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Randomly Punctured LDPC Codes
David G. M. Mitchell, Member, IEEE, Michael Lentmaier, Senior Member, IEEE, Ali E. Pusane, Member, IEEE,

and Daniel J. Costello, Jr., Life Fellow, IEEE

Abstract—In this paper, we present a random puncturing
analysis of low-density parity-check (LDPC) code ensembles.
We derive a simple analytic expression for the iterative belief
propagation (BP) decoding threshold of a randomly punctured
LDPC code ensemble on the binary erasure channel (BEC) and
show that, with respect to the BP threshold, the strength and
suitability of an LDPC code ensemble for random puncturing is
completely determined by a single constant that depends only on
the rate and the BP threshold of the mother code ensemble. We
then provide an efficient way to accurately predict BP thresholds
of randomly punctured LDPC code ensembles on the binary-
input additive white Gaussian noise channel (BI-AWGNC), given
only the BP threshold of the mother code ensemble on the
BEC and the design rate, and we show how the prediction
can be improved with knowledge of the BI-AWGNC threshold.
We also perform an asymptotic minimum distance analysis of
randomly punctured code ensembles and present simulation
results that confirm the robust decoding performance promised
by the asymptotic results. Protograph-based LDPC block code
and spatially coupled LDPC code ensembles are used throughout
as examples to demonstrate the results.

Index Terms—Low-density parity-check (LDPC) codes, spa-
tially coupled codes, rate-compatible codes, punctured codes,
iterative decoding, belief propagation, decoding thresholds, bi-
nary erasure channel, additive white Gaussian noise channel,
minimum distance.

I. INTRODUCTION

IT is often desirable in applications that experience changing
channel conditions to be able to employ a variety of code

rates. Coding schemes that can adapt to the changing con-
ditions of time-varying channels while allowing transceivers
to employ the same encoder/decoder pair are known as rate-
compatible codes [1]. Rate-compatible low-density parity-
check (LDPC) codes have been extensively studied in the
literature using code modifying techniques such as information
nulling or shortening [2], extending [3]-[6], puncturing [7]-
[14], and combining [15].

In a rate-compatible puncturing scheme [1], the transmitter
punctures coded symbols and, as a result of having fewer
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transmitted code symbols, the code rate is increased. It is
assumed that the receiver knows the positions of the punctured
symbols, so that both the punctured and transmitted symbols
can be estimated during decoding. Since the decoder for
the mother code is used to decode the punctured codes, a
variety of code rates can be achieved using the same decoding
architecture by puncturing different numbers of symbols.

In this paper, we consider punctured LDPC codes, where the
punctured bits are selected randomly and uniformly over the
complete codeword. We derive a simple analytic expression
for the iterative belief propagation (BP) decoding threshold of
a randomly punctured LDPC code ensemble on the binary
erasure channel (BEC) and show that, with respect to the
BP decoding threshold, the strength and suitability of an
LDPC code ensemble for random puncturing over the BEC
is completely determined by a single constant θ ≥ 1 that
depends only on the rate and BP threshold of the mother code
ensemble. If θ = 1, the punctured ensembles are capacity
achieving for all higher rates, and if θ is close to 1, the
punctured ensemble thresholds are close to capacity for all
higher rates up to 1/θ.

We extend the BEC results to the binary-input additive
white Gaussian noise channel (BI-AWGNC) and show that
analogous results can be obtained. In particular, we develop
a relationship between the BP thresholds on the two channels
and provide an efficient way to predict the thresholds of punc-
tured LDPC code ensembles on the BI-AWGNC given only
the BP threshold of the mother code ensemble on the BEC and
the code design rate, and we show how the prediction can be
improved with knowledge of the BI-AWGNC threshold. The
predicted thresholds are shown to be accurate by comparing
them with values calculated by discretized density evolution
for a variety of code ensembles and puncturing fractions.
Throughout the paper, we use protograph-based LDPC block
code (LDPC-BC) [16], [17] and spatially coupled LDPC
(SC-LDPC) code [18] ensembles, although the approach is
valid for general LDPC-BC and SC-LDPC code ensembles.
We also perform an asymptotic minimum distance analysis
and show that, for asymptotically good LDPC-BC and SC-
LDPC mother code ensembles, the randomly punctured code
ensembles are also asymptotically good. Moreover, we show
that, even though the minimum distance growth rates decrease
as the puncturing fraction increases, the gap to the Gilbert-
Varshamov bound actually decreases with puncturing. Finally,
computer simulations are used to confirm the robust decoding
performance promised by the asymptotic results.

The paper provides a unified and comprehensive study of
random puncturing of LDPC code ensembles, extending the
BEC analysis of [19] and an introductory numerical study for
the BI-AWGNC [20]. Compared to [19] and [20], we consider
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(J,K)-regular LDPC-BC and SC-LDPC code ensembles of
varying densities and rates as well as irregular code ensembles.
We also provide an analytical expression for the BP decoding
threshold of an arbitrary randomly punctured LDPC code
ensemble on the BEC and show that this result is, in fact,
independent of the decoding algorithm or the structure of the
mother code. For example, we show that a similar argument
can be made for the threshold of the maximum a posteriori
probability (MAP) decoder. In this case, the derivation is the
same and simply leads to a different θ. We further show
that, even though the single BEC constant θ can be used to
approximate thresholds on the BI-AWGNC, the approximation
can be improved by combining the BEC constant and a
BI-AWGNC constant, providing an accurate prediction of
thresholds for all achievable rates.

The paper is structured as follows: In Section II, we describe
the construction of protograph-based LDPC-BC and SC-LDPC
code ensembles. In Section III we present an analysis of the
thresholds of randomly punctured LDPC code ensembles on
the BEC, and in Section IV we extend the analysis to the BI-
AWGNC. In Section V, we perform an asymptotic minimum
distance analysis of punctured LDPC code ensembles, and
computer simulation results are presented in Section VI.
Conclusions are provided in Section VII. We remark that the
purpose of this paper is to provide a comprehensive analysis of
randomly punctured LDPC codes, not to compare various rate-
compatible code constructions or to propose optimal punctur-
ing patterns.

II. BACKGROUND: PROTOGRAPH-BASED LDPC CODES

In this section, we describe the LDPC code ensembles used
throughout the paper. We choose to consider LDPC codes
based on a protograph [16] to demonstrate our results, since
they have been shown in the literature to have many desirable
qualities, such as fast encoding/decoding, low iterative decod-
ing thresholds, and linear minimum distance growth (see, for
example, [17], and the references therein).

A. Protograph-based LDPC-BCs

A protograph [16] with design rate R = 1 − nc/nv is
a small bipartite graph that connects a set of nv variable
nodes to a set of nc check nodes by a set of edges. The
protograph can be represented by a parity-check or base
biadjacency matrix B, where Bx,y is taken to be the number
of edges connecting variable node vy to check node cx.
The parity-check matrix H of a protograph-based LDPC-
BC can be created by replacing each non-zero entry in B
by a sum of Bx,y non-overlapping permutation matrices of
size M × M and each zero entry by the M × M all-zero
matrix. It is an important feature of this construction that
each derived code inherits the degree distribution and graph
neighborhood structure of the protograph. The ensemble of
protograph-based LDPC-BCs with block length n = Mnv is
defined by the set of matrices H that can be derived from a
given protograph using all possible combinations of M ×M
permutation matrices. We denote the (J,K)-regular LDPC-
BC ensemble with design rate R = 1 − J/K defined by the

= variable node = check node

Fig. 1: Protographs associated with (a) the (3, 6)-regular LDPC-BC ensemble
B3,6 and (b) the WiMAX IRA LDPC-BC ensemble.

all-ones base matrix B of size J×K as BJ,K . The protograph
representing B3,6 with R = 1/2 is shown in Fig. 1(a).
For demonstration purposes, we also consider the protograph
(shown in Fig. 1(b)) associated with the R = 1/2 irregular-
repeat-accumulate (IRA) LDPC-BC that was specified in the
WiMAX standard [21]. This irregular protograph has variable
nodes with degrees ranging from 2 to 6 and check nodes
with degrees 6 and 7. Puncturing of LDPC-BCs has been
investigated extensively in the literature [7]-[14] and good
rate-compatible protograph-based codes and code ensembles
have been constructed (see, e.g., [5] in the context of graph
extending and [17] using puncturing).

B. Protograph-based SC-LDPC Codes

SC-LDPC codes are constructed by coupling together a
series of L disjoint, or uncoupled, Tanner graphs into a single
coupled chain, and they can be viewed as a type of LDPC
convolutional code (LDPC-CC) [22], since spatial coupling is
equivalent to introducing memory into the encoding process.
SC-LDPC codes have been shown to combine excellent itera-
tive decoding thresholds [23], [24], [18] and good asymptotic
minimum distance and trapping set properties [18], [25], [26].
Moreover, it has been proven analytically for general mem-
oryless binary-input symmetric-output (MBS) channels that
the BP decoding thresholds of a class of (J,K)-regular SC-
LDPC code ensembles achieve the MAP decoding thresholds
of the underlying (J,K)-regular LDPC block code ensembles
as L → ∞, a phenomenon termed threshold saturation [24].
Rate-compatible LDPC-CCs were shown to be capable of
achieving the capacity of the BEC using graph extending in
[6]. An algorithm to select particular puncturing patterns to
construct robust rate-compatible LDPC-CCs was presented in
[27].

The base matrix of an SC-LDPC code ensemble with
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Ensemble Component base matrices

C3,4(L) B0 =

 1 1 0 0
0 1 1 0
0 0 1 1

 ,B1 =

 0 0 1 1
1 0 0 1
1 1 0 0


C3,6(L) B0 =

[
2 1

]
,B1 =

[
1 2

]
C3,6,B(L) B0 = B1 = B2 =

[
1 1

]
C4,8(L) B0 = B1 =

[
1 1

]
,B2 =

[
2 2

]
C5,10(L) B0 =

[
1 1

]
,B1 =

[
4 4

]
C3,9(L) B0 =

[
1 1 1

]
,B1 =

[
2 2 2

]
TABLE I: SC-LDPC code ensemble component base matrices.

0 1 2 ... L-1

0 1 2 ...

0

(c)

L-1

Fig. 2: Tanner graphs associated with (a) a (3, 6)-regular LDPC-BC proto-
graph, (b) a chain of L uncoupled (3, 6)-regular LDPC-BC protographs, and
(c) a chain of L spatially coupled (3, 6)-regular LDPC-BC protographs with
coupling width w = 2.

coupling length L is

B[0,L−1] =



B0

B1 B0... B1
. . .

Bw

...
. . . B0

Bw B1. . .
...

Bw


(L+w)bc×Lbv

, (1)

where w denotes the coupling width and the bc×bv component
base matrices Bi, i = 0, 1, . . . , w, represent the edge connec-
tions from the bv variable nodes at time t to the bc check
nodes at time t+ i. An ensemble of SC-LDPC codes can then
be formed from B[0,L−1] using the protograph construction
method described above. The design rate of the ensemble of
SC-LDPC codes is

RL = 1− (L+ w)bc
Lbv

. (2)

The ensembles and their component base matrices used in
this paper are given in Table I. Fig. 2 illustrates the “edge-
spreading” construction [18] of the protograph representing
the SC-LDPC code ensemble C3,6,B(L).

III. THRESHOLDS OF RANDOMLY PUNCTURED LDPC
CODE ENSEMBLES ON THE BEC

In this section, we consider the transmission of randomly
punctured LDPC codes over the BEC. After summarizing

the puncturing of linear codes, we then describe the channel
model, showing that the problem can be analyzed by means
of two cascaded BECs or, equivalently, a single BEC with
a modified erasure rate. We then determine the iterative BP
decoding thresholds of punctured LDPC-BC and SC-LDPC
code ensembles on the BEC.

A. Puncturing Linear Codes

A linear code is punctured by removing a set of p columns
from its generator matrix, which has the effect of reducing
the codeword length from n to n − p. After puncturing a
linear code with puncturing fraction α = p/n, the resulting
transmission rate is

R(α) =
R

1− α
, α ∈ [0, 1), (3)

where R(0) = R is the rate of the mother (unpunctured)
code. The dimension of the code is preserved, and therefore
the target rate R(α) is achieved, provided no two distinct
codewords differ within the p punctured symbols only. This
can be achieved, for example, by restricting punctured symbols
to the n−k parity-check symbols of a code in systematic form.
A code can be punctured randomly or according to a particular
pattern. It is assumed that the receiver knows the positions of
the punctured symbols, and the decoder estimates both the
punctured and transmitted symbols during decoding.

B. Thresholds of Randomly Punctured LDPC Code Ensembles

Consider puncturing a length n codeword v for transmission
over a BEC with erasure probability ε. We assume that a fixed
fraction α = p/n of the code symbols are punctured, such that
the transmitted codeword vpunc has length npunc = (1− α) ·
n. After transmission, the received vector r will contain, on
average, ε · npunc erased symbols and (1 − ε) · npunc correct
symbols. The receiver knows the positions of the punctured
and erased symbols and proceeds to decode the overall code
of length n.

For the purpose of threshold analysis, we assume that,
instead of applying a particular fixed puncturing pattern to
each transmitted codeword, the transmitter randomly selects
a different puncturing pattern for every codeword. This se-
lection is performed uniformly from the set of all possible
length n patterns with p = αn punctured symbols. We refer
to this approach as Strategy 1. For large block length n,
the behavior concentrates around the average, and any fixed
puncturing pattern will, with high probability, result in similar
performance as Strategy 1. Consider now a different random
puncturing strategy, in which each symbol in a codeword
is punctured independently with probability α. In this case
the number of punctured symbols is not a constant but a
binomially distributed random variable with mean nα and
variance nα(1 − α). This approach is referred to as Strategy
2.

Lemma 1 Consider an arbitrary code ensemble whose BP
decoding threshold can be computed by means of density
evolution. Assume that Strategy 1 or 2 is applied. Then, on
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BEC

BEC

Random

Puncturing

✏

v r

v r

✏0

↵

vpunc

npuncn

(a) 

(b) 

n

Fig. 3: (a) Block diagram illustrating random puncturing on the BEC, and (b)
an equivalent BEC for random puncturing.

the BEC, the BP decoding threshold will be the same for both
puncturing strategies.

Proof. In density evolution, the effect of puncturing is com-
pletely characterized by the distribution of input messages at
the variable nodes. On the BEC, each message is either the
correct symbol or an erasure, and thus the message distribution
is determined by the probability of an erasure. An input
message is erased if the corresponding received symbol is
either punctured or erased by the channel, which occurs with
probability Pp + (1− Pp)ε, where Pp denotes the probability
that a symbol is punctured. For Strategy 2, each symbol is
erased with probability α, which immediately implies that
Pp = α. For Strategy 1, each of the

(
n
p

)
possible puncturing

patterns is chosen with equal probability, and the number of
patterns for which a given symbol is erased is equal to

(
n−1
p−1
)
.

It follows that a particular symbol is erased with probability(
n−1
p−1
)
/
(
n
p

)
= p/n, resulting in Pp = α. Since both puncturing

strategies result in the same distribution of input messages,
their BP decoding thresholds on the BEC must be the same.
2

Random puncturing using Strategy 2 can be represented as
a BEC with erasure probability α. Combining this “random
puncturing channel” with the actual transmission channel, as
shown in Fig. 3(a), we can now model the transmission of
randomly punctured codewords over the BEC as two cascaded
BECs. This model is equivalent to a single BEC with crossover
probability ε′, as illustrated in Fig. 3(b), with

ε′ = α+ (1− α)ε

= 1− (1− ε)(1− α) . (4)

Based on this model we can prove the following theorem,
which according to Lemma 1 is valid for both puncturing
strategies.

Theorem 2 The BP threshold εBP(α) of a randomly punctured
LDPC code ensemble on the BEC with puncturing fraction α
is given by

εBP(α) = 1− 1− εBP(0)

R
·R(α), (5)

where εBP(0) = εBP and R are the BP threshold and design
rate of the (unpunctured) mother code ensemble, respectively,
and R(α) is the target rate after puncturing.

Proof. Consider an arbitrary code ensemble of rate R with
BEC iterative BP decoding threshold εBP. We are interested in
the threshold εBP(α) of the punctured code ensemble with rate
R(α). In other words, we wish to know the channel parameter
ε = εBP(α) such that, after random puncturing with probability
α, using Strategy 2, we obtain an equivalent channel with
parameter ε′ = εBP(0) = εBP. Using (4), we obtain

εBP(0) = 1− (1− εBP(α))(1− α), (6)

so that
εBP(α) = 1− 1− εBP(0)

1− α
. (7)

For Strategy 2, the expected fraction of punctured symbols
is equal to α. According to Lemma 1, the same threshold
is achieved with Strategy 1, for which a fixed fraction α of
symbols is punctured. 2

Note that (5) provides an explicit expression for the BP
threshold εBP(α) of the punctured LDPC code ensemble with
puncturing fraction α as a function of the target rate R(α) ≥
R, i.e., for a given puncturing fraction α, the function εBP(α)
depends only on the threshold εBP(0) and the rate R of the
mother code ensemble. From (5), we define

θ =
1− εBP(0)

R
≥ 1, (8)

where equality holds if and only if the threshold of the mother
code ensemble εBP(0) is equal to the Shannon limit, and
it follows that the largest possible rate with a non-negative
threshold εBP(α) is given by

Rmax = R(α = εBP(0)) =
1

θ
. (9)

Equivalently, the maximum puncturing fraction α with a non-
negative BP threshold is equal to the threshold εBP(0) = εBP
of the mother code. We refer to the range of rates R(0) ≤
R(α) ≤ Rmax where the punctured code ensembles have non-
negative thresholds as the achievable rate range. (The value
Rmax was referred to as the “cutoff rate” in [9].)

Note the implications of (5) and (8): θ determines the gap
to capacity for all punctured code ensembles. This leads to
the following Corollary of Theorem 2.

Corollary 3 For BP decoding on the BEC, the gap to capacity
∆Sh(α) of a randomly punctured LDPC code ensemble with
puncturing fraction α and a given achievable target rate R(α)
is

∆Sh(α) = εSh(R(α))− εBP(α)

= (θ − 1)R(α), (10)

where εSh(R(α)) = 1 − R(α) is the Shannon limit for the
randomly punctured ensemble with rate R(α).

A large value of θ implies that the mother code ensemble
has a threshold relatively far from the Shannon limit and the
gap to capacity will grow quickly with increasing α; on the
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α R(α) εBP(α) ∆Sh(α)
0 1/4 0.6474 0.1026

0.25 1/3 0.5299 0.1368
0.5 1/2 0.2948 0.2052

0.625 2/3 0.0598 0.2735

TABLE II: Thresholds and corresponding gaps to capacity for randomly
punctured (3, 4)-regular LDPC-BC ensembles B3,4.

other hand, for a value of θ close to 1, the mother code
ensemble has a threshold close to the Shannon limit and the
gap to capacity will grow slowly with increasing α. In the
extreme case where θ = 1, i.e., the threshold of the mother
code ensemble is equal to the Shannon limit, then capacity is
achieved for all punctured code ensembles with target rates
R(α) ≥ R.

C. Numerical Threshold Results

In this section, we calculate and compare values of θ for
different LDPC-BC and SC-LDPC code ensembles.

Example 1 The B3,4 LDPC-BC ensemble has BP threshold
εBP(0) = 0.647 and design rate R(0) = 0.25, which results
in θ = 1.4103. Since εBP(0) = 0.6474 is relatively far from
capacity (εSh = 0.75), this ensemble has a large value of θ,
and consequently the gap to capacity increases significantly
with increasing puncturing fraction α. Table II displays some
punctured thresholds εBP(α) with corresponding gaps to ca-
pacity ∆Sh(α) obtained using (5) and (10), respectively. For
this ensemble, we obtain Rmax = 0.709 using (9). 2

Fig. 4 shows numerically calculated BP thresholds of
the randomly punctured LDPC-BC ensembles Bpunc3,9 (α),
BpuncIRA (α), Bpunc3,6 (α), Bpunc4,8 (α), Bpunc5,10 (α), and Bpunc3,4 (α) for
a variety of puncturing fractions α (dots, triangles, squares,
rhombuses, and crosses), along with the thresholds obtained
using (5) (solid lines). The corresponding values of θ are given
in Table III. The numerically calculated thresholds match (5)
exactly. From εBP(α) = 1 − θ · R(α), we see that θ can be
interpreted graphically as the slope of the parametrically de-
fined line determining the positions of the punctured thresholds
εBP(α) for all α. Comparing the four rate R = 1/2 mother
code ensembles, we find that the thresholds from best to worst
are BpuncIRA (0), Bpunc3,6 (0), Bpunc4,8 (0), Bpunc5,10 (0). Consequently,
this ordering holds for all higher achievable rates also, since
the values of θ are increasing (see Table III). We stress that
the gap to capacity for a given target rate does not depend
on the amount of puncturing; rather, it depends solely on the
value of θ obtained for the mother code ensemble. The best
value of θ is obtained for B3,9; therefore, for achievable target
rates R ≥ 2/3, the thresholds of Bpunc3,9 (α) are superior to all
the R = 1/2 mother code ensembles considered. Note that, in
general, the thresholds of (J,K)-regular LDPC-BC ensembles
worsen for a given target rate with increasing graph density,
since the thresholds of the mother code ensembles, and hence
the corresponding values of θ, worsen.

Example 2 The C3,4(L = 50) SC-LDPC code ensemble has
BP threshold εBP(0) = 0.746 and design rate R(0) = 0.235,

BEC Threshold ǫBP(α)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
a
te

R
(α

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
punc
3,9 (α)

B
punc
IRA (α)

B
punc
3,6 (α)

B
punc
4,8 (α)

B
punc
5,10 (α)

B
punc
3,4 (α)

Shannon
limit

Fig. 4: BEC BP thresholds of several randomly punctured LDPC-BC code
ensembles for a variety of puncturing fractions α.

θ
Ensemble θ Ensemble L = 20 L = 50 L = ∞
B3,4 1.4103 C3,4(L) 1.1954 1.0810 1.0161
B3,6 1.1411 C3,6(L) 1.0776 1.0447 1.0237
B4,8 1.2331 C3,6,B(L) 1.1372 1.0664 1.0237
B5,10 1.3169 C4,8(L) 1.1162 1.0465 1.0046
B3,9 1.0757 C5,10(L) 1.0567 1.0243 1.0038
BIRA 1.1022 C3,9(L) 1.0467 1.0309 1.0205

TABLE III: Values of θ for various mother LDPC-BC and SC-LDPC code
ensembles.

which results in θ = 1.0809. Similarly, the C3,6(L = 50) SC-
LDPC code ensemble has εBP(0) = 0.4881 and R(0) = 0.49,
which results in θ = 1.0447. The underlying LDPC block
code ensembles B3,4 and B3,6, with rates R(0) = 0.25 and
R(0) = 0.5, have thresholds εBP(0) = 0.6474 and εBP(0) =
0.4294, resulting in θ = 1.4103 and θ = 1.1411, respectively.
2

The thresholds of SC-LDPC mother code ensembles im-
prove with L. In particular, thresholds close to capacity are
obtained for large L and, as a consequence, the corresponding
values of θ are close to 1, and the thresholds of the randomly
punctured SC-LDPC code ensembles are close to capacity for
all achievable rates R(α) ≤ Rmax. Consistent with (10), as we
increase L, the gap to capacity of the randomly punctured SC-
LDPC code ensembles is monotonically decreasing (improv-
ing) since θ decreases. Table III displays values of θ obtained
using (8) for various mother LDPC-BC and SC-LDPC code
ensembles. Comparing the (3,K)-regular ensembles, we find
that, for large L, the C3,4(L) ensemble has the smallest value
of θ, and consequently randomly puncturing this ensemble
will result in the best thresholds, even for high rates. It is
also important to note that the value of θ depends on the
particular “edge spreading” used to construct the protograph.
For example, the ensembles C3,6(L) and C3,6,B(L) are both
(3, 6)-regular, but they were constructed using different edge
spreadings, which results in different values of θ for finite
values of L. These considerations give rise to the interesting
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question of what is the best edge spreading and (J,K) pair
that minimizes θ for a fixed J . (For further discussion and
examples of randomly punctured SC-LDPC code ensembles,
see [19].)

Finally, we note that, unlike (J,K)-regular LDPC-BC en-
sembles, increasing the graph density is known to result in SC-
LDPC mother code ensembles with thresholds approaching
capacity for large L, which implies that the corresponding θ
values approach 1. For example, we see from Table III that the
(J, 2J)-regular, rate R = 1/2, SC-LDPC code ensembles have
decreasing θ values, approaching 1 for large L, as J increases,
whereas the LDPC-BC ensembles BJ,2J have θ values that
grow with increasing J . Consequently, to achieve thresholds
close to capacity for almost all rates one can puncture a single
high density, low rate (J,K)-regular SC-LDPC code ensemble
with large L.

D. Remarks

• If one can find a capacity approaching or capacity achiev-
ing code ensemble then it will have a θ value close to, or
equal to, 1 and it will be well suited to random puncturing
as discussed above. Related statements regarding capac-
ity achieving LDPC code ensembles on the BEC with
puncturing have been made before (see e.g., [9], [28]).
However, we note that the threshold saturation effect of
spatial coupling results in (J,K)-regular SC-LDPC code
ensembles with thresholds close to capacity and θ values
close to 1. Without spatial coupling, one would have
to design an optimized capacity approaching block code
ensemble to obtain a good value of θ, or accept a poor
value of θ with a (J,K)-regular LDPC-BC ensemble.

• Designing optimized irregular mother LDPC-BC ensem-
bles to obtain a good value of θ for a given R is
likely to result in an ensemble with poor minimum
distance properties. In addition to having thresholds close
to capacity and correspondingly good θ values, (J,K)-
regular SC-LDPC mother code ensembles are known to
have linear minimum distance growth [18]. In Section
V, we show that this property carries over to randomly
punctured SC-LDPC code ensembles.

• The derivation of the thresholds of randomly punctured
LDPC code ensembles is independent of the decoding
algorithm or the structure of the mother code. To de-
termine thresholds for all punctured ensembles of rate
R ≤ R(α) ≤ Rmax, we only require the threshold and
the rate of the mother code. A similar argument can be
made for the threshold of MAP decoding, for example.
In this case, everything follows in the same way and we
obtain

εMAP(α) = 1− θMAP ·R(α), (11)

for the MAP decoding threshold of a randomly punctured
ensemble with puncturing fraction α and rate R(α),
where

θMAP =
1− εMAP(0)

R
≥ 1, (12)

εMAP(0) is the MAP decoding threshold of the mother
code ensemble, and R = R(0) is the mother code en-

α R(α) εMAP(α) ∆Sh(α)
0 1/2 0.4881 0.0119

0.25 2/3 0.3175 0.0158
0.375 4/5 0.1810 0.0190

TABLE IV: MAP thresholds and corresponding gaps to capacity for randomly
punctured (3, 6)-regular LDPC-BC ensembles.

semble rate. Also, for the MAP decoder, Rmax = 1/θMAP.
Example 3 (below) provides some MAP thresholds for the
randomly punctured (3, 6)-regular LDPC-BC ensemble.

• Due to the threshold saturation effect, certain (J,K)-
regular SC-LDPC code ensembles achieve the MAP
threshold of the underlying (J,K)-regular LDPC-BC en-
semble with BP decoding as L→∞ [24]. Consequently,
it follows from (5) and (11) that randomly punctured SC-
LDPC code ensembles under BP decoding achieve the
MAP threshold of the randomly punctured underlying
LDPC-BC ensemble. Moreover, as we let J → ∞,
the MAP threshold (for an arbitrary MBS channel) of
(J, J/R)-regular LDPC-BC ensembles improves to the
Shannon limit [29], implying that the corresponding ran-
domly punctured SC-LDPC code ensembles are capacity
achieving for all R ≤ R(α) ≤ 1.

Example 3 The MAP threshold of a (3, 6)-regular LDPC-BC
ensemble is εMAP(0) = 0.4881, resulting in θMAP = 1.0238
and Rmax = 0.9767. Some MAP decoding thresholds εMAP(α)
and corresponding gaps to capacity ∆Sh(α) are given in Table
IV. 2

IV. THRESHOLDS OF RANDOMLY PUNCTURED LDPC
CODE ENSEMBLES ON THE BI-AWGNC

In this section, we investigate the BP thresholds of randomly
punctured LDPC code ensembles on the BI-AWGNC. We
begin by calculating some numerical results for a variety
of ensembles and puncturing fractions. We then provide an
efficient way to accurately predict BP thresholds of randomly
punctured LDPC code ensembles on the BI-AWGNC, given
the BP threshold of the mother code ensemble on the BEC.

A. Numerical Results

In Fig. 5, we display numerically calculated BI-AWGNC BP
thresholds of the randomly punctured LDPC-BC ensembles
Bpunc3,6 (α) and SC-LDPC code ensembles Cpunc3,6 (L,α) for
L = 5, 10, 50 and a variety of puncturing fractions α. The
thresholds were obtained using discretized density evolution
for the BI-AWGNC, with information bit signal-to-noise ratio
Eb/N0 and noise standard deviation σ =

√
N0/2, and are

plotted in terms of σ. We observe that random puncturing
of LDPC-BC and SC-LDPC code ensembles displays robust
threshold performance, in the sense that, as we increase the
puncturing fraction α, the thresholds do not significantly
degrade and roughly track the capacity curve. To be more
precise, we observe that, if the mother code ensemble has a
threshold close to capacity (e.g., the Cpunc3,6 (50, 0) ensemble),
then the gap to capacity increases slowly and the thresholds
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Fig. 5: Numerically calculated BI-AWGNC BP thresholds of several randomly
punctured LDPC-BC and SC-LDPC code ensembles for a variety of punctur-
ing fractions.

track the capacity curve closely as α increases. On the other
hand, if the mother code ensemble has a threshold further
from capacity (e.g., the Cpunc3,6 (5, 0) ensemble), then the gap to
capacity increases faster with increasing α.

This is analogous to the analytical result for the BEC, which
follows directly from (10), where the gap to capacity of any
punctured ensemble is determined by the constant θ from
(8) and where the thresholds of the punctured ensembles lie
on a straight line with slope determined by θ. Also, as α
increases, we observe that the maximum achievable rate, i.e.,
the maximum R(α) for which a BI-AWGNC BP threshold
exists, is approximately equal to the value computed for the
BEC using (9).

B. Predicting Thresholds

Given the similarities between the threshold results for the
BEC and BI-AWGNC, a natural question arises: is it possible
to predict the behavior of the thresholds of randomly punctured
code ensembles on the BI-AWGNC in a similar way as for the
BEC? The parameter ε of the BEC with uniformly distributed
input X and output Y can be interpreted as the entropy

hE(ε) = H(X|Y ) = 1− CE(ε) = ε,

where CE(ε) denotes the capacity of a BEC with erasure
probability ε. With this interpretation, (5) can be written as

εBP(α) = 1− θ ·R(α) = C−1E (θ ·R(α)) = C−1E (f(R(α))),

which converges to zero as f(R(α)) = θ · R(α) → 1. The
thresholds shown in Fig. 5 suggest the existence of a similar
relationship for the BI-AWGNC, i.e.,

σBP(α) = C−1G (f(R(α))) (13)

for some function f(R(α)), where CG(σ) denotes the capacity
of the BI-AWGNC and σBP(α) is the BP threshold in terms of
the noise standard deviation σ.1 Note that σSh = C−1G (R(α))

1Note that CE(x) = C−1
E (x), but CG(x) 6= C−1

G (x).

denotes the Shannon limit for a given rate R(α), which implies
that the function f(R(α)) characterizes the gap between the
BP threshold and the Shannon limit for all achievable rates
R(α) ≥ R.

In order to identify the shape of f(R(α)), we consider
the function hG(σBP(α)) = H(X|Y ) = 1 − CG(σBP(α)). In
Fig. 6, hG(σBP(α)) (crosses, triangles, rhombuses, circles, and
squares) is plotted against the rate R(α) for several randomly
punctured LDPC-BC and SC-LDPC code ensembles, along
with the capacity CG(σ) = 1 − hG(σ). Interestingly, we find
that, as for the BEC channel, a linear relationship appears
to exist between hG(σBP(α)) and R(α). Using f(R(α)) =
θE ·R(α) in (13), where we now adopt the notation θE for the
BEC constant θ obtained using (8), we obtain the expression

hG(σBP(α)) ≈ 1− θE ·R(α), (14)

for R ≤ R(α) ≤ 1/θE. Predicted values of hG(σBP(α))
obtained using (14) are also included in Fig. 6 as solid lines.
We observe that, remarkably, the approximations are almost
exact, even though the value hG(σBP(α)) is obtained for any
target rate using only θE, which just depends on the BEC
threshold and rate of the mother code ensemble. For some code
ensembles, we observe a slight difference in the numerically
calculated values compared to the prediction, particularly for
small α, as can be seen in Fig. 6. Techniques to improve
the prediction even further will be discussed in Section IV-C.
Finally, we note that it follows from (14) that thresholds cease
to exist at precisely the same Rmax obtained for the BEC using
(9).

Now assuming f(R(α)) = θE · R(α), we can predict BI-
AWGNC thresholds in terms of noise standard deviation as

σBP(α) ≈ C−1G (θE ·R(α)), (15)

for R ≤ R(α) ≤ 1/θE. Equation (15) permits a quick
and easy way to approximate BI-AWGNC thresholds for any
LDPC code ensemble, punctured or unpunctured, given only
the BEC BP threshold and design rate. For example, the
(3, 6)-regular ensemble B3,6(0) has θE = 1.1411 and a quick
calculation using (15) gives σBP(0) = 0.881, which agrees
exactly with the known value [30]. Using this model, we find
that the predictions are a good fit with the calculated values
obtained using discretized density evolution, and that mother
code ensembles with thresholds close to capacity have curves
that closely track the capacity curve. (See [20] for numerical
examples of both LDPC-BC and SC-LDPC code ensembles.)

Ensembles with similar values of θE will perform ap-
proximately the same for all achievable rates, even if their
design rates are different. For example, the θE values for the
C3,4(100, 0) and C3,6(50, 0) ensembles are 1.0475 and 1.0447,
respectively. Consequently, their thresholds are approximately
equal for all achievable rates R(α) ≥ 1/2. In other words, if
one punctures a lower rate ensemble with a larger puncturing
fraction than a higher rate ensemble in order to achieve a
desired rate, there is no penalty in threshold as long as the
values of θE are similar.
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Fig. 6: Numerically calculated (markers) and predicted (solid lines) values of hG(σBP(α)) for several randomly punctured LDPC-BC (left) and SC-LDPC
code ensembles (right) and a variety of puncturing fractions.

C. Improving the Prediction

In Section IV-B, it was shown that, for some ensembles,
the predicted thresholds obtained using θE are less accurate
for small α than for large α. This difference could be a
weakness in the prediction method and/or simply a result of
the numerical inaccuracy of performing discretized density
evolution on the BI-AWGNC.

To improve the prediction for small puncturing fractions α,
one can obtain a θG, similar to θE, based on the BI-AWGNC
BP threshold σBP(0) and design rate R = R(0) of the mother
code ensemble as

θG =
1− hG(σBP(0))

R
≥ 1. (16)

From (8) and (16), we find that θG ≈ θE for most code
ensembles; in this case, the predictions obtained using θE
are accurate for all values of α. However, the prediction
is not as accurate for some code ensembles. For example,
the Cpunc3,6 (50, 0) SC-LDPC code ensemble has θE = 1.0446
and θG = 1.0638. In this case, one can form an alternative
prediction using

hG(σBP(α)) ≈ 1− θG ·R(α), (17)

for R ≤ R(α) ≤ Rmax = 1/θG.
Fig. 7 shows numerically calculated values of hG(σBP(α))

for the Cpunc3,6 (50, α) SC-LDPC code ensembles for several
puncturing fractions α. Also shown are the predicted thresh-
olds using both (14) and (17). We observe that the prediction
is good for small values of α using (17) and good for large
values of α using (14). Intuitively, this makes sense, since an
BI-AWGNC combined with a large puncturing fraction has
characteristics similar to a BEC. Moreover, we see that the
calculated thresholds lie between the two predictions and a
linear relationship appears to exist. Based on this observation,
we can predict BI-AWGNC BP thresholds using

hG(σBP(α)) ≈ Rmax −R(α)

Rmax −R(0)
· hG(σBP(0)), (18)

for R ≤ R(α) ≤ Rmax = 1/θE. Note that (18) depends on the
BP threshold of the mother code ensemble for both the BI-
AWGNC and the BEC. The ‘mixed’ prediction obtained using
(18) for the Cpunc3,6 (50, α) SC-LDPC code ensembles is shown
in Fig. 7 by a dashed line. Fig. 8 displays some numerically
calculated BI-AWGNC BP thresholds in terms of Eb/N0 for
several randomly punctured LDPC-BC and SC-LDPC code
ensembles (crosses, triangles, rhombuses, circles, and squares)
for a variety of puncturing fractions α along with the predicted
thresholds obtained using the two parameter model (18) for
rates up to Rmax = 1/θE. We observe that the predictions are
accurate for all rates.2 In summary, our results indicate that the
two parameter model (18) improves the prediction in the cases
where the single parameter models (15) and (17) are inaccurate
(for small and large α, respectively), resulting in an accurate
prediction for all α. Future work will involve an investigation
of the accuracy of this prediction for general LDPC-BC and
SC-LDPC code ensembles.

We conclude this section by remarking that the similarity
between the thresholds on different channels when the capacity
is used as a parameter was discussed by Chung in his Ph.D.
thesis [31], where an erasure-channel approximation is pro-
posed that uses the thresholds of the BEC as an approximation
for the thresholds of other channels (Section 6.3, Table 6.1).
Our results demonstrate that the erasure-channel approxima-
tion is even more accurate with puncturing. Furthermore,
by using our knowledge of both the BI-AWGNC and BEC
thresholds, our estimate does not require a density evolution
recursion (which is used, for example, in the Reciprocal
Channel Approximation (RCA) technique [31]). Note that it
is not trivial to apply the RCA method to random puncturing,
which corresponds to a Gaussian mixture scenario, and for
this reason we have applied discrete density evolution.

V. MINIMUM DISTANCE GROWTH RATES OF

2A similar figure showing the single parameter model prediction (15) was
presented in [20], where the prediction was shown to be accurate for moderate
to large α, but less accurate for small α in some cases.
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Fig. 8: Numerically calculated (markers) and predicted (solid lines) BI-
AWGNC BP thresholds for several randomly punctured LDPC-BC and SC-
LDPC code ensembles.

RANDOMLY PUNCTURED SC-LDPC CODE ENSEMBLES

In this section, we consider the minimum distance of
randomly punctured LDPC codes. We begin by describing the
asymptotic distance properties of randomly punctured code
ensembles and then give numerical results for both LDPC-
BC and SC-LDPC code ensembles. Although we consider
protograph-based LDPC code ensembles, the results in this
section are based on Theorems III.1 and IV.3 from [33] and
therefore apply to any linear code ensemble.

A. Asymptotically Good Randomly Punctured LDPC Code
Ensembles

For J > 2, (J,K)-regular LDPC-BCs are known to be
asymptotically good [32], in the sense that the minimum
distance typical of most members of the ensemble is at
least as large as δmin · n, where δmin > 0 is called the
minimum distance growth rate of the ensemble. In [18], it

was shown that ensembles of CJ,K(L) SC-LDPC codes are
also asymptotically good. In this section, we investigate the
distance properties of randomly punctured LDPC-BC and SC-
LDPC code ensembles. (We restrict our discussion of SC-
LDPC code ensembles to Cpunc3,6,B(L,α) ensembles; however,
similar behavior is observed for other J and K values.)

We define the asymptotic spectral shape of a code ensemble
as

r(δ) = lim sup
n→∞

1

n
ln(Abδnc), (19)

where δ = d/n is the normalized Hamming distance, n ∈ N is
the block length, and Ad is the ensemble weight enumerator.
The asymptotic spectral shape can be used to test if an
ensemble is asymptotically good. A technique to calculate r(δ)
for protograph-based block LDPC code ensembles was pre-
sented in [17]. Given the asymptotic spectral shape r(δ) of an
asymptotically good code ensemble, the expected asymptotic
spectral shape of the randomly punctured code ensemble can
be obtained as [33]

rpunc(δ) =
1

1− α

(
max
0≤λ≤1

{
λ · h

(
(1− α)δ

λ

)
+

(1− λ) · h
(
α+ (1− α)δ − λ

1− λ

)
+ r(λ)

}
− h(α)

)
, (20)

where α = p/n is the fraction of punctured bits, 0 ≤ α <
δmin, and h(δ) = −(1 − δ) ln(1 − δ) − δ ln(δ) is the binary
entropy function. The average weight enumerators used in
the formulation of (20) are obtained over all possible p-
bit puncturing patterns; therefore, we require α < δmin to
guarantee no rate loss. For α ≥ δmin the rate of the ensemble
can be written as (R−∆R)/(1−α), where ∆R ≥ 0. Bounds on
∆R and conditions such that ∆R = 0 were given for (J,K)-
regular LDPC-BC ensembles in [34].

B. Numerical Results

In this section, we present numerical results obtained using
(20), but we do not require α < δmin. Consequently, there
can be some rate loss with random puncturing for α ≥ δmin,
and the true rate is bounded above by R(α), obtained using
(3). In such cases, the rates will be marked by an asterisk, or
highlighted in figures with a dashed line. We note, however,
that in practice the bits to be punctured would be selected to
avoid rate loss by preserving the dimension of the code (semi-
randomly or otherwise), and therefore the numerical results
obtained in this paper are useful indicators of actual punctured
code performance.

Example 4 The (3, 4)-regular LDPC-BC ensemble B3,4 has
minimum distance growth rate δmin(0) = 0.112 and design
rate R(0) = 0.25. (Recall from Section III-C that the relatively
large value of θ = 1.4103 in this case results in thresholds with
rapidly growing gaps to capacity as α increases.) Following
the technique described above, we find that the Bpunc3,4 (α)
code ensembles are also asymptotically good and have good
minimum distance growth rates δmin(α). Table V displays
the growth rates δmin(α) for select values of α along with
the corresponding gap to the Gilbert-Varshamov (GV) bound
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α R(α) δmin(α) ∆GV(α)
0 1/4 0.1121 0.1024

0.1 5/18 0.1093 0.0909
0.25 1/3∗ 0.1034 0.0706
0.5 1/2∗ 0.0805 0.0295

TABLE V: Minimum distance growth rates and corresponding gaps to the
GV bound for the randomly punctured LDPC-BC ensemble B3,4.

∆GV(α) = δGV(R(α)) − δmin(α), where δGV(R(α)) is the
GV bound for code ensembles of rate R(α). Note that as α
increases, the design rate R(α) = 0.25/(1−α) increases and
the minimum distance growth rate decreases.3 Also note the
robust distance properties with increasing α, in the sense that
δmin(α) decreases slowly, resulting in decreasing gaps to the
GV bound ∆GV(α). 2

Randomly punctured SC-LDPC code ensembles display
similar distance growth behavior.

Example 5 We now consider the Cpunc3,6,B(L = 8, α) ensem-
bles. The mother code ensemble Cpunc3,6,B(8, 0) has rate R(0) =
0.375 and minimum distance growth rate δmin(0) = 0.0324.
We find that the Cpunc3,6,B(8, α) code ensembles are asymptot-
ically good and have good minimum distance growth rates
δmin(α) for the values of α considered. (The asymptotic
spectral shapes for these ensembles were drawn in [19].) We
find moderate losses in minimum distance growth rate for the
selected range of α (both the rate increase and distance growth
rate decrease are superlinear in α). For example, puncturing
1% of the variable nodes results in a minimum distance
growth rate decrease of 0.3% and puncturing 25% results in
a decrease of 9.5%, while the rates increase by 0.8% and
33.3%, respectively. Regarding the latter point, we note that
the resulting design rate is R(α = 0.25) = 0.5∗ and the
minimum distance growth rate δmin(α = 0.25) = 0.029 is
larger than that of the unpunctured (equal rate) underlying
(3, 6)-regular LDPC block code ensemble, δmin(0) = 0.023.
Again, we find that the gap to the GV bound ∆GV(α) decreases
with increasing α. 2

Fig. 9 shows the minimum distance growth rates for ran-
domly punctured Bpunc3,4 (α), Bpunc3,6 (α), and Bpunc4,8 (α) LDPC-
BC ensembles and Cpunc3,6,B(L,α) SC-LDPC code ensembles for
L = 3, 4, 5, 6, 7, 8, 10, 12, 14 and a variety of puncturing frac-
tions α. Each randomly punctured ensemble displays the same
general behavior described above: the design rate increases
and the minimum distance growth rates and corresponding
gaps to the GV bound decrease with increasing α. (Note that
the BIRA(α) ensemble is not asymptotically good, so we do
not consider it in this section.) We see that the Bpunc4,8 (α)
ensembles have significantly larger growth rates than the
Bpunc3,6 (α) ensembles; indeed, the Bpunc4,8 (α) distance growth
rates are close to the GV bound for large values of α. However,

3If the puncturing fraction α is increased beyond a certain critical value
greater than or equal to δmin, the asymptotic spectral shape is no longer
smooth. This observation is consistent with the emergence of “hook-like
loops” in the spectral shapes of randomly punctured (J,K)-regular LDPC-BC
ensembles for large α [33].

recall that the B4,8(α) ensemble has a significantly worse value
of θ than the B3,6(α) ensemble, and thus the B4,8(α) ensemble
thresholds are always worse (with increasing gaps to capacity
as α increases). This trade-off becomes more extreme as the
graph density is further increased for punctured (J,K)-regular
LDPC-BC ensembles.

On the other hand, SC-LDPC code ensembles have improv-
ing values of θ (improving thresholds) for increasing L and
thus provide a significant amount of flexibility for the code
designer. By varying L and α, for a single code design, a large
variety of rates is achievable with varying minimum distance
growth rates and thresholds. The trade-offs observed for the
mother SC-LDPC code ensembles in [18] are also evident for
randomly punctured ensembles: θ improves with increasing L
(indicating better thresholds for all achievable rates), whereas
the minimum distance growth rates decrease for any fixed α
with increasing L.4

Due to the computational complexity of evaluating the
asymptotic spectral shape of SC-LDPC code ensemble pro-
tographs with large L, we have only presented numerical
results for small L. However, we expect the trend in behavior
observed for the values of L considered above to continue for
large L: as the puncturing fraction α increases, the minimum
distance growth rates δmin(α) decrease from δmin(0) and the
ensemble design rates R(α) increase from R(0). Note that,
for large values of L, such as those considered in Section III,
the gap to capacity of the mother code is decreasing and θ is
improving. We expect that, for a given large L in Fig. 9, the
minimum distance growth rates δmin(α) of Cpunc3,6,B(L,α) can
be approximated by a straight line originating from δmin(0),
with steeper (negative) slopes as L increases (where, for a
given R(α), δmin(α) decreases as L increases).

To summarize, for sufficiently large L, SC-LDPC code
ensembles have a small value of θ, resulting in thresholds
close to capacity for all achievable rates; in addition, the
ensembles are asymptotically good with decreasing gaps to the
GV bound for increasing α. Unlike LDPC-BCs, increasing the
graph density improves both of these measures: the thresholds
approach capacity and the distance growth rates approach the
GV bound.

VI. FINITE LENGTH PERFORMANCE OF RANDOMLY
PUNCTURED LDPC CODE ENSEMBLES

In this section, we present BEC and BI-AWGNC computer
simulations of the finite length performance of randomly
punctured LDPC-BC and SC-LDPC code ensembles. All the
codes simulated in this section were randomly drawn from the
code ensemble according to the specified protographs and the
puncturing patterns were randomized for each transmission.5

4It was noted in [18] that, due to their convolutional structure, the free
distance growth rate δfree of (unterminated) SC-LDPC code ensembles, which
is independent of L, is a more appropriate measure of their strength than the
minimum distance growth rates δ(L)

min. Moreover, since (J,K)-regular SC-
LDPC code ensembles have large δfree [26], large values of α can be selected
before any rate loss can occur.

5For practical implementation, the receiver also needs access to the punctur-
ing pattern for successful initialization of the decoding algorithm. This could
be achieved, for example, by either transmitting the puncturing pattern in the
packet header, or by letting the transmitter and receiver agree on a set of
random seeds before transmission begins.



MITCHELL et al.: RANDOMLY PUNCTURED LDPC CODES 11

Distance growth rate δmin(α)
0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

R
a
te

R
(α

)

0.2

0.3

0.4

0.5

0.6

0.7 BJ,K

B
punc
J,K (α)

C3,6,B(L)

C
punc
3,6,B(L,α)

(3,9)

(3,8)

(3,7)

(3,6)

(3,5)

L=4

L=5

L=6

L=3

(4,8)

Gilbert-Varshamov
bound

α = [0,0.01,0.02,0.04,
0.06,0.08,0.1,0.15,
0.2,0.25,0.3,0.4]

(3,4)

Fig. 9: Minimum distance growth rates for randomly punctured LDPC-BC and
SC-LDPC code ensembles with a variety of puncturing fractions. Also shown
for comparison are the minimum distance growth rates of several (J,K)-
regular LDPC-BC ensembles and the GV bound.
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Fig. 10: BEC decoding performance and BP decoding thresholds of (3, 6)-
regular randomly punctured LDPC-BC codes. Solid and dashed lines represent
bit erasure and block erasure rates, respectively.

A. BEC Simulations

The performance of randomly punctured LDPC-BCs and
SC-LDPC codes transmitted over the BEC was investigated via
computer simulation. LDPC-BC examples were drawn from
the Bpunc3,6 (α) ensemble with lifting factors M = 1000 and
M = 250, respectively, resulting in an overall block length
(decoding latency) for the unpunctured code of n = 6000.
Puncturing fractions α = 0, 0.26, and 0.4 were chosen,
resulting in design rates R(0) = 0.5, R(0.26) = 0.6757,
and R(0.4) = 0.8333, respectively. The performance of these
codes was obtained using a standard BP decoder with a
flooding update schedule and a maximum of Imax = 100
iterations. The results for these codes, shown in terms of bit
erasure rate (solid lines) and block erasure rate (dashed lines),
are presented in Fig. 10.

The code performance is consistent with our asymptotic

code ensemble analysis. In particular, the codes display robust
decoding performance, both in terms of bit and block erasure
rate, with each code displaying a gap to its respective iterative
decoding threshold of approximately 0.04 to 0.05 at a bit
erasure rate of 10−5. We expect this gap to decrease as M
is increased. (This robust performance is also consistent with
the finite-length scaling results of punctured LDPC codes
presented in [13].) Moreover, these codes, drawn from an
asymptotically good LDPC code ensemble, do not display an
error floor down to a bit erasure rate of 10−7. (Results for the
other block code ensembles considered in this paper display
similar characteristics.)

LDPC codes typically display a trade-off between water-
fall and error-floor performance. For example, (J,K)-regular
LDPC codes are asymptotically good for J > 2; however, the
iterative decoding behavior of regular codes in the waterfall
region of the performance curve falls short of capacity, making
them unsuitable for severely power-constrained applications.
On the other hand, optimized irregular LDPC codes exhibit
capacity approaching performance in the waterfall but, unlike
(J,K)-regular codes, are normally subject to an error floor
as a result of a large number of degree two variable nodes;
this makes such codes undesirable for applications that require
very low decoded erasure rates. Our results confirm similar
trade-offs for punctured LDPC codes, since the asymptotic
properties of the punctured codes follow from those of the
mother code ensemble. To the best of our knowledge, asymp-
totically good code ensembles do not have error floor problems
for moderate code lengths (see, e.g., Fig. 10). However, this
is not a necessary condition, since many codes with sub-
linear minimum distance can have acceptably low error floors,
depending on the desired application and required erasure rate.

In the case of randomly punctured SC-LDPC codes trans-
mitted over the BEC, a mother code with code length n =
50, 000 was drawn from the ensemble C3,6(L = 50) with
protograph lifting factor M = 500. This code has rate
R(0) = 0.49. The code rate was increased by randomly
puncturing 130, 200, and 220 out of every 500 variable nodes
(α = 0.26, 0.4, and 0.44, respectively), yielding code rates of
R(0.26) = 0.6622, R(0.4) = 0.8167, and R(0.44) = 0.8750,
respectively. The performance of these codes was obtained
using a sliding window decoder (WD) [23], [35] with win-
dow size W = 6 (corresponding to a decoding latency of
2WM = 6000 bits for the unpunctured code) and performing
a maximum of Imax = 10 and Imax = 20 iterations in each
window position. The results for these codes are presented in
Fig. 11.

We observe robust decoding performance from the punc-
tured SC-LDPC codes of varying rates, with each code dis-
playing a gap to its respective iterative decoding threshold
of approximately 0.05 to 0.07 at a bit erasure rate of 10−5,
for only a moderate lifting factor M = 500 and a resulting
decoding latency of 2WM = 6000 bits. We expect this gap to
decrease as the lifting factor M is increased. Moreover, recall
from Table III that, since θ = 1.0447, the gap to capacity for
the punctured thresholds is small and increases slowly as α,
and thus the rate R(α), increases. We note from Fig. 11 that
the gap between the simulated decoding performance and the
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Fig. 11: BEC decoding performance and BP decoding thresholds of randomly
punctured SC-LDPC codes. Solid lines represent results obtained with Imax =
10 and dashed lines represent results obtained with Imax = 20.

corresponding threshold also increases slowly as α increases
and that the performance does not improve significantly by
increasing the number of iterations per window position from
Imax = 10 to Imax = 20, indicating Imax = 10 is sufficient to
obtain the best decoding performance. We also note that, like
the asymptotically good (3, 6)-regular LDPC-BC ensemble,
we do not see any indication of an error-floor down to a bit
erasure rate of 10−7 for codes drawn from these asymptotically
good code ensembles. Comparing Figs. 10 and 11, we observe
that, by using a WD, the randomly punctured SC-LDPC codes
outperform the LDPC-BCs under an equal decoding latency
constraint, although there is a slight code rate difference in
the two cases. This is consistent with results obtained for
unpunctured code ensembles [36], [37].

B. BI-AWGNC Simulations

The bit error rate (BER) performance of randomly punc-
tured SC-LDPC codes transmitted over the BI-AWGNC was
also investigated via computer simulation. The same code
drawn from the C3,6(50) ensemble and puncturing fractions
that were used in Section VI-A were selected for the sim-
ulations and a sliding window decoder with W = 6 (cor-
responding to a decoding latency of 2WM = 6000 bits)
was implemented, where a maximum of Imax = 10 and
Imax = 20 iterations were allowed in each window position.
The results for these codes are presented in Fig. 12 along
with the predicted BP thresholds obtained using (13) with
θE = 1.0446.

Similar to the BEC, we observe robust decoding perfor-
mance from the punctured codes of varying rates. We note that
the gap between the simulated decoding performance and the
corresponding predicted threshold increases as the puncturing
fraction α increases. For example, when α is moderate, e.g.,
α = 0 or 0.26, each code displays a gap to its respective
predicted iterative decoding threshold of approximately 1 to
1.3dB at a BER of 10−5, whereas for α = 0.4 the gap
increases to about 2dB. This should be expected for a finite
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Fig. 12: BI-AWGNC decoding performance and predicted BP decoding
thresholds of randomly punctured SC-LDPC codes. Solid lines represent
results obtained with Imax = 10 and dashed lines represent results obtained
with Imax = 20.

length protograph-based code with a small lifting factor M ;
however, these gaps will decrease as M increases.

Since the capacity and threshold prediction curves are not
linear (see, e.g., Fig. 8), the closer we get to the maximum rate
Rmax, the more significant the gap to capacity, i.e., we observe
that the slope of the threshold curve flattens out (tracking
the capacity curve) for higher rate punctured ensembles. It
follows that, as the target rate increases beyond a certain point,
the thresholds significantly degrade and the corresponding
simulated performance becomes much worse. Moreover, as
the puncturing fraction α becomes too large (in this case α >
0.4776, corresponding to R(α) > Rmax = 1/θE = 0.938), the
threshold no longer exists and we do not observe the typical
waterfall performance in the BER curve associated with codes
operating below their threshold (see, e.g., the black curve in
Fig. 12, where R(0.5) = 0.98).6 Recall that ensembles with
poor θE values are characterized by a smaller maximum rate
Rmax. For example, the B3,6 ensemble has a threshold only
up to Rmax = 0.876. We observe that, unlike the BEC, the
performance of SC-LDPC codes on the BI-AWGNC can be
improved for large α by performing more than 10 iterations per
window position. This behavior occurs since more iterations
of the BP algorithm are required to build up reliable values
for a large of punctured bits.

VII. CONCLUDING REMARKS

In this paper, we studied random puncturing of LDPC-
BC and SC-LDPC code ensembles. We derived a simple
analytic expression for the iterative BP decoding threshold of a
randomly punctured LDPC code on the BEC and showed that,
with respect to the BP threshold, the strength and suitability of
an LDPC code ensemble for random puncturing is completely

6Since we applied a random puncturing pattern for each frame, if α is
chosen to be greater than or equal to δmin of the mother code, it may cause
a rate loss in some frames. This is the reason we observe the otherwise
unexpected crossover in the simulated code performance for the two highest
puncturing rates.
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determined by a single constant θ ≥ 1 that depends only on the
rate and the BP decoding threshold of the mother code ensem-
ble. We then provided an efficient way to predict BP thresholds
of punctured LDPC code ensembles on the BI-AWGNC, given
only the BP threshold of the mother code ensemble on the BEC
and the design rate, and we showed how the prediction can be
improved by also considering the BI-AWGNC threshold. We
demonstrated that the predictions were accurate by comparing
them with values calculated using discretized density evolution
for a variety of puncturing fractions. We also performed an
asymptotic minimum distance analysis and showed that, for
asymptotically good LDPC-BC and SC-LDPC mother code
ensembles, the randomly punctured code ensembles are also
asymptotically good. Moreover, we showed that, even though
the minimum distance growth rates decrease with increased
puncturing fraction α, the gap to the Gilbert-Varshamov bound
decreases. Finally, we presented simulation results that confirm
the robust decoding performance promised by the asymptotic
results.
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