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Abstract

The dynamic nature of human working memory, the general-purpose system for processing continuous input, while
keeping no longer externally available information active in the background, is well captured in immediate free recall of
supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position
curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and
recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short-
and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-
store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-
frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and
recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-
match-to-sample tasks support this view.
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Introduction

Working memory (WM) is a general-purpose system for

concurrent processing and short-term maintenance (STM) of no

longer externally available information in the service of higher-

order cognition [1]. Current neural network models of WM have

typically focused on the STM component in the context of

‘‘subspan’’ memory load suggesting that information is retained by

persistent neural activity in a recurrent network with connectivity

formed and intrinsic cell excitability modulated by previous

experience [2,3].

However, direct measures of persistent activity in delayed-

match-to-sample tasks in monkeys show that neuronal firing rate

increases occurring during working memory (e.g. during the delay

period of working memory tasks) are typically modest, or may

show trends in firing rate (i.e. firing rates which increase or

decrease during the course of the delay) [4]. Individual cells show

substantial variability in their firing behaviour across trials, and

firing frequency also varies markedly over the course of a single

trial. Furthermore, multiple items cannot easily be activated

simultaneously in a recurrent neural network with lateral

inhibition, because this will tend to produce a rivalry situation

resulting in convergence to one of the competing representations,

typically corresponding to the closest attractor state [5]. Moreover,

the persistent activity type of model may not be sufficient for

characterizing human WM processes operating during complex

behaviour, often requiring simultaneous encoding and integration

of new input while maintaining a larger set of internal

representations in accessible form.

Free recall of word-lists is a classic experimental paradigm

requiring flexible coordination of encoding, rehearsal and

reactivation during word-list learning and subsequent recall

[1,6]. A large amount of shared variance between immediate free

recall and complex WM span task performance has been reported,

which implies common mechanisms [7], the nature and plausi-

bility of which can be explored by neural network models. By

using ‘‘supraspan’’ list-lengths that exceed the narrow capacity-

limits of the phonological STM buffer a number of ubiquitous

phenomena emerge, including the U-shaped serial position curve

denoting enhanced memory for items from the beginning (primacy

effect) and the end (recency effect) of a study list relative to items

from the middle of the list [8]. Within traditional dual-store

models, primacy arises because the first few items are sufficiently

rehearsed via STM to be transferred to episodic long-term

memory (LTM) stores. Recency is interpreted as reflecting

‘‘unloading’’ of the last few items which are assumed to still be

rehearsed in the STM buffer when recall begins, making them

directly accessible for output [9]. The mid-list items are most

susceptible to forgetting because they cannot be rehearsed enough

to enter LTM and will be displaced from the STM buffer before

recall which causes the asymptote in the serial position curve. The

order in which items are recalled constitutes another important

behavioural phenomenon. In particular, subjects are more likely to

successively recall items that were presented nearby each other

during list learning (temporal contiguity effect), and to recall such

neighbouring list items in the same order as they were encoded

rather than in the reversed order, e.g. [10,11]. These phenomena
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provide additional behavioural constraints to models of list

learning, e.g. [11].

We propose here an abstract neurocomputational recurrent

attractor memory model to account for human experimental data

on immediate free recall. This model provides a plausible

resolution of the above mentioned problems with persistent

activity models of STM, by viewing WM as encoded by fast and

volatile Hebbian synaptic plasticity and modulated non-Hebbian

intrinsic excitability. The changed connectivity in combination

with the adaptation properties of the network units results in a

dynamically changing activity in the form of spontaneous rapid

hopping between the patterns in WM. No consensus has yet been

reached regarding the precise mechanisms underlying free recall

dynamics. In particular, to the best of our knowledge none of the

previously proposed models have used rapid reactivation of stored

patterns as the key mechanism to understand free recall dynamics.

A number of different accounts have been proposed.

Models accounting for free recall can broadly be classified into

models that are predominantly constrained by behavioural or by

biological data. The majority of free recall models published so far,

falls into the behaviourally constrained models that primarily aim

to characterize ‘‘mental algorithms’’ capable of reproducing

human-like recall dynamics quantitatively while disregarding

biophysical details on how they are neurally implemented in the

brain. These models, sometimes also referred to as abstract

computational models have been postulated to explain key

empirical data, e.g. by invoking dual-stores [12], or a time-varying

context representation (e.g. [13–15]). Biologically constrained

models are typically based on neural networks, where the

behavioural phenomena can be induced from the dynamics of

the network, for example retrieval of memories in free recall data.

Only a few attempts of biologically constrained modelling of the

primacy and recency effects exist. Burgess, Shapiro and Moore

[16] used a Hopfield attractor network to model serial recall,

where primacy was accounted for by reinforcement (multiplying)

of previously stored weights, whereas recency was modelled by

weights boundaries. Wong, Kahn et al. [17] used a diluted

asymmetric Hopfield network to account for primacy and recency.

However, their model could only account for the primacy effect

given that the initial distribution of weights were different from the

asymptotic distribution following learning of a large number of

patterns, indicating very particular constraint for the phenomenon

to be modelled. Green, Prepscius, and Levy [18] suggested a

simplified biologically motivated neural model. However, their

model accounted either for primacy, or recency but not both,

suggesting two distinct different systems. Recency was accounted

for without rehearsal. Sandberg et al. [19] proposed and studied a

neural network model of WM based on fast and volatile Hebbian

learning demonstrating recency without addressing the phenom-

enon of primacy. Sikström [20] accounted for primacy, recency,

and the isolation effect (enhanced learning of odd items) with a

single mechanism related to a biologically plausible learning rule.

This form of learning suggests an adaptive threshold for induction

of LTP and LTD, where primacy is accounted for by an increased

LTP following a low threshold in the beginning of the list. Despite

the relative lack of models of working memory based on synaptic

plasticity and reactivation dynamics, some models of serial recall

share similar synaptic and neuronal properties and produce similar

activity-jumping dynamics between sequence elements (e.g. [21]).

Here we present a biologically constrained attractor memory

network model of free recall based on the model of Sandberg et al.

[19,22], which was extended with a slow synaptic trace variable (z)

as described below. We demonstrate how its function and

dynamics are generated from biological mechanisms of fast and

volatile Hebbian plasticity and modulated non-Hebbian intrinsic

excitability, together with neuronal adaptation. Our simulation

results demonstrate that this kind of attractor memory model can

remarkably well reproduce key data on immediate free recall of

word-lists. The model provides detailed mechanisms and a

unifying principle behind storage, distributed reactivations and

recall during single-trial word-list learning.

Methods

An abstract memory network model
We implemented the above outlined mechanisms in a modular

recurrent neural network model of a Potts type architecture

[22,23]. The network configuration used has H modules of M

units and is assumed to represent a small piece of cortex. Model

units correspond to local cortical neuronal populations comprising

on the order of a hundred neurons, e.g. functional minicolumns

and the larger modules are generalized hypercolumns or

macrocolumns, i.e. bundles of minicolumns interacting mainly

via lateral inhibition, such that each hypercolumn module acts as a

soft winner-take-all microcircuit [24,25]. The biological rationale

behind this model is further discussed below, after the presentation

of the model itself.

Our non-spiking units or ‘‘minicolumns’’ have graded output in

[0 1] and feature a slow adaptation with a time constant of 2.7

seconds, matching approximately data on the relaxation time

constant of the calcium transient underlying the hippocampal

sAHP in humans [26]. The units within a hypercolumn interact

via divisive normalization of activity, i.e. a form of lateral

inhibition. The Bayesian-Hebbian learning rule (BCPNN) used

was derived from Bayes rule with the rationale that a postsynaptic

unit computes an estimate of its posterior likelihood of being active

given the activity of its presynaptic units weighted by the respective

connection strengths [22,27]. This learning rule has previously

been used in the context of efficient scalable associative memory

[28] and as a palimpsest type of synaptic short-term memory [19].

Notably, the learning rule is of a ‘‘three-factor’’ type, i.e. it

contains a ‘‘print-now’’ parameter that regulates the plasticity

(learning rate) of the network, akin to the action of e.g. dopamine

D1 receptor activation [29,30].

The units in the network are recurrently connected to

themselves, to mimic the local recurrent excitation within a

functional minicolumn, and, more importantly, also to all other

units in the network. Such a dense long-range connectivity is not

quite biologically plausible but is necessary for the stable operation

of a network of the limited size used here. Typically, a set of sparse

activity patterns are stored in the network by means of

strengthened excitatory connections within such a pattern and

inhibitory connections between patterns. The resulting positive

feedback within the memory patterns forms attractors of the

memory dynamics and the divisive activity normalization within

the hypercolumns prevents runaway excitation. The active units

are subject to a slow build-up of adaptation which terminates

activity after some hundreds of milliseconds.

The levels of activation (s), adaptation (a) and output (o) of each

model unit are updated according to the following equations (see

Tables 1 and 2 for values of parameters and initial values of state

variables):

dsj

dt
~

gw bjz
P

i

wijoi

� �
{ajzlogeIjzs{sj

tm

ð1Þ
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oj~
esjP

k

esk
ð2Þ

daj

dt
~

gaoj{aj

ta

ð3Þ

Here gw is the gain of connections, ga is the adaptation gain, tm is a

unit time constant, ta is the adaptation time constant, Ij is the input

to unit j, and s represents the amplitude of zero mean Gaussian

noise added to the support of each unit in every iteration. Eqn. 1

represents the time evolution of the activation of units due to

synaptic input, adaptation, external input and noise. Eqn. 2

describes the normalization of activity performed within each

hypercolumn. This represents the lateral inhibition provided by

local basket cells. Eqn. 3 describes the typically slow time evolution

of the unit adaptation.

The learning rule is based on occurrence and co-occurrence

statistics collected during encoding as running averages with

different time constants. The pre- and post-synaptic trace variables

(z) represent presynaptic and postsynaptic events involved in

synaptic plasticity like e.g. NMDA channel opening (zi) and

membrane depolarization due to back-propagating action poten-

tials (zj). These traces serve as a short-term memory buffer allowing

modification of connections between units that are activated with

some time lag. This tends to bind together activations that occur

consecutively. The z-traces typically have relatively short time

constants (tzi, tzj) and are updated according to the following

equations:

dzi

dt
~

oi{zi

tzi

dzj

dt
~

oj{zj

tzj

ð4Þ

The tuning of the z-trace time constants was an important step

towards reproducing the memory recall data.

The estimated probabilities of pre- (i) and post-synaptic (j)

activation and co-activation (p) are updated as:

dp̂p

dt
~k

1{p̂p

tp

dp̂pi

dt
~k

zi{p̂pi

tp

dp̂pj

dt
~k

zj{p̂pj

tp

dp̂pij

dt
~k

zizj{p̂pij

tp

ð5Þ

The connections weights (w) and unit biases (b) are continuously

computed based on these p-estimates according to the Bayesian-

Hebbian learning rule (Sandberg, Lansner et al., 2002) as:

wij~loge

p̂pp̂pij

p̂pip̂pj

ð6Þ

bj~gblogep̂pj ð7Þ

where

logex~ log max (e,x): ð8Þ

There is a separate longer time constant for the weights and bias

dynamics (tp), a print-now parameter that gates learning (k), as

well as a gain for the unit bias (gb). The parameter e represents a

low cut off value to avoid log of 0.

It needs to be pointed out that our learning rule produces

excitatory connections between units with correlated activation as

well as inhibitory connections between units with anti-correlated

activity. This change in polarity obviously violates known

neurobiology, but is remedied by assuming that the inhibition is

disynaptic, mediated via a local inhibitory interneuron close to the

target pyramidal cell, rather than via a direct pyramidal-pyramidal

synapse.

The model was implemented in C++, parallelised using MPI

(Message Passing Interface), and run on an IBM Blue Gene/L

cluster with 1024 dual core nodes. This allowed us to simulate

1024 list experiments at the same time with an execution time of

less than 5 minutes. The model was integrated using the forward

Euler method with an integration step size of 1 millisecond. It was

carefully checked that results were not sensitive to a doubling of

the time step to 2 milliseconds.

Neurobiological rationale for the model
The above described highly abstract computational model can

in several respects still be related to contemporary data and

theories about cortical functional architecture [31–33]. It has

repeatedly been suggested that the cortex comprises a mosaic of

modules, such as functional columns or other types of sub-

networks [24,25,34–36]. Such local networks would have a

diameter of a few tens of microns and their excitatory neurons

would be more densely connected among themselves than to the

surrounding ones and would likely be selectively targeted by

afferent fibers from thalamus. They may be spatially segregated as

cortical minicolumns or may be anatomically diffuse (i.e.,

intermingled with other similar modules) [37]. A modular

organization at this level is not prominent in rodents but more

so in e.g. cats and primates where minicolumns are more

anatomically distinct [38]. Such a partitioning in functional

Table 1. Model variables.

Variable Description
Initial
value

aj Adaptation of unit j 0

sj Support of unit j log(1/
M)

oj Activity of unit j 1/M

Ij Input [e 1]

zi Source unit activity trace 1/M

zj Target unit activity trace 1/M

p̂p Global variable trace 0

p̂pi Source unit activity trace of connection
from unit i to j

1/M

p̂pj Target unit activity trace of connection
from unit i to j

1/M

p̂pij Co-activity trace of connection from unit i to j 1/M2

bj Bias of connections to unit j gwlog
(1/M)

wij Weight of connection from unit i to j 0

doi:10.1371/journal.pone.0073776.t001
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sub-networks has also been suggested to generate a patchy long-

range cortical connectivity [39,40].

Other data indicate that these local functional sub-networks are

organized in bundles to form maps or larger modules with a

diameter on the order of a few hundreds of microns (i.e.

macrocolumns, hypercolumns, or barrels) [41]. Fast spiking local

inhibitory interneurons (e.g. basket cells) provide inhibitory

feedback within such a module. It has been suggested that this

introduces competition and operation somewhat like a local soft

winner-take-all module. A hypercolumn may be assumed to

represent, in a discretely coded fashion, some attribute of the

external world. For instance, in the primary visual cortex the

orientation or direction of an edge stimulus at a certain position on

the retina is represented by elevated activity in a corresponding

orientation column. This also leads to sparse activity in the

network, on the order of about 1–5%. Such an activity level is in

accordance with overall activity densities which may be even

below 1% in higher order cortex [42]. The learning rule used in

our abstract model generates both positive and negative weights

between minicolumn units (eqn. 6). In the real cortex, excitatory

connectivity would be supported by direct pyramidal-pyramidal

synapses, whereas long-range inhibition would likely be disynaptic,

e.g. from a pyramidal cell onto a local vertically projecting and

dendritically targeting interneuron, e.g. a double bouquet cell.

A prominent feature of real pyramidal cells which is also

represented in this model is their adaptation, which can be spike

frequency adaptation or other e.g. calcium dependent forms. In

fact, also synaptic depression which is not represented in our

model, produces a similar phenomenon in spiking cortex models

[31]. Both of these processes tend to terminate ongoing activity,

like for instance reactivations, in a recurrent network. A further

feature specific to our abstract model and absent in most other

abstract models is the bias term of the learning rule. In a

theoretical sense this term corresponds to the a priori probability of

activation given previous experience, so that a unit which has been

often active in the past will have an elevated spontaneous base

level of activation already without input. This type of process has

been described in real neurons in terms of ‘‘intrinsic excitability’’

and is one among several neurobiological mechanisms of activity

dependent regulation [2,43].

Methods summary of behavioural data
The present work is based on data from the Betula Study

[44,45], a prospective cohort study on memory and health. A total

of six independent, randomly selected samples with a total of more

than 4500 persons are included in the Betula study. Recruitment

were conducted by a random sample of the population, for details

see Nilsson et al. [44,45]. As the basis for the present study, we

selected one sample of the Betula Study, consisting of 500 subjects

in the age range of 35 to 55 years with an average of 45 years.

These data are from Sample 1 that was tested for the first time in

1988–1990. Participants diagnosed as demented were excluded by

following a well-established procedure.

The Betula study consists of a large battery of cognitive tests

[45]; however, the data in the present study are taken from one

task involving study and immediate free recall of a word-list.

Participants studied a list of 12 unrelated nouns with the

instruction of a free recall test after the final word of the list.

The words were presented auditorily at a rate of one item per

2 sec and the participants were instructed to recall orally as many

words as possible in any order they preferred during a period of

45 sec, in keeping with classical studies of free recall (e.g.,

Murdock [46]). There were four parallel lists available and

participants were counterbalanced across these four lists. Word

frequency for each list was 98 words per million words (range 50–

200). There were four different conditions with respect to the

attentional demands in this task. A card-sorting task was given as a

distracter (1) both at study and test, (2) at study only, (3) at test

only, or (4) neither at study nor at test. The data used here were

from this final condition with focused attention at both study and

test.

For further information on the Betula study, see Appendix S1.

Modelling free recall data
The single-trial word-list learning task, with list-length 12, was

modelled consistent with the experimental setup as follows. Each

word was represented by a sparse random pattern with one unit

active in each hypercolumn. A new input was presented to the

network every two seconds. It was fed to the network by clamping

its units to the input for one second (k = 1.1) where after input gain

and k were set to zero for one second until the next list item was

presented.

The list presentation thus lasted for 24 seconds. After the last

item was presented k was kept at zero for 45 seconds while the

network spontaneously reactivated (recalled) items from memory

(Figure 1A). The network was fully reset before the next list was

presented.

Recall of an item was detected by continuously calculating the

normalized dot product between the reactivated pattern and each

stored pattern k (eqn 9).

mk(o)~
xk
:o

xkk k ok k : ð9Þ

Here the vector xk is one of the list patterns and the vector o is the

activity of the network. A time series of mk values was obtained as

this equation was applied to the network activity at every time step.

The mk values were accumulated in each time step and if the k:th

accumulated sum passed a threshold (h Table 2) a successful recall

of item k was registered. This procedure defined the time and

order of recall of items.

Typically the same item was recalled repeatedly but only the

first recall was registered. Subsequent recalls still happened in the

network and these recalls could act to suppress other first recalls.

Statistics were collected for traditional serial position effects and

the serial output order over items to assess contiguity effects or

conditional response probability (CRP); i.e., the probability that

neighbouring list items during encoding are recalled together (see

below). Since the time step was 1 millisecond the recall of two

items at exactly the same time was highly unlikely. If occurring,

this list was excluded from the statistics.

The conditional response probability (CRP) was calculated as

the fraction of times that a recalled item was followed by recall

with a certain lag, i.e. difference of the input position of the

currently recalled item and the subsequently recalled item [47].

Positive values represent forward recall transitions (e.g. a lag of

‘‘+1’’ denotes recalls of two list items in the same order as they

were presented at encoding) and negative values backward recall

transitions (i.e. input order is reversed at output).

For each set of parameters tested, 1024 list simulations were

performed and the output data analyzed in terms of recall length

distribution, primacy-recency curve, and CRP curve. The set of

parameters that had the minimal mean square error between

experimental and simulated data was selected. A large number of

simulations were run to find a good fit.

An Attractor Network Model of Free Recall
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Results

Storing single and multiple memories
As a first demonstration of the operation of the network model

as a short-term working memory we ran a number of simulations

where one up to seven word patterns were stored in the network.

Initially, the stimuli were presented once in succession, where after

a recall period of 48 seconds was allowed (Figure 1A). The figure

shows the overlap (mk) over time between network activity and

each of the word patterns. As can be seen, the neural activity

during the recall period is highly dynamic. This can be understood

from the interplay of the synaptic connectivity developed during

the encoding phase and the adaptation properties of the neural

network units. When a stimulated word pattern activates a set of

units while keeping others silent, the simultaneously active units

become connected by excitatory (Hebbian) synapses whereas

lateral inhibition increases between pairs of units where one is

active and the other silent (eqn, 5,6). The recurrent excitation

within memorized word patterns promotes their activation and the

strong lateral inhibition between them prevents co-activation

resulting in competition between the patterns. Active units adapt,

i.e. get slowly hyperpolarized due to e.g. spike frequency

adaptation, and after a couple of hundred milliseconds they can

no longer sustain activity and the pattern inactivates. This

disinhibits the rest of the network thus allowing some other fresh

memorized pattern to activate. The ensuing competition process,

determining exactly which memory gets activated next, produces a

winner within few tens of milliseconds, where after the same

excitation-adaptation cycle is repeated. In all cases shown in

Figure 1A, all encoded memories were recalled multiple times.

In the case of a single stored item, there was sometimes

persistent activity but most often a slow oscillation over the entire

recall period. As soon as more than one item was stored recall took

the form of repeated reactivation of the memories. This

Figure 1. Item activation and reactivation. A: Activity during storage and recall for different number of stored patterns (1–7 indicated below
each display). Blue-red color shows activity (m-values) with dark blue representing 0 and deep red 1. Time is on the vertical axis, item number on the
horizontal. The horizontal spacing separates activity during encoding (above spacing) and spontaneous recall (below spacing) in each display. B: m-
values during the presentation and recall of a 12 item list. Each item is presented during 2 seconds, in total 24 seconds, followed by a 48 seconds
spontaneous recall period. C: The average reactivation time and its standard deviation during presentation (y-axis) as a function of item position (x-
axis).
doi:10.1371/journal.pone.0073776.g001
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spontaneous jumping of activity results from the above described

interplay between recurrent excitation, adaptation and activity

normalization. The dwell time of an activated memory and its

total active time decreased, and the time interval between

reactivation of a memory items increased with memory load, i.e.

the number of items stored in WM.

Already during the encoding phase, previously encoded items

tended to reactivate between subsequent item presentations. This

reactivation strengthened the synapses in the reactivated pattern

thus enforcing its encoding and increasing the probability of

activation during the free recall phase, i.e. promoting primacy.

In the case illustrated here, reactivation would continue forever

since there were no further new items presented. However, as this

model is in essence a palimpsest type of memory, newly presented

items tend to overwrite already stored ones resulting in their

forgetting [22]. The capacity of this short-term memory, i.e. the

number of items kept as the reactivated set, can be regulated by

changing the time constant of connections (tp), which in this case

was 10 seconds.

Encoding and recall dynamics in the model
Figure 1B shows the dynamics resulting from presenting a list of

12 word items as described above. As in the previous case, in

between later stimulated items there was also spontaneous

reactivation of list items presented earlier in the list. The activity

during the recall phase illustrates how early and late items

dominate recall over those in the middle of the list. When this type

of simulation was repeated many times with new word patterns we

found that the average time of reactivation during the word

presentation phase decreased from early to late presented words

(Figure 1C). However, there was considerable trial-to-trial

variability due to noise imposed as well as the different overlap

structure in pattern sets in different trials.

We then collected statistics over 1024 simulated list-learning

experiments. Figure 2A compares the experimental and simulated

recall performance, i.e. the probability of correctly recalling the

number of items given on the x-axis from the list, disregarding

order of recall. Figure 2B shows the same function with blocked

reactivation during encoding in the model, which is intended to

simulate divided attention. The comparison to the same experi-

mental data as in 2A demonstrates that the effect of this

manipulation is only minor. Figure 2C shows that the first and

last presented words had a higher probability of recall than words

in the middle of the lists, i.e. the network model displayed clear

primacy as well as recency effects. The correspondence with

experimental data from human subjects is quite good. The kind of

recency effect seen here has been demonstrated earlier in several

other modelling studies including Sandberg et al. (2003), where it

was due to the same mechanism, i.e. the memory traces of the last

few items in the list are spared from retroactive interference from

following list items.

The primacy effect is not as straightforward to understand as

recency. Our current explanation is that it occurred because of the

temporally distributed reactivation of previously presented items,

preferably occurring in the early part of the list presentation where

there is less competition from rehearsal of other items. A typical

example can be seen in Figure 1B where the first item is

reactivated twice and the second and third list items once each

during the list presentation. The reactivation of an item is typically

not immediate since the presentation of the item itself induces

some adaptation (see Methods eqn 3) which needs to decay in

order to allow reactivation.

This key role of item reactivation is supported by the fact that

blocking this reactivation during the presentation period removed

entirely the primacy effect (Figure 2D). Notably, the primacy and

recency effects were quite similar to what is seen in averaged data

from a large sample of human subjects.

Words presented next to each other at encoding were more

likely to be recalled together with a bias towards forward

asymmetry in recall transitions (Figure 2E), which is consistent

with previouis empirical findings, e.g. by Kahana [47]. This so

called contiguity effect was also facilitated by reactivation during

encoding, however, blocking the reactivation diminished, but did

not eliminate this effect (Figure 2F). The mechanism behind this

contiguity effect is that there are remaining synaptic traces from a

previous list item when the next item in the list is stimulated and

the print-now signal elevated. This will create a weak but

significant weight increase that later manifests itself as an elevated

probability of recall of neighboring list items. Reacitivation may

faciliate this effect.

In order to better understand the relation between item

reactivation and primacy we further studied in more detail how

the number of reactivations of an item depended on its input

position. This showed clearly that reactivations occurred predom-

inantly for the early items (Figure 3 upper). It was quite

pronounced for the first item and gradually became less

prominent, thought list items at input positions two and three

were still reactivated significantly more than later list items.

Furthermore, the probability of recall of an item increased with

the number of reactivations during the preceding encoding period

(Figure 3 lower). This result fits well with empirical data from overt

rehearsal free-recall paradigms, in which participants are instruct-

ed to continuously report aloud which items they rehearse. Such

experiments have demonstrated that item rehearsals tend to be

temporally distributed throughout the ensuing list presentation [6].

This suggests that primacy depends more on the frequency,

distribution and recency of item reactivations during the study

phase [48,49] than on continual rehearsal time. Because early list

items have more overall time, and fewer competitors with respect

to accessing WM during initial processing, they are eligible to

Table 2. Model parameters.

Parameter Description Default value

H N:o hypercolumns 12

M N:o units per hypercolumn 12

Dt Simulation time step 0.001 s

tm Unit time constant 0.050 s

ta Adaptation time constant 2.70 s

s Zero mean Poisson noise 100 Hz/0.20

ga Adaptation gain 97.0

gw Weight gain 2.00 (encoding), 1.70
(recall)

gb Bias gain 12.0

tzi Presynaptic trace time constant 0.240 s

tzj Postsynaptic trace time constant 0.240 s

tp Weight update time constant 10.0 s

k Print-now parameter 1.10 (encoding) 0.00
(recall)

H Recall threshold 11.0

e Numeric single precision limit 1.17549 10238

doi:10.1371/journal.pone.0073776.t002

An Attractor Network Model of Free Recall

PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e73776



become reactivated more often and in a more distributed fashion

than later items.

Discussion and Conclusions

We have proposed a new kind of real-time neural network

model of WM, where storage is based on fast expressing and

volatile Hebbian synaptic plasticity and modulated intrinsic

excitability. Current data on fast forms of plasticity of synaptic

strength as well as intrinsic excitability modulation suggest that

such a mechanism of WM is indeed a possibility [2,43,50].

This relatively simple model replicates the experimental data

from human word-list learning remarkably well. It suggests a

mechanistic explanation at the level of neuronal and synaptic

processes of a fundamental cognitive function and also challenges

previous neuronal network models of WM solely based on

persistent activity. This hypothesis of synaptic WM is compatible

with previous results of e.g. visual delayed-match-to-sample since

when only one item is stored, activity during the recall period

(comparable to the delay period) is exclusive to that item for many

seconds (Figure 1A, leftmost). As more items are stored their

internal representations alternates in dominating activity. It is thus

mainly when storing multiple items that a WM mechanism based

on a synaptic trace and one based on persistent activity predicts

different dynamics. The mechanism of hopping between several

transient attractor states has been described earlier for non-spiking

as well as spiking network models [19,31,51] and was designated

as ‘‘latching transitions’’ by Russo and Treves et al. (see e.g. [52–

54]), although these were used in a different context. This

proposed alternation between memory patterns being reactivated

during inter-stimulus intervals (ISIs) is compatible with recent data

in monkeys [55]. In humans, findings from a MEG study by

Fuentemilla et al. [56] suggested that oscillatory activity in the

theta band was phase-locked to cyclic ‘‘replay’’ of individual items

during STM, which tentatively correspond to how alternating

reactivations in ISIs would manifest during list learning. In

contrast to standard persistent activity WM models, the reactiva-

tion dynamics of our proposed synaptic WM model is consistent

with the observed results of increasing as well as decreasing unit

activities during a memory delay period as well as the relatively

modest activity increases seen.

Figure 2. Recall statistics. Comparison of model recall results with and without reinstatement during encoding (left and right column panels
respectively). Dotted curves show experimental data from the Betula study. A, B: Memory span function (number of items on the x-axis and
cumulative recall on the y-axis). C, D: Primacy-recency curve, i.e. probability of recall versus input position (recall probability on the y-axis). E, F:
Conditional recall probability (CRP) curves. Probability on the y-axis and lag, i.e. difference in item input order, on the x-axis.
doi:10.1371/journal.pone.0073776.g002
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There are certainly also some differences between model and

experimental data. One reason might be that we model the

average of a population of subjects with just one set of parameters,

which in general is not possible. Using separate parameter sets for

each subject is obviously not possible due to lack of data. A more

elaborate model might assume that subjects belong to sub-groups

each one to be represented with a different set of parameters. This

is indeed a much more complex approach and was not judged

feasible at this stage. Another factor contributing to a limited fit to

the experimental data is that the lists in the experiment comprised

a relatively limited set of words that were reused between subjects,

whereas the simulation model randomly renewed word patterns

on every trial. Also this factor is difficult to compensate for in the

current setup.

It needs also to be stated that the parameter set reported here

was the best found, but there were several others that came quite

close in fitting the data. Though no extensive analysis of the

parameter space was possible, we observed that quite different

parameter combinations could give a similar degree of fit to data.

Further, the sensitivity to parameter variations was moderate since

results of different runs were similar despite considerable variations

of parameters. Our conclusion is that the model is to some degree

under-determined by this amount and precision of the data.

Future studies should attempt to pinpoint specific aspects of this

kind of model and subject each of them to detailed experimental

analysis. The model itself could be made more elaborate, e.g. by

including interactions with intermediate-term and semantic LTM

as well as mechanisms to account for serial order phenomena,

weakly represented in the current model. It could also be made

more biologically detailed by using a population of spiking units

instead of a single graded output unit to represent a cortical

minicolumn. Such an extended model is likely to display

additional features characteristic of human memory recall, like

oscillatory activity in theta, alpha and gamma bands as measured

in M/EEG [57], including dependencies on memory load [58]. It

is further likely to substitute the crisp on-off activity, as displayed

by the current non-spiking model, with low-rate irregular spiking

activity of a much more realistic nature, as has been demonstrated

in previous modelling work [32].

Our model was tested on some of the most basic findings in

single-trial word-list learning; however, we acknowledge that there

are a number of other well-studied empirical phenomena that the

model has not yet been applied to. For example, the introduction

of continuous distracters during list learning is of theoretical

importance because it provides a possibility of attenuating

rehearsal. Previous findings have shown that this diminishes the

primacy effect but maintains the contiguity effects [10]. To

investigate this issue we compared two conditions in the Betula

data where subject had undivided or divided attention to the

word-list encoding task. This showed that the primacy effect was

diminished in the divided attention task compared to the

undivided task, whereas the CRP curve was less affected by this

manipulation. These results are consistent with the result from

Howard and Kahana [10], showing that a continuous distracter

intervening between each presented list item attenuates the

primacy effect but maintains the contiguity effect.

Figure 3. Reactivation determines recall probability. Upper panels: Distribution of reactivation over item input position. Items 1–4 are shown
individually, items 5–8 and 9–12 are grouped. Lower panel: Probability of recall of an item as a function of number of reactivations during encoding.
doi:10.1371/journal.pone.0073776.g003
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We compared these experimental results with our model, where

divided attention was simulated by blocking reactivation during

encoding (Figure 2 B, D, F) and we found a clear similarity

between them. In the simulation the contiguity effect in the CRP

curves is largely dependent on the overlap between synaptic traces

from the current and the previous presented item, and is therefore

less influenced by blocking of reactivation. In contrast, the primacy

effect is largely dependent on reactivation. Thus, the model

predicts, consistent with experimental data from the Betula study

and Howard and Kahana’s results [10], that the primacy effect

can be diminished while maintaining a high contiguity effect.

Future work will study in detail how our model accounts for these

findings, as well as how it responds to other important variables

such as immediate/delayed recall, age effects, word semantic and

frequency, etc.

Some further aspects of the experiment were poorly represented

in the model. For instance, the network is always completely reset

between lists. In experiments, subjects were memorizing four lists

in sequence, which likely resulted in some proactive interference

phenomena between lists that are not captured in our model setup.

To study this phenomenon would represent an interesting further

extension of this work. We also ignore the multiple reactivations of

items in our analysis due to the fact that such information was not

available from experimental data. These additional recalls likely

affect the recall sequence by suppressing other first recalls. The

details of this dynamics would also warrant further study and could

give valuable insights into the underlying neural mechanisms.

There are a number of computational models aiming to account

for a rich number of behavioural aspects of immediate free recall

(e.g., TODAM2, [59], TCM [60], SIMPLE [14]). However,

several of them are not neural network models but of a more

phenomenological nature. For example, two recent computational

models; the SIMPLE (Scale Invariant Memory, Perception, and

LEarning) model [14] and The Temporal Context Model (TCM)

[60], have proposed temporal distinctiveness and context retrieval,

respectively, as ‘‘unitary’’ mechanisms that can account for a range

of free recall data without assuming a division between STM and

LTM. The SIMPLE model has recently received much theoretical

interest in the context of free recall tasks (e.g. [61,62]). It posits that

list items are encoded and represented at different points in a

‘‘psychological space’’ where the time elapsed between input and

recall, together with an item’s temporal distance(s) from neigh-

bouring list items, is assumed to determine the degree of item

discriminability and thus recall probabilities for different serial

positions. From the time recall begins (and over subsequent recalls)

the temporal distances between earlier input positions are

logarithmically compressed as items move into the past whereby

their discriminability diminishes over time. Recency is accounted

for by relative increases in temporal distinctiveness for later list

items and fewer interfering nearby list items. Primacy is attributed

to increased discriminability of earlier relative to mid-list items due

to fewer neighbouring items [14]. This model does not account for

contiguity effects.

The Temporal Context Model (TCM) [60,63] represents a

recent framework extending on earlier context-based theories of

free recall (e.g. [64]) suggesting that list learning depends on

associating items to an internal context representation that

changes gradually over time. Contiguity effects, whereby items

encoded at nearby list positions also tend to be recalled together,

are accounted for by a shared temporal context established during

list learning that is reinstated as retrieval cue during later recall,

rather than temporal vicinity per se. The recency effect is

explained by the close similarity between the context representa-

tions at the end of list learning and the beginning of recall, while

the primacy effect is accounted for by a parameter that increases

the cue strength of the first item. In contrast, our model does not

require a context to simulate the behavioural phenomena

(although we agree with the importance of contextual cueing in

episodic memory retrieval), and pre/post synaptic traces of

presented items are essential to account for contiguity effects. In

our view, a neural network type of model with real-time dynamics

such as the one studied here provides additional possibilities to

include biological constraints, which narrows the number of

possible models to further investigate.

At the cognitive level, the proposed model resonates well with a

number of psychological models, e.g., Cowan’s embedded

processes model [65] and Oberauer’s concentric 3-layer memory

model [66], stating that WM reflects the control of access to a

capacity-limited focus of attention (FOA) encompassing maximally

active LTM representations and a ‘surrounding’ larger portion of

facilitated LTM representations (e.g., recently presented items that

have been removed from the FOA but still remain activated above

baseline). Converging behavioural evidence suggests that only one

element can reside in the FOA at any given moment [67], which

agrees with our model, in which only a single item (memory

reactivation or new input) can be active at a time. Items outside

this FOA are assumed to undergo rapid trace decay and will be

lost unless they regain access to the FOA where their activation is

strengthened, as occurs during ISI repetitions. Since both

reactivation of items and encoding of new input would compete

for processing in the one-item FOA, a continuous shifting between

externally and internally driven (re)activation of LTM patterns will

occur throughout list learning. Interestingly, an fMRI study by

Peacock-Lewis et al. [68] moreover found that delay-related

sustained activity only represents the item currently held within

the FOA rather than all WM contents, and that shifting attention

away from the encoded target item (towards information retrieved

from LTM or new stimuli) instantly disrupted this activity without

any detrimental effects on WM performance. This indicates that

items removed from the FOA can be rapidly and efficiently

reactivated on demand and that, at least in humans, subspan WM

is unlikely dependent on sustained activation.

Finally, our model agrees with psychological theories of free

recall proposing that repetitions/reactivations of early list items

during subsequent ISIs rely on the same retrieval process as recall

[49].

Notably, the synaptic plasticity dependent mechanism of WM

put forward here conforms qualitatively to established knowledge

about LTP and LTD [69] except with regard to temporal aspects.

It thus unifies mechanisms behind short- and long-term forms of

memory in a biologically plausible manner that elegantly eschews

the need for dual-stores or context based mechanisms to explain

many core phenomena in single-trial supraspan word-list learning.

This makes it quite straight forward to understand interactions

between WM and LTM as well as memory consolidation based on

repeated reactivation.

The persistent activity view has dominated neuronal network

modelling of WM for quite some time. Earlier and also more

recent models have proposed that active maintenance may instead

be dependent on some form of fast and volatile synaptic plasticity

[19,58,70,71]. However, Mongillo et al.’s [70] and Lundqvist

et al.’s [58] models are based on a non-Hebbian mechanism

(synaptic augmentation) and are therefore unable to store novel

items, whereas the model presented here is based on Hebbian

plasticity and is capable of doing this. It is the first dynamic real-

time neural network model shown to reproduce the statistics of

human immediate free recall of word-lists and it poses a challenge
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for other mechanistic models of short-term WM to replicate the

same kind of data equally well or better.
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