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Static Analysis and Transformation of Dataflow
Multimedia Applications

Carl von Platen, Johan Eker
Ericsson Research

Lund, Sweden
Anders Nilsson, Karl-Erik Årzén

Lund University
Lund, Sweden

Abstract—An approach for merging statically schedulable sub-
regions in dataflow models is presented. The approach combines
abstract interpretation, loop analysis, and static scheduling of
cyclo-static dataflow networks. The approach has been imple-
mented in a Java-based tool that performs automatic classifi-
cation of dataflow actors, generation of static schedules using
constraint programming, and automatic merging of the fine-
grained actors in the subnetwork into a single, larger-grained
actor. The approach is applied to an MPEG-4 SP video decoder
implemented in the dataflow actors language CAL.

I. INTRODUCTION

Programming for multicore systems is in many ways differ-
ent from developing for unicore architectures. A particularly
difficult problem is to make the performance scale with
the number of cores. Silicon vendors have been extremely
successful for decades in developing new generations of
hardware that is both faster and backwards compatible. To
achieve the same for multicore systems, applications need to
be written such that they make use of an increasing number
of cores: the full potential parallelism within an application
must be exposed. The partitioning of tasks and functionality
onto a specific set or cores must also not be a part of the
implementation, but rather a step in the deployment phase.
This calls for a programming model that is fine granular and
allows the application to be partitioned in a number of different
configurations depending on the target system at hand. We
think that dataflow programming is a strong candidate for this
and in this work we explore the possibilities to design scalable,
yet efficient software for multicore hardware.

A dataflow model consists of components, called actors,
which are connected by FIFO channels (see Fig 1). Each
actor implements a particular computation, it operates on the
data that it receives on its inputs and produces results that are
transmitted to other actors via the FIFOs that are connected
to its outputs. Theoretically this simple programming model
has the power of expressing any kind of computation, but
particularly applications in the signal processing domain are
conveniently specified as dataflow models: media coding [1],
image processing [2], embedded control [3], digital radio [4]
and network processing [5] are examples.

Dataflow models expose parallelism naturally, since the
actors interact only through the connecting FIFOs and may
execute in parallel when sufficient input is provided. Both

software and hardware can be synthesized from dataflow
models [1]. Unlike an implementation in hardware, software
implementation, which is the topic of this paper, is typically
limited by the available parallelism of the target system. This
means that parallel computations have to be serialized and,
in the general case, scheduling decisions have to be taken
dynamically, at run-time. On the one hand, we thus have
a model of the program, which can be parallelized in a
flexible, fine-granular manner. On the other hand, software
implementations have to pay for this flexibility by run-time
overheads.

The choice of granularity of a model is thus a matter of
great concern. A fine granular model often promotes code
reuse, since it may be composed of a number of standard
library actors, and it also exposes parallelism to a higher
degree, which makes it possible to target the code for hardware
platform with a varying level of concurrency, ranging from
ASIC/FPGA to unicore systems. Finally, it facilitates parallel
development and testing. The latter can be an important factor
in an industrial R&D teams. However, a more coarse grained
model is likely to perform better due reduced communication
and scheduling overhead. In this paper we show how to
combine the best of both worlds by transforming a fine grained
model into a more coarse grained one. The example models
used in this paper for evaluation of the proposed methodology
are taken from [1] and from the MPEG/ISO Reconfigurable
Video Coding (RVC) standard [6], [7]. These models are
fine granular and designed from a number of more generic
actors with the ambition to support concurrent and pipelined
implementations. For targets with low level of concurrence
these models pose a challenge.

One solution to this problem is to impose specific restric-
tions on the behavior of the actors, so that the computations
can be scheduled statically. It has been shown that highly
optimized code can be synthesized from such models [8].
However, the restrictions that allow for static scheduling also
reduce the expressiveness of the model; in particular it is
generally not possible to express an actor that has varying
rates of consumption and production, depending on the in-
put it receives. Unfortunately, applications commonly have
control-oriented parts, which introduce such input-dependent
dynamism.

Rather than imposing restrictions on the model, the idea
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Fig. 1. A dataflow model consists of actors that are connected by FIFOs.

pursued in this paper is to use an expressive dataflow language
in the specification of the model, to identify statically schedu-
lable sub-networks using static analysis and to transform those
sub-networks so that efficient code can be generated.

A tool with this purpose, the ACTORS model compiler, has
been implemented. It consists of the following parts:

• actor classification,
• schedule generation, and
• actor merging,

together with a graphical user interface.
The actor classifier analyzes each actor of a dataflow model

to decide if it can take part in a static schedule. If so,
additional properties of the actor, which are needed to form a
schedule, are computed. The schedule generator calculates a
minimal repetitive sequential schedule of a given sub-network.
In general, several schedules are admissible and a certain
optimization criterion, such as the minimization of the required
buffer space, is used to select one of the schedules. The
schedule is realized by the actor merger, which combines
the actors of the sub-network into a single, larger-grain actor,
whose computations are serialized. In addition to eliminating
dynamic scheduling decisions, the FIFOs that become internal
to the merged actor are replaced by scalar variables or arrays.

One could say that this transformation trades flexibility for
increased single-threaded performance. The merged actors can
no longer be distributed over several processor cores, since the
computations are serialized and the FIFO operations, which
allow for inter-core communication, are removed. There is thus
a trade-off between parallelization and reduction of run-time
overheads.

A. Background

Dataflow programming has a long history beginning in the
early 1970s with work of work Dennis [9] and Kahn [10]
and has been the focus of much research since then, maybe
most notably in relation to the Ptolemy project [11]. There
exists a variety of dataflow execution models, which make
different trade-offs between expressiveness and analyzability.
Of particular interest are Kahn process networks [10], and
synchronous dataflow networks (SDF) [12]. The latter is
more constrained and allows for compile-time analysis for
calculation of static schedules with bounded memory, leading

to synthesized code that is particularly efficient. An interesting
variant of SDF is cyclo static data flow (CSDF) [13]. An actor
is SDF if the number of tokens consumed at each action firing
from each input port and the number of tokens produced at
each action firing to each output port are constant. Similarly,
an actor is CSDF if the token consumption rate and production
rate at each port follow a cyclic pattern. More general forms of
dataflow programs are usually scheduled dynamically, which
induces a run-time overhead.

The CAL language used in this work supports implemen-
tation of all types of actors, and has the nice property that it
is possible at compile time to determine the category an actor
belongs to, e.g. Kahn, SDF, CSDF, non-deterministic, etc., and
also extract scheduling information.

B. Related Work

There is some ongoing parallel work in improving perfor-
mance for CAL applications by statical scheduling of actors.
In [14] the focus is on detecting SDF-like regions in CAL
dataflow programs, by partitioning of actions using static
analysis of the coupling between input ports, states variables,
guards and output ports. This is then used for identifying sub-
networks of actions that may be statically scheduled. This
work was performed using an alternative CAL tool suite called
ORCC [15], which lately has been extended with support
for classification of actors. An approach presented in [16]
to statically schedule actors is to use a parameterized vari-
ant of SDF to derive a quasi-static multiprocessor execution
schedule. In [17] hierarchical SDF models are studied for the
purpose of code generation. An SDF graph is encapsulated
in an SDF actor, which may then be connected to other SDF
actors to form a new SDF graph. Here the focus is on code
generation for composite actors.

Code generation for multicore systems from dataflow graphs
is the focus of [18], which also identifies the composition
problems of SDF graphs, i.e. encapsulation of an SDF graph
into an SDF actor may cause a deadlock unless the given
environment is taken into account.

The use of constraint programming for scheduling and
allocation of SDF graphs on multi-core platforms is presented
in [19].

C. Outline

A short overview of CAL is given in Section II. The main
parts of the model compiler and the theory behind it are
presented in Section III. The results of applying the model
compiler to a MPEG 4 Simple Profile decoder are presented
in Section IV. The initial results show a speedup of around
18% for the approach.

II. THE CAL LANGUAGE

CAL [20] is a language a for writing dataflow actors. It
has been used in a wide variety of applications and has
been compiled to hardware and software implementations, and
work on mixed HW/SW implementations is under way. CAL
represents the basic components of a dataflow actor with firing
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in a straightforward manner, providing structuring mechanisms
that help the user to understand the functioning of an actor,
and that aid tools to extract relevant information from an actor
description at compile time. Recently a subset of CAL has
been standardized by ISO/IEC MPEG (ISO/IEC IS 23001-
4) and is used as the reference language for specification of
MPEG video coding technology.

A simple example of a CAL actor is shown in the Add actor
below, which has two input ports p1 and p2, and one output
port p3, all of type int. The actor contains one action (here
tagged a1) that consumes one token on each input port, and
produces one token on the output port. An actor may have
one or several actions, which define when it is firable and the
effect of such a firing. In this example, the port patterns imply
that the actor is firable when there is at least one token on
each input port.

actor Add () int p1, int p2 ⇒ int p3 :
a1 : action [a], [b] ⇒ [a + b] end

end

The actor above belongs to the SDF domain, since each
time it fires it will consume one token at each of its input
ports and generate one token at the output port. Detecting
this automatically is trivial simply by inspection of the port
patterns.

The slightly more advanced actor AddSub below has two
actions, tagged a1 and a2. The actor is fireable when there
are at least two tokens on the input port p1. When it fires,
it consumes two tokens and produces a single token on the
output port p2. This actor is clearly also SDF, and again it is
straightforward to detect so.

actor AddSub () int p1 ⇒ int p2 :

a1 : action [a, b] ⇒ [a + b]
guard a < b

end

a2 : action [a, b] ⇒ [a - b]
guard a >= b

end
end

The third example is more elaborate and shows a CSDF
actor, which implements a simple algorithm that receives a
package consisting of a header and a 64 token payload. The
header defines how the payload shall be processed (either
adding or subtracting all the elements). The actor has three
state variable counter, result, and type. The execution
order of the actions are governed by a finite state machine
schedule schedule fsm, visualized in Figure 2. The actions
either consume one token on the input port or produce one
token on the output port. A closer look at signatures of the
actions and the order in which they fire, determined by the
guards and the fsm, shows that the this actor is indeed CSDF.

actor Receiver () int p1 ⇒ int p2 :
int counter := 0;
int result := 0;
int type := 0;

read_header : action [t] ⇒

do
type := t;

end

read_payload1 : action [t] ⇒
guard counter < 64 and type = 1

do
add(t);

end

read_payload2 : action [t] ⇒
guard counter < 64 and type != 1

do
add(-t);

end

done : action ⇒ [result]
guard counter = 64

do
counter := 0;
result := 0;

end

procedure add(int i)
begin

result := result + i;
counter := counter + 1;

end

schedule fsm s0 :
s0 (read_header) --> s1;
s1 (read_payload1) --> s2;
s2 (read_payload1) --> s2;
s2 (done) --> s0;
s1 (read_payload2) --> s3;
s3 (read_payload2) --> s3;
s3 (done) --> s0;

end

end

S1

S2 S3

read_header

S1

S0

read_payload2read_payload1

done done

read_payload2read_payload1

Fig. 2. The finite state machine from the actor Receiver

A third option to control the order in which the actions are
fired is by priorities. In the BiasedMerge actor a priority
order is established between the two actions labeled A and B.
It ensures that in case both actions can fire, the one labeled A
will be given preference over the one labeled B.

actor BiasedMerge () int p1, int p2 ⇒ int p3:
A: action p1:[x] ⇒ p3:[x] end
B: action p2:[x] ⇒ p3:[x] end
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priority A > B; end
end

For an in-depth description of the language, the reader
is referred to the language report [20]. A large selection of
example actors is available at the OpenDF repository,1 among
them the MPEG-4 decoder discussed below.

A. The NL Network Language

CAL actors are connected and instantiated using the Net-
work Language, NL, which is a language for expressing
algorithms that compute directed graphs among entities with
ports. A small example is shown in the network N below,
where the CAL actors described above are connected.

The NL supports hierarchical structures and a network can
in itself have ports. It is also generative in the sense that enti-
ties may be instantiated and connected using comprehensions,
loops, etc.

network N () In1, In2 ⇒ Out:

entities
r = Receiver();
bm = BiasedMerge();
as = AddSub();

structure
In1 --> r.p1;
In2 --> as.p1;
r.p2 --> bm.p1;
as.p2 --> bm.p2
bm.p3 --> Out;

end

B. OpenDF Tool Chain

The OpenDF tool chain [21] used in this work consists of
a simulator and compilers for hardware (FPGA) and software
(ANSI C code). The CAL compiler frontend generates code on
an intermediate format called XLIM [22], which is compiled
into either VHDL or C code. XLIM is an XML based format
that represents a program in static single assignment (SSA)
form. The bodies of the actions are represented as a set of
procedures and the guards, priorities, finite state machine,
together with tests for token availability, are represented in a
special action selection procedure called the action scheduler.

As part of the tool chain there is also an elaborator that
compiles and flattens NL networks into the XDF, which is an
XML based format for representing dataflow graphs.

The OpenDF tool chain is open source and released under
the BSD license.

III. MODEL COMPILATION

The model compiler consists of three main parts: actor
classification, schedule generation, and actor merging, each
of which is explained in more detail in separate sections
below. The merging is done after the actor network has been
partitioned, and it is only static actors within the same partition

1http://www.opendf.net

Fig. 3. The model compiler structure.

that may be merged. The partitioning is performed using
design space exploration techniques using objectives that, e.g.,
balance the computational load or minimize the amount of
communication between partitions. The details of this are,
however, outside the scope of this paper.

At several points in the merging process user intervention
is required. For example, the user needs to select which actors
to merge, which optimization criterion to use, and which
of the generated schedules to use. Since dataflow networks
are graphical in nature a graphical user interface is used
to connect the three main parts together. The user interface
is implemented in Java using Swing and the JGo graphics
library [23]. The user interface takes a flat XDF file as input
and displays it graphically using automatic layout. Interacting
with the network using the mouse the user selects actors
and invokes the classification, scheduling, and merging. The
structure of the model compiler is shown in Fig. 3.

A. Actor Classification

Actor classification is the analysis in the Model Com-
piler, which determines the opportunities for static scheduling.
Classification is closely related to the concept of (dataflow)
computation models. Actor classification has the purpose of
identifying actors that adhere to particular restrictions (such
as those of SDF and CSDF), which allows the actors to
be scheduled statically. Additional properties, particularly the
rates at which an actor consumes and produces tokens, are
computed as a side-effect.

1) Properties determined by actor classification: The actor
classifier works by analyzing the internal behavior of each
actor in isolation; the following properties are determined:

• Classification of the actor: “static” or “dynamic”,
• whether the actor executes indefinitely or if it may

terminate, and
• a specification of the static firing sequence, provided that

such a sequence was identified.
The classification is based on the sequence of actions, which

an actor might fire. An actor is classified as “static” if the token
rates can be determined beforehand and “dynamic” otherwise.
In particular, an actor whose token rates depend on the inputs
it receives falls into the “dynamic” class. Classification is
conservative in the sense that unless a static firing sequence
can be found, the actor is assumed to be “dynamic”. Any
misclassification thus attributes the actor to a more general
class than a perfect classifier would.

Actor classification also determines whether an actor is
guaranteed to execute indefinitely or if it may enter a state,
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from which no further firings are possible (termination).
Again, the results are conservative: possible termination is
assumed unless it can be ruled out.

In the case of “static” actors, results also include the spec-
ification of the firing sequence with the token production and
consumption rates of each step of the sequence. In general, the
produced static firing sequence consists of an initial sequence,
which is executed once, and/or a periodic sequence that is
repeated indefinitely.

2) Action selection: The execution of an actor is performed
in steps, known as firings, in which one of the actor’s actions
is executed. The action selection is based on the internal state
of the actor, the availability of inputs and, possibly, the value
of inputs.

Action selection can be represented by a decision diagram
(see Fig 4a), in which the interior nodes correspond to tests
and the leaves correspond to action firings. There may also
be a leaf that corresponds to termination. The leaves that
correspond to action firings have side-effects: mutation of the
internal state and the consumption/production of inputs/out-
puts, all other nodes are side-effect free.

The decision diagram can be viewed as a control-flow graph,
which is repeated indefinitely (or rather: until the terminal leaf
is reached). Repetition is indicated by the dashed arrows in
Fig 4a.

t0

t1 t2

t3

t4

a1 a2

a3

a4

terminal

(a)

t1

t3

a1 a2

a3

a4

(b)

t1

a1 a2

a3

a4

1000 times

(c)

Fig. 4. Action scheduler represented as (a) decision diagram with added
back-edges (dashed), (b) a control-flow graph with (some) infeasible paths
removed and (c) a control-flow graph, in which a loop has been summarized
into a single node.

3) Removal of infeasible paths: The initial incarnation of
the control-flow graph generally contains infeasible paths. Not
to get overly pessimistic results, a more precise graph is
needed.

Two techniques are used to remove (some of) the infeasible
paths: partial evaluation of the tests and loop analysis. The
search for a static firing sequence is made in the resulting
control-flow graph.

First, the state space of the actor is enumerated using
abstract interpretation. As a result, we get an abstraction of the
actor’s internal state that may reach each leaf (each action).
Using this information we can reduce the set of potential
successors and get a more precise control-flow graph, like the
one shown in Fig 4b. If the terminal leaf was reached during
the enumeration, we must assume that the actor may terminate.
Otherwise, we know that the actor will execute indefinitely.

The implementation of state-space enumeration does not
depend on the choice of abstract domain, but we presently
use only integer intervals [a, b]. This is a good abstraction
for “normal” arithmetic operations (+,-,*,/ etc.) and relational
operators, and we note that constant values are propagated as
a special case (intervals [c, c]). However, considerable loss of
precision is caused by other operations (such as bitwise and,
or, xor).

State-space enumeration is performed in repeated passes
over the decision diagram. The number of required iterations
depends on properties of the actor and the abstract domain,
in which the state is represented. So called widening [24]
of the abstract state is required to make very “tall” domains,
such as integer intervals, practical. Otherwise, an essentially
unbounded number of iterations might be needed to reach a
fixed point.

In a second step, precision is further improved by detecting
loops with constant trip-counts. The present implementation
is based on detection of natural loops and induction variables,
which are standard techniques (e.g. see [25]). Fig 4c illus-
trates the case of an inner loop, whose trip-count could be
determined statically, and an infinite outer loop.

4) Finding static firing sequences: We say that an actor
has a static firing sequence if the actions, which might fire in
any given step of the sequence, consumes and produces the
same number of tokens. Thus, one way of classifying the actor
would be to simply enumerate the sets of admissible actions
for each step of the firing sequence and check the token rates.
Although this is essentially the approach taken, there are two
complications: the firing sequences are generally infinite and
it might not be possible to decide the exact set of admissible
actions.

One way of estimating the sets of admissible actions is to
consider reachability in the control-flow graph. For instance,
in the graph of Fig 4b, the following actions are reachable in
the first five steps:
A1 = {a1, a2},
A2 = {a3},
A3 = {a3, a4},
A4 = {a1, a2, a3, a4},
A5 = {a1, a2, a3, a4},
...

Each new set is formed by the successors (see Fig 5) of the
actions in the set of the preceding step in the sequence. This
means that even an infinite firing sequence leads to a finite
enumeration of sets; a recurring set (such as A4 = A5 in the
above example) will eventually be found. Such a recurrence
marks a subsequence that is repeated indefinitely.

It remains to check the token rates. Since A4 contains all
four actions, we find the firing sequence to be “static” only in
the case of an SDF actor (whose actions have the same token
rate). Any difference in token rates would render the actor a
“dynamic” classification.

In contrast, if we start out from the control-flow graph of
Fig 4c, in which the inner loop is represented as a single node,
it would be sufficient that actions a1 and a2 had the same
rates, since we get the following, more precise, estimation of
the admissible actions:
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t1

a1 a2

a3
t3

a3 a4

initial state, a4 a1, a2 a3

Fig. 5. Successors: the sets of actions that may immediately follow the initial
node and each of the actions (given the control-flow graph of Fig 4b)

A1 = {a1, a2},
A2 = {a3},
...
A1001 = {a3},
A1002 = {a4},
A1003 = {a1, a2},
...

Explicit enumeration of this long sequence is avoided by
analyzing loop nests bottom-up. In this particular case, the
static firing sequence of the inner loop (1000 times action
a3) is determined first, later to be combined with the static
firing sequence of the outer loop; thus arriving at a static firing
sequence with a period of 1002. The resulting firing sequence
is represented compactly as a looped schedule [26], in which
repetitions within the sequence are factored out.

B. Schedule Generation

The result of the classification is displayed graphically
to the user by using different colors for the actors. Green
actors have been classified as statiic, whereas yellow and red
indicate different classes of dynamic actors. All sub-networks
consisting only of static actors that all belong to the same
partition are candidates for merging. It is the task of the user
to select which sub-network to merge.

The objective of the schedule generation is to generate
a periodic admissible sequential schedule (PASS) for the
connected sub-network, henceforth referred to simply as the
network, in which all actors are SDF or CSDF. The theory
behind this was originally derived in [12] for the case of SDF
networks and then generalized to CSDF networks in [27]. Here
a brief overview of the CDSF case is given.

1) Scheduling of CSDF networks: The starting point for
the scheduling is the topology, or incidence, matrix Γ of the
network. The topology matrix is a MxN -matrix where M is
the number of connections (edges) between the nodes (actors)
in the network and N is the number of nodes. Two nodes can
be connected by multiple edges corresponding to connections
between different ports. We define σij as the sum of the rates
in the token pattern associated with the connection between
node j and connection i, and pij as the length of this token
pattern. A token pattern is allowed to contain zero elements,
e.g., 1,0,3. Here this means that when the node is executed for
the second time no tokens are produced (or consumed) at this
connection. In a CSDF network the ith actor will fire in a cycle
with a period Pi equal to the least common multiple (lcm) of
the lengths of all the token patterns of the node. With these

definitions the (i, j)th entry in the topology matrix is given by
Pjσij/pij . If node j consumes tokens from arc i, the value is
negative.

The first step in finding the schedule is to calculate the
repetition vector r for the network, which is given by the
smallest integer solution to the equation

Γr = O, (1)

whereO is a column vector of length N of zeros. The elements
in r are the number of cycles that each node should fire.
The corresponding actor repetition vector q is obtained by
multiplying each element in r with the corresponding Pi value.

Given the repetition vector finding a schedule consists of
finding an admissible sequence of node firings, i.e., such that
if the nodes are fired according to the sequence the amount
of tokens in the buffers will remain nonnegative and bounded,
that meets the constraints imposed by the repetition vector, and
which minimizes some desired objective. This can be stated
as a search problem.

2) Constraint Programming Search: The calculation of the
repetition vector and the schedule generation are formulated
as search problems using constraint programming with Ja-
CoP. JaCoP (Java Constraint Programming) is a constraint
solver engine developed for constrained finite domain vari-
able problems, e.g., integer and boolean problems, [28]. The
search problems are modeled as a set of constraints over
integer variables. The constraints are given as arithmetic ex-
pressions, equalities, inequalities, etc. Depth-first branch-and-
bound search techniques are then used together with constraint
consistency techniques to find solutions which satisfy the
constraints and optimize a given cost function.

Constraint Formulation for Repetition Vector
The search for the repetition vector is formulated using JaCoP
as follows. The r vector is defined as a vector of length
N of integers in the range [1,MAX int]. The upper and
lower bounds act as implicit constraints on the values of
r. The balance equation Γr = O is represented by M
weighted sum constraints, each constraint expressing that
the sum of the elements in the corresponding row i of Γ
weighted by the elements in r should be equal to zero, i.e.
r1Γi1 + r2Γi2 + · · ·+ rnΓin = 0.

In order to find the smallest solution a new integer variable,
Rsum, is defined together with a sum constraint stating that
Rsum =

∑
i ri. The search is defined as a depth-first branch-

and-bound search with Rsum as the cost function that should
be minimized. Each time a solution with Rsum = value is
found a new constraint Rsum < value is imposed, causing
the search to find solutions with lower cost until no more
solutions can be found, proving that the last found solution
is optimal. The variables searched for are the elements of r
and during the search the values are assigned starting at the
smallest value in the domain.

Constraint Formulation for Scheduling
The inputs to the schedule generation consist of the actor
repetition vector q and a MxN -matrix G where the elements
are vectors containing the corresponding port token patterns.
The length of the schedule, i.e., the sum of the elements in
q is denoted S. The main search variables are contained in
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the matrices x and b. The x matrix indicates which actor
that is fired at each step in the schedule and has dimension
SxN . The value of x[s][n] is one if actor n is fired at step
s and zero otherwise. The b matrix contains the size of all
the buffers for each step in the schedule and has dimension
SxM . In addition to this the matrix xCumul[S][N ] is used
for storing the cumulative sum of the elements in x and the
matrix maxBufs[M ] contains the maximum size needed for
buffer M during the schedule.

The main constraints are the following.
• Constraints specifying that only one actor may fire at each

step, i.e., that the sum of the values in each row of x is
one.

• Constraints that update the elements in xCumul based
on values in x.

• Constraints that ensure that the values in the last row of
xCumul equal the values in the repetition vector q.

• Constraints that specify that the initial value of each
buffer is 0.

• A set of constraints that together ensure that each element
in the buffer matrix b is updated according to the topology
matrix G. These constraints use xCumul to decide the
actual number of tokens produced and consumed at each
step, based on the port token patterns in G.

• Constraints for updating maxBufs.
The optimization currently supports three optimization ob-

jectives.
• It is possible to search for all admissible schedules.
• It is possible to search for the schedules which minimize

the size of the largest internal buffer.
• It is possible to search for the schedules which minimize

the sum of the maximum size of all the internal buffers,
i.e. the total buffer space.

When searching for all admissible schedules the problem is
stated as a depth-first search problem. The variables searched
for are the elements of x and maxBufs. During the search
values are assigned starting at the smallest value in the domain.
The search is setup to search for all the solutions that fulfill
the constraints.

When searching for schedules that minimize the buffer
size first a new search variable is defined corresponding to
the entity that should be minimized, together with the new
constraints required to specify this. Then a search is performed
that finds a solution that minimizes the cost. However, in
most cases there are several schedules that have the same
minimum buffer requirements. In order to find all of these a
new constraint is added that specifies that the value of the
cost function should equal the optimal value found and a
new search is performed for all the solutions fulfilling the
constraints.

Also for modest size problems the number of schedules
can be very large. Also, the problem of finding a minimal
buffering for a live execution has been shown to be NP-
complete, [29]. Therefore the search is always performed with
a user-defined timeout with a default value of 10 sec. When
the timeout expires all solutions found up to that point are
returned. The user can then decide to either select one of the

schedules found, perform a new search with a longer timeout,
or to change the actor sub-network for which the scheduling
is performed.

The output of the scheduling is presented to the user as a
list of schedules and the associated maximum size of each
internal buffer, in a pop-up window. The user then selects one
of these schedules in order to perform the actual merging.

C. Actor Merging
Actor merging is performed on the intermediate XDF/XLIM

level, where all actors in a network have been parametrized
and instantiated. It is then safe to perform transformations on
the actors forming the network with no risk for unwanted side
effects due to certain actors being instantiated more than once
at several locations in the network.

The merging conceptually consists of creating a new XLIM
file corresponding to the merged actor and updating the
network desctription file (XDF). The XLIM file contains the
actions of all the actors that are merged together, and a new
action scheduler that corresponds to the static schedule.

The input to the actor merging comes both from the
schedule generator and from the classifier. From the schedule
generator comes the sub-network to be merged, the schedule
according to which it should be merged, the maximum size of
all internal buffers in the merged actor, the number of tokens
required at each input port of the merged actor in order for it to
be firable, and the number of empty slots needed in the FIFOs
attached to each output port in order to fire the actor. From the
classifier the actor merger ideally receives information about
which action that should be fired at each phase for all the actors
involved in the schedule. If that cannot be decided uniquely
off-line the classifer outputs the corresponding part of of the
action scheduler decision tree that, when evaluated at runtime,
decides which action to be executed. This decision logic is
then inserted at the appropriate place in the generated action
scheduler.

Action 1
Action 2

Action Schedule

Actor 1

Action 1

Action Schedule

Actor 2

Action 1
Action 2
Action 3

Action Schedule

Actor 3

Actor 1 Action 1
Actor 1 Action 2
Actor 2 Action 1
Actor 3 Action 1
Actor 3 Action 2
Actor 3Action 3

Merged Action Schedule

Merged Actor

Fig. 6. Merging three actors into one.

The procedure for merging actors is as follows. First collect
all actions from the actors to be merged and put them as ac-
tions in a new actor, see Fig. 6. Then search all connections in



8

Fig. 7. Classified MPEG 4 SP decoder: the green actors are “static”, yellow
and red indicate different classes of “dynamic” actors.

the network for connections between the actors to be merged.
If a connection between two actors is found, a corresponding
circular buffer is created in the new actor and writes, reads,
and peeks on the FIFO queue are replaced with accesses to
this buffer. Then the connection is removed from the network
description. If the maximum size of an internal buffer is 1
then a simple scalar state variable is used instead of a circular
buffer. This speeds up the execution considerably.

The actor merging is implemented using the state-of-art
compiler construction tool, JastAdd [30]. Compilers for both
the XDF and XLIM intermediate formats have been developed.
Using the aspect-oriented features of JastAdd new functional-
ity can then be added to the compilers in a modular fashion.

IV. RESULTS

In order to evaluate the model compiler a CAL model
of an MPEG-4 Simple Profile video decoder was used. The
model was developed at Xilinx to demonstrate FPGA code
synthesis. It is published along with the OpenDF tools on
sourceforge [31]. Since merging can only be applied to actors
within the same partition a single partition is used for the
entire decoder in the evaluation.

The runtime system is non-preemptive and statically parti-
tioned. Each core is assigned a ordered list of actors that are
executed in a round robin fashion with the goal to minimize
scheduling overhead and maximize throughput. When an actor
is fired it will continue to repeatedly fire as long as there are
input tokens available and space left on the output FIFO:s. The
runtime systems is described in detail in [?] and the source
code for the runtime system is freely available at [31].

The output from the classification as seen through the
graphical interface is shown in Figure 7. The green actors have
been automatically classified as static and are hence candidates
for merging. The yellow and red actors have been classified as
having different variants of non-static behavior. Hence, for the
actor merging the key is to find sub-networks composed only
of green actors. Five out of the six static actors form a static
sub-network that implements a 1-dimensional inverse discrete
cosine transform (idct1d). The actors involved here are: Scale,
Combine, Shufflefly, Shuffle, and Final. The schedule length

for idct1d is 17 and there are 4264 admissible static schedules.
However, of these only 44 minimize the internal buffer space
required. For these, all the 14 internal buffers have a maximum
size of 1 and can, hence, be represented as scalar variables in
the merged actor.

The speedup when decoding a video sequence without and
with merging the idct1d actors into a single actor is 18%,
measured in terms of increased frame rate. However, the
idct1d only constitues one small part of the complete decoder.
Isolating the idct1d part as a separate test case reveals that the
speedup gained from merging these five actors is 300%.

V. CONCLUSIONS

The work presented in this paper demonstrates that it is
not only possible, but also practical, to identify and specialize
sub-networks with static behavior within a dynamic dataflow
model. Well-known techniques are combined in the analysis
of a model: abstract interpretation [24], traditional loop anal-
ysis [25] and static scheduling of CSDF networks [12], [32].
A static schedule is realized by merging a sub-network of
fine-grained actors into a single, larger-grain actor. The com-
putations of the sub-network are serialized, by which dynamic
scheduling decisions are eliminated. Further, communication
within the sub-network is specialized by substituting access to
variables for more costly FIFO operations.

This means that the model can be specified in a fine-granular
fashion, using the full expressive power of a dataflow language
like CAL while generating specialized code for each sub-
network with static behavior that was mapped to a single
processor core. It is thus possible to specify a model that
is portable over a wide range of target architectures and
specialize it given a particular target.

The effectiveness of the model compiler was assessed using
a model of an MPEG-4 SP video decoder. By specializing
a statically schedulable sub-network of the model, a unicore
implementation was speed-up by 18%.

Actor classification can also provide feedback to the pro-
grammer. Given that the performance of an implementation
can be improved significantly, there is a strong incitement
to use actors with static behavior when possible. We found
several cases of unnecessary input-dependence in the MPEG-
4 SP decoder. The model could be refactored so that larger
sub-networks of statically schedulable actors would result.

A. Future work

The current implementation of schedule generation does
not consider the structure of the surrounding network when
selecting a static schedule of a sub-network. When surrounded
by a cyclic dataflow path, a statically scheduled sub-network
might cause deadlock. The present, unsatisfactory, solution is
to allow the programmer to control the selection of sched-
ule or avoid merging potentially problematic sub-networks
altogether. In an evolved implementation, we intend to use
additional constraints [18], [17] to guide schedule selection so
that deadlock is avoided.

Further, we intend to extend the scope of the model
compiler. The current approach is based on analysis of
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each actor in isolation and model transformation is limited
to sub-networks of statically schedulable actors. Additional
specialization is possible by considering also the network
structure, such as the statically schedulable regions of [14].
Other techniques address the scheduling overhead of dynamic
dataflow, such as quasi-static scheduling (e.g. see [16]). Such
generalization fits within the framework of the model compiler
and presents a promising direction for future work.
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