensional structures larger than a few wavelengths in size,
with lossy dielectric/magnetic materials and resistive sheets.

Emphasis is put on the truncation of the l-index in the numerical implemen-
tation. An expression for this truncation was presented by Wiscombe in [30] to
achieve convergence on the order of 10−14 for the sum of the squared Mie scattering
coe�cients. It states that

lmax =


x+ 4x1/3 + 1, 0.02 ≤ x ≤ 8

x+ 4.05x1/3 + 2, 8 < x < 4200

x+ 4x1/3 + 2, 4200 < x < 20000

(4.1)

where x = ka is the electric size of the scatterer. This truncation relation has been
used for all scatterers under study in this work.

5 Absorbers on doubly curved surfaces

5.1 RCS simulations and normalizations

The expressions (3.31)-(3.34) are used speci�cally to evaluate the monostatic RCS
from a PEC sphere coated by di�erent types of electromagnetic absorbers, as in
Figure 4. The absorbers under study consist of multiple layers of homogeneous,
isotropic, dielectric and/or magnetic materials with or without losses and dispersion.
Resistive sheets and frequency selective structures at the interfaces are treated,
using equivalent circuit parameters, as a surface admittance, which can also be
frequency dependent, see Figure 4. Three di�erent simulations were carried out for
each absorber scenario:

1. Scattering from a PEC sphere.
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2. Scattering from a PEC sphere coated with an absorber.

3. Scattering from a PEC sphere enclosing the coated structure,

see Figure 5. The two PEC simulations were then used to normalize the absorber
RCS, and then make a comparison between the performance of the curved absorber
and a corresponding planar design.

1
2
3
4
5

Y        = 1/(R+1/(j!C))S
(3)  R C

 ´4

 ´3

"     ,¹1 1

"     ,¹2 2

"     ,¹3 3

"     ,¹4 4

"     ,¹5 5

Y        S
(1)

Y        S
(2)

Y        S
(3)

Y        S
(4)

Y        S
(5)

Figure 4: A planar multilayer absorber above a ground plane, consisting of di�erent
materials in the layers and possibly with admittance sheets Y

(i)
S at the interfaces is

presented in the middle. An example of a surface admittance consisting of a lattice
of resistive patches is presented to the left, and to the right a multilayer sphere
corresponding to the planar structure is presented.

Y  = 1/´ 

ai

ao

S

¸ /40

ao

ai

Figure 5: A PEC sphere with a coating Salisbury screen matched to the free space
impedance (left), and the two normalization cases: A PEC sphere with the center
radius ai (center), an enclosing PEC sphere with the outer radius ao (right).

5.2 Salisbury Screen

The �rst absorber under test is a classical Salisbury screen [22] consisting of a
resistive sheet placed quarter of a wavelength, at the design frequency, from a ground
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plane. For the best possible performance the impedance of the resistive sheet should
be matched to the free space impedance, i.e. YS = 1/η, where η = 377 Ω. The
three scenarios that are evaluated are presented in Figure 5, namely a PEC sphere
coated by a resistive sheet, the same sphere without the absorber, and a PEC sphere
enclosing the inner sphere and the absorber.

The monostatic RCS of a PEC sphere with radius ao is presented to the left in
Figure 6, and the monostatic RCS of a PEC sphere with radius ai with a Salisbury
screen is presented to the right in Figure 6, where all results are normalized with the
cross section area of the scatterer. The radius of the PEC core was varied, both in the
scenario with and without the Salisbury screen, corresponding to the di�erent curves
in Figure 6. It can be seen that the normalized monostatic RCS of a PEC sphere
goes to 0 dB for higher frequencies, which is a familiar result. When comparing
the two graphs in Figure 6 it can be seen that the Salisbury absorber reduces the
RCS of the PEC sphere. However, in order to properly evaluate the performance
of the spherical absorber, the RCS from the PEC sphere with a coating absorber is
henceforth normalized according to the theory presented in Section 5.1. Normalized
scattering data of the spherical Salisbury screen is presented in Figure 7, where the
left plot is normalized with the RCS of the uncoated PEC scatterer, and the right
plot is normalized with the RCS of an enclosing PEC. The colored curves correspond
to di�erent radii of the uncoated PEC scatterer, where in the plots labeled �inner
radius� k0a = 2π(ai/λ0) indicate the size of the uncoated structure with respect
to the center wavelength of the absorber, and in the plots labeled �outer radius�
k0a = 2π(ao/λ0) indicate the size of the enclosing structure. This implies that all
pairs of graphs of RCS data presented, using the two di�erent normalizations, have
been evaluated using the same size of scatterers corresponding to each color of the
curves in the two graphs.
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Figure 6: Monostatic RCS from a PEC sphere with a Salisbury screen (right) and
the monostatic RCS from a PEC sphere (left).

In Figure 7 it can be seen that the absorber performance converges towards
the planar result, indicated by the black curve, for large enough scatterers (k0a ≈
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17). There is no signi�cant di�erence between the results with the two di�erent
normalizations in Figure 7.
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Figure 7: Monostatic RCS from a PEC sphere with a Salisbury screen, to the left
normalized with the RCS of the inner PEC scatterer, and to the right normalized
with the RCS of an enclosing PEC scatterer.

5.3 Jaumann absorber

The next absorber under study is a multilayered version of the salisbury screen,
commonly referred to as a Jaumann absorber, see Figure 8. The speci�c design of
the implemented absorber was presented in [12], where the performance degradation
of Jaumann absorbers when applied to a cylinder is studied. This structure consists
of �ve layers of resistive sheets with successively increasing admittance, seen from the
incident wave, Y

(5)
S = 1/1885, Y

(4)
S = 1/1205, Y

(3)
S = 1/679, Y

(2)
S = 1/302.1, Y

(1)
S =

1/71.40 [Ω−1], with the distance d = λ0/4 between the sheets, and a spacer material
with relative permittivity εr = 1.035. The results in Figures 9-10 indicate that the

¸   /4

² = 1.035

Y  = 
1/75.40

1

0

 
1/302.1

2

0

Y  = 
1/679.0 

3

0
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1/1205

4 Y  =  
1/1885

5

r1 ² = 1.035r2 ² = 1.035r3 ² = 1.035r4 ² = 1.035r5

¸   /4 ¸   /4 0 0¸   /4 ¸   /4

Y  = 

E i

E r

Figure 8: Jaumann absorber consisting of �ve resistive sheets with tuned impedan-
ces.

performance of this type of absorber also converges towards the planar curve, but at a
slower rate than the single layer Salisbury screen. Also, the results for large scatterers
seem to oscillate with the mean value given by the planar curve. This is most
likely due to a surface wave at the center of the structure. A signi�cant di�erence
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can be noticed between the results being normalized with respect to the inner,
uncoated, scatterer, and the data that is normalized with respect to an enclosing
PEC sphere. The curves in Figure 9 indicate that, for thick absorbing structures,
the normalization with respect to the enclosing PEC structure might overestimate
the performance of the absorber.
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Figure 9: Monostatic RCS from a PEC sphere with a Jaumann absorber, to the left
normalized with the RCS of the inner PEC scatterer, and to the right normalized
with the RCS of an enclosing PEC scatterer.
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Figure 10: Monostatic RCS from a PEC sphere with a Jaumann absorber, to the left
normalized with the RCS of the inner PEC scatterer, and to the right normalized
with the RCS of an enclosing PEC scatterer.

5.4 Capacitive Salisbury screen

For practical reasons it is commonly desirable to design absorbers with as small
thickness as possible, while not signi�cantly reducing the bandwidth of the absorber.
In [20] it is shown that the maximum bandwidth B of an absorber backed by a PEC
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ground plane is bounded by the thickness of the structure d, where a thinner absorber
implies lower maximum bandwidth. One way to achieve B/d close to this physical
limit is to add capacitive sheets to the absorber. In [11] a thin, ultra-wideband
absorber based on multiple capacitive resistive sheets was presented which achieves a
signi�cant increase B/d in comparison to a traditional multilayer Jaumann absorber.

To investigate this e�ect, a Salisbury screen is modi�ed to achieve similar perfor-
mance from a thinner structure. In practice, this corresponds to constructing a thin
sheet with a lattice of resistive patches, equivalent to a shunt resistance and capa-
citance in series as in Figure 4. The capacitance and conductance of this structure
are given by

α = tan(k0d), C =
1

ηω0

(
α +

1

α

)
, G =

1

η

(
1 +

1

α2

)
(5.1)

where ω0 is the frequency of maximum absorption. The parameter α can be varied to
control the response from the structure, as can be seen in Figure 11. As α decreases,
the resonance of the absorber is shifted down in frequency, which corresponds to
achieving similar performance as in the case of a regular Salisbury screen, but for a
thinner absorber. As α decreases the bandwidth is slightly decreased. The curves
in Figure 11 converge toward the planar case at approximately the same rate as the
Salisbury screen in Figure 7, and there is no signi�cant di�erence between the two
normalizations. This indicates that both the original and the capacitively loaded
Salisbury screen show a similar response with respect to curvature.

5.5 Circuit analog absorber

A simple case of a circuit analog absorber presented in [25] consists of a shunt series
resistance, capacitance, and inductance, which could be realized as a periodic lattice
of resistive patches. In this particular design, the circuit parameters are R = 308 Ω,
X = 30.8 fF, and L = 3.16nH, and the resistive sheet is placed a distance λ0/4
from the ground plane, see [25] for further details on the speci�c absorber geometry
and how to extract the circuit parameters from unit cell simulations. The results
presented in Figure 12 indicate, compared to Figure 11, that the bandwidth is
signi�cantly improved by adding an inductive element L to the structure. However,
this type of absorber might be quite di�cult to manufacture in such a manner that
the resistivity and reactance of the resistive sheet have the desired values.

5.6 Salisbury screen with a skin

In [6] it was shown that if a dielectric skin of a high dielectric constant is added
outside of a Salisbury screen a double resonance occurs and the bandwidth of the
absorber is improved. A planar absorber was designed in [6] according to the pa-
rameters in Figure 13, where a resistive sheet with R = 225 Ω is placed a distance
d1 = 6.8 mm above a ground plane, and a dielectric skin of thickness 1 mm, and
relative permittivity εr = 4, is located a distance d2 = 2.3 mm from the resistive
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Figure 11: Monostatic RCS from a PEC sphere with a capacitive Salisbury screen,
to the left normalized with the RCS of the inner PEC scatterer, and to the right
normalized with the RCS of an enclosing PEC scatterer.

sheet. The total thickness of the absorber is 10.1 mm, which at the center frequency
7.42 GHz corresponds to approximately λ0/4.
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Figure 12: Monostatic RCS from a PEC sphere with a CAA screen from [25], to the
left normalized with the RCS of the inner PEC scatterer, and to the right normalized
with the RCS of an enclosing PEC scatterer.
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Figure 13: A PEC sphere coated by a resistive sheet and a dielectric skin commonly
referred to as a Chambers-Tennant absorber.

This absorber design, henceforth referred to as a Chambers-Tennant absorber,
was implemented as a coating for a spherical scatterer, and the results in Figure
14 indicate that, in conjecture to the previous absorber designs under study, the
performance of the absorber does not converge towards that of the corresponding
planar design for large scatterers. However, if losses are added to the spacer material
the results in Figure 15 are achieved, where it can be seen that the results now
converge better toward the planar curve. This is an indication of energy being
stored in the spacer region as the structure acts as a spherical cavity, that resonates
for the polarization component normal to the inner sphere surface.

5.7 Conductive volume absorber

In order to extent the study to absorbers based on bulk material losses, the resis-
tive sheet and the spacer material inside the skin in Section 5.6 are replaced by a
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Figure 14: Monostatic RCS from a PEC sphere with a resistive sheet and a dielectric
skin, to the left normalized with the RCS of the inner PEC scatterer, and to the
right normalized with the RCS of an enclosing PEC scatterer.
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Figure 15: Monostatic RCS from a PEC sphere with a resistive sheet and a dielectric
skin, where losses has been added to the spacer material, εr = 1.1− j0.01 (left) and
εr = 1.1− j0.1 (right).

conducting bulk material with a relative permittivity on the form

εr(ω) = ε′r − jε′′r (ω), ε′r = A, ε′′r (ω) = B
ω0

ω
. (5.2)

The material parameters were chosen to be A = 1.1, B = 2.39 after a quick run
in a simple optimization of the material parameters. The re�ection coe�cient was
optimized of a planar absorber with respect to the threshold level -20 dB. This
absorber was implemented in a spherical scenario as in see Figure 16 where the
simulated geometry and the material parameters are presented. This type of volume
(or bulk) absorber is seen in Figure 17 to perform very well when applied to a
curved scatterer. This is an indication of the fact that the planar performance of
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this absorber can be used to anticipate the response from applying the absorber to
a curved structure.
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Figure 16: A PEC sphere coated by a volume absorber with a conducting bulk
material and a skin (left) and the material parameters of the bulk material (right).
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Figure 17: Monostatic RCS from a PEC sphere coated with a bulk absorber of a
conducting material and a dielectric coating. To the left normalized with the RCS of
the inner PEC scatterer, and to the right normalized with the RCS of an enclosing
PEC scatterer.

5.8 Debye volume absorber

Now, we consider the geometry in Figure 18, which is the same setup as in the
previous design, but with a Debye bulk material with a relative permittivity on the
form

εr(ω) = ε′r(ω)− jε′′r (ω) = A+
B

jω/ω0 + C
(5.3)
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where A = 1, B = 2.39, and C = 0.13 after performing the same type of optimization
as in Section 5.7. The results in Figure 19 are very similar to those of the conductive
bulk absorber in Figure 17, even though the material parameters in Figure 16 and
Figure 18 can be seen to di�er. The result curves in Figure 19 show a very good
agreement to the planar design, even for relatively small spherical scatterers, where
k0a ≈ 5.
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Figure 18: A PEC sphere coated by a volume absorber with a Debye bulk material
and a skin (left) and the material parameters of the bulk material (right).
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Figure 19: Monostatic RCS from a PEC sphere coated with a bulk absorber of a
Debye material, and a dielectric coating. To the left normalized with the RCS of
the inner PEC scatterer, and to the right normalized with the RCS of an enclosing
PEC scatterer.
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5.9 Thin magnetic sheet absorber

The �nal absorber under study is a thin magnetic sheet absorber, as in Figure 20.
The absorber has a thickness of d = λ0/20 and relative permittivity and relative
permeability given by

εr(ω) = ε′r(ω)− jε′′r (ω) = 10 +
0.05

jω/ω0 + 1.0

µr(ω) = µ′r(ω)− jµ′′r (ω) = 1.0 +
1.1

jω/ω0 + 0.5
,

after performing the same type of optimization as in Section 5.7. The results presen-
ted in Figure 21 indicate that this absorber is well suited for applications of cloaking
curved surfaces, as the curves converge to the planar results for relatively small radii
of curvature, k0a ≈ 5. The resonance in Figure 21 can be seen to be shifted up in
frequency compared to the Salisbury screen, although B/d quite large for this type
of absorber in relation to the previous designs in this work.
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Figure 20: A PEC sphere coated by a thin magnetic absorber (left) and the material
parameters of the absorber (right).
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Figure 21: Monostatic RCS from a PEC sphere coated with thin magnetic material
absorber. To the left normalized with the RCS of the inner PEC scatterer, and to
the right normalized with the RCS of an enclosing PEC scatterer.

5.10 Evaluation of absorber performance

The results in Section 5 are summarized in Table 1, where the values of ka for the
di�erent types of absorbers correspond to a rough estimate of when the di�erence
in absorber performance of the spherical and planar scenario is < 3 dB, in the case
of normalization with enclosing PEC. A general observation of the results are that
the normalized RCS of a PEC sphere coated with an absorber converges to the
planar scattering parameter of the absorber backed by a ground plane, when the
radius of the PEC sphere is increased to a few wavelengths in size. This is true
for all absorbers in this study except for the Chambers-Tennant absorber in Section
5.6, where it was observed that the PEC sphere and absorber act as a spherical
cavity which reduces the absorber performance. When comparing the results in

Absorber Sphere size (ka)
Salisbury 17
Capacitive Salisbury 17
CAA 25
Jaumann 60
Chambers-Tennant -
Conductive bulk 5
Debye bulk 5
Thin magnetic 6

Table 1: Summary of when the monostatic scattering of a sphere coated by an
absorber has converged to the planar scattering parameter.

Table 1 to the similar analysis presented in [26] it is noted that the convergence
of the absorber performance in a sphere scattering scenario is comparable to that
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of the TM component of an absorber applied to a cylinder of in�nite extent in the
axial direction. At the same time, the TE component in the cylinder scattering
scenario in [26] converges signi�cantly faster when ka is increased. This conclusion
implies that the performance of electromagnetic absorbers is relatively insensitive
to curvature in the TE-direction of the incident signal, while curvature in the TM
direction with respect to the incident signal has a more signi�cant e�ect on the
absorber performance.

When comparing the results in Section 5 using the �inner� or �outer� normali-
zation scheme it can be seen that the outer normalization seems to overestimate
the absorber performance, while the inner normalization underestimates the ab-
sorber performance. This e�ect is especially noticeable for the Jaumann absorber
in Section 5.3. Which normalization technique that is preferable depends on the
application where the absorber is used. For example, in some applications the ou-
ter dimensions of the object, with an absorber applied, are predetermined and in
these cases the outer normalization is most relevant. On the other hand, if the in-
ner dimensions of the scatterer are prede�ned the inner normalization gives a more
realistic evaluation of the absorber performance in the current scenario.

6 Conclusions

A method for calculating the electromagnetic scattering from a multilayer spher-
ical scatterer, possibly resistive sheets at the interfaces, has been presented. The
solution to the speci�c scattering problem is a recursion relation of the transition
matrix elements, on the form of a Möbius transform. From the transition matrix
components the scattered �elds can be calculated in any direction. A numerical
implementation of the solution has been implemented, resulting in a code that can
handle any number of layers, resistive sheets, lossy electric and magnetic materials,
and dispersive materials and sheets.

A number of di�erent electromagnetic absorbers have been applied to spherical
scatterers of di�erent size, and the e�ect of curvature on the absorber performance
was evaluated. By normalizing the scattering from a coated scatterer with, either the
scattering from the uncoated structure, or an enclosing PEC structure, a comparison
can be made between the absorber performance of the curved application and a
corresponding planar design. It is concluded that absorbers based on resistive sheets
or circuit analog layers, are more sensitive to curvature than bulk absorbers, based on
volume losses, such as thin magnetic absorbers or carbon doped dielectric absorbers.

It has also been observed that the convergence of the absorber performance
in a sphere scattering scenario is comparable to that of the TM component of an
absorber applied to a cylinder of in�nite extent in the axial direction [26], while the
TE component converges much faster when ka is increased. This implies that the
performance of electromagnetic absorbers is relatively insensitive to curvature in the
TE direction of the incident signal, while curvature in the TM direction with respect
to the incident signal has a more signi�cant e�ect on the absorber performance.
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Appendix A Derivation of T-matrix components for

plane wave illumination of a layered sphere

As was stated in Section 3.5, the total �elds in each region of a layered sphere
are given by (3.29) and the boundary conditions at each interfaces of the layered
sphere are presented in (3.30). If the �elds in (3.29) are inserted in (3.30), the �rst
expression in (3.30) results in the relations

A
(i)
1n(jl(kiri)+t
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(2)
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and the second relation in (3.30) results in the expressions
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where we have used the relations

r̂ ×A3n(r̂) = 0, A2n(r̂) = r̂ ×A1n(r̂), A1n(r̂) = A2n(r̂)× r̂. (6.5)

The goal from here is to eliminate all the the coe�cients Aτn, and to �nd recursion
expressions for the unknown T -matrix coe�cients t

(i)
τl . To simplify the notation

further, introduce the Riccati-Bessel functions and their derivatives [1, 19]

ψl(z) = zjl(z), ξl(z) = zh
(2)
l (z)

ψ′l(z) = jl(z) + zj′l(z), ξ′l(z) = h
(2)
l (z) + zh

′(2)
l (z),

(6.6)
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and divide (6.4) by (6.2) to get the expression
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Now, divide (6.3) by (6.1), to get

1

ηi
(ψ′l(kiri) + t

(i−1)
1l ξ′l(kiri)) + jηiY

(i)
S (ψl(kiri) + t

(i−1)
1l ξl(kiri))

ψl(kiri) + t
(i−1)
1l ξl(kiri)

=
1

ηi+1

(
ψ′l(ki+1ri) + t

(i)
1l ξ
′
l(ki+1ri)

ψl(ki+1ri) + t
(i)
1l ξl(ki+1ri)

)
, (6.8)

where it can be seen that (6.7) only contain the T -matrix components t
(i−1)
1l , t

(i)
1l , and

(6.8) only contain the T -matrix component t
(i−1)
2l , t

(i)
2l . Furthermore, the expressions

(6.7)-(6.8) describe recursion relations where the unknown T -matrix components are
updated for each layer through linear mappings A(·), B(·){

t
(i)
1l = A(t

(i−1)
1l )

t
(i)
2l = B(t

(i−1)
2l )

i = 1, 2, ...., n+ 1. (6.9)

These mappings can be seen to have the general structure

a′ + b′x1

c′ + d′x1

=
e′ + f ′x2

g′ + h′x2

(6.10)

where a′, b′, c′, d′, e′, f ′, g′ and h′ are known coe�cients, and x1 is a known parame-
ter and x2 is unknown. A rearrangement of (6.10) results in the familiar Möbius
transform

x2 =
(e′d′ − b′g′)x1 + e′c′ − a′g′
(b′h′ − f ′d′)x1 + a′h′ − f ′c′ = −ax1 + b

cx1 + d
, (6.11)

where,
a = b′g′ − e′d′ b = a′g′ − e′c′

c = b′h′ − f ′d′ d = a′h′ − f ′c′.
(6.12)

This implies that by identifying the exact expressions of a′, b′, c′, d′, e′, f ′, g′ and h′

for our two expressions (6.7)-(6.8), we have a �nal expression for the solution to the
problem. In (6.7) the mapping coe�cients are
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e′ = ψl(ki+1ri) f ′ = ξl(ki+1ri)

g′ = ψ′l(ki+1ri) h′ = ξ′l(ki+1ri),

(6.13)
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and in (6.8) the mapping coe�cients are
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(6.14)

Finally, the recursive expression for the T -matrix coe�cients can be formulated as
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where for τ = 1 the coe�cients are

a
(i)
1 =

ηi
ηi+1

ξl(kiri)ψ
′
l(ki+1ri)− ξ′l(kiri)ψl(ki+1ri)− jηiY

(i)
S ξl(kiri)ψl(ki+1ri)

b
(i)
1 =

ηi
ηi+1

ψl(kiri)ψ
′
l(ki+1ri)− ψ′l(kiri)ψl(ki+1ri)− jηiY

(i)
S ψl(kiri)ψl(ki+1ri)

c
(i)
1 =

ηi
ηi+1

ξl(kiri)ξ
′
l(ki+1ri)− ξ′l(kiri)ξl(ki+1ri)− jηiY

(i)
S ξl(kiri)ξl(ki+1ri)

d
(i)
1 =

ηi
ηi+1

ψl(kiri)ξ
′
l(ki+1ri)− ψ′l(kiri)ξl(ki+1ri)− jηiY

(i)
S ψl(kiri)ξl(ki+1ri),

(6.16)
and for τ = 2 the coe�cients are
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For the case of a general material at the center of the scatterer, the iteration starts
by i = 1. However, If the innermost layer is a PEC then the iteration starts at i = 2,
and it is initialized by

t
(i)
1l =

ψl(k2r1)

ξl(k2r1)
, t

(i)
2l =

ψ′l(k2r1)

ξ′l(k2r1)
. (6.18)

Appendix B Veri�cation of numerical implementa-

tion

In this section the monostatic RCS of di�ererent scatterers is calculated using the
implemented code and a number of commercial software.
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Figure 22: Veri�cation simulations of the monostatic RCS of a PEC sphere (left)
and a dielectric sphere of relative permittivity εr = 4 (right), calculated using the
numerical code implemented in Python in this work, the MoM solver in FEKO, and
the FEM solver in CST-MWS and Comsol Multiphysics.

0.2 0.4 0.6 0.8 1.0
a/λ

0

5

10

15

20

25

30

R
C

S/
(π

a2
)

Python
FEKO
Comsol
CST-MWS
εr = 4

0.2 0.4 0.6 0.8 1.0
a/λ

0.0

0.5

1.0

1.5

2.0

R
C

S/
(π

a2
)

Python,no screen
Python,with screen
FEKO,with screen
CST-MWS,with screen

YS = 1/η0

Figure 23: Veri�cation simulations of the monostatic RCS of a PEC sphere coated
with a dielectric shell (left) and a PEC sphere with a resistive sheet (right), calcula-
ted using the numerical code implemented in Python in this work, the MoM solver
in FEKO, and the FEM solver in CST-MWS and Comsol Multiphysics. The outer
radius of the spheres is a. In the left scenario the PEC sphere radius is 0.7a, the
dielectric shell has a relative permittivity εr = 4 and thickness d = 0.3a. In the right
scenario the PEC sphere has the radius 0.7a and the resistive coating is located a
distance d = 0.3a from the sphere.
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Figure 24: Veri�cation simulations of the monostatic RCS for a PEC sphere with
a dielectric coating and a resistive sheet (left), and a PEC sphere with a magnetic
lossy coating and a resistive sheet (right), calculated using the numerical code im-
plemented in Python in this work and the MoM solver in FEKO. The outer radius of
the spheres is a. In the left scenario the PEC sphere has radius 0.7a, the dielectric
shell has a relative permittivity εr = 4 and thickness d = 0.2a and the resistive
coating is located a distance d = 0.1a from the dielectric layer. In the right scenario
the PEC sphere has radius 0.7a, the magnetic shell has the relative permeability
µr = 4 − 0.1j, relative permittivity εr = 4 − 0.1j and thickness d = 0.2a and the
resistive coating is located a distance d = 0.1a from the magnetic layer.
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