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Abstract

We show how to compute the monostatic far field amplitude for an axially
symmetric structure illuminated by a plane wave. The resulting expression
consists of a line integral of the tangential electric and magnetic fields along
the boundary of the scatterer. Simulations are carried out using both a com-
mercial software and an in-house code based on the physical optics approxi-
mation. The monostatic scattering from objects, coated with electromagnetic
absorbers, is simulated and in the physical optics approximation the absorbers
are treated as a local reflection coefficient. This reflection coefficient is de-
pendent on polarization and angle of incidence, and can be computed by a
parameter sweep in a full wave simulator such as CST for any type of planar
electromagnetic absorber.

1 Introduction
Physical optics (PO) is a high frequency approximation method that is used in many
applications such as optics, electrical engineering and applied physics [14, 20, 22]. It
is an intermediate method between geometrical optics, which treats electromagnetic
waves as rays, and full wave electromagnetism [6, 12]. PO is commonly utilized
when simulating very large objects without small local details [14, 20].

The approximation consists of estimating the fields on a surface using plane
wave representation and scattering, and then integrating the field over the surface to
calculate the transmitted or scattered field. This resembles the Born approximation
from the fact that details of the problem are treated as perturbations [5]. A strong
advantage of this method is the fact that the simulation complexity and computation
time does not increase significantly with frequency as in fullwave simulation methods
[2, 10, 23]. One drawback with PO is that the accuracy of the method is decreased
for scattering in directions other than the specular direction [26]. Modified versions
of PO have been presented in the last three decades where this problem has been
successfully addressed by utilizing physical theory of diffraction (PTD) [18, 24, 25].
Furthermore, by utilizing a multilevel computational sequence based on hierarchical
decomposition of the radiating aperture, the accuracy and computation speed of PO
has been significantly improved for bistatic and non-specular reflections [3, 4, 11,
16, 17, 21, 26].

Throughout the years, PO has been heavily relied on for calculating the scattered
fields from PEC objects. But in [1, 27], the method was used to model conductive
objects coated by for example radar absorbing materials (RAM). This type of sim-
ulation problems imply very slow and computationally heavy simulations in a full
wave solver. In PO however, adding a RAM to the scatterer results in practi-
cally no increase in computation time in comparison to simulating a PEC object.
For canonical structures, such as a layered sphere, the scattering problem can be
solved analytically for scatterers up to hundreds of wavelengths in size. In [8, 9], a
PEC sphere coated by different types of electromagnetic absorbers were simulated
in order to evaluate the effect of curvature on the absorber performance. The PO
approximation can be used to extend this study to scatterers of general shape.
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In this work, integral expressions are derived for calculating the monostatic scat-
tering from axially symmetric and general objects in free space. The PO approxima-
tion is utilized to achieve fast calculations of the monostatic scattering from perfect
electric conducting (PEC) objects coated by an electromagnetic absorber. The ab-
sorber is treated as an angle of incidence dependent reflection dyadic at the surface
of the scatterer. The time convention ejωt is used throughout this work, and the
derived expressions presented herein are used in [7] for RCS reduction of a number
of different scatterers.

This report is organized as follows: in Section 2 the PO approximation is de-
scribed in detail, both for general and axially symmetric scatterers. An integral
expression for calculating the monostatic scattering from an axially-symmetric ob-
ject, illuminated parallel to its axis of rotation, is presented in Section 3. This
expression can be used in any solver as long as the electric and magnetic fields are
known at a surface enclosing the scatterer. In Section 4 simulation results are pre-
sented of the monostatic scattering from an axially symmetric scatterer, illuminated
both along the axis of rotation and off-axis. Finally, some concluding remarks are
presented in Section 5.

2 Physical optics approximation

2.1 General formulation

In the physical optics (PO) approximation, the scattering surface is assumed to be
locally flat and described by a reflection matrix so that the tangential electric and
magnetic fields are given by

Et = (I+R) ·E(i)
t (2.1)

Ht = Z−1w · (I−R) ·E(i)
t (2.2)

Using the unit vectors p̂ and ŝ spanning the surface, we can write I = p̂p̂ + ŝŝ to
denote the identity matrix in the tangential plane of the surface, whereas R denotes
the reflection matrix, and Z−1w is the wave admittance matrix of the surrounding
medium. This is defined as follows. A plane wave propagating in free space in the k̂
direction is given by the right-hand rule asE = E0e

−jkk̂·r andH = η−10 k̂×E0e
−jkk̂·r,

where η0 is the wave impedance in vacuum. Now fix a different direction û, and
consider the components of E andH orthogonal to û (the transverse parts, Et and
Ht). The wave admittance is then defined by the relationHt = sign(û · k̂)Z−1w ·Et.
In this case, it can be represented as (with û = −n̂ and assuming (p̂, ŝ, n̂) is a
right-handed system and n̂ is the outward pointing normal)

Z−1w = −n̂× η−10

(
1

cos θ
p̂p̂+ cos θŝŝ

)
= η−10

(
−1
cos θ

ŝp̂+ cos θp̂ŝ

)
(2.3)

Here, η0 is the wave impedance in vacuum and θ is the angle of incidence. For an
isotropic case, the reflection matrix can be represented as

R = RTM(θ)p̂p̂+RTE(θ)ŝŝ (2.4)
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n̂
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E(i) E(r)
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Figure 1: Local geometry of the plane of incidence, defining the unit vectors p̂
(corresponding to TM polarization) and ŝ (corresponding to TE polarization).

and we have the result

Et = (1 +RTM(θ))E
(i)
TMp̂+ (1 +RTE(θ))E

(i)
TEŝ (2.5)

Ht = −
η−10

cos θ
(1−RTM(θ))E

(i)
TMŝ+ η−10 cos θ(1−RTE(θ))E

(i)
TEp̂ (2.6)

Note the switched role between TM/TE and p̂/ŝ for the magnetic fields. Also note
that the idea of an incident and reflected field is only valid when cos θ = û · k̂ =
−n̂ · k̂ > 0. If this is not satisfied, the incident wave is coming from below, that is,
we are in the shadow zone of the structure. This means we should set Et and Ht

to zero whenever cos θ ≤ 0.
Since the incident field components are E(i)

TM = p̂ · E(i) and E(i)
TE = ŝ · E(i), we

can write

E × n̂ = −n̂×Et = −(1 +RTM(θ))E
(i)
TMŝ+ (1 +RTE(θ))E

(i)
TEp̂

= [−(1 +RTM(θ))ŝp̂+ (1 +RTE(θ))p̂ŝ] ·E(i) (2.7)

and

n̂×H = n̂×Ht =
η−10

cos θ
(1−RTM(θ))E

(i)
TMp̂+ η−10 cos θ(1−RTE(θ))E

(i)
TEŝ

=

[
η−10

cos θ
(1−RTM(θ))p̂p̂+ η−10 cos θ(1−RTE(θ))ŝŝ

]
·E(i) (2.8)

With E(i) = E0e
−jkk̂·r and the observation direction r̂ = −k̂, the far field amplitude

is defined in [15, p.198] as

F (−k̂) = − jk

4π
k̂ ×

∫
S

[
E(r)× n̂− η0k̂ × (n̂×H(r))

]
e−jkk̂·r dS

= − jk

4π
k̂ ×

∫
S

{
[−(1 +RTM(θ))ŝp̂+ (1 +RTE(θ))p̂ŝ]

− k̂ ×
[

1

cos θ
(1−RTM(θ))p̂p̂+ cos θ(1−RTE(θ))ŝŝ

]}
·E0e

−2jkk̂·r dS (2.9)
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Thus, what is needed to compute the integral is mostly a geometric analysis of the
surface so that the basis vectors p̂ and ŝ can be computed.

Note that the idea of an incident and reflected field is only valid when cos θ =
−n̂ · k̂ > 0. If this is not satisfied, the incident wave is coming from below, that is,
we are in the shadow zone of the structure. This means the integrand is set to zero
on the parts of S where cos θ ≤ 0.

2.2 parametrization of general scatterers

Assume the surface S can be parametrized by two real scalars u and v:

S = {r(u, v) : a < u < b, c < v < d} (2.10)

where r(u, v) = x(u, v)x̂ + y(u, v)ŷ + z(u, v)ẑ. A local tangential basis (not neces-
sarily orthogonal), and the unit vector, can be found from

û =
ru
|ru|

=
xux̂+ yuŷ + zuẑ√

x2u + y2u + z2u
(2.11)

v̂ =
rv
|rv|

=
xvx̂+ yvŷ + zvẑ√

x2v + y2v + z2v
(2.12)

n̂ =
û× v̂
|û× v̂|

(2.13)

where the index denotes partial differentiation, and we assume the parametrization
has been chosen such that n̂ is pointing out of the structure.

The plane of incidence is spanned by n̂ and k̂. The TE and TM directions are
found from

ŝ =
n̂× k̂
|n̂× k̂|

p̂ = ŝ× n̂ (2.14)

If k̂ × n̂ = 0 then p̂ and ŝ are arbitrary. The angle of incidence is found from

cos θ = −n̂ · k̂ (2.15)

and the surface element is dS = |ru × rv| du dv.

2.3 Parametrization of axially symmetric scatterers

Assume the curve γ defines an axially symmetric scatterer, as in Figure 2, that can
be parametrized by a real scalar u:

γ = {r(u) : a < u < b} (2.16)

where r(u) = ρ(u)ρ̂+ z(u)ẑ. The start point is given by r(a) and the end point by
r(b). A local tangential basis is in this case given by (where ϕ̂ is the direction of
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Figure 2: A typical geometry, with a hemispherically capped right circular cylinder
of height L and radius a. The total height is L+ a.

increasing azimuth angle ϕ)

û =
ru
|ru|

= ρ′(u)ρ̂+ z′(u)ẑ (2.17)

v̂ =
rv
|rv|

= ϕ̂ (2.18)

n̂ =
û× v̂
|û× v̂|

=
z′(u)ρ̂− ρ′(u)ẑ√
(z′(u))2 + (ρ′(u))2

(2.19)

where the index denotes partial differentiation, and we assume the parametrization
has been chosen such that n̂ pointing out of the structure (in the typical case, we
have z′(u) ≥ 0). The length element is d` = (d`/ du) du, where

d`

du
=
√

(z′(u))2 + (ρ′(u))2 (2.20)

and the angle of incidence is given by cos θ = −k̂ · n̂(u). The TE and TM directions
are, also in this case, found from

ŝ =
n̂× k̂
|n̂× k̂|

p̂ = ŝ× n̂ (2.21)

3 Monostatic RCS from axially symmetric scatter-
ers, on-axis illumination

In this section an expression for calculating the monostatic far field amplitude from
axially symmetric scatterers, illuminated parallel to the axis of rotation, is presented.
From this expression the monostatic RCS can be determined taking the symmetry
of the situation into account, either in a commercial full wave solver or in a PO
implementation.
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3.1 The far field integral

The far field amplitude from tangential electric and magnetic fields on a general
surface S is defined in [15, p.198] as

F (r̂) =
jk

4π
r̂ ×

∫
S

[E(r′)× n̂+ η0r̂ × (n̂×H(r′))] ejkr̂·r
′
dS ′ (3.1)

For any scatterer the fields can be represented in cylindrical coordinates (ρ, ϕ, z) as

E(r) =
∞∑

m=−∞

[
E(m)
ρ (ρ, z)ρ̂+ E(m)

ϕ (ρ, z)ϕ̂+ E(m)
z (ρ, z)ẑ

]
e−jmϕ (3.2)

H(r) =
∞∑

m=−∞

[
H(m)
ρ (ρ, z)ρ̂+H(m)

ϕ (ρ, z)ϕ̂+H(m)
z (ρ, z)ẑ

]
e−jmϕ (3.3)

For an axially symmetric scatterer, numerical methods typically fix the azimuthal
mode index m and solve for the electric field components (E

(m)
ρ (ρ, z), ...) and the

corresponding magnetic field components. The curl operation can be written in
cylindrical coordinates as

∇×E = ρ̂

(
1

ρ

∂Ez
∂ϕ
− ∂Eϕ

∂z

)
+ ϕ̂

(
∂Eρ
∂z
− ∂Ez

∂ρ

)
+ ẑ

(
1

ρ

∂

∂ρ
(ρEϕ)−

1

ρ

∂Eρ
∂ϕ

)
(3.4)

Maxwell’s equations in free space, ∇×E = −jωµ0H and ∇×H = jωε0E, can then
be written

− jm

ρ
E(m)
z − ∂E

(m)
ϕ

∂z
= −jωµ0H

(m)
ρ − jm

ρ
H(m)
z − ∂H

(m)
ϕ

∂z
= jωε0E

(m)
ρ (3.5)

∂E
(m)
ρ

∂z
− ∂E

(m)
z

∂ρ
= −jωµ0H

(m)
ϕ

∂H
(m)
ρ

∂z
− ∂H

(m)
z

∂ρ
= jωε0E

(m)
ϕ (3.6)

1

ρ

∂

∂ρ
(ρE(m)

ϕ ) +
jm

ρ
E(m)
ρ = −jωµ0H

(m)
z

1

ρ

∂

∂ρ
(ρH(m)

ϕ ) +
jm

ρ
H(m)
ρ = jωε0E

(m)
z (3.7)

It is seen that only for m = 0 do these equations split into an in-plane electric field
mode (E(0)

ρ , E
(0)
z , H

(0)
ϕ ), and an out-of-plane electric field mode (E(0)

ϕ , H
(0)
ρ , H

(0)
z ). For

m 6= 0, we need to solve for all field components.
The unit normal vector is n̂ = nρρ̂ + nzẑ, meaning the electric and magnetic

tangential currents are (using ρ̂× ϕ̂ = ẑ)

E(m) × n̂ = (nρE
(m)
z − nzE(m)

ρ )ϕ̂− nρE(m)
ϕ ẑ + nzE

(m)
ϕ ρ̂ (3.8)

n̂×H(m) = (−nρH(m)
z + nzH

(m)
ρ )ϕ̂+ nρH

(m)
ϕ ẑ − nzH(m)

ϕ ρ̂ (3.9)

Choosing the observation direction r̂ = −ẑ, all z-components will disappear due to
the cross products with ẑ. The typical integral for computing the far field is then∫

γ

∫ 2π

ϕ=0

[
(nρE

(m)
z (ρ, z)− nzE(m)

ρ (ρ, z))ϕ̂+ nzE
(m)
ϕ (ρ, z)ρ̂

]
e−jmϕe−jkzρ dϕ d` (3.10)
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where γ is the curve in the ρ-z plane describing the object, as in Figure 2, and ρ
and z are computed on this curve, with d` as a line element. The unit vectors are

ρ̂ = x̂ cosϕ+ ŷ sinϕ (3.11)
ϕ̂ = −x̂ sinϕ+ ŷ cosϕ (3.12)

We have the orthogonalities∫ 2π

0

cosϕe−jmϕ dϕ = πδm,1 + πδm,−1 (3.13)∫ 2π

0

sinϕe−jmϕ dϕ = −jπδm,1 + jπδm,−1 (3.14)

which means only m = ±1 contributes, and we have∫ 2π

ϕ=0

[
(nρE

(m)
z (ρ, z)− nzE(m)

ρ (ρ, z))ϕ̂+ nzE
(m)
ϕ (ρ, z)ρ̂

]
e−jmϕ dϕ

= (nρE
(m)
z (ρ, z)− nzE(m)

ρ (ρ, z))π[jx̂(δm,1 − δm,−1) + ŷ(δm,1 + δm,−1]

+ nzE
(m)
ϕ (ρ, z)π[x̂(δm,1 + δm,−1) + jŷ(−δm,1 + δm,−1)] (3.15)

The magnetic field has an extra vector multiplication with −ẑ:

− ẑ ×
∫ 2π

0

n̂×H(m)e−jmϕ dϕ = ẑ ×
∫ 2π

0

H(m) × n̂e−jmϕ dϕ

= (nρH
(m)
z (ρ, z)− nzH(m)

ρ (ρ, z))πẑ × [jx̂(δm,1 − δm,−1) + ŷ(δm,1 + δm,−1]

+ nzH
(m)
ϕ (ρ, z)πẑ × [x̂(δm,1 + δm,−1) + jŷ(−δm,1 + δm,−1)]

= (nρH
(m)
z (ρ, z)− nzH(m)

ρ (ρ, z))π[jŷ(δm,1 − δm,−1)− x̂(δm,1 + δm,−1]

+ nzH
(m)
ϕ (ρ, z)π[ŷ(δm,1 + δm,−1) + jx̂(δm,1 − δm,−1)] (3.16)

Let F±(−ẑ) denote the far field amplitude for m = ±1. We then have

F±(−ẑ) = − jk

4π
ẑ ×

∫
S

[
E±(r)× n̂− η0ẑ × (n̂×H±(r))

]
e∓jϕe−jkz dS

= − jk

4π
ẑ ×

∫
γ

[
(nρE

±
z (ρ, z)− nzE±ρ (ρ, z))π[±jx̂+ ŷ] + nzE

±
ϕ (ρ, z)π[x̂∓ jŷ]

+ η0(nρH
±
z (ρ, z)− nzH±ρ (ρ, z))π[±jŷ − x̂] + η0nzH

±
ϕ (ρ, z)π[ŷ ± jx̂]

]
e−jkzρ d`

= − jk

4

∫
γ

[
(nρE

±
z (ρ, z)− nzE±ρ (ρ, z))[±jŷ − x̂] + nzE

±
ϕ (ρ, z)[ŷ ± jx̂]

+ η0(nρH
±
z (ρ, z)− nzH±ρ (ρ, z))[∓jx̂− ŷ] + η0nzH

±
ϕ (ρ, z)[−x̂± jŷ]

]
e−jkzρ d`

(3.17)
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Let the ± modes be excited by

E±0 = E0(ρ̂∓ jϕ̂)e∓jϕ = E0(x̂ cosϕ+ ŷ sinϕ∓ j(−x̂ sinϕ+ ŷ cosϕ))e∓jϕ

= E0(x̂(cosϕ± j sinϕ)∓ jŷ(cosϕ± j sinϕ)e∓jϕ = E0(x̂e
±jϕ ∓ jŷe±jϕ)e∓jϕ

= E0(x̂∓ jŷ) (3.18)

which is a right/left-hand circularly polarized plane wave. As can be seen from
equations (3.5), (3.6), and (3.7), the resulting ± modes then have the following
parity:

(E+
ρ , E

+
z , H

+
ϕ ) = (E−ρ , E

−
z , H

−
ϕ ) (3.19)

(E+
ϕ , H

+
ρ , H

+
z ) = −(E−ϕ , H−ρ , H−z ) (3.20)

and we find

F±(−ẑ) = − jk

4

∫
γ

[
(nρE

+
z (ρ, z)− nzE+

ρ (ρ, z))[±jŷ − x̂]± nzE+
ϕ (ρ, z)[ŷ ± jx̂]

± η0(nρH+
z (ρ, z)− nzH+

ρ (ρ, z))[∓jx̂− ŷ] + η0nzH
+
ϕ (ρ, z)[−x̂± jŷ]

]
e−jkzρ d`

(3.21)

The far field amplitude corresponding to an incident linearly polarized plane wave,
(E+

0 +E−0 )/2 = E0x̂, is then

F+(−ẑ) + F−(−ẑ)
2

= − jk

4

∫
γ

[
(nρE

+
z (ρ, z)− nzE+

ρ (ρ, z))[−x̂] + nzE
+
ϕ (ρ, z)[jx̂]

+ η0(nρH
+
z (ρ, z)− nzH+

ρ (ρ, z))[−jx̂] + η0nzH
+
ϕ (ρ, z)[−x̂]

]
e−jkzρ d`

= x̂
jk

4

∫
γ

[
nρE

+
z (ρ, z)− nzE+

ρ (ρ, z) + η0nzH
+
ϕ (ρ, z)

− jnzE
+
ϕ (ρ, z) + jη0(nρH

+
z (ρ, z)− nzH+

ρ (ρ, z))
]
e−jkzρ d` (3.22)

This demonstrates that we need to solve for only one mode, m = 1, and then
compute the line integral above in order to find the far field amplitude for a linearly
polarized incident plane wave.

In conclusion, the far field amplitude in the backscattering direction for an axially
symmetric structure illuminated by a plane wave E0e

−jkzx̂ is given by (dropping the
“+” mode indicator for brevity)

F (−ẑ) = x̂ jk
4

∫
γ

[
nρEz(ρ, z)− nzEρ(ρ, z) + η0nzHϕ(ρ, z)

− jnzEϕ(ρ, z) + jη0(nρHz(ρ, z)− nzHρ(ρ, z))
]
e−jkzρ d` (3.23)

where the field components (Eρ, Eϕ, Ez, Hρ, Hϕ, Hz) are computed from the az-
imuthal mode m = 1 (all fields are multiplied by e−jϕ), using the excitation E0 =
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E0e
−jkz(ρ̂− jϕ̂). The monostatic radar cross section is finally given by

σ = 4π
|F (−ẑ)|2

|E0|2
(3.24)

In the following, we show how the electric and magnetic field components can be
determined in the PO approximation.

3.2 Physical optics application

We now translate the general PO equations to the specific coordinate system for the
axially symmetric case. The vectors p̂ and ŝ can then be identified as

p̂ = ϕ̂× n̂ = nzρ̂− nρẑ (3.25)
ŝ = ϕ̂ (3.26)

Projecting the incident field E(i) = E0e
−jkz(ρ̂− jϕ̂) on the TM and TE polarizations

then implies

E
(i)
TM = p̂ ·E(i) = nzE0e

−jkz (3.27)

E
(i)
TE = ŝ ·E(i) = −jE0e

−jkz (3.28)

The expression for the far field amplitude can be rewritten in terms of TM and TE
polarizations as well:

F (−ẑ) = x̂ jk
4

∫
γ

[
nρEz − nzEρ + η0nzHϕ − jnzEϕ + jη0(nρHz − nzHρ)

]
e−jkzρ d`

= x̂
jk

4

∫
γ

[
− p̂ ·E + η0nzŝ ·H − jnzŝ ·E − jη0p̂ ·H

]
e−jkzρ d` (3.29)

The explicit expressions are

p̂ ·E = (1 +RTM)nzE0e
−jkz (3.30)

ŝ ·H = − η−10

cos θ
(1−RTM)nzE0e

−jkz (3.31)

ŝ ·E = (1 +RTE)(−jE0e
−jkz) (3.32)

p̂ ·H = η−10 cos θ(1−RTE)(−jE0e
−jkz) (3.33)

Inserting into the far field expression implies

F (−ẑ) = −x̂ jk
4

∫
γ

[
(1 +RTM)nz +

1−RTM

cos θ
n2
z + (1 +RTE)nz

+ cos θ(1−RTE)

]
E0e

−2jkzρ d` (3.34)

which is the final result. All parameters inside the integral can be parametrized along
the curve γ. It is immediately seen that sections of a straight circular cylinder, where
nz = 0 and cos θ = 0, give zero contribution regardless of the reflection coefficients.
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4 Simulation results

4.1 Monostatic RCS on axis

The PO expression in (3.34) was implemented in a Python script, using the SciPy
package for scientific computing [13], to determine the monostatic RCS from a
capped cylinder scatterer as in Figure 2. The PO implementation was benchmarked
by simulating the same geometry in Comsol Multiphysics axially-symmetric finite
element method (FEM) solver. The FEM solver in Comsol was benchmarked against
the method of moments (MoM) solver in FEKO, and the results are presented in
Appendix A. The radius of the scatterer was defined as a, and the length of the
scatterer Ltot = L + a, where L = 3a and a = 8.4λ0/(2π) or a = 17.4λ0/(2π),
respectively in the two different geometries under study. The PO parametrization
of the geometry was carried out explicitly by breaking down the geometry to three
regions:

Semisphere Straight cylinder Flat top

u 0 < u < 1/3 1/3 < u < 2/3 2/3 < u < 1

ρ a sin(u3π/2) a a− (3u− 2)a

z −L/2− a cos(u3π/2) −L/2 + (3u− 1)L L/2

n̂ sin(u3π/2)ρ̂− cos(u3π/2)ẑ ρ̂ ẑ

d`/ du a3π/2 3L 3a

cos θ cos(u3π/2) 0 −1

The angle of incidence is in this case given by

cos θ = −ẑ · n̂(u) = ρ′(u)√
(z′(u))2 + (ρ′(u))2

(4.1)

Here, it is clearly seen that the straight part of the cylinder and the flat top do not
satisfy cos θ > 0, and hence are in the shadow region in the PO approximation. The
simulation in Comsol was carried out using 10 steps per wavelength mesh setting for
the highest frequency of the simulation, and the monostatic RCS was evaluated at
501 frequency points. In the PO implementation, the monostatic RCS was evaluated
at 1001 points along the curve γ defining the scatterer for 1001 frequency points.

A comparison of the results is presented in Figure 3, where it can be seen that
the PO curves appear to roughly correspond to the average of the oscillating full
wave simulation curves. The PO curves agree well with the full wave results for
a PEC scatterer, but when the structure is coated by a Salisbury absorber as in
Figure 5 the curves deviate for the frequencies of operation of the absorber. This
effect is explained in Figure 4, where the simulation data from Comsol in the right
plot in Figure 3 has been gated in time domain using the window function in the left
plot in Figure 4. The result of this operation is that the scattering from the back
edge of the object is removed. It can be seen in the right plot in Figure 4 that now
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Figure 3: Comparison between simulation results of a capped cylinder in Comsol
and in the PO implementation. The dashed curves correspond to the monostatic
RCS from the PO implementation and the solid curves correspond to simulation
results from Comsol. In the left plot the radius of the hemispherical cap of the
scatterer is a = 8.4λ0/(2π) and in the right plot a = 17λ0/(2π).
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Figure 4: Comparison between simulation results of a capped cylinder in Comsol
and in the PO implementation. The dashed curves correspond to the monostatic
RCS from the PO implementation and the solid curves correspond to simulation
results from Comsol. In the right plot the Comsol RCS data have been gated in
time domain using the window function in the left figure, which implies that the
scattering from the back of the object has been filtered out. The radius of the
hemispherical cap of the scatterer is a = 17λ0/(2π).

the agreement is much better between the PO data and the full wave simulation
data from Comsol.

Next, a hemispherically capped cylinder as in Figure 2 with L = 30λ0 and
a = 10λ0 or a = λ0 was simulated in the PO solver for three different scenarios: a
PEC structure, and the structure covered with either a Dallenbach absorber or a
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Salisbury absorbers, where the absorbers were designed to have their primary opera-
tion at f0 = c0/λ0 (meaning they have approximate thickness λ0/4). In Figure 5 the
absorbers and their material parameters are presented and the reflection coefficients
for the absorbers are shown in Figure 6. The resulting normalized RCS are shown
in Figure 7.

"r(f) ¹r =1d = λ /4

E (r) = ¡E (i)E(i)

"r=1 ¹r =1

YS

Y  = 376.7 Ω S "r(f) = 1 - j1.76/(kd) 

E (r) = ¡E (i)E(i)

0 d = λ /40

Figure 5: Electromagnetic absorbers simulated in this work. To the left is a Salisbury
screen[19] and to the right is a DÃďllenbach absorber, designed to have a deep null
at f0 = c/λ0. Both absorbers have the thickness λ0/4.
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Figure 6: Typical reflection coefficients from the different absorbers.

4.2 Monostatic RCS off axis

In order to characterize the monostatic RCS when illuminating a scatterer in a
direction offset to the axis of rotation of the object, the general PO expression of
the monostatic far field in (2.9) was implemented in Python. The hemispherically
capped cylinder in Figure 2 was again simulated, this time for normal incidence(along
the cylinder axis) and at a 10◦ offset. The dimensions were L = 30λ0 and a = λ0,
where λ0 is the design frequency for an absorbing layer. Some results are given in
Figure 8, the monostatic RCS is evaluated at 200 frequency points, using 400, 800
or 1600 evaluation points of the integrating variables u and v, respectively. It is seen
that the discretization is a critical parameter to obtain accurate results. Using a
high resolution (1600 evaluation points over the surface that is integrated), the RCS
for the offset angle of incidence is comparable to that of normal incidence. This
indicates that the errors caused by a coarse spatial sampling have been reduced.
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Figure 7: Left: results for a hemispherically capped cylinder with L = 30λ0 and
a = 10λ0. Right: results for a hemispherically capped cylinder with L = 30λ0 and
a = λ0.
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Figure 8: Radar cross section for a hemispherically capped cylinder. (a) Incidence
along the cylinder axis. (b) Incidence offset 10◦ relative the cylinder axis, polariza-
tion in the plane spanned by cylinder axis and direction of incidence. (c) Same as
(b), with double resolution. (d) Double the resolution of (c).
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5 Conclusions
We have demonstrated a specialized method to compute the far field amplitude, and
subsequently the monostatic radar cross section, for an axially symmetric object
subject to an incident wave along the cylinder axis. The resulting expression can be
used in a full wave simulator like Comsol, or for very fast computations in a physical
optics approximation. An initial implementation was demonstrated for two simple
absorbers on a hemispherically capped cylinder structure. A general PO expression
was also formulated for calculating the scattering from an arbitrary 3D surface, and
it was applied to a rotational symmetric structure.

A Full Wave Benchmark Simulations and Mesh
Convergence

A hemispherically capped cylinder with the parameters a = 4λ0/3, Ltot = 16λ0/3,
w = 8λ0/3 was simulated both in FEKO and in the 2D axially symmetric solver
in Comsol Multiphysics for verification of the integral expression (3.23). The struc-
ture was simulated both with and without a Salisbury absorber and the results in
Figure 9 show good agreement between the softwares. In the right plot in Figure 9
a mesh convergence study from Comsol Multiphysics is presented, where a PEC
capped cylinder of the same size as in the left plot has been simulated using differ-
ent mesh settings. It can be seen that when 10 steps per wavelength (at the shortest
wavelength of the simulation λ2) mesh setting is used, the agreement is good in
comparison to much finer mesh settings.
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Figure 9: In the left figure a capped cylinder with the radius a = 4λ0/3, length
Ltot = 16λ0/3 and width w = 8λ0/3 has been simulated both in FEKO and in
Comsol Multiphysics, using 10 steps per wavelength mesh setting, with and without
a Salisbury screen absorber applied. In the right figure a PEC capped cylinder
scatterer has been simulated in Comsol using different mesh settings.
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