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Grating-based phase-contrast computed tomography (PCCT) is a promising imaging tool on the
horizon for pre-clinical and clinical applications. Until now PCCT has been plagued by strong artifacts
when dense materials like bones are present. In this paper, we present a new statistical iterative
reconstruction algorithm which overcomes this limitation. It makes use of the fact that an X-ray
interferometer provides a conventional absorption as well as a dark-field signal in addition to the
phase-contrast signal. The method is based on a statistical iterative reconstruction algorithm utilizing
maximume-a-posteriori principles and integrating the statistical properties of the raw data as well

as information of dense objects gained from the absorption signal. Reconstruction of a pre-clinical
mouse scan illustrates that artifacts caused by bones are significantly reduced and image quality is
improved when employing our approach. Especially small structures, which are usually lost because
of streaks, are recovered in our results. In comparison with the current state-of-the-art algorithms
our approach provides significantly improved image quality with respect to quantitative and
qualitative results. In summary, we expect that our new statistical iterative reconstruction method to
increase the general usability of PCCT imaging for medical diagnosis apart from applications focused
solely on soft tissue visualization.

The limited ability to record the full dynamic range of a signal is a constant concern in imaging. In
photography for instance, the camera sensor is most often unable to capture the full contrast of a scene,
forcing the photographer to find a compromise between underexposed and saturated regions. Extension
of the dynamic range can be achieved, among other ways, through a non-linear transformation of the sig-
nal or by combining multiple photographs taken with different exposure times. The non-linear approach
typically involves important degradation of the signal-to-noise ratio, while the multiple-capture approach
can lead to difficulties caused by subject motion or imperfect registration of the individual snapshots.
Difficulties related to limited dynamic range occur, in one form or the other, in all other branches
of imaging. Conventional X-ray radiography relies on the attenuation of X-rays to produce contrast.
Thanks to the negative exponential response of the attenuation with the integrated thickness of an
object or a subject (known as the Beer-Lambert law), the signal of interest is naturally “compressed”
non-linearly in transmission values that range from 100% to 0%. In this case, problems arise when
highly absorbing elements - typically metallic implants in medical applications -- cause such high absorp-
tion that the transmitted X-rays are reduced to an undetectable level. When radiographs are combined
for three-dimensional imaging, such implants usually lead to streak artifacts in computed tomographic
reconstructions, an effect commonly termed “metal artifacts” in the literature'-®. Similarly, sufficient
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Figure 1. Standard FBP tomographic reconstructions from the three signals ((A) absorption, (B) phase-
contrast, (C) dark-field) available from a grating interferometry acquisition. These three different signals
are measured and extracted simultaneously and are therefore naturally perfectly registered. The absorption
signal allows for an accurate delineation of the bone, but soft-tissue contrast is limited. The phase-contrast
reconstruction exhibits strong soft-tissue contrast but problems arise in the vicinity of high density objects.
Different information is uncovered with the dark-field reconstruction (small-angle scattering).

contrast in soft tissue is not easily achieved with conventional computed tomography (CT) because of
their weak absorption relative to bone of small variations of the attenuation coefficients between the
elements that constitute soft tissue.

Higher soft-tissue contrast can be obtained with phase sensitive imaging methods’. These methods
make use of the phase shift incurred to X-rays, instead of their absorption, as they pass through mat-
ter. Phase-contrast imaging leads to a soft-tissue contrast that is significantly higher than in absorption
imaging®!? and is able to deliver additional and complementary information'*!*, owing to the fact that
the variations in refraction between different soft-tissue materials are by orders of magnitude larger than
those of the attenuation coefficients'>!®. However, this high sensitivity to small density variations leads to
a problem similar to the effects that metal has in conventional CT, this time manifesting itself as phase
wrapping. Phase wrapping occurs in all phase-contrast techniques, as the quantity that is measured—the
phase shift—is defined on the unit circle, i.e. in the interval [— m,7]. If the phase shift of the X-rays is
outside this interval, the value is wrapped back into this interval and thus leads to no longer uniquely
defined measurements. Such a phenomenon usually happens when the X-rays are passing through dense
objects, such as bones, and produces artifacts similar to those caused by metal in conventional CT,
termed ‘bone artifacts.

One of the most successful X-ray phase-contrast imaging techniques developed over the last decade
is based on grating interferometry'’-?’. Grating interferometry imaging can work with standard labora-
tory sources®'?2, possibly in compact setups?’, making it especially promising for clinical application. In
addition to the phase-contrast signal, the technique provides a conventional absorption image, as well as
a dark-field signal, which maps small angle scattering inside an object**-?” (see fig. 1). These three dif-
ferent signals are measured and extracted simultaneously and are therefore naturally perfectly registered.

Initial investigations have illustrated the high potential of iterative as well as advanced reconstruction
but also the need for specific algorithms which are designed for PCCT*?. In this letter we show how
it is possible to extend the effective dynamic range of a reconstructed tomographic volume through a
combination of the three signals provided by a grating interferometry imaging system. Our approach
eliminates most of the artifacts originating from dense objects. The soft-tissue regions, to which the
phase-contrast signal is sensitive, are combined with information on the location of the dense parts,
e.g. bones, taken from the absorption signal. The combination is described through a statistical model,
modifying the statistical uncertainties which are primarily obtained from the dark-field signal and it is
implemented within our in-house developed statistical iterative reconstruction framework.

We demonstrate the capabilities of this new statistical iterative reconstruction (SIR) algorithm with
a study of preclinical relevance. The example is the abdominal region of a mouse with bones measured
with synchrotron radiation. The results gained with the new algorithm are compared to those obtained
with a conventional analytical reconstruction (filtered backprojection (FBP)) and a standard iterative
reconstruction (IR) and show significant improvements in image quality and a strong reduction of the
number and intensity of bone artifacts.

The Problem

We identified the following three primary causes that lead to the appearance of bone artifacts:
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1. The strong absorption in dense materials leads to photon starvation and loss of information.

2. Small-angle scattering inside dense, porous materials causes a loss of coherence and thus limits the
ability to reliably determine the phase shift.

3. The measurement of a phase shift is intrinsically restricted to the interval [—m,7]. If at any posi-
tion the gradient exceeds this range it will be wrapped back into this interval. This phase wrapping
usually occurs at strong edges, where refraction and thus the differential phase shift is especially
high, e.g. at the boundary between soft tissue and bones. In combination with 1., measurements
close to the boundaries of the phase gradient interval can become wrapped due to higher noise
fluctuations at positions where the count rate is lowered by strong absorption. This phenomenon
is called statistical phase wrapping®®3!.

All of the above effects lead to a phase signal that is no longer uniquely defined at certain positions
and thus does not represent reliable information for the tomographic reconstruction.

Results

Unlike the case of reduction of metal artifacts in conventional CT, PCCT can make use of the three
signals (phase-contrast, absorption, dark-field), which are naturally perfectly registered, to overcome the
limited dynamic range problem occurring with dense objects.

Description of the algorithm. The first part of the reconstruction scheme is the signal extraction
from the raw interferometer projections. This task is done in a weighted least-squares approach that fits a
periodic function onto the stepping curves. The weights are taken directly from the measured intensities
in form of the inverse variance of the intensity.

This information is subsequently utilized in the SIR algorithm, which is formulated as the minimiza-
tion of an objective function (see equation 1 in Methods). The first part of this function is the so-called
data-fidelity term, that quantifies how well the reconstructed image fits to the measured data. It takes the
form of a weighted least-squares term, containing the difference between the measured DPC projections
and a forward model of the reconstruction problem—a projection operator and a derivative to account
for the differential input data. This difference is weighted with the variances calculated during the signal
extraction step, to control each individual projection pixel’s influence on the final reconstruction. Pixels
with a high variance are considered to contain less reliable information and their influence on the data
fidelity is reduced accordingly.

At this point the formulation of the algorithm is very general. Additional steps have to be taken to
reduce phase wrapping artifacts caused by dense objects. We address the limited dynamic range problem
by restricting the influence of presumably phase-wrapped pixels on the reconstruction. The locations of
pixels with a high probability of being wrapped have to be determined. This is accomplished by making
use of the absorption signal, precisely delineating bones or other dense objects. The following steps are
performed and illustrated in Fig. 2:

reconstruction of absorption signal (Fig. 2(A))

. dense object / bone segmentation via thresholding method (Fig. 2(B))
calculation of 3D gradient magnitude of segmented volume (Fig. 2(C))
. forward projection of gradient volume

combining gradient projections with statistical weights (Fig. 2(D))

G W

By thresholding the absorption reconstruction (step 2), the bones including their inner structures are
preserved. The gradient calculation (step 3) is performed to determine the location of tissue-bone bound-
aries. At these boundaries the phase gradient will be especially large. A forward projection operation of
these boundaries is then used to pinpoint the location of likely phase-wrapped pixels in projection space.

Reconstructing with the data fidelity alone does not provide adequate results, because CT or PCCT
reconstruction is an ill-posed problem resulting in an unstable solution in the presence of noise. A
stable solution is obtained by regularizing or constraining the objective function. Most regularization
terms are based on some a-prior knowledge like an expected smoothness of connected regions. A simple
quadratic regularization, for example, is defined as the sum of quadratic differences between one voxel
and its nearest neighbors. The result is the penalty that is added to the objective function. In the optimi-
zation procedure this will lead to reduced value differences between neighboring voxels and thus helps
to keep the resulting volume smooth. It should be noted that the expected reduced differences consti-
tute a known prior of the object to be reconstructed. The same principle is applied in edge-preserving
regularization, where the quadratic function is replaced with a Huber potential function on the voxel
differences. This piecewise-defined function is linear for differences above a choosable threshold and
quadratic below to further smooth out already flat regions. In this work, the Huber term is applied with
a mask to restrict its effect only to certain parts of the volume. For the treatment of the bone regions, a
novel regularization term was designed. It is defined as the quadratic difference between a voxel of the
phase reconstruction and the corresponding voxel of the absorption reconstruction. If a constant factor
for bone material is assumed, this term forces the phase values corresponding to bone material towards
realistic values, whereas before they were unreliable due to dynamic range problem in the projection
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Figure 2. Illustration of the steps necessary for creating the mask m for modification of the statistical
weights in the cost function. This modification will reduce the effects of phase-wrapping at the

transit regions between soft-tissue and dense objects. The mask is initially created from an absorption
reconstruction (A), where dense regions—the bones—are segmented using a threshold method. In panel (B)
an enlarged view of the segmented region marked with the red box in (A). The threshold was chosen in a
way to maintain the full details of the bone. Besides being used in the creation of the weight modification,
this segmented image is also directly used as a mask for the bone regularization and its inverse as a mask for
the Huber regularization. To gain knowledge on the bone to soft-tissue boundaries, the gradient magnitude
of the segmented image is calculated, as shown in panel (C). Finally, the gradient image is forward projected,
normalized to the interval [0,1] and inverted to create the weight modification m. The result of multiplying
the modification onto the statistical weights is shown in panel (D).

data, and effectively couples both signals. A similar regularizer has been used in propagation-based phase
contrast imaging®?. Just as the Huber term, the bone regularization contains a mask to restrict its effect
to parts of the volume.

Experimental verification. An ex-vivo phase-contrast CT of a formalin-fixed mouse was measured
with a grating interferometer installed at beamline ID19 of the European Synchrotron Radiation Facility
(ESRF). More information can be found in the Materials and Methods section and in*. The dataset was
subsequently reconstructed using a standard PCCT FBP?, IR and our SIR algorithm.

The statistical weights resulting from the least-squares processing step were modified using the pro-
cedure as explained in the previous section and are illustrated in fig. 2, using the absorption signal
retrieved from the same measurement. The quadratic regularization term was applied to the complete
volume, whereas the Huber and bone regularization were only employed at complementary regions: a
mask (Fig. 2B) was used to determine the non-overlapping regions (bone vs. soft-tissue) where the Huber
or bone regularization are employed. More details on the reconstruction are given in the Methods.

Figure 3 presents the results of reconstructions performed using FBP (left column), standard IR (mid-
dle column) and the proposed SIR algorithm (right column) in the form of axial slices (A, B, C), as well
as sagittal (D, E, F) and coronal (G, H, I) cuts through the center of the volume. All six images are win-
dowed in the same range of 6=[4.067 x 1077,5.067 X 10~7]. As already observed by other investigators,
the FBP as well as the standard IR reconstruction suffer from strong streaking artifacts and shadowing
around the bone in axial view and a noise-like texture in coronal view, obstructing most of the fine
anatomical details. Results from our algorithm show that intensity and extension of bone artifacts are
drastically reduced, and that the image quality is significantly improved. This becomes most apparent in
the sagittal and coronal views, where the images appear significantly clearer and almost free of artifacts.
Figure 4 shows an enlarged view of the part of the sagittal cut marked with a red dashed rectangle in
fig. 3(D), and clearly illustrates the amount of artifact reduction and detail visibility with SIR (C) com-
pared to the standard FBP (A) and IR (B).

In order to quantify the reduction of artifacts, the bottom of fig. 3 shows a line plot along the red
dashed circle in panel A. The 0° point is marked with a vertical bar on the circle and the data are
collected in clockwise order. The gray line corresponds to the FBP, the blue line to the IR and the red
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Figure 3. Results of reconstructions from an ex-vivo mouse X-ray phase-contrast CT measurement using
FBP (left column), standard IR (middle column) and the proposed sSIR algorithm (right column) in the
form of axial slices (A, B, C), as well as sagittal (D, E, F) and coronal (G, H, I) cuts through the center of
the volume. When comparing the FBP results with results from our proposed algorithm, one can observe
that the strong streaking artifacts and the shadowing around the bone in the FBP (A) as well as in the IR
reconstruction (B) are clearly reduced in (C). In the sagittal view (D) the streaking artifacts lead to vertical
lines which are strongest in the vicinity of bones. Even relatively far away from the bone the artifacts affect
the image quality, as visible in the coronal view (G). Both of these effects obstruct the underlying small
details, which become much clearer and easier to detect in our SIR reconstructions . A quantitative analysis
of the streak reduction is shown on the bottom in the form of a line plot along the red, dashed circle in
panel (A). This plot demonstrates the amount of artifact reduction possible with our method compared

to FBP (gray line) and IR (blue line), while retaining the underlying tissue structure. In addition, several
regions-of-interest are placed (green rectangles). The ROI results are given in Table 1.

line to the proposed SIR algorithm results. This plot shows the capability of the proposed algorithm
to reduce streaks, while maintaining the underlying details. Examples for these details can be seen at
around 135" and 220", where both curves lie on top of each other, whereas in the other parts of the plot
the FBP curve contains many more and stronger variations. In addition, the standard deviation of several
regions-of-interest (ROI) were measured. The ROIs are marked with green rectangles in the left column
images of fig. 3. The results are summarized in Table 1 and illustrate that a significant reduction of noise
by factors of 1.5-2 is achieved.

Discussion

In this study we presented a new statistical iterative reconstruction algorithm specially designed for
PCCT. When employing our algorithm on experimen data a reduction of bone artifacts and a signifi-
cantly improved image quality can be reported. By the incorporation of all three complementary signals
our reconstruction approach enables one to overcome the limited dynamic range problem. This implies
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Figure 4. Enlarged view of the sagittal cut from fig. 3(D-F), which is marked with the red dashed rectangle.
The region is in the vicinity of bones and demonstrates in more detail the drastic reduction of artifacts
overlaying soft-tissue structures when using the proposed algorithm (C) compared to FBP (A) and IR (B).

axial (ROI 1) 5.01-107° 4.22-107° 3.78 - 1077 133 1.12
axial (ROI 2) 227107 1.85-107° 1.56 - 10~° 1.46 1.39
sagittal (ROI 3) 242-107° 2.07 - 107 1.16 - 10~° 2.09 1.78

Table 1. Results of the standard deviation analysis of several regions of interest in fig. 3

that PCCT significantly benefits from our statistical iterative reconstruction algorithm since a wider
range of pre-clinical samples can be successfully imaged.

Future work will focus on demonstrations that our algorithm performs well in other sub-optimal
imaging scenarios where analytical reconstruction algorithms tend to provide poor image quality. With
the experimental data used in this study, our algorithm provided robust and sound results, even consid-
ering the fact that both the X-ray energy and the chosen Talbot distance contributed to stronger streak
artifacts. Low energy leads to an increased attenuation, which yields information loss. The high Talbot
order—that is, a large distance between the phase and absorption grating—produces large transverse
shifts of the interference pattern and thus increased the probability of phase wrapping. Proving the
possibility of bone artifact reduction in such a difficult measurement setting demonstrates the poten-
tials of our approach in the context of translation to laboratory standard X-ray tubes. The translation
to standard X-ray tubes marks an important step toward a successful clinical translation. Furthermore,
current clinical standards, for example with respect to radiation exposure and acquisition speed, need
to be maintained for a future clinical system. At the same time, the image quality of clinical PCCT FBP
reconstructions will be significantly below an acceptable diagnostic demand, especially when bone is
present. Thus it is absolutely essential to use an algorithmic solution like the one presented in this work
as foundation to accelerate the clinical translation of PCCT. When employed in the clinical arena our
applicability to handle and reduce bone artefacts will be of highest importance for any clinical indication.

In summary, we have shown on experimental data that the presented statistical iterative reconstruction
algorithm increases the general usability of PCCT imaging for pre-clinical studies apart from applica-
tions focused solely on soft tissue visualization. This is a central milestone in transforming grating-based
phase-contrast X-ray tomography from an experimental status to a robust and highly usable tool in
small-animal imaging. The results of our investigation suggests a possible future clinical translation of
PCCT.

Methods

Phase-Contrast and Absorption Computed Tomography. The principle of grating-based PCCT
and its projection acquisition is explained in detail in®'®!%. The X-rays pass through the object and are
attenuated and refracted. The refraction causes a change in the direction of the X-ray path, which can
be measured indirectly using an interferometer. The phase-contrast and the absorption-contrast images
are acquired simultaneously with this method. The experimental arrangement consists of a phase grating
G1 and an analyser grating G2. The image contrast itself is formed via the combined effect of the two
gratings. The second grating (G1) acts as a phase mask and imprints periodic phase modulations onto
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the incoming wave field. Through the Talbot effect, the phase modulation is transformed into an intensity
modulation in the plane of G2. When one of the gratings is scanned along the transverse direction x,,
the signal I(m,n) in each pixel (m,n) in the detector plane oscillates as function of x,**:

I(mm)(xg) = ay(m, n) + a,(m, n)cos (kxg + ¢, (m, n)), (1)

where a; are the amplitude coefficients, ¢; the corresponding phase coefficients, and k the period of G2.
Absorption, phase-contrast, and dark-field images can be obtained as the zero- and first-order compo-
nents of the Fourier transform, equivalent to fitting the obtained intensity curves I, ,(x,) to a cosine
function or performing a least-square fit of cosine functions. A set of reference images (with superscript
r) of the empty beam is acquired for normalization of the sample images so that the final images of
absorption, phase, and dark-field are calculated by:

N

s s r
ag s r Vv ) aj
a, = —, = — , V=8 = —) =,
0 a(; ¢1 ¢1 ¢1 v’ agzajr (2)

Experiment details. The abdominal region of a mouse cadaver—fixed in formalin and placed in
a plastic container—was measured in a two-grating interferometer installed at beamline ID19 of the
European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The interferometer consisted of a
phase grating with period and an absorption grating with period and an inter-grating distance of . This
distance corresponds to the 9% fractional Talbot order. The measurement was performed with mono-
chromatic X-rays with an energy of 23 keV. The dataset was recorded in 902 projection views with four
stepping images each. All images were recorded with a FReLoN camera, a scintillator lens-coupled CCD,
with an effective pixel size of and image dimensions of 1453 x 433 pixels. Since this detector type suffers
from spatial crosstalk, the raw projection images were deconvolved before the signal extraction step to
improve spatial resolution. As the point spread function of the detector system was not exactly known,
it was estimated as a two-dimensional Gaussian function with o,,,=1 pixel. To prevent phase wrapping
at the edges of the container during the measurement, it was placed in a water bath that extended over
the field of view.

Reconstruction parameters. The reconstruction shown in the left column of fig. 3 was done with
a standard filtered backprojection algorithm using a Hilbert filter to handle differential phase-contrast
data as described in?2. The reconstruction in the right column of fig. 3 was performed with our presented
statistical iterative algorithm. It consists of optimizing the objective function

2
sy — ZaxAg,ij + AqRq(p) + AuRp(p: ) + AsRp(p: pys 05/ 1)
j

L(p) =3

x,0 (Uf)z

where s is the measured projection data, 0,4 is the differential forward projection operator, p corre-
sponds to the reconstructed quantity, o> represents the variance of the measured data and AR are the
regularization terms with Q, H and B standing for quadratic, Huber, and bone, respectively. In the last
term, the electron density p is coupled to the absorption density p, through a proportionality constant
Op / g based on the a model for the X-ray index of refraction of bone material. Such a proportionality
constant has been used in similar previous experiment.

The optimization was done using a standard nonlinear conjugate gradient algorithm. The regulari-
zation strength parameters, as well as the threshold of the Huber term were chosen empirically, such
that the result was visually and quantitatively most accurate. The results of both reconstructions were
converted to units of the refractive index decrement 6 by

by

b=—"p+56 ,
rd P H,0,23keV (4)

3)

where the addition of the refractive index decrement of water takes into account the offset created by
the water bath.
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