
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Multi-target Tracking Using on-line Viterbi Optimisation and Stochastic Modelling

Ardö, Håkan

2009

Link to publication

Citation for published version (APA):
Ardö, H. (2009). Multi-target Tracking Using on-line Viterbi Optimisation and Stochastic Modelling. [Doctoral
Thesis (monograph), Mathematics (Faculty of Engineering)]. Centre for Mathematical Sciences, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 12. Jul. 2025

https://portal.research.lu.se/en/publications/290c25b3-674f-4a4e-819e-1ac3c34e79cb


MULTI-TARGET TRACKING USING ON-LINE

VITERBI OPTIMISATION AND STOCHASTIC

MODELLING

HÅKAN ARDÖ

Centre for Mathematical Sciences
Mathematics



Mathematics
Centre for Mathematical Sciences
Lund University
Box 118
SE-221 00 Lund
Sweden

http://www.maths.lth.se/

Doctoral Theses in Mathematical Sciences 2008:10
ISSN 1404-0034

ISBN 978-628-7685-2
LUTFMA-1034-2008

c© Håkan Ardö, 2009

Printed in SWEDEN by MediaTryck, Lund 2009



Preface

The contents of the thesis is based on the following papers,

Main papers

• Ardö, Håkan and Åström, Kalle and Berthilsson, Rikard, “Multi-target Tracking
Using on-line Viterbi Optimisation” To be submitted., 2009.

• Ardö, Håkan and Åström, Kalle and Berthilsson, Rikard, “Bayesian Formulation
of Image Patch Matching Using Cross-correlation” To be submitted., 2009.

• Laureshyn, Aliaksie and Ardö, Håkan and Thomas Jonsson and Åse Svensson, “Ap-
plication of automated video analysis for behavioural studies: concept and expe-
rience”, 10th International Conference on Application of Advanced Technologies in
Transportation, 2008

• Ardö, Håkan and Åström, Kalle, “Multi Sensor Loitering Detection Using Online
Viterbi”, Tenth IEEE International Workshop on Performance Evaluation of Tracking
and Surveillance, 2007.

• Ardö, Håkan and Berthilsson, Rikard and Åström, Kalle, “Real Time Viterbi Op-
timization of Hidden Markov Models for Multi Target Tracking”, IEEE Workshop
on Motion and Video Computing, 2007

• Laureshyn, Aliaksie and Ardö, Håkan, Straight to Video? Automated video Anal-
ysis as a tool for Analyzing road user behavior Traffic Technology International, An-
nual, 2007

• Laureshyn, Aliaksie and Ardö, Håkan, “Automated video analysis as a tool for
analysing road user behaviour”, 13th World Congress on Intelligent Transport Sys-
tems and Services, 2006

• Ardö, Håkan and Berthilsson, Rikard, “Adaptive Background Estimation using
Intensity Independent Features”, 17th British Machine Vision Conference, 2006
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Subsidiary papers

• Jiang, Hongtu and Ardö, Håkan and Owall, Viktor, “Hardware Architecture for
Real-Time Video Segmentation Utilizing Memory Reduction Techniques”, Ac-
cepted for publication in IEEE Transactions on Circuits and Systems for Video Tech-
nology,

• Jiang, Hongtu and Owall, Viktor and Ardö, Håkan, “Real-Time Video Segmen-
tation with VGA Resolution and Memory Bandwidth Reduction”, IEEE Interna-
tional Conference on Video and Signal Based Surveillance, 2006.

• Jiang, Hongtu and Ardö, Håkan and Owall, Viktor, “Hardware Accelerator Design
for Video Segmentation with Multi-modal Background Modelling”, IEEE Interna-
tional Symposium on Circuits and Systems, 2005

• Ardö, Håkan, “Learning based system for detection and tracking of vehicles”, 14th
Scandinavian Conference on Image Analysis, 2005

In collaboration with the department of Electroscience a hardware implementation of
Stauffer and Grimson’s [75] background foreground segmentation algorithm were con-
structed. The main bottleneck of the algorithm were concluded to be the memory band-
width required. This was reduced by utilising the fact that the background distribution
of neighbouring pixels often is very similar. By detecting when it is similar enough to
be approximated as identical the entire background model can be run-length encoded
and thereby the memory bandwidth is lowered. The main work of this collaboration
were performed by Hongtu and is documented in the references above and will not be
discussed further in this thesis.

The last reference above documents some early, initial work on automated camera
calibration. The idea is to build an automated system where all the operator has to do
is to mount the camera and point it at an intersection or road segment of interest. The
system will then analyse the scene and by tracking moving blobs, estimate the camera
parameters, find the ground plane and locate the different lanes. As the system learns
more and more about the scene it is viewing it will be able to make more and more
advanced analyses of it. Once the geometry is learnt the blobs tracked can be classified
into buses, cars, pedestrians and bicycles based on their size and speed. Then, typical
trajectories used to pass the intersection can be learnt and abnormalities detected. Once
the different lanes are detected it can be decided whether the scene is a road segment, an
intersection, a T-junction or a roundabout and then different more specific analyses can
be applied based on what kind of scene is viewed. While this is still an overall goal it has
fallen outside the scope of this thesis.
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Chapter 1

Introduction

There is an increased need for automatic analysis of traffic user behaviour and safety. This
project is initiated by the needs of governmental organisations such as ’Väg och trafik
Institutet’ but also department of public works in cities. One of the primary motives
here is the possibilities to assess traffic safety. Often safety is neglected when constructing
new roads and intersections. If safety is considered there are very few tools to actually
measure and monitor traffic safety. One possibility is to study how many accidents that
are reported to the police at a certain section of a road or at a certain intersection during
a year. Recent research [29] has, however, shown that it is possible to predict how many
such accidents there is by manually observing certain events during a shorter time interval,
e.g. 2-3 days. These traffic studies are however very costly and time-consuming and
requires that trained personnel study videos of traffic.

The problem of tracking moving objects has been studied for a long time, see for
example [70, 26]. Two main approaches are commonly used. Either a set of hypothesis are
generated and tested against the observed image [30, 20, 33, 8], or methods for detecting
objects in single frames, e.g. using edge information, templates or machine learning, are
combined with dynamic models in order to gain robustness [65, 90, 76, 12].

Tracking can be used in automatic traffic analysis systems, where the goal may be to
increase traffic safety or increase traffic flow by reducing risk for congestion. Concerning
traffic safety, an intelligent traffic monitoring system can be used to gather statistics from
traffic scenes that can form the basis, for example, for redesigning dangerous street cross-
ings. As stated above, such statistics is today gathered through costly and manual ocular
inspection during several days. Furthermore, by having access to instant and accurate
traffic data throughout a road net, it is possible to reduce the risk for traffic congestion
and optimising traffic flow, see [56, 63].
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CHAPTER 1. INTRODUCTION

1.1 Notations

Scalars a, b, c
Vectors a, b, c
Matrices A, B, C
Transpose of A AT

Identity matrix of size d× d Id
Column vector, d-long, all elements one 1d
Column vector, d-long, all elements zero 0d = 01d
Matrix, d× d, all elements one 1d×d = 1d1dT

Matrix, d× d, all elements zero 0d×d = 01d×d
Scalar valued functions g (·), h (·)
Vector valued functions g (·), h (·)
Sets A, B, C, S, X
Number of elements in A |A|
Spaces R, N, S
Expected Value of x E (x)
Images (see below) A, B, C, I
Pixel a = (x, y) in image I I (a), I (x, y)
Probability distribution of x (see below) f (x)
Probability distribution of x conditioned on y f (x |y )
Probability of the event x p (x)
Probability of the event x conditioned on y p (x |y )

Gaussian distribution N (x |µ,Σ ) = 1√
(2π)n|Σ|

e−(x−µ)TΣ−1(x−µ)

Gamma function Γ (z) =
∫∞

0
e−ttz−1dt

Incomplete gamma function Γ (z, a) =
∫∞
a
e−ttz−1dt

Error function erf (x) = 2√
π

∫ x
0
e−t

2
dt

1.1.1 Images and functions

This thesis primarily deals with sequences of grey scale images. This is mainly due to
notational convenience. In many cases generalisation to colour images is straightforward.
In other cases it is not. In a few cases some short discussion on how colour images can be
treated is also included.

Images will be treated as R2 → R functions. These functions are constructed from
the image data returned by a camera by nearest neighbour interpolation in between inte-
ger pixel positions and by setting the image intensity equal to zero outside the real image
borders. Video sequences will be treated as a sequences of images, It (·), for some discrete
time steps t = 0, 1, · · · , τ . To simplify notation, the function parameter will be dropped

2



1.2. FOREGROUND/BACKGROUND SEGMENTATION

when considering strictly pixel wise operations, e.g.

Dt = (It − It−1)2

⇔
Dt (a) = (It (a)− It−1 (a))2 for all a ∈ R2

. (1.1)

When the entire image is considered, the notation It(·) will be used in order to distin-
guish it from the pixel wise notation.

This notation also allows the use integrals instead of sums when summing over im-
ages. The reason for this is that it admits the use convenient notation and well known
results from integration theory.

1.1.2 Probabilities and distributions

Let ā be a stochastic variable with distribution function fā (a). This distribution will
be denoted f (a), where the stochastic variable is implicitly specified as the stochastic
variable from which the parameter a is a realisation (sample). The notation a will be
used both when referring to the stochastic variable, ā, the parameter of the probability
distribution function, a, and a realisation of the stochastic variable. When several reali-
sations are considered, they will be denoted a(i) for i = 1, 2, · · · . In the same manner,
the conditional distribution of ā given that the stochastic variable b̄ has the realisation b,
fā
(
a
∣∣b̄ = b

)
, is denoted f (a |b ).

For a discrete stochastic variable ā, the probability of the event ā = a will be denoted
p (a) and the probability of the event ā = 0 will be denoted p (a = 0). In the same
manner, the probability of the event ā = a conditioned on the event b̄ = b will be
denoted p (a |b ).

1.2 Foreground/Background Segmentation

To estimate the background in real time is an important first step for many video surveil-
lance applications. Solving this problem, in a reliable way, allows remaining resources to
be devoted to tracking and identifying moving objects and to interpret events that occur
in the scene.

The setting is that of a static camera viewing some scene where most part of the scene
is (pseudo) static background. Here pseudo static means that a tree swaying in the wind
or rippling water often is considered part of the background. On top of this background
there are objects moving, and it is those objects, the foreground, that are of interest. The
camera viewing the scene produces one image It for each time step t = 1, 2, · · · , and
the task of the background/foreground segmentation algorithm is to segment out those
moving objects from the background in each image.

3



CHAPTER 1. INTRODUCTION

1.2.1 Difference Image

A classical approach to foreground background segmentation is to look at the absolute
difference between input frames, |It−τ − It| for some, typically small, values of τ . For
this to become robust, more advanced features than the intensity levels can to be used.
Jain and Nagel [34] for example uses 4 × 6 patches represented with their mean and
variance.

A more recent method is suggested by Mahadevan and Vasconcelos [55]. They use
16×16×11 spatio-temporal patches centred around each pixel. Each such patch is further
divided into several overlapping 8×8×11 patches and Dynamic Texture (DT) models are
fitted to each of them, and the distribution of those dynamic textures are compared. The
mutual information between the DTs in the centre of the patch and along the border of
the patch is calculated. This value is thresholded to form a foreground detector. The idea
is to locate small objects (smaller than 16x16) whose motion differ from its surrounding
motion.

The problem with these methods is that if an objects stand still for a few frames they
will directly become part of the background. This happens for example when a car stops
for a red light. To solve this background subtraction could be used.

1.2.2 Background Subtraction

In its simplest form a background image,B is assumed to be available. This is an image of
the scene when there are no objects present. The segmentation algorithms will study each
pixel separately and if its distance to the background is larger than some threshold, σ it
will be classified as foreground, otherwise as background. A binary segmentation image,
Ft, that is 1 in foreground pixels and 0 in background pixels is then produced according
to

Ft =
{

1 if |It −B| > σ
0 otherwise

. (1.2)

Unfortunately, a background image B is usually not available and for long term surveil-
lance (more than a few minutes) the background is not completely static. In those cases
the background image has to be estimated continuously from the video sequence and
adapt to slow or more permanent changes in the background. In those cases some back-
ground model is assumed and the parameters of this model is updated continuously.

Wren et al [89] assumes the background pixels to be independent Gaussian distributed
and update the mean and variance of each pixel using a learning factor, c. That is a real
number, 0 < c < 1, indicating how fast changes should fade into the background. An
estimate of the mean background imageBt and its variance Vt is made pixel wise for each
frame,

Bt = cBt−1 + (1− c) It, (1.3)

Vt = cVt−1 + (1− c) (Bt − It)2
. (1.4)

4



1.2. FOREGROUND/BACKGROUND SEGMENTATION

With this model the likelihood of each pixel belonging to the background is,

fbg (It) = N (It |Bt, Vt ) . (1.5)

Thus it is the possible to produce a binary foreground image that defines the foreground
as the pixels that deviates more than for example 2.5 standard deviations from the back-
ground mean value, i.e.

Ft = |It −Bt| > 2.5
√
Vt. (1.6)

Kalman filter approaches

Equation 1.3 for updating the background model using a learning factor can be rewritten
into the form

Bt = Bt−1 + (1− c) (It −Bt−1) . (1.7)

If the factor (1− c) were to be interpreted as the Kalman gain, this would be the mean
updating equation of a Kalman filter with the pixel intensity used as both state and ob-
servation and a mean zero velocity dynamic model. See Section 1.3.1 for an introduction
to the Kalman filter. That theory dictates how the Kalman gain should be chosen to
estimate the mean and the variance of the state variable over time given that the variance
of the observations are known. In this case, when the state and the observations are the
same, the variation of the observation (e.g the noise levels) is not known but has to be
measured from the data.

Karamann and Brandt [41] has suggested to assume known and constant noise levels
and only estimate the mean values of the background. They use the learning factor ideas
to set the Kalman gain to one of two different constants depending on whether the pixel
currently is classified as foreground or as background. That would correspond to having
a larger variance for (be more uncertain about) observation classified as foreground than
observations classified as background. They also suggest to use a second order model that
assumes zero mean acceleration of the pixel intensities instead and estimates the intensity
speed (or change rate) as well.

Boninsegna and Bozzoli [6] has extended this approach by using the assumed noise
level variance to calculate the Kalman gain according to the Kalman filtering theory and
use this gain for pixels classified as background. For pixels classified as foreground, the
Kalman gain is set to St∗

St∗+(Bt−It)2 , where St∗ is the variance of the Kalman prediction,
Equation 1.58, of the intensity the last time the pixel were classified as background.

Different features

The performance of the segmentation can be increased by not using the intensity values
directly, but extracting features from the image and building a background model of the
extracted features. Koller et al [47] concluded that the images of vehicles driving on a
motorway almost entirely consists of uniform regions and horizontal or vertical lines.

5



CHAPTER 1. INTRODUCTION

To increase the importance of this three kinds of features they suggested to produce a
feature vector with three elements at each pixel by applying three filters to the image
prior to building the background model. The filters used where a Gaussian filter and two
Gaussian derivatives in the horizontal and vertical direction respectively. They used the
learning factor approach, or equivalently a first order Kalman filter, with different learning
factors for pixels detected as foreground and pixels detected as background, on each of
the three filter responses separately. One foreground mask were produced for each filter
and the final result were the logical or between the three masks. The use of derivatives
as features has also been considered by Pless et al [62]. In addition to that, they consider
temporal derivatives as well as optical flow.

1.2.3 Mixture of Gaussians

If the background contains for example a swaying tree, the variance estimate, Vt, will be-
come very high, which makes the system more or less blind in those areas. The problem is
that the pixels are sometimes green leaves and sometimes brown branches, and a Gaussian
distribution can’t explain that kind of multi modal variations very well.

Stauffer and Grimson has suggested a method [75] that instead models each pixel as a
mixture of Gaussians, and estimates it using an EM-like algorithm. Wayne and Schoonees
[86] gave a stricter theoretical interpretation of that algorithm pointing out the various
approximations made.

The algorithm is presented for colour images. Here only greyscale images are con-
sidered, but the generalisation to colour images is straightforward [86]. Each pixel is
treated separately. The scene model states that the pixel at each time is viewing one of
n possible surfaces some of which belong to the background such as leaves or branches
on a swaying tree and some to the foreground such as a moving pedestrian. Each of
those surfaces are assumed to generate intensities that are Gaussian distributed. The ob-
served image It will depend on an unknown processes Jt ∈ {1, 2, · · · , n}, specifying
which surface is currently observed. The distribution of Jt is estimated as the discrete
set of probabilities Wt,j = p (Jt = j), and the distribution of the observed image, It,
is assumed Gaussian with estimated mean Bt,j and variance Vt,j that depend on Jt, i.e.
f (It |Jt = j ) = N (It |Bt,j , Vt,j ). This gives the distribution of the observed pixels,

f (It) =
n∑
j=1

Wt,jN (It |Bt,j , Vt,j ) , (1.8)

which is a mixture of both the foreground and the background distributions as some of
the components belong to the background and some to the foreground. The parameters,
Wt,j , Bt,j and Vt,j are continuously estimated from the data. That’s why they depend
on t and what makes the model adapt to changes in the background. The number of
components n has to be specified.
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1.2. FOREGROUND/BACKGROUND SEGMENTATION

The model parameters are updated each frame using a learning factor, c, as follows.
Each pixel, x, in each frame, t, is assigned to the component, Jt (x), it best matches,

Jt = argmaxj (Wt,jN (It |Bt,j , Vt,j )) . (1.9)

The match is considered good enough if

|It −Bt,Jt | < 2.5
√
Vt,Jt (1.10)

and in that case the matched component is updated using

Bt,Jt = cBt−1,Jt + (1− c) It, (1.11)

Vt,Jt = cVt−1,Jt + (1− c) (Bt,Jt − It)2
, (1.12)

Wt,Jt = cWt−1,Jt + (1− c) 1. (1.13)

If the match is not good enough the component with smallest Wt,i/Vt,i is discarded
and replaced with a new component with some default weight and variance while the
mean is set to It. This newly created component is from here on considered the matched
component Jt. All other components, i 6= Jt, that was not matched, are updated using

Bt,j = Bt−1,j , (1.14)

Vt,j = Vt−1,j , (1.15)

Wt,j = cWt−1,j + (1− c) 0. (1.16)

To produce the binary foreground image, Ft, some threshold α is used, that specifies
the minimum amount of time the background is assumed visible in each pixel. The
components are sorted by decreasing Wt,j√

Vt,j
and all components k for which,

k−1∑
j=1

Wt,j < α (1.17)

are considered background components and the rest is foreground components. Finally
Ft(x) is set to 1 if It(x) was matched to a foreground component and it is set to 0 if
It(x) was matched to a background component.

Friedman and Russel [17] have suggested a very similar algorithm, especially targeted
for traffic surveillance. They use n = 3 components and assume that they represent road,
shadow and vehicle. All observations are assumed to originate form one of those three
classes and thus the concept of a good enough match is not needed, e.g. the best matching
component is always updated and components are never replaced. Also, the threshold α,
that specifies the minimum amount of time the background is assumed visible in each
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CHAPTER 1. INTRODUCTION

pixel, is not needed. Instead the component with smallest mean is assumed to be the
shadow component and among the two other components, the one with smallest variance
is assumed to be the road component. This way each pixel is classified into road, shadow
or vehicle and a binary foreground mask can be produced by letting road and shadow
pixels be classified as background and vehicle pixels as foreground.

To allow the number of components n to vary and be automatically estimated in each
frame in Zivkovic [93] has suggested to assume a Dirichlet prior with negative coefficients,
ρj , on the weights, Wt,j , i.e.

f (Wt,1,Wt,2, · · · ,Wt,n) =
1
a

∏
j

W
ρj
t,j , (1.18)

where a is a normalising constant making sure it integrates to 1 and ρj = −ρ is some
parameter that controls how much evidence must be available before a component is
considered visible. That leads to an additional term being introduced into the the weight
update equations. That is Equation 1.13 is replaced by

Wt,j = cWt−1,j + (1− c) 1− (1− c) cT (1.19)

and Equation 1.16 is replaced by

Wt,j = cWt−1,j + (1− c) 0− (1− c) cT , (1.20)

where cT is some constant parameter. This update will suppress components that are
not supported by recent data and when the weight becomes negative the component is
discarded. When a new input pixel cannot be matched to the current set of components
a new component is added instead of removing the one with smallest weight. At each
iteration the remaining weights has to normalised to sum to one.

Faster initialisation

For typical surveillance situations, the learning factor, c, is chosen fairly large to allow
objects to stand still without affecting the background model too much. That means that
the system will need a fair amount of initialisation time after it has been started before it
delivers decent data. When deploying such a system this might not be a problem, since
the system is typically installed and started once and then it will be running continuously
for a long time. But there are some situation, for example during the development of
the system, when it is restarted more frequently. In those cases it is of interest to shorten
the initialisation time. It can be achieved by replacing the learning factor c by a time
dependent learning factor ct = min (1− 1/t, c). This means that during initialisation
the model parameters will be estimated as the mean over the frames observed so far, with
equal weights, and after long time the system will react exactly as before.

8



1.2. FOREGROUND/BACKGROUND SEGMENTATION

Pan-tilt-zoom Cameras

Hayman and Eklundh [25] extends the mixture model to handle pan-tilt rotations of the
camera. This is of interest also for static surveillance cameras as strong wind might cause
them to move slightly. They let the background image Bt be a large mosaic image and
each new input frame It is registered to this mosaic image by identifying feature points.
If this registration could be done perfectly, the above algorithm could be applied as it is.
But that is not the case as there exists imperfections in the camera model and the camera
might undergo subpixel motions.

The background model is still built up using the above registration method, ignoring
the errors, which might cause a slightly blurred model. The difference lies in the matching
of pixels to background models. Let Ît be the registered version of It. The observed pixel
Ît (x) at location x is considered to be an observation of a linear combination of its
neighbouring pixels, xk, with unknown coefficients ak,

Ît (x) =
∑
k

akBt (xk) . (1.21)

The coefficients ak are assumed to be Dirichlet distributed with known parameters and
are eliminated by marginalisation (integrated out). This results in the so called mixel
distribution. It is approximated with a Gaussian distribution with matching mean and
variance, and the rest of the algorithm is used as presented above with the mean and the
variance of the Gaussians replaced with the mean and the variance from this mixel distri-
bution. The order of the different components of the neighbouring pixel are assumed to
be the same and no mixing between different components are made.

Less influence of from foreground objects

Harville [23] has suggested to use feedback from higher level modules of a system to
alter the updating of a Gaussian mixture model. The idea is that after some higher level
processing have been done, there might be some pixels that are guaranteed to contain
foreground and some that are guaranteed to contain background. The mixture models of
pixels guaranteed to contain foreground are not updated at all, while the mixture models
of pixels guaranteed to contain background but detected as foreground is updated at an
accelerated pace.

Huwer and Niemann [28] has suggested to use frame differentiating to detect areas
that are very unlikely to contain background, and don’t update the background model in
those areas. They use a short time learning factor, c, on ∆It = |It − It−1| to produce
Dt = cDt−1 + (1− c) ∆It. It is then thresholded to detect pixels that have changed a
lot during the last few frames and the background model at those pixels are not updated.
The output of the segmentation algorithm could have been used in a similar way to only
update areas where background were detected. But this kind of feedback might enlarge
errors made by the detector. That is, an area erroneously detected as background will be
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even more likely to be detected as background in the next frame as the background model
have been updated in that direction, and similar for erroneously detected foreground. The
suggested approach decouples the background updating from its own detections, which
means that errors made by the detector will not be enlarged in later frames. However, in
traffic surveillance, the main influence of foreground objects on the background model is
when a car stops at a red light and remains motionless for a few minutes. In that case this
approached will not help.

An offline approach were suggested by Farin et al [16], who groups the image into
blocks and considers each block separately. A motion estimation based on block matching
is performed and blocks detected as moving are declared foreground. For each block
Bt ⊂ It, a distance matrix, with elements dt1,t2 = 1

|Bt1 |
∑

x |Bt1 (x)−Bt2 (x)|, over

all frames is created. The intensity value are assumed to be 0 ≤ Bt(x) ≤ 1. From this
matrix the subset of frames, T , where the block is background is found by minimising∑

t1,t2∈T
dt1,t2 +

∑
t1 /∈T or t2 /∈T

(1− dt1,t2) (1.22)

over T under the constraint that the blocks detected as moving may not be placed in T .
The background model can then be built from the frames T only.

1.2.4 Kernel density estimation

Kernel density estimation is a technique to estimate a probability distribution function
from a set of samples without making assumptions about which class of distribution they
belong too. It is described in Section 1.3.1. Elgammal et al [15] has suggested to use this
idea to estimate the background distribution from a set of n recent observations, Isk by

fbg (It |Is1 , · · · , Isn ) =
1
n

n∑
k=1

N (It ∣∣Isk , σ2
)
. (1.23)

The kernel bandwidth σ has to be estimated and it corresponds to the noise level. This
technique applies to colour images as well. In that case the covariance matrix is as-
sumed diagonal and the noise level estimated separately for each channel. The estimate
is performed by looking at the median, m, of differences between consecutive frames,
|It − It−1|. This difference is assumed to be samples from twice the noise level since
both It and It−1 contain noise. This gives the noise level

σ =
m

N−1
cdf (3/4)

√
2
≈ m

0.9539
, (1.24)

where N−1
cdf (x) is the inverse of the normal cumulative distribution function.

Elgammal et al uses two background distributions form in this way. One long term
model that is formed over all observed intensity values over a long time frame and one
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1.2. FOREGROUND/BACKGROUND SEGMENTATION

short term model that is formed over recent observations classified as background only.
For a pixel to be detected as foreground, its likelihood has to be larger than some thresh-
old in both distributions. Also, pixels detected as foreground in the short term model
adjacent to pixel detected as foreground in both models are classified as foreground. A
post processing step is used that removes connected segments from the foreground where
most pixels in the segment matches the background model of a neighbouring pixel. This
allows the system to operate even if the camera is moving slightly.

Another approach were suggested by Sheikh and Shah [69]. They considered each
pixel in each frame, It (x, y) a sample from some distribution over the joint colour and
position space indexed by (x, y, r, g, b), and estimated a probability distribution over this
five dimensional space using kernel density estimation. That results in a system than can
handle small motions of the camera. They build a background distribution, fbg, in this
way from all pixels from the last n frames. They also build a foreground distribution as a
mixture between a uniform distribution and a kernel density estimation formed over all
pixels classified as foreground during the last m frames, with m << n.

Mittal and Paragios [57] have suggested a background foreground algorithm where
the kernel bandwidth depends on the data. To use their approach the features used has to
be measure together with some uncertainty of the measure. They use normalised rgb and
optical flow as features and derive covariance matrices representing the uncertainty of the
measurement uncertainty by assuming a known constant noise level and independence
between the r, g, and b channels of the image. The kernel used is a Gaussian kernel with
covariance matrix equal to the sum of the covariance matrix from the measurement made
in the current frame and covariance matrix of the sample in the background model.

1.2.5 Post processing

Markov random field

When both a foreground distribution, ffg, and a background distribution, fbg, is avail-
able, they can be compared to form a binary background foreground segmentation,
Ft(x), that is one if x is classified as foreground and zero if it is background. The
Bayesian approach is to estimate the probability of foreground as

p (Ft = 1 |It ) =
f (It |Ft = 1) p (Ft = 1)

f (It)
=

=
ffg (It) p (Ft = 1)

ffg (It) p (Ft = 1) + fbg (It) p (Ft = 0)
, (1.25)

and then assume some prior distribution for Ft. A maximum a posterior (MAP) esti-
mate of Ft is found by maximising this probability. If a uniform prior, p (Ft = 1) =
p (Ft = 0) = 0.5, is assumed, it factors out and cancels. If ffg is assumed uniform this
MAP estimation will be a thresholding of the background likelihood as above. Here each
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pixel is treated separated as they are considered independent. The joint distribution over
all pixels would be,

f (Ft(·) |It(·) ) =
∏
x

p (Ft(x) |It(x) ) . (1.26)

To incorporate a smoothness constraint claiming that neighbouring pixels are more
likely to belong to the same class than to different classes, a Markov random filed can be
used as prior. Such priors are formed by choosing some neighbouring structure, N , and
considering all pairs (x,y) ∈ N of neighbouring pixels x and y. For each such pairs
there is 4 possible outcomes of the foreground segmentation, (Ft (x) , Ft (y)), namely
(0, 0), (0, 1), (1, 0) and (1, 1). By placing a higher likelihood on (0, 0) and (1, 1) than
on (0, 1) and (1, 0), smoother segmentations that contains few transitions between back-
ground and foreground will be preferred over segmentations with a lot of small segments.

In this case the the pixels will no longer be independent and the joint distribution over
all pixels has to be considered. This was suggested by Sheikh and Shah [69], who uses
a Ising model prior as the smoothness constraint. It has a single parameter λ specifying
how regular the foreground objects are expected to be, and is formed by a product over
all neighbouring pixels x and y.

f (Ft(·)) =
1
k

∏
(x,y)∈N

eλ(Ft(x)Ft(y)−(1−Ft(x))(1−Ft(y))), (1.27)

where k is some constant making sure
∑
Ft(·) f (Ft(·)) = 1. The sum is taken over

all possible segmentations Ft(·). The probability distribution of the observed image can
be found by assuming the pixel intensities, It, to be conditional independent given the
segmentation Ft,

f (It (·) |Ft (·) ) =
∏
x

ffg (It (x))Ft(x)
fbg (It (x))1−Ft(x)

. (1.28)

Bayes Law gives the posterior distribution

f (Ft (·) |It (·) ) =
1
k
f (It (·) |Ft (·) ) f (Ft (·)) , (1.29)

where k is some constant making sure
∑
Ft(·) f (Ft(·) |It (·) ) = 1. A maximum a pos-

terior estimate of Ft (·) can then be found by optimising this likelihood over all possible
segmentations Ft (·), which can be done very efficiently using dynamic graph cuts [45].

Connected Segments

Another approach is to extract connected segments from the binary foreground back-
ground segmentation image, and assume that they represent separate objects. Then use
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some prior knowledge about the objects that are typically observed in the scene to discard
connected segments that does not fit this prior knowledge.

One typical feature to use here is the size of the connected segment and discard small
connected segments. A more general heuristics were suggested by Javed et al [35] that
assumed that the image grey level gradient is high at object borders. They use a Gaus-
sian mixture model to model the image intensity in the same way as is presented above,
and using it connected segments are extracted. The parameters of this model are esti-
mated as above and from those parameters they calculate the parameters of a Gaussian
mixture model describing the image grey level gradients (no extra parameters have to
be measured). The gradients mixture model is used to classify the border pixels of each
connected segment as foreground or background. If a significant part of a connected
segments’ border is classified as background by these gradient features it is discarded. By
also requiring that the grey level gradient magnitude along the border has to be large they
can discard connected segments arising from new background becoming visible when a
previously stationary objects starts moving.

1.2.6 Lighting variations

One major problem with these methods is that on cloudy, windy days, the changing cloud
cover causes the lighting conditions to vary faster than the algorithm adopts and thus large
cloud shadows turn up as foreground objects. Also, shadows cast by the objects themself
is typically detected as foreground, which might be undesirable. One way to attack that
problem is to build a background model not on the intensity values directly but on some
more lighting independent features. For Colour images different colour spaces can be
used. One common example [57, 19, 15] is normalised rgb which replaced the r, g and
b intensity values with r

r+g+b , g
r+g+b and b

r+g+b . In some cases removing all intensity
information like this is considered too much and the luminance feature y = r + g + b
is also introduced, and large enough variations in this parameters is also classified as
foreground. Other features that also is intensity independent is optical flow [57, 62]
and stereo disparity (depth) [19].

Colour spaces

Kumar et al [49] have compared how a background foreground system that estimates
a single Gaussian and its variance as background model performs using five different
colour spaces. Some heuristics for shadow detection, different for each colour space were
also used. The colour spaces compared were RGB, XYZ, YCbCr, HSV and normalised
RGB. The first three are related with linear mapping and should theoretically give the
same performance if complete covariance matrices are estimated. Often the covariance
matrices are assumed to be diagonal though, and this is the case in [49] as well. In that
case YCbCr gives the best result because these colours are most independent and thus the
diagonal covariance matrix approximation fits the real covariance matrix better.
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1.2.7 Multiple different models

Hu et al [27] has suggested to use 3 different models to describe different parts of the
background with different properties. Each pixel x in the image is associated with a patch,
Px, centred around the pixel. This patch is classified into one of sketchable, textured or
flat. The classification is performed by first identifying the sketchable patches. Then
among the remaining patches a threshold on the intensity spacial variance over the patch
is used to separate the textured (high variance) patches from the flat (low variance).

For the sketchable patches a set of predefined prototypes, Qi, is used and consists of
for example bars, edges and L-junctions rotated into 8 different orientations. They are
binary masks consisting of the values −1 and 1. The feature response, r of a prototype
on a image patch is defined as

∑
y Qi (y)Px (y). Each sketchable patch is assigned to a

prototype and the response r for this combination is assumed laplacian distributed. The
parameters of this distribution is continuously updated using a learning factor.

For the flat patches, they are modelled with a single mixture of Gaussians for the
entire patch in the same manner as single pixels were modelled above. For the textured
patches the histogram, h, over some modified local binary patterns are used as features.
The temporal mean m over those histograms is maintained using a learning factor. The
difference between two histograms is defined as

d
(
h, ĥ

)
=
∑
i

min
(
hi, ĥi

)
. (1.30)

A variability measure, s, is maintained using a learning factor on d (h,m), and the clas-
sification into foreground or background is performed by thresholding d (h,m) /s.

1.2.8 Discussion

Manny intensity independent features break down in dark areas. Take for example the
normalised rgb. When r, g and b all are small, the denominator becomes close to zero
thus the noise is scaled up out of proportion. Gordon et al [19] has suggested to ignore
normalised rgb features in dark areas and there rely on other features instead. In their case
the results from a stereo matching algorithm. Some fix threshold were used to decide if
the features were reliable or not. In the same fashion Hu et al [27] used 3 different models
for background patches with different amount of structures. Also, Wayne and Schoonees
[86] suggests to use two thresholds on the background likelihood to classify pixel into
background, foreground and unknown depending on how close the background model
the current frame is. The unknown pixels are then filled in a morphological post process-
ing step based on their neighbours.

All features are unreliable in some cases, such as when there is no structure or the
foreground happens to be fairly close to the background. However many features can be
very reliable in other cases when there is a lot of structure or a big difference between
the foreground object and the background. This property of sometimes being unreliable
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and sometimes being very reliable is not a discrete property. It is a property that varies
continuously from for example a lot of structure to uniform. This can be utilised much
more efficiently by instead of thresholding the features into reliable and not reliable, using
a continuous estimate of how reliable they are and weight the different features accord-
ingly.

In this thesis it is suggested to use normalised cross correlation. It is independent both
to translations and scaling of the intensity domain, which makes it lighting independent
for the ideal camera. The background and foreground distribution for this feature is de-
rived in Chapter 2 and it depends on a single parameter, the signal to noise ratio. Here
the signal refers to the amount of structure in the patch. This makes it possible to use this
feature for all patches even if the amount of structure is low. In that case the foreground
probability will be close to 0.5 and represent an uncertain state. The segmentation will
then rely more on other features or on neighbours using Markov random fields. This
means that there will be no need to chose between several different distinct models. In-
stead the signal to noise ratio is measured and a single parametrised model will move
continuously from being very certain about highly structured patches to being very un-
sure about uniform patches.

1.3 Tracking

Many classical tracking algorithms are based on continuous state space methods. In this
case a state space, S, is constructed, typically chosen to be Rn. The elements of this space,
q ∈ S, are vectors representing the state of the object being tracked. The coordinates of
those vectors represents properties like the position, speed and orientation of the object.
A discrete time stochastic Markov process is constructed by considering the state of the
object, qt, at discrete times, t, and introducing a dynamic model stating that

qt = h (qt−1,wt) , (1.31)

where h (·) can be almost any function and wt ∈ Rn is the model noise process. At each
time step observations, ot ∈ Rm, are made, from some observations function

ot = o (qt,vt) , (1.32)

with observation noise vt ∈ Rm. Note that the dimension of the state space does not
have to be the same as the dimension of the observation space, e.g. typically n 6= m.
An equivalent way of formulating this model is to instead of specifying h (·) and o (·),
specifying the probability distribution functions f (qt |qt−1 ) and f (ot |qt ). The re-
lationship between the two formulations can be expressed using an inverse function
wt = h̃ (qt−1,qt) that together with qt = h (qt−1,wt) forms a bijective mapping
between wt and qt for any given qt−1. Also, an inverse function vt = õ (qt,ot) that
together with ot = o (qt,vt) forms a bijective mapping between vt and ot for any given
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qt is needed. If these two bijections exists and are differentiable, the two formulations are
related by [74]

f (qt |qt−1 ) = fw

(
h̃ (qt−1,qt)

) ∣∣∣∣∣ dh̃
dqt

∣∣∣∣∣ , (1.33)

f (ot |qt ) = fv (õ (ot,qt))
∣∣∣∣ dõ
dot

∣∣∣∣ , (1.34)

where fw (·) and fv (·) are the probability distributions of the noise processes wt and vt
respectively. The tracking problem is then often stated as

Problem 1.1. Given past observation from time 0 to time t, denotedO0···t = {o0, · · · ,ot},
find the expected value of the probability distribution of the current state, f (qt |O0···t ),

q̂t =
∫

S
qf (q |O0···t ) dq. (1.35)

In this thesis the tracking problem will instead be formulated in a somewhat more
ambitions way.

Problem 1.2. Given all (past and future) observations from time 0 to time τ →∞, denoted
O0···τ , find the state sequence, Q∗0···τ = (q∗0 , . . . , q

∗
τ ), that maximises the likelihood

f (Q0···τ |O0···τ ) . (1.36)

That is, instead of the classical solution of using a filter to smooth the observed data,
we want to optimise over all possible sequences of states. This chapter will however begin
with an overview of the classical methods.

1.3.1 Single target

Kalman Filter

If h (·) and o (·) are linear functions and the noise processes, wt and vt are Gaussian,
the solution can be found algebraically using the Kalman filter [39]. A good introduction
to Kalman filters can be found in [87]. The dynamics, h (·), is in this case a linear
transformation of the previous state with coefficient matrix H, and additive Gaussian
noise, wt, with mean 0 and covariance matrix Q, i.e

qt = Hqt−1 + wt, (1.37)

fw (wt) = N (wt |0,Q ) . (1.38)

The observation is defined as a linear transformation of the current state with coordinate
matrix O, and additive Gaussian noise, vt, with mean 0 and covariance matrix R, i.e

ot = Oqt + vt, (1.39)
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fv (vt) = N (vt |0,R ) . (1.40)

Using the equivalent formulation mentioned above, the same model can be expressed as

f (qt |qt−1 ) = N (qt |Hqt−1,Q ) , (1.41)

f (ot |qt ) = N (ot |Oqt,R ) . (1.42)

The probability distribution for time t = 0 is assumed to be to be Gaussian, f (q0 |o0 ) =
N (q0 |q̂0,P0 ) with known parameters q̂0 and P0.

The algorithm then propagates the previous distribution function, f (qt−1 |O0···t−1 ) =
N (qt−1 |q̂t−1,Pt−1 ) forward in time using the dynamic model and thereby gets a pre-
diction, q̂−t , of where the object is located at the current time t before the current obser-
vation have been considered,

f (qt |O0···t−1 ) = N (qt ∣∣q̂−t ,P−t ) , (1.43)

where
q̂−t = Hq̂t−1, (1.44)

P−t = HPt−1HT + Q. (1.45)

This prediction is then compared with the current observation and the innovation, dt =
ot −Oq̂−t , together with the Kalman gain, Kt = P−t OT

(
OP−t OT + R

)−1
, is used

to include the additional information of the observation in the current frame, resulting
in

f (qt |O0···t ) = N (qt |q̂t,Pt ) , (1.46)

where
q̂t = q̂−t + Ktdt, (1.47)

Pt = (I−KtO) P−t . (1.48)

Extended Kalman Filter

If the dynamics or observations are not linear, approximative solutions can be found by
linearising around the current state. This is achieved by letting H and O be the jacobians
of the corresponding functions, and is called the extended Kalman filter or EKF [36]. H
and O will now vary over time.

The model would in this case be very general,

qt = h (qt−1,wt) , (1.49)

zt = o (qt,vt) . (1.50)
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The function h (·) is linearised around (q̂t−1,0), and its jacobian is split into two ma-
trices Ht and Wt corresponding to the qt−1 and wt variables respectively,

∆h
∣∣
(q̂t−1,0) =

(
Ht Wt

)
. (1.51)

The prediction equations becomes

q̂−t = h (q̂t−1, 0) , (1.52)

P−t = HtPt−1HT
t + WtQtWT

t . (1.53)

The function o (·) can then be linearised around this predicted value, and as before, the
jacobian is split into to parts corresponding to the the q−t and vt variables respectively,

∆o
∣∣∣(q̂−t−1,0) =

(
Ot Vt

)
. (1.54)

The innovation becomes dt = ot − o
(
q̂−t ,0

)
, and the Kalman gain

Kt = P−t OT
t

(
OtP−t OT

t + VtRVT
t

)−1
. (1.55)

Finally, the update equations are the same as before

q̂t = q̂−t + Ktdt, (1.56)

Pt = (I−KtOt) P−t . (1.57)

This only gives approximative solutions and might fail to generate usable results alto-
gether.

Probabilistic Data Association Filter

Using for example the detections from an object detector as the observation in a Kalman
filter might be tricky, even if there is only one object present. The detector might generate
false detections on the background, often called clutter, and/or it might not detect the true
object. The later can be handled by only using the prediction step and letting q̂t = q̂−t
and P̂t = P̂−t . If there is only a few false detections, it might be possible to remove
the false detections by simply choosing the detection closest to the predicted observation,
o−t = Oq−t . In heavy clutter, e.g. a lot of false detection, this does not work because the
probability of choosing one of the false detections instead of the correct detection will be
too big.

Instead, all detections sufficiently close to o−t has to be considered. This is done by
the Probabilistic Data Association Filter, PDAF [3]. The distribution of the detection, ot,
given the prediction o−t is also Gaussian (or approximated as Gaussian in the non-linear
case), with covariance St = OP−t OT + R,

f
(
ot
∣∣o−t ,St ) = N (ot ∣∣o−t ,St ) . (1.58)
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The PDAF algorithm uses a constant γ and considers all detections for which dTt S−1
t dt ≤

γ, with dt = ot − o−t the innovation as before. This criteria forms an ellipse outside
which the observations are discarded. This ellipse is often called a validation gate. The
probability of the true observation, i.e. a sample from the distribution function (1.58),
being discarded is α1 = Fχ2 (γ), where Fχ2 (·) is the χ2 cumulative distribution func-
tion. Typically the γ parameter is chosen by calculating it from a desired value of α1

using this relation.
There will now be nt observation in frame t. They will be denoted ot,i for i =

1, 2, · · · , nt, and the set of all of them is denoted Ot,∗ = {ot,1,ot,1, · · · ,ot,nt}. The
corresponding innovations are denoted dt,i = ot,i − o−t . The probability distribution
of those observations given that they originated from the tracked object is a truncated
Gaussian distribution, since observation outside the validation gate have been discarded,

f
(
ot,i

∣∣o−t ,St ) =
{

1
1−α1

N (ot,i ∣∣o−t ,St ) dTt,iS
−1
t dt,i ≤ γ

0 otherwise
. (1.59)

The PDAF is derived by assuming that i) the false detections are uniformly distributed
over the image with area v, ii) the detector will fail to detect the object with probability
α2, and iii) a single object will never generate more than one detection. Under these
assumptions, there is nt + 1 mutually exclusive events, Ai, with i = 0, 1, · · · , nt. The
event A0 is that the object is not detected at all within the validation gate, and the
event Ai, i > 0, is that ot,i is the correct detection. The likelihood of those events,
f
(Ai ∣∣Ot,∗,o−t ), is (see [3] for details)

βt,i =
1
c

{
f
(
ot,i

∣∣o−t ) i > 0
nt
v
α1+α2−α1α2
(1−α1)(1−α2) i = 0 , (1.60)

where c is a normalising constant making sure that
∑nt
i=0 βt,i = 1. A synthesised inno-

vation is then calculated as the weighted mean over all innovations,

dt = βt,00 +
nt∑
i=1

βt,idt,i. (1.61)

The innovation of the event that the object is not detected is set to 0, which would
correspond to using the prediction only. This synthesised innovation is then used by the
Kalman filter to update the mean estimate, q̂t and its covariance matrix, Pt. Finally the
covariance matrix, Pt is increased to incorporate the additional uncertainty introduced by
no longer having a single observation that with probability 1 comes form the observation
model. This means that Pt has to be replaced by Pt + P′t, with

P′t = Wt

(
nk∑
i=1

βt,idt,idTt,i − dtdTt

)
WT

t , (1.62)

Wt = P−t OTS−1
t . (1.63)
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Monte-Carlo Integration

In many situations approximating distributions as Gaussian is too much of an approx-
imation. Especially in cases where there is need to represent multiple hypothesis. In
those cases multi modal distributions are needed, and very often the distributions be-
come too complicated to handle analytically. In those cases other approximations are
needed. Monte-Carlo integration is a technique to calculate expected values from any
distribution it is possible to draw samples from. The expected value of some function
g () of a stochastic variable q, denoted E (g (q)), with probability distribution f (q) is
approximated using

E (g (q)) =
∫
g (q) f (q) dq ≈ 1

n

n∑
i=1

g (qi) , (1.64)

where qi are independent samples from f (q). This approximation will converge to the
expected value in mean square error sense as n→∞.

Importance Sampling

If the distribution of interest, f (q) is too complicated to draw samples from or if the
convergence rate of the Monte-Carlo integration is too slow, importance sampling can be
used. The idea is to sample from some other distribution, f̂ (q), instead and then use the
same approximation on∫

g (q) f (q) dq =
∫
g (q) f (q)

f̂ (q)
f̂ (q) dq ≈ 1

n

n∑
i=1

f (qi)

f̂ (qi)
g (qi) . (1.65)

Here qi are independent samples from f̂ (q) instead. The probability distribution f̂ (q)
is often called the importance function and can be almost any distribution as long as the
integrand above stays bounded, which means that f̂ (q) > 0 for all q. The convergence
time of the importance sampling will be significantly faster if f̂ (q) is chosen as close as
possible to g (q) f (q). That will concentrate the samples to the areas where the integrand
is large and thus the information gained from each sample is maximised.

Markov Chain Monte-Carlo

The above methods requires independent samples from some distribution fs (q). In
many cases that distribution is quite complex and it might be hard to generate indepen-
dent samples from it. It is however possible to construct a Markov-chain that has fs (q)
as its stationary distribution. The samples generated from such a Markov chain will not
be independent. In fact, they are typically highly correlated. But if the Markov chain
is ergodic (its temporal mean equals its ensemble mean) the Monte Carlo integration
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approximation will still converge, although it will converge much slower because of this
dependency between the samples.

For a Markov-chain to have the stationary distribution fs (q) this distribution must
be preserved by the transition distribution, f (qt |qt−1 ). This means that if qt−1 is
distributed according to this stationary distribution, fqt−1 (q) = fs (q), then so is
qt, fqt (q) = fs (q). This puts some demands on f (qt |qt−1 ), because fqt (qt) =
f (qt |qt−1 ) fqt−1 (qt−1) means that

fs (qt) = f (qt |qt−1 ) fs (qt−1) . (1.66)

This is often assured by making the transition distribution satisfy the the stronger global
balance condition,

f (qt |qt−1 ) fs (qt−1) = f (qt−1 |qt ) fs (qt) , (1.67)

which implies Equation 1.66.
A transition distribution fulfilling this can be constructed using the Metropolis-Hastings

algorithm [24]. It uses a proposal distribution f̃ (qt |qt−1 ), that is sampled once every
time step to suggest a movement and then the movement is accepted with probability

α(qt,qt−1) = min

(
1,

f̃ (qt−1 |qt ) fs (qt)
f̃ (qt |qt−1 ) fs (qt−1)

)
. (1.68)

If the movement is not accepted at time t, then qt = qt−1. The proposal distribution
f̃ (qt |qt−1 ), can be almost anything as long as the resulting Markov-chain becomes
irreducible (any state can be reached from any other state) and aperiodic (there is no
state with a period greater than 1). A state has period k if all cycles returning to it are
multiples of k time steps. The choice of f̃ (qt |qt−1 ) affects the convergence time quite
significantly though. Also note that for the fraction in (1.68) to be defined the following
statement must hold for all qt and qt−1,

f̃ (qt |qt−1 ) 6= 0 ⇔ f̃ (qt−1 |qt ) 6= 0. (1.69)

More about Markov Chain Monte-Carlo can be found in [71].

Particle Filter

The Monte-Carlo idea of representing an arbitrary distribution as a set of samples from
it can be extended to time series and can then handle non-linear dynamics as well as
non-linear observations function. This has been done by Gordon et al [20] who called it
the bayesian bootstrap filter and by Kitagawa [43] who called it Monte Carlo filtering. The
technique have been made popular for tracking algorithms in the vision community by
Isard and Blake [31] who called it condensation. Today it is more commonly known as
the particle filter.
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The distribution of interest f (qt |O0···t ) is represented with a set of m samples

called particles, St =
{

q(1)
t ,q(2)

t , · · · ,q(m)
t

}
. The distribution of the first frame, S0,

is assumed to be known, and the algorithm works in the same general manner as the
Kalman filter. The distribution of the previous frame, St−1 is propagated forward to the
next frame by applying some state transfer function h (·), Equation 1.31, to each of the

particles in St−1 using random samples, w(j)
t , for the noise distribution. This forms a

prediction distribution,

S−t =
{

q−(j)
t = h

(
q(j)
t ,w(j)

t

)
|j = 1 · · ·m

}
, (1.70)

representing the distribution f (qt |O0···t−1 ). One weight, α(j)
t , for each of the elements

of S−t is then generated from the observation probabilities,

α
(j)
t = f

(
ot
∣∣∣q−(j)
t

)
. (1.71)

Finally, St is generated by randomly choosing a single sample from S−t m times. The
weights are used to define the probabilities of choosing each particle. That is, the particle

q−(j)
t is chosen with probability

α
(j)
t∑m

j=1 α
(j)
t

. (1.72)

The same sample might be chosen several times in which case St will contain several
identical particles. To follow this approach strictly, the final step would be to approximate
the expected value of f (qt |O0···t ), denoted q̂t, as the mean of the elements in St, e.g.
1
m

∑m
j=1 q(j)

t . However it is more common to estimate the mean as a weighted mean
over S−t ,

q̂t =
m∑
j=1

α
(j)
t q−(j)

t , (1.73)

which utilises the generated samples better.

Importance Sampled Particle Filter

The notion of importance sampling also extends naturally to time series, and the im-
proved convergence rate means that the number of samples, m, can be kept down.
This is especially useful when the dimension of the state space is high in which case a
lot of particles have to be used. Some importance function f̂ (qt) is needed. It may
be almost any distribution and can depend on the observations O0···t e.g. f̂ (qt) =
f̂ (qt |O0···t ). In the particle filter, the prediction step generates a set of samples, S−t ,

from f (qt |O1···t−1 ). This is with importance sampling replaced with samples, q−(j)
t ,
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from f̂ (qt) instead. According to the importance sampling algorithm, this set has to be
weighted. Those weights can be introduced as additional factors in the α weights already
used by the particle filter, e.g.

α
(j)
t =

f
(
q−(j)
t |O1···t−1

)
f̂
(
q−(j)
t

) f
(
ot
∣∣∣q−(j)
t

)
. (1.74)

The original prediction likelihood, f
(
q−(j)
t |O1···t−1

)
, could be calculated from

St−1 as
∑m
j=i f

(
q−(j)
t

∣∣∣q(i)
t−1

)
but as before with the expected value, better accuracy is

achieved by estimating it from S−t−1,

f
(
q−(j)
t |O1···t−1

)
=

m∑
j=i

α
(j)
t f

(
q−(j)
t

∣∣∣q−(i)
t−1

)
. (1.75)

Kernel density estimation

There exists quite a lot of algorithms to estimate the full continuous distribution f (x)
from a set of samples X =

{
x(1), x(2), · · ·}. One of the simplest methods is to use a

histogram. In that case the estimated distribution will depend on how the bins ak are
chosen. Typically a starting value a0 and a bandwidth, dx, are specified manually and
then the centre points of the bins are defined as ak = a0 +kdx. A histogram h(·) is then
defined as

h (ak) =
|X |∑
i=1

{
1 if ak − dx

2 ≤ x(i) < ak + dx
2

0 otherwise
, (1.76)

and the estimate can made by introducing the box kernel function

fbox (x |x0, dx ) =
{

1
dx

if x0 − dx
2 ≤ x < x0 + dx

2

0 otherwise
, (1.77)

and make the estimation from the normalised histogram

f (x) ≈
∑
ak

h (ak)
|X | fbox (x |ak, dx ) =

1
|X |

|X |∑
i=1

fbox

(
x
∣∣∣[x(i)

]
, dx

)
, (1.78)

where
[
x(i)
]

denotes rounding to the closest bin ak. This estimation will depend on the
starting point, a0 and the bandwidth dx. To get rid of the dependency on a0, the kernel
can be centred around each of the data points instead. This is known as the box kernel
density estimation,

f (x) ≈ 1
|X |

|X |∑
i=1

fbox

(
x
∣∣∣x(i), dx

)
. (1.79)
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Figure 1.1: 10 samples (red stars) from N (x ∣∣0, 1
2

)
(black dashed) and the probability

distribution of x estimated using histogram (cyan), box kernel density estimation (red)
and Gaussian kernel density estimation (blue).

It still depends on the bandwidth which has to be specified. To get a smoother estimate,
the box kernel can be replaced with for example a Gaussian kernel. In that case the band-
width parameter will control the variance of the Gaussian kernel. Figure 1.1 compares
the three different method on on synthetic data.

Another way to view the kernel density estimation is to consider the task of measuring
some value x, such as for example the centre position of a car. If several measurements x(i)

are made, each of them provide information on the true value x in form of fi
(
x
∣∣x(i)

)
,

which could be considered an approximation of the probability distribution f (x). The
contributions from the different measurements can then be combined by approximating
f (x) as the mean over the distributions fi

(
x
∣∣x(i)

)
,

f (x) ≈ 1
|X |

|X |∑
i=1

fi

(
x
∣∣∣x(i)

)
. (1.80)

If measurement are made with for example Gaussian noise with some known variance, v,
it is natural to chose fi

(
x
∣∣x(i)

)
to be Gaussian distributed with mean x(i) and variance v

for all i. This will give the kernel density estimation, and it indicates how the bandwidth
(variance of the kernel) should be chosen. But it is also possible to let fi

(
x
∣∣x(i)

)
be

different distributions for different i if the measurements are performed in different ways
with different precision.

This can be formalised by assuming that there exists outliers in the measurements and
use a Bayesian approach. In that case the task is to estimate f (x |X ) where the distribu-
tion of the samples given a known x is assumed to be either of some known distribution,
fi
(
x(i) |x), (for example N (x(i) |x, v )) or outliers drawn from any distribution. The

samples are also assumed to be conditional independent, conditioned on x, which means
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that the distributions fi
(
x(i) |x) and fj

(
x(j) |x) are independent if i 6= j. If X ′ ⊂ X

are the inliers, Bayes rule gives

f (x |X ′ ) =
f (X ′ |x ) f (x)

f (X ′) =
1
c

|X ′|∏
i=1

f
(
x(i) |x

)
, (1.81)

where the prior, f (x) has been assumed uniform and c is a constant making sure that∫
f (x |X ′ ) dx = 1. The distribution f (x |X ), can be found by assuming some prior

over the inlier subsets, and integrating out the assignments of samples into inliers and
outliers,

f (x |X ) =
∑
X ′⊂X

f (x |X ′ ) f (X ′ |X ) . (1.82)

If the prior f (X ′ |X ) is chosen as uniform over all possible subsets of X , this sum will
have 2|X | terms. Here |X | can be quite large if for example all feature points extracted
from an image are considered. In many cases however the object of interest only consti-
tutes a small part of the image which means that using a prior that puts higher likelihoods
on subsets with a smaller number of inliers makes sense. Taking that to its extreme by
assuming that exactly one of the measurements is an inlier and letting f (X ′) be uniform
over all single element subsets gives the kernel density estimation equation

f (x |X ) =
1
|X |

|X |∑
i=1

fi

(
x
∣∣∣x(i)

)
. (1.83)

This prior assumptions holds even if there are more than one inlier since the outliers
are assumed to come from any distribution, including the inlier distribution. It might
however be possible to increase the accuracy of the estimator by relaxing this assump-
tion. Assuming 1-2 inliers will however increase the computational time from linear to
quadratic. But the execution time can be kept down by using a prior that only assign pos-
itive priors to sets X ′ with elements close to each other. Almost linear performance can
be achieved by sorting the set of samples and breaking the recursion when the difference
becomes too big. Figure 1.2 compares a few different prior assumptions.

Example: Condensation and iCondensation

Isard and Blake [31] uses a particle filter to track a single curve, typically the occluding
border of some object. The state space, S, consists of some set of B-spline curves. Such
curves are parametrised by a set of control points, which means that each state q ∈ S
corresponds to a set of b control points, (xk, yk) ∈ R2,

(x,y) = (x1, x2, · · · , xb, y1, y2, · · · , yb) (1.84)

25



CHAPTER 1. INTRODUCTION

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 1.2: 5 samples fromN (x |5, 1) (black dashed) mixed with 25(left)/50(right) uni-
formly distributed outliers, X (red stars), and estimates of f (x |X ) using Equation 1.82
with kernels fi

(
x
∣∣x(i)

)
= N (x ∣∣x(i), 1

)
and three different priors f (X ′ |X ): (i) Ex-

actly one inlier uniformly over all samples (blue). (ii) Exactly two inliers uniformly over
all two element subsets (cyan). (iii) Exactly two inliers with the prior of X ′ = {a, b}
proportional to N (a ∣∣a+b

2 , 1
)N (b ∣∣a+b

2 , 1
)

(red).

The B-spline curve, Bq (s), 0 ≤ s ≤ b is defined by interpolating between the control
points using polynomials, where the polynomials are constructed in a way that makes
their first and some higher order derivatives match on the junction points. This makes
the curves smooth and without corners. Unfortunately, letting S consist of all such curves
makes it too big and leads to unstable tracking. The space can be reduced by for example
performing PCA on a set of representative curves and only keeping the a first principal
components. This will give a mean shape q̄ = (x̄, ȳ) and a matrix of variation modes
W, that gives the control points

(x,y) = q̄ + qW (1.85)

from a state vector of coefficients

q = (c1, c2, · · · ca) ∈ Ra = S. (1.86)

Another possibility is to to consider some given curve q̄ = (x̄, ȳ) under affine transfor-
mations. This is done by letting

W =



0bT 1bT

1bT 0bT

x̄ 0bT

0bT ȳ
0bT x̄
ȳ 0bT

 , (1.87)
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where 0bT and 1bT are b dimensional row vectors containing only zeroes or ones respec-
tively.

The dynamic model used is linear and constructed by assuming that the accelerations
of the coefficients, ck, is Gaussian distributed with mean zero. This implies that the state
q also contains the velocities. But it can also be achieved by letting qt depend on both
qt−1 and qt−2. With some coefficient matrix H, the dynamic model becomes

qt = H
(

qt−1

qt−2

)
+ wt, (1.88)

where wt as before is Gaussian distributed noise with mean 0 and covariation matrix Q.
The parameters H, q̄ and Q can be learnt offline from training data as described in [5].

The observations are greyscale images, ot, and the observation likelihoods f (ot |qt )
are generated using a one dimensional feature point detector that detect high contrast
features, such as edges. Given a state qt, it translates into a curve Bqt (s), 0 ≤ s ≤ b.
Along this curve d equally spaced points at s = i

d for i = 1, 2, · · · , d is considered. At
each such point, Bqt

(
i
d

)
, the feature point detector is used to find the feature point, xi,

closest to Bqt

(
i
d

)
along the curve normal. It is then assumed that xi with probability α

originating from the tracked curved and with probability 1 − α originates from clutter.
If it originates from the tracked curve, it is assumed to be Gaussian distributed along the
normal with meanBqt

(
i
d

)
and some variance σ. If it originates from clutter it is assumed

uniformly distributed along the normal with spatial density λ. The feature points are all
assumed independent, which gives

f (ot |qt ) =
d∏
i=1

(1− α)λ+
α√
2πσ

e−
1
σ2 |Bqt( id )−xi|2 . (1.89)

Once the prediction function, Equation 1.88, and an observation likelihood, Equa-
tion 1.89 are given, the particle filter algorithm from Section 1.3.1 can be applied to
estimate f (qt |O0···t ) and its mean, q̂t. The output of the algorithm is the curves
Bq̂t (s).

Isard and Blake extends [31] this algorithm to use importance sampling and calls the
extended version icondensation. This is done in the framework of hand-tracking where
the curve to be tracked is the outline of the hand. The importance function f̂ (qt) is
constructed from a skin colour blob detector, that detects regions in the image that is skin
coloured. The number of detected regions is denoted n, and for each such region its mass
centre, bk is calculated.

The state variables q = (c1, c2, · · · , ca) are partitioned into two sets of variables
corresponding to the translation, qT, and deformation, qD respectively. If W in the
form from Equation 1.87 is used, this means qT = (c1, c2) and qD = (c3, c4, c5, c6).

The relationship between the skin colour blob mass centre, bk, and the centroid of
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the tracked curve, qT
t is assumed to be Gaussian,

f
(
qT
t |bk

)
= N (qT

t − bk |µ,Σ
)
, (1.90)

where the parameters µ and Σ is learnt by manually extracting curves from training
images and comparing their centroid with the blob mass centres extracted by the blob
detector. The importance function for the fist part of the state vector is defined as a
mixture over all detected blobs,

f̂
(
qT
t

)
=

n∑
k=1

1
n
N (qT

t − bk |µ,Σ
)
. (1.91)

The distribution of the remaining coefficients, qD
t , is copied from the original distribution

f
(
q−t |O1···t−1

)
,

f̂
(
qD
t

)
=
∫

R2
f (qt |O1···t−1 ) dqT

t , (1.92)

and the full importance function is

f̂ (qt) = f̂
(
qT
t

)
f̂
(
qD
t

)
. (1.93)

This distribution can be simulated from by using the samples from f (qt |O1···t−1 ) in
S−t and then replacing qT

t in those samples with samples from f̂
(
qT
t

)
.

To estimate the weights, α(j)
t , the importance function has to be evaluated at the

samples, q−(j)
t ,

f̂
(
q−(j)
t

)
= f̂

(
qT−(j)
t

)
f̂
(
qD−(j)
t

)
, (1.94)

The first factor is given by Equation 1.91. The second factor is somewhat more com-
plicated. In order to make it possible to evaluate it in an efficient way, the distributions
f
(
qT
t

∣∣qT
t−1

)
and f

(
qD
t

∣∣qD
t−1

)
are assumed to be independent. This assumption is

true if the coefficient matrix of the dynamic model, H, can be written in the block matrix
form

H =
(

HT
−1 0 HT

−2 0
0 HD

−1 0 HD
−2

)
, (1.95)

and the noise covariation matrix, Q can be written in the block matrix form

Q =
(

QT
−1 0
0 QD

−1

)
. (1.96)

The prediction probability f (qt |qt−1 ) can then be split into

f (qt |qt−1 ) = f
(
qT
t

∣∣qT
t−1

)
f
(
qD
t

∣∣qD
t−1

)
. (1.97)
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This makes it possible to calculate the second factor f̂
(
qD
)

using the samples in S−t−1,
e.g.

f̂
(
qD−(j)
t

)
=
∑
i

α
(i)
t−1f

(
qD−(j)
t

∣∣∣qD−(i)
t−1

)
. (1.98)

Also, the distribution, f
(
q−t |O1···t−1

)
, from which the samples originally was drawn,

needs to be evaluated. This can also be achieved by using the the samples in S−t−1, e.g.

f
(
q−(j)
t |O1···t−1

)
=
∑
i

α
(i)
t−1f

(
q−(j)
t

∣∣∣q−(i)
t−1

)
. (1.99)

The weights, α(i)
t are then given by Equation 1.74,

α
(j)
t =

1

f̂
(
qT−(j)
t

) ∑
i α

(i)
t−1f

(
q−(j)
t

∣∣∣q−(i)
t−1

)
∑
i α

(i)
t−1f

(
qD−(j)
t

∣∣∣qD−(i)
t−1

)f (ot
∣∣∣q−(j)
t

)
. (1.100)

This expression is then approximated by assuming the two distributions f
(
qT−(j)
t |O1···t−1

)
and f

(
qD−(j)
t |O1···t−1

)
to be independent,

f
(
q−(j)
t |O1···t−1

)
≈ f

(
qT−(j)
t |O1···t−1

)
f
(
qD−(j)
t |O1···t−1

)
. (1.101)

This contradicts the idea allowing the particle filter to maintain several hypothe-
sis coupling position and shape, but seems to give good results in practise. The factor∑
i α

(i)
t−1f

(
qD−(j)
t

∣∣∣qD−(i)
t−1

)
in Equation 1.100 will now cancel and give

α
(j)
t ≈

∑
i α

(i)
t−1f

(
qT−(j)
t

∣∣∣qT−(i)
t−1

)
f̂
(
qT−(j)
t

) f
(
ot
∣∣∣q−(j)
t

)
. (1.102)

The icondensation [32] paper also contains a different observation model based on
directional derivatives taking along the curve normals instead of feature points. It also
extends the dynamic model to allow the model to reinitiate by allowing it to jump from
any state to some state distributed according to some prior state distribution that does
not depend on the observations.

1.3.2 Multi target

A common way to extend the single target tracking algorithms to multi target is to split
up the problem into four sub problem.
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• Track initialisation that detects and initialised new tracks.

• Data association that associates the available measurements with the objects being
tracked. Possible in a probabilistic manner like the PDAF describe above.

• Single target tracking of each object separately e.g. using one Kalman or particle
filter per object.

• Track termination that removes lost tracks.

This way the tracking only have to consider likelihoods over single target state spaces,
S, and the data association has to consider probabilities over some space consisting of all
possible assignments of detections to targets, which is a finite discrete space.

Joint Probabilistic Data Association Filter

Extending the PDAF algorithm from Section 1.3.1 to the joint probabilistic data associ-
ation filter [90], or JPDAF, to handle the multi target case requires only the calculation
of the β weights to be changed. The rest of the PDAF algorithms can be used as it is
described above. This will solve the data association problem. Track initialisation and
termination will have to be solved separately. To make this efficient the objects tracked
are clustered into clusters containing objects with overlapping validation gates, and each
such cluster is handled separately. If the validation gates of two objects do not overlap,
they will not interact at all and there is no point in considering them jointly as that will
give the exact same results as considering them one by one.

As before, there is nt observation in frame t denoted ot,i for i = 1, 2, · · · , nt, and
the set of all of them is denoted Ot,∗. There is now also mt objects being tracked,
qt,j , for j = 1, 2, · · · ,mt, and the predicted observation for each of them is o−t,j . All
possible assignments of targets to measurements are considered under the assumption that
each target generates zero or one measurement within its validation gate. These different
assignments are denoted Ak and enumerated k = 1, 2, · · · , h, where h is the number of
possible assignments. For each k, the function akt (j) = i assign object j to measurement
i. For an object not associated to any measurement, akt (i) = 0. From this function the
number of false detections nfalse can be calculated (nfalse depends of t and k, but those
indexes have been dropped). The JPDAF is derived by assuming that the number of false
detections, nfalse, is Poisson distributed with parameter λv. As before, v is the area of
the entire image and α2 is the probability that the detector will fail to detect an object.
The probability of the events, p

(Ak) = p
(Ak ∣∣Ot,∗,o−t,1, · · · ,o−t,mt ), is (see [90] for

details)

p
(Ak) =

λnfalseαmt−nt+nfalse
2 (1− α2)nt−nfalse

c

∏
{j|ak(j)>0}

f
(
ot,ak(j)

∣∣o−t,j ,St,j ) ,
(1.103)
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where c is a constant making sure
∑h
k=1 p

(Ak) = 1, and f
(
ot,ak(j)

∣∣o−t,j ,St,j ) is
given by Equation 1.59. The predicted observation, o−t,j , of object j, and its variance,
St,j , are given by the Kalman filter. The probability that observation i belongs to object
j, denoted βjt,i, can be found by summing over all events for which this condition is true,

βjt,i =
∑

{k|ak(j)=i}

p
(Ak) , (1.104)

and the probability that object j were not detected, given the observations is

βjt,0 = 1−
nt∑
i=1

βjt,i. (1.105)

Once the β weights have been derived jointly, the rest of the PDAF algorithm as described
above can be applied to each of objects separately to update the distributions of each
object for the next frame.

Multi Hypothesis Tracking

One problem with the above algorithms is that when objects come close to each other
the data association will become very uncertain and detections from nearby objects will
affect the state distribution quite a lot. This can be avoided by not only consider the
different assignments of measurements to objects in the current frame, but considering
the assignments jointly over all previous frames. That way a set of hypothesis has to
be maintained, where each hypothesis consists of some assignment of measurements to
objects over all previous frames.

It is then also possible to have different hypotheses represent a different number of
objects present, and thus solve the entry and exit problems jointly with the data associa-
tion problem. An algorithm for this was suggested by Reid [66] called Multi Hypothesis
Tracking or MHT.

For each frame a set of h hypothesis,
{H1

t , H
2
t , · · · , Hh

t

}
, is maintained. Each hy-

pothesis, k, assigns zero or one measurement to each object, j, for each frame. That
information is condensed, recursively each frame, into a mean state, q̂kt,j , and a covaria-
tion matrix, Pk

t,j , for each object using a Kalman filter, e.g.

Hkt =
{

q̂kt,1,P
k
t,1, q̂

k
t,2,P

k
t,2, · · · , q̂kt,mkt ,P

k
t,mkt

}
, (1.106)

were mk
t is the number of objects in hypotheses k in frame t.

When the measurements in the current frame are processed, each hypothesis from the
previous frame is expanded into several hypotheses with each of the possible assignments
of objects to the measurements in the current frame, including the possibilities that some
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of the measurements are from new previously unobserved objects. Those measurements
are assigned to an object id one larger than the maximum previous object id. This way the
number of hypotheses will explode, but it is in some cases possible to keep the number of
hypotheses manageable using the ideas described below. As in the previous section, let the
function i = akt (j) represent the object, j, to measurement, i, associations of hypotheses
k in the frame t. From it the following values can be calculated (here the t and k indexes
have here been dropped for clarity)

• nold - The number of objects in the previous frame that are detected in this frame.

• nnew - The number of new objects detected in this frame.

• nfalse - The number of false detections (as before).

• nt = nold + nnew + nfalse - The total number of detections (as before).

Also, let ψt (k) be the parent hypothesis from the previous frame that hypothesis, k, in

the current frame is based on. That is, hypothesis Hkt is constructed from Hψt(k)
t−1 from

the previous frame and the associations akt (·) in the current frame.
To evaluate the different hypothesis the probabilities of each of the hypothesis, given

the observations, is used,
βkt = p

(Hkt |O0···t,∗
)

(1.107)

This probability is found by reusing the Kalman filter assumption that measurements
from tracked objects are Gaussian distributed, and assuming that

• False detections are uniformly distributed over the image with area v.

• New objects appear uniformly over the entire image.

• The probability of the detector failing to detect an object is α2.

• The number of false detections, nfalse, is Poisson distributed with intensity λv.

• The number of new objects, nnew, is Poisson distributed with intensity λnv.

This gives (see [66] for details)

βkt =
1
c

(1− α2)nold α
m
ψkt
t−1−nold

2 λnfalseλnnew
n

∏
{j|akt (j)>0}

f
(
ot,akt (j)

∣∣ok−t,j ,Skt,j )βψktt−1,

(1.108)
were c is a constant making sure that

∑h
k=1 β

k
t = 1. As described below, a validation

gate will be used to keep down the number of hypothesis. This means that the truncated
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Gaussian from Equation 1.59 can be used for f
(
ot,akt (j)

∣∣ok−t,j ,Skt,j ). The predicted

observations, ok−t,j , and their covariance matrices, Skt,j , are given by the Kalman filters.
Finally to produce the output, the hypotheses, k, with maximum probability, βkt , will

be chosen as the most likely one and the mean values from it are the output. This is no
longer strictly a smoothing filter, since it is optimising over all possible measure/object
assignments choosing the most likely only and then filtering under the assumption that
this choice was correct.

Some care has to be taken to keep down the number of hypothesis. This is mainly
done by removing unlikely hypotheses, combining similar hypotheses and clustering ob-
jects. But already when a new hypothesis is formed some sanity checks are performed and
the hypotheses failing those are discarded directly, without being considered. The checks
performed are

• Each object may not be associated with more than one measurement.

• Each measurement may not be associated with more than one object.

• Objects may only be associated with measurements within their validation gates.

If two objects are far enough from each other there will be no measurements that lies
within the validation gate of both of them. In this case considering them one by one will
give the exact same result as considering them jointly, and will require significantly less
hypothesis. This means that clustering close objects and processing each cluster separately,
can reduce the number of hypotheses quite significantly. The clustering will however have
to change over time as different objects become close to each other.

As a frame is processed the clusters of the previous frame are inherited. Then each
measurement is compared with each of the object states and if it is within the validation
gate of an object, i.e. if it is close enough, it will be assigned to the cluster containing that
object. If there are several objects close to each other this might result in a measurement
being assigned to several clusters. All those clusters are combined into a new cluster
with the number of hypotheses in the new cluster being the product of the number of
hypothesis in the original clusters. The probabilities, βkt of the hypothesis in the new
cluster is the product of the probabilities of the hypothesis in the old clusters. New
clusters are created for measurements not within the validation gate of any object.

After each frame has been processes the set of hypothesis is reduced by discarding all
hypotheses whose probability βkt is less than some constant. Also, all hypotheses that
are very similar are combined into a single hypothesis. For two hypothesis to be similar,
they should have the same number of objects present and the mean values and covariance
matrices should be closer than some threshold,

After this reduction of hypothesis it might be possible to split clusters again. This is
done by considering assignments that all hypothesis agree upon. If all hypothesis assigns
the same measurement, i, to one object j, e.g akt (j) = i for all k and some fixed i and
j, then the object j is excluded from the cluster and placed in a cluster of its own.
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This is actually an approximation, because even if it is certain which measurement in
the current frame belongs to the object, the different hypothesis might represent different
assignments for measurements in previous frames, and thus the mean and covariances of
the object in the different hypothesis will vary, and has to be combined in some way.
If the measurement noise is low this will be a small approximation, but with higher
measurement noise it might be a problem. Also, for the event that all hypothesis agree
on an assignment to occur, the clutter density has to be low enough not to place any false
detections at all within the validation gate of the object in this frame.

A final optimisation can be found by concluding that the Kalman filter does not have
to be executed for every object in every hypotheses. Typically each object will have exactly
the same assignments in several hypotheses, and then the Kalman filter only has to be
executed once for each such group and the result can be linked to each of the hypothesis.

Probabilistic multi-hypothesis tracking

Even after those approximations the number of hypothesis in the MHT algorithm ex-
plodes exponentially. To prevent that Streit and Luginbuhl [77] have suggested an al-
ternative called probabilistic multi-hypothesis tracking or PMHT. It operated in much
the same way as the JPDAF described above in that it generates synthetic measurements
based on how close the real measurement as are to the predicted measurements. It does
not however have to enumerate every possible assignment of targets to measurements.
Instead the EM-algorithm is used to calculate the weights.

The algorithm works in a sliding window fashion. A set of τ frames from t = t0 to
t = t0 + τ − 1 are considered at each step, and tracks are produced for those frames.
Then only the result for the first frame, t0, is stored and the window is shifted one frame
forward, t0 ← t0 + 1, and new tracks are estimated.

The idea is to model the assignment of measurements to objects as unknown random
variables, ait ∈ {1, 2, · · · ,mt}, where ait = j means that measurement i is assigned to
target j in frame t. Note that all measurments are assumed to originate from objects, i.e.
no clutter. Note also that here measurements are assigned to targets in contrast to the
JPDAF case where targets were assigned to measurements. This means that more than
one measurement can be assigned to a single target. In cases where the sensor provides
point detections this is undesirable as in that case it is often assumed that a single target
produces zero or one measurements as is done in the JPDAF case. Here such restrictions
can’t be enforced, but they can be encouraged by the choice of the prior of ait, see below. If
the input however is the results of a sliding window based object detector it might actually
be desirable to assume that a single target produces several detections (measurements) as
that is typically the case for such detectors. In that case some other type of prior has
to be chosen that prevent two objects from occupying the same physical space, which
introduces more intricate dependencies between the objects.

The EM-algorithm is an iterative algorithm that assumes an initial guess of the state,
q̃t,j , of all objects, 1 ≤ j ≤ mt, in all frames, t0 ≤ t < t0 + τ , is available. This guess
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will be refined by making a new estimate of the states, q̂t,j . This new estimate is then
used as the initial guess in the next iteration, q̃t,j ← q̂t,j , and the process is iterated until
convergence. The process can be initiated by using the predictions made by the Kalman
filter as the first initial guess.

The first step is to estimate the probability that observation i belongs to the object j,

βjt,i = p
(
ait = j |Ot,∗

)
=

f (ot,i |q̃t,j ) p
(
ait = j

)∑mt
j=1 f (ot,i |q̃t,j ) p

(
ait = j

) , (1.109)

where p
(
ait
)

is the prior of ait. It is supposed to include the probability of the object
not being detected at all, and it is defined as a function of the weights of the previous
iteration, β̃jt,i,

ωjt,i = p
(
ait = j

)
=

1
nt

nt∑
i=1

β̃jt,i. (1.110)

In the simplest case, a linear observation model, with observation matrix O, and Gaussian
observation noise, with covariance matrix R can be used. In that case O and R will not
vary over time or from object to object. The weights can be calculated as

βjt,i =
N (ot,i |Oq̃t,j ,R )ωjt,i∑mt
j=1N (ot,i |Oq̃t,j ,R )ωjt,i

. (1.111)

Form these weights, one synthesised measurement for each object is produced as a weighted
mean,

ôt,j =

∑nt
i=1 β

j
t,iot,i∑nt

i=1 β
j
t,i

. (1.112)

The covariance matrix of that synthesised measurement becomes

R̂t,j =
R∑nt
i=1 β

j
t,i

, (1.113)

which now depends on both time and object. Note that βjt,i is normalised over the objects
and in the denominator here it is summed over the measurements. That sum might very
well be greater than one, which would represent the case where several measurements have
been assigned to one target. In that case the variance of the synthesised measurement
becomes smaller than the variance of the original measurements. This makes sens as the
synthesised measurement in this case is a weighted mean over several samples from the
same distribution. If on the other hand the sum in the denominator is less than one,
the variance of the synthesised measurement will become larger than that of the original
measurements. This represents the case where only one measurement originates from the
target, but the system don’t know which one it is and thus becomes more uncertain.
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Once the synthesised measurements have been calculated a new estimate of the states,
qt,j , of all objects, 1 ≤ j ≤ mt, in all frames, t0 ≤ t < t0 + τ , can be made using
Kalman filters. To allow all measurements, both past and future, to influence the state
estimates, the Kalman filter is first execute forward in time and then backwards in time.
This new estimate is then used as the initial guess for the next iteration.

In the presented form, the PMHT algorithm assumes that all measurements origi-
nates from objects, e.g. no clutter. To allow it to handle false detections, Gauvrit et al
[18] have suggested to add an additional flat object, j = 0, representing the clutter. Ob-
servations from this object will be uniformly distributed over the observed area v, with
some intensity λ,

f (ot,i |q̃t,0 ) =
1
λv
. (1.114)

To introduce the assumption that a single target can only generate a single measure-
ment, Ruan and Streit [88] have suggested to let the priors, ωjt,i only depend on the
number of objects tracked and the number of observations made. They can in that case
be calculated before the iterations of the EM-algorithm is started and then kept constant.
In the paper it is claimed that it is possible to derive expressions for such estimations
by assuming that an object will not be detected with some probability, α2, and that the
number of false detections are Poisson distributed with mean λv. An explicit formula is
only given for the single target case, mt = 1, which is shown to be

ω1
t,i =

1− α2

nt (1− α2)α2λv
for all i (1.115)

Multi target state space

Extending the single target state space S to multi target is not straightforward. The natural
way would be to extend S into Sn and let each state represent the joint state of all objects.
But this requires that the number of objects, n, is known and don’t vary over time. To
allow the number of objects to vary, a state space constructed like

S∞ = ∪∞n=0Sn (1.116)

is needed. But this is a very strange space. It is no longer a vector space, e.g it is not pos-
sible to form linear combinations of its elements, which makes it hard to define expected
values. It is however measurable, which means that it is possible to define the integral of
functions f : S∞ → R by letting the integral be the sum over the integrals restricted
to the separate subspaces Sk. The space S0 consists of a single element representing the
event that no objects are present and the measure of this has to be set to something. Here
it will be set to 1.

This makes it possible to define probability distribution functions on S∞ and talk
about the probability of events in this space as integrals of some probability distribution
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function. It is however no longer possible to compare likelihoods as the different states
have different dimensions. In for example Rn it makes sens to compare likelihoods be-
cause if x ∈ Rn is a stochastic variable with continious distribution f (x), the probability
of the event that x lies within some small distance δ of x0 will be∫

|x−x0|<δ
f (x) dx ≈ f (x0)

∫
|x−x0|<δ

dx = f (x0)Aδ, (1.117)

where the approximation is good if δ is small enough compared to the smoothness of
f (·). Aδ is a constant (the volume of an n-dimensional ball with radius δ) that depends
on δ and n, but not x0. This means that if f (x0) > f (x1), then the probability of x
being within δ of x0 is larger than the probability of x being within δ of x1 regardless of
which δ is chosen, as long as it is small enough. This is not the case in S∞, since the di-
mension n will now depend of x0 and that means Aδ is no longer constant, but will also
depend on x0. This means that a likelihood from some subspace Sn of S∞ can be made
both larger and smaller than a likelihood from some subspace Sm with a different dimen-
sion, m 6= n, by only changing the the overall scale used in both coordinate systems.
This means that the property of one likelihood being larger than another will depend on
for example whether the states are expressed in meters or millimetres. Two likelihoods
from the same subspace Sn will still be comparable. In the same way likelihood ratios
of different dimensions are undefined and can be given arbitrary values by rescaling the
coordinate system.

One way do avoid this problem is to discretise the state space, S∞, e.g specifying δ.
That way Aδ can be calculated and it will be possible to work with probabilities instead
of likelihoods. This will make everything well defined, but results will still depend on
the step size of the discretisation, δ. That dependency becomes more visible as δ is an
explicit parameter instead of being hidden as the chosen scale of the coordinate system.
A continuous state space is however used in many cases.

To get a feeling of such spaces, consider the simple example illustrated in Figure 1.3.
The world consist of a continuous line from 0 to 3 on which 0 − 2 objects move.
The state of an object q is where along this line its centre is located. That is, S1 =
{x ∈ R |0 ≤ x ≤ 3} and S∞ = S2 ∪ S1 ∪ S0. This world is observed by a 2-pixel
camera centred in the world displaying a foreground/background segmentation. Both
pixels and objects are one unit wide and the pixels, ot = (ot,1, ot,2), are expected to be
1 if more than half of them is covered by an object otherwise 0, but are observed with
noise. That is f (ot,k) = f (ot,k |ôt,k ) describes the observation noise, where ôt,k is the
expected value of the pixel k. This means that the observation space is a discrete space
consisting of four elements, 00, 01, 10 and 11. The expected value of first pixel, ôt,1 is
1 if there is an object whose state q satisfies 0.5 ≤ q < 1.5 otherwise 0. Likewise, the
expected value of the second pixel, ôt,2, is 1 if there is an object whose state q satisfies
1.5 ≤ q < 2.5 other wise 0. Half-open intervals are used here to prevent a single object
from being able to cover both pixels if placed in the exact centre. There are no constraints
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3210

Object

q

ot = 10

Figure 1.3: Example of a 1D world with one object present viewed by a 2-pixel camera.

00
0 objects present or
1 object present with q < 0.5 or q ≥ 2.5 or
2 objects present with q1 < 0.5 or q1 ≥ 2.5 and q2 < 0.5 or q2 ≥ 2.5

01

1 object present with 0.5 ≤ q < 1.5 or
2 objects present with 0.5 ≤ q1 < 1.5 and 0.5 ≤ q2 < 1.5 or
2 objects present with 0.5 ≤ q1 < 1.5 and q2 < 0.5 or q2 ≥ 2.5 or
2 objects present with q1 < 0.5 or q1 ≥ 2.5 and 0.5 ≤ q2 < 1.5

10 1 object present with 1.5 ≤ q < 2.5 or
2 objects present with 1.5 ≤ q1 < 2.5 and 1.5 ≤ q2 < 2.5
2 objects present with 1.5 ≤ q1 < 2.5 and q2 < 0.5 or q2 ≥ 2.5 or
2 objects present with q1 < 0.5 or q1 ≥ 2.5 and 1.5 ≤ q2 < 2.5

11 2 objects present with 0.5 ≤ q1 < 1.5 and 1.5 ≤ q2 < 2.5 or
2 objects present with 1.5 ≤ q1 < 2.5 and 0.5 ≤ q2 < 1.5.

Table 1.1: Relationship between the expected observations symbol ot (left column) and
the event in the state space (right column).

preventing two objects from occupying the same space at the same time.
The four different observation symbols will split the state space S∞ into four different

events listed in Table 1.1. Figure 1.4 illustrates the state space S∞ as an union of a plane,
a line and a point with the four different events show in different colours.

When working with this kind of model, the image ot is measured, and the likelihood
of this measurement is given by the observation noise function

f (ot |ôt ) =


p00 if ôt = 00
p01 if ôt = 01
p10 if ôt = 10
p11 if ôt = 11

, (1.118)

e.g the values of p00, p01, p10 and p11 are given by the measurement. Each point in the
state space corresponds to a specific expected observation ôt, which means that from the
measurement, f (ot |q ) can be derived. It will be a discontinuous function looking like
the illustration in Figure 1.4, where the values of the different regions will be p00, p01,
p10 and p11. Using Bayes rule on this gives

f (q |ot ) =
f (ot |q ) f (q)

f (ot)
=

f (ot |q ) f (q)∫
f (ot |q ) f (q) dq

. (1.119)
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S∞ = S2 S1 S0

Figure 1.4: Illustration of the multi object state space as a union of a plane a line and
a point, with the different events corresponding to the different observation symbols
marked in different colours.

With a uniform prior, f (q) factors out and cancels, and the integral can be calculated.
For this example, the area of the squares in S2 in Figure 1.4 is 0.25, the length of the
segments in S1 is 0.5 and the measure of S0 is 1. This gives∫

f (ot |q ) dq = p00 (0.25 ∗ 4 + 0.5 ∗ 2 + 1) + p01 (0.25 ∗ 12 + 0.5 ∗ 2 + 0) +

+ p00 (0.25 ∗ 12 + 0.5 ∗ 2 + 0) + p00 (0.25 ∗ 8 + 0.5 ∗ 2 + 0) . (1.120)

In particle the prior f (q) can be used to zero out areas of the state space where for
example object occupy the same physical space and to incorporate the information learnt
from previous frames.

It has been claimed that with this kind of observations it is possible to use f (ot |q ) f (q)
as likelihoods in S∞ and that this will make the likelihoods comparable. This is for ex-
ample done by Isard and MacCormick [33] and Zhao and Nevatia [92]. However it does
not remove the problem of the varying dimension, but if only the state at a single point
in time is considered, comparing such likelihoods is the same thing as discretising the
space into the regions shown Figure 1.4 and comparing the probabilities of each such
subset. This is a somewhat strange discretising, but it makes sens in that this is the sets
the measurements can distinguish between. Likelihood ratios will no longer depend on
the scale of the coordinate system but instead they will depend on the type of camera and
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its placement, orientation and calibration. However, if a dynamic model is introduced,
connecting the states over time, likelihood ratios conditioned on past observations as well
as the current observation will again become undefined (dependent on the coordinate
system scale). This means that likelihoods of state sequences can only be compared with
likelihoods of state sequences when the entire sequence of state dimensions are identical.

Another way to extend S1 to several objects is to add a single state S0 representing
the the situation of the object not being present. Then it is possible to let the space

Ŝn =
(
S1 ∪ S0

)n
(1.121)

track a varying number of present objects. Consider as before the case of 0− 2 object,

Ŝ2 =
(
S1 ∪ S0

)× (S1 ∪ S0

)
= S2 ∪ (S1 × S0

) ∪ (S0 × S1
) ∪ (S0 × S0) . (1.122)

This is a plane, two lines and a point. The only difference from before is that now
there are two lines instead of one. The difference is that in this space the first and the
second object are different, e.g. the previous state “one object present at position x” is
now replaced with two different states “first object present at position x” and “second
object present at position x”.

Markov Chain Monte-Carlo

Some care is needed when applying the Markov chain Monte-Carlo simulation from
Section 1.3.1 to this kind of multi target state space. It is a fairly complex state space
and it might be difficult to cover the entire state space with only one kind of proposal
distribution. Fortunately it is possible to use several different types of moves each specified
using a separate proposal distribution, f̃k (qt |qt−1 ), k = 1, 2, · · · , and in each step
choose randomly which of the moves to use. If each of the move types can be shown
to fullfill the global balance condition, Equation 1.67, the full combined Markov chain
will do so too [80]. Typically there will be move types for each of the Sn subspaces
moving the objects present around within this subspace. There will also be move types
jumping between adjacent subspaces, Sn and Sn+1 by adding and removing a single
object. The moves staying within one subspace can be constructed exactly as before using
the Metropolis-Hastings algorithm. To handle the moves moving between the subspace
more care has to be taken as the distributions involved becomes singular. Green et al
[21, 67] has extended the Metropolis-Hastings algorithm to these cases. They derive the
theory for very general measurable spaces. A somewhat simpler derivation that does not
rely as heavily on measure theory is provided by [85]. Below is yet another approach to
the same theory. It is intended to give an intuitive understanding of the theory rather
than being a strict treatment.

To represent singular distributions the Dirac delta function, δt (x), will be used. It is
defined by the property,∫

A
g (x) δt (x) dx =

{
g (t) if t ∈ A
0 otherwise

, (1.123)
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for any continuous function g (·). By allowing the proposal distribution, f̃ (qt |qt−1 ), to
contain such function all cases typically of interests in many applications can be handled
by treating f̃ (qt |qt−1 ), as a distribution of qt over S∞. In that case the ratio in the
acceptance probability (1.68) will always be a ratio of likelihoods of the same dimension.
That’s the case because if qt−1 ∈ Sn and qt ∈ Sm then f̃ (qt |qt−1 ) will be a likelihood
from Sm and fs (qt−1) will be a likelihood from Sn. The denominator is the product of
the two, which means that it is a likelihood from Sm × Sn = Sm+n. In the same way,
f̃ (qt−1 |qt ) is a likelihood from Sn and fs (qt) is a likelihood from Sm which makes
the nominator a likelihood from Sn × Sm = Sm+n. However, for this fraction to be
defined it is no longer enough that the denominator is not 0. All δt (x) function must
cancel out in the formal expression

f̃ (qt−1 |qt )
f̃ (qt |qt−1 )

. (1.124)

This is often referred to as dimension matching. This formulation makes it clear that it is
not only the dimension, i.e. the number of delta functions, that has to match, but also
the positions of those delta functions. This means that a move that allows new objects to
enter also has to allow objects to exit and the exit sub-move has to be the inverse move of
the entry sub-move. Checking that the delta functions cancel out in the fraction above
gives a way of verifying that this is the case and that the sub-moves thus corresponds in
the way they have to.

As an example of this consider the space R2 ∪R, and the task of generating samples
from

fs (q) =
{
f1 (q) if q = (q) ∈ R
f21 (q1) f22 (q2) if q = (q1, q2) ∈ R2 , (1.125)

where f1 (·), f21 (·) and f22 (·) are one dimensional distributions over R. Consider a few
moves from x = qt−1 to y = qt. One move could be to add a new object by moving
from x = (x) to y = (y1, y2) by letting y1 = x and choose the position of the new
object, y2, from a N (· |0, 1) distribution. The corresponding exit move will then be to
remove the object at y2 and let x = y1. The proposal distribution, becomes

f̃ (y |x ) =

 δx (y1)N (y2 |0, 1) if x ∈ R and y ∈ R2

δx1 (y) if x ∈ R2 and y ∈ R
0 otherwise

, (1.126)
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and the acceptance probability becomes the minimum of 1 and

f̃(x|y )fs(y)

f̃(y|x )fs(x)
=


δy1 (x)f21(y1)f22(y2)

δx(y1)N (y2|0,1 )f1(x) if x ∈ R and y ∈ R2

δy(x1)N (x2|0,1 )f1(y)
δx1 (y)f21(x1)f22(x2) if x ∈ R2 and y ∈ R

=


f21(y1)f22(y2)
N (y2|0,1 )f1(x) if x ∈ R and y ∈ R2

N (x2|0,1 )f1(y)
f21(x1)f22(x2) if x ∈ R2 and y ∈ R

. (1.127)

Note that this fraction is not defined for moves within the same subspace. This is not a
problem since the probability of such a move (using this move type) is 0 and can thus be
defined arbitrarily.

Another type of move could be to combine two objects that are close to each other
into one object by letting y = x1+x2

2 . The corresponding splitting move will then have
to be constructed from a single sample u from some one dimensional distribution, say
N (· |0, 1), by letting x1 = y − u and x2 = y + u. The proposal distribution, becomes

f̃ (y |x ) =


δx
(
y1+y2

2

)N (y2−y1
2 |0, 1) if x ∈ R and y ∈ R2

δ x1+x2
2

(y) if x ∈ R2 and y ∈ R
0 otherwise

, (1.128)

and the acceptance probability becomes the minimum of 1 and

f̃(x|y )fs(y)

f̃(y|x )fs(x)
=


δ y1+y2

2
(x)f21(y1)f22(y2)

δx( y1+y2
2 )N( y2−y12 |0,1 )f1(x)

if x ∈ R and y ∈ R2

δy( x1+x2
2 )N( x2−x1

2 |0,1 )f1(y)

δ x1+x2
2

(y)f21(x1)f22(x2) if x ∈ R2 and y ∈ R

=


f21(y1)f22(y2)

N( y2−y12 |0,1 )f1(x)
if x ∈ R and y ∈ R2

N( x2−x1
2 |0,1 )f1(y)

f21(x1)f22(x2) if x ∈ R2 and y ∈ R

.

(1.129)

Particle Filter

Isard and MacCormick has suggested [33] to apply a particle filter on S∞ to do multi
target tracking of pedestrians. They call the resulting algorithm BraMBLe.

The state of a single object is defined to be its centre position on the ground plane, its
velocity in the ground plane, a set of shape parameters that specifies a generalised cylinder
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and a unique id-number. The state qt, representing the entire scene is defined to be a set
of such single object states.

The dynamic model used states that

• object arrivals are Poisson distributed,

• object departures are Poisson distributed,

• the objects translations are damped constant velocity with additive Gaussian noise,

• the shape parameters obeys a 1st order auto-regressive process and

• unique id-numbers never changes and are assigned to each entry.

This forms a prediction function, h (·), that given a state from the previous frame, qt−1,
and a noise vector wt forms a prediction of the current state q−t = h (qt−1,wt).

The observations ot are the images from a camera viewing the scene. For a given
predicted state q−t , the expected scene is rendered using the generalised cylinders of all
objects present. From this a binary mask is produced that for each block of 5 × 5 pixels
indicates whether that block show the background or one of the moving objects, the fore-
ground. A set of filters are applied to the image and the distributions of the filter-responses
are modelled as mixtures-of-Gaussians. One distribution for background responses and
one for foreground responses are learnt offline. The filters are small as compared to the
5× 5 pixel blocks, which means that the responses for the different blocks are fairly inde-
pendent. By assuming them to be independent, an observation likelihood, f

(
ot
∣∣q−t ), is

formed by taking the product over all blocks.

This allows a set of m particles,
{

q(j)
t

∣∣∣ j = 1 · · ·m
}

, and corresponding weights

α
(j)
t , representing the f (qt |O0···t ) distribution, to be calculated as described in Sec-

tion 1.3.1. The final step of the particle filter is to calculate the mean of those particles to
form a single output state. This will not work here as S∞ is not a vector space and thus
it is not possible to form linear combinations. Instead each object id, Φ, is considered
separately, and the probability of this object being visible is estimated as

ΠΦ =
∑

n
j
˛̨̨
q
(j)
t has an object with id Φ

oα(j)
t . (1.130)

If this probability is larger than some threshold, the object is considered visible and its
position is calculated as the weighted mean over its position in all particles in which it is

present. The weight used for its position in particle j is α
(j)
t

ΠΦ
.

Note that the likelihoods are never compared. Instead the probability of being in
each subspace is calculated by integrating out everything else. In this case there is actually
several subspaces of the same dimension as the different objects have different id-numbers.
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There will be one subspace for each possible set of object id-numbers. The subspace with
highest probability is found approximately by estimating the probability of each object
being visible separately. This avoids an optimisation over all possible subsets, which would
be required if no approximation were made. This is done separately for each frame, which
means that there can be inconsistent jumps between the subsets if a less likely mode
becomes the dominant mode when new observations are made.

1.4 Traffic Surveillance

In this section a few examples especially targeted at traffic surveillance will be presented.
Manny of them of will in some way make use of the more general methods presented in
the previous section. Unless otherwise mentioned, the setup will consist of a single, static,
calibrated camera viewing an intersection or road segment, and all road users are assumed
to move on a known ground plane. The task is to generate tracks describing the motion
of the road users using the video produced by the camera.

1.4.1 3D Wireframe Models

Koller, Danilidis and Nagel presents [46] a parametrised wireframe 3D model of a vehicle
with 12 length parameters that allows the model to represent different types of vehicles,
such as sedan, hatchback, station waggon, minivan and pickup. The values of the param-
eters are assumed to be know a priori. Also, the vehicles are assumed to move on a known
ground plane, which means that the position (of the centre) of the object can be specified
with a two dimensional vector, (x, y) and the orientation is a single angle θ, which also
defines the traveling direction. The state of a object will consist of those values together
with a translational velocity, ṙ, and an angular velocity θ̇, e.g

qt =
(
xt, yt, θt, ṙt, θ̇

)
∈ S. (1.131)

To use this model in a Kalman fashion, a dynamic model, qt = h(qt−1,wt), is needed.
It is constructed by assuming zero acceleration, which gives a deterministic update, and
then adding Gaussian noise, wt = (wt,1, · · · , wt,5), with mean zero and some covari-
ance matrix Q. The prediction equations used is found by integrating the differential
equations 

dx
dt = ṙ cos θ
dy
dt = ṙ sin θ
dθ
dt = θ̇
dṙ
dt = 0
dθ̇
dt = 0

, (1.132)
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from one time step to the next. If the distance between the time steps is normalised to 1,
this gives the prediction function h(·) as

h(·) :



xt = xt−1 + ṙ
sin(θt−1+θ̇t−1)−sin(θt−1)

θ̇t−1
+ wt,1

yt = xt−1 − ṙ cos(θt−1+θ̇t−1)−cos(θt−1)

θ̇t−1
+ wt,2

θt = θt−1 + ˙θt−1 + wt,3
ṙt = ṙt−1 + wt,4
θ̇t = θ̇t−1 + wt,5

, (1.133)

which is not defined if θ̇t−1 = 0. That problem is solved by defining the fractions in the
expression to be 1 if θ̇t−1 is small. That would correspond to a pure translational motion.

The observations ot are formed by taking the 3D wireframe model and placing it in
the world coordinate system on the ground plane centred at (xt, yt), rotated θt radians
and projecting it into the camera image. The wireframe model consits of a set of 3D
line segments that when projected into the image forms a set of line segments in the
image. The line segments that are not visible (e.g. those on the back side of the vehicle)
are removed using a hidden line removal algorithm. Also if the sun direction is known, a
vehicle shadow can be estimated by projecting the model onto the ground plane and then
projecting the shadow into the camera image. This gives a few additional line segments.
This makes the observation, ot, a set of m line segments, the model segments,

ot = {ot,1, · · · ,ot,m} , (1.134)

where each line segment ot,i = (cx, cy, φ, l) is represent by its centre position, (cx, cy),
angle φ and length l. These parameters are related to the endpoints (x1, y1) and (x2, y2)
of the line segment according to

cx = x1+x2
2

cy = y1+y2
2

φ = arctan
(
y2−y1
x2+x1

)
l =

√
(x2 − x1)2 + (y2 − y1)2

. (1.135)

The prediction achieved by a detector extracting such segments from an image is typi-
cally significantly worse along the line direction than perpendicular to it. By assuming the
variance of the positions of the endpoints to be σ2

‖ along the line and σ2
⊥ perpendicular

to it and that the detections are Gaussian distributed, a covariance matrix for ot,i can be
found, according to

R̃i =


σ2
‖ cos2 φ+σ2

⊥ sin2 φ

2

(σ2
‖−σ

2
⊥) sin2 φ cos2 φ

2 0 0
(σ2
‖−σ

2
⊥) sin2 φ cos2 φ

2

σ2
⊥ cos2 φ+σ2

‖ sin2 φ

2 0 0
0 0 2σ2

⊥
l2 0

0 0 0 2σ2
‖

 . (1.136)
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The covariance matrix of ot will then be a block diagonal matrix,

Rt =


R̃1 04×4 04×4 · · · 04×4

04×4 R̃2 04×4 · · · 04×4

· · ·
04×4 · · · 04×4 04×4 R̃m

 . (1.137)

This gives the observations function ot = o (qt,vt), which consists of a nonlinear func-
tion that generates a set of line segments from the state qt and a noise process, vt, which
is Gaussian distributed and added to endpoints of those line segments.

To generate observations of this form the input image is analysed by a straight line
detector that will approximate an entire image as a set of n straight line segments. These
segments are called the data segments, and there will typically be significantly more data
segments than model segments. Applying the extended Kalman filter to this model be-
comes a bit tricky since the correspondences between the data segments and the model
segments are not known, but it can be done in an iterative manner that also updates the
assignments. The state distribution is approximated as Gaussian,

f (qt |O0···t ) = N
(
qt
∣∣∣q̂t, P̂t

)
(1.138)

and assumed known for the previous frame, t− 1. It is propagated forward in time

f (qt |O0···t−1 ) = N
(
qt
∣∣∣q̂t−, P̂t

)
(1.139)

with
q̂t
− = h( ˆqt−1,0), (1.140)

P−t = HtPt−1Ht
T + Q, (1.141)

where Ht is the jacobian of h(·) defined in Equation 1.133 evaluated at q̂t−1. From
this predicted state it is possible to form an expected set of line segments o−t = o (qt,0)
which is approximated to be Gaussian distributed with covariance matrix S̃t = OtP−t Ot

T,
where Ot is the jacobian of the observation function o(·) defined above evaluated at q̂t

−,
which typically is estimated numerically. The predicted observation o−t consists of a set
of line segments, o−t,j . Covariance matrices, S̃t,j corresponding to each of them can be

extracted from S̃t by extracting the 4× 4 matrix blocks along the diagonal.
The next step is to calculate the innovation ot − o−t . Which means that the cor-

respondence between the measured data segments ot and the predicted model segments
o−t has to be established. Each model segment j is assigned to the data segment i that
minimises the Mahalanobis distance(

o−t,j − ot,i
)T
(
S̃t,j + R̃t,i

)−1 (
o−t,j − ot,i

)
. (1.142)

46



1.4. TRAFFIC SURVEILLANCE

Model segments where this distance is larger than some threshold are discarded. After the
associations are fixed, it is straightforward to apply the rest of the extended Kalman filter
as it is described above. The updating step and the segment assignment step is placed in a
loop and iterated to test a few different assignments. Once a previously tested assignment
is reached again, or a certain number of iterations have been performed, the loop can be
terminated, and the results from the assignments with minimal residual is chosen as the
result of the updating step. As residual, the average innovation weighted with weights
that takes the length of the segment into account, is used.

Note that S̃t is the variance of the actual position of the line segments. The segments
are then measured with measurements noise and the covariance matrix of the measure-
ment is St = S̃t + Rt, which is the covariance matrix used by the extended Kalman
filter. Here Rt refers to the model segments and not the data segments as before.

Initialisation of the model is performed by a motion segmentation step that tracks
image features. Features moving in a coherent way is clustered together into vehicles and
projected onto the ground plane. The centre of the projected features are then assumed
to be the centre of the vehicle on the ground plane and and the average displacement
direction gives the orientation. By making this kind of detections in two or more adjacent
frames, estimates of the velocities are made from discrete time derivatives. This assumes
that all road users are separated well enough not to be clustered into the same cluster, e.g.
no occlusions, and that the shape parameters of the car model is known.

A more elaborate initialisation algorithm is provided by Tan, Sullivan and Baker [79].
It considers all assignments of a single model segment to a single data segment. Such
an assignment induces some restrictions on the possible values the state variables x, y
and θ for the state to be consistent with the assignment. By using a generalised Hough
transform the state consistent with the largest number of assignments can be chosen.

Consider first a single model/data segment assignment. If there were no measurement
noise such an assignment would imply two possible values for θ differing by π radians.
If measurement noise is also considered those two possibilities will be increased into two
intervals. In the paper [79] a probability distribution fθ (θ |i, j ) of θ is derived given
model segment j is assigned to the data segment i. The shape of that function will
depend on the accuracy of the line detector used which typically increases with longer
lines (where the length is measured in the image) and it will depend on the 3D angle of the
line. A line perpendicular to the ground plane will not give any information at all, which
means fθ (θ |i, j ) becomes uniform on the entire interval. Lines almost perpendicular
will thus make fθ (θ |i, j ) close to uniform, while lines almost parallel to the plane will
make fθ (θ |i, j ) close to two sharp peaks. The model/data segment assignments are then
integrated out and the kernel density estimation from Equation 1.83 is used to combine
the measurements of the different segments into a single distribution of θ. With n model
segments andm data segments that gives a probability distribution of θ given the observed
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image,

f(θ) =
1
nm

m∑
i=1

n∑
j=1

fθ (θ |i, j ) . (1.143)

This function is approximated with a histogram that is Gaussian smoothed, and strong
peaks in the the histogram are extracted as candidate values for θ. Typically there will be
four strong peaks at π/2 intervals, since there are two dominate directions for all lines of
a vehicle.

For each candidate θ, all data and model segments not contributing to its peak are
discarded. Each remaining segments will restrict the position, (x, y), of the vehicle to
slide along some line segment called a confusion line segment. The contribution of the
different segments can be combined by considering an accumulator image A(·) where
each pixelA(x, y) is the number of confusion line segments passing through the position
(x, y). By smoothing this image by a Gaussian convolution and detecting peaks, a set of
candidate positions (x, y) can be extracted for each candidate θ.

This results in a set of candidate triplets (x, y, θ). They are compared using some fea-
ture score and the one with the most likely feature score is chosen and the rest discarded.
To calculate this feature score each visible line segment l is considered separately and a
w × h subimage, I , is extracted form the input frame. The subimage is centred around
the data segment with the segment parallel to its x-axis and the endpoints of the segment
on the its left and right borders. The feature score, sl is then defined as

sl = max
1≤y<h

(my+1 −my)− min
1≤y<h

(my+1 −my) , (1.144)

where

my =
1
w

w∑
x=1

I(x, y). (1.145)

The distribution, f(sl), of sl is approximated by a normalised histogram offline from
some training examples. With some independence assumption, the log likelihood of each
candidate triplet becomes ∑

l

log (f (sl)) , (1.146)

and the candidate triplet with highest likelihood is chosen.
Some discussion is given on how to handle the case when there is more than one object

present. After the object with highest score is detected, the line segments corresponding
to it can be removed and the algorithm repeated under some geometrical constraints
preventing objects form occupying the same 3D space to find the next one. It is also
suggested to handle the case of zero objects by thresholding the feature score likelihood.
This would give some ad hoc way of estimating the number of objects present, but there
is nothing in the theory to back this up. In the more complicated experiments presented,
the image was manually segmented into regions containing exactly one car each.
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1.4.2 Bag Of Words Detectors

The above ideas can be generalised to use several different kinds of features extracted from
images and also to allow variations in the model to be able to track non-rigid objects such
as pedestrians. The bag of words detector is a general purpose type of detector with such
capabilities that also allows the models to be learnt from training data. The idea is to
break down an image into a set of visual words from some predefined bag of words, and
use training data to learn which words corresponds to which positions on what types of
objects.

Leibe et al presented [52] one such model that also allows reasoning about the num-
ber of objects in the scene using an minimum description length (MDL) approach. It is a
general purpose detector, but results are presented on detecting road users such as pedes-
trians, cars, motorbikes and cows. The model does not consider full 3D objects, but
considers objects to be two dimensional but with varying scale. Detecting for example
cars can still be done by using separate detectors for cars viewed from different angles.

Codebook

A codebook is generated from a set of training images by applying a feature point detector
and extracting a local feature descriptor vector around those detections. Several such
detectors and descriptors exists, a good choice is Lowes’s SIFT [54]. It will in addition
to the position in the image also detect the scale of the feature point, which means that
the same features can be detected even if the image is rescaled, and the scale of the feature
will specify how much the image has been rescaled. This makes the detector independent
of object size. The feature vectors are then clustered into clusters containing similar
features. Again several clustering methods are available and the suggestion in the paper
by Leibe et al is to use agglomerative clustering. It has the advantage over for example
k-means clustering in that the number of clusters don’t have to be specified manually, but
is determined by the clustering algorithm.

Agglomerative clustering is an iterative process that operates on a set of disjoint clusters
Xi, where each cluster consists of a set of feature vectors xi,j , i.e. Xi = (xi,1,xi,2, · · · ).
It can be initiated by letting each cluster consists of a single feature vector. A similarity
measure, µ (X ,Y), between two clusters, X and Y has to be chosen. This can for ex-
ample be the group average over some similarity measure, µ (x,y) between two feature
vectors x and y, giving

µ (X ,Y) =
1

|X | |Y|
∑
x∈X

∑
y∈Y

µ (x,y) . (1.147)

Here µ (x,y) could be the cross correlation coefficient or the negated euclidean distance.
The algorithm iteratively merges the two clusters with largest similarity as long as the
similarity measure stay above some specified threshold, α.
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Existing implementations of this algorithm for general similarity measures are typi-
cally quite slow and requires a lot memory, which makes it impossible to use them for clus-
tering large sets of feature vectors. However if the similarity measure fullfills Burynooghe’s
reducibility property an efficient algorithm exists (see [52] for references) that gives run
time performance and memory requirements similar to k-means. This property demands
that when two clusters, X and Y are merged, the similarity between those two clusters
and any third cluster, Z may only decrease. More formaly, the implication{

µ (X ,Y) ≥ µ (X ,Z)
µ (X ,Y) ≥ µ (Y,Z) ⇒

{
µ (X ,Z) ≥ µ (X ∪ Y,Z)
µ (Y,Z) ≥ µ (X ∪ Y,Z) (1.148)

has to be true for all clustersX , Y ,Z . This property holds for the group average similarity
measure regardless of which similarity measure between two features are chosen.

After the clustering processes, each cluster, Xi will be considered a visual word and
the representation of each visual word will be the mean value,

mi =
1
|Xi|

∑
x∈Xi

x. (1.149)

This representation only makes sens for some similarity measures, µ (X ,Y), such as for
example the euclidian distance. A codebook C = (m1,m2, · · · ) consisting of a set of
visual words is formed in this way. An image can be decomposed into visual words by
using the feature point detector, and for each detected feature point, extracting a feature
vector x and identifying all visual words with a similarity larger than the threshold α that
was used to terminate the clustering, i.e. all visual words mi for which µ (x,mi) ≥ α.

Implicit Shape Model

An implicit shape model, or ISM, consists of a codebook, C = (m1,m2, · · · ), and for
each visual word mi in this codebook a probability distribution fw (w |mi ), with w =
(wx, wy, ws), over the spacial location (wx, wy) ∈ R2 of where on the object the visual
word mi is located and at what scale ws ∈ R. The coordinates (wx, wy) are specified in
an object coordinate system with origo in the centre of the object and the object at some
reference scale.

The distribution fw (w |mi ) is represented by a set of samples,Wi =
(
w(1)
i ,w(2)

i , · · ·
)

.

Those samples are constructed from training images containing only a single object at the
reference scale positioned in origo. From those images all feature points, lk, with cor-

responding feature vectors xk, are extracted. Then w(j)
i = lk is stored as a sample for

each visual word, mi, that matches, i.e for all i where µ (xk,mi) ≥ α. The index j is
used to enumerate the samples assigned to each visual word, i, separately while the index
k enumerates all samples found in the training images. Note that there is not a one to
one correspondence between k and (i, j) as one sample from the training images can be
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assigned to several visual words. The distribution fw (w |mi ) is estimated using kernel
density estimation (Equation 1.83) with a uniform three dimensional ellipsoidal kernel,

fellipse (x |x0, r0 ) =
1

3πr3

{
1 if |x− x0|2 ≤ r2

0

0 otherwise
, (1.150)

with a radius r0 of 5% of the reference object size. Since the samples have already been
assigned to visual words it is here enough to deal with the index i of the visual word. That
is,

fw (w |mi ) = f (w |i ) =
1
|Wi|

|Wi|∑
j=1

fellipse

(
w
∣∣∣w(j)

i , r0

)
. (1.151)

Consider a new test image containing an object that has been translated to position
(cx, cy) and rescaled a factor cs and let c = (cx, cy, cs). The feature points in the object
coordinate system, w, is transformed into feature points in the image, l = (lx, ly, ls), by lx = cx + wxcs

ly = cy + wycs
ls = wscs

⇔


wx = lx−cx

cs

wy = ly−cy
cs

ws = ls
cs

.

These functions are denoted

l = gl (w, c) ⇔ w = gw (l, c) .

(1.152)

This means that the distribution of the feature points in the image becomes

f (l |mi, c ) =
∣∣∣∣dgw

dl

∣∣∣∣ fw (gw (l, c) |mi ) =
1
c3s
fw (gw (l, c) |mi ) . (1.153)

This is a rescaling of the probability distribution fw (·) based on the scale of the object.
It can be implemented by using the following property of the kernel,

1
c3s
fellipse

(
gw (l, c)

∣∣∣w(j)
i , r

)
= fellipse

(
l
∣∣∣gl

(
w(j)
i , c

)
, csr

)
(1.154)

e.g. letting the radius, r of the kernel follow the scale of the object cs. It has the effect of
increasing the smoothing with the size of the objects, which is a desired behaviour,

f (l |mi, c ) =
1
|Wi|

|Wi|∑
j=1

fellipse

(
l
∣∣∣gl

(
w(j)
i , c

)
, csr

)
. (1.155)

By assuming a uniform prior on the object centre, c, its posterior distribution becomes

f (c |l,mi ) =
1
a
f (l |mi, c ) , (1.156)
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where a is a constant making sure
∫
f (c |l,mi ) dc = 1.

To locate objects in an input image, I , a set of n feature points lj are detected and
their feature vectors, xj are extracted. Each of them is compared to the visual words in the
codebook and a distribution, f (mi |xj ), over the visual words given the feature vector
is estimated. It is assumed to be uniform over the visual words matching the feature, e.g.

f (mi |xj ) =
1
c

{
1 if µ (xj ,mi) ≥ α
0 otherwise

, (1.157)

where c is a normalising constant making sure that
∫
f (mi |xj ) = 1dmi. The distri-

bution of the object centre, given a single feature point, can be found by integrating out
the visual word

f (c |lj ,xj ) =
|C|∑
i=1

f (c |lj ,mi ) f (mi |xj ) . (1.158)

All the detected feature points can be combined using the kernel density estimation from
Equation 1.83,

f (c |I ) =
1
n

n∑
j=1

f (c |lj ,xj ) . (1.159)

Putting it all together gives

f (c |I ) =
1
an

n∑
j=1

|C|∑
i=1

1
|Wi|

|Wi|∑
k=1

fellipse

(
l
∣∣∣gl

(
w(k)
i , c

)
, csr

)
f (mi |xj ) (1.160)

Local maximas of this distribution is found by generating a histogram of the distribu-
tion and finding local maximas in this. Those local maximas indicate positions where it is
likely for an object to be located and are considered detection hypothesis. The position of
these detections are then refined using mean shift [11] which results in a set of hypothesis,
H = {c1, c2, · · · }.

Pixel wise Segmentation

To allow the MDL based reasoning mentioned above about how many objects there are
present in an image, a centre position and scale of each hypothesis is not enough. Es-
pecially not in cases where the objects occlude each other. In those cases a more precise
pixel wise segmentation is used. To make that possible the training data has to be ex-
tended with pixel wise segmentations of the objects. When that is done, each sample

w(k)
i in the training database can be augmented with a binary segmentation mask B(k)

i

centred at the detected feature. This mask will indicate how the segmentation should
look around a given visual word at a given position relative to the object centre.
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Assume an object is located at c, and let B be a segmentation of an input image I
such that each pixel, B (a), is one if it belongs to an object located at c and otherwise
zero. The distribution f (l |c,mi ) is given by Equation 1.155, and the probability of
B (a) = 1 can be expressed as

p (B (a) = 1|c) =

1
b

∑
j

∑
i

1
|Wi|

|Wi|∑
k=1

fellipse

(
lj
∣∣∣gl

(
w(k)
i , c

)
, csr

)
f (mi |xj )B(k)

i (a−gw (lj , c)),

(1.161)

where b is a normalising constant. Likewise,

p (B (a) = 0|c) =

1
b

∑
j

∑
i

1
|Wi|

|Wi|∑
k=1

fellipse

(
lj
∣∣∣gl

(
w(k)
i , c

)
, csr

)
f(mi |xj )

(
1−B(k)

i (a− gw(lj , c))
)
.

(1.162)

Using these two equations a probabilistic pixel-wise segmentation mask B can be found
for each object hypothesis c.

Hypothesis Verification using MDL

Each object in the input image typically gives rise to several conflicting (i.e. overlapping)
hypothesis in H. Thus, the subset best describing the image should be chosen as the
output of the detector. This is done here using a minimum description length, or MDL,
formulation. The concept is borrowed from information theory and the idea is that the
simplest explanation of the image probably is the correct one.

In the current setting this is formalised by considering all possible subsets of the hy-
potheses, H′ ⊂ H. Each such subset can be used to give an approximate description of
the parts of the input image that the detected objects cover. To give a complete descrip-
tion, the pixels in the parts not covered by the detections as well as the errors made by
the approximative description has to be described. Let n (H′) be the number of pixels
covered by the objects in H′ and let nall be the total number of pixels in the image. Fur-
thermore, let ξ (H′) be the error introduced by describing the n (H′) pixels covered by
the detections in the image using the detections inH′. Finally, let m (H′) be the number
of parameters needed to describe the detections in H′. The description length, l (·), is
defined as

l (H′) = k1 (nall − n (H′)) + k2ξ (H′) + k3m (H′) , (1.163)

where the constant parameters k1, k2 and k3 is the number of bits required to encode
each part of the information.
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Each pixel a in the input image is considered explained by and assigned to the detec-
tion giving it the highest probability,

p (B (a) = 1 |H′ ) = max
c∈H′

p (B (a) = 1|c) , (1.164)

if this probability is larger than p (B (a) = 0 |ĉa ). Here ĉa is the hypothesis generating
the maximum at pixel a, i.e. ĉa = argmaxc∈H′ p (B (a) = 1|c). If that is not the case
the pixel is assigned to the unexplained parts of the image. The set of explained pixels is
denoted X , which gives n (H′) = |X | and the error made is defined as

ξ (H′) =
∑
a∈X

(1− p (B (a) = 1 |H′ )) . (1.165)

It is a sum over all explained pixels of the probabilities that each assignment is wrong. The
number of parameters needed, m (H′), is defined as the expected area of the detected
object.

The final result of the detector is found by optimising over all possible subsets H′ ⊂
H and locating the subset

O = min
H′⊂H

l (H′) . (1.166)

For this to be solvable in reasonable time, only pairwise interaction between objects are
considered. This means that hypothesis with three or more objects overlapping the same
area in the image will be assigned a larger description length compared to the exact ob-
jective function, Equation 1.163. This is claimed to be a desired feature since it can be
interpreted as a prior distribution putting a lower prior on hypotheses with a lot of objects
clustered close together.

The optimisation becomes a submodular second order pseudo boolean problem,
which can be solved exactly using for example graph cuts[48]. It is however claimed
[53] that a greedy approximation gives good enough results here.

3D object detection

If the camera calibration is known and the objects are assumed to be flat rectangles with
known aspect ratio standing on a known ground plane, the two dimensional hypothesis,
(x′, y′, s′) = c ∈ H can be upgraded to three dimensional, d = (x, y, h). Here
(x′, y′) is the centre position of the object in the image, s is the scale of object bounding
box in the image, (x, y) is the objects centre position on the ground plane in the world
coordinate system, e.g. in meters, and h is its height in the world coordinate system.

This is used by Leibe et al [50] to fuse detections from different cameras by clustering
the three dimensional hypothesis generated from different views. They also consider car
detection by using 5 different car detectors trained for different orientations of the car.
Detections in the same image from different car detectors are also fused in the same way to
allow overlapping detections of different orientations to be fused into a single hypotheses
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with a more precise orientation. In that way a set of three dimensional hypothesis D =
{d1,d2, · · · } is formed and the MDL hypothesis verification step is modified to work
with these three dimensional hypothesis and instead optimise over all subsets D′ ⊂ D.

The camera calibration can be described by the distribution f (c |d ), which intro-
duces some model uncertainty in the calibration. The per pixel probabilities can then
be expressed in terms of the three dimensional detection by marginalising over the two
dimensional detections

p (B (a) = i |d ) =
1
b

∑
c

p (B (a) = i |c ) f (c |d ) , (1.167)

for i = 0, 1 and a normalisation constant b. The assumption that pixels always belongs to
the strongest possible hypothesis can here be replaced with the assumption that the pixel
belongs to the object closest to the camera. Each pixel a is considered explained if there
exists one or several hypothesis d ∈ D′ such that p (B (a) = 1 |d ) > p (B (a) = 0 |d ),
otherwise it is considered unexplained. Let d̂a be the hypothesis closest to the camera
among all such hypothesis. The per pixel probabilities can then be extended to sets of
hypothesis by letting

p (B (a) = 1 |D′ ) = p
(
B (a) = 1|d̂a

)
. (1.168)

As before, the set of explained pixels is denoted X .
The three dimensional hypothesis also allows for a natural prior distribution, f (d) =

f (h) f (x, y), to be introduced. For tracking pedestrians, Leibe et al [51] suggests to use
the height prior (for h in meters), f (h) = N (h ∣∣1.7, 0.22

)
, and to use a position prior,

f (x, y), that is uniform over the area where the detector is expected to perform well.
This becomes a strong connection between the scale and position of the objects in the
image which improves detection results. To introduce this prior, the error is redefined
into

ξ (D′) =
∑
a∈X

(1− p (B (a) = 1 |D′ )) f
(
d̂a

)
. (1.169)

The remaining parts of the description length, l (O′) (Equation 1.163), remains the same
as before and the set of three dimensional detections is found by maximising over all
subsets D′,

O = min
D′⊂D

l (D′) . (1.170)

Tracking

The set of detections from the previous section can be passed to any of the detection based
trackers presented above. But by formulation the tracking problem as the same kind of
MDL hypothesis selection optimisation it is possible to solve it jointly with the detection
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problem. This will be described in the next Section. Leibe et al [50] have made this kind
of formulation of the tracking problem. In that case, the three dimensional detections for
each frame,

Ot =
{
ot,1,ot,2, · · ·ot,|Ot|

}
, (1.171)

is generated as above in a separate step and then the tracking uses those detections as
input. For some objects, such as cars, several detectors are used trained on cars with
different orientations, which means that also the orientation of the detected object, θ, can
be estimated. The detections are also augmented with a colour histogram, a (·), formed
over the supporting pixels, wighted with the per pixel probabilities, Equation 1.167. Each
detection is thus represented by ot,i = (xt,i, yt,i, ht,i, θt,i, at,i (·)),

The tracker tries to estimate a state sequence for each object in the scene. The state of
a single object at time t is given by qt = (x, y, θ, v, w, a (·)), where (x, y) is the object
centre position on the ground plane, θ is its orientation, v its velocity, w its angular veloc-
ity and a (·) a 8×8×8 colour histogram. Two different dynamic models are introduced,
one for pedestrians and one for cars, where the car model includes the restriction that the
car cannot turn if it is not in motion. Both models are constructed by a set of differential
equations. In both cases dx

dt = v cos θ and dy
dt = v sin θ are used. The pedestrian model

also uses dθ
dt = w, while the car model uses dθ

dt = wv. Using these equation, predictions
about the current state, q−t =

(
x−t , y

−
t , θ

−
t , v

−
t , w

−
t , a

−
t (·)), can be made from the state

in the previous frame, qt−1 = (xt−1, yt−1, θt−1, vt−1, wt−1), using either

x−t = xt−1 + vt−1 cos θt−1

y−t = yt−1 + vt−1 sin θt−1

θ−t = θt−1 + wt−1

v−t = vt−1

w−t = wt−1

a−t = at−1

or



x−t = xt−1 + vt−1 cos θt−1

y−t = yt−1 + vt−1 sin θt−1

θ−t = θt−1 + wt−1vt−1

v−t = vt−1

w−t = wt−1

a−t = at−1

.

(1.172)
The observations made are the detections which gives position, orientation and colour

histogram. The observation probability distribution of the position part of the state is
defined using a rotation matrix

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
, (1.173)

and different variations along the travelling direction, σ2
mov, and perpendicular to it, σ2

trn.
It is assumed to be

f
(
(xt, yt)

∣∣q−t ) = N
(

(xt, yt)
∣∣∣∣(x−t , y−t ) ,Rθ−t

T
(
σ2

mov 0
0 σ2

trn

)
Rθ−t

)
.

(1.174)
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The orientation part is also assumed Gaussian distributed with some variance σ2
str,

f
(
θt
∣∣θ−t ) = N (θt ∣∣θ−t , σ2

str

)
. (1.175)

The colour histograms are compared using their Bhattacharyya coefficient [38, 13],

f
(
at (·) ∣∣a−t (·)) =

∑
i

√
at (i) a−t (i), (1.176)

which is closely related to the average probability of classification error. The height of
the detection provides very little extra information as it is closely coupled to the position,
and is not used. Combining Equation 1.174, 1.175 and 1.176 gives the likelihood of an
observation, ot, assuming independence,

f
(
ot
∣∣q−t ) = f

(
(xt, yt)

∣∣q−t ) f (θt ∣∣θ−t ) f (at (·) ∣∣a−t (·)) . (1.177)

The current state of the tracker is formed as a weighed sum over the prediction and
all detections. To do that the non observed parts of the state has to be estimated for each
detection, ot,i, by for example{

vt,i =
√

(xt,i − xt−1)2 + (yt,i − yt−1)2

wt,i = θt,i − θt−1

. (1.178)

The detections are weighted with their likelihoods and the prediction with some con-
stant, e−λ,

qt =
e−λq−t +

∑
i f (ot,i |qt−1 ) (xt,i, yt,i, θt,i, vt,i, wt,i, at,i (·))

e−λ +
∑
i f (ot,i |qt−1 )

. (1.179)

The tracker is initiated at every detection in every frame and for each of them a
hypothetical track is generated by running the tracker both forward and backwards in
time. This generates a set of track hypothesis, T , and a subset of them is chosen by
optimising over all subsets T ′ ⊂ T in a similar manner as above. Here the tracks will
compete for the detections as the detections competed for the pixels above. Each track
hypothesis, ri ∈ T , is a sequence of states, ri = {qi,t} for t = 0, 1, · · · . For each
track, i, there will be a set of corresponding three dimensional detections, ot,i, for some
t, typically not every possible t, i.e. the observation is missing for some time points. Each
observation will be assigned to the track in T ′ that maximises its likelihood, f (ot,i |qt ).
In each image, each pixel is assigned to a single detection as above. Let Xt,i be the set of
pixels assigned to the detection ot,i. The description length error is here defined to be

ξ (T ′) =
∑
i

∑
t

e−λ(τ−t)
∑

a∈Xt,i

(1− p (B (a) = 1 |ot,i )) f (ot,i) f (ot,i |qt,i ) .

(1.180)

57



CHAPTER 1. INTRODUCTION

A temporal weighting have been used to put more weight of the last frame, τ . For offline
tracking or in surveillance situation where results can be provided with a few seconds
delay it would have been more natural to put the same weight on all frames. With this
new error term, the MDL hypothesis selections procedure can be applied and the subset
T ′ with minimum description length can be found.

Joint Tracking and Detection

Leibe et al [51] has combined this MDL based hypothesis selection for tracking and de-
tection into a single hypothesis selection optimisation where tracks will compete for de-
tections and detections will compete for pixels. To do this over an entire video sequence
might be too ambitious a task. Instead tracks are optimised over all frames while detec-
tions only are optimised over the current frame. As the system then moves on to the next
frame the detections for past frames are fixed. This means that only detections matching
the current optimal sequence, which might change when future frames are received, or
matches that are strong enough to by themselves force a new track to be initiated, are kept
as detections.

1.4.3 Background Foreground Trackers

It is also possible to reason about the number of objects present using a Bayesian formula-
tion. In that case the multi target state space presented in Section 1.3.2 is typically used.
This is done by for example Song and Nevatia [92], who models pedestrians as four three
dimensional ellipsoids corresponding to the head, torso, left leg and right leg. The model
is assumed to be standing on a known ground plane and it is projected into a calibrated
camera. The pixels it covers in the image is expected to be detected as foreground by
some background/foreground segmentation algorithm and all other pixels are expected to
be background.

Three articulations of the model are considered, legs together, right leg forward and
left leg forward. The orientation is discretised into a few orientations. This forms a
discrete, finite, set of articulations and orientations which is enumerated with labels, l ∈
L. The state of an object also contains its position on the ground plane, (x, y), and
two scaling factors, (sh, sf ), varying the height and the fatness of the model. Each
single object qi is thus represented by qi = (l, x, y, sh, sf ) ∈ S. The full state, q =
(q1,q2, · · · ) ∈ S∞, is a configuration of objects.

As observations a binary background foreground segmentation,B, is used. For pixels,
a, where foreground is detected B(a) = 1 and for pixels where background is detected
B(a) = 0. The observation probability distribution is formed by projecting the ellipses
representing the state q into the image, forming an expected background foreground
segmentation image B̂. All pixels are considered independent and their distributions
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specified by two constants p00 and p11, i.e. for all pixels a,

f (B(a) = 0
∣∣∣B̂(a) = 0

)
= p00

f (B(a) = 1
∣∣∣B̂(a) = 0

)
= 1− p00

f (B(a) = 0
∣∣∣B̂(a) = 1

)
= 1− p11

f (B(a) = 1
∣∣∣B̂(a) = 1

)
= p11

, (1.181)

and for the entire observation,

f
(
B
∣∣∣B̂) =

∏
a

f
(
B(a)

∣∣∣B̂(a)
)
. (1.182)

By counting the two types of errors

n10 =
∑
a

B(a)
(

1− B̂(a)
)

(1.183)

and
n01 =

∑
a

(1−B (a)) B̂(a), (1.184)

this can be written
f
(
B
∣∣∣B̂) = αe−λ10n10−λ01n01 , (1.185)

where λ10 and λ01 are constants depending on p00 and p11 and α contains all terms
independent of B̂ and q (but dependent on B).

An maximum a posterior, MAP, estimate of the state q in the current image is found
by maximising f (q |B ) over all possible q. The same maximum is found by maximising

f
(
B
∣∣∣B̂) f (q), where f (q) is a state prior. Here only a single frame is considered,

which means that comparing observation likelihoods is equivalent with discretising the
state space into regions as illustrated by Figure 1.4 and explained in Section 1.3.2. How-
ever, the prior used removes this property. It is chosen as a product over all objects present,

f (q) =
|q|∏
i=1

f (qi) , (1.186)

which means it will implicitly put a lower prior on any single state with more objects
present since f (qi) < 1. However the number of states with a given number of objects
grows with the number of objects with means that the prior assumed gives an uniform
prior over the number of objects. The single object prior is chosen to be

f (qi) = e−λ1v(qi)
(

1− e−λ2v(qi)
) 1
vtot
N (sh |1.5, 1.9)N (sf |0.8, 1.2) f(l),

(1.187)
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where v(qi) is the area covered by projecting qi into the image and vtot is the total area of
the image. The prior over the articulation/orientation labels f(l) is chosen to make the
prior of the walking models lower than the standing models in order to penalise the higher
complexity of the walking models. These priors will depend on the scale of the coordinate
system and comparing the prior of two states with a different number of objects can be
given any outcome by changing the coordinate system scale.

The MAP estimate is search for by generating a set of samplesQ =
{
q(1),q(2), · · ·}

by doing Markov chain Monte-Carlo sampling from f
(
B
∣∣∣B̂) f (q), and then choosing

the sample with maximum likelihood as the MAP estimate q∗,

q∗ = argmaxq∈Q f
(
B
∣∣∣B̂) f (q) (1.188)

The MCMC algorithm is introduced in Section 1.3.1 and extended to this kind of multi-
object spaces in Section 1.3.2. It is based on a proposal distribution f̃

(
q(j)

∣∣q(j−1)
)
,

which has to be specified. It is here defined by an algorithm generating q(j) by randomly
choosing one of five modification schemes and applying it to q(j−1). The five possible
modifications are

• Add a random detection, perturbed with Gaussian noise, from a random pedestrian
detector as a new object. Here any set of pedestrian detectors could be plugged in.
If the detector don’t give all state variables in qi, the remaining is sampled from
their prior.

• Remove a random object.

• Randomly change the label l of a random object.

• Let q(j) = q(j−1) +k d log f(q|B )
dq

∣∣∣
q=q(j−1)

+w, where k is some fixed parameter

and w is Gaussian noise.

• Replace one object by performing the second modification followed by the first
modification.

It is straightforward to generalise this to handle other types of objects. Song and
Nevatia [72] present a version for detecting cars modelled as boxes with known dimen-
sions. There tracking is also introduced by considering the set Q above as a set of hy-
pothesis for each frame. By indexing the state vectors with the frame number t, e.g

qt = (qt,1,qt,2, · · · ) andQt =
{

q(1)
t ,q(2)

t , · · ·
}

, a dynamic model can be introduced

as the probability distribution f (qt |qt−1 ). It is here constructed by matching the ob-
jects in qt to the objects found in qt−1 based on their overlapping area. If qt and qt−1
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are reorder to place the l matching objects in the same order at the beginning of the
vectors,

f (qt |qt−1 ) =
l∏
i=1

f (qt,i |qt−1,i )
|qt|∏
i=l+1

fnew (qt,i)
|qt−1|∏
i=l+1

fend (qt−1,i) , (1.189)

where f (qt,i |qt−1,i ) is some single object motion model and fnew (qt,i) and fend (qt−1,i)
are the entry and exit probabilities that here might depend on the position to make it more
likely for cars to appear or disappear at the borders of the intersection.

This forms an hidden Markov model and the maximum likelihood state sequence is
found by using Viterbi optimisation, see Chapter 4. The Viterbi optimisation does give
the global optimum, but in this case it is not used to search the entire state space, but only
a subset of hypothesis, which means that only a local optimum is found. In Chapter 4
modifications to the Viterbi algorithm are presented that allows it to be used to search the
entire state space.

This algorithm allows temporal consistency arguments to enter the reasoning about
how many objects are present, but it assumes that the MCMC sampling actually finds the
states on maximum likelihood state sequence based on a single frame only. This means
that the algorithms can remove false positives, but will fail if a car is not detected at all in
a single frame.

1.4.4 Globally Optimised

Cost flow network

Zang and Nevatia [91] has suggested to solve the problem of missing detections by al-
lowing detections to be linked over small time gaps. The problem is here formulated as a
search for the optimal assignment of measurements to objects. The space of all possible
assignments is typically a much smaller space than the multi object state space, since only
the areas of the state space were there are detections are considered. This makes it possible
to optimise over the entire space if the maximum number of consecutive frames an object
might be missed by the detector can be assumed lower than some low threshold. It is then
possible to solve for a global optimum using cost flow networks.

The observations in this setup is a set of detections from a single frame object de-
tector, oi ∈ O, where each observation oi = (x, y, s, a, t), consists of a position,
(x, y), scale, s, appearance, a and frame index t. The task is to partition this set into
disjoint trajectories, Tk = {ok,1,ok,2, · · · }, and false alarms. Such a partitioning is rep-
resented by the set of trajectories, T = {T1, T2, · · · }. A maximum a posterior estimate,
T ∗ = argmaxT f (T |O ), is found by optimising∏

o∈O
f (o |T )

∏
Tk∈T

f (Tk) (1.190)
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over T under the constraints

Tk ∩ Tl = ∅ for all k 6= l. (1.191)

This optimisation can be done in polynomial time using cost flow networks (see [91] for
details). The first part of the probability distribution is derived from the probability of a
false detection, β,

f (o |T ) =
{

1− β if o = ok,j for some k and j
β otherwise

. (1.192)

The probability of a track

f (Tk) = fnew (ok,1)
|Tk|∏
l=2

f (ok,l |ok,l−1 ) fend
(
ok,|Tk|

)
, (1.193)

where fnew (·) and fend (·) are assumed constant and equal and somehow estimated during
the optimisation. The link probabilities

f (ok,l |ok,l−1 ) = f (oj |oi ) =
f (sj |xi, yi, si, tj − ti ) f (xj , yj |xi, yi, tj − ti ) f (aj |ai ) f (tj − ti) , (1.194)

where f (sj |xi, yi, si, tj − ti ) and f (xj , yj |xj , yj , tj − ti ) are assumed Gaussian and
f (tj − ti) is constructed from the missing rate of the detector and is truncated to 0 for
large tj − ti. The appearance a is a Colour histogram and the probability distribution
f (aj |ai ) is formed by comparing the two Colour histograms.

The global optimal MAP estimate, T ∗, is calculated, which results in object tracks
even if the objects are not detected for a few consecutive frames and there are clutter
detections. Long term occlusion between objects does not work however. This is solved
in a iterative (no longer globally optimal) manner where in a first step the non occluded
objects are tracked using the above algorithm. Then those tracks are fixed and synthesised
detections are added to O representing detections that might have been occluded by the
now fixed objects. The algorithm is the repeated to locate the occluded tracks. The entire
process is repeated until no more tracks are located or some specified number of iterations
have been reached.

Iterative single object HMM

Berclaz et al [4] has suggested to use a single object tracker to extract the tracks of multiply
objects one by one. This single object tracker is constructed by discretising the ground
plane into a set of positions forming a uniform two dimensional grid. The state space
is formed from the finite set, S1 = (S1, S2, · · · ), of gird points and a special state S0
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representing the state of the object being located outside the region of interest, e.g the state
space used is S = Ŝ1 = S1∪S0. The objects tracked are pedestrians and they are assumed
to be flat rectangles standing at the grid points facing the camera. The observations
formed from the input images, It, consists of background foreground segmentations and
colour histograms form over the area in the image an objects projects into. The initial
state q0, and the expected colour histogram of that object is assumed known a priori.
In the case that q0 = S0, the colour histogram is made flat to allow an object with
unknown colour histogram to enter the scene. The probability distribution f (qt |It ) is
derived based on the colour histogram and the background segmentation, and an MAP
estimate of of the state sequence q1,q2, · · · is found using Viterbi optimisation.

This single object tracker is then used to form a multi object tracker by applying it
to 4 second batches of the input video. After it is executed once, a single track is found.
Then this track is fixed and the algorithm repeated under the restriction that the new
track may not overlap the fix tracks. When no more tracks can be found, the 10 first
frames of the 4 second batch is discarded and the results from them stored as output.
Also colour histograms are estimated for the tracks found to be used in the next iteration.
Then 10 new frames are appended to the batch and the entire process repeated.

Even though the single object tracker gives a global optimum for a single object in
each 4 second batch, the resulting algorithm don’t have to give the global optimum for
the multi object problem for longer sequences. The resulting state sequences are not even
guaranteed to be consistent, even though the large overlap of the batches makes this likely.
Also, the colour histograms of the objects are assumed known at the start of each batch
and not part of the state space, which means no optimisation is done over different colour
histograms.

Single frame

Schoenemann and Cremers [68] has suggested a globally optimal tracker that is con-
structed from a shape based object detector, detection the occluding contour line of an
object. The detector assumes that exactly one object is present and finds its globally op-
timal position given a single frame. No dynamic model is used. This means that the
optimisation is done over a single state for a single frame and not over state sequences.

1.5 Discussion

Detecting simple events, such as a pedestrian entering a shop, a vehicle turning left at
an intersection, or a person loitering, can be done by using a robust tracker. By placing
restrictions on the tracker, such as “vehicles may only appear at the borders of the image
and not in the middle of the intersection”, the event detection will be a simple matter of
checking the endpoints of the tracks produced, and, in case of loitering, the time spend
in the scene. In this thesis we present a novel tracker that uses online Viterbi optimisa-
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tion to find the set of tracks with maximum likelihood among all tracks conforming to
constraints such as those mentioned above.

The main purpose is that the tracking algorithm should produce the overall picture
right. That is, decide where and when objects enter and exit the scene. To do that
robustly the objects have to be tracked. There is however no need for an exact estimate
of the object position or speed, as the goal is only to get the overall picture right. The
typical application is to count objects and separate between for example left turning and
right turning vehicles. Once the overall picture is in place more exact positions can be
calculated using one of the single target tracking algorithms presented above.

Using a continuous state space, S∞, is theoretically somewhat complicated. The
solution used in this thesis is to discretise it, which is not a problem in this case as the
goal is the overall picture and not exact positions. That allows the dynamics of all objects,
including entries and exits, to be modelled by a single hidden Markov model.

A major problem with the approach is that the state space is huge. Typically at least
some 10000 states is needed for a single object, and tracking n objects simultaneously will
reuire 10000n states. Two novel versions of the Viterbi optimisation is presented that do
not need to calculate the likelihood of every state in every frame. The first operates online,
and in some cases in real time, but will with some probability, only provide approximative
solutions. This probability can be estimated offline from unlabelled training sequences
using the second one that provides the global optimum.

Relation to classical approaches

A classical solution to generate tracks from object detections is Kalman filtering [39], but
since it is a linear model that assumes Gaussian probabilities it often fails in heavy clutter.
In those cases particle filtering [30, 20] are often preferred as it allows multiple hypothesis
to be maintained, and thus postpones the resolving of problematic situation until more
information has been obtained.

When several objects are considered, one model for each tracked object is often used.
However, the data association problem [70] of deciding which detections should be used
to update which models has to be solved. This is done by the MHT [65], for the Kalman
filtering framework, where all possible associations are considered. Less likely hypotheses
are pruned as the number of possible associations increases exponentially with time. This
exponential increase is avoided in the JPDAF [90] by presuming the associations at each
time step to be independent from associations of the previous time step. The complexity
can be lowered even further by also assuming independence among the different associ-
ations at one time step, which is done by the PMHT [76]. Here the data association
problem does not have to be solved explicitly in every frame. Instead the probability of
each measurement belonging to each model is estimated.

The problems of detecting when objects enter or exit the scene has to be solved sep-
arately in the cases above. When using a single model for all objects, as proposed in this
thesis, neither the data association problem, nor the entry/exit problems has to be solved
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explicitly in every frame. Instead we optimise over all possible sequences of solutions over
time. In [12] the PMHT is extended with the notion of track visibility to solve the prob-
lem of track initiation. However, their system is still based on the creation of candidate
tracks that may not be promoted to real tracks, but they will still influence other real
tracks.

Relation to other HMM and particle filter approaches

For single target tracking the particle filter have been a successful solution. Extending this
to handle a varying number of objects is not straightforward as the state now contains
a discrete component, the number of objects currently present. One common way is to
use one particle filter for each object, but that again means that the problems of track
initialisation, track termination and data association has to be solved separately, which is
not the case when those events are modelled within the state space, S∞. A single particle
filter can then be applied to this space or it can be discretised and an HMM used to model
the dynamics.

This has previously been suggested by [26] where a state space is exhaustively searched
for an optimum in each frame. However the authors assume a known positions in the
previous frame. In another approach [10] the discretising grid is repositioned in each
frame, centred at the current best estimate with its mesh size and directions given as
the eigenvalues and eigenvectors of the error covariance. More recently, [9] shows, in
the single object case, that a particle filter is capable of matching the performance of an
HMM tracker [8] at a fraction of the computational cost. However in [59] it is shown
that by placing some restrictions on the HMMs the computational complexity can be
reduced form O(n2) to O(n), and that HMMs with 100, 000 states can be used for
real time tracking, which is more than enough for single target tracking. In both these
approaches fairly densely discretised state spaces are used. We show in this work that state
spaces discretised more sparsely can be used. Especially in applications where the main
interest is to solve the global problem of deciding which object goes where.

Most real-time HMM-based trackers [59], [42] and [22] do not use the standard
Viterbi dynamic programming algorithm [64], which finds the global maximum likeli-
hood state sequence. The main problem of using this algorithm is that it requires the
entire set of future observations to be available. Instead they estimate the state posterior
distribution given the past observations only. The particle filter also results in this kind
of posterior state distribution, which means that both the particle filter and this kind of
HMM trackers suffer from the problem of trying to estimate the single state of the system
from this distribution. Later processing stages or data-displays usually requires a single
state and not a distribution.

Common ways to do this is to estimate the mean or the maximum (MAP) of this
posterior distribution, but this have a few problems:

1. A mean of a multi modal distribution is some value between the modes. The max-

65



CHAPTER 1. INTRODUCTION

imum might be a mode that represents a possibility that is later rejected. In both
cases this can result in inconsistent tracks. In this thesis we instead use optimisation
that considers future observation and thereby chooses the correct mode.

2. In the multi object case the varying dimensionality of the states makes the mean
value difficult to define. In [33] it is suggested to threshold the likelihood of each
object in the configurations being present. Then the mean state of each object for
which this likelihood is above some threshold is calculated separately.

3. Restrictions placed in the dynamic model, such as illegal state transactions, are not
enforced, and the resulting state sequence might contain illegal state transactions.
For the particle filter also restrictions in the prior state distribution might be vio-
lated. In [33] for example, the prior probability of two objects overlapping in the
3D scene is set to zero, as this is impossible. However the output mean state value
may still be a state where two objects overlap, as the two objects may originate from
different sets of particles.

The problem is that only single states are considered. In this thesis state sequences
are considered, which means that impossible state transactions will never appear in the
results. Neither will impossible states, as the optimisation produces a single state sequence
as the optimum, and there never is any need to calculate the mean over different states.

Relation to other non causal approaches

Classically tracking algorithms have been constructed to be strictly casual and only con-
siders past frames when making a decision of the current state of the tracked objects. In
many surveillance applications this is an unnecessary restriction though. When doing for
example people counting or loitering detection there is typically no problem in allowing a
delay of several seconds between an event happening in the scene and the detection made
by the system. In those cases it is possible to let the decisions not only depend of past
frames but also on future frames.

Recent work on tracking have started to move from causal solutions into the non
causal solutions. Zang and Nevatia [91] considers tracking as an offline problem where
all data is available when the algorithm starts. Berclaz et al [4] uses a 4 second long sliding
window which is optimised in an offline fashion and then only the 10 first frames are
stored as output. Leibe et al [50] formulates their tracker in an online casual way but
reevaluates its view of what happened in the past as new frames are received. This means
that the final result for those past reevaluated frames do depend on future frames.

The work presented in this theses shows how to use classical hidden Markov models
with this online but non casual approach. It is done in a way that guarantees consistency
in the produced tracks, i.e. no jumping between different hypothesis, which is not the
case with the sliding window approach. Also it can assess whether a global optimum were
actually found or not.
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1.6 Contributions

The contribution of this thesis is

1. A theoretical derivation of the probability distribution function of the correlation
coefficient between two patches where the two patches are either uncorrelated or
only differ by some translation, rescaling and additive Gaussian noise

2. A suggestion of using recursive quantile estimators instead of learning factors for
estimating background models.

3. Two background/foreground segmentation algorithms efficient enough to be used
in real time embedded in cameras that can handle the varying lighting condition
and static backgrounds of outdoor traffic surveillance.

4. An online version of the Viterbi algorithm (dynamic programming) that will out-
put the resulting globally optimal maximum likelihood state sequence of an hidden
Markov model even before the last observation symbol have been received and can
thus be used for infinite state sequences.

5. A modification to the Viterbi algorithm (dynamic programming) that will make
it produce the globally optimal maximum likelihood state sequence of an hidden
Markov model without evaluating every possible state in every frame enabling the
use of very large, possible infinite, state spaces.

6. An online real time tracking algorithm that can track a varying number of objects
of different types with sensor fusion form several cameras observing the same scene.
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Chapter 2

Matching Image Patches using
Correlation

2.1 Introduction

The correlation between two signals (cross correlation) is a standard tool for assessing
the degree to which two signals are similar. It is a basic approach to match two image
patches, for feature detection [14] as well as a component of more advanced techniques
[7]. The technique has several advantages. Firstly, the cross correlation is fairly easy to
compute. Fourier methods can be used to compute the cross correlation fast, when used
for matching a patch in a general position in an image. Secondly, the cross correlation
is independent of translations and scaling in the intensity domain. Thus it is fairly inde-
pendent of lighting variations.

Numerous authors use cross-correlation for matching, [7, 78]. The technique has
been shown to give good results in many situations where the patches has enough struc-
ture. However, there has been little attention to probabilistic models of the correlation
coefficient. The contribution of this work is to make it usable even when there is no struc-
ture, e.g. a blank wall. The correlation between two almost uniform patches is close to 0,
which will make the entire wall foreground if a thresholded cross-correlation were used
for foreground/background-segmentation, as illustrated in Figure 2.1. The theory in this
paper makes it possible to asses how good the correlation value is in determining if two
patches are the same based on the amount of structure in the patch, c.f. Figure 2.1 (last
column). In Chapter 3 the use of cross correlation as a feature for background foreground
segmentation will be investigated.

In [40] image patches are matched by first transforming the signal to a binary signal
and then forming a correlation coefficient called increment sign correlation. They also
calculate the distribution function of the increment sign correlation assuming a Gaussian
noise model in image intensity. Much information is, however, lost in the binarisation
and the remaining theory is only applicable for binary signals.

In this paper we derive the distribution function of the cross-correlation coefficient in
two different cases: (i) the cross-correlation coefficient between two random independent
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Figure 2.1: A background image (first column), the current frame (second column), the
normalised cross correlation, c, between each 8 × 8 block (third column) and the fore-
ground probability (last column). Note that the correlation, c is low both for the fore-
ground object and the uniformly coloured wall, while the foreground probability is close
to 0.5 (e.g unknown) for the uniformly coloured regions, close to 0 for most background
with structure and close to 1 for foreground with structure. See also fgbg_ncc.avi at
http://www.maths.lth.se/˜ardo/thesis/.

patches and (ii) between two patches that differ only by scale, translation and additive
Gaussian noise. Using these two distributions the patch matching problem is formulated
as a binary classification problem and the probability of two patches matching is derived
using Bayes’ formula.

In Section 3.1.3 of Chapter 3, the theory is applied to the problem of background
foreground segmentation, which can be made more robust to changes in lighting using
patches instead of individual pixels. Furthermore the quality of the segmentation can be
assessed automatically and precisely. This is necessary as the background might contain
patches with very little structure. Those patches are detected as more uncertain than
patches with more structure.

2.2 Correlation Coefficient

In this chapter the cross correlation between small patches, typically 4×4 or 8×8 pixels,
will be studied. It does not depend on the two dimensional structure of the patch, which
allows each patch, a to be represented as a one dimensional vector, a = (a1, a2, · · · ad),
where ak is the grey level of pixel k, and d is the total number of pixels in the patch.
The ordering of the pixels is not important as long as the same order is always used. The
following notation for the mean, ā = 1

d

∑
ak, the displacement, âk = ak − ā and the

length (amount of structure or variance), |â|2 =
∑
â2
k will be used. The correlation
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coefficient, c, between two patches, a and b is defined as

c =
∑
âk b̂k

|â|
∣∣∣b̂∣∣∣ =

â
|â| ·

b̂∣∣∣b̂∣∣∣ , (2.1)

where · denotes scalar multiplication. Note that c = cosα, with α the angle between the
two vectors â and b̂.

The patch matching problem can be formulated as a binary Bayesian classification
problem, with one feature, c. In other words, given a known patch and one or sev-
eral candidate patches it is possible to calculate the probability, for each of the candidate
patches, that they are noisy, rescaled and translated versions of the known patch using
Bayes’ formula. To do that the distribution function, fbg (c), of correlating the known
patch with a noisy rescaled and translated version of itself is compared with the distribut-
ing function, ffg (c), of correlating the known patch with a random uncorrelated patch.
The foreground distribution, ffg (c), will only depend on the dimension d, while the
background distribution, fbg (c), will also depend on the amount of structure, i.e. the

length ˆ|a|, in the known patch and the noise level.

2.2.1 Foreground Distribution

To derive the foreground distribution, consider a known patch p and a random patch
r with independent Gaussian distributed pixels with identical mean value. This is a
rather crude approximation of the distribution of patches that assumes that two unre-
lated patches are uncorrelated. As is shown by the experiments below, this is not the
situation in the general case. The approximation is however not as severe in typical traffic
surveillance scenes where the background mostly consists of pavement. Also, looking at
this simpler case first will make it easier to understand the derivation of the background
distribution, which is more complicated but follows the same general idea and the back-
ground distribution does very accurately model the general case as is also shown in the
experiments section.

The correlation coefficient, c, can be calculated from p and r in four steps.

1. Remove the mean of p and r.

2. Rotate coordinate system to place p on the first coordinate axis.

3. Scale and r to unit length.

4. Let c = r1.

Removing the mean is an orthogonal projection on the plane (1, 1, 1, · · · ). The
resulting vector r̂ is still normally distributed on a d− 1 dimensional subspace, now with
mean zero. Scaling r to unit length means integrating the distribution function along
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rays from the origin. In the case of a rotational symmetric distribution this results in an
uniform distribution on the d − 1 dimensional unit hyper-sphere, which is unchanged
by rotating the coordinate system. The same result is found in the case of a Gaussian
distribution with a general non singular covariance matrix. Before an explicit expression
of ffg and a strict proof is given in Lemma 2, the following lemma will be proved. It
represents step 1-2 above. Plots of the distribution function is found in Figure 2.2 (left).

Lemma 1. Let r be a d-dimensional Gaussian distributed random vector with mean u, and
covariance matrix Σ, i.e. f (r) = N (r |u,Σ ). Let p be a fixed given d-dimensional vector.
Let c = cosα be the correlation coefficient between r and p. Then there exists a d − 1
dimensional random vector r̂′, such that the angle between r̂′ and the first coordinate axis is
α, and

f (r̂′) = N (r̂′ |u′,Σ′ ) , (2.2)

with Σ′ and u′ defined in the proof below. Furthermore,

u = m1d ⇒ u′ = 0d−1

u = ap + b1d ⇒ u′ = (a |p| , 0, 0, · · · , 0)
Σ = σ2Id ⇒ Σ′ = σ2Id−1

Σ non singular ⇒ Σ′ non singular

, (2.3)

where a, b,m ∈ R.

Proof. The displacement of r can be written as the linear transformation r̂ = Ar, with
A = Id − 1

d1d×d, where 1d×d is a d× d matrix with all elements set to 1, e.g.

A =


1− 1

d − 1
d − 1

d · · · − 1
d− 1

d 1− 1
d − 1

d · · · − 1
d· · ·

− 1
d − 1

d − 1
d · · · 1− 1

d

 . (2.4)

This means that f (r̂) = N (r̂ ∣∣Au,AΣAT
)
. This distribution is singular as r̂ always

lies on the d− 1 dimensional hyper-plane
∑
r̂k = 0. By rotating the coordinate system

using the matrix

B =



1√
2

−1√
2

0 0 0 · · · 0
1√
6

1√
6

−2√
6

0 0 · · · 0
1√
12

1√
12

1√
12

−3√
12

0 · · · 0
1√
20

1√
20

1√
20

1√
20

−4√
20

· · · 0
· · ·

1√
d2−d

1√
d2−d

1√
d2−d

1√
d2−d · · · 1√

d2−d
−d+1√
d2−d

1√
d

1√
d

1√
d

1√
d

· · · 1√
d

1√
d


(2.5)
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the last coordinate, will always be 0. The length of all row-vectors in B is one and the
scalar product between any two row vectors is zeros. This means that B is an orthonormal
matrix and therefor a rotation (and possible mirroring) matrix. The distribution of the
rotated vector becomes

f (Br̂) = N (Br̂
∣∣BAu,BAΣATBT

)
. (2.6)

By using A = Id − 1
d1d×d and splitting B in the block matrix form

B =
(

B′
1√
d
1dT

)
, (2.7)

the matrix BA can be expanded into

BA =
(

B′ −B′ 1d1d×d
1√
d
1dT − 1√

d
1dT 1

d1d×d

)
. (2.8)

Each row of B′ sums to 0, which means that B′1d×d = 0d×d. By also using that
1dT1d×d = d1dT, this simplifies to

BA =
(

B′

0dT

)
. (2.9)

This allows the variance of f (Br̂) in Equation 2.6 to be simplified into

BAΣATBT =
(

B′ΣB′T 0d−1

0d−1
T 0

)
. (2.10)

The expressions of Equation 2.9 shows that the last coordinate of BAp = Bp̂ and
BAr = Br̂ will be 0. To make every coordinate but the first one 0 in p̂ it is possible to
find a rotational matrix, C, such that CBp̂ = (|p̂| , 0, 0, · · · , 0). This rotational matrix
is independent of r and will be or the form

C =
(

C′ 0d−1

0d−1 1

)
, (2.11)

since the last coordinate was already 0. This means that the last coordinate of CBr̂ will
remain 0.

Let r̂′ and p̂′ be the d− 1 first coordinates of CBr̂ and CBp̂,

CBp̂ =
(

C′B′p̂
0

)
=
(

p̂′

0

)
, (2.12)

CBr̂ =
(

C′B′r̂′

0

)
=
(

r̂′

0

)
. (2.13)
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Then the angle, α, between r̂′ and p̂′ will be the same as the angle between r̂ and p̂ as the
omitted coordinate is 0 for both r̂ and p̂ and the angle is invariant to coordinate system
rotation. As noted above the correlation coefficient between r and p is cosα. This gives
p̂′ = (|p̂| , 0, 0, · · · , 0) and

f (r̂′) = N (r̂′ |u′,Σ′ ) , (2.14)

with,

u′ = C′B′u (2.15)

and

Σ′ = C′B′ΣB′TC′T (2.16)

The vector p̂′ is located on the first coordinate axis and thus the angle between r̂′ and p̂′

is the angle between r̂′ and the first coordinate axis. This concludes the proof of the first
statement regarding the existence or r̂′ and that it is Gaussian distributed. Regrading the
later statements, consider them one by one:

• If u = m1d the conclusion that each row of B′ sums to 0 also means that u′ =
C′B′u = 0d.

• If u = ap + b1d, then

u′ = C′B′ (ap + b1d) = aC′B′p = ap̂′ = (a |p̂| , 0, 0, · · · , 0) . (2.17)

• If Σ = σ2Id, then σ2 will factor out and B′B′T = Id−1 since B′ is orthonormal
as noted above and C′C′T = Id−1 since C′ is a rotation matrix. In this case
Σ′ = σ2Id−1.

• Finally, if Σ is non singular so is Σ′ = C′B′ΣB′TC′T

Using Lemma 1 it is now possible to prove the following lemma.

Lemma 2. The distribution function of the correlation coefficient, c, between a given fixed
patch p and a random, d dimensional, patch, r, with Gaussian distributed pixels with iden-
tical mean and non singular covariance matrix, is for d > 3,

ffg (c) =
Γ
(
d
2

)
√
πΓ
(
d
2 − 1

2

) (1− c2) d−3
2 . (2.18)
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Proof. Let r be a d-dimensional Gaussian distributed random vector with mean u =
(m,m,m, · · · ,m) and covariance matrix Σ. Let p be a d-dimensional given fixed vec-
tor. According to Lemma 1, there exits a vector r̂′ with distribution

fr̂′ (r̂′) = N (r̂′ |0d−1,Σ′ ) , (2.19)

and the correlation coefficient between p and r is cosα for α, the angle between r̂′ and
the first coordinate axis. According to Lemma 1, the matrix Σ′ is non-singular and can
thus be factored into Σ = SST using Cholesky factorisation with S invertible. This
means

fr̂′ (r̂′) = N (S−1r̂′ |0d−1, I
)
. (2.20)

By normalising r̂′ to unit length cosα will be equal to the first coordinate, x1, of r̂′

|r̂′| .

The distribution function of r̂′

|r̂′| is found by integrating the distribution of r̂′,

f r̂′
ˆ|r′|

(x) =
∫

r̂′
ˆ|r′|

=x

fr̂′ (r̂′) . (2.21)

The length of r̂′

ˆ|r′|
is 1, which means that for |x| 6= 1 the integration set will be the empty

set and f r̂′
ˆ|r′|

(x) = 0. To evaluate this integral for any other fix x, choose a rotation

matrix R such that Rx = (1, 0, 0, · · · ) and rotate the coordinate system by making the
variable substitution s = Rr̂′. The integration set will then become,

s
|s| = Rx = (1, 0, 0, · · · ) , (2.22)

which is the first coordinate axis. By letting s = (t, 0, 0, · · · ), the integral becomes

f r̂′
ˆ|r′|

(x) =
∫ ∞
t=0

fr̂′
(
RT (t, 0, · · · )) dt =

∫ ∞
t=0

N (S−1RT (t, 0, · · · ) |0d−1, I
)

dt.

(2.23)
By introducing a = S−1RT (1, 0, · · · ), and making another variable substitution, s =
|a| t with ds = |a| dt =

∣∣S−1RT
∣∣ dt =

∣∣S−1
∣∣ dt since

∣∣RT
∣∣ = 1, this becomes,

f r̂′
ˆ|r′|

(x) =
∫ ∞
s=0

N
(

a
|a|s |0d−1, I

)
1
|S−1|ds. (2.24)

The length of a
|a| is 1 and N (· |0d−1, I ) is spherically symmetric, which means that

integrating it along the direction defined by a will generate some constant independent
of a. This means that the entire integral will be some constant, u, and the full probability
distribution becomes,

f r̂′
ˆ|r′|

(x) =
{
u if

∑d−1
k=1 x2

k = 1,
0 otherwise

(2.25)
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for some constant u. Setting x1 = c and integrating out all other variables gives the dis-
tribution of the correlation coefficient. The integrand is zero outside the unit hypersphere∑d−1
k=1 x2

k = c2 +
∑d−1
k=2 x2

k = 1, which means the integral can be restricted to this set,

fc (c) =
∫
Pd−1
k=2 x

2
k=1−c2

udSd−2 , (2.26)

where dSd−2 is the d − 2 dimensional spherical area element. This results in that the
integration becomes restricted to the surface of the d− 2 dimensional unit hyper-sphere.
The integrand is constant, which means that the integral evaluates into this constant times
the surface area of the d−2 dimensional hyper-sphere with radius

√
1− c2, which makes

ffg (c) proportional to
√

1− c2d−3
. The normalising constant is found by making sure

that fc(·) integrates to one, i.e.∫ 1

−1

√
1− c2d−3

dc =
√
πΓ
(
d
2 − 1

2

)
Γ
(
d
2

) , (2.27)

which concludes the proof.

The lemma does not use the assumption of the patch being Gaussian distributed,
only that the integral of the probability distribution function along any ray from origo
to infinity is constant. It would probably be possible to the extend the lemma to a larger
class of distributions, including at least all spherical symmetric distributions.

2.2.2 Background Distribution

By following the same general ideas as in the previous section, the distribution of the
correlation coefficient between a given patch and a noisy sample of the same patch can be
derived. The distribution is, however, no longer symmetrical around origo.

Lemma 3. The distribution function of the correlation coefficient, c, between a given fixed
patch p of dimension d and r = ap + b1d + w, where f (w) = N (w ∣∣0d, σ2Id

)
and

a, b ∈ R, is for d > 3,

fbg (c|σ̂) =
√

1 − c2
d−4

√
π

e
c2−1
2σ̂2 ·

·
d−2∑
k=0

(
d− 2
k

)
Γ
(
k+1

2

)
Γ
(
d−2

2

) ( c√
2σ̂

)d−2−k


1 + c

|c| −
cΓ
“
k+1

2 , c
2

2σ̂2

”
|c|Γ( k+1

2 ) k even

Γ
“
k+1

2 , c
2

2σ̂2

”
Γ( k+1

2 ) k odd
,

(2.28)

where σ̂ = σ
a|p̂| . Here l = 1

σ̂ can be thought of as a a signal to noise ratio of the observed
patch.
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Proof. Let p be a d-dimensional given fixed vector. Let r be a d-dimensional Gaussian
distributed random vector with mean ap + b1d and covariance matrix Σ = σ2Id. Ac-
cording to Lemma 1,

fr̂′ (r̂′) = N (r̂′ ∣∣(a |p̂| , 0, 0, · · · , 0) , σ2Id−1

)
, (2.29)

and the correlation coefficient between p and r is cosα for α, the angle between r̂′ and
the first coordinate axis. This angle will not change by rescaling r̂′, and the notation
becomes smoother if r̂′

a|p̂| is used instead. The distribution of it is

f r̂′
a|p̂|

(x) = N (x ∣∣(1, 0, 0, · · · , 0) , σ̂2Id−1

)
, (2.30)

with σ̂ = σ
a|p̂| . The distribution of c = cosα = x1

|x| is found by integrating this
distribution,

fc (c) =
∫
x1
|x|=c

f r̂′
a|p̂|

(x) dx =
(

1√
2πσ̂

)d−1 ∫
x1
|x|=c

e−
|(1,0,0,··· ,0)−x|2

2σ̂2 dx. (2.31)

The squared distance from the mean can be simplified by

|(1, 0, 0, · · · , 0)− x|2 = (1− x1)2 +
d−1∑
k=2

x2
k = 1− 2x1 + |x|2 . (2.32)

To evaluate the integral, introduce the hyper-spherical coordinates [84] (in d − 1
dimensions)

x1 = t cos (φ1) ,
x2 = t sin (φ1) cos (φ2) ,
x3 = t sin (φ1) sin (φ2) cos (φ3) ,
· · ·
xd−1 = t sin (φ1) · · · sin (φd−2) ,
dx = td−2 sind−3 (φ1) sind−4 (φ2) · · · sin (φd−3) dtdφ1dφ2 · · · dφd−2 ,

(2.33)
which gives

fc (c) =
(

1√
2πσ̂

)d−1

·

·
∫

cosφ1=c

e−
1−2t cos(φ1)+t2

2σ̂2 td−2 sind−3 (φ2) · · · sin (φd−3) drdφ1 · · · dφd−2 .

(2.34)
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By factoring the integrand and writing it as an iterative integral, all influence of
φ2 · · ·φd−2 can be factored out and evaluated separately,

v =
∫ π

φ2=0

sind−4 (φ2) dφ2 · · ·
∫ π

φd−3=0

sin (φd−3) dφd−3

∫ 2π

φd−2=0

dφd−2 . (2.35)

This is the surface area of a d− 3 dimensional unit hyper-sphere,

v =
2π

d−2
2

Γ(d−2
2 )

. (2.36)

The variable φ1 is constant, which means that all that remains is to integrate over t, and
this integral can be expressed in terms of c instead of φ1 by using the variable substitution
c = cosφ1,∫

cosφ1=c

e−
1−2t cos(φ1)+t2

2σ̂2 td−2 sind−3 (φ1) dt =

=
∫ ∞
t=0

e−
1−2tc+t2

2σ̂2 td−2
√

1− c2d−3
dt. (2.37)

By collecting all constant terms into k, the integral becomes

fc (c) = k

∫ ∞
t=0

e−
1−2tc+t2

2σ̂2 td−2dt, (2.38)

with the constant term

k =
(

1√
2πσ̂

)d−1 2π
d−2

2

Γ(d−2
2 )

√
1− c2d−3

=
√

1− c2d−4

Γ
(
d−2

2

)√
2
d−3√

πσ̂d−1
. (2.39)

A closed form solution to the integral is found by rewriting 1−2tc+t2 = (t− c)2−c2+1
and using the variable substitution t̂ = t−c√

2σ̂
, which results in∫ ∞

t=0

e−
1−2tc+t2

2σ̂2 td−2dt =
∫ ∞
t=− c√

2σ̂

e
c2−1
2σ̂2 e−r

2
(√

2σ̂t+ c
)d−2√

2σ̂dt. (2.40)

By factoring out some constants, this integral can be written

e
c2−1
2σ̂2

(√
2σ̂
)d−1

∫ ∞
t=− c√

2σ̂

e−r
2
(
t+

c√
2σ̂

)d−2

dt. (2.41)
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After introducing the constant a = c√
2σ̂

, the binomial theorem and a change of the order
of summation and integration gives

∫ ∞
−a
e−t

2
(t+ a)d−2 dr =

d−2∑
k=0

(
d− 2
k

)
ad−2−k

∫ ∞
−a
e−t

2
tkdr , (2.42)

This can be simplified using partial integration recursively, by factoring the integrand,
e−t

2
tk = te−t

2
tk−1, and then taking the primitive of the factor te−t

2
. Let

pk =
∫ ∞
−a
e−t

2
tkdt =

=

[
e−t

2

−2
tk−1

]∞
−a

−
∫ ∞
−a

e−t
2

−2
(k − 1) tk−2dt =

=
e−a

2
(−a)k−1

2
+
k − 1

2
pk−2 . (2.43)

This forms two recursive equations, one for even indexes, denoted pe
k, and one for odd

indexes, denoted po
k. They can be written in the form,

po
l = p2l+1 = lpe

l−1 + e−a
2
(−a)2l

2

pe
l = p2l = 2l−1

2 pe
l−1 + e−a

2
(−a)2l−1

2

, (2.44)

with starting values

po
0 = p1 = e−a

2

2

pe
0 = p2 =

√
π

2 (erf (a) + 1)
. (2.45)

These equations is of the standard form xl = alxl−1 + bl, which has the general solution
[73],

xl = c

l∏
i=1

ai +
l∑

j=1

 l∏
i=j+1

ai

 bj , (2.46)

where c is some constant determined by the starting value. The products needed to solve
the two equations can be expressed using the gamma function Γ (·),

l∏
i=j+1

i =
Γ (l + 1)
Γ (j + 1)

, (2.47)

l∏
i=j+1

2i− 1
2

=
Γ
(
l + 1

2

)
Γ
(
j + 1

2

) . (2.48)
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Applying those formulas to the two recursive equations gives

po
l =

e−a
2

2
Γ (l + 1) +

l∑
j=1

Γ (l + 1)
Γ (j + 1)

e−a
2
a2j

2
, (2.49)

and,

pe
l =
√
π

2
(erf (a) + 1)

Γ
(
l + 1

2

)
Γ
(

1
2

) −
l∑

j=1

Γ
(
l + 1

2

)
Γ
(
j + 1

2

) e−a2
a2j−1

2
. (2.50)

Changing the indexes back to k gives the original sequence,

pk =


e−a

2

2

∑ k−1
2

j=0

Γ( k+1
2 )

Γ(j+1) a
2j k odd

e−a
2

2

∑ k
2
j=1

−Γ( k+1
2 )

Γ(j+ 1
2 ) a

2j−1 +
Γ( k+1

2 )
2 (erf (a) + 1) k even

. (2.51)

The sum from equation 2.42 will then become a polynomial in a and erf (a)

d−2∑
k=0

(
d− 2
k

)
ad−2−kpk =

∑
i,j

ci,ja
i erfj (a) , (2.52)

with some coefficients ci,j . For d larger than about 10, these coefficients become very
large and this form is thus numerically very unstable. An alternative solution is to use the
standard sum

n∑
0

bi

Γ (i+ 1)
=
ebΓ (1 + n, b)

Γ (1 + n)
, (2.53)

to write pk as

pk =
{ 1

2Γ
(
k+1

1 , a2
)

k odd
1
2Γ
(
k+1

2

)
+ a

2|a|
(
Γ
(
k+1

2

)− Γ
(
k+1

2 , a2
))

k even (2.54)

The proof is concluded by putting it all together, resulting in fc (c) =

√
1− c2d−4

√
π

e
c2−1
2σ̂2

d−2∑
k=0

(
d− 2
k

)
Γ
(
k+1

2

)
Γ
(
d−2

2

)ad−2−k


1 + a

|a| −
aΓ( k+1

2 ,a2)
|a|Γ( k+1

2 ) k even

Γ( k+1
2 ,a2)

Γ( k+1
2 ) k odd

.

(2.55)
For c < 0, this simplifies to

√
1− c2d−4

√
π

e
c2−1
2σ̂2

d−2∑
k=0

(
d− 2
k

)
Γ
(
1/2 k + 1/2, a2

)
Γ
(
d−2

2

) ad−2−k , (2.56)
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Figure 2.2: Left: pfg|c,l plotted as a function of the correlation c and and the true SNR l.
Right:pfg|c,l̃ plotted as a function of correlation c and measured SNR l̃.

and for c ≥ 0, it simplifies to

√
1− c2d−4

√
π

e
c2−1
2σ̂2

(
l +

d−2∑
k=0

(
d− 2
k

)
Γ
(
1/2 k + 1/2, a2

)
Γ
(
d−2

2

) ad−2−k (−1)k+1

)
,

(2.57)
with

l =
d−2∑

k=0,k even

(
d− 2
k

)
Γ
(
k+1

2

)
Γ
(
d−2

2

)ad−2−k2 , (2.58)

which concludes the proof.

2.2.3 Bayes’ Formula

Given a known background patch it is possible to estimate if the current input patch of
a video sequence is this patch or something else. If it is the same patch, the correlation
coefficient should be distributed according to fbg, otherwise according to ffg. With l = 1

σ̂
the signal to noise ratio, Bayes’ formula and the assumption of a uniform prior, gives the
probability

p (foreground |c, l ) = pfg|c,l =
ffg
(
c
∣∣ 1
l

)
ffg
(
c
∣∣ 1
l

)
+ fbg (c)

. (2.59)

This probability is plotted in Figure 2.2 (left) as a function of c and l.

2.2.4 SNR Measurement

To use Equation 2.59 this the signal to noise ratio l = a ˆ|p|
σ has to be estimated for each

observed patch r = ap + b1d + w. As can be seen in Figure 2.2 (left), pfg|c,l is a
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very steep function, which means that l has to be measured very precisely. To do that
a very accurate noise model has to be used, which is not always available. In this work
it is instead assumed that the noise level, σ, is not a known constant but a stochastic
variable. It is common in Bayesian literature to assume a Gamma distribution as the prior
of the precision of a normal distribution. It is mostly motivated by the fact that it makes
the calculations easy. That’s the case here too, and a gamma distribution is assumed.
If σ̃ is the estimated noise level and k some fix parameter specifying how uncertain the
measurement is, then the distribution of σ is assumed to be

f

(
1
σ

∣∣∣∣ 1σ̃
)

= fΓ

(
1
σ

∣∣∣∣ k, 1
kσ̃

)
, (2.60)

where fΓ (·) is the gamma distribution function

fΓ (x|k, θ) = xk−1 e−x/θ

θkΓ (k)
, (2.61)

whose expected value is kθ = 1
σ̃ . The parameter θ is a scale parameter, which means that

rescaling 1/σ with the length of the observed patch ˆ|r| (a fixed number) results in

f

(
ˆ|r|
σ

∣∣∣∣∣ ˆ|r|
σ̃

)
= fΓ

(
ˆ|r|
σ

∣∣∣∣∣ k, ˆ|r|
kσ̃

)
. (2.62)

This will average out the pfg|c,σ̂ function making it much smoother.

Also the length a ˆ|p| of the true patch observed, without noise, is needed. Unfor-
tunately the length of the observed noisy patch, ˆ|r|, is a biased measurement of this,
especially for low signal to noise ratios. The distribution of ˆ|r| can be derived by looking
at (

ˆ|r|
σ

)2

=
d∑
1

r̂2
k

σ2
. (2.63)

Here r̂k is normal distributed with variance σ2. This means that
ˆ|r|2

σ2 is non-central Chi2

distributed with λ = (a ˆ|P |)2

σ2 [37],

fncChi2 (x|λ, d) =
1
2

(x
λ

) d−2
4
e−

λ+x
2 I d−2

2

(√
λx
)
, (2.64)

where Iv (z) is a modified Bessel function of the first kind. The signal to noise ratio,
ˆ|r|
σ

is the square root of this expression, which makes it non-central chi distributed. That
distribution can be derived from fncChi2 with

fncChi (x|λ, d) = 2xfncChi2
(
x2
∣∣λ2, d

)
=

xd/2

λ
d−2

2

e−
x2+λ2

2 I d−2
2

(λx) . (2.65)
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Note that the λ parameters of fncChi and fncChi2 differs by a square to form more natural

parameters, e.g. λ = a ˆ|P |
σ for fncChi. This gives

f

(
ˆ|r|
σ

∣∣∣∣∣a ˆ|p|
σ

)
= fncChi

(
ˆ|r|
σ

∣∣∣∣∣a ˆ|p|
σ
, d

)
, (2.66)

which, using Bayes formula can be converted into

f

(
a ˆ|P |
σ

∣∣∣∣∣ ˆ|r|
σ

)
=

f
(

ˆ|r|
σ

∣∣∣a ˆ|P |
σ

)
f
(
a ˆ|P |
σ

)
∫∞

0
f
(

ˆ|r|
σ

∣∣∣a ˆ|P |
σ

)
f
(
a ˆ|P |
σ

)
da

ˆ|P |
σ

. (2.67)

Here f
(
a ˆ|P |
σ

)
is an unknown prior, but by looking at histograms of SNR:s the expo-

nential distribution were deemed a plausible prior,

f

(
a ˆ|P |
σ

)
= fexp

(
a ˆ|P |
σ

∣∣∣∣∣λe
)
. (2.68)

Here fexp (x|λe) = λee
−λex for x ≥ 0 and fexp (x|λe) = 0 for x < 0. The parameter

λe were set to 1.

Using the distributions in (2.62) and (2.67), the distribution of the true SNR, a
ˆ|P |
σ ,

given the measured SNR,
ˆ|r|
σ̃ , can be found by integrating out

ˆ|r|
σ , which gives

f

(
a ˆ|P |
σ

∣∣∣∣∣ ˆ|r|
σ̃

)
=
∫ ∞

0

f

(
a ˆ|P |
σ

∣∣∣∣∣ ˆ|r|
σ

)
f

(
ˆ|r|
σ

∣∣∣∣∣ ˆ|r|
σ̃

)
d

ˆ|r|
σ
. (2.69)

This distribution can be used in the same way together with the probability pfg|c,l from

Equation 2.59 to find the the probability of foreground given the measured SNR, l̃ =
ˆ|r|
σ̃ ,

by integrating out the true SNR,

pfg|c,l̃ =
∫ ∞

0

p
fg|c, a

ˆ|P |
σ

f

(
a ˆ|P |
σ

∣∣∣∣∣ ˆ|r|
σ̃

)
d
a ˆ|P |
σ

. (2.70)

These integrals can be evaluated numerically by discretising the signal to noise ratio l.
Figure 2.2 (right) were generated by restricting l to 512 uniformly spaced values between
0 and 64. The top half, l > 32 is discarded to make sure the remaining plot not suffers
from any border effects, e.g. depends on function values for l > 64.
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Figure 2.3: Logarithmic plots of simulated distribution functions (crosses) for different
signal to noise ratio, l, together with the theoretical functions (solid lines). ffg is red and
fbg is blue. d = 16

2.3 Experiments

2.3.1 Simulated patches

For d = 16 the integral in (2.31) can be evaluated symbolically using maple, which allows
it to be plotted for different values of the signal to noise ratio, l. In Figure 2.3 such plots
are compared to simulated results generated from a random patch P . Here c is calculated
between a fixed patch P and a perturbed version P + N for 10000 random N . The
result is binned into 0.01 wide bins.

2.3.2 Real Data - Foreground

The foreground probability distribution is in Figure 2.4 compared to histograms gen-
erated by randomly choosing two patches and calculating the cross correlation between
them. This is done for two different cases. The green histogram is generated by choosing
patches from the image shown to the right in the same figure. The blue is generated by
choosing patches from 71 different images each from a different surveillance scene. The
figure shows that there is a significantly higher probability for unrelated patches to be cor-
related than the assumption that they are uncorrelated would suggest. For a surveillance
case where most of the background is pavement though, that approximation might not
be so severe.

2.3.3 Real Data - Constant lighting

Using a Sony XCD-X710 firewire camera, 4000 frames of a static indoor scene with
constant lighting, were captured. The background image was estimated as the mean
over all frames, and two patches with different amount of structure were chosen, and the
correlation coefficient between the estimated mean and each of the frames were calculated,
and a histogram estimating this distribution is plotted in Figure 2.5 (left, middle) together
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Figure 2.4: The left plot shows ffg (red) and histogram estimations of it from the scene
shown to the right (green) and from 71 different surveillance scenes (blue)
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Figure 2.5: Left, Middle: Plots of fbg estimated from real video data (crosses), with con-
stant lighting, together with the theoretical function (solid line) for two different signal
to noise ratio, µ̂. d = 64. Right: Plots of fbg estimated from real video data (crosses),
with varying lighting, together with the theoretical function (solid line). The green line
assumes a constant noise-level over the entire sequence, while the red line assumes the
noise-level to be an affine function of the intensity level.

with the theoretical function fbg from (2.28). The two functions seems to agree fairly
well.

2.3.4 Real Data - Varying lighting

The experiment from the previous section were repeated, but now the lighting conditions
were varied by turning on and of the light in the room as well as pulling the window
curtains back and forth. The signal to noise ratio were estimated in each frame. A patch
with fair amount of structure was chosen to avoid the biased measurements of low signal
to noise ratios. The result is plotted in Figure 2.5 (right) together with the theoretical
function fbg averaged over the different signal to noise ratios. The green line assumes a
constant noise-level over the entire sequence, while the red line assumes the noise-level
to be an affine function of the intensity level. The latter gives a much better fit, which
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shows that a very precise noise-model is needed to utilise the full potential of this model,
and that the smoothing from Section 2.2.4 is really needed if such a precise noise-model
is not available.

2.4 Conclusions

The distribution function of the cross-correlation coefficient is derived in two different
cases: (i) the cross-correlation coefficient between two random independent patches and
(ii) between two patches that differ only by scale, translation and additive Gaussian noise.
Those functions are compared with histograms generated from simulations as well as with
histograms generated from real data. In both cases the histograms and the distribution
functions concur very well.

For real world scenarios where an exact noise model is not available, uncertainty of
the signal to noise estimate have been introduced into the model. This gives a much
smoother model that is robust to poor noise estimations.

The foreground distribution does not model the foreground very accurately as it as-
sumes unrelated patches to be uncorrelated which empirical tests shows is not the case.
It is however possible to estimate it as a histogram as is done in the experimental section
and use that instead of the theoretical function.

On the other hand, the background distribution model the background very well.
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Chapter 3

Background/Foreground
Segmentation

In this chapter two methods for estimating the background in an image sequence taken
by a stationary video camera is presented. It is shown that it is possible to extract the
background from moving objects in real time and in a very reliable way, also in outdoor
scenes where the lighting conditions is changing rapidly due to passing clouds. This is
done by introducing a set of intensity independent feature values. Two approximations
of the probability distribution functions of the features are suggested. One based on
histograms and one based on quantiles. In both cases it is possible to update the estimated
parameters very efficiently.

The objective is to extract the foreground and consequently also the background from
a sequence of images. Problems facing us include

• keeping execution time short,

• slowly varying lighting conditions,

• rapidly varying lighting conditions, and

• what should be considered background.

The general idea is to extract features from the image sequence corresponding either
to single pixels or blocks of pixels and then look at the distribution of those feature values
over time. One distribution of the feature value when the corresponding pixels show the
background and one when they show the foreground are estimated. The probability that
a set of pixels in a given input frame shows the foreground can then be calculated using
Bayes formula, which makes it possible to generate a probabilistic foreground/background
segmentation image. In Section 3.3 it is described how to generate a binary segmentation
from such probabilities. Alternatively, the probabilities can be passed directly to a tracking
algorithm that can utilise a probabilistic foreground/background segmentation, such as
the one described in Chapter 4.

In contrast to many other background/foreground segmentation algorithms the one
proposed here is computationally efficient enough to be used embedded together with
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some tracking algorithm inside a modern network camera and still perform well with
static backgrounds with locally varying illumination. This we believe is needed to build
for example large scale automated surveillance system for urban environments where the
background typically consist of static pavement with a locally varying illumination due to
passing clouds or other shadows.

Many recent solutions aims for continuously varying backgrounds and thus typically
requires significantly more processing power. The proposed algorithm is for example
about 100 times faster than [58] (243 fps on a 2.4GHz P4).

3.1 Features

3.1.1 General filter based features

In order to compute a feature at each pixel a convolution,

R(x, y) = I ∗H =
∫∫

R2
It(x− a, y − b)H(a, b)dadb, (3.1)

can be used where H is a spatial filter mask. This gives a filter response at every point
(x, y) ∈ R2 and the statistical properties of these can be used to classify background
and foreground. The well known Stauffer–Grimson [75] estimator is obtained by letting
H = δ0,0 be the Dirac measure at the origin in which case I ∗ δ0,0 = I , i.e. base the
estimator on the raw pixel data.

It is a well know problem that many background estimators are sensitive to rapid
changes in lighting. Such rapid changes are often present and can occur for example
when a cloud suddenly occludes the sun, when moving objects cast shadows, or for fast
changes in indoor lighting.

In order to deal with this problem it would be preferable to use features that are
independent to lighting changes. Changing the lighting will result in a rescaling of the
intensity values in the image. The lighting is typically not constant over the entire image,
but except for on the borders on sharp shadows it is varying smoothly. For this reasons,
assume that there exists some constant c such that when the background is shown,

It+1(x+ ∆x, y + ∆y) = cIt(x+ ∆x, y + ∆y), (∆x,∆y) ∈ Ω, (3.2)

where Ω is some neighbourhood of (0, 0). The condition (3.2) is called that the image
sequence is locally proportional. Local proportionality is usually fulfilled, at least approx-
imately, for most points (x, y) if Ω is sufficiently small. It is however not fulfilled for
example on the boundary of a moving shadow, but it is fulfilled on both sides of the
boundary. To take advantage of the locally proportional assumption, introduce two fil-
ters Φ(x, y) and Ψ(x, y) such that Φ and Ψ are non-zero only on Ω. Recall that, for a
function f : R2 → R, the notation

supp f = {(x, y) | f(x, y) 6= 0}. (3.3)
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It follows that supp Φ ⊆ Ω and supp Ψ ⊆ Ω.
By using

Gt =
It ∗Ψ
It ∗ Φ

(3.4)

as features, it follows from the locally proportional assumption that

Gt+1 =
It+1 ∗Ψ
It+1 ∗ Φ

=
cIt ∗Ψ
cIt ∗ Φ

=
It ∗Ψ
It ∗ Φ

= Gt. (3.5)

This means that for points (x, y) that fulfil the local proportionality the featuresGt(x, y)
are independent of changes in lighting.

3.1.2 Haar based features

The convolution for computing (3.4) can be done using FFT with a computational cost
ofO(wh log(wh)) forw×h images. However, if the filters Φ and Ψ, are simple functions
like for example Haar wavelets then the well known integral image [83] can be used to
speed up the computation. Let

J(x, y) =
∫ x

−∞

∫ y

−∞
I(a, b)dadb (3.6)

be the integral image of a grey scale image I . Then J can be computed with a compu-
tational cost of about 4wh additions for an w × h image I . For notational convenience,
just the filter Φ is treated below and assume that

Φ(x, y) =

{
1, |x| ≤ c, |y| ≤ c
0, otherwise

. (3.7)

In order to fulfil supp Φ ⊆ Ω, the constant c > 0 should be chosen sufficiently small. It
follows that

(I ∗ Φ) (x, y) = J(x−c, y−c)+J(x+c, y+c)−J(x−c, y+c)−J(x+c, y−c) (3.8)

requiring only four additions for each pixel (x, y). A general Haar wavelet in R2 is a linear
combination of at most 4 functions like (3.7) resulting in maximum of 16 additions for
each pixel (x, y).

The background and foreground probability distribution functions of those feature
responses can be arbitrarily complex. In Section 3.2.1 it is shown how to estimate such
distributions functions in a non parametric way using histograms.
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3.1.3 Cross correlation

The images delivered by an off-the-shelf camera is typically preprocessed by the camera in
some way. This means that a lighting change might no longer be a simple rescaling of the
image. When using such data empirical studies show that in addition to independence of
intensity scaling, independence of intensity translation will improve results. The classical
cross correlation coefficient (2.1) is independent to both scaling and translation in the
intensity domain.

By dividing the input image I into n small (typically 8 × 8) patches, rj , j =
1, 2, · · · , n, it is possible to use the cross correlation between those patches and some
background patches can be used as features. In that case the theory from Chapter 2 gives
both the foreground and background distributions functions. They depend only on the
signal to noise ratio, which has to be measured.

By letting the background patch pj be the temporal mean of r̂j
|r̂j | as defined in Cah-

pter 2 it will be possible to estimate the background patch even if the lighting conditions
vary. The patch pj is in Chapter 2 assumed to be known exactly. This is never the case
when something is estimated from real data, but the variance of the estimate will decrease
with increased learning factor. This means that the by choosing the learning factor large
enough, the approximations induced by assuming rj to be known exactly can be made
arbitrarily good. Also, the noise-level, σ̃, has to be estimated. That is done by estimating
the variance of r̂j − |r̂j |pj . After those estimates are done, Equation 2.70 gives the
probability of foreground for a given input patch, pfg|c,l̃.

The presented approach is very well suited for processing motion-JPEG compressed
video. That is a video compression standard that stores each frame of a video as a JPEG
image. The JPEG compression algorithm divides the image into 8x8 blocks and performs
a discrete cosine transform (DCT) och each block. All calculation presented above can be
performed in this DCT domain, which means that the algorithm can operate on motion-
JPEG compressed videos without uncompressing them fully. Processing a compressed
image will be more efficient on low end systems due to better utilisation of the cache
memories as the JPEG-image is already organised in 8x8 blocks. In the DCT-domain the
first coefficient is the mean value, which means that the operation of removing the mean
simply means skipping the first coefficient. After that, Equation 2.1 for calculating the
correlation coefficient from zero mean vectors is the same in the DCT-domain as in the
intensity-domain. This kind of implementation becomes very fast. A 320×240 videos is
processed at 243 fps on a 2.40GHz P4, 640× 480 at 70 fps and 1280× 1024 at 17 fps.

3.1.4 General intensity independent features

In this section a general result for intensity independent features will be shown. Let R+

be the set of positive real numbers. Then an intensity independent feature f : Rn+ → Rm
is characterised by the property f(x) = f(cx) for any real c > 0 and x ∈ Rn+. It is easily
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seen that

f(x) =
n∑
j=1

mj log(xj) (3.9)

is intensity independent if
∑n
j=1mj = 0. The following theorem shows that the

reverse is also true, i.e. all intensity independent features can be written as sums of
the form (3.9). For convenience, introduce the notation log(x) to denote the vector
(log(x1), . . . , log(xn)) and similarly for exp(x).

Theorem 3.1.1. A feature f : Rn+ → Rm, where n > 1, is intensity independent if and
only if it can be written as

f(x) = g(M log(x)), x ∈ Rn+, (3.10)

for some g : Rn−1 → Rm and M is an (n− 1)× n matrix with row sums equal to 0.

Proof. Let x ∈ Rn+. Then, f(x) = f ◦ exp ◦ log(x). Let P be a n × n non singular
matrix such that the first row of P contains only ones and the other rows are orthogonal
to this. The the row sums are = 0 except for the first row. It follows that f(x) =
f(exp(P−1P log(x))). Set h(y) = f(exp(P−1y)). Set

P =
(

1nT

M

)
, (3.11)

where 1nT is a 1×nmatrix with only ones and M an (n−1)×nmatrix. It then follows
that 1nT log(cx) = n log(c)1nT log(x) and M log(cx) = M log(x). The intensity
independence gives that h(P log(cx)) = h(P log(x)) for all x ∈ Rn+ and c > 0,
implying that h(a0,b) = h(a,b), where a0, a ∈ R and b = M log(x) ∈ Rn−1. The
theorem follows by setting g(b) = h(a0,b).

3.2 Background Models

To deal with noise and points (x, y) in background that do not fulfil the locally propor-
tional condition the idea of continuously updating probability distribution functions will
be used. The idea is to estimate the background and the foreground distribution of the
feature values and then use Bayes rule to find the probability of the current frame showing
the foreground.

In the general case this is to ambitious a task though, and one will have to suffice with
estimating the distribution of the feature values observed. This is a mixture between the
foreground and the background distribution, but if it is assumed that the background is
shown most of the time this mixture can be considered an approximation of the back-
ground distribution. The foreground distribution can be assumed to be for example
uniform.
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With this method it is well known that one can deal with slowly varying changes and
also in some cases (semi)-periodic fast changes such as for example the branches of a tree
swaying in the wind.

In the case of the correlation coefficient the background model will be constructed
from the features generated by removing the mean and normalising the the length of each
block. The cross correlation can then be calculated between the new input frame and the
mean of this distribution.

3.2.1 Recursive Histogram Estimation

Instead of using a parametrised probability distribution functions whose parameters are
updated, the distributions are here represented with histograms. Comparing with the
parametrised probability functions such as multi modal Gaussian distributions the his-
togram makes no assumptions on the function. It is furthermore very straightforward to
use being both easy to update and very fast in execution. Let (xk, yk), k = 1, . . . ,m, be
a set of fixed points in the images. The probability distribution of the values

Gt(xk, yk), k = 1, . . . ,m, (3.12)

will be estimated and the estimate is updated dynamically keeping it accurate for all times
t ≥ 0. Let fk,t(·) be this probability distribution function, which is dependent on which
pixel k and what time t.

If the probability distribution function fk,t(·) is assumed to vary slowly with t it can
be estimated from the histogram, qt,k(·), obtained by computing Gt(xk, yk) for some
values of twhile keeping k constant. In order to compute the histogram, first choose some
bins a1, . . . an and round off the value of Gt(xk, yk) to the nearest bin. The nearest bin
to Gt(xk, yk) is denoted by Gt(xk, yk). By using a normalised histogram,

pt,k(aj) =
qt,k(aj)∑n
j=1 qt,k(aj)

, (3.13)

the approximated probability distribution function can be written

ft,k(x) =

{
pt,k(aj) 2

aj+1−aj−1
if aj−1+aj

2 ≤ x < aj+aj+1
2 ,

0 otherwise,
(3.14)

where aj are the bins. Rescaling qt,k(·) will not change the values of this probability
distribution function. This means that it is sufficient to estimate qt,k(·) up to scale. That
is, if ct are some unknown constants, it will be enough to estimate

q̂t,k(·) = ctqt,k(·). (3.15)
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Equation 3.13 will still hold if qt,k(·) is replaced by q̂t,k(·) since ct will factor out and
cancel. In order to update the probability function with a new measurement Gt(xk, yk),
introduce

γt,k(x) =

{
1 if Gt(xk, yk) = x,

0 otherwise,
(3.16)

and update the normalised histogram using a learning factor α,

pt,k(x) = (1− α)pt−1,k(x) + αγt,k(x). (3.17)

Replacing pt−1,k(x) with q̂t−1,k(aj)Pn
j=1 q̂t−1,k(aj)

and rearranging the equation gives∑n
j=1 q̂t−1,k(aj)

1− α pt,k(x) = q̂t−1,k(aj) +
α
∑n
j=1 q̂t−1,k(aj)

1− α γt,k(x). (3.18)

Collecting all constant terms on the left hand side and combining them into the ct con-
stant will make it possible to use the update equation

q̂t,k(x) = q̂t−1,k(aj) +
α
∑n
j=1 q̂t−1,k(aj)

1− α γt,k(x). (3.19)

The factor,
α
∑
j q̂t−1,k(aj)
(1− α)

, (3.20)

becomes independent of the pixel k if α is kept constant and if the starting value is

q0,k(aj) =

{
1 if G0(xk, yk) = aj ,

0 otherwise,
(3.21)

for all k. It follows that the update is done very fast, requiring only one addition per his-
togram. Note also that

∑
j q̂t,k(aj) only depends on t and not k. Thus, computing the

probability pt,k(aj) requires only division by a number that is the same for all positions
(xk, yk).

Discredited feature values

A problem is that the features Gt(xk, yk) may take arbitrarily large values and this will
cause problem when choosing the bins for a histogram. To simplify that process, assume
that it is required that the feature values are integers in the interval [0, n − 1]. This re-
quirement can be fullfilled by finding an affine transformation h : R → R such that
h(Gt(xk, yk)) ∈ [0, n−1] as often as possible. Let mt,k and σt,k be the mean and stan-
dard deviation of the values ofGt(xk, yk), respectively, and update these values according
to

mt,k = (1− α)mt−1,k + αgt(xk, yk) (3.22)
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and
σt = (1− α)σt−1,k + (1− α)|Gt(xk, yk)−mt,k|, (3.23)

where α is the learning factor. The feature Gt(xk, yk) can the be transformed by the
affine transformation

Gt(xk, yk)−mt,k

σt,k

n

4
+
n

2
(3.24)

which has mean equal to n/2 and standard deviation n/4. To be sure that the values
never get out side the interval [0, n− 1], introduce the transformed features

Ht(xk, yk) =
[
min

(
max

(
Gt(xk, yk)−mt,k

σt,k

n

4
+
n

2
, 0
)
, n− 1

)]
, (3.25)

where [x] denotes rounding to nearest integer ≤ x.
This gives a very general method to estimate the background distribution, but it re-

quires quite a lot of memory. This can be a problem in cases when the memory bandwidth
is limited, which is typically the case for the smaller platforms embedded in network cam-
eras. This can result in a low frame rate even if there is very few mathematical operations
performed.

3.2.2 Recursive Quantile Estimation

Another approach that requires less memory is to use a learning factor as is described
in Chapter 1. One problem with that thou is that the mean will not only be taken
over background values, but over foreground as well. The version in Section 1.2.3 that
only updated the mean if the current pixel value is within 2.5 standard deviations of the
mean mitigates this problem, but for that to work there has to be a decent estimate to
begin with, and there is no guarantee that this solution will converge, as is shown by a
counterexample in the simulations below.

Another solution is to use the median instead of the mean and to estimate the variance
from the 25/75% quantile. Möller et al shows [60] how to estimates quantiles recursively,
using a control sequence ct = max(c0/t, cmin). The median B0.50,t(x), 25% quantile
B0.25,t(x) and 75% quantileB0.75,t(x) of each pixel It(x) in a image sequence is found
with

Bγ,t =

 Bγ,t−1 + γct if Bγ,t−1 < It
Bγ,t−1 − (1− γ) ct if Bγ,t−1 > It
Bγ,t−1 if Bγ,t−1 = It

. (3.26)

From these quantiles the variance, Vt, can be estimated using

√
Vt =

B0.75,t −B0.25,t

N−1
cdf (0.75)−N−1

cdf (0.25)
, (3.27)
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where N−1
cdf (x) is the inverse of the normal cumulative distribution function

Ncdf (x) =
∫ x

−∞
N (t |0, 1) dt, (3.28)

N−1
cdf (0.75)−N−1

cdf (0.25) ≈ 1.349. (3.29)

Simulations

Figure 3.1 (left column) shows several plots of the simulated intensity of a single pixel
in grey. In the top left plot the pixel always shows the background which is measured
with additive Gaussian noise. The blue thick line shows the estimated background model
using a learning factor to estimate the mean and variance and the two dashed blue lines
shows an offset of two standard deviation from this mean. The red lines shows the corre-
sponding values but based on the 25%, 50% and 75% quantile estimations instead. Both
estimates agree equally well with the ground truth after they have converged when there
is no foreground. The learning factor and the step size have been chosen to make the
convergence time of the two estimates approximately equal.

In the second plot of the left column the pixel is assumed to show the foreground 1%
of the time. The foreground is modelled as uniformly distributed between 0 and 255. The
quantile based estimator still gives the same result while the mean based overestimates the
variance. In the bottom two plots, the amount of foreground is increased even further
and now the learning factor based estimator over estimates the variance even further and
also overestimates the mean value when it is lower than 127 and underestimate it when
it is larger than 127. The quantile based estimator still gives reasonable results. The
mean of the last estimates archived right before the background intensity was changed
and at the end of the sequence are shown in Table 3.1. Also, normalised histograms of
the data together with plots of the probability distribution functions estimated are shown
in Figure 3.2.

When using the mixtures of Gaussians based algorithms by Stauffer and Grimson
presented in Section 1.2.3 the difference between using a learning factor as they do and
the quantile estimates are not as striking. Figure 3.1 (right column) shows how the al-
gorithm from Section 1.2.3 performs on the same input data. It contains a plot of the
mean and variance of the component with largest weight Wt. That would correspond to
a unimodal background. The algorithm performs very well in most cases. The variance
is somewhat underestimated, but it should be possible to compensate for that by figuring
out how much the estimate is biased. What’s troubling though is that when there is a lot
of foreground present this algorithm might lock on to something completely wrong and
then stick to that as has happened in the lower right plot. The result is also tabulated in
Table 3.1.

95



CHAPTER 3. BACKGROUND/FOREGROUND SEGMENTATION

0 1 2 3 4

x 10
4

0

50

100

150

200

250

0 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

1 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

10 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

30 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

30 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

10 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

1 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

0 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

0 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

1 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

10 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

30 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

30 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

10 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

1 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

0 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

0 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

1 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

10 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

30 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

30 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

10 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

1 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

0 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

0 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

1 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

10 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

30 % foreground

Frame

In
te

ns
ity

0 1 2 3 4

x 10
4

0

50

100

150

200

250

30 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

10 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

1 % foreground

0 1 2 3 4

x 10
4

0

50

100

150

200

250

0 % foreground

Figure 3.1: Simulated intensity of a single gaussian distributed background pixel (grey)
mixed with different amount of uniformly distributed foreground. Left column: It’s
mean (thick blue) and standard deviation (dashed blue) estimates using a learning fac-
tor α = 0.9993. It’s mean (thick red) and standard deviation (dashed red) estimates
using a recursive quantile estimator with ct = 0.02. Right column: Results from using
the Stauffer and Grimson algorithm on the same data (green).
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Amount of Mean Value Standard Deviation
foreground GT LF RQ SG GT LF RQ SG

0% 80 80.01 79.99 80.02 4 4.03 3.99 3.71
1% 80 80.34 79.88 79.91 4 9.48 3.98 3.69

10% 80 84.75 80.24 80.00 4 27.30 4.55 3.81
30% 80 93.86 80.69 79.97 4 45.04 6.54 3.93

0% 170 170.08 170.10 170.10 6 6.08 6.00 5.60
1% 170 169.47 169.85 169.89 6 10.75 6.02 5.61

10% 170 165.14 169.56 169.98 6 28.00 6.74 5.64
30% 170 157.91 168.89 29.85 6 44.00 9.43 17.41

Table 3.1: Results of estimating the mean and variance of a Gaussian distributed
background distribution mixed with difference amounts of uniformly distributed fore-
ground. Three different methods: learning factor (LF), recursive quantile (RQ) and
Stauffer/Grimson (SG) are compared with the ground truth (GT).
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Figure 3.2: Normalised histogram over the the second half of the simulated pixel val-
ues from Figure 3.1 (grey) and the background estimations made by the three different
algorithms: learning factor (blue), recursive quantile (red) and Stauffer/Grimson (green).
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3.3 Post processing

This far the analysis have been performed on each pixel independently. To gain robust-
ness, the relationship between the pixels can be used. If some a priori information about
the size of the objects of interest is available this can be used to produce a likelihood of
an object being present by taking the product over an area of this size. This is done in
Chapter 4 where such products are formed over both space and time and they are then
optimised over different sequences of configurations of objects.

Another approach that does not require as much a priori information is to use a
Markov random field model to utilise the fact that neighbouring pixels often both are
foreground or both background and that the transition from background to foreground
often happens where there is an edge in the image. A binary background foreground
segmentation can then be found using for example dynamic graph cuts [44], which gives
the maximum likelihood segmentation and are guaranteed to give the global optimum.

Both these techniques takes the product over pixels, which assumes these likelihoods
to be independent. If likelihoods are calculated for each pixel by centring a block at
each pixel those blocks will overlap quite significantly and thus be very dependent. To
avoid that only non overlapping blocks can be used which gives a background foreground
segmentation with lower resolution than the original image.

3.4 Colour Images

For colour images the same machinery as above can be applied by for example treating
each colour channel separately. This requires that the colour channels are independent
which is normally not the case for RGB. However, it does hold approximately for other
types of colour codings, such as YCbCr. It is also possible to use several features, defined
for example by a set of filters Φj and Ψj , j = 0, 1, . . . . This improves the accuracy at the
cost of more memory requirements and computational load. Here again independence
has to be assumed if the model should be manageable.

3.5 Experiments

A system was implemented in C running on image sequences having 352× 288 in reso-
lution. For each pixel (xk, yk) we

1. compute the Haar features gt(xk, yk)

2. update mt,k and σt,k

3. compute the affinely transformed features ht(xk, yk)

4. update the corresponding histograms.
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Figure 3.3: Four frames from the cloudy input sequence used to test the proposed algo-
rithm.

Figure 3.4: The first row shows the result from the method in [75] and to the second row
the result from the proposed method when applied to the frames in Figure 3.3.

This runs at about 20 frames per second on a 2.4 GHz P4 processor. A binary image,
estimating the foreground, was obtained by setting a threshold for the probabilities. This
threshold was the same for each pixel (xk, yk).

3.5.1 Parking lot

By using a 16 minutes (20 fps) video sequence monitoring a parking lot, the proposed
algorithm was compared to the one suggested in [75]. The sequence was recorded on a
cloudy and windy day. Four frames, just as a cloud shadow passes over the ground, are
shown in Figure 3.3.

The corresponding binary output images from the two algorithms are shown in Fig-
ure 3.4. Figure 3.4 clearly shows that the cloud shadows, as displayed by the method
[75], is almost entirely gone with the proposed method. Furthermore, the bicycles are
still shown as foreground.

The input sequence is 352x288 pixels and the proposed algorithm processes 21 frames
per second on a 2.4 GHz P4. This is significantly faster than our implementation of the
algorithm in [75] that processes four frames per second on the same computer and input
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Figure 3.5: All events detected from the parking lot monitoring algorithm based on the
proposed algorithm.

Figure 3.6: First four events detected from the parking lot monitoring algorithm based
on [75].

sequence.
In order to obtain quantitative comparison between the two algorithms a simple ap-

plication was implemented on top of them. It is a first stage in a parking lot monitoring
system that counts the number of parked cars in real time. The application detects the
event that a car is entering or exiting the parking. This is done by counting the number
of foreground pixels, N , in a predefined rectangle covering the entrance of the parking
lot. If N > σ1, where σ1 is some threshold, an event is detected and the image is saved.
Then when N ≤ σ2 , for some σ2 < σ1 a new event is triggered. The saved images are
then inspected and compared with the ground truth.

The cloudy sequence mentioned above contains four events, all consisting of a car
exiting the parking lot. And the proposed algorithm found all four of them and no false
positives. The four images saved are shown in Figure 3.5. Executing the same event
detection, based on [75], on the same input sequence resulted in 18 events detected. The
four cars exiting are still detected and the addition 14 false positives are cloud shadows
moving past the parking lot entrance. The first four detections are shown in Figure 3.6.

As a final test the proposed event detector were tested on a 16 hour image sequence
acquired from 16:30 in the afternoon until 08:30 the next morning. The sequence con-
tains 32 events, both cars exiting and entering, and quite a lot of lighting variations as
it contains both a sunset and a sunrise. The proposed system detected 34 events, in-
cluding the 32 correct ones. The first additional false detection consisted of five pedes-
trians simultaneously entering the parking lot, and the second of a car driving past the
entrance from one place in the parking lot to another. In both cases the proposed back-
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Figure 3.7: Four detected events chosen from the events detected by the parking lot mon-
itoring algorithm based on the proposed algorithm when tested on a 16 hour sequence.

Figure 3.8: Input frame, and foreground probability, Pfg|c,l̃. See also Figure 2.1 and
fgbg_ncc.avi at http://www.maths.lth.se/˜ardo/thesis/.

ground/foreground segmentation algorithm generated the expected data, and the mis-
states were made by the simplistic event detection algorithm. Four detected events chosen
from the entire sequence are shown in Figure 3.7.

3.5.2 Cross Correlation

Another implementation using the cross correlation features were made to test the prob-
abilistic segmentation approach. Figure 3.8 shows some results. Most of the image area
occupied by the pedestrian is detected as foreground. A large part of the jacket is very un-
certain though, as it is uniformly coloured and partly underexposed. The interior of the
shadow is detected as background with slightly less probability than the rest of the ground
as the SNR is lower. The border of the shadow is detected as foreground because here the
patches overlap the border and thus the assumption about the light being constant within
the patch no longer holds.

The implementation has also been tested on the training video sequences of Axis’s
Open Evaluation of Motion Detection Algorithms. It consists of 10 different quite chal-
lenging sequences from different scenes acquired with different types of cameras and res-
olutions, with varying weather condition and illumination both indoor and outdoor.
The exact same parameters were used in all cases. Results are shown in Figure 2.1
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Sequence False Positive (%) False Negative (%) Total (%)
TimeOfDay 2.47 0.95 3.42
ForegroundAperture 7.26 0.03 7.28
Bootstrap 0.88 7.39 8.27
Camouflage 5.60 2.11 7.71
LightSwitch 46.48 0.00 46.48
MovedObject 0.00 0.00 0.00
WavingTrees 3.13 9.07 12.20

Table 3.2: Results from applying the proposed algorithm to the dataset from [81]. For
each of the 7 sequences the percentages of misclassified pixels are presented.

and Figure 3.9. Figure 3.9 also shows the results from a binary Markov random field
(MRF) segmentation of the probability image, see Section 1.2.5. There is also a video,
fgbg_ncc.avi1, that shows a few seconds form some of those videos and the results.
The results are mostly correct. In the second sequence of Figure 2.1 there is one shadow
detected as foreground because the wall it falls on is lit by some complex far from con-
stant lighting. Also part of the shadows in sequence seven of Figure 3.9 shows up as
foreground, partly due to an overexposed specular reflection in the floor. Finally, there is
some overexposed ridge that shows up as foreground in the last sequence.

The proposed algorithm were also tested on the dataset from [81] available on-line2,
which is also used by [61]. This dataset consists of 7 sequences with resolution 160x120.
For each sequence one frame has been manually segmented into foreground and back-
ground. The result from the proposed algorithm followed by a binary MRF segmenta-
tion was compared to those ground truth frames and results are presented in Table 3.2
and Figure 3.10. The LightSwitch sequence fails because the background model is in this
cased trained on dark underexposed frames that does not contain the same structures as
the light frames. If the LightSwitch sequence is excluded this gives on average 6.48% mis-
classified pixels, which is better than the results presented in [81, 61], 7.82% and 7.33%
misclassified pixels respectively. The proposed algorithm is also significantly faster. Those
160x120 sequences are processed at 690 fps on a 2.4GHz P4.

1http://www.maths.lth.se/˜ardo/thesis/
2http://research.microsoft.com/users/jckrumm/WallFlower/TestImages.htm
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Figure 3.9: Some results of applying the proposed foreground/background segmentation
to the training videos of Axis’s Open Evaluation of Motion Detection Algorithms. For
each of the 10 sequences the figure shows a single frame, Pfg|c,l̃ for that frame, and the re-
sult of segmenting the frame using a MRF. The colour coding ofPfg|c,l̃ is the same as given
in Figure 2.2 (right). Videos from a few of these sequence are shown in fgbg_ncc.avi
at http://www.maths.lth.se/˜ardo/thesis/.
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Frame max(c, 0) Pfg|c,l̃ MRF Result

Figure 3.10: Some results of applying the proposed foreground/background segmentation
to the test images for wallflower paper [81]. For each of the sequences the figure shows a
single frame, the normalised cross correlation with this frame and a estimated background
c, Pfg|c,l̃ for that frame, and the result of segmenting the frame using a MRF. The colour
coding of Pfg|c,l̃ and c is the same as given in Figure 2.2. Note that this colour coding
only covers the range 0..1, so c is truncated below 0.
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Chapter 4

Hidden Markov Models

In this Chapter a real time system is presented that tracks a varying number of moving
objects. The entire state space is modelled by a Hidden Markov Model (HMM) [64],
where each state represents a configuration of objects in the scene and the state transac-
tions represent object movements as well as the events of objects entering or leaving the
scene. The solution is found by optimising the observation likelihood over different state
sequences. Results are generated with several frames delay in order to incorporate infor-
mation from both past and future frames in the optimisation. This delay varies depending
on the input data.

The optimisation is performed over entire sequences and not only single frames. The
first frame is included in the sequence, which means that no initialisation is needed. Also,
the joint state of all objects is modelled by a single HMM, which means that no data
association is needed. An offline version of the optimisation algorithm is also presented
that is guaranteed to find the global optimum. It can be applied to a set of unlabelled
recordings form a specific installation containing the typical behaviour observed in that
scene. The result of that analysis can be used to automatically tune a parameter of the
online algorithm to make it produced the global optimum with any given probability,
strictly less than one (for this installation). Alternatively it can be used to calculate the
probability of finding the global optimum given some CPU or memory usage limitations.

The optimisation algorithm is constructed from two novel modification to the Viterbi
dynamic programming algorithm [64]. The first allows it to be used on infinite time se-
quences and still produce the global optimum. The problem with the original Viterbi
algorithm is that it assumes that all observations are available before any results can be
produced. The modification presented here allows results to be computed before all ob-
servations are received, and still it generates the same globally optimal state sequence as is
done when all observations are available. However, there is a delay of several frames be-
tween obtaining an observation and the production of the optimum state for that frame.
The second modification makes it possible to use dynamic programming for very large
state spaces by only calculating the likelihoods of a subsets of all the states and an upper
bound on the rest. If enough likelihoods were calculated it is possible to still find the
global optimum. Whether this is the case or not can be automatically decided by the
algorithm.
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A very simple object model is used. It states that all objects are boxes of some given
size and the observations made are the result of a background foreground segmentation.
The boxes are projected into the camera images and the probability of all pixels within
the projected boxes being foreground and all pixel outside the boxes being background
is calculated. By combining data from several cameras and using the efficiency of HMM
to optimise over different state sequences, it is shown that this simple model can actually
achieve reliable results.

4.1 Hidden Markov models

A good introduction to the hidden Markov model can be found in [64]. It is defined as a
discrete time stochastic process with a set of n states, S = {S0, . . . , Sn} and a constant
transitional probability distribution ai,j = p(qt+1 = Sj |qt = Si), where Q0···τ =
(q0, . . . , qτ ) is a state sequence for the time t = 0, 1, . . . , τ . The initial state distribution
is denoted π = (π0, . . . , πn), where πi = p(q0 = Si). The state of the process cannot
be directly observed, instead some sequence of observations, O0···τ = (o0, . . . ,oτ ) are
measured, and the observation probability distribution, bj(ot) = bj,t = p(ot|qt = Sj),
depends on the current state. The Markov assumption gives that

p(qt+1 | qt, qt−1, . . . , q0) = p(qt+1 | qt), (4.1)

and the probability of the observations satisfies

p(ot | qt, qt−1, . . . , q0) = p(ot | qt). (4.2)

4.1.1 Viterbi optimisation

From a hidden Markov model λ = (ai,j , bj , π) and an observation sequence,O0···τ , the
most likely state sequence,

Q∗0···τ = argmaxQ0···τ
p(Q0···τ |λ,O0···τ ) (4.3)

to produce Oo···τ can be determined using the classical Viterbi optimisation [64] or dy-
namic programming as described below. Note that

p(Q0···τ |λ,O0···τ ) =
p(Q0···τ ,O0···τ |λ)

p(O0···τ |λ)
(4.4)

and that p(O0···τ |λ) does not depend on the state sequence Q0···τ . This means that an
equivalent formulation would be

Q∗0···τ = argmaxQ0···τ
p(Q0···τ , O0···τ |λ), (4.5)
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This expression can be optimised by defining

δt(i) = max
q0,...,qt−1

p(q0, . . . , qt−1, qt = Si,o0, . . . ,ot). (4.6)

Note that the Markov assumption implies that

p(q0, . . . , qt,o0, . . . ,ot) = p(ot | qt)p(qt | qt−1)p(q0, . . . , qt−1,o0, . . . ,ot−1).
(4.7)

For t = 0, δ0(i) becomes p(q0 = Si,o0), which can be calculated as δ0(i) = πibi,0,
and for t > 0 it follows that δt(i) = maxj(δt−1(j)aj,i)bi,t. By also keeping track of
ψt(i) = argmaxj(δt−1(j)aj,i) the optimal state sequence can be found by backtracking
from q∗τ = argmaxi δτ (i), and letting q∗t = ψt+1(q∗t+1) for t < τ .

4.1.2 Infinite time sequences

To handle the situations where τ →∞ consider any given time t1 < τ . The observation
symbols ot, for 0 ≤ t ≤ t1, have been measured, and δt(i) as well as ψt(i) can be
calculated. Setting q∗t1 = argmaxi δt1(i) is no longer guaranteed to be optimal as future
measurements might generate a different global optimum. This means that the optimal
state for t = t1 is unknown. Consider instead some set of states, Xt, at time t such that
the global optimum q∗t ∈ Xt. For time t1 this is fulfilled by letting Xt1 = S, the entire
state space. For Xt, t < t1, shrinking sets of states can be found by letting Xt be the
image of Xt+1 under ψt+1, that is

Xt = {Si|i = ψt+1(j) for some Sj ∈ Xt+1} . (4.8)

If the dependencies of the model is sufficiently localised in time, then for some time
t2 < t1, there will be exactly one state q∗t2 in Xt2 , which have to be the global optimum
for time t2 since Xt is constructed to be guaranteed to contain the global optimum. The
optimal state q∗t for all t ≤ t2 can be obtained by backtracking from q∗t2 . No future
observations made can alter the optimal state sequence for t ≤ t2. This algorithm will be
referred to as online Viterbi optimisation.

4.1.3 Infinite state spaces

The problem with using the Viterbi optimisation for large state spaces is that δt(i) has
to be calculated and stored for all states i at each time t, regardless of how insignificantly
small their probability might be. By instead only storing them largest δt(i) and an upper
bound, δmax(t) on the rest, significantly less work is needed. If m is large enough, the
entire globally optimal state-sequence might be found by backtracking among the stored
states. The algorithm presented below can decide if this is the case or not for a given
sequence and a given m. If the global optimum is not found, m can be increased and the
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algorithm executed again, or an approximative solution can be found among the stored
states.

Typically the algorithm is executed off-line for a set of example sequences to find
the smallest m that will make the algorithm find the global optimum in each of them.
A value of m can then be chosen that will make the algorithm find the global optimum
with any given probability (strictly less than one). Then when running the online version,
this value of m is fixed. This means that the online algorithm when applied to a test
sequence of the same kind as the example sequences will produce the global optimum with
this probability. When running online this will correspond to the probability of finding
the global optimum for any subsequence of the same length as the example sequences.
This can be interpreted as a form of expected error rate. Note that no ground truth is
needed for the example sequences, which means that this can be used in a fully automated
calibration processes where the only manual labour needed would be to mount the camera
and give the calibration program access to it to make recordings.

The details are shown in Algorithm 1. The main idea is to maintain an upper bound
δ̃t (i) ≥ δt (i) where in most cases equality holds. It will be proven that if the algorithm
returns that a global optimum was found, then δ̃t (i) = δt (i) along the optimal state
sequence. Thereby a state sequence with higher likelihood than an upper bound on all
other sequences have been found. This means that it has an higher likelihood than any
other state sequence and is thus a global optimum.

This upper bound will be represented by δ̂t (·) and δmax(t), where δ̂t (·) is formed
from δ̃t (·) by reordering the indexes to make it a decreasing function. Only the m most
likely states will be stored, i.e. the values δ̂t (i) for 1 ≤ i ≤ m, and δmax(t) will be stored
as an upper bound on all other states, i > m.

For each time step, during forward propagation (lines 4-21), the algorithm investi-
gates the states reachable from the m stored states. The reachable function is defined as

R(Ŝ) =
{
i|aj,i > 0 for some j ∈ Ŝ

}
, which is the set of states reachable from a set of

states, Ŝ, in one time step. For each of them, ψt(i) and δt(i) should be calculated using
a maximum over δt−1 (·). If this maximum is one of the m stored states an exact value of
δ̂t (·) is calculated. Otherwise only an upper bound is calculated using δmax(t). If that is
the case ψ̂t(i) is set to−1. If it is possible to backtrack (line 22-29) without ever reaching
a ψ̂t(i) = −1 a global optimum is found. Also, the constant amax = maxi,j ai,j is used,
and the permutation, ht (·) that performs the reordering of δ̃t (·) has to be stored, i.e.
δ̃t (ht (j)) = δ̂t (j). Below in the algorithm line 1-4 initiates, line 5-24 is the forward
propagation and line 25-35 is the backtracking.

To prove that this algorithm is correct, Proposition 1 below shows that in the general
case δ̂t(i) in Algorithm 1 is an upper bound on δt(ht (i)) from the Viterbi algorithm.
Then, in Proposition 2, it is shown that when the algorithm returns that a global optimum
were found, δ̂t(i) is actually equal to δt(ht (i)) at least for (i, t) on the optimal state
sequence. In the typical case it is true for most (i, t) though.
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Algorithm 1 InfiniteViterbi

1: δ̃0(i) = πibi,0
2: (δ̂0, h0) = sort(δ̃0)
3: δmax(0) = maxi>m(δ̂(i))
4: Discard δ̂0(i) for i > m
5: for t = 1 to τ do
6: S = R ({ht−1(i)|i = 1, . . . ,m})
7: for all i ∈ S do
8: (δstored, jmax) = max1≤j≤m(δ̂t−1(j)aht−1(j),i)
9: δdiscarded = δmax(t− 1)amax

10: if δstored > δdiscarded then
11: δ̃t(i) = δstoredbi,t
12: ψ̂t(i) = jmax

13: else
14: δ̃t(i) = δdiscardedbi,t
15: ψ̂t(i) = −1
16: end if
17: end for
18: (δ̂t, ht) = sort(δ̃t)
19: Find some bmax ≥ bi,t for all i /∈ S
20: δmaxcalc = maxi>m|ht(i)∈S δ̂t(i)
21: δmaxdisc = δmax(t− 1)amaxbmax

22: δmax(t) = max(δmaxcalc, δmaxdisc)
23: Discard δ̂t(i) for i > m
24: end for
25: q̂τ = argmaxi≤m(δ̂τ (i))
26: if δ̂τ (q̂τ ) ≤ δmax(τ) then
27: return Optimum not found, retry with larger m
28: end if
29: for t = τ − 1 to 0 do
30: q̂t = ψ̂t+1(q̂t+1)
31: q̃t = ht(q̂t)
32: if q̂t == −1 then
33: return Optimum not found, retry with larger m
34: end if
35: end for
36: return Global optimum found!
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Proposition 1: δ̂t(i) and δmax calculated by Algorithm 1 together forms an upper
bound on δt(i) calculated by the classic Viterbi algorithm described in Section 4.1.1
such that

δt(i) ≤
{
δ̂t
(
h−1
t (i)

)
= δ̃t(i) if h−1

t (i) ≤ m,
δ̂max(t) otherwise.

(4.9)

Proof. δ̂t is a sorted version of δ̃t(i), generated on line 18 of Algorithm 1, and ht(i)
is the permutation used to perform the sorting, δ̃t (ht (i)) = δ̂t (i). A permutation
is a bijective functions, which means it inverse h−1

t (·) always exists. For t = 0, the
proposition holds (with equality for h−1

t (i) ≤ m) because of the initialisation performed
on line 1-4. To prove it for t > 0, induction can be used. By assuming the proposition
true for t − 1, δstored, calculated in line 8, gives an upper bound on all transactions from
the m previously stored states. That is, for all j s.t. h−1

t−1(j) ≤ m,

δstored = max
{j|h−1

t−1(j)≤m}
δ̃t−1(j)aj,i ≥ δ̃t−1(j)aj,i ≥ δt−1(j)aj,i. (4.10)

On line 9, δdiscarded gives an upper bound on the rest. That is, for all j s.t. h−1
t−1(j) > m,

δdiscarded = δmax(t− 1)amax ≥ δt−1(j)amax ≥ δt−1(j)aj,i. (4.11)

These two bounds can be combined into into one bound for all previous states j. That is
for all j,

δt−1(j)aj,i ≤
{
δstored if h−1

t−1(j) ≤ m
δdiscarded otherwise

. (4.12)

By taking the maxium over j on both sides, an upper bound on the maximum over all
previous states, maxj(δt−1(j)aj,i), can be formed. This maximum is used to calculate
δt(i) from δt−1 (·) in the Viterbi algorithm, which gives the bound

δ̃t(i) = max(δdiscarded, δstored)bi,t ≥ δt−1(j)aj,ibi,t. (4.13)

This holds for all j, which means it holds for the maximum over all j as well, and that
gives the bound on δt(i),

δ̃t(i) ≥ max
j

(δt−1(j)aj,i)bi,t = δt(i). (4.14)

The bound used in the algorithm, δ̂ (i) is formed by sorting, δ̃ (i), and discarding the
probabilities of all but the m largest values, which proves the first line of the proposition.
To prove the second a similar situation arises for δmaxcalc and δmaxdisc calculated in line 20
and 21 of Algorithm 1. Typically, there will for each frame be quite a lot of states whose
probability is calculated and then discarded. The maximum over those states is denoted
δmaxcalc. That is for all i ∈ S s.t. h−1

t (i) > m,

δmaxcalc = max
i∈S|h−1

t (i)>m
δ̃t(i) ≥ δt(i) ≥ δt−1(j)aj,ibi. (4.15)
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There will also typically be even more states whose probability is not calculated at all, and
an upper bound for them is denoted δmaxdisc. That is for all i /∈ S

δmaxdisc = δmax(t− 1)amaxbmax ≥ δt−1(j)amaxbmax ≥ δt−1(j)aj,ibi,t. (4.16)

Note that for all those states, i /∈ S, it holds that h−1
t (i) > m since δ̂t(i) is constructed

from the m states in S with largest probability. Combining δmaxcalc and δmaxdisc gives for
all i s.t. h−1

t (i) > m,

δmax = max(δmaxcalc, δmaxdisc) ≥ max
j

(δt−1(j)aj,i)bi,t = δt(i), (4.17)

which concludes the proof.

Proposition 2: If Algorithm 1 finds a solution (i.e. line 27 or line 33 is never reached)
it is the global optimal state sequence.

Proof. If the algorithm finds a solution all ψ̃t(q̃t) 6= −1. In that case δ̃t(q̃t) = δt(q̃t)
(shown below) and thus the exact probability of the state sequence q̃t. But according to
Proposition 1 it is also an upper bound on all δt(i), which includes the likelihood of the
global optimal state sequence, δτ (qτ ). This means that a state sequence, q̂t, is found with
a likelihood larger than or equal to the likelihood of all other state sequences, a global
optimum.

To conclude the proof it has to be shown that δ̃t(q̃t) = δt(q̃t). For t = 0 it is clear.
Use induction and assume it is true for t− 1. Since ψ̃t(q̃t) 6= −1, δ̃t(q̃t) is calculated on
line 11, which means

δ̃t(q̃t) = δ̃t−1(q̃t−1)aq̃t−1,q̃tbq̃t = δt−1(q̃t−1)aq̃t−1,q̃tbq̃t = δt(q̃t). (4.18)

4.2 Using HMM for tracking

4.2.1 Single object tracking

An HMM such as described above can be used for tracking objects in a video sequence
produced by a stationary camera. Initially we assume that the world only contains one
mobile object and that this object sometimes is visible in the video sequence and some-
times located outside the scene. The assumption of only one object will later be removed.

The state space of the HMM, denoted S1, is constructed from a finite set of grid
points xi ∈ R2, i = 1, . . . , n typically spread in a homogeneous grid over the image.
The state Si represents that the mass centre of the object is at position xi. A special
state S0, representing the state when the object is not visible, is also needed. The ai,j
constants, representing probabilities of the object appearing, disappearing or moving from
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one position to another, can be measured from training data, or some default values can
be assumed. Experiments have shown that their exact values are not so important as
long as they provide some reasonable restrictions on how fast objects can move. It is also
important where the entry or exit probabilities are greater than 0, as this is where objects
may appear or disappear.

The observation symbols, Ot(·), of this model will be background/foreground seg-
mentation images from a camera observing the scene. The shape of the image of an object
located in state Si is defined as the set of pixels, CSi , in the image that the object covers.
This shape can be learnt from training data offline, or it can be approximated by assuming
some rough estimate of the object shape. For 2D tracking the objects can for example be
assumed to be circular with some radius r, in which case CSi = {x | |x− xi| < r}. For
3D tracking, the objects can be assumed to be box-shaped with some given dimensions
standing on the ground plane. The set CSi can be found by using a calibrated camera and
projecting this box onto the image plane. When the HMM is in state Si, the pixels inCSi
are expected to be foreground pixels and all other pixels are expected to be background
pixels, as there is only one object in the world.

Figure 4.1 illustrates this model. For a given state Si, a box of some given dimensions
is placed on the ground plane centred on xi. Using a calibrated camera this model is
then projected into the image and the expected background/foreground segmentation
image, Ôt(x) ∈ {0, 1}, is generated. This will however differ from the true noise-free
background/foreground segmentation image, Ô′t(x) ∈ {0, 1}, due to for example

• The shape of the object is not modelled perfectly, but approximated as a crude box

• The object may not be solid everywhere, but have transparent parts (such as the
windows of a car)

• The state space is discrete and thus the object position not exact.

• There might be small uninteresting objects (dry leaves, rodents, ...) running around
in the background that should be ignored

• The noise model of the background/foreground segmentation is not be perfect.

• ...

By using a set of background/foreground segmentation images that has a know state
qt, e.g. has been manually classified, good dimensions of the box can be learnt by using
maximum likelihood estimates. Also, the probabilities

pfg = p(Ô′t = 1|Ôt = 1) (4.19)

and
pbg = p(Ô′t = 0|Ôt = 0) (4.20)
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ôt ôt
′

xi

Ground plane

qt = Si

Figure 4.1: Left: illustration of the state Si consisting of a single object located at position
xi. Middle: the expected observation Ôt given the current state qt = Si. Right: the true
noise-free observation, Ô′t.

can be estimated. Typically these are well above 1/2, and it is here assumed that they are
constant over time and does not depend on the pixel position x, but there is no problem
in allowing pfg and pbg vary over t or x.

The observation probabilities, bi,t = p(Ot|qt = Si), are given by the background
foreground segmentation used. In the algorithm from Chapter 2 Equation 2.59 gives
the probability of foreground, pfg|c,l̃ (c), where c is the correlation coefficient between
an image patch in the current frame and the background model. To keep the notation
simple, the observations will be defined to be these probabilities, Ot (x) = pfg|c,l̃ (cx),
where cx is the correlation for block corresponding to the background/foreground pixel
x. It is also possible to use a binary background/foreground segmentation algorithm for
example [1] or [75] in which case Ot (x) will be the output of the algorithm, e.g. either
0 or 1. For each pixel x this gives gives

p(Ot|Ô′t) =
{

Ot if Ô′t = 1
1−Ot if Ô′t = 0

= OtÔ
′
t + (1−Ot)

(
1− Ô′t

) . (4.21)

The true background/foreground segmentation, Ô′t, is not know, but the state qt is
given, which means the expected foreground/background segmentation Ôt is know, and
the constants pfg and pbg gives the distribution p(Ô′t|Ôt). This means

p(Ot|Ôt) =
∑

Ô′t∈{0,1}

p(Ot|Ô′t)p(Ô′t|Ôt) =

=
{

Otpfg + (1−Ot)
(
1− pfg

)
if Ôt = 1

Ot
(
1− pbg

)
+ (1−Ot) pbg if Ôt = 0

. (4.22)

Note that a pixel in the background/foreground segmentation image produced in the al-
gorithm from Chapter 2 corresponds to a 8× 8 block in the original input images. This
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means that the blocks represented by adjacent pixels do not overlap and thus becomes
fairly independent. This is more or less true for other background/foreground segmen-
tations as well. If the pixels are assumed to be independent, the observation probability,
bi,t = p(Ot (·) |qt = Si), can be found as the product over all pixels,

bi,t =
∏

x∈CSi

(
Ot (x) pfg + (1−Ot (x))

(
1− pfg

)) ·
·
∏

x 6∈CSi

(
Ot (x)

(
1− pbg

)
+ (1−Ot (x)) pbg

)
, (4.23)

and thereby all parts of the HMM are defined.

4.2.2 Multi object HMMs

Generalising the one object model in the previous section into two or several objects is
straightforward. For the two object case the states become Si,j ∈ S2 = S × S and
the shapes, CSi,j = CSi ∪ CSj . The transitional probabilities become ai1,j1,i2,j2 =
ai1,i2aj1,j2 . Figure 4.2 illustrates such a model.

One problem that arises here is that the observation likelihood of two objects perfectly
overlapping at xk is identical to the observation likelihood of one object at xk. This is
typically solved by introducing a prior that states that the probability of object occupying
the same physical 3D space is zero.

Solving this model using the Viterbi algorithm above gives the tracks of all ob-
jects in the scene, and since there is only one observation in every frame, the back-
ground/foreground segmented image, no data association is needed. Also, the model
states contain the entry an the exit events, so this solution also gives the optimal entry
and exit points.

4.2.3 Extending to several object types

If all objects in a scene are not of approximately the same physical dimensions, several ob-
ject types can be introduced. In an intersection it might be of interest to track pedestrians,
cars and buses and distinguish between the different types. To do this some discrete set
of types T is introduced that will contains the different types, e.g. for the example above
there will be three elements in T indicating pedestrian, car or bus respectively. The single
object state space, S1, is then replaced with S1 × T and the rest of the theory follows as
it is presented above. The dimensions of the boxes representing the objects can now be
allowed to depend on which type of object it is.
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Figure 4.2: Illustration of the HMM used to track multiple objects. Each state represents
a configurations of objects in the scene. The transactions represents object movements as
as well as the events of objects entering or leaving the scene.

4.2.4 Calculating bmax

Algorithm 1 contains a single model specific step, the calculation of bmax. It is an upper
bound on the observation probability of all states not explicitly tested, i.e. all states not
in S. Even though this is typically performed offline, the state-space is too large to make
it possible to evaluate the likelihoods of all states in a single frame.

Note that rescaling all observation probabilities of a single frame will not change the
position of the maximum. Also, by using the logarithm of the probabilities it is possible to
replace the products with sums and use integral images [83] to speed up the calculations.
If b0,t is the observation probability of the state representing an empty scene, i.e. CS0 = ∅,
it is convenient to rescale all observation probabilities with 1

b0,t
. By using the transformed

features

L = log
Otpfg + (1−Ot)

(
1− pfg

)
Ot
(
1− pbg

)
+ (1−Ot) pbg

, (4.24)

the logarithm of the rescaled observation probabilities can be calculated as sums over the
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foreground pixels only,

b̃i,t = log
bi,t
b0,t

=
∑

x∈CSi

L(x). (4.25)

Optimising using b̃0,t instead of b0,t will give the same optimal state sequence as the prob-
ability of all state sequences have been rescaled with the same positive amount,

∏
t b0,t,

and the logarithm does not change the position of the maximum.
Consider the brute force algorithm for finding bmax that tests all possible states by

recursively adding more and more objects. It is initiated by letting bmax = −∞ and then
calling Algorithm 2 with the parameter i = 0, i.e. TryAllStateBF(0), which will make the
recursion start at the state q0 representing no objects present.

Algorithm 2 TryAllStateBF(i)

1: b =
∑

x∈CSi
L(x)

2: if i /∈ S then
3: if b > bmax then
4: bmax = b
5: end if
6: end if
7: for all j ∈ S1 do
8: Find k s.t. qk is the state formed from qi by adding an object at grid point xj
9: call TryAllStateBF(k)

10: end for

To form a more efficient algorithm, introduce a new image L+ that consists of the
positive parts of L, i.e.

L+ = max(L, 0). (4.26)

The sum over this image,
∑

x L+(x), forms a loose upper bound representing the case
that every pixel is expected to take its most likely value. To tighten this bound, notice that
as the recursion progresses down a branch more and more objects will be added and thus
CSi will increase. This means that the sum over the pixels not in this set,

∑
x/∈CSi

L+(x),
forms an upper bound on how much the observation probability can increasing by con-
tinuing down the current branch. If this is not enough to beat the currently best state
found, there is no point in continuing investigating the current branch. This is used in
in Algorithm 3 to eliminate entire branches from the recursion.

4.2.5 Multiple cameras

Extending this to multiple overlapping or non-overlapping cameras is relatively straight-
forward. By calibrating the set of cameras and identifying a common coordinate system
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Algorithm 3 TryAllState(i)

1: b =
∑

x∈CSi
L(x)

2: if i /∈ S then
3: if b > bmax then
4: bmax = b
5: end if
6: end if
7: if b+

∑
x/∈CSi

L+(x) ≤ bmax then
8: return
9: end if

10: for all j ∈ S1 do
11: Find k s.t. qk is the state formed from qi by adding an object at grid point xj
12: call TryAllState(k)
13: end for

for the ground plane, the objects centres, xk, can be modelled as moving in this common
coordinate system. Thereby a single HMM modelling the events on this ground plane
can be used. The observations for the model are the images from all the cameras. Using
the calibration of the cameras, each centre point can be projected into the shape of the ob-
ject in each of camera images, Ccxk , where c = 1, 2, . . . , represents the different cameras.
The set Ccxk might be the empty set if an object at position xk is not visible in camera c.
By indexing Equation 4.23 on the camera c, with Oct the background/foreground image
produced from camera c,

bci,t =
∏

x∈CcSi

(
Oct (x)pfg + (1−Oct (x))(1− pfg)

) ·
·
∏

x6∈CcSi

(
Oct (x)(1− pbg) + (1−Oct (x))pbg

)
, (4.27)

the total observation probability becomes

bi,t =
∏
c

bci,t. (4.28)

4.2.6 Region of Interest

In many cases it is neither interesting nor computational possible to consider all objects
visible in the camera field of view. Typically the state space is restricted to only consider
objects within a specific region of interest. But this leads to problems along the border
of this region as objects moving outside this region, but close enough to occlude it in the
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Figure 4.3: This setup shows a camera viewing a ground plane at a tilted angle. A region
of interest is specified in 3 dimensions with its height equal to the height of the objects.
The thick blue line indicates the region in which objects outside the region of interest will
occlude the region of interest.

camera view, will affect the background/foreground segmentation within. Regardless of
how the region of interest is chosen (including the entire image), there may always be
objects outside this region having some part of them projecting into the region of interest
in the image.

This can be resolved by modelling the entire world as a single ground plane with an
infinite number of equally shaped objects moving along this plane. The positions of the
objects outside a given region of interest are considered uninteresting and are integrated
out. This means that Si will represent the state “one object within the region of interest
at position i, and any number of objects at any positions outside”.

To form an observation-model for this kind of states some prior distribution of how
many objects are located within a certain area has to be assumed. It could for example
be assumed that on average there will be λ objects per m2. In that case, the number of
objects present within an area, v, is Poisson distributed with mean λv,

po (n, v) = p (n objects present in v) =
(λv)n e−λv

n!
. (4.29)

Using the camera calibration, the geometry of the setup such as shown in Figure 4.3
can be calculated. The region of interest is a three dimensional box, with the same height
as the objects. For every pixel x the area vx of the region outside the region of interest
where objects occlude the pixel x can be calculated. The probability of the background
being visible at that pixel, given that no object within the region of interest occludes it
is po (0, vx) = e−λvx . The probability of the background at that pixel being occluded
given that an object within the region of interest occludes it is of course 1. This can be
introduced into the observation probability in (4.23), by replacing pbg with

p′bg (x) = e−λvxpbg +
(
1− e−λvx) (1− pfg

)
, (4.30)

which is no longer constant, but varies over the pixels, x.
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The prior model assumed should then also be used in the state probability by in-
troducing a factor, po (n, v) to Equation 4.28, where v is the area on the ground plane
covered by the region of interest, and n is the number of objects present within. With
this modification (4.28) becomes

bi,t =
(λv)n e−λv

n!

∏
c

bci,t. (4.31)

All the calculations can be performed offline and stored in an calibration image that
for each pixel, x, stores the value of p′bg (x). The extra work needed online is then reduced
to a pixel look up in this image.

4.2.7 Static Obstacles

In many real life situations it is hard to find suitable places for mounting the cameras.
There might be static obstacles, such as houses, occluding parts of the scene or there
might be obstacles in the scene, such as traffic lights or lampposts, that occlude objects in
some parts of the scene, but might be occluded them selves by object in some other parts
of the scene. To handle these kind of situations such static obstacles can be located, either
manually or by some automatic learning based of the tracks produced. Then a static map,
p′fg (x), replacing pfg can be introduced in the same way as p′bg (x) was introduced in the
previous Section. This map will be

p′fg (x) =
{

0.5 if pixel x shows static obstacle
pfg otherwise

. (4.32)

This will result in that the pixels showing the static obstacles will be ignored while they
are expected to show an object as in this case it is not know whether the object is in
front of or behind the obstacle. On the other hand when the pixels showing the static
obstacles are expected to show the background, there will be a penalty for them showing
foreground as this indicates that there actually is an object in front of the obstacle.

This will make the tracker useful in situations where several cameras is needed to
view the entire scene because of obstacles occluding different parts of the scene form
every camera angle.

If the position of the obstacles on the ground plane were also to be calibrated it would
be possible to, for a given state, decide whether the obstacle is in front of or behind the
tracked objects and thereby decide whether to expect foreground or background at those
pixels. This is achieved by removing the obstacle pixels from the CSi sets corresponding
to objects located behind the obstacles.

4.2.8 Multi object HMMs using multiple spatially overlapping HMMs

Applying the presented HMM tracker to large scenes is however problematic. The num-
ber of states increases exponentially with the number of objects and with the size of the
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Figure 4.4: An example of two models, A and B, at 9 time intervals, with 5 × 5 states
each overlapping by 3×5 states. The blue blob is an object passing by, and the red square
shows the state of model A while the green triangle shows the state of model B.

scene. In practise an exact solution is only computationally feasible in real time for a small
number of objects within a small region of interest.

To track objects travelling over larger regions requires an extremely large state space.
It might be hard to find an upper bound bmax(t) small enough, which means that the
number of stored states, m, will be large too. In this case some approximations might be
necessary in order to obtain real time performance. The assumption that distant objects
do not affect the position or movements of each other more than marginally can be ex-
ploited by using several spatially smaller HMM models each only covering a small part of
the region of interest. This also means that the number of objects simultaneously located
within one such model would decrease, and the state space will be reduced significantly.
Each of the models is optimised separately, and the results are combined as shown below.

In Figure 4.4 there is an example of two models, A and B, showing their states as an
object passes by. First, only consider the state of model A, the red square. At time t = 0,
the object is still outside both of the models. However model A detects it in one of its
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border-states because this is the state of model A that explains the situation best. Then
model A follows the centre of the object correctly through t = 1, . . . , 5 and in t = 6 the
same problem as for t = 0 arises again: The object has left model A, but is still detected
in a border state.

The state of model B, the green triangle, shows the same characteristics as the state
of model A. This problem of objects being erroneously detected at the border-states is
reduced by using the region of interest introduced in Section 4.2.6, but might still occur.
It can be solved by defining the meaning of the border-states to be “object located outside
model” and ignore all such detections.

By having 2 or more states overlapping between the models, all grid points will be
an internal state, i.e. not on the border, of some model. This means that when the two
models are optimised one by one, model A will produce one track starting at t = 2 and
ending with t = 4, while model B produces another track starting at t = 4 and ending
at t = 6. At t = 4 both tracks will be in the same state which is used to concatenate
the two tracks into a single track. This will be possible as long as there are three or more
states overlapping. Typically more than three states will be used in order to get several
overlapping states in the resulting tracks. This is a kind of data association problem, but
the overlapping states makes it trivial.

If ambiguities arise when combining tracks, this means that the models have failed,
typically because they are too small or too widely separated. The models will have to be
large enough to resolve any object interaction that might appear, and they will have to
overlap enough to ensure that any such interaction will occur well within some model.
Otherwise the border effects might prevent the correct solution to be found.

To summarise, instead of solving one big model covering the entire region of interest
with many objects, the model is broken down into several small models covering a smaller
part of the full region of interest. Thus only a few objects have to be considered. Each of
the small models is optimised separately and all detections in border-states are ignored.
The resulting tracks that are overlapping, or almost overlapping, are concatenated into
longer tracks that might traverse the entire region of interest.

This is of course an approximation and it is no longer possible to decided whether a
single larger model covering the entire region of interest would produce the same results.

4.2.9 Results after constant delay

For real time application it might be more important to restrict the maximum delay, tmax,
between receiving a frame and outputting the result for that frame, than to guarantee that
a global maximum is found. That would also make the processing time of each frame
and the memory needed less varying. This can be achieved by summing up the total
likelihood converging in each node while backtracking,

∆t (i) =
∑

ψt+1(j)=i

∆t+1 (j) . (4.33)
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Figure 4.5: Parking lot monitoring by counting the number of cars entering or exiting.
To the right an enlargement of the part of the frame where the processing is performed
and the object centre points used in the discretised state space are marked.

For the last received frame t1, set ∆t1 (i) = δt1 (i). As the algorithm is presented
above, the backtracking should continue until ∆t2 (i) = 0 for all i but one. But if instead
the backtracking is terminated while ∆t2 (i) > 0 for several i, the resulting state for t2
could be chosen as qt2 = argmaxi ∆t2 (i).

By doing so a decision has been made for t2. To ensure that the resulting state se-
quence is a legal one, this decision has to be propagated forward. With some luck this
was the correct decision to generate the global maximum, and the algorithm will be able
to detect if this was the case by letting ψt2 (i) = −1 for all {i|∆t2 (i) > 0, i 6= qt2}. For
approximate solutions it is enough to set δt (i) = 0 for all i and t that backtracks to any
other state than qt2 .

The additions introduced by evaluating (4.33) replace conditionals in the original
backtracking algorithm. So, if conditionals and additions have the same cost, this part
will have the same cost as the original backtracking. The extra computational effort
needed is to propagate the decisions made forward. It works in much the same way as the
backtracking and have the same complexity. For a given backtracking length this means
that the constant delay improvement doubles the amount of work needed as compared
to the standard backtracking. But the idea is to make the length lower, which also means
that memory is saved. For the overall system the time spent backtracking is negligible,
as almost all time is spent in the forward propagation of the Viterbi optimisation, Equa-
tion 4.6.

4.3 Experiments

4.3.1 Parking lot

As an initial test, a narrow entrance to a parking lot was monitored. This demonstrates
that single car tracking with the proposed model works very well. Such a parking lot were
monitored by an Axis 2120 camera, and by placing one single 9× 9 model with the state
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Figure 4.6: 15 of the 17 detections made in a test sequence with 17 passes.

space S1 at the entrance of a parking lot, see Figure 4.5, the entry and exit of cars were
counted. The shape of the cars were chosen as a two dimensional rectangle. This space
is small enough to evaluate every state in every frame, i.e. chose m =

∣∣S1
∣∣. Thereby

no approximations are made in the optimisation and the resulting state sequence is the
globally optimal maximum likelihood state sequence.

The test sequence used is 7 hour long, acquired from 16:30 in the afternoon until
darkness falls. The sequence contains 17 events, both cars exiting and entering. All of
them is correctly detected and one false detection is made consisting of 5 pedestrians
entering the parking lot simultaneously. Since only a small cutout (70 × 80 pixels) of
the image has to be processed, the implementation processes 502 fps on a 2.4GHz P4
including a simple background/foreground segmentation.

4.3.2 Footfall

By placing a camera above an entrance looking straight down it is possible to count the
number of pedestrians entering and leaving. This is often called footfall counting. By
tracking each person for a short distance the system decides if it is a person entering or
exiting. This is done here by placing a single S∞ model in the centre of the image that is
1m high and wide enough to cover the entire image.

To choose the m parameter, 45 recordings where made with varying length around 1
min, in different environments with different cameras at different heights. The algorithm
where executed offline with a large value of m, and during the backtracking the position
of the states on the maximum likelihood sequence in the sorted vector δ̂(·) were recorded.
The maximum over those positions is the minimum m required for the algorithm to
produce the global optimum for that particular sequence. Table 4.4 show the minimum
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Figure 4.7: 20 models overlapping by seven states. Each new model is shown in a separate
colour.

m found for the test sequences in this way by running the offline algorithm.

The mean over all 45 sequences is µ = 184. If the minimum m required to find
a global optimum is assumed exponential distributed, the online algorithm with m =
E−1

cdf (0.95 |µ ) ≈ 551 should find the global optimum with probability 0.95. Here
E−1

cdf (x |µ ) is the invers of the exponential cumulative distribution function

Ecdf (x |µ ) =
{

1− e−µx if x ≥ 0
0 if x < 0 (4.34)

The online tracker were executed on a short sequence containing 17 passes with m =
551. It was processed at 11.9 frames per second, on a 2.4 GHz P4, and all 17 passes were
correctly detected and no false detection were made. For each detected passage a single
frame were saved and 15 of those are shown in Figure 4.6.

The performance of using multiple spatially overlapping HMMs were tested by mount-
ing a Axis 210 camera above an entrance looking straight down, as shown in Figure 4.8.
20 independent 9× 9, S1 models were placed along a row in the images, with an overlap
of 7 states, see Figure 4.7. The overlapping tracks produced by each model were com-
bined, and all tracks laying entirely on the border of its model were removed as described
above. The remaining tracks that crosses the entire model from top to bottom were
counted. Either as a person entering or as a person leaving depending on the direction of
the track.

The test sequence consists of 14 minutes video where 249 persons passes the line. 7
are missed and 2 are counted twice. This gives an error rate of 3.6%. Compared to the
parking lot test a larger cutout was processed (320 × 101 pixels) and 20 models instead
of 1 were used. This resulted in a frame rate of 49 fps on the same 2.4GHz P4 as in
Section 4.3.1. A few frames from the result are shown in Figure 4.8.

A few more footfall tests are presented in Chapter 5.
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Figure 4.8: People entering and exiting an entrance. The numbers above and below the
line gives the number of people crossing the line going out and in respectively. The system
detects 4 people entering and 3 people exiting during the time shown in the figure, which
is correct. See lunchcut.avi at http://www.maths.lth.se/˜ardo/thesis/for the video.
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Figure 4.9: Left: A grid of 5× 5 small tracking models (blue squares) with 9× 9 (yellow
dots) each. Right: Grid points in a single model. The red starts is the possible starting
points and the green stars the possible exit points.

4.3.3 Traffic

For automatic analysis of traffic surveillance the first step is often to extract the trajectories
of the vehicles in the scene. The multi object state space model was tested on this problem
by analysing a 7 minutes surveillance video, acquired by an Axis 2120 camera, where 58
cars and a few larger vehicles passed through the centre of an intersection. A grid of 5×5
S2 models with 9 × 9 grid points each were placed to cover the intersection, i.e. each
model were assumed to contain 0, 1 or 2 cars at each time (S2). This space is small enough
to let the parameter m =

∣∣S2
∣∣. The video was rectified to make all cars of similar size.

(roughly 25 × 25 pixels), and the shape of the objects were considered two dimensional
rectangles of this size. The total resolution used was 224×324 pixels. The setup is shown
in Figure 4.9 (left) where each blue square represents one model and the yellow dots the
different states. Each of the models was optimised separately by using the exact Viterbi
algorithm for infinite sequences. In the test 57 of the 58 cars were detected, but for some
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Figure 4.10: Result from corridor tracking example. 4 pedestrians are present and cor-
rectly detected. Each is marked in the blueprint with their identity number at their centre
position as well as in the image with a box representing areas that should be foreground.
See also korr.avi at http://www.maths.lth.se/˜ardo/thesis/.

of them only partial tracks were produced. One car was missed due to an interaction of
three cars within the same model and two extra tracks were produced due to groups of
bicycles. The larger vehicles were detected as one or two cars or not at all. In this case the
system was only able to process 0.38 fps, which means that real time performance were
not reached, but since the 25 models are evaluated separately it would be no problem
spreading the processing on several CPUs or GPUs to reach the desired frame rate.

The first 5 minutes of the above sequence were also passed to a matlab implementa-
tion of the infinite state space method described in Section 4.1.3, with a single Sn model
(which can handle 0-n objects being visible) covering the entire intersection, see Fig-
ure 4.9 (right). The number of hypothesis stored for each frame, m, were set to 20. This
part contained in total 40 vehicles, including some larger than the normal car and one
bus. The part where the multiple models above missed one car were included. The full
tracks of all the 40 vehicles where correctly extracted. In addition to those correct tracks
5 more were discovered. Two were due to groups of bicycles, and 3 were due to larger
vehicles, including the bus. This test was made in matlab at 0.78 fps (0.75 if bmax(t) also
were calculated to evaluate whether the global maximum were reached).

4.3.4 Occlusion

To test how well the system could handle occlusions, another test was performed using
a camera overviewing a corridor with significant perspective effects and occlusions, see
Figure 4.10. The camera was calibrated and the world coordinate system registered to a
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Figure 4.11: Example frames from the 4 camera views of the robot lab sequence. The ob-
jects detected by running the tracking within the white rectangle are marked. From left to
right, camera 0 to 3. See also robotlab.avi at http://www.maths.lth.se/˜ardo/thesis/.

blueprint of the corridor. Pedestrians are modelled as 44 × 44 × 180 cm boxes, and the
set of possible object centre point xk, were generated as an regular grid in the blueprint.
For each of the centre points the region of the image a pedestrian located at that point
would cover could be calculated from the calibration. Entry and exit points were placed
around the doors and along the bottom half of the image.

The sequence is 1:45 min and contains 9 events of people walking through the scene
in different ways. All of them were correctly detected. But because of noise from the
opening and closing of the doors and reflections a few short erroneously tracks were
generated between the entry and exit points belonging to the same door, but they were all
easy to filter out afterwards by removing all short tracks starting and ending at the same
door. No other errors were made.

4.3.5 Multiple cameras

To test how multiple cameras can be utilised, four cameras were mounted in our lab
looking down onto the same area. The four camera views are shown in Figure 4.11. In a
first test a 30s sequence were used and a singe S∞ model was optimised. The pedestrians
were modelled as 40×40×160 cm boxes and several tests were performed using different
sets of cameras. Also, the size of the region of interest within which objects were tracked
were varied. The minimum m required for the different setups are shown in Table 4.1.

Looking at the first 4 rows of that table it can be concluded that solving the tracking
problem using only camera 2 is significantly harder that using only one of the other
cameras. This makes sense because camera 2 is the one behind the robot (see Figure 4.11)
and a significant part of the region of interest used here is occluded by the robot. By
combining data from several cameras the problem becomes easier as more information
is available. Note for example that combining camera 0 and 2 in the 1.5 × 1.5 m case
(middle column) the minimumm required is lowered from 15 and 257 respectively down
to 1.

The full 3 minute sequence were then processed. It contains 40 pedestrians passing
the 6 × 6 meter area of interest in different ways. A single passage were missed and no
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Minimum m
Camera set 1× 1 m 1.5× 1.5 m 2× 2 m
0 1 15
1 2 4
2 38 257
3 11 6
0,1 1 2
0,2 1 1
0,3 1 1
2,1 10 16 35
2,3 2 2 6
3,1 1 3
0,2,3 1 1 3
1,0,3 1 3 17
1,2,0 1
1,2,3 1 2 8
0,1,2,3 1 2

Table 4.1: Minimumm required to find the global optimum using different combination
of the four cameras and with the tracking performed on 1 × 1, 1.5 × 1.5 and 2 × 2 m
region of interests.

false positives were made. The results are presented in robotlab.avi1.

4.3.6 Loitering detection

Tests were performed on the PETS 2007 dataset2. It consists of 8 different scenarios,
each recorded with four cameras from four different angles, Figure 4.12. In addition to
this there is a background sequence that can be used for calibrating the system. The first
three scenarios, S0, S1 and S2 were analysed to automatically detect loitering. Loitering
is defined as a person who enters the field of view of camera 3, and remains within the
scene for more than 60 seconds. The dataset comes with calibration parameters for the
cameras, that were calculated from markers on the floor using the Tsai camera model [82].
The camera parameters were estimated using the freely available Tsai Camera Calibration
Software3 by Reg Willson.

The ground plane was discretised into a uniform 74x42 grid reaching from (x, y) =
(−4,−2) to (x, y) = (4, 2.5) in world coordinates (meters) as defined by the camera
calibration’s provided. This roughly corresponds to the filed of view of camera 3. The

1http://www.maths.lth.se/˜ardo/thesis/
2http://pets2007.net/
3http://www.cs.cmu.edu/afs/cs.cmu.edu/user/rgw/www/TsaiCode.html

128



4.3. EXPERIMENTS

Figure 4.12: Example frames from the PETS 2007 dataset. From left to right, camera 1
to 4. See also http://pets2007.net/.

objects were modelled as 0.44x0.44x1.8 m boxes. Those boxes were projected into each of
the four camera images, and bounding boxes parallel to the image axes where fitted. This
allows the observation probability of each state to be calculated very fast using integral
images.

Objects detected on the very border of the grid were ignored since such detections
often correspond to object movements outside the grid. The number of frames an object
stayed within the interior of the grid was counted, and if this exceeded 1500 (60 s), the
loiter alarm was raised.

Result

The tracker’s run time was measured on a 2.40GHz P4 for different values on m and dif-
ferent number of cameras. The background/foreground segmentation was precalculated,
so its run time is not considered. For m = 1 the algorithm becomes equivalent to a
greedy algorithm changing to the most likely state in each frame. The result is shown in
Table 4.2.

The performance of the system was measured by evaluating how successful the loiter-
ing detection is in different setups. Each setup uses a different set of cameras. The correct
result is to find one loiter in each of S1 and S2 and zero in S0. The results are shown in
Table 4.3 and it is mostly correct. The errors made are that in three of the setups there
were an extra loiter detected, which actually is the same loiter detected twice due to an
identity mix up between two objects.

The dataset used comes with ground truth data. This data were compared to tracks
generated by the suggested algorithm. For each frame with ground truth, the tracking
results were searched for objects within 1m of the ground truth objects. If such objects
could be found for all ground truth objects, that frame was considered OK. The percent-
age of good frames from S1 (ground truth for S0 and S2 were not available at the time)
is presented In the “Tracker OK Frames” column of Table 4.3.

To also verify that the identity of the objects are not mixed up a mapping between
the id-numbers in the ground truth and the id-number generated by the algorithm has
to be established. This is done by choosing the mapping that give the best results. By
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m Cameras Run time/frame (ms)
10 1 1
10 2 2
10 3 2
10 4 4
100 1 15
100 2 21
100 3 30
100 4 42

1000 1 200
1000 2 281
1000 3 429
1000 4 526

Table 4.2: Mean frame processing time for different values of the m parameter described
in Section 4.1.3 using different number of cameras.

using this mapping pairs of ground truth and generated tracks are formed and compared
by counting the number of frames the difference between the objects position in the two
tracks is less than 1m. The percentage of such frames is presented in the “Tracker OK
Ids” column.

The two “Tracker OK” columns should be interpreted as follows. If “Frames” is close
to 100%, but “Ids” is lower, the objects were tracked, but the identities mixed up. If
“Frames” is low some object were missed altogether. A few frames from the resulting
tracks are shown in Figure 4.16 and the full video is available as pets.avi4.

4.3.7 Multiple object types

In a traffic scene there is several types of road users of different types. In this section three
different types will be considered: pedestrians (modelled as 0.5 × 0.5 × 1.8 m boxes),
cars (modelled as 4× 2× 1.3 m boxes) and buses (modelled as 10× 3× 4 m boxes). The
state space of the previous sections have been extended to also include the orientation of
the objects and the type. A 55s recording of an intersection with 4 cameras viewing the
intersection from different locations was made, see Figure 4.13. A static obstacle mask
were manually created as shown in Figure 4.14. A single S∞ model was used that covered
an area of 63 × 41 m on the ground plane. The state of a single object were extended
to not only consist of its position but also of its orientation and type. This means that
the state space is significantly larger than in the previous tests. To lower the run-time a
point tracker was used to track points moving through the intersection and then the state

4http://www.maths.lth.se/˜ardo/thesis/
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M Cameras Loiter detections Tracker OK (%)
used S0 S1 S2 Frames Ids

100 3 0 1 1 84 73
100 1 3 0 1 1 76 62
100 2 3 0 1 2 85 80
100 3 4 0 1 1 84 73
100 1 2 3 0 1 2 88 84
100 1 3 4 0 1 1 76 62
100 2 3 4 0 1 2 85 81
100 1 2 3 4 0 1 1 88 84

Table 4.3: Tracking result using different sets of cameras. The number of loitering de-
tections found in each of the three sequences are shown. S0 contains no loiters, while S1
and S2 contains one each. The “Tracker OK Frames” column shows the percentage of
frames the the algorithm has detected objects less tan 1m from the objects in the ground
truth. “Tracker OK Ids” shows the percentages of object frames where the id-number is
not mixed up between objects.

space was limited to positions along those point tracks and orientations defined by the
motion of those points. The sequence contains 8 cars, 2 pedestrians and 2 buses and it
was processed in matlab, which required 4 days for a 2.40 GHz P4. All the objects were
detected correctly. Figure 4.15 shows a single frame from the tracking results and videos
are available5 as 4cam_intersection.avi and 4cam_intersection_rect.avi.

5http://www.maths.lth.se/˜ardo/thesis/

Figure 4.13: Input data for the multi object traffic test. Four cameras were used all looking
at the same intersection from different angles. See also 4cam_intersection.avi at
http://www.maths.lth.se/˜ardo/thesis/.
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Figure 4.14: Static obstacle masks for the multi object traffic test.

4.4 Conclusions

In this chapter we have proposed a multi HMM model to model multiple targets in one
single model with the advantage of solving all the problems of a multi target tracker by a
Viterbi optimisation. This includes track initiation and termination as well as the model
updating and data association problems. Furthermore, two extensions to the standard
Viterbi optimisation are proposed that allows the method to be used in real-time appli-
cations with infinite time sequences and infinite state spaces. The first one allows the
optimisation to be performed online but with a varying delay and a global optimum is
still generated. The second one works with upper bounds instead of explicitly calculating
the probability at very state at every time. The later extension only gives approximative
solutions in the general case, but can also determine if an exact solution were found.
The produced tracks are still guaranteed to follow any restrictions placed on the model,
such as “objects may not overlap” or “objects many only (dis)appear along the borders”,
which is typically not the case for system based on smoothing (e.g particle filter) instead
of optimisation.

Several test have been performs that indicates that the system works very well and in
real time situations if the region of interest within which objects are tracked can be kept
small and the number of objects kept down. However, it scales badly as the size of this
region or the number of objects is increased. The task on monitoring a narrow parking lot
entrance can be done at 502 fps while the task of tracking all cars in an entire intersection
only reaches 0.003 fps.

Some ideas on how to split up large areas, such as the intersection, into several smaller
parts tracked independently is presented. This approach aims to utilise the fact that
distant objects do not influence each other much, but could be considered independent.
How this can be exploited further and possible build hierarchical models where the higher
levels do not have to deal with the exact position of the objects will be the subject of
interesting future research.

The focus of this work has been placed on the optimisation algorithms, the observa-
tion model used were fairly simple. Much more sophisticated pedestrian detectors exists
and it should be straight forward to plug in such a detector instead of or in combination
with the background foreground segmentation.
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Figure 4.15: Results from the multi object traffic test. At the bottom row, the images
from the four cameras shows the detected objects being marked. The object type is in-
dicated with the colour of the marking and an identity number has been assigned to
each object. The region of interest have been marked in black. At the top all four
images projected onto the ground plane and superimposed onto a blueprint of the in-
tersection. See also 4cam_intersection.avi and 4cam_intersection_rect.avi
at http://www.maths.lth.se/˜ardo/thesis/.
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Figure 4.16: Resulting output of the tracker from frames 700-900 of scenario S1. The
red boxes indicates the detected and tracked objects in the four cameras. The green
rectangle indicates the area within which objects are tracked. See also pets.avi at
http://www.maths.lth.se/˜ardo/thesis/.
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Camera Lens (mm) Height (m) Frames Minimum m
Axis 207W 4.0 4.91 1199 14
Axis 207W 4.0 2.55 530 16
Axis 207W 6.0 2.55 590 63
Axis 207W 8.0 2.55 560 136
Axis 207W 2.8 2.00 1199 481
Axis 207W 2.8 2.20 70 1
Axis 207W 2.8 2.41 1199 4
Axis 207W 2.8 3.04 1050 49
Axis 207W 2.8 3.04 1199 117
Axis 207W 2.8 3.67 1199 78
Axis 207W 4.0 3.11 1100 192
Axis 207W 6.0 3.11 870 16
Axis 207W 8.0 3.11 840 230
Axis 207W 16.0 3.72 740 13
Axis 207W 4.0 3.72 1060 20
Axis 207W 6.0 3.72 900 757
Axis 207W 8.0 3.72 840 474
Axis 207W 12.0 4.23 880 256
Axis 207W 16.0 4.23 400 5
Axis 207W 4.0 4.23 770 486
Axis 207W 6.0 4.23 970 79
Axis 207W 8.0 4.23 1030 110
Axis 207W 12.0 4.60 660 44
Axis 207W 16.0 4.60 940 21
Axis 207W 4.0 4.60 840 832
Axis 207W 6.0 4.60 800 22
Axis 207W 8.0 4.60 730 3
Axis 209 3.0 2.62 1199 42
Axis 209 3.0 3.17 850 27
Axis 209 3.0 3.79 1199 746
Axis 209 3.0 4.29 1199 28
Axis 209 3.0 4.29 1199 852
Axis 207W 4.0 2.80 1199 1
Axis 207W 4.0 2.80 1199 2
Axis 207W 4.0 2.80 1199 1
Axis 207W 4.0 2.80 1199 6
Axis 209 3.0 3.50 1060 7
Axis 212 2.7 3.11 1199 253
Axis 212 2.7 2.90 1199 533
Axis 212 2.7 4.40 690 996
Axis 212 2.7 2.90 1199 31
Axis 212 2.7 3.80 1199 65
Axis 212 2.7 4.30 1199 49
Axis 212 2.7 5.22 1199 57
Axis 212 2.7 2.63 1199 87

Table 4.4: Minimum m required to find the global optimum for each of the 45 test
sequences. For each test the camera type used, the focal length of the lens, the height
above the floor of the camera and the length in frames of the sequence is presented.
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Chapter 5

Applications

The algorithms presented in this thesis have been used in real world large scale traffic
studies and some of these studies will be presented here. The footfall counter presented
has also been developed into a commercial product and as of today sold in more than 30
countries world wide.

5.1 TrueView People Counter

Cognimatics AB1 is a spinnoff company from the math department of Lund university
that has used the footfall counter presented above to produce a commercial product called
TrueView People Counter. The algorithm is ported to three different platforms and sold
as three different products. There is a PC version that is sold as a windows program that
can handle entrances up to at least 10m. There is a mini-PC version that can run on a
800 MHz mini-PC and handle two cameras simultaneously, each counting an entrance
of up to 4m. Finally there is an embedded version that runs on a 150MHz arm pro-
cessor embedded in the Axis 207, 209 or 212 cameras that can handle up to 4m wide
entrances. The embedded version is the most successful product since it is easier to use as
the counting is done within the camera and there is no need to connect the video stream
to a separate PC doing the counting. These products have been tested quite extensively
and a few of the tests are presented below.

The real time properties of the PC based counter were tested by connecting it directly
to an Axis 210 camera mounted above a 10m wide entrance to a shopping centre and the
results were compared to a high end commercial counter, already present at the entrance.
The system was up and running for a week, with a mean daily error of 4%. The first 5
days at 25 fps (camera maximum), and during the last 2 days the frame rate was limited
to 10 fps in order to test how high frame rate was required. The results are shown in
Table 5.1 with a total of 4800 passes and a mean error-rate of 4%.

The 800MHz mini-PC implementation was used on 20 cameras spread out within a
large grocery store. The cameras were placed in a way that made all entrances to two sep-
arate areas covered with counters. That way the total number of pedestrians entering and

1http://www.cognimatics.com
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Date In Out Mean Sensor Error

Fr 7/7 837 853 845 824 2.4%
Sa 8/7 696 747 721 683 5.5%
Su 9/7 563 559 561 586 4.2%

Mo 10/7 578 617 597 575 3.8%
Tu 11/7 690 701 697 680 2.5%
We 12/7 758 761 759 744 2.0%
Th 13/7 831 850 841 767 8.8%

Table 5.1: Results from running our footfall counter for a week at a 10m wide entrance to
a shopping centre. In and Out are the number of people entering or leaving the building
and Mean is the mean value of those two. Mean is compared to a high end counting
system presented as Sensor and the Error is shown in the last column.

leaving those two areas could be calculated by summing up the results from the counters.
The test was up and running for 7 months and during this time a total number of 4.9
million passes were counted. The difference between the number of persons entering and
the number of persons leaving the two encircled areas was 0.19% and 0.02% respectively.

The 150Mhz embedded version has been tested in a shop in northern Spain during a
7 hour period with a total of 622 passes and an counting error of 0.3%, and in a shopping
centre in Madrid at 4 different locations with a total of 621 passes and a counting error
of 2.1%. The ground truth in this case was found by manually counting the number of
passes by looking at video recordings made at the same time as the counter was running
live.

By also measuring the time it takes for each object to move from one end of the
tracking area to the other, an estimate of the speed of the object can be obtained. Using
this estimate the counter can classify each passing object based on its travelling speed.
This have been used in a pilot project together with the company Infracontrol2.

A counter was mounted above a walkway where both bicycles and pedestrians are
travelling. The counter classifies each passing object as either pedestrian or bicycle based
on its speed and separate counts are kept for the two different types of objects. Infra-
control has performed some preliminary tests of the system by comparing the counting
results with manual counts. Several tests were performed at different times of day on both
sunny and cloudy days and both at day and night. The scene is at night illuminated by
a street lamp. In total the tests covers 3 hours time and the result shows a precision of
96.43%. More detailed results are presented in Table 5.2.

2http://www.infracontrol.com
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Pedestrians Bicycles Total
In Out In Out

Count 68 299 56 25 448
Errors 0 14 0 2 16
Error rate 0.00% 4.68% 0.00% 8.00% 3.57%
Precision 100.00% 95.32% 100.00% 92.00% 96.43%

Table 5.2: Results from several tests of a pedestrian/bicycle counter. The automatic detec-
tions presented on the row marked Count have been compared with manual observations
and the number of errors made was counted. In total the tests covers 3 hours time.

5.2 Two-way bicycles on One-way streets

The city of Stockholm has traditionally had a rather small share of bicycle trips compared
to many other Swedish cities. However, there are initiatives trying to promote cycling.
One possibility is to generally allow biking against one-way traffic. This would extend the
available network for bicycle trips and lead to shorter travel routes and times. The back-
side would be that it might also lead to new dangerous situations and conflicts between
the cyclists travelling against one-way traffic and other road users.

The project aims at investigating the total safety effect of allowing cycling against
one-way traffic, not only estimating the risk at a specific street. Therefore the design of
the study also includes studying changes in the total bicycle flow and in the route choice,
i.e. from which streets bicycle traffic transfers to the one-way streets. To be able to both
establish the risk at specific sites and route changes the sites were in some cases chosen so
as to be able to count cyclists at several alternative routes.

This study was ordered by the city of Stockholm and the main work was performed
at the Department of Technology and Society.

Initially, 32 places were selected as potentially interesting for observations. However,
finding a good place for camera installations turned out to be a complicated task. The
cameras were normally attached to railings on balconies of apartments or offices, but in
some places there were no buildings with balconies located near enough. At other sites
there were potential camera positions but no electrical power available. Some owners
of the buildings did not want to co-operate, or it was impossible to get in contact with
them. Finally, only 22 places were filmed of which 18 were further analysed. Three
of the excluded sites did not have any one-way streets entering or exiting the intersection
(only being selected for counting bicyclists), and the fourth was excluded since the camera
turned out to be too far away from the intersection to allow for proper analysis.

Eight camera units were used for the study, and they were moved between sites just
before or after the weekend, resulting in three to four weekdays of recordings at each site.
The recordings were made as 320×240 motion jpeg files. Figure 5.1 shows a single frame
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Figure 5.1: A single frame from each of the 22 intersections video recorded.

from each of the 22 intersections. A subset of the dataset 3 is available online including
the manual counts made. More can be made available if there is sufficient interest.

The video material was processed and the objects moving in the “wrong” direction
detected. To ensure the quality and validate the work of the video analysis system much
work was still done manually. This included: a) calculation of the vehicle, pedestrian
and cyclist flows for short periods at each site; b) visual control and sorting of the system
detections, detection among them the situations which potentially might be conflicts.

Analysis of the recorded video films employs several techniques, that vary in degree
of automation, complexity and computationall intensity. Generally, the more advanced
technique, the more sensitive it is to errors, quality of input data and calibration proce-
dures and the more validation it requires.

5.2.1 Systematic error in speed and position estimation

An image observed in a camera view is a 2-dimensional representation of the 3-dimensional
reality, therefore it is not possible to calculate the distances between the objects in real-

3http://www.lth.se/index.php?id=15823
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Figure 5.2: Speed estimated from video data vs. speed log in a car.

ity using the measurements in the image only. However, having some prior knowledge
about the reality makes it possible to estimate 3D structure. For example, if the image
is transformed as if taken from straight above the intersection (i.e. rectified), distances in
the ground plane can be calculated using simple scaling.

The rectified image provides accurate distances between the points in a certain plane
in the real world, usually the road plane. However, the distances between the object’s parts
which are elevated above the road plane would be distorted, and the higher the elevation
the higher the error is. Making the approximation that the objects are flat and lie in the
road plane introduces a systematic error in position estimation as, seen from aside, an
object appear to take more place on the road than it actually does. This error depends
on the object’s height, orientation, distance from the camera, and the angle at which it is
seen. Thus theoretically the error is not constant as the object passes through the camera
view. In practise, the error varies between 1-2 meters for smaller road users (cars, cyclists
and pedestrians), but for high vehicles, such as buses or lorries, it is much higher.

Despite the error in position, accurate estimates of speed can be made extracting a
patch in the centre of the detected vehicles and matching those patches using sub pixel
cross correlation [2]. If the position error size does not change much during the object
passage, the speed (i.e. the change of the position) is nearly free from the error and thus
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Site Bicyclists Pedestrians Cars Other Sum
2 147 894 11 12 1063
4 100 44 19 7 170
5 110 54 9 14 187
6 63 938 26 126 1153
7 8 13 4 1 26
9 42 367 4 159 572

11 35 104 29 63 230
12 13 312 5 5 334
14 31 140 16 48 235
15 35 426 12 26 497
16 55 667 7 17 745
23 208 347 35 54 645
27 52 163 61 61 337
29 13 11 4 14 42
33 55 50 9 6 120
34 28 491 11 18 548
36 30 15 20 10 74
37 12 1 3 4 19

Total 1037 5037 285 645 6997
Percentage 15% 72% 4% 9% 100%

Table 5.3: The results of manual sorting of the detections at each site (average per day).

the speed estimations would have higher accuracy even without special corrections. Figure
6 illustrates some results from a test where a car with an installed speed logger was filmed
and the logged speed was compared with estimations from the video data.

5.2.2 Results

The recording at 18 sites for 3-4 days resulted in 2.5 Tb of data and 900 hours of daytime
video material. After the first stage of video analysis, the detection of objects moving in
the “wrong” direction, this amount was decreased to approximately 27000 short video
clips, with a total length of approximately 115 hours. It was decided that this material
would be examined by two observers who classified the detections in 4 categories: bicy-
clists, pedestrians, cars and other (wrong detection or odd situations). This work took
approximately one month of full-time work for the observers. The results are presented
in Table 5.3. Since the observational periods were not the same at each site, the numbers
are given as an average per day.

To estimate the accuracy of the automatic detection, manual cyclist counts were also
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Site Time Manual count Automatically detected
Bicyclists Bicyclists Pedestrians Cars Other

2 07.00-07.30 2 3 7 2 0
4 07.00-07.30 3 3 0 0 0
4 15.00-15.30 4 3 0 1 1
5 07.00-07.30 2 2 1 0 0
5 15.00-15.30 2 4 3 1 0
6 07.00-07.30 1 1 15 3 0
6 15.00-15.30 3 1 29 0 0
7 07.00-07.30 2 0 0 1 0
7 15.00-15.30 1 0 0 0 0
9 07.00-07.30 2 1 1 0 0
9 15.00-15.30 7 4 10 0 0

11 07.00-07.30 1 1 0 1 0
12 07.00-07.30 0 0 2 0 0
14 07.00-07.30 0 0 2 1 0
15 07.00-07.30 1 1 7 1 1
16 07.00-07.30 3 1 5 0 1
16 15.00-15.30 4 0 22 0 0
23 07.30-08.00 7 6 12 0 1
23 15.00-15.30 7 12 18 3 2
27 07.00-07.30 1 1 4 1 0
27 15.00-15.30 0 0 7 0 1
29 07.00-07.30 0 0 0 0 0
29 15.00-15.30 0 0 0 0 0
33 07.00-07.30 8 5 0 1 0
33 15.00-15.30 4 4 3 0 0
34 07.00-07.30 1 1 9 0 0
34 15.00-15.30 5 3 24 0 1
36 07.00-07.30 1 1 0 1 1
36 15.00-15.30 3 2 0 0 1
37 07.00-07.30 3 0 0 0 0

Sum 78 60 181 17 10

Table 5.4: Manually observed vs. automatically detected “wrong-way” cyclists. The auto-
matic detections have been manually classified into bicyclists, pedestrians, cars and other.
This means that the bicyclists column under automatically detected is the true positives,
the sum of the other three columns is the false positives and the manual count bicyclists
column should be close to the ground truth.
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Period “Wrong-way” detector Track-based detection
Cyclists Pedestrians Conflicts Cyclists Pedestrians Conflicts

1 8 1 2 9 12 2
2 4 0 1 3 10 0
3 2 3 2 3 5 2
4 3 0 1 2 3 0

Total 17 4 6 17 30 4

Table 5.5: Detection of “wrong-way” cyclists and conflicts by 2 techniques.

done at each site for one or two 0.5-hour periods (from the video films). The comparison
between manual counts and automatic detection is given in Table 5.4.

Another task performed by the observers was to detect situations that involve “wrong-
way” cyclists and that could potentially be classified as a conflict as defined by [29]. In
total, only 43 such situations were found, none of them was classified as a serious conflict
according to the definition of the Swedish Traffic Conflict Technique [29].

The information available after the video clips had been manually sorted was sufficient
for the purpose of the study, therefore the extraction of road users’ tracks was not done on
a large scale, but only for a test purpose. Site 33 was chosen for this test as it had relatively
high number of potential conflicts (6) concentrated during four 0.5-hour periods (i.e.
totally 2 hours of video). The tracks were extracted for all the road users during this
period. Even though there was a possibility to analyse only short sequences detected in
the first stage, it was interesting to compare the performance of these two techniques in
detection of “wrong-way” cyclists, too. As it was known that there are no serious conflicts
to be found, the conflict criteria were set quite loose:

One of the road user in an encounter had to move in the “wrong” direction with time
to collision < 2 sec. or time advantage < 1 sec. Table 5.5 shows the results of this test.

It turns out that the studied site was in a shade of a large tree during the most part
of the day. This resulted in many false track detections located on the shade border. As
the leaves were moving in the wind, the shades were detected as separate objects. These
tracks were, however, very easy to sort out as they were abnormally long in time while the
travel length did not exceed 1-2 meters.

5.2.3 Discussion

One of the main benefits of the automated video analysis is that it condenses the video
material to where the events of interest are rare. The amount of raw video data collected
in this study was hardly feasible to process employing only human observers. However,
the amount of manual work done was still significant, therefore there is still a need for
further automation of the process, e.g. use of the track detection and analysis technique
on a large scale.
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The detection rate of the “wrong-way” cyclists is quite high, most of the manually
counted “wrong-way” cyclists were also detected by the system (60 out of 78 in Table 5.4,
i.e 77%). However, configuration of the system for a high detection rate results in many
false detections. Only 15% of all the detections were cyclist while the main part (72%)
were pedestrians walking on the street. This problem can be partly resolved if a more
advanced filter is introduced to distinguish between cyclists and pedestrians. The filter
should include the threshold values for both the size and the average speed of a moving
object.

Generally, the automated detection has lower detection rate than what a human ob-
server has. However, in some cases (sites 2, 5 and 23 in Table 5.4) the video detector
found cyclists that were missed by the observers. All three sites are very lively with pedes-
trians and cyclists mixed, crossing or moving on the street in all possible directions. Such
environment is very distractive for a human observer, while the automated detector is not
much affected as long as the space between road users is large enough to detect them as
separate objects.

5.2.4 Conclusions

The developed automated video analysis system has a great potential for use in behavioural
studies, especially when the studied events are rare. However, at the moment, the amount
of false detections is still somewhat high and more advanced filtering algorithms are
needed.

It is rarely possible to find a very good location to install a camera. Therefore more
efforts should be put on developing techniques to compensate for a poor view by using
data from several cameras.

There is still a need to improve the accuracy of position and speed estimation, which
are important parameters for calculation of safety-related indicators. Since video analysis
provides continuous description of road users’ trajectories and speed profiles, it provides
data for more comprehensive analysis of the behaviour and interactions and can be used,
among other things, for validation and enhancement of the conflict techniques.

5.3 Bicycles in roundabout

There are two main ways of handling bicycles when building roundabouts. Either the
bicycles are allowed to travel in the same lanes as the motor vehicles, or separate bicycle
lanes are constructed. In both situations the bicycles have to interact with the motor
vehicles. In the integrated case, when a single lane is shared, they compete for space on
that lane and in the separated case the bicycle lanes have to cross the entry and exit lanes
of the motor vehicles.

In an ongoing study, performed at the Department of Technology and Society at
Lund University, this interaction is studied. Questions of interest includes:
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Figure 5.3: A single frame from each of the 2 roundabouts video recorded.

• In what situations will one or several of the road users have to break and how is it
decided who will break?

• Is there any commutation going on?

• Are traffic regulations violated?

• Does the behaviours depend on the traffic volume?

• Does the bicyclist use the bicycle lanes or are they using the motor lanes?

• Do the bicycles use the walkway when there are no bicycle lanes?

The main focus of the study is the safety of the bicyclists. It is measured by counting the
number of dangerous events, such as evasive manoeuvres, that occurs in the roundabout.

Part of the study was performed by using video surveillance of two different round-
abouts. The same camera equipment as described above in Section 5.2 was used to make
recordings. This time using a resolution of 640 × 480 and the sites were filmed con-
tinuously for 7 and 9 days respectively. Site one is an integrated roundabout while site
two is a separated roundabout. Sample frames are shown in Figure 5.3. Data from the
first site is available online 4. Video analytics were used to detect when there are bicyclist
passing areas where there is a potential for interactions with the motor vehicles. For each
detected cyclist a link containing information about its time position in the original video
file was saved. This allowed a manually observer to quickly browse the video between the
detections and make the behaviour analysis. The manual observer will then only have to
look at at several small clips of the video and for each of those clips decide if it is of no
interest or if it contains evasive manoeuvres or conflicts.

4http://www.lth.se/index.php?id=15823

146



5.3. BICYCLES IN ROUNDABOUT

Figure 5.4: The camera images projected onto blueprints of the roundabouts together
with counts of both manual and automated bicycle detections.

To asses the quality of the automatic detections, 24 hour of video from each site was
manually studied, and the same kind of detections as was desired from the automated
system were made. Results are shown in Figure 5.4.
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Chapter 6

Discussions

In this thesis we have present a probabilistic background foreground segmentation algo-
rithm that for each pixel, or block of pixels, calculats the probability of this pixel currently
viewing the static background or some moving object. The algorithm can handle the vary-
ing lighting of an outdoor traffic scene and is still fast enough to be executed embedded
within an Axis network camera containing a 150 MHz ARM processor.

We have also presented a tracking algorithm based on the output of this segmentation
algorithm. The output of the tracking algorithm is the trajectories of all objects moving in
the scene. The resulting tracks are produced with a few seconds delay but are guaranteed
to be consistent and respect any restrictions specified such as “objects may not occupy the
same space at the same time” or “objects may only appear at the border of the image”.
Also, it can combine observations from several cameras viewing the same scene

Classically, tracking algorithms have been constructed to be strictly casual and only
considers past frames when making a decision of the current state of the tracked objects.
In many surveillance applications this is an unnecessary restriction though. When doing
for example people counting or loitering detection there is typically no problem in allow-
ing a delay of several seconds between an event happening in the scene and the detection
made by the system. In those cases it is possible to let the decisions made depend not
only of past frames but also on future frames.

Recent work on tracking have started to move from causal solutions into the non
causal solutions. The work presented in this theses shows how to use classical hidden
Markov models with this non casual approach, and how to do that in a way that guar-
antees consistency in the produced tracks, i.e. no jumping between different hypothesis.
Furthermore, the algorithm can can assess whether a global optimum were actually found
or not.

Experimental validation shows that this approach works very well for small scale ap-
plications where the area of interest only consists of for example an entrance or a corridor.
But the solution do not scale very well and is currently not applicable for tracking several
kinds of road users in an entire intersection using a normal desktop computer of today.

Some preliminary tests were presented on how this can be solved by using several
overlapping hidden Markov models. In these tests the different models were optimised
one by one with interactions in between. We do however believe that much can be gained
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by letting the different models interact. But this will require more research.
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[2] K. Ăström and A. Heyden. Stochastic analysis of image acquisition, interpolation
and scale-space smoothing. Advances in Applied Probability, 4(31):855–894, 1999.

[3] Y. Bar-Shalom and E. Tse. Tracking in a cluttered environment with probabilistic
data association. Automatica, 11(5):451–460, 1975.

[4] Jérôme Berclaz, François Fleuret, and Pascal Fua. Robust people tracking with
global trajectory optimization. In In Conference on Computer Vision and Pattern
Recognition, pages 744–750, 2006.

[5] Andrew Blake, Michael Isard, and David Reynard. Learning to track the visual
motion of contours. Artificial Intelligence, 78:101–134, 1995.

[6] M. Boninsegna and A. Bozzoli. A tunable algorithm to update a reference image.
SP:IC, 16(4):353–365, November 2000.

[7] R. Brunelli and T. Poggio. Face recognition: Features versus templates. IEEE Trans.
Pattern Analysis and Machine Intelligence, 15(10):1042–1052, 1993.

[8] Marcelo G.S. Bruno and Jose M.F. Moura. Multiframe detector/tracker: Optimal
performance. IEEE Transactions on Aerospace and Electronic Systems, 37(3):925–946,
2001.

[9] M.G.S. Bruno. Sequential importance sampling filtering for target tracking in im-
age sequences. IEEE Signal Processing Letters, 10(8):246–249, 2003.

[10] R. S. Bucy and K. D. Senne. Digital synthesis of non-linear filters. Automatica,
7:287–298, 1971.

151



BIBLIOGRAPHY

[11] Yizong Cheng. Mean shift, mode seeking, and clustering. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 17(8):790–799, Aug 1995.

[12] S. J. Davey, D. A. Gray, and S. B. Colegrove. A markov model for initiating tracks
with the probabilistic multi-hypothesis tracker. Information Fusion, 2002. Proceed-
ings of the Fifth International Conference on, 1:735–742 vol.1, 2002.

[13] A. Djouadi, O. Snorrason, and F. D. Garber. The quality of training sample es-
timates of the bhattacharyya coefficient. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 12(1):92–97, Jan 1990.

[14] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley-
Interscience, 1973.

[15] Ahmed Elgammal, David Harwood, and Larry Davis. Non-parametric model for
background subtraction. 1843/2000:751–767, 2000.

[16] D. Farin, P. H. N. de With, and W. Effelsberg. Robust background estimation
for complex video sequences. Image Processing, 2003. ICIP 2003. Proceedings. 2003
International Conference on, 1:–145, Sept. 2003.

[17] Nir Friedman. Image segmentation in video sequences: A probabilistic approach.
pages 175–181, 1997.

[18] H. Gauvrit, J. P. Le Cadre, and C. Jauffret. A formulation of multitarget tracking
as an incomplete data problem. Aerospace and Electronic Systems, IEEE Transactions
on, 33(4):1242–1257, Oct. 1997.

[19] G. Gordon, T. Darrell, M. Harville, and J. Woodfill. Background estimation and
removal based on range and color. Computer Vision and Pattern Recognition, 1999.
IEEE Computer Society Conference on., 2:–464, 1999.

[20] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. Radar and Signal Processing, IEE
Proceedings F, 140(2):107–113, 1993.

[21] Peter J. Green. Reversible jump markov chain monte carlo computation and
bayesian model determination. Biometrika, 82:711–732, 1995.

[22] Mei Han, Wei Xu, Hai Tao, and Yihong Gong. An algorithm for multiple ob-
ject trajectory tracking. In Proc. Conf. Computer Vision and Pattern Recognition,
Washington DC, volume 01, pages 864–871, Los Alamitos, CA, USA, 2004. IEEE
Computer Society.

152



BIBLIOGRAPHY

[23] Michael Harville. A framework for high-level feedback to adaptive, per-pixel,
mixture-of-gaussian background models. In ECCV ’02: Proceedings of the 7th Euro-
pean Conference on Computer Vision-Part III, pages 543–560, London, UK, 2002.
Springer-Verlag.

[24] W. K. Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, (57):97–109, 1970.

[25] E. Hayman and J-O. Eklundh. Background subtraction for a mobile observer. In
Proc. 9th Int. Conf. on Computer Vision, Nice, France, 2003.

[26] David Hogg. Model-based vision: a program to see a walking person. Image and
vision computing, 1(1):5–20, 1983.

[27] Wenze Hu, Haifeng Gong, Song-Chun Zhu, and Yontian Wang. An integrated
background model for video surveillance based on primal sketch and 3d scene ge-
ometry. Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Confer-
ence on, pages 1–8, June 2008.

[28] Stefan Huwer and Heinrich Niemann. Adaptive change detection for real-time
surveillance applications. pages 37–45, 2000.

[29] C. Hydén. The development of a method for traffic safety evaluation: The Swedish
traffic conflicts technique. PhD thesis, Institutionen fÃűr trafikteknik, LTH, Lund,
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