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Target on 6p

Pontus Eriksson’, Mattias Aine', Gottfrid Sjédahl’, Johan Staaf'?, David Lindgren?®, Mattias Hoglund'*

1 Department of Oncology, Clinical Sciences, Skane University Hospital, Lund University, Lund Sweden, 2 CREATE Health Strategic Center for Translational Cancer
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Abstract

Background: Urothelial carcinoma shows frequent amplifications at 6p22 and 1921-24. The main target gene at 6p22 is
believed to be E2F3, frequently co-amplified with CDKALT and SOX4. There are however reports on 6p22 amplifications that
do not include E2F3. Previous analyses have identified frequent aberrations occurring at 1g21-24. However, due to complex
rearrangements it has been difficult to identify specific 1g21-24 target regions and genes.

Methods: We selected 29 cases with 6p and 37 cases with 1q focal genomic amplifications from 261 cases of urothelial
carcinoma analyzed by array-CGH for high resolution zoom-in oligonucleotide array analyses. Genomic analyses were
combined with gene expression data and genomic sequence analyses to characterize and fine map 6p22 and 1921-24
amplifications.

Results: We show that the most frequently amplified gene at 6p22 is SOX4 and that SOX4 can be amplified and
overexpressed without the E2F3 or CDKALT genes being included in the amplicon. Hence, our data point to SOX4 as an
auxiliary amplification target at 6p22. We further show that at least three amplified regions are observed at 1q21-24. Copy
number data, combined with gene expression data, highlighted BCL9 and CHDIL as possible targets in the most proximal
region and MCLT1, SETDBI1, and HIF1B as putative targets in the middle region, whereas no obvious targets could be
determined in the most distal amplicon. We highlight enrichment of G4 quadruplex sequence motifs and a high number of
intraregional sequence duplications, both known to contribute to genomic instability, as prominent features of the 1921-24
region.

Conclusions: Our detailed analyses of the 6p22 amplicon suggest SOX4 as an auxiliary target gene for amplification. We
further demonstrate three separate target regions for amplification at 1921-24 and identified BCL9, CHDI1L, and MCLI,
SETDB1, and HIF1B as putative target genes within these regions.
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Introduction by gene expression profiling [1-6] and recently Lindgren et al. [7]

) ) ) ) ) classified UC based on gene expression and genomic alterations.
Urothelial carcinoma (UC) is the sixth most common malig-

Several genes are known to be mutated in UC, of which activating
nancy and the fourth most common cancer among males. UC

mutations in FGFR3 and inactivating mutations in 7P53 are the

originates from the epithelial cells of the inner lining of the bladder most frequent. Accumulated data has shown that FGFR3
wall. Most tumors (70%) are papillary and confined to the

urothelial mucosa (stage Ta) or to the lamina propria (stage T'1),
whereas the remaining are muscle invasive (T2-T4). Most Ta
tumors are of low grade, rarely progress, and are associated with a
favorable prognosis whereas high grade Ta (TaG3) and T'1 tumors
have a significant risk of tumor progression. UC has been studied

mutations are characteristic for low grade and low stage tumors
whereas 7P53 mutations are characteristic for invasive tumors [8—
10]. Apart from gene mutations, cytogenetic studies have revealed
several recurring chromosomal changes and comparative genome
hybridization (CGH) methods have corroborated many of these
findings, but also defined several recurrent high level amplifica-
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tions and deletions [7,11-19]. Key findings of these investigations
are frequent losses of chromosome arms 9p and 9q, and frequent
amplifications on 6p and 1q. Losses of chromosome 9, and of 9p in
particular, are highly characteristic for low stage and low grade
UC. Deletions affecting 9p are commonly attributed to loss of the
tumor suppressor gene CDEN24 at 9p21 [20]. High-level
amplifications on 6p are commonly localized to the 6p22.3 region
and are frequent in advanced stage UC. The genes most
frequently encompassed by 6p22 amplifications are FE2F3,
CDRALI, and SOX4. Amplifications at 1q21-24 are frequent but
heterogeneous. The heterogeneity of 1q21-24 amplifications has
most likely precluded the identification of bona fide target genes.
In order to clarify some of the genomic features of 6p and 1q
amplifications in UC we have applied high-resolution array CGH
focused at regions commonly altered in UC combined with gene
expression analysis.

Materials and Methods

Patients and tumor tissue samples

Samples were obtained by cold-cup biopsies from the exophytic
part of the bladder tumor from patients undergoing transurethral
resection at hospitals of the Southern Healthcare Region of
Sweden. Pathological evaluation was based on WHO 1999.
Written informed consent was obtained from all patients and the
study was approved by the Local Ethical Committee at Lund
University. Using previous information on genomic imbalances in
261 cases of urothelial carcinoma [3,7,18,21], 68 cases were
selected based on the presence of focal genomic aberrations.
Among the samples, 48 harbored focal genomic alterations either
at 6p22, at 1q21-24, or both (Table S1). Alterations at 6p22 and
1q21-24 co-occurred in 18 samples. Alterations of the 6p22 and
1q21-24 region alone occurred in 11 and 19 samples, respectively,
for a total of 29 samples with 6p22 alterations and 37 samples with
1q21-24 alteration. The 20 remaining samples lacking aberrations
at 6p or 1q were selected based on the presence of other
commonly recurring genomic alterations. Gene expression data
was available for 212 of the original 261 samples, and for 58 out of
the 68 samples selected for zoom-in analyses [6].

Zoom-In array

A custom design 180 k Agilent G3 Sureprint (Agilent Technol-
ogies, Santa Clara, CA, USA) array was used, which covers the
genome and contains increased probe densities at selected regions
of the genome (Table S2). The average probe spacing was 17 bp
and between 7000-12000 bp in selected target regions. Target
regions were selected based on previous array CGH analyses using
a 32 K BAC platform. Tumor sample and male reference DNA
(Promega, Madison, WI, USA) were labeled and hybridized to
arrays as described [22]. Tumor samples with a low DNA quantity
were amplified using the GenomePlex WGA2 amplification kit
(Sigma-Aldrich, St Louis, MO, USA) according to manufacturer’s
protocol with 20-40 ng of input DNA prior to labeling. The
reference DNA for these samples was also subjected to whole
genome amplification.

Copy number analysis

Raw data was extracted from the scanned images using Agilent
Feature Extraction 10.7.3.1 (Agilent Technologies, Santa Clara,
CA, USA). The data was filtered from control probes and probes
that did not pass Agilent’s default "well above background"
condition. Remaining probes were corrected for background
signal and log 2 ratios (log 2 (Signal sample/Signal reference))
were calculated from the adjusted signal intensities for each array.
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The log 2 ratios were normalized and centered using popLowess
[23]. The log 2 values of replicate probes were merged to their
median value. Segmentation was performed on normalized log 2
ratios for each sample using Circular Binary Segmentation (CBS)
[24] (Settings: 10 000 permutations, significance level for accepting
change-points, o, set to 0.01, and a minimum of 5 consecutive
probes for calling a segment). Gains and losses were called at
regions where the segmentation value exceeded a sample adaptive
threshold (SAT) [23]. The SAT ranged from 0.15 to 0.59, with a
median value of 0.20. Copy number gain frequencies were
calculated using segmented data at an individual probe level by
dividing the number of times the probe was observed above the
SAT with the number of samples investigated. Average copy
number gain amplitudes (log 2) were calculated by measuring the
summed segmentation line amplitude of each probe above SAT
divided by the number of times the probe was observed above the
SAT. RefSeq gene locations were downloaded from the UCSC
genome browser (GRCh37/HG19 Assembly). MicroRNA
(miRNA) data was obtained from miRBase (http://www.
mirbase.org, Release 18). Copy number variant (CNV) data
generated by Conrad et al. [25] was used to account for naturally
occurring variations. Gene specific copy number was measured as
the mean segmentation value spanning each RefSeq gene position.
The correlation between gene specific copy number and gene
expression levels was determined using Spearman correlation in
the 58 samples with matched gene expression, and p-values were
FDR corrected to account for multiple testing [26]. The gene
expression levels in samples with amplifications were compared to
the remainder of the 212 samples where expression data was
available using the Mann-Whitney Test, in order to determine
whether there was a significant difference in expression levels. Raw
and processed data, together with array design and sample
annotations, are deposited in the Gene Expression Omnibus

(GSE40938).

Breakpoint and sequence element analyses

Breakpoints were called at positions where the segmentation
shifts exceed the SAT or occurred above the SAT. Breakpoints
were manually curated in selected regions to account for outlier
probes. In order to test for an uneven distribution of chromosomal
breaks within the lq and 6p target regions, the observed
breakpoint distribution was compared to that of 10000 random
permutations in 50 kb windows. Significance levels were deter-
mined by rank statistics. Data on repetitive genomic features
(LINE, SINE, and LTR) was downloaded from the UCSC
genome browser RepeatMasker track [27]. Locations of segmental
duplications were obtained from the UCSC genome browser
(Duplications of >1000 Bases of Non-RepeatMasked Sequence).
G4 quadruplex locations were obtained using the Quadparser
algorithm, which identifies d(GsN; 7G3N; ;G3N; ;G3) sequence
motifs postulated to fold into a quadruplex structure [28]. LINE,
SINE, LTR, and G4 sequence element content was measured in
50 kb non-overlapping windows across the genome. In order to
assess the association between element content and breakpoint
occurrence, the breakpoint frequency in windows that harbored
an above median eclement content was compared to that of
windows with a below median element content. Only regions with
array coverage were included, and windows with CNVs were
excluded. Fisher’s exact test was used to assess the significance of
repetitive sequence enrichment in the 1q and 6p amplicon peak
regions.
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Results

The 6p22 region

Of the 261 cases analyzed by 32 K BAC array-CGH 29 cases
showed focal copy number alterations occurring within the 6p22.3
region (Chr6:14.9-24.8 Mb). The frequency plot (Figure 1A)
places E2F3 at the slope of the amplification frequency peak, with
the most frequently amplified gene being SOX4. When amplified,
however, both genes show similar amplification amplitudes
(Figure 1B). Although the focal genomic amplifications usually
included all three genes (E2F3, CDKALI, and SOX4), we detected
four cases (14%) in which £2F3 was not included in the amplified
segments (Figure 2). These four cases showed amplification
breakpoints between E2F3 and SOX#: within the CDRKALI coding
region in three cases and in the CDEAL! promoter region in one.
Hence, the only intact amplified gene in these four cases was
SOX4. No cases with E2F3 amplification without concomitant
SOX4 amplification were found. This strongly argues for SOX4 as
an auxiliary target to £2F3 in 6p22.

A total of 213 segmentation shifts indicating chromosomal
breaks were identified within the 6p22.3 region (Figure 3). The
breaks were binned in 50 kb non-overlapping windows and tested
for an uneven distribution within the region. Enrichment of breaks
was observed between E2F3 and CDEALI (p<1x10~%) and to a
lower extent at the proximal side of SOX4 (p<<1x10~2). To assess
whether sequence elements were associated with breakpoint

A
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occurrence, the content of LINE, SINE, LTR, and G4 sequences
was measured in 50 kb windows across the genome. The median
genome-wide sequence element content per 50 kb window was
19.2% LINE, 10.8% SINE, 7.5% LTR, and 28 bp of G4 motif
sequence. Genome-wide, breakpoints occurred preferentially in
segments with an above median number of SINE and G4
elements, 1.8 and 1.4 fold higher frequency of breakpoints,
respectively (p<3x10~'®, Mann-Whitney test), and less frequently
in segments enriched for LINE and LTR elements (0.8 and 0.8
fold, p<8x107'%. The 6p22.3 amplicon region showed a
significantly higher frequency of SINE sequences but a signifi-
cantly lower frequency of G4 sequences, compared to the genome
as a whole (Table 1). No apparent association between breakpoints
in the E2F3-S0X4 region and the presence of the investigated
sequence elements was observed (Figure 3).

Correlations between DNA amplification and mRNA levels
were found to be high for all genes within the amplified region,
except for ID4. MBOATI expression followed gene copy levels
closely (p=10.66, p<5><1076) but was not always included in the
amplified regions. FE2F3 showed strong correlation (p=0.82,
p<<3x10~ ') and the highest mRNA fold-changes. SOX4, the most
proximal gene showed a highly significant association between
gene copy numbers and gene expression (p = 0.59, p<8x107°), as
did CDEALI (p=0.78, p<3x107'°%). SOX4 was overexpressed in

cases where F2F3 was not a part of the amplicon. Hence, both
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Figure 1. Summary of copy number gains at 6p22.3. A) Amplification frequency plot and B) average log 2 ratios for probes when amplified.
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1
:
I
B

Figure 2. Focal 6p22.3 amplifications not including E2F3. Amplification breakpoints occur within the coding region of CDKALT in A), B), and
C), and within the CDKALT promoter region in D).
doi:10.1371/journal.pone.0067222.g002
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doi:10.1371/journal.pone.0067222.g003
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Table 1. Summary of sequence element frequencies'.

6p and 1q Amplifications in Bladder Cancer

Element 6p regicm2 6p vs wa3 1q region2 1q vs wa? 6p vs 1q*
LINE 55/125 (44.0%) 0.21 278/574 (48.4%) 047 0.38

SINE 77/125 (61.6%) 1.2 x1072 334/574 (58.1%) 9.4x10° 0.55

LTR 62/125 (49.6%) 1 229/574 (38.1%) 1.6x10°° 5.7x1072
G4 44/125 (35.2%) 1.2x1073 356/574 (61.9%) 1.0x1078 52x1078

"Values compared with whole genome median values (=50%).

doi:10.1371/journal.pone.0067222.t001

increased E2F3 and SOX4 gene copy numbers are strongly
associated with increased mRNA expression (Figure 4A and 4B).

The 1921-24 region

Thirty-seven of the 261 cases analyzed by 32 K BAC array-
CGH harbored 1q copy number aberrations occurring within a
29 Mb genomic segment (Chrl:143.6-172.3 Mb). Although the
high resolution zoom-in array further highlighted the heterogene-
ity of lq alterations, three regions emerged as candidates for
amplification: amplicon 1 at chr1:143.9-148.5 Mb, amplicon 2 at
chrl:149.8-152.9 Mb, and a distal amplicon (amplicon 3) at
chr1:159.7-161.7 Mb  (Figure 5). These regions appear as
concomitant amplifications in most cases: in 17 cases (46%) all
three regions were amplified, in 6 cases (16%) amplicon 2 and 3,
and in 2 cases (5%) amplicon 1 and 2. In no instance were
amplicons 1 and 3 co-amplified without amplification of amplicon
2 (Figure 6). Only amplicon 3 was found amplified as a single unit,
seen in 12 cases (34%).

Amplicon 1, observed in 19 of the 37 cases (51%) with 1q gains,
always included the genes BCL9 and CHDIL. A strong correlation
between BCL9 and CHDIL mRNA expression and gene copy
numbers was also observed, (p=0.63, p<2><1075, and p=0.53,
p<2x10~* respectively). Cases with amplified BCL9 and CHDIL
were highly enriched among the high expressing cases (Iigure 4C
and 4D). Amplicon 2 showed two possible sub-peaks that
occasionally appeared as separate amplifications (Figures 6A, 6B,
6C and 6D). The anti-apoptotic gene MCLI was amplified in 25
out of the 37 (68%) cases, including one case with MCLI only.
Two additional genes included in the peak region were: ARNT,
also known as HIFIB, and SETDBI. ARNT/HIFIB was amplified
in 24 (65%) of the cases, while SETDBI was amplified in 23 (62%)
cases. All three genes showed a significant correlation between
gene copy numbers and gene expression; MCLI (p=0.73,
p<3x107'%), ARNT/HIFIB (p=0.54, p<3x10~ %), and SETDBI
(p=0.64, p<6x 107°). Cases with MCLI, and SETDBI ampli-
fications where highly enriched among the high expressing cases
(Figure 4E and 4F), as was ARNT/HIFI1B (not shown). The third
amplicon region harbored copy number aberrations in 35 out of
37 cases (95%). The amplicon region spans approximately 68
genes but the amplification frequency peaks around 25 genes
located at chrl:160.84-161.35 Mb (Table S3). Eleven of these
genes showed strong association (p=0.55, p<3x10~ % between
gene copy number and gene expression (Table 2), including the
tight junction adhesion related F77R, the death effector domain
containing DEDD, and the transcription factor USFI, as well as
four genes associated with mitochondrial functions: PPOX,

NDUFS2, TOMM40L, and SDHC.

PLOS ONE | www.plosone.org

2Number of windows with above median number of repetitive sequence elements (6p region: Chr6:17.4-23.6 Mb, 1q region: Chr1:143.6-172.3 Mb, HG19).
3p-values obtained by Fisher's exact test when comparing with the whole genome.
“p-values obtained by Fisher's exact test when comparing frequencies in the 6p and the 1q region.

A total of 599 segmentation shifts indicating chromosomal
breaks were detected within the 1q amplification region (Figure 7).
One region, located within amplicon 1, showed a strong
enrichment for breakpoints (p<<10~%. No clear association
between the clustering of breakpoints and specific sequence
elements could be established. However, compared to the whole
genome, the 1q region shows higher frequencies of G4 and SINE
elements, and lower frequencies of LTR sequences. Furthermore,
the 1q region differed significantly from 6p amplification regions
with respect to G4 element content (Table 1). A notable feature of
the 1q region is the high frequency of intraregional sequence
duplications (Figure 7), particularly within the amplicon 1
segment. Similar occurrences of intraregional sequence duplica-
tions were not observed in the 6p region (Figure 3).

Discussion

The most frequent genomic copy number gains in UC occur on
6p and lq. The 6p amplification, mostly seen in high grade
tumors, has been extensively studied and E2F3 is believed to be
the main target. There are however cases with 6p amplifications
that do not cover E2F3 [7]. Aberrations of 1q occur both in low
and high grade tumors. However, whereas whole chromosome
arm gains are seen in low grade tumors, high grade tumors
frequently show complex focal amplifications [7,19]. In addition,
no bona fide target genes have so far been assigned to the lq
region in UC. To resolve some of these issues we selected 29 cases
with 6p22 and 37 cases with 1q21-24 focal amplifications from a
series of 261 cases analyzed by 32 K BAC array-CGH for high
resolution zoom-in array CGH analyses. The applied zoom-in
platform has an approximately ten-fold increase in resolution with
a design that makes it possible to identify intragenic breakpoints.

The abundance and the high sequence similarity among
repetitive elements make them potential driving factors for
genomic instability [29]. Mechanisms suggested to be in operation
include un-equal crossing-over and non-allelic homologous
recombination repair events [30-33]. Both the 6p and the 1q
regions contained higher frequencies of SINE elements that may
contribute to the nature of the amplifications. Alternative forms of
secondary DNA structures have also been linked to genomic
instability [34-38] such as G4 quadruplexes, formed by guanine-
rich sequences that adopt four-stranded secondary DNA structures
[39]. Regions rich in G4 sequence motifs have been shown to be
enriched for DNA breaks in cancer [38], something we also
observe in the present study. Furthermore, hypomethylation, a
common feature of cancer genomes, potentially aids the formation
of G4 quadruplex structures [38]. In contrast to 6p, the 1q region
showed a high frequency of G4 quadruplex sequence motifs,
particularly in the amplicon regions 2 and 3. Amplicon 1, on the
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Figure 4. Association between gene amplification and expression. The 212 samples with both gene expression and genomic data were rank
ordered based on A) E2F3, B), SOX4 C) CHD1L, D) BCL9, E) MCL1, and F) SETDBT mRNA expression. Cases with focal genomic amplification of the
respective gene are indicated with red. For each gene the difference in gene expression between amplified and non-amplified cases were tested by a

Mann-Whitney test. The obtained p-values are indicated in each sub graph.

doi:10.1371/journal.pone.0067222.g004

other hand, showed a large number of intraregional sequence
duplications, a feature that is absent in the 6p region. Hence, our
data suggest that the observed heterogeneity of 1q amplifications
may be a consequence of an underlying regional instability caused
by an accumulation of specific sequence motifs. Regions with
similarly high density of regional sequence duplications are also
seen in other peri-centromeric regions e.g., in chromosomes 7, 9,

and 16.

Several investigations have indicated £2F3 as the major target
gene for 6p22 amplifications [40-44]. E2F3 has a central role in
cell cycle regulation [45] and the frequent £2F3 amplifications are
consistent with the frequent RBI alterations seen in UC, both

A

CHD1L/BCLY
Tvv

MCL1/ARNT/SETDB1
W 2

affecting the same key transition in cell cycle regulation [46]. Hurst
et al. [40] have pointed to an intimate link between E2F3 and RB1
in UC and we have recently identified an E2F3/RBI genomic
circuit operating in a subset of UCs [7]. In light of this, it is
intriguing that £2F3 is not the most frequently amplified gene at
6p22. The finding of 6p22 amplifications not spanning the E2F3
gene, with genomic breaks within the CDRALI gene, strongly
suggests SOX4 as possible auxiliary target gene within 6p22.
Intriguingly, both depletion and overexpression of SOX4 may have
unfavorable effects on cell survival [47,48]. Recent investigations
have reported SOX4 as a part of the pro-apoptotic TP53 pathway
in which SOX4 expression is induced during DNA damage and
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Figure 6. Examples of focal copy number gains within the 1q21-24 region. A) Each of the three amplicons amplified to a different extent,
with a CNV loss occurring between amplicon 1 and amplicon 2. B) Amplicon 2 MCL1 region amplified. C) Similar event as in A but with varying copy
number levels in amplicon 2. D) Amplicon region 2 and 3 amplified independently. E) Amplicon 3 amplified alone. F) Amplicon region 1 and 2

amplified as a single unit.
doi:10.1371/journal.pone.0067222.g006

stabilizes TP53 by blocking MDM2-mediated ubiquitination and
degradation [49]. This function could explain why SOX4
overexpression has been linked to apoptosis and been associated
with better patient survival [47,50]. In contrast to these findings,
SOX4 has also been reported to have positive effect on cellular
survival [48,51]. SOX4 expression has been linked to increased
proliferation through modulation of B-catenin/TCF activity in
TP53 mutated cell lines [52]. In addition, SOX4 expression
activates EGFR expression and influences the NOTCH pathway
[52,53]. Taken together these findings indicate SOX4 as a
multifunctional protein that may have a context dependent
cellular function. All four cases with SOX4 but not E2F3
amplification harbored 7P53 mutations. This leaves the question
open whether SOX4 could have oncogenic properties when

Table 2. Correlation between gene copy numbers and gene
expression.

Gene Correlation’(p) p-value
F11R 0.63 <2x10°°
USF1 0.59 <7x10°°
NIT1 0.58 <8x10°°
DEDD 0.77 <3x107'®
UFC1 0.61 <3x10°°
UspP21 0.67 <3x10°°
PPOX 0.71 <3x107'®
B4GALT3 0.80 <2x107"
NDUFS2 0.64 <9x10°°
TOMMA40L 0.55 <3x107*
SDHC 0.75 < 3x107'®
TSpearman rank correlation.
doi:10.1371/journal.pone.0067222.t002
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amplified in 7P53 mutated cases of UC. Recent investigations
have shown that SOX4 is regulated through rapid protein
degradation [54]. This indicates that SOX4 function may, in
analogy with TP53, be required or triggered at specific cellular
conditions or transitions. As a consequence, SOX4 gene copy
number alterations resulting in increased mRNA levels does not
necessarily have to result in increased steady state SOX4 protein
levels. Accordingly, our attempts to establish a link between SOX4
gene copy numbers and increased protein levels by IHC did not
show any convincing results. This does however not exclude an
oncogenic potential of the SOX4 protein.

Even though many studies identify 1q amplifications as a
frequent event in UG, few studies report on specific target genes.
This is probably due to the fact that the 1q target region is large
and gene dense, and as a consequence, may harbor several target
genes. Furthermore, 1q amplifications are heterogeneous and
occur in a large genomic region, spanning more than 29 Mb. At
least three regions could be identified based on the copy number
frequency profiles in the current study. The most proximal region
was amplified in close to 60% of the cases with 1q alterations. This
region contains at least two genes with potential tumor promoting
characteristics: BCL9 and CHDIL. BCL9 acts as a nuclear
component of the Wnt pathway in association with LEF/TCF
family members [55]. BCLY overexpression has been linked to
increased tumor cell proliferation, survival, migration, and
invasion by enhancing B-catenin-mediated transcriptional activity
[56,57]. Furthermore BCL9 knock-down tumors show a less
aggressive phenotype and result in increased host survival in
mouse xenograft models of multiple myeloma and colon
carcinoma [56]. Overexpression of CHDIL, also known as ALCI
(amplified in liver cancer 1), has been found to inhibit apoptosis,
promote G1/S transition, and promote tissue invasion and
metastasis [58-60]. Furthermore, CHD1I-transgenic mice develop
spontaneous tumors in various organs, including liver, neck, and
colon [61]. Hence, increased expression of both BCL9 and CHDIL
may have tumor promoting effects. The analysis highlighted three
genes within the central amplified region on 1q: MCLI, ARNT/
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Figure 7. Chromosome 1q breakpoints. A) Breakpoint occurrence within 50 kb non-overlapping windows across the 1q target region.
Significance thresholds, red line, p<10’3; blue line, p<10’2, determined by permutation (10000 fold) of breakpoints in the 1q region (Chr1:140.0-
184.0 Mb). Tracks for LINE, SINE, LTR, and G4 element frequencies within 50 kb windows are given. LINE, SINE, and LTR are displayed as percentage of
window, while G4 is displayed as the number of base pairs of G4 sequence per window. Intraregional sequence duplications are connected with
green lines in the DupSeq track. Locations of CNVs and genes are given in individual tracks. Genomic positions in Mb (HG19).
doi:10.1371/journal.pone.0067222.g007

HIFIB, and SETDBI. MCLI is a member of the BCL? anti- response to hypoxia [63,64]. Adaptation to hypoxic conditions
apoptotic gene family and a part of a commonly amplified region may be a prerequisite for tumor progression and metastasis [65]. A
containing at least six additional genes that are altered in several recent large-scale study identified a region spanning from MCLI to
cancer types [62]. siRNA knockdown of MCLI results in increased SETDBI, as a key amplified region in malignant melanoma, and
apoptosis, clearly indicating MCLI as a target for amplification suggested SETDBI as the target gene [66]. This was motivated by
[62]. HIFIB forms a hetero-dimer with HIFIA and EPAS1/ the finding that overexpression of SETDBI in an animal model
HIF2A that functions as a transcriptional regulator of the adaptive resulted in accelerated melanoma onset and formation [67]. The
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SETDBI gene was, however, not always included in the lq
amplifications in the present cohort of UCs. The best established
oncogene of the three genes in the central amplicon i1s MCLI [62].
As SOX4, MCLI protein is rapidly degraded by the proteasome
which makes an association between gene copy numbers and
protein expression hard to establish [68]. However, cells with
MCLI amplification show a more pronounced response to shRNA
knock-down of MCLI than cells wild-type for the gene [62]. In
conclusion our analysis of the 1q and 6p regions highlights intrinsic
features of the genome such as repetitive element and G4-
sequence content as putative enablers of chromosomal instability.
The stark contrast between the 1q and 6p amplification patterns
suggests that different mechanisms and selection pressures may
dictate the appearance of the respective genomic alterations.
Further studies are needed to resolve the question of whether the
heterogeneous appearance of the 1q region is the result of complex
rearrangements in an unstable region or the result of clonal
heterogeneity at the population level.
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