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Remotely-sensed, nocturnal, dew point correlates
with malaria transmission in Southern Province,
Zambia: a time-series study
David Nygren1, Cristina Stoyanov2, Clemens Lewold1, Fredrik Månsson1, John Miller3, Aniset Kamanga4

and Clive J Shiff2*
Abstract

Background: Plasmodium falciparum transmission has decreased significantly in Zambia in the last decade. The
malaria transmission is influenced by environmental variables. Incorporation of environmental variables in models of
malaria transmission likely improves model fit and predicts probable trends in malaria disease. This work is based
on the hypothesis that remotely-sensed environmental factors, including nocturnal dew point, are associated with
malaria transmission and sustain foci of transmission during the low transmission season in the Southern Province
of Zambia.

Methods: Thirty-eight rural health centres in Southern Province, Zambia were divided into three zones based on
transmission patterns. Correlations between weekly malaria cases and remotely-sensed nocturnal dew point, nocturnal
land surface temperature as well as vegetation indices and rainfall were evaluated in time-series analyses from 2012 week
19 to 2013 week 36. Zonal as well as clinic-based, multivariate, autoregressive, integrated, moving average (ARIMAX)
models implementing environmental variables were developed to model transmission in 2011 week 19 to 2012 week
18 and forecast transmission in 2013 week 37 to week 41.

Results: During the dry, low transmission season significantly higher vegetation indices, nocturnal land surface
temperature and nocturnal dew point were associated with the areas of higher transmission. Environmental
variables improved ARIMAX models. Dew point and normalized differentiated vegetation index were significant
predictors and improved all zonal transmission models. In the high-transmission zone, this was also seen for land
surface temperature. Clinic models were improved by adding dew point and land surface temperature as well as
normalized differentiated vegetation index. The mean average error of prediction for ARIMAX models ranged from
0.7 to 33.5%. Forecasts of malaria incidence were valid for three out of five rural health centres; however, with poor
results at the zonal level.

Conclusions: In this study, the fit of ARIMAX models improves when environmental variables are included. There
is a significant association of remotely-sensed nocturnal dew point with malaria transmission. Interestingly, dew
point might be one of the factors sustaining malaria transmission in areas of general aridity during the dry season.
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Background
In 2010, roughly 200 million malaria cases and 660,000
deaths related to malaria were reported worldwide and
86% of these deaths were among children under five
years of age [1]. In Zambia, malaria is endemic with sea-
sonal transmission peaking between December and May
and coinciding with the rainy, wet season [2]. According
to reports from the Ministry of Health (MoH) and the
National Malaria Control Centre (NMCC) in Zambia,
the number of malaria cases annually decreased by more
than 60% between 2001 and 2008 [2]. In addition, a
decrease from a parasite prevalence of 13.7% (2006)
amongst children under five years of age to 8.4% (2012)
has been seen in the area of the study, Southern Province,
Zambia [3,4].
Plasmodium falciparum, the causative agent of severe

malaria, is transmitted mainly by Anopheles arabiensis in
Southern Province [5]. It is a nocturnally active mosquito
with a high desiccation resistance [6]. Because of the na-
ture and ecology of these mosquitoes, climate has a strong
influence on their ability to forage and survive. Hence,
temperature, humidity, rainfall, elevation, and vegetation
are important determinants of malaria transmission. De-
velopment and replication of the parasite in the mosquito,
the intrinsic incubation period, is affected not just by aver-
age but also by daily temperature variations [7,8]. When
temperature increases, mosquitoes become infectious
more rapidly [9]. Relative humidity plays an important
role in mosquito survival. Recent studies have shown
that low humidity shortens the lifespan of mosquitoes
thereby influencing malaria transmission dynamics [10].
Rainfall is also key to ensure mosquito survival as water
bodies are necessary for breeding sites [7]. Finally, vegeta-
tion, which also is reliant on moisture, impacts mosquito
survival by acting as resting place and as source of food
[11]. The role of moisture in the air is an important
feature that regulates the flight conditions of potentially
foraging mosquitoes and this has been shown in numer-
ous studies where moisture has been defined as rainfall
[12], relative humidity [13] or dew point [14]. However,
humidity derived from meteorological measurements
represents a broad scope of conditions and thus it does
not reflect the instantaneous and very focal behaviour of
mosquitoes. At critical times during dry seasons, which
cover months in time, humidity must relate more to the
insect’s refugia than the broad seasonal situation. Perusal
of the literature in general suggests that this is the first
time that a condition related to the dew point or moisture
in the column of air at or near ground level has been
obtained from satellite data reflecting discrete and focal
ground conditions and is used for predicting malaria
transmission foci. Furthermore, as these data are available
nocturnally they relate directly to the environmental con-
ditions affecting the potential flight and feeding behaviour
of the vector species. Taken together, the connection
between malarial transmission and environmental factors
is evident across the spectrum of parasite and mosquito
development, feeding and survival.
In both space and time, malaria transmission is focal

and heterogeneous [15]. In Southern Zambia, during the
dry season, malaria transmission is restricted a result of
excessive heat and arid conditions. However when condi-
tions ameliorate, restricted foci of transmission do occur
and are likely to be the source of malaria parasites that
spread during the subsequent peak transmission season,
when the rains set in [16]. The basis for this lies in envir-
onmental factors that periodically permit foraging behav-
iour of the mosquitoes during the dry season and are
likely to be critical in maintaining the malaria disease in
the overall population.
Remotely-sensed data on environmental variables can

be accessed through the moderated resolution imaging
spectroradiometer (MODIS) sensor aboard NASA’s Aqua
and Terra satellites. They view the entire Earth’s surface
every one to two days; Terra passes north to south across
the Equator in the afternoon while Aqua passes south to
north in the evening. Through remote sensing estimates
of elevation, normalized differentiated vegetation index
(NDVI), nocturnal dew point (DWP), nocturnal land sur-
face temperature (LST), and rainfall can be accessed and
subsequently used in modelling transmission. NDVI is an
index of the amount and healthiness of vegetation and is
described as arbitrary units ranging from -1 to 1 and
DWP is associated with relative humidity and is seen as a
surrogate factor of air moisture since DWP is an absolute
measure of water vapour in the air. LST is a measurement
of the nocturnal temperature close to the ground
Here, differences in environmental variables are described

among three regions in the Southern Province in Zambia
with distinct transmission levels. The use of environmental
variables in multivariate autoregressive integrated moving
average (ARIMAX) models to investigate environmental
impact on malarial transmission in the study area is de-
scribed. The study incorporates dew point temperature as
a surrogate for air moisture in addition to the previously
studied NDVI, LST and rainfall variables [17-19]. This
study could lead to identification of the remotely-sensed
DWP as a significant determinant of transmission.

Methods
Study area, population and vectors
Southern Province, Zambia was chosen as the study area
and 38 rural health centres (RHC) were included, see
Figure 1. Coordinates of RHCs were acquired through
NMCC and MoH, or when missing through field visits
to clinics if possible. Population catchment estimates were
obtained from the NMCC, as well as estimated yearly
population growth numbers. These were cross-referenced



Figure 1 Map of Zambia. Showing district boundaries of Southern Province. The borders of the colour pattern in Southern Province represent
the study area, with the dots representing each of the 38 health centres involved in the study. The coloured incidence map further represent the
averages of weekly incidence during 2011-2013 for the dry, low season (weeks 19-48) created by using Kriging. Lake Kariba is seen east of the
study area.

Nygren et al. Malaria Journal 2014, 13:231 Page 3 of 13
http://www.malariajournal.com/content/13/1/231
with head counts from a sample of the clinics. Southern
Province has an area of 85,283 sq. km, mainly covered by
grasslands (68%), forests (12%) and savanna (12%) [20]. It
is a drought-prone region with the least amount of rain
compared to the rest of the country [3]. Its 2012 popula-
tion is estimated at 1,589,926 out of which 75% live in
rural areas and 14.4% are below five years of age [21]. The
studied RHCs serve approximately 330,000 people of
which the great majority is of the Tonga tribe.

Case data
The number of weekly malaria cases confirmed by rapid
diagnostic test (RDT) or microscopy was obtained from
the NMCC weekly rapid reporting system database col-
lected and housed by District Health Information Sys-
tem 2 software for each RHC [22]. This database is built
on a surveillance model that uses mobile phones to report
passively detected malaria cases at each RHC every week.
This system was established to support malaria elimination
efforts in areas of the country with low malaria disease bur-
den or otherwise targeted for elimination. The study period
incorporates 126 weeks and runs from 2011 week 19 until
2013 week 41. The dry, low season runs from week 19-48
and the wet, high season from week 49-18. RHCs were
included only if they had available spatial coordinates,
population estimates and 100% completeness rate in
weekly reports through 2013 week 33. However, out of
the total of 38 RHCs only 19 started reporting during
the dry, low season of 2011. The remaining 19 RHCs
started reporting between 2011 week 48 and 2012 week
19. These time periods marked the roll-out of the
weekly reporting across the province during 2011. In
total, 3,581 weekly reports with 53,203 malaria cases
were analysed. The number of weekly reports with zero
cases reported was 1,485. Diagnostic tests were available
for the majority (92.1%) of weekly reports. Incidence data
was calculated for each RHC using weekly case load and
estimates of the population served.

Buffer zones and transmission zones
Five-km buffer zones surrounding each RHC were created
in an effort to account for their catchment area as well as
for mosquito dispersal [7,23,24]. Buffer zone averages were
then used when analysing environmental variables, except
for dew point where raw data are of a lower resolution
(5×5 km). Kariba and Siavonga RHCs were situated at
300 m distance from each other, which is why these were
combined. The 38 RHCs were grouped into three separate
transmission zones based on the average incidence levels
during the dry, low transmission season, defined as week
19 to week 48. The zones were divided as follows: high
transmission when incidence greater than ten cases/
10,000 people per week, medium transmission when
incidence of one to ten cases/10,000 people per week and
low transmission when incidence of less than one case/
10,000 people per week during a low season 2011-2013.
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There were nine, 15 and 14 RHCs included in the high,
medium and low transmission zones, respectively.

Remotely-sensed data
Remotely-sensed environmental data that have been used
previously to predict or describe malarial transmission
were chosen in our analysis. This included NDVI, LST
and rainfall. Moreover, remotely-sensed DWP was added
and elevation data obtained. With the exception of rainfall
measurements that were provided by Meteosat by TAM-
SAT research group [25-28], data were collected by the
MODIS-sensor aboard the NASA satellites Aqua and Terra
[29,30]. Zonal environmental differences were analysed
using non-parametric Kruskall-Wallis tests. All environ-
mental data were rectified into weekly values.

MODIS products
NDVI were obtained from MOD13A-products with
1-km pixel resolution [31]. NDVI use blue, red and near-
infrared reflectance to determine daily vegetation indices.
Monthly averages of buffers were used in the analysis.
When buffers included water surface, thus resulting in
erroneous and negative vegetation indices, raster data
were converted to point data. This occurred at one
RHC. Point data were then extracted and point values
less than 0 were omitted from the analysis.
DWP was obtained from the MOD07-product with 5×5

km resolution [32]. Nocturnal measurements were aver-
aged into eight days for the analysis. Due to cloud cover,
812 (20.1%) out of 4,033 analysed eight-daily averages had
missing data. Missing data were imputed with the average
of preceding and following weeks.
LST was obtained from the MOD11A-product with

1-km resolution [33]. Nocturnal measurements were
averaged into eight days for the analysis. Due to cloud
cover, 697 (17.3%) out of 4,033 of the 5-km RHC buffers
had missing data. Missing values were imputed with the
1-km pixel representing the RHC’s position. If that was
also cloud-covered, the average of preceding and following
weeks was imputed. DWP and LST were expressed as ˚C.

Elevation
Elevation data were obtained through Advanced Space-
borne Thermal Emission and Reflection Radiometer
(ASTER), with a sensor with 30-m resolution, on board
the Terra satellite used for creating a global digital ele-
vation map [34].

Rainfall
TAMSAT mean Tropical Applications of Meteorology
using SATellite data and ground-based observations.
This is an estimation of rainfall derived from thermal
infrared channels on Meteosat, which is calibrated against
ground-based rain gauge data. Monthly rainfall amounts
were used in the analysis [25-28].

Kriging
An interpolated incidence map was created to visualize
malarial transmission in the region. The method of
Kriging was used for this purpose and in short, it inter-
polates incidence data as an incidence map based on
point values [35].

ARIMAX modelling
ARIMAX models were chosen to fit the data because it
accurately reflects the impact of short time fluctuations in
time-series data. Models were fitted for the high, medium
and low transmission zone with one model each. Five
RHCs in the high-transmission zone were also independ-
ently modelled due to them having data from all seasons
in the study period. These were Sinafala, Siatwinda,
Siamuleya, Siavonga and Maamba RHCs. The ARIMAX
(p,d,q)models were fitted with three categories of parame-
ters: the autoregressive parameter (p), differencing steps
(d) and the moving average parameter (q).
Separately for different modelled areas, association be-

tween malaria incidence and each temporally referenced
environmental variable was evaluated. To determine at
which lag time each particular variable was the most in-
fluential on malaria incidence, all correlations between
one to 11 weeks of lag were examined. This procedure
was performed for all models in the same way. Strongly
correlated lag times (p-values ≤0.1) were chosen for
further evaluation and were included in multiple variable
ARIMAX models.
Log-transformed weekly incidence data from 2012 week

19 to 2013 week 36 were used as a training set for the
ARIMAX model. The best possible combination of envir-
onmental covariates was determined by Akaike's informa-
tion criterion (AIC) to find the best fit [36]. Model fit was
then again assessed based on its AIC-value after adjust-
ment of the model parameters. The accuracy of the model
was tested on data for the testing period 2011w19 to
2012w18 and here evaluated with the mean average
error (MAE) expressed as a percentage describing the
mean of the weekly deviation between each actual
measured and each predicted value [18]. The Ljung-Box
Q statistic was calculated to determine if there were auto-
correlations in the residuals. If statistically significant
autocorrelation was found, the model was dropped [19]. A
total of 417 models combining different environmental
variables and ARIMAX parameters were evaluated before
settling for the eight best models. See Additional file 1 for
a log file describing modelling.
All models were analysed for forecasting ability. The

choice was made to forecast four weeks forward starting
2013 week 37. Actual versus predicted incidence rate was



Table 1 Rural health centre and zonal seasonal incidence

ZONE RHC Pop. (2012) Incidence low
season 11

Incidence high
season 11-12

Incidence low
season 12

Incidence high
season 12-13

Incidence
low 13

HIGH

Sinafala 6,441 47.37 94.22 32.24 122.54 56.17

Masuku Mines 5,130 6.82 86.38 28.14 57.76 3.19

Siamuleya 14,523 16.43 154.29 38.65 121.17 32.06

Cheeba 2,319 59.30 12.79 69.66 13.50

Siavonga and Kariba 18,119 9.74 14.82 10.51 9.20 6.73

Sianyolo 12,942 47.00 13.55 51.47 12.84

Maamba 14,003 89.70 187.58 45.23 69.08 20.13

Siatwinda 9,691 75.39 133.24 82.72 67.33 21.88

Zonal pop. and mean 83,168 40.91 97.10 32.98 71.03 20.81

MEDIUM

Batoka 15,115 4.04 34.88 8.18 24.38 4.08

Choma 2,636 4.03 8.49 2.78 3.38 2.07

Muzoka 5,082 1.37 14.76 3.28 9.66 3.00

Pemba Main 7,622 0.42 2.03 1.49 5.04 1.43

Pemba Sub 2,636 2.24 11.91 3.16 2.03 1.45

Zambia National Health Services 2,721 2.64 3.68 4.41 5.92 3.39

Kanchele 11,200 2.81 14.35 2.05 7.09 1.80

Mayoba 2,933 4.47 5.45 2.05 2.80 0.72

Nakambala Urban 36,711 2.84 1.21 2.04 1.09

Nanga 9,912 1.89 1.45 1.97 2.34

Research Station 6,127 0.93 1.31 2.53 1.32

Nega Nega 4,904 11.65 1.36 7.21 2.20

St Mary's 3,058 2.83 3.95 2.32

ZCA Railways 5,524 2.53 3.65 2.07

Zonal pop. and mean 116,181 2.76 9.41 2.72 5.83 2.09

LOW

Chilalantambo 2,636 0.39 1.04 0.25 0.51 0.62

Nakeempa 7,622 0.28 4.31 0.92 2.11 1.00

Popota 5,129 1.69 2.67 0.52 2.00 0.64

Habulile 8,399 0.00 14.07 0.36 1.81 0.31

Kaleya Urban 10,096 1.37 0.99 2.59 0.80

Magoye 16,628 3.17 0.62 1.25 0.68

Mukuyu 6,315 0.88 0.16 0.56 0.09

Munjile 4,868 1.62 0.21 1.45 0.22

Nadeswe 9,708 0.58 0.68 0.28

Charles Lwangwa 2,405 0.83 3.33 0.45

Hamapande 8,418 0.71 1.75 0.65

Kanundwa 9,621 0.17 0.56 0.40

Katimba 10,436 0.63 2.08 1.25

Moobola 13,290 3.15 0.50 1.07 0.37

Muchila 16,798 2.35 0.97 1.62 0.36

Zonal pop. and mean 132,369 0.59 3.46 0.56 1.56 0.54

All 38 rural health centres (RHC) divided into three zones based on their weekly incidence per 10,000 individuals during the dry, low season. First column present
population numbers in 2012 for each RHC as well as total population of zone. Then average of weekly seasonal incidence level for each RHC as well as zonal
average is presented. Where missing values for Low Season 11 and High Season 11-12 these RHC had not yet started reporting weekly case data.
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Table 2 Zonal and seasonal average incidence with confidence intervals

Weekly seasonal average
incidence/10,000 people

High-transmission Medium-transmission Low-transmission

Zone Zone Zone

2011 May-Nov 40.07 (33.90 -46,23) 3.17 (2.04-4.30) 0.74 (0.31-1.17)

2011 Dec-2012 Apr 106.95 (85.32-128.57) 10.34 (8.11-12.58) 3.48 (1.87-5.08)

2012 May-Nov 32.98 (22.92-43.04) 2.72 (1.67-3.77) 0.56 (0.34-0.78)

2012 Dec-2013 Apr 71.03 (56.96-85.09) 5.83 (4.73-6.94) 1.56 (1.02-2.11)

2013 May-Aug 19.80 (14.26-25.33) 2.08 (1.12-3.04) 0.54 (0.15-0.93)

Weekly seasonal average incidence values shown with 95% Confidence Intervals highlight the significant differences between the zones. These weekly values are
averaged into seasonal values for high, medium and low-transmission zones.
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calculated for these four weeks of forecast, and based on
these values, MAE was calculated to evaluate how accur-
ate forecasts were. MAE-values of ± 15% were rendered
acceptable.
Software
ArcGIS 9.1 and 10.2 ESRI, Redlands, California, USA
was used while performing spatial statistics and further
data management was performed in Microsoft Excel 2010,
Microsoft. Redmond, Washington, USA. Kruskall-Wallis
tests, Ljung-Box Q statistics, time-series analysis and
ARIMAX modelling were performed in STATA 12.0,
StataCorp, College Station, Texas, USA.
Ethical considerations
Ethical approval was not sought for this study since aggre-
gated, not individual, case data were used.
Figure 2 Study area – low season incidence map. Showing a Kriging in
low seasons of 2011-2013. The different colours indicate the transmission p
Results
Transmission and environment
Taken together, the average weekly incidence rates for all
dry, low season weeks 2011-2013 were 0.61, 2.66 and
30.95 weekly cases/10,000 people for the low-, medium-
and high-transmission zones, respectively. Between high
and low season of 2011-2012 and 2012-2013, there was
a downward trend in incidence with an average decrease
of 32.1% for the entire study area (Tables 1, 2, Additional
file 2). Kriging estimated incidence maps on both low and
high season illustrating transmission patterns between
seasons and zones are seen in Figures 2, 3.
In the zone of higher malaria transmission, NDVI, LST

and DWP had higher measurements than in the lower
transmission zone (Table 3, Additional file 2). This differ-
ence was accentuated during the low season. When com-
paring climatic variables between the high-, medium- and
low-transmission zones, using Kruskall-Wallis test, there
terpolation of rural health centre (RHC) incidence data from the dry,
attern at the 38 RHCs in Southern Province, Zambia.



Figure 3 Study area– high season incidence map. Showing a Kriging interpolation of rural health centre (RHC) incidence data from the wet,
high seasons of 2011-2013. The different colours indicate the transmission pattern at the 38 RHCs in Southern Province, Zambia.
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were significant differences seen between all three
zones regarding LST (p < 0.001), DWP (p < 0.001) and
NDVI (p < 0.001) during the dry, low season, with
higher values for areas of higher transmission. The
high-transmission zone was significantly lower elevated
than the low- and medium-transmission zones (p = 0.035).
No significant difference in rainfall measurements was
Table 3 Zonal environmental differences during high and low

Months May-Nov High zone Medium

Av. NDVI 0.39 0.38

Av. EVI 0.21 0.22

Av. Noct. LST 17.15 12.78

Av. Noct. DWP 1.17 -1.42

Rainfall mm 8.56 9.07

Incidence per 10000 30.95 2.66

Months Dec-April High zone Medium

Av. NDVI 0.63 0.63

Av. EVI 0.42 0.42

Av. Noct. LST 20.32 16.79

Av. Noct. DWP 9.42 7.83

Rainfall mm 121.24 125.45

Incidence per 10,000 87.89 8.05

Mean elevation 785 1176

Normalized differentiated vegetation index (NDVI), enhanced vegetation index (EVI)
rainfall, and incidence are shown for the three different zones. These are averaged
(Dec-April). A seasonal average of weekly incidence calculated per 10,000 people an
study years (2011-2013) are used for the averaged values for both environmental v
there are significant differences between all three groups.
found between all three zones during the months of lower
transmission (p = 0.98).
During the wet, high season the environmental dif-

ferences decreased between the three zones while trans-
mission as well as the environmental variables increased
throughout the study area. However, significant differences
between all three zones were still seen for LST (p < 0.001)
season

zone Low zone Kruskall-Wallis test

0.35 p < 0.001

0.19 p < 0.001

13.04 p < 0.001

-1.51 p < 0.001

9.26 p = 0.98

0.61

zone Low zone Kruskall-Wallis test

0.60 p = 0.019

0.40 p = 0.072

16.98 p < 0.001

7.81 p < 0.001

123.74 p = 0.74

2.49

1134 p = 0.035

, nocturnal land-surface temperature (LST) and nocturnal dew point (DWP),
seasonal values of the dry, low season (May-Nov) and for the wet, high season
d week as well as mean elevation of the different zones are also shown. All
ariables and incidence. Kruskall-Wallis Test p-values are shown for whether



Table 4 Zonal ARIMAX models’ variables, parameters and
forecasts

Model and parameters (p,d,q) AIC-fit MAE-test

High-ARIMAX( 6,1,5) 13.34 6.4%

Medium-ARIMAX (4,0,3) 80.61 16.2%

Low-ARIMAX (4,0,4) 137.44 28.6%

High zone variables Coefficient p-value

L7 DWP 0.033 p < 0.01

L7 LST 0.14 p < 0.001

L5 NDVI 0.83 p = 0.19

L7 NDVI 1.38 p < 0.01

Medium zone variables Coefficient p-value

L5 DWP 0.076 p < 0.001

L8 NDVI 3.51 p < 0.001

Low zone variables Coefficient p-value

L3 LST 0.024 p = 0.348

L8 NDVI 3.79 p < 0.001

L5 DWP 0.073 p < 0.001

Forecast w37-41 2013 MAE Predicted vs.
actual incidence

HIGH-ARIMAX -29.40% 63.0 vs. 89.9

MEDIUM-ARIMAX 40.27% 3.77 vs. 3.48

LOW-ARIMAX* -29.59% 0.91 vs. 1.48

Akaike’s information criteria (AIC) and mean average prediction error (MAE) are
shown for the best-fit models of the high-, medium- and low-transmission
zone ARIMAX models. MAE is calculated for the testing period of the models,
i e, 2011 w19 through 2012 w18. Normalized differentiated vegetation index
(NDVI), nocturnal land-surface temperature (LST) and nocturnal dew point
(DWP) are shown with specific lag-times with its coefficients as well as
p-values. Four-week forecasts MAE and predicted cases vs. actual cases for the
four weekly forecasts of the zonal models are shown.
*ARIMAX LOW forecast only three weeks ahead, due to using LST lagged at
three weeks.
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as well as DWP (p < 0.001) and NDVI (p = 0.019). There
were no significant differences between all three zones
regarding rainfall (p = 0.74).

ARIMAX models
The best fitting parameters of the three zonal models were
High Zone; ARIMAX(6,1,5), Medium Zone; ARIMAX
(4,0,3) and Low Zone; ARIMAX (4,0,4). The MAE for
the testing period for the high, medium and low zone-
models were 6.4, 16.2 and 28.6%, respectively, highlighting
better model fit in areas of higher transmission. Sig-
nificant predictor covariates of the high-transmission
zone included DWP (p < 0.01, coefficient = 0.033), LST
(p < 0.001, coefficient = 0.14) and NDVI (p < 0.01, coeffi-
cient = 1.38), all with a seven-week lag time. NDVI (p =
0.19, coefficient = 0.83) with a lag time of five weeks also
improved model fit, however non-significantly. For the
medium-transmission zone, significant model variables were
DWP (p < 0.001, coefficient = 0.076) and NDVI (p < 0.001,
coefficient = 3.51) with lag times of five and eight weeks,
respectively. For the low-transmission zone, significant
model variables were DWP (p < 0.001, coefficient = 0.073),
NDVI (p < 0.001, coefficient = 3.79) and non-significant
LST (p = 0.348, coefficient = 0.024) with lag times of
five, eight and three weeks, respectively (Table 4, Figures 4,
5, 6). Taken together, adding environmental variables
improved the fit for all models, and DWP and NDVI were
highly significant as predictors for all three zones. LST
was a highly significant predictor of the model developed
for the high-transmission zone. In addition, non-
significant variables, i e, LST lagged at three weeks for low
zone and NDVI lagged at five weeks for high zone, were
kept in the models since they improved AIC.
The five ARIMAX models of single RHCs in the high

zone had, apart from previous weeks’ incidence data,
significant predictors involving LST, DWP and NDVI in
the best fit for these models as well as non-significant
variables that improved AIC. Predictor covariates for
Maamba were NDVI (p = 0.982, coefficient = 0.025) lagged
at seven weeks, and for Siamuleya LST (p < 0.05, coeffi-
cient = 0.091 and p < 0.01, coefficient = 0.15) lagged at five
and seven weeks, respectively. Siatwinda predictors were
DWP (p < 0.001, coefficient = 0.061) lagged at six weeks,
Siavonga had NDVI (p < 0.001, coefficient = 8.09) lagged
at seven weeks and Sinafala had NDVI (p < 0.01, coeffi-
cient = 1.13 and p = 0.328, coefficient = 1.13) lagged at four
and six weeks, respectively. These RHC models had MAE
for the testing period ranging from 0.7 to 33.5% (Table 5).
None of these or the zonal models assessed showed any
significant serial autocorrelation in its residuals when
performing Ljung-Box Q test.
Finally, MAE in model forecasting of four weeks ranged

from -37.64 to 40.27% when comparing all models
(Tables 4, 5). Generally, RHC models showed better
forecasts than the zonal models with three out of five
RHC models forecasting with a MAE of -13.13 to 2.34%
(Table 5).

Discussion
There are significant correlations between remotely-
sensed nocturnal dew point, normalized differentiated
vegetation index, land-surface temperature, and malaria
transmission in Southern Province, Zambia. Interestingly,
remotely-sensed dew point could be a previously unidenti-
fied factor sustaining malaria transmission during the dry
season. By implementing these environmental variables in
models of transmission, better forecasts of changes in
trends of malaria transmission could be created. How-
ever, predicting and forecasting abilities of models varied
greatly.

Transmission and environment
In this study, the zone of high transmission sees sustained
high transmission also in the dry, low season (Table 2,



Figure 4 ARIMAX model in high-transmission zone vs. actual incidence. Graphs depicting two lines: actual malaria incidence vs. ARIMAX
model prediction of incidence for the high-transmission zone, the best fit of the three zonal models. The testing period is 2011 w19 to 2012 w18
and the fitting period is 2012 w19 to 2013w36.
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Figure 2, Additional file 2). Small, albeit significant,
environmental differences in DWP, LST and NDVI
within the Southern Province are seen (Table 3, Additional
file 2) and indicate that these factors are associated with
malaria transmission, as well as increased in areas of
higher transmission intensity. The strong association
in the models between these environmental variables
and the transmission intensity during the dry season
could be helpful in pointing to foci of persistent malaria
parasite circulation. Theories explaining the environmental
Figure 5 ARIMAX model in medium-transmission zone vs. actual incid
model prediction of incidence for the medium-transmission zone, the seco
to 2012 w18 and the fitting period is 2012 w19 to 2013 w36.
impact could postulate that humidity and vegetation are
important in creating possibilities for mosquito breeding,
ovipositing and foraging. Additionally, temperature affects
the survival time of mosquitoes and as it is usually high, it
affects the extrinsic incubation period and the gonotrophic
cycle of the mosquito [7,8]. As for elevation, it is known
to generally correlate negatively with transmission, which
is also seen here. Furthermore, humidity and temperature
possibly permit and also sustain the foraging of mosqui-
toes, including not only the bite-transmitting sporozoites,
ence. Graphs depicting two lines: actual malaria incidence vs. ARIMAX
nd best fit of the three zonal models. The testing period is 2011 w19



Figure 6 ARIMAX model in low-transmission zone vs. actual incidence. Graphs depicting two lines: actual malaria incidence vs. ARIMAX
model prediction of incidence for the low-transmission zone, the worst fit of the three zonal models. The testing period is 2011 w19 to 2012 w18
and the fitting period is 2012 w19 to 2013 w36.
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but also ingestion of gametocytes before the extrinsic in-
cubation period starts. It is important to understand that
all these interactions of environmental variables are linked
and inevitably affect each other and this needs to be studied
further.
Lag times for all different environmental variables varied

from three to eight weeks in the chosen models, variation
in each significantly correlating environmental variable
was also seen between the different models, and varying
exogenous variables have been seen in similar studies
[17-19]. These different environmental correlations relat-
ing to different levels of transmission imply that it will be
difficult to create models that fit in different settings due
to the complex and local interaction between environment
and transmission. The diverse effects of environmental
variables could explain why different lag times are apparent
in different areas, e.g., why a significant lag of temperature
can be five weeks in one zone and seven weeks in another.
The idea that DWP, LST and NDVI could be factors sus-
taining transmission in the dry, low season in the zone
of higher transmission is strengthened by the fact that
they show significant correlations with incidence as well
as improve the fit of the models used in this study.
Previously rainfall has been shown to influence malarial

transmission [7]. Here, a correlation between rainfall and
transmission is found, however, rainfall did not improve
model fit when included in models. Endogeneity could
here be a factor, but interestingly, there are no significant
differences in rainfall between the zones. In other words,
transmission rather could be driven by other sources of
humidity during the dry, low season. The hypothesis of
significant association of DWP with transmission is shown
in this study and should be further studied when modelling
malaria. Explanations of the higher measurements of
DWP in areas of higher transmission could be that
possibly groundwater tables here are higher, which both
could sustain the vegetation, despite lack of rainfall, and
by transpiration also increase water vapour in the air. The
fact that DWP can be obtained from satellite makes detec-
tion of local areas of increased aerial moisture feasible and
adds an attribute to NDVI to help define dry season foci
of transmission. Healthy vegetation sustains transpiration,
thereby creating humidity and possibly permitting disper-
sal and breeding as well as foraging behaviour of mosqui-
toes. Possibly, it is a combination of these factors as well
as a factor of proximity to water [37], exemplified by the
high zone’s vicinity to the Lake Kariba (Figures 1, 2, 3),
that sustains the dry season transmission in high transmis-
sion zone.

ARIMAX models
ARIMAX models were chosen because they account for
the autoregression of transmission and have been tested
in malaria modelling previously [17-19]. They also pro-
vide the opportunity to use exogenous variables such
as remotely-sensed, spatially and temporally referenced
environmental data. These types of models are often ap-
plied to time-series data and require stationary and nor-
mally distributed data. Consequently, data can be adjusted
to remove the non-stationary component by adding a dif-
ferencing step. Using log-transformed data in ARIMAX
models’ variance of the series can be stabilized.
The environmental variables providing the best-fit model

varied between the zones and RHC. Also, the ARIMAX



Table 5 Rural health centre ARIMAX-models’ variables,
parameters and forecasts

Model and parameters (p,d,q) AIC-fit MAE-test

Maamba (5,0,5) 154.53 33,5%

Siamuleya (2,1,3) 125.57 0,7%

Siatwinda (4,0,2) 166.26 20,7%

Siavonga (1,0,0) 161.20 14,2%

Sinafala (3,0,2) 83.10 1,54%

Maamba variables Coefficient p-value

L7 NDVI 0.025 p = 0.982

Siamuleya variables Coefficient p-value

L5 LST 0.091 p < 0.05

L7 LST 0.15 p < 0.01

Siatwinda variables Coefficient p-value

L6 DWP 0.061 p < 0.001

Siavonga variables Coefficient p-value

L7 NDVI 8.09 p < 0.001

Sinafala variables Coefficient p-value

L6NDVI 1.13 P = 0.328

L4NDVI 3.38 p < 0.01

Forecast model w37-41 Forecast MAE Predicted vs
actual incidence

Maamba -37.64% 41.6 vs. 75.1

Siamuleya* -13.13% 17.1 vs. 22.3

Siatwinda 2.34% 182.6 vs. 191.9

Siavonga -12.11% 21.8 vs. 29.1

Sinafala No data No data

Five rural health centres (RHC) from the high zone were modelled. Akaike’s
information criteria (AIC) and mean average error (MAE) are shown for each of
the five best-fit ARIMAX models. AIC was calculated for the fitting period. MAE
was calculated for the testing period, 2011 w19 through 2012 w18. Normalized
differentiated vegetation index (NDVI), nocturnal land-surface temperature (LST)
and nocturnal dew point (DWP) are shown with specific lag-times with its coefficients
as well as p-values for each RHC. Four-week forecasts MAE and predicted cases
vs. actual cases for the four weekly forecasts of the health centre models are
shown. Sinafala had insufficient data for the forecast period to be evaluated.
*Siamuleya forecast only three weeks ahead, due to missing data thereafter.
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parameters varied. Similar regional variations in predic-
tors have also been seen in previous studies [17-19]. For
zonal models, higher transmission was associated with
better fit (Figure 4). This was expected and could be
due to the fact that the models involving medium and
low transmission had more weeks of zero transmission,
complicating log-transformation for normalization of
data and fitting of models. Previously, this issue has been
addressed by fitting negative binomial distributions to the
data of low incidence [36]. Such mathematical alterations
as well as adding seasonal parameters to the model after
more years of data could be useful in optimizing future
models of malarial transmission in Zambia.
When looking at the testing period for the five models

on single RHCs, the MAE ranged from 0.7 to 33.5%
(Table 5). The MAE is calculated based on the predicted
cases vs. actual cases, thus, when predicted cases were
similar to the actual reported cases for the testing period,
the MAE decreases. Lack of reported diagnoses due to
stock-outs probably explains the slightly worse MAE for
the Siatwinda model, which had 11 weeks of stock-outs
compared to two to four weeks for the others. The high
MAE of the Maamba model could possibly be explained
by the fact that here microscopy was used as a back-up
when stock-outs of RDT occurred, thus providing chan-
ging sensitivity and specificity of the diagnoses reported.
The forecasting ability of the zonal models was average

(Table 4). Possibly, this was due to the zonal forecasts cov-
ering wide areas and during times of lower transmission, i
e, the dry, low season, the zonal impact from a single RHC
is greater than when all RHCs in the zone exhibit higher
transmission, thus making the zonal model more vulnerable
to local fluctuations and aberrations in transmission.
Interestingly, the RHC-level models show acceptable

four-weekly forecasts (MAE -13.13-2.34%) in three out
of five RHCs modelled (Table 5). The remaining two,
Sinafala and Maamba, respectively, had missing reports
of data starting 2013 week 33 and inconsistent sensitivity
due to RDT stock-outs with back-up microscopy during
the four-week forecast period. This highlights the import-
ance of maintaining sensitivity in diagnostics and continu-
ous reports in real-time modelling. Furthermore, since the
models of single RHCs show better results in forecasting,
one could argue that it seems that in forecasting it is
presumably of greater importance with a higher reso-
lution, ie, RHC-level rather than zonal. Nonetheless,
predictions and forecasts of all models were varying and
to be implemented and tested further investigation and
studies are needed.
In other words, the environmental association with

malaria transmission during the dry season has been shown
here. Specifically, DWP as well as previously studied NDVI
and LST have been identified as determinants of transmis-
sion. Further investigation of the environmental importance
during the dry season could help facilitate active screening,
including mass screen and treatment as well as mass drug
administration directed towards predicted foci of sustained
transmission. Such administration programmes has re-
cently been highlighted as strategically important targets
[38,39]. If accessible, more sensitive diagnostics such as
PCR could then be used to identify greater parts of symp-
tomatic, but most importantly, also asymptomatic carriers
during this time period.

Limitations
This study has numerous limitations here enumerated.
First, passively detected case data, population estimates as
well as satellite-based environmental data have limitations
in accuracy. Passively detected cases may not adequately
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represent transmission, as a portion of the population may
be represented by asymptomatic cases or because of dif-
ferences in health-seeking behaviour. These errors become
more emphasized at the RHC level due to smaller study
groups. Furthermore, health-seeking behaviour that could
create aberrations in data will affect areas with low trans-
mission more, possibly in part explaining why zonal models
of these areas performed worse. Second, the analysis used
RHCs’ coordinates as the focal point of transmission be-
cause there were no available data on household coordi-
nates. Due to mosquito flight dispersal [7,23,24] and big
catchment areas, it is therefore hard to pinpoint where
the actual transmission occurred. Nonetheless, Southern
Province is a rural, agricultural area with a stable popula-
tion who presumably tend to attend clinics since there
are no other sources of anti-malarials [40]. This was
accounted for by the use of buffer zones. However,
using buffer zones and their average values could intro-
duce a spatial error in the data, which in turn could have
affected results. Third, missing data had to be imputed
since remotely-sensed data was missing when cloud cover-
age occurred. Also, remotely-sensed data needed extrapo-
lation to fit with the weekly reports of malaria cases.
Fourth, the impact of RDT stock-outs on modelling is im-
portant to apprehend since the models are shaped reliant
on the incidence. Zero cases due to a stock-out do not
mean zero transmission. Some studies have used model
estimates to fill out missing data values [17]; in this paper,
at the time of inclusion, only RHCs with 100% reporting
completeness were chosen, thus attempting to minimize
missing data, now 7.9%. Fifth, and finally, it is hard to
determine the spread of interventions in the area investi-
gated. Available information exists but only at a province
level. Thus, it is hard to exclude that differences in transmis-
sion are not due to inequalities in spread of interventions.
However, during 2011-2013 extensive mass test-and-treat
interventions have taken place in the eastern parts of the
province, where malaria thrives. Therefore, it is probable
that the high transmission zone also have the highest
intervention cover in Southern Province.

Conclusion
It is demonstrated that remotely-sensed nocturnal dew
point is significantly associated with malaria transmission
in rural Zambia. Further investigation of environmental
variables in real-time modelling could help create means
to identify dry season foci of sustained transmission
through active screening programmes.
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within zonal comparisons.
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