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Complex | Function and Supercomplex Formation Are
Preserved in Liver Mitochondria Despite Progressive
Complex lll Deficiency

Mina Davoudi’, Heike Kotarsky', Eva Hansson’, Vineta Fellman'%3*

1 Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden, 2 Folkhélsan Research Center, Helsinki, Finland, 3 Children’s Hospital, Helsinki University
Hospital, University of Helsinki, Helsinki, Finland

Abstract

Functional oxidative phosphorylation requires appropriately assembled mitochondrial respiratory complexes and their
supercomplexes formed mainly of complexes |, lll and IV. BCS1L is the chaperone needed to incorporate the catalytic
subunit, Rieske iron-sulfur protein, into complex lll at the final stage of its assembly. In cell culture studies, this subunit has
been considered necessary for supercomplex formation and for maintaining the stability of complex I. Our aim was to assess
the importance of fully assembled complex Ill for supercomplex formation in intact liver tissue. We used our transgenic
mouse model with a homozygous c.232A>G mutation in Bcs1/ leading to decreased expression of BCS1L and progressive
decrease of Rieske iron-sulfur protein in complex I, resulting in hepatopathy. We studied supercomplex formation at
different ages using blue native gel electrophoresis and complex activity using high-resolution respirometry. In isolated liver
mitochondria of young and healthy homozygous mutant mice, we found similar supercomplexes as in wild type. In
homozygotes aged 27-29 days with liver disorder, complex Ill was predominantly a pre-complex lacking Rieske iron-sulfur
protein. However, the main supercomplex was clearly detected and contained complex Ill mainly in the pre-complex form.
Oxygen consumption of complex IV was similar and that of complex | was twofold compared with controls. These
complexes in free form were more abundant in homozygotes than in controls, and the mRNA of complex | subunits were
upregulated. In conclusion, when complex Ill assembly is deficient, the pre-complex without Rieske iron-sulfur protein can
participate with available fully assembled complex Il in supercomplex formation, complex | function is preserved, and
respiratory chain stability is maintained.
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NDUFVI) to finalize respirasome assembly. According to this
model, assembly of holo-CIII and -CIV and their association with
the CI subassembly are two necessary steps for biogenesis of the
respirasome [14].

We addressed the problem of supercomplex assembly  vivo
using a transgenic mouse model, in which a homozygous mutation
(c.232A>G) in the CIII chaperone gene Besl/ causes progressive
CIII deficiency due to decreasing incorporation of the Rieske iron-
sulfur protein (RISP) subunit into CIII [15]. Mutations in the
human BCSIL gene are major causes of disorders with CIII
deficiency [16]. Depending on the mutation site in BCSIL and
additional unknown factors, the resulting phenotypes vary
considerably, the most severe being a lethal neonatal disorder,

Introduction

In intact mitochondria, the respiratory chain consists of
appropriately assembled complexes, which are further arranged
in supercomplexes, also called respirasomes or supramolecular
formations [1]. In mammals, supercomplexes contain mainly
complexes I, III, and IV (CI, CII and CIV) in different
stoichiometric combinations [2,3]. Supercomplexes have function-
al importance, since they stabilize the levels of individual
complexes [4,5], enhance the efficiency of electron transfer
through them by substrate channelling [6] and control the
generation of reactive oxygen species (ROS) [7]. Supercomplex
formation is dependent on the presence of phospholipids [8] and is

facilitated by recently identified supercomplex assembly factors in
yeast [9,10,11] and mammals [12,13].

A recent human cancer cell study assessing respirasome
assembly after reversible inhibition of mitochondrial translation
suggested that CI plays a central role in the formation of
supercomplexes [14]. A CI assembly intermediate would serve as a
scaffold for mcorporating CIII and CIV before addition of the

NADH dehydrogenase module (that includes the subunit
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the GRACILE syndrome (Fellman disease, MIM 603358) [17,18].
Homozygous mice with this mutation (Bes/I/%) are initially
symptom-free but after three weeks of age develop progressive
fatal hepatopathy, mimicking the human disease, in parallel with
decreased incorporation of RISP into CIII and progressive
functional deficiency of CIII [15]. This model presents an
opportunity to investigate the importance of RISP incorporation
into CIII for supercomplex formation.
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We hypothesized that incompletely assembled CIII leads to
disturbed supercomplex formation and functional deficiency in
mitochondria. Thus, we assessed the size and abundance of
supercomplexes and the activities of CI, CIII and CIV as RISP
was progressively depleted from CIII in Bes11% mouse liver
mitochondria.

Materials and Methods

Animal Experiments

Bes1I?/% and control mice [15], more than 99% congenic
C57Bl/6, were maintained on rodent diet (Labfor R34, Lactamin,
Stockholm, Sweden) and water ad libitum in a vivarium with 12 h
light/dark cycle at 22°C. Littermate wild type (BesIF') or
heterozygous (BesTH’%) mice that are phenotypically similar to
wild type [15] were used as controls. Animals were studied at
different ages; young and healthy aged 14 and 16 days (P14, P16),
at P20-22 when the first signs of liver histopathology are found,
and at P26-P29 when clear liver disease appears [15]. The
animals were sacrificed by cervical dislocation, and tissues
collected immediately after death. Tissue samples were used for
isolation of mitochondria or frozen on dry ice and stored at
—80°C until use.

Ethics Statement

Animal experiments were performed with the approval of the
Lund regional animal research committee, Sweden (permits, M
253-08, M 274-10, 31-8265/08) according to national guidelines.
All efforts were taken to ameliorate suffering.

Preparation of Mouse Liver Mitochondria

Mouse liver tissue was collected in ice cold isolation buffer
(320 mM Sucrose, 10 mM Trizma Base, 2 mM EGTA) and
subsequently homogenized in 2 ml isolation buffer supplemented
with 0.1% BSA. Mitochondria were prepared from homogenates
by sequential centrifugation including density purification on 19%
Percoll (GE Healthcare, Amersham, UK) [19,20]. The amount of
mitochondria was measured as protein absorbance at 280 nm on a
Nanodrop (Fisher Scientific, Gothenburg, Sweden). Isolated
mitochondria were either used directly or aliquoted and stored
at —80°C.

Isolation of Respiratory Chain Complexes and

Supercomplexes

Frozen mitochondrial pellets were dissolved in phosphate
buffered saline (PBS) supplemented with Complete Mini Protease
Inhibitor (Roche Diagnostics Scandinavia AB, Stockholm, Swe-
den), and the mitochondrial protein concentrations were measured
using Nanodrop (Fisher Scientific, Gothenburg, Sweden). Mito-
chondria were pelleted for 5 min at 5000 g and subsequently
dissolved to a concentration of 5 mg protein/ml in MB2 buffer
(1.75 M aminocaproic acid, 75 mM Bis-Tris, pH 7.0, 2 mM
EDTA, pH 8.0). Mitochondrial membrane proteins were solubi-
lized by incubation with 0.8% digitonin (Sigma Aldrich, Stock-
holm, Sweden) for 5 min on ice. Samples were centrifuged for
30 min at 13000 g, the supernatant was collected and the protein
concentration measured as before. Finally, SBG (750 mM
aminocaproic acid, 5% Serva Blue G from SERVA Electropho-
resis GmbH, Heidelberg, Germany) was added to a final
concentration of 4.5%. These samples were stored at —80°C for
electrophoresis.
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SDS PAGE, Blue Native Gel Electrophoresis (BNGE), 2-

dimensional BNGE and Western Blot

Five pug mitochondrial membrane proteins were separated by
either 10% SDS PAGE or Blue Native Bis-Tris PAGE 4-16%
(Invitrogen, Carlsbad, CA, USA). For 2-dimensional (2D) BNGE,
strips representing the first dimension BNGLE lanes were cut,
incubated with 1% B-mercaptoethanol and 1% SDS and overlaid
on 10% SDS PAGE [21]. Gels were blotted onto polyvinylidine
difluoride membranes using iblot™ dry equipment (Invitrogen,
Carlsbad, CA, USA) and membranes were blocked in PBS
supplemented with 0.05% Tween 20 and 5% dry milk for
subsequent antibody incubation. Almost all antibodies for
detection of respiratory chain subunits were obtained from
MitoSciences (Eugene, Oregon, USA). The following antibodies
were used: CI subunit NDUFA9 (MS111), CII subunit 30 kDa
(MS203), CIII subunits Rieske (MS305) detecting fully assembled
CIII and Corel (MS303) detecting both precomplex and fully
assembled CIII, CIV subunit I (MS404) and subunit Va (MS409),
and OXPHOS mix (MS603) detecting CI subunit NDUFA9, CII
70 kDa subunit, CIII subunit Core2, CIV subunit IV, and CV
subunit alpha, as well as Porin (MSA05), ETFAa (MS782),
PDHE!la (MSP07) and GAPDH (9484 from Abcam, Cambridge,
UK). We used NDUFV1 antibody (Sigma Aldrich, Stockholm,
Sweden) for detection of fully assembled CI, and BCS1L antibody
from Abnova (Taipei, Taiwan). Primary antibodies were detected
by incubation with HRP-coupled goat anti-mouse secondary
antibody (DAKO Cytomation, P0447). Membranes were devel-
oped with ECL plus (GE Healthcare, Amersham, UK). Exposure
time was 1-10 min.

High Resolution Respirometry

Mitochondrial oxygen consumption in freshly isolated mito-
chondria (protein concentration 250 mg/ml) was measured using
an Oroboros Oxygraph-2k with DatLab 4 software (Oroboros
Instruments, Innsbruck, Austria). Experiments were run at 37°C in
mitochondrial respiration medium MIR05 supplemented stepwise
with substrates and inhibitors for individual complexes, using the
SUIT protocol as previously published [15,22]. Maximal capacity
of the respiratory chain was obtained by titrating with FCCP.
Inhibition of CI by rotenone revealed the contribution of CII, and
finally addition of antimycin-A determined the residual oxygen
consumption (Table 1).

RNA Preparation and Quantitative PCR

RNA was extracted from snap frozen mouse liver tissue using
the RNeasy Mini kit and RNase free DNase set according to the
manufacturer’s recommendations (Qiagen GmbH, Disseldorf,
Germany), and RNA quantity and quality were analyzed with
Nanodrop and gel. For quantification RNA was reverse
transcribed using Tagman® reverse transcription reagents from
Applied Biosystems (Invitrogen, Carlsbad, CA, USA). The
resulting cDNA was used as template in real time reactions on a
StepOne platform using the Tagman® Gene Expression assays
Mm00518001_m1, Mm00841715_ml1, MmO01205647_¢gl, and
Mm03302249_¢gl, Mm00481849_ml, MmO004435911_ml,
Mm00445961_ml1,  MmO00481216_ml,  Mm00504941_ml,
Mm00458272_m1, Mm00432638_m1, Mm01259143_¢gl from
Applied Biosystems (Invitrogen, Carlsbad, CA, USA). Expression
values were normalized against the housckeeping gene Gapdh
(Mm9999915_g1).
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Table 1. Respiratory chain function, measured as oxygen consumption (O, flux/pmol/(s x mg), mean=SEM) with high resolution
respirometry on isolated liver mitochondria using SUIT protocol [19] with sequential addition of substrates, ADP, and inhibitors,
showed significant changes in sick 27-29 days Bcs1/%C animals compared to control animals (Bcs1/%).

Substrate for Inhibitor of

SUIT sequence indicated complex indicated complex Bes11 74 (n=4) Bes1/ % (n=4) p value
Basal respiration 3.8*+4.6 7.5%3.2 0.33
Malate/Pyruvate Cl 24+39 58+7.0 <0.001
ADP 138+23 179+52 0.13
Glutamate cl 175+23 209*51 0.21
Succinate cll 338+78 201+45 0.04
Oligomycin cv 85+13 60.5+4.5 0.05
FCCP* 727£54 488+158 0.02
Rotenone Cl 563*91 379%£102 0.08
Antimycin (@[]} 16.4+9.2 8.0*+1.7 0.14
TMPD** Clv 1590163 1723£312 0.54

**TMPD N,N,N’,N’-tetramethyl-p-phenylenediamine.
doi:10.1371/journal.pone.0086767.t001

Statistics

The data are presented as median (densitometry) or mean *
SEM for respirometry and quantitative PCR. Group differences
were analyzed with t-test using Graph Pad Prism 5 software.
Respirometry results were analyzed with paired t-test as previously
described [15]. P-values <0.05 were considered significant.

Results

Intracellular Localization of RISP in Bcs1/%’® Mice with ClIl
Deficiency

Using SDS PAGE and Western blot, we assessed RISP content
in liver homogenates, hepatocyte cytosols, isolated mitochondria,
and mitochondrial membrane preparations of Bes! ¢ mice aged
26 days (Figure 1). In liver homogenates and isolated mitochon-
dria, RISP content was somewhat diminished compared to control
animals, and in mitochondrial membrane preparations the band
was clearly decreased. The bands representing CIII subunit
Corel, CI subunit NDUFA9, and CIV Subunit Va in isolated
mitochondria and mitochondrial membranes were similar to
controls (Figure 1).

RISP Content as a Function of Age in Bcs1/°C Mice

To elucidate potential secondary effects of RISP deficiency in
CIII on the other respiratory chain complexes, we analyzed
complex subunits in mitochondria with SDS PAGE. In wild type
animals, RISP content was similar at ages P14 to P22. In contrast,
in Bes11°/¢ mice from P16 onward, a progressive decrease of RISP
protein developed (Figure 2A). The decreasing RISP amount in
Bes1°/“ mice was not accompanied by any significant change in
the amount of other complex subunits at age P14 to P22
(Figure 2A).

Supercomplex Formation in Bcs1/C Mice

Next, we investigated whether the progressive decrease of RISP
in CII of Bes/”/“ mice influences the formation of other
respiratory chain complexes and supercomplexes. In isolated liver
mitochondria of mice aged P14 to P22, using BNGE and Western
blot we found one major supercomplex (SC1) composed of CI and
CIII (Figure 2B). Immunoblotting with the late assembly subunit

PLOS ONE | www.plosone.org

*FCCP, Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone, uncoupler showing maximal capacity.

Isolated Mitochondrial
mitochondria membrane

AG G/IG AG GIG
S s e Coref
- W < = NDUFA9

Homogenate Cytosol

kDa A/G GIG AG GIG

- e " o RSP

12 " *. Subunit Va

3% w - o e GAPDH

- o

Figure 1. Mitochondria from Bcs7/°C mice contain less mem-
brane located RISP. Liver tissue from sick Bcs7/°C (G/G) and control
(A/G) mice aged P26 was homogenized and subsequently separated
into cytosolic, mitochondrial and mitochondrial membrane fractions.
These fractions were analyzed by SDS PAGE and Western blot detecting
ClIl subunits Core1 and RISP, Cl subunit NDUFA9, and CIV subunit Va.
Porin and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
used as markers for mitochondrial membrane and cytosol, respectively,
and as loading controls.

doi:10.1371/journal.pone.0086767.9001

30 | e -

NDUFVI1 showed that CI was fully assembled in SC1 in
mitochondria of both Bes//®’“ and wild type mice (Figure 2B).
At ages P14-16, in neither group free CI was found, but from age
P20 free CI appeared in Bes11°7¢ mice.

In control animals using RISP and Corel antibodies, fully
assembled CIII was detected at all ages in SC1 and as a CIII dimer
(CIIIy) that diminished with increasing age (Figure 2B). In mutant
mice, the RISP containing CIII; was less abundant at all ages
diminishing to non-detectable level at P22. This was accompanied
by a subsequent decrease of fully assembled CIII in SCI1
(Figure 2B). No differences were found between the young
homozygous and wild type mice in CIV abundance detected with
subunit Cox1 (Figure 2B).
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Figure 2. Age dependent decrease of RISP in young Bcs7/'S
mice. A. Subunits of all complexes were assessed after SDS PAGE of
isolated mitochondria from Bcs1/%® (G/G) and wild type (A/A) young
mice using the following antibodies; SDHA (Cll), CVa (CV), Core1 (CliI),
NDUFA9 (Cl), RISP (Clll), and Subunit Va (CIV). Pyruvate dehydrogenase
(PDHE1a) and electron-transfer-flavoprotein, alpha polypeptide (ETFAx)
were used as loading controls. B. Supercomplexes in homozygous and
wild type young mice were investigated with BNGE and Western blot
using antibodies detecting subunits NDUFV1, RISP, Core1 and subunit
Cox1 (CIV).

doi:10.1371/journal.pone.0086767.g002

With BNGE we determined the relative sizes of complexes and
supercomplexes in 4 pairs of mice aged 27-28 days, and found
that CIII was present in isolated mitochondria from sick
homozygotes as a dimer with a slightly smaller molecular weight
than in wild type animals (Figure 3A). The CI band was clearly
denser than in controls. In immunoblots using the NDUFVI
subunit, we found abundant fully assembled CI in free form in
mutant homozygotes, whereas free CI was almost undetectable in
control animals (Figure 3A,B). Fully assembled CI was present in
comparable amounts in SC1 in mitochondria from Bes/ /¢ and
control mice (Figure 3B).

PLOS ONE | www.plosone.org
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Figure 3. Low amount of RISP in sick Bcs7/°'® mice is associated
with increased amount of free pre-Clil, and Cl. A. Representative
blue native gel electrophoresis of isolated mitochondria from Bcs1/¢
(G/G) and control (A/A and A/G) mice 27-28 days old. The bands of
respiratory chain complexes and supercomplexes are visualized. B. In
isolated liver mitochondria from Bcs1/%/S, BNGE followed by Western
blot shows the lack of BCS1L. Supercomplex (SC1) composition was
assessed with antibodies against NDUFV1, RISP, Core1 and subunit
Cox1. PDHE1a and ETFAa antibodies were used as loading controls.
doi:10.1371/journal.pone.0086767.g003
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In sick homozygotes, BCSIL protein had almost completely
disappeared (Figure 3B). Previously we have shown decreased
BCSIL content at all ages compared to controls [15]. The missing
BCS1L in homozygotes was accompanied by lack of RISP in CIII,
and accumulation of free pre-complex CIII (pre-ClIIy) without
RISP, shown with the Corel antibody. It detected the complex as
a band with a slightly smaller molecular weight than in control
animals (Figure 3B), also explaining the smaller CIII size in BNGE
(Figure 3A). Completely assembled CIII detected with RISP
antibody was only located in SC1, which was clearly decreased
compared to control animals (Figure 3B). Quantification (n =4 per
group, Figure 3B) by densitometry showed that median RISP
content in SC1 of homozygotes was 65% of controls (p=10.02).
The Corel content in SC1 was similar in both groups. With Cox1
antibody more CIV was found in mutant than in control
mitochondria (Figure 3B).

Supercomplex Composition in Bcs1/%® Mice

To identify possible hidden epitopes, we performed 2D-BNGE
on isolated liver mitochondria to separate the subunits of
complexes and supercomplexes, and identified them with Western
blot.

In control and homozygous mice of all ages, the CI subunit
NDUFA9 was present in two distinct bands (Figure 4) corre-
sponding to SC1 and CI in BNGE with SC1 being the most
prominent in control animals (Figure 4). In SC1 of Bes! 17 less
NDUFA9 and RISP were detected with increasing age, but Corel
was abundant (Figure 4) and as also shown in Figure 3B increased
in free form at P29 compared to controls. CIV was not detected in
SC1.

P20 A/G

sc1
of
cll,

$ v

2D
NDUFA9

[

Core1

Cox1
RISP |

P14 G/G

NDUFA9

Core1
Cox1
RISP

Supercomplex Formation with Pre-Complex IlI

Respiratory Chain Function in Liver Mitochondria of
Bcs11C Mice

Oxygen consumption in isolated mitochondria from P27-29
animals showed that basal respiration was slightly, but not
significantly, elevated in Bes/I/“ compared with controls, and
that respiration increased more after addition of the CI substrates
malate and pyruvate, followed by ADP (Table 1). However,
subsequent addition of the CII substrate succinate resulted in
significantly lower oxygen consumption in Bes7/%’¢ mitochondria
than in wild type (Table 1). The maximal electron transport
capacity assessed by addition of the uncoupler FCCP was lower in
BesII°/C mitochondria compared with controls. CIV oxygen
consumption with CIV substrate TMPD was similar in both
groups (Table 1). Taken together, despite verified diminished CIII
activity in Bes/I%’¢ mitochondria [15], oxygen consumption based
on CI substrates was somewhat increased compared with controls.

Expression of Bcs1/ and Complex Subunits in Bcs1/%¢
Liver

In sick homozygotes (n = 6), mRNA levels of Besi/ and the CIII
subunits Corel (Ugercl), Core2 (Ugere2) and RISP (Ugerfsl) were
comparable to those of control animals (A/A n=6 and A/G
n=2), whereas increased expression was found for CI and CII
subunits (Figure 5).

Discussion

In our homozygous mutant mice, in which RISP incorporation
into CIII decreases with increasing age, the detectable small
amount of fully assembled CIII was bound to SCl. The
respiratory chain supercomplexes contained less RISP protein
but equal amounts of Corel subunit and CI as controls, indicating
that CIII was present as a pre-CIII. This did not affect the SC1
stability. Neither was the function of CI nor that of CIV

P29 A/G

SC
CIv

ciil,

o

Figure 4. The main supercomplex contains Cl, pre-Clll and fully assembled ClIl,. Isolated liver mitochondria from P14, P20 and P29 Bcs1/*/®
(G/G) and control (A/A and A/G) mice were analyzed with two-dimensional run with BNGE/SDS PAGE and Western blot. Antibodies for complexes are
the same as in Figure 2 and 3. The ratio of RISP/Core1 was clearly smaller in P29 homozygotes than in control animals.

doi:10.1371/journal.pone.0086767.9g004
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Figure 5. Increased expression of Cl and Cll subunits in liver tissue of sick Bcs7/°'® animals. The mRNA expression levels of Bcsi/ and
subunits of respiratory chain complexes were analyzed with quantitative PCR. In homozygotes, the subunits of Cl and that of Cll were significantly up-

regulated in comparison with control animals.
doi:10.1371/journal.pone.0086767.g005

compromised. In fact, CI activity was increased as shown in the
respirometry assay using the malate/pyruvate substrate. As a result
of increased protein degradation glutamate is increased in sick
homozygotes [25], which explains why addition of glutamate in
the respirometry did not result in a significant increase in oxygen
consumption. The low response to CII substrate indicates
mitochondrial deficiency in Bes! [/ under functional stress due
to convergent electron input [15]. CI in supercomplexes was fully
assembled as in controls, as shown by the presence of the NADH
dehydrogenase subunit NDUFV1 [23] in SC1. In addition, free
fully assembled CI was abundant in homozygotes.

Our results support those of a study on RISP knockout mouse
fibroblasts [24], in which supercomplex formation was addressed
both when cells were subjected to hypoxic (1% oxygen) and
hyperoxic (20% oxygen, i.e. hyperoxia compared to normal organ
oxygen tension) conditions. Destabilization of respiratory chain
complexes occurred only in association with increased ROS (i.e.
20% oxygen), whereas normal levels of complexes and super-
complexes were present during hypoxic conditions. The authors
concluded that supercomplexes and CI are disassembled under
conditions of elevated ROS both in wild type and RISP knockout
cells. In a metabolomics study of Bes! /¢ mouse liver tissue, we
found slightly increased indicators of ROS only at end-stage
disease, P29-P30 [25]. In the present study there was no

PLOS ONE | www.plosone.org

disassembly of supercomplexes in the P27-29 animals, suggesting
that ROS probably had a minor effect on supercomplex assembly.
A recent study on interaction between supercomplexes and ROS
showed that supercomplex formation in fact may limit production
of ROS [7].

The effect of deficient CIII assembly on supercomplex
formation has been studied in a few other models. In mitochondria
of human skeletal muscle cells with mutations in the mitochondrial
encoded cytochrome b subunit of CIII, the severely but not
completely reduced CIII resulted in prevention of supercomplex
formation and decreased stability of CI [4]. In Besi%7C mice,
precomplex of CIII was abundant and some correctly assembled
CIII was present, which may account for the absence of such
profound changes.

In a cultured tumor cell model, where all complexes with
mitochondrial encoded subunits were down regulated with
doxycycline, the effects of individual complexes were investigated
based on mitochondrial DNA recovery after the treatment [14].
The results suggested that a CI assembly intermediate incorporates
all CIII and CIV subunits and when these complexes are fully
assembled the NADH dehydrogenase module is added to CI as a
final step [14]. Both CIII; and CIV were present in free form but
fully assembled CI was only detected in the respirasome. In line
with that, we found in wild type animals fully assembled CI mainly

January 2014 | Volume 9 | Issue 1 | e86767



in supercomplexes. In mutant homozygotes, however, fully
assembled CI including NDUFV1 was present both in free form
and in supercomplexes together with pre-CIII and fully assembled
CIII. Whether free CI is a result of increased release from the
supercomplex or increased assembly of CI without incorporation
into respirasomes with complexes III and IV cannot be concluded
from this study. In any case, the deficient CIII assembly
compromised neither CI stability nor function in Bes//%/S mice.
On the contrary, there was an increased expression of CI subunits
and increased CI activity revealed by CI oxygen consumption in
respirometry. Thus in our study CI was not dependent on fully
assembled CIII, as reported in doxycycline-treated cells [14]. The
difference may be ascribed to the different models used. In the cell
culture model, doxycycline depletes through inhibition of trans-
lation all mitochondrial encoded proteins including CY'T'B, which
has been proposed as the nucleating unit for CIII assembly in yeast
[26]. Furthermore, doxycycline treatment causes a partial loss (ca
40%) of mitochondrial DNA [14]. As absence of mitochondrial
DNA is associated with down regulation of nuclear encoded
subunits of CIII [27], doxycycline administration probably caused
many cellular changes including Corel and RISP down regulation
in addition to the desired ones [14]. In our i vivo model, the BesI!
mutation results in diminished levels of BGSIL protein in all
tissues [15]. This progressively impairs incorporation of RISP
protein into CIII leading to an accumulation of pre-CIII that can
subsequently associate with other complexes to form super-
complexes. The impairment of BCSIL function and diminished
RISP amount did not result in overexpression of Bes// mRNA, nor
of RISP or other CIII subunits.

Our data, like those in hypoxic RISP knockout cells [24],
indicate that pre-CIII; can interact with CI in a pre-CIIIy/CI
supercomplex. This interaction might be stabilized by CIV,
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In conclusion, our study on supercomplexes in Bes/(®/C
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tissue can be modified depending on CIII assembly deficit. A
recent publication showed in detail the dynamics of supercomplex
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supported by the finding of a preserved respiratory chain function
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unclear and warrants further study.
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