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Abstract 

Background: Computational approaches are essential to study the effects of inborn 

and somatic variations. Results from such studies contribute to better diagnoses and 

therapies. Primary immunodeficiencies (PIDs) are rare inborn defects of key 

immune response genes. Somatic variations are the main drivers of most cancers. 

Large and diverse data on PID genes and proteins can enable systems biology 

studies of their effects on T and B cells. Amino acid substitutions (AASs) are 

somatic variations that drive cancers. However, AASs also cause cancer-associated 

antigens that are recognized by lymphocytes as non-self, and are called neoantigens. 

Detail analysis these neoantigens can be performed due to the availability of cancer 

data from many consortia. 

Aims: The purpose of this thesis was to investigate the effects of PIDs on T and B 

cells and to explore features of neoepitopes in cancers. The object of the first study 

was to detect the central T cell-specific protein network. The purpose of the second 

and third studies were to reconstruct the T and B cell network models and simulate 

the dynamic effects of PID perturbations. The aim of the fourth study was to 

characterize neoepitopes from pan-cancer datasets. 

Methods: The immunome interactome was reconstructed, and the links weighed 

with gene expression correlation of integrated, time series data. The significance of 

the weighted links was computed with the Global Statistical Significance (GloSS) 

method, and the weighted interactome network was filtered to obtain the central T 

cell network. 

The T cell network model was reconstructed from literature mining and the core T 

cell protein interaction network. The B cell network model was reconstructed by 

mining the literature for central B cell interactions. The normalized HillCube 

software was then used to study the dynamic effects of PID perturbations T and B 

cells. 

Proteome-wide AASs on putatively derived 8-, 9-, 10-, and 11-mer neoepitopes in 

30 cancer types were analyzed with the NetMHC 4.0 software. 

Results: The interconnectedness of the major T cell pathways were maintained in 

the central T cell protein-protein interaction (PPI) network. Empirical evidence from 

Gene Ontology term and essential genes enrichment analyses were in support for 

the central T cell network. 
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In the T and B cell simulations, the results for several knockout PIDs correspond to 

previous results. In the T cell model, simulations for TCR PTPRC, LCK, ZAP70 

and ITK indicated profound disruption in network dynamics. BCL10, CARD11, 

MALT1, NEMO, IKKB and MAP3K14 simulations showed significant effects.  

In B cell, the simulations for LYN, BTK, STIM1, ORAI1, CD19, CD21 and CD81 

indicated profound changes to many proteins in the network. Severe effects were 

observed in the BCL10, IKKB, knockout CARD11, MALT1, NEMO and WIPF1 

simulations. No major effects were observed for constitutively active PID proteins. 

The most likely epitopes are those which are detected by several major 

histocompatibility complexes (MHCs) and of several peptide lengths. 0.17% of all 

variants yield more than 100 neoepitopes. Amino acid distributions indicate that 

variants at all positions in neoepitopes of any length are on average more 

hydrophobic compared to the wild-type. 

Conclusions: The core T cell network approach is general and applicable to any 

system with adequate data. The T and B cell models enable the understanding of the 

dynamic effects of PID disease processes and reveals several novel proteins that 

may be of interest when diagnosing and treating immunological defects. The 

neoepitope characteristics can be employed for targeted cancer vaccine applications 

in personalized therapies. 
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Abbreviations 

AAS  Amino acid substitution 

BCR  B cell receptor 

CBM complex  CARD11-BCL10-MALT1 complex 

FBL  Feedback loop 

FFL  Feedforward loop 

GEO  Gene Expression Omnibus  

GloSS   Global Statistical Significance  

GO   Gene Ontology 

HLA  Human leukocyte antigen 

IKB  Immunome knowledge base 

IUIS  International Union of Immunological Societies 

KEGG  Kyoto encyclopedia of genes and genomes 

MCH  Major histocompatibility complex 

ODE  Ordinary differential equation 

PID  Primary immunodeficiency 

PPI  Protein-protein interaction 

TCR   T cell receptor 
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TPPIN  T cell protein-protein interaction network 

  



16 

 



17 

Thesis at a glance 

 

Immune system 
variation effects

Cancer variations

immune system

PIDs

Reducing biological 
network complexity

Background

Immune cell-specific 
network 

AASs in Cancers

Neoantigens and their 
features

Cancer immunotherapy

Heterogenous PID
phenotypes

Simulating PID 
perturbation

Novel PID-associated 
candidates

Complexity of 
reconstructed 

biological networks

IKB and 
KEGG 

repositories

iRefIndex

Gene 
expression 
correlation

Immunome 
proteins

Immmunome
PPI

Weighted 
interactome

GloSS p-value

Filtering

Core T cell 
network

Complex 
biological 
network 

reconstructio
n

Network 
complexity

Paper I

Core T cell 
network and 

literature 
mining

Normalized 
HillCube 

simulation 
and 

in silico
validation

T cell network 
model

Refined T cell 
network model

PID 
perturbation 

and simulation

Novel PID-
associated 

proteins

Cell-specific 
network 

reconstructi
on

Wild-type 
model 

simulation

Perturbed
model 

simulation

• HGC
connection

• network 
loops

• disease-
association 

• Prior PID
candidates

Papers II and III

Alexandrov 
et.al., 2013

NetMHC 4.0, 
MHC I 

prediction 
algorithm

MultiDisp 
software

Proteome-wide 
AASs from 30 

cancers

Prediction of 
peptide-MHC I 

affinities

Most likely 
neoepitopes

Frequency of aa
at AAS positions

hydropathy 
characteristics

Identifying 
cancer-associated 
AASs in proteins

Predicting 
neoepitopes

Physicochemical
properties of
aminoacids

Paper IV



18 

 



19 

General introduction 

Networks 

A network is a set of nodes connected to each other by links (Figure 1). The nodes 

are also called vertices (vertex for singular), and the links are also known as edges 

or arcs (Newman, 2010). In Figure 1, the nodes are labeled with digits. Networks 

are used to represent complex relations and processes between entities (Jasny, Zahn, 

& Marshall, 2009). 

 

Figure 1 Different types of networks. a) undirected network with 6 nodes and 7 edges. b) directed network. c) weighted 

directed network. d) directed network with multiple edges. 
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Since many real-life problems can easily be represented as networks, this 

representation is usually used to model and study different aspects of complex 

systems (Newman, 2010). With the network representation, the nature and structure 

of the interactions between entities of the system can be studied using complex 

network theory. 

To represent a problem as a network, its entities and their relationships or 

interactions should have a natural correspondence to the network elements, that is, 

nodes and links (Aldous & Wilson, 2000). Most complex systems are easily 

represented and modeled as networks. Examples of systems represented as complex 

networks include friendship, scientific collaboration, transport, the internet, genetic 

interaction and protein-protein interaction networks (Figure 2). 

 

Figure 2. The immunome interactome as a hair-ball network. Due to its complexity, it is close to impossible to study 
such networks intuitively. 

Leonhard Euler laid the foundation for the study of networks as a field in 

mathematics in 1736 when he solved the famous ‘Seven Bridges of Königsberg’ 

problem (Shields, 2012). Thereafter, many other scholars§ working on diverse 

mathematical problems furthered studies in the field, including Thomas Kirkman 

and William Hamilton who contributed to the existence of cycles in polyhedrons, 

Gustav Kirchhoff’s studies on components of electrical circuits as network 
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elements, and works on the enumeration of chemical isomers by Arthur Cayley, 

James Sylvester and George Polya (Aldous & Wilson, 2000). 

The structure of a network may reveal interesting and important properties of the 

process or system it models. The network structure is described with network 

measures. Network measures can be based on the nodes, links or both (local network 

measure). The measures can also depend on the entire network (global network 

measure). 

There is a myriad of measures that are used to describe the structure or topology of 

a network. The most commonly used network measures include degree, path, cycle, 

connectivity, clustering coefficient and centrality (Aldous & Wilson, 2000; 

Newman, 2010).  

The degree of a node is the number of edges connected to it. In Figure 1a, the degree 

of the node labeled 2, is 3. A path is a set of edges that connect a sequence of distinct 

vertices. In Figure 1a, a path between nodes 1 and 6 is {1,2,5,6}. Networks can either 

be undirected or directed depending on whether or not the edges have an arrow. The 

edges of undirected networks have no arrows (Figure 1a), whereas those of directed 

networks have arrows (Figure 1b). The arrows of directed networks usually depict 

the direction of the interactions. A network (or its part) is connected (for undirected 

networks) or strongly connected (for directed networks) if there is a path between 

every pair of nodes. 

The shortest path length between a pair of nodes is the path that has the lowest 

number of nodes. For instance, the shortest path length between nodes 1 and 4 of 

Figure 1a is 2, i.e. {(1,3), (3,4)}. The diameter of a network is the longest shortest 

path length. A cycle is a set of connected nodes such that the start and end nodes are 

the same. In Figure 1b, {(1,2), (2,3), (3,1)} represent a cycle. 

The clustering coefficient of a network can be defined globally or locally. The global 

definition of the clustering coefficient of a network indicates the degree of clustering 

of the nodes based on the density of node triplets (Luce & Perry, 1949). On the other 

hand, the local clustering coefficient of a node indicates how connected its 

neighbors are (Watts & Strogatz, 1998). 

The centrality of a node is a measure of how important it is in the network (Newman, 

2010). There are many measures of centrality, each describing a different concept 

of importance. Some examples include betweenness, closeness and eigenvalue 

centralities. 
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Complex networks 

There are many types of network models, ranging from regular to random networks. 

Regular networks are those for which the degree of each node is the same (Aldous 

& Wilson, 2000). Examples of regular networks include those whose nodes and 

links form a triangle, a rectangle, a pentagon, and many other polygons. In Figure 

1b, the subnetwork formed by the set of nodes {1,2,3} and {2,3,4,5}, are regular. 

Random networks are constructed by starting with isolated nodes and then adding 

edges using a probability function (Bollobás, 2001). Many random network models 

exist, differing from others by the probability function used in connecting the nodes. 

Among the most common is the Erdős–Rényi model (Bollobás, 2001; Erdos & 

Renyi, 1960). Regular and random networks are similar in that the degree 

distribution (number of nodes with degree k, where k = 0, 1, 2, 3…) of the nodes of 

the network is similar to the average degree of the network. 

In complex networks, the properties are nontrivial and differ significantly from 

those of regular and random networks (Albert & Barabasi, 2002). For example, the 

degree distribution of the nodes does not follow any scale. The two types of complex 

networks are the scale-free and the small-world models. 

In scale-free networks, the degree distribution of the nodes has a heavy tail. In other 

words, most of the nodes have a low degree (Caldarelli, 2007). The node distribution 

and clustering coefficient follows a power-law, 𝑃(𝑘) = 𝑘−𝛾, where 2<γ<3. The 

nodes with the largest degree are called hubs, which are very important for the 

robustness and fault tolerance of the network. The average distance between the 

nodes of scale-free networks is very small compared to those of regular and random 

networks. 

Small-world networks are characterized by short path lengths between nodes, high 

clustering coefficients and small network diameters (Watts & Strogatz, 1998). A 

wide variety of networks, including some random and empirical networks (e.g. 

metabolic networks), have these small-world properties. 

Biological networks 

Biological networks are complex networks that apply to biological systems and 

processes (de Silva & Stumpf, 2005). They include ecological (Ings et al., 2009), 

evolutionary (Braun et al., 2011), physiological and neural networks (Hopfield, 

1982; Pal, Papp, & Lercher, 2005). The modeling of diseases as complex networks 

has led to the fast-growing field of network medicine (Barabasi, Gulbahce, & 

Loscalzo, 2011; Goh et al., 2007). 
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There has been a shift in recent years from focused studies of single genes and 

proteins to large-scale studies enabled by complex network science methods. These 

are denoted by the “omics” or “ome” (Joyce & Palsson, 2006). These include 

genome, proteome, phenome, diseasome and interactome. These networks have 

similar properties to other complex networks. 

There is a wide variety of biological networks. These include protein-protein 

interaction (PPI), gene regulatory, gene co-expression, metabolic, signaling and 

neural networks. In PPI networks, proteins are the nodes, and the interactions 

between them are the edges (Han et al., 2004). These networks are evolutionarily 

conserved across species (Sharan et al., 2005). Their hub proteins are essential for 

the survival and function of the cell or organism. The overall structure of the 

network, not just the individual node pairs and edges, is crucial for the functioning 

of the cell or organism (Jeong, Mason, Barabasi, & Oltvai, 2001). 

Reducing biological network complexity 

Most complex networks are very dense in the number of edges (Breitkreutz et al., 

2010). This hampers the visualization and the study of the properties of the network. 

For instance, clustering and other algorithms that assume that the network is sparse 

(number of nodes is similar to the number of edges), may not perform well (Mishra, 

Schreiber, Stanton, & Tarjan, 2007). Moreover, modeling and simulation of 

complex networks may be difficult mathematically and computationally (Walpole, 

Papin, & Peirce, 2013). To circumvent this, there is a need to reduce the complex 

networks into the central or core components that retain the main topological and 

dynamic structure (Zanudo & Albert, 2013). 

Many methods have been developed to reduce the complexity of networks. Among 

them are topological centrality, essential gene set, coarse-graining and filtering 

approaches. The topological approaches identify and remove redundant links using 

network centrality measures (Newman, 2006). The essential gene set methods seek 

to determine the minimal gene set responsible for life sustenance (Commichau, 

Pietack, & Stulke, 2013; Kobayashi et al., 2003). Both the topological centrality and 

essential gene set techniques do not consider interactions between the major gene 

products and other vital signaling components. 

Coarse-graining approaches reduce the complexity of networks by identifying 

network motifs, collapsing the network motif into a single node, and repeating the 

process until there are no motifs in the network (Itzkovitz et al., 2005; Song, Havlin, 

& Makse, 2005). The complexity of the resulting network is reduced. However, it 

loses the underlying network topology and weight distribution of the original 

network. 
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Network filtering identifies and retains significant links from the network’s 

connectivity and its weight distribution using a null model (Grady, Thiemann, & 

Brockmann, 2012; Santoni, Pedicini, & Castiglione, 2008; Serrano, Boguna, & 

Vespignani, 2009; Tumminello, Aste, Di Matteo, & Mantegna, 2005). The network 

filtering algorithms are known to perform better in maintaining the complex 

structure of weighted networks, as well as their topology (Dianati, 2016; Grady et 

al., 2012; Radicchi, Ramasco, & Fortunato, 2011; Serrano et al., 2009; Tumminello 

et al., 2005). They are able to retain the multiscale structure inherent in natural 

complex networks. Each uses a null model to calculate the significance of the node 

(Serrano et al., 2009) or edge (Radicchi et al., 2011). The calculated p-value is then 

used to filter the nodes or edges, reducing the network into its central components. 

The methods are amenable to diverse networks, especially networks whose edges 

are weighted. Figure 1c is an example of a weighted network in which the strength 

of the interactions between the nodes are represented by weights. 

Cell-type specific network model reconstruction 

To reconstruct a biological network, data from observational, interventional, and 

perturbation experiments are usually integrated (Markowetz & Spang, 2007). The 

availability of high throughput technologies has enabled genome-scale 

reconstruction of signaling networks (Hyduke & Palsson, 2010). These large-scale 

networks, especially cell-type specific networks, are complex. Their reduction to 

the central or core components may lend them to systems biology modeling and 

simulation studies (Zanudo & Albert, 2013). 

An enormous amount of PPI data is available in pathway and protein interaction 

data repositories (Klingström & Plewczynski, 2011). However, the data in these 

repositories are not cell-type specific. To reconstruct a cell-type specific network, it 

is possible to start with a PPI network of all proteins that could be expressed and 

function in the cell-type. 

By integrating biological data available for the specific cell-type, its network can be 

reconstructed. Based on the purpose and scope of the reconstructed network, it can 

be refined with literature mining. The refined network can be used for network 

modeling and simulation, e.g. simulating the effects of genetic perturbations in a 

specific cell-type. 
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Overview of the immune system, variations and diseases 

The immune system consists of a network of cells, tissues, and organs that identify, 

neutralize, destroy, and remove foreign pathogens from the body. The immune 

system is broadly classified as belonging to the innate and adaptive systems 

(Murphy et al., 2012). To mount a response, both innate and adaptive systems are 

capable of, first, differentiating between non-self from self antigens (Jiang & Chess, 

2009; Medzhitov & Janeway, 2002), and second, mounting a response to neutralize 

and destroy the antigens or the invading cell (Iwasaki & Medzhitov, 2015).  

The innate immune system 

Cells of the innate immune system recognize and respond to invaders in a non-

specific manner (Berg & Forman, 2006). The cells that perform adaptive response 

have evolved mechanisms that are unique to the type of non-self molecule or cell 

they respond to (Pancer & Cooper, 2006). 

The innate immune system offers barriers against infectious or invading pathogens 

(Murphy et al., 2012). The barriers provided by the innate immune system include 

physical and mechanical (e.g. the skin and mucous membranes), chemical (e.g. 

lysozymes in saliva), and biological (e.g. the microbiome). The cells of the innate 

immune system include phagocytes that engulf and kill invading cells (the 

macrophages and neutrophils) and natural killer cells that kill invading organisms 

by secreting lethal chemicals (perforin and granzymes) into them. 

The adaptive immune system 

Unlike the innate immunity, the recognition and response to foreign antigens are 

very specific in adaptive immunity (Pancer & Cooper, 2006). The recognition of the 

adaptive immunity is so subtle that it is capable of distinguishing peptides that differ 

by a single amino acid. Since there are thousands of proteins and an even greater 

number of peptides derived from them, the adaptive immune system has evolved an 

enormous variability to recognize these peptides. 

As mentioned above, the adaptive system must distinguish between self to non-self 

peptides (Jiang & Chess, 2009; Medzhitov & Janeway, 2002). Failure to do so leads 

to a range of diseases, from mild to lethal (Murphy et al., 2012). To distinguish self 

from non-self molecules, the adaptive immunity uses the negative selection of cells 

that bind strongly to self-peptides during their development in the primary lymphoid 

organs. This process prevents the immune system from attacking normal cells. 
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Defects in the negative selection mechanism is the root cause of many autoimmune 

disorders. 

Adaptive immunity cells are activated by peptides called antigens. Antigens are 

presented on the surface of cells (Pancer & Cooper, 2006). Cells degrade proteins, 

process the peptides. The processed petides are then presented on the surface of the 

cell. Innate immune cells engulf and kill foreign microorganisms. The proteins from 

the microorganism are processed and presented as a peptide (epitope) bound to the 

major histocompatibility complex (MCH), on the surface of the cell. The adaptive 

immune cells are activated and elicit a response after binding and recognizing the 

epitope. This process is similar to non-innate immunity cells. Non-immunity cells 

degrade proteins, process them and present their fragments in a similar manner to 

the adaptive immune cells. 

To ensure heightened immune response in future attacks by foreign antigens, the 

adaptive immune system confers immune memory after the initial attack (Kurtz, 

2004). After the initial assault, the adaptive immune cells proliferate and remain in 

circulation for an extended period of time. Hence, during subsequent attacks, the 

response is heightened and swift. 

In the adaptive system, antibodies are secreted to neutralize a specific antigen 

(Panda & Ding, 2015). The secreted antibodies are capable of binding and grouping 

many foreign antigens into a cluster. This makes it easy for other immune cells to 

attack, kill and eliminate the foreign antigens.  

The T and B lymphocytes are the two primary groups of cells involved in adaptive 

immunity (Pancer & Cooper, 2006). Their initial development takes place in the 

primary lymphoid organs. They leave the primary lymphoid organs (bone marrow) 

into circulation and mature in the secondary lymphoid organs (spleen, lymph nodes, 

and others).  

Lymphocytes: T cells and B cells  

Lymphocytes are white blood cells whose development begins in the bone marrow 

and mature in the secondary lymphoid organs, including the thymus and the lymph 

nodes (Murphy et al., 2012). The lymphocytes are made of T cells and B cells, which 

are further differentiated into their subtypes according to their function, type of 

receptors and other molecular profiles. 

Produced in the bone marrow, T cells mature in the thymus after undergoing 

negative selection (Murphy et al., 2012). They have a surface receptor, the T cell 

receptor (TCR), as well as coreceptors. They are categorized into two main 

subtypes, the helper T cells (Th) and the killer T cells. These two main groups are 

distinguished by the coreceptors to the TCR. The Th cells have CD4 as coreceptor, 

while the killer T cells have the CD8 coreceptor. 
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Th cells are the main regulators of the immune system (Swain et al., 1991). Antigens 

are presented to the TCRs of the Th cells by antigen presenting cells. If recognized, 

the T cell is activated, undergoes proliferation and secretes cytokines that activate 

B cells and various other immune system cells and pathways. 

The killer T cells scout for foreign antigens by binding to the peptide:MHC I 

complexes on the surface of cells (Iwasaki & Medzhitov, 2015). When it binds and 

recognizes the peptide as non-self, it elicits a response that kills the antigen 

presenting cell. 

Like T cells, B cells have the B cell receptor (BCR) and several coreceptors for 

antigen recognition and activation response (Kurosaki, Shinohara, & Baba, 2010). 

Activation-induced pathways are triggered when the BCR binds and recognizes the 

antigen presented by the MHC complex. The B cell gets activated when activated T 

cells release cytokines. The activated B cell proliferates through cloning into two 

cell populations, the plasma and memory cells.  

Plasma cells release copious amounts of antibodies during infection (Murphy et al., 

2012). The antibodies perform a range of functions. They bind foreign 

microorganisms enabling their destruction by the complement pathway or 

incapacitate them. They bind antigens enabling their elimination by macrophages. 

Antibodies also act as antitoxins and gather pathogens for easy elimination.  

As mentioned above, the B and T memory cells have a prolonged life span and 

enable heightened response to secondary attacks (Kurtz, 2004). Since their response 

is specific to the antigen that caused the first infection, the subsequent response is 

swift and more potent. 

The effects of variations on the immune system 

Advancements in sequencing techniques have made genome sequencing and 

identification of variants cheaper and easier. In humans, 99.9% of the genome is 

identical, and the remaining 0.1% renders each genome unique. These variations are 

of a wide variety, from a single nucleotide substitution to chromosomal insertions, 

deletions or duplications. These variations are either inherited or occur in non-

germinal cells. The most common genetic variation include single nucleotide 

variations (Altshuler et al., 2010). 

Many inherited variations affect the immune system (Hamosh, Scott, Amberger, 

Bocchini, & McKusick, 2005). The effects of these variations range from mild to 

severe. Among the most studied of such variations are PIDs (Picard et al., 2015). 

Somatic variations are genetic alterations that occur in non-germinal cells after 

conception. These types of variations accumulate during a life time, generating 

between hundreds to thousands of genetic alterations in a healthy individual. Some 
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of these variations lead to AASs in proteins and cause diseases, especially cancer 

(Alexandrov et al., 2013). 

Primary immunodeficiency  

PIDs are genetic defects or variations in the immune system repertoire of genes and 

proteins, most of which are hereditary. These diseases are uncommon and present 

diverse and sometimes overlapping phenotypes. Due to the complex and diverse 

phenotypes, PIDs are difficult to diagnose. Prognosis of PIDs depends on early 

diagnosis. The severity of PIDs can range from benign to fatal (Samarghitean, 

Ortutay, & Vihinen, 2009). Thus, a lot of effort has been made to catalog and 

classify PIDs to facilitate early diagnosis, and hence, better prognosis. There are 

about 300 known PIDs (Picard et al., 2015; Piirilä, Väliaho, & Vihinen, 2006). By 

integrating these data, it is possible to perform global dynamic studies in the effect 

of PID-associated perturbations in the affected immune response cells. 

Systems study of the effect of PIDs in T and B cells 

Reconstructed interaction networks have been used to uncover the underlying 

mechanisms of biological processes in both normal and disease conditions (del Sol, 

Balling, Hood, & Galas, 2010; Goh et al., 2007). T and B cell protein interaction 

networks have been reconstructed to study the cellular dynamics of their activation 

and response (Chakraborty & Das, 2010). PID deficiencies disrupt essential 

biomolecular pathways for T and B cell activation and responses.  

Several approaches are available to study the effects of such disruptions. 

Quantitative approaches require reaction constants for each interaction, most of 

which are not available (Aldridge, Burke, Lauffenburger, & Sorger, 2006). 

Moreover, quantitative methods also require the knowledge of kinetic reaction 

parameters that are hard to compute.  

However, semi-quantitative and qualitative methods can be applied to larger 

networks (de Jong, 2002). These non-quantitative methods are able to characterize 

the dynamic trends of the system. Despite their wide application, semi-quantitative 

studies have not been used to investigate PID perturbations in major immune 

response cellular systems, like T cells and B cells. 

Cancer immunogenicity 

In cancers, there is a preponderance of somatic variations that result in 

nonsynonymous AASs. These AASs are the main drivers of many cancers. 

Processed proteins that contain the AASs can generate epitopes that T cells 
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recognize as non-self. These cancer-associated antigens are called neoantigens and 

can elicit an immune response against the cancer cells that process and present them. 

Neoantigens can be used to treat cancer patients (Schumacher & Schreiber, 2015). 

Many studies have been conducted to investigate the effectiveness of neoantigens 

in cancer immunotherapy (Blankenstein, Leisegang, Uckert, & Schreiber, 2015; 

Schumacher & Hacohen, 2016; Tran, Robbins, & Rosenberg, 2017; Verdegaal et 

al., 2016; Vormehr et al., 2016). The most promising of these efforts have been in 

the development of cancer vaccines for personalized therapy (Desrichard, Snyder, 

& Chan, 2016). To identify cancer-associated neoepitopes, exome sequencing of 

both the normal and tumor tissues is performed (Schumacher & Schreiber, 2015). 

However, it has been difficult to validate the neoepitopes as bona fide neoantigens 

(Anonymous, 2017). Thus, the identification of neoepitopes that are immunogenic 

is an ongoing research question, poised with great promises in personalized 

therapeutic applications. This is evident in the recent studies of neoantigen vaccine-

based therapies that progressed to phase II of clinical trials with great success (Ott 

et al., 2017; Sahin et al., 2017). 

Several tools have been developed to predict neoepitopes (Gfeller, Bassani-

Sternberg, Schmidt, & Luescher, 2016). Most of these tools are developed for 

peptide-MHC I affinity. The performance of the tools varies according to data size 

and data composition (Kim et al., 2014; Trolle et al., 2015). Most of the methods 

depend on experimentally verified neoepitopes that are limited in size and diversity. 

Thus, the performance of the methods are adversely affected. As better assays are 

developed to experimentally verify predicted neoepitopes, and develop better 

prediction methods, neoepitope predictors might be improved. NetMHC, a tool for 

predicting MHC class I affinity to peptides, is one of the best methods in this 

category (Gfeller et al., 2016).  

The occurrence and load of neoantigens have been performed in several studies, but 

details of the characteristics of neoantigens across cancer types are not available. 

Disease diagnosis, therapy, and prognosis 

Complications exist in the diagnosis and prognosis of diseases that either affect or 

evades the immune system. PIDs represent a large group of diseases that affect the 

immune system and present difficulties during diagnosis, which in turn affects 

prognosis. On the other hand, cancers are an example of complex diseases that evade 

the immune systems mechanisms. Due to the diagnostic and prognostic 

complications presented by these diseases, more efforts are needed to study the 

effects of variations to the immune response cell repertoire. In addition to studying 

the genotype-to-phenotype effects of individual PID proteins, their underlying 
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systemic effects to the cell can be investigated using systems biology methods. 

Characterizing the immunodominant features of neoantigens may also facilitate the 

advancement of vaccine-based therapies for cancers. 
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Research questions 

The purpose of this thesis was to answer the following questions. 

• How can the central components of a cell-type be identified with time series 

microarrays? 

• How do the T cell PID proteins affect the T cell receptor-dependent 

activation dynamics? 

• How do the B cell PID proteins affect the B cell receptor-dependent 

activation dynamics? 

• What are the characteristics of neoepitopes analyzed from pan-cancer data?  
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Overview of methods 

Protein-protein interaction network reconstruction 

The immunome proteins were obtained from the Immunome Knowledge Base 

(IKB) and supplemented with those from relevant immune system pathways from 

KEGG data repository (Paper I) (Kanehisa, Goto, Sato, Furumichi, & Tanabe, 

2012). Next, the proteins were used to obtain experimentally verified and 

consolidated PPI data by retrieving PPIs for the immunome proteins from the 

iRefIndex database, version 9.0 (Razick, Magklaras, & Donaldson, 2008). The PPIs 

were filtered using ppiTrim, version 1.2.1 (Stojmirovic & Yu, 2011), an algorithm 

that maps protein interactants to NCBI gene identifiers and filters the PPIs as 

follows: 

1. remove undesired raw interactions 

2. deflate potentially expanded complexes, and 

3. reconcile annotation labels from the different PPI databases. 

Further filtering steps were performed by omitting the following PPIs: 

1. non-experimentally verified PPIs 

2. PPIs from experiments conducted on non-human cells or tissues 

3. PPIs that are part of a complex 

4. PPIs for which both interactants are from the same gene 

5. multiple copies of binary PPIs, and 

6. PPIs for which both interactants were not immunome proteins. 

The data were analyzed with the R statistical programming environment (R-Core-

Team, 2016). Network reconstruction and analysis were conducted with igraph 

library (Csardi & Nepusz, 2006) and network visualization with Cytoscape, version 

2.8 (Kohl, Wiese, & Warscheid, 2011). 
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Gene expression data, preprocessing and analysis 

Microarray datasets were obtained from the GEO (Sayers et al., 2012) and 

ArrayExpress (Parkinson et al., 2011) databases using the following criteria: 

1. time course experiment 

2. the experiment has ≥ 3 samples 

3. the experiment has ≥ 1 sample as baseline, and 

4. the experiment was conducted on the Affymetrix whole transcript array 

platform U133A, U133A 2.0, U133B, U133 plus 2.0 or U95A arrays, to 

reduce bias during data integration. 

Pre-processing of the microarray datasets was performed with R/Bioconductor packages 

(Gentleman et al., 2004). The raw microarray datasets were pre-processed and quality 

controlled with box plots, arrayPLM and simpleaffy procedures (Wilson & Miller, 2005). 

The Robust Multi-Array method implemented in the affy package (Gautier, Cope, 

Bolstad, & Irizarry, 2004) was used for normalization. The gene expression values were 

obtained from their average probe set values. Further, expression data for the genes that 

did not code for the immunome proteins were removed.  

Both ComBat and plotMDS are algorithms implemented in the inSilicoMerging 

package for integrating microarray datasets (Taminau et al., 2012). The 

preprocessed and normalized datasets obtained above were merged with ComBat. 

Batch effect and PCA analyses were performed with ComBat and plotMDS, 

respectively, to examine bias effects on the datasets.  

The bootstrap package in R was used to calculate for all gene pair combinations, the 

average values of the jackknife Pearson correlation coefficient from the merged 

expression data. The absolute values of these correlation coefficients were used as 

weights for the immunome interactome links. 

Protein network filtering 

The immunome interactome network was reconstructed as an undirected and link-

weighted graph with the igraph package in R. The immunome protein coding genes, 

the PPIs, and the correlation coefficients were denoted by nodes, links, and link 

weights, respectively. The GloSS algorithm (Radicchi et al., 2011), which filters a 

weighted network, retaining its core structure and weight distribution, was used to 

filter the immunome interactome network. GloSS uses a global null model to 

calculate link significance (p-value) by randomizing link weight assignment while 
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maintaining the structure of the network. The network links were filtered using the 

link p-values in decreasing order. Connectivity between the TCR complex and the 

NF-κB signaling pathways was tracked during the filtering process. The GloSS 

filtering procedure was as follows: 

1. calculate link significance (p-value) 

2. get least significant link (maximum p-value) 

3. get rid of the least significant link 

4. if a path exists between TCR and transcription factor, go to 2, and 

5. if a path does not exist between TCR and transcription factor, return the link 

and stop filtering. 

This procedure was performed for both the NF-κB and the NFAT signaling 

pathways. The largest shortest path of a network is its diameter. The region of a 

network where a path exists between all nodes is a connected component. Changes 

to the network diameter, the relative size of the largest connected component and 

the average size of the isolated components were tracked during the network 

filtering procedure. The relative size of the largest component is the number of 

nodes in the largest component divided by the number of nodes in the whole 

network. Igraph was used to plot the network scores against the fraction of filtered 

nodes represented by (No of deleted nodes )/(No of nodes in the network). The 

network scores were calculated with the igraph package. 

Robustness of the T cell PPI network 

While keeping the topology unchanged, a proportion of the link-weights were 

randomized to obtain the weight-randomized networks. Link-weight randomized 

networks with 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 of links randomized were 

created. Thirty repetitions were performed on each link weight-randomized network 

as follows: 

1. a proportion of links were randomly selected 

2. their weights randomly reassigned 

3. the filtering procedure performed 

4. the nodes and the links measures for node degree, average path length, 

betweenness centrality, as well as clustering coefficient of the network, and 

the intersection between the TPPIN and the link weight-randomized 

networks, calculated, and 

5. the mean network scores in step 4 were retained. 
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Gene Ontology term enrichment, over-representation, 

and semantic similarity analysis 

GO term enrichment and semantic similarity were performed with WebGestalt 

(Zhang, Kirov, & Snoddy, 2005) and GOSemSim, version 1.18.0 R/Bioconductor 

package (Yu et al., 2010), respectively. The immunome interactome was the 

background for the GO enrichment analysis. The Fisher’s exact test was calculated 

for significance. The Benjamini-Hochberg procedure was calculated for multiple 

comparisons. Semantic similarity between the immunome interactome and the 

TPPIN was also calculated. 

Analysis of essential genes 

From the Mouse Genome Informatics database (Drabkin, Blake, & Mouse Genome 

Informatics, 2012), human orthologs of lethality genes were retrieved. Genes with 

“wean” and “partial” lethality types were excluded. Non-immunome genes were 

removed, and significantly enriched genes in the TPPIN identified with the Fisher’s 

exact test. The analysis and visualization were performed with the biomaRt package 

(Durinck, Spellman, Birney, & Huber, 2009) and Cytoscape, version 2.8, 

respectively.  

Network reconstruction and analysis 

In Paper II, after supplementing the TPPIN with literature mining, the naïve CD4+ 

T cell network model was reconstructed from Boolean equations that include central 

TCR/CD28 signaling components. In Paper III the B cell model was reconstructed 

directly from literature mining.  

Data analysis, the interaction graph and network visualization were accomplished 

with the R software, the CellNetAnalyzer, version 2016.1 (Klamt, Saez-Rodriguez, 

& Gilles, 2007) and Cytoscape, version 3.3.0 (Demchak et al., 2014), respectively. 

The feedback and feedforward loops of the underlying interaction graph of the 

model were computed with NetDS, a Cytoscape, version 2.8 plugin (Le & Kwon, 

2011). The igraph/R package was used to compute strongly connected components. 

A Boolean network model is represented by variables whose state or value is either 

0 or 1. During simulation, a protein’s state is calculated at each round or time step 

from the values of the influencing proteins, which are proteins that are connected to 

it. This procedure is performed at each time step for all proteins in the network. 
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In the Odefy software (Krumsiek, Poelsterl, Wittmann, & Theis, 2010) the Boolean 

update functions are converted to normalized HillCubes, a system of continuous 

ordinary differential equation (ODE), in which the proteins’ states are in the range 

0 to 1, inclusive (Wittmann et al., 2009). The parameters of the ODE system of 

equations include τ, 𝑥, k and n that describe the life-time, decay and the activation 

at half-maximal level of the protein, and the cooperativity between the protein 

interactions, respectively.  

Basin of attraction and attractor identification 

The normalize HillCube update functions were used to simulate the dynamics of the 

naïve CD4+ T cell and the B cell models. Except for the parameter values in Table 

1, default parameters were used. The default parameters were n = 3, k = 0.5 and τ = 

1. Each simulation returned both a basin of attraction and an attractor. The PID-

perturbed attractors were obtained as follows: 

1. convert the PID protein to an input node 

2. change its state to reflect the perturbation as reported in the literature, and 

3. while keeping the perturbed state of the PID protein unchanged and using 

the same parameters as for the wild-type simulation, perform normalized 

HillCube simulation until an attractor is reached. 
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Table 1. Tuned parameters of nodes in the Odefy-simulated T and B cell network model 

Influenced node Network 
model 

Influencing node(s) τ n  k 

PAG1 T cell []a 1 20  0.9 

DAG T cell DGK 1 20  0.9 

DGK T cell [] 1 20  0.9 

DGK T cell [] 1 3  0.9 

LCK T cell MAPK1 10 20  0.1 

CBL T cell [] 3 20  0.9 

CALN T cell CABIN1 1 3  0.9 

CALN T cell RCAN1 1 3  0.9 

CALN T cell AKAP5 1 3  0.9 

LYN B cell DOK3 10 20  0.1 

PAG1 B cell PTPRC 20 32  0.9 

CSK B cell PAG1 20 32  0.9 

BCR B cell PTPN6 1 32  0.9 

BCR B cell PTPN11 1 32  0.9 

BCR B cell CSK 1 32  0.9 

PIP2_2 B cell INPP5D 16 32  0.9 
aAll influencing nodes. PAG1, phosphoprotein membrane anchor with glycosphingolipid microdomains 1; DAG, 
second messenger, diacylglycerol; DGK, diacylglycerol kinases; LCK, LCK proto-oncogene, Src family tyrosine 
kinase; MAPK1, mitogen-activated protein kinase 1 (ERK); CBL, Cbl proto-oncogene; CALN, calcineurin complex; 
CABIN1, calcineurin Binding Protein 1, RCAN1, regulator of calcineurin 1, AKAP5, A-kinase anchoring protein 5; 
PIP2_2, PtdIns(3,4)P2, Phosphatidylinositol 3,4-bisphosphate.  

Primary immunodeficiency data 

PID data were obtained from the IDbases (Piirilä et al., 2006), the International 

Union of Immunological Societies (IUIS) expert committee classification of PID 

data (Picard et al., 2015) and a review (Vihinen, 2015). The PIDs in Paper II 

included LCK, ZAP70, ITK, IKKB, NEMO, CARD11, MALT1, BCL10, NFKBIA, 

PTPRC, MAP3K14 and PI3K deficiencies, whereas those in Paper III were BCL10, 

CARD11, CD19, CD21, CD81, IKKB, KRAS, LYN, MALT1, MS4A1, NEMO, 

NFKB1, NFKBIA, ORAI1, PI3K, PLCG2, STIM1 and WIPF1 deficiencies. 
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Variation data  

In Paper IV, the pan-cancer AASs were retrieved from (Alexandrov et al., 2013). 

Sequences for proteins coded by the genes in the pan-cancer dataset were obtained 

from Ensembl (Flicek et al., 2014). Twenty-one amino acid long wild-type and 

variant peptides were derived from the proteins such that the variant position was in 

the middle. 

HLA-peptide binding affinity prediction 

The peptide:HLA affinity predictions were performed with NetMHC 4.0 software 

(Andreatta & Nielsen, 2016). The peptide affinity predictions of IC50 ≤ 50 nM, 50 

< IC50 ≤ 500 nM and > 500nM denoted high, weak and non-binders, respectively. 

High binding variant peptides whose corresponding wild-type peptides were either 

weak or non-binders were defined as neoepitopes.  

Data analysis of neoepitope enriched proteins 

Data analyses were performed with R. The amino acid hydropathy and sequence 

logo analysis and visualization were done with the MultiDisp software 

(http://structure.bmc.lu.se/MultiDisp). The GO term enrichment analysis was 

achieved with GOrilla (Eden, Navon, Steinfeld, Lipson, & Yakhini, 2009). The 

summary and visualization of the GO term enrichment were conducted with 

REViGO (Supek, Bosnjak, Skunca, & Smuc, 2011). 

http://structure.bmc.lu.se/MultiDisp


40 

 



41 

Overview of results 

Identifying core cell-specific protein interaction network 

Immunome proteins  

The T cell-specific PPI network was identified. To achieve this 1,579 of immune 

response proteins, of which 885 were from the IKB database (Paper I) (Ortutay & 

Vihinen, 2009b) and 694 were from the KEGG immune system pathways (Kanehisa 

et al., 2012), were obtained. These immunome proteins were used to generate the 

immunome interactome. PPI data were retrieved from the iRefIndex (Razick et al., 

2008) and ppiTrim (Stojmirovic & Yu, 2011) was used for filtering. After the 

filtering, the PPIs retained were immunome protein-containing, experimentally 

verified, binary and non-redundant. The network consisted of 5,603 PPIs and 1,259 

immunome proteins. 

Immunome gene pair correlation data 

16 time series datasets having 384 samples from 5 Affymetrix platforms were 

retrieved from the GEO (Sayers et al., 2012) and ArrayExpress (Parkinson et al., 

2011) data repositories. These experiments were preprocessed and normalized. The 

normalized datasets were integrated after batch effects and quality control analysis. 

1,149 of the 1,259 immunome protein coding genes, expressed in at least 80% of 

the samples were integrated and used for further analysis. The Jackknife Pearson 

correlation between all gene-pair combinations in the integrated dataset was 

computed. The correlations of 5,164 gene pairs for 1,140 genes coding for 

immunome proteins were obtained. The minimum, maximum and mean of the 

correlations were -0.06, 0.88 and 0.09, respectively. 
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Reconstructed immunome interactome and filtering 

The T cell-specific PPI network was reconstructed with the immunome interactome 

as the nodes and links and the correlation data as link weights. Next, the network 

was filtered to identify its core without losing its underlying complex structure with 

the GloSS algorithm (Radicchi et al., 2011). Two aspects of the network were used 

to guide the filtering process. First, the biological information of the network that 

includes essential T cell pathways, the NF-κB and NFAT pathways, were used to 

inform the termination of the filtering procedure. Next, network topology measures 

that indicate network connectivity and robustness were used to monitor the the effect 

of the filtering process. These network measures include the network diameter, the 

relative size of the largest connected component and the average size of the isolated 

components. The filtered network was called the T cell PPI network (TPPIN). 

Support for the core T cell PPI network 

The TPPIN was supported by several empirical evidence. First, the distribution of 

the link weights was retained before and after the filtering procedure. This implies 

that the filtering process maintained the core network structure. Second, noise was 

introduced to the immunome interactome by randomly assigning different 

proportions of link weights, while maintaining the structure. The noise introduced 

to the immunome interactome reduced its connectivity, robustness, and integrity 

significantly, compared to the TPPIN. Third, GO term enrichment analysis (Gene 

Ontology, 2012), was performed using the TPPIN proteins. Most biological process 

terms were enriched with terms for T cell-specific functions, as well as for general 

immune response. Fourth, when the immunome interactome proteins were 

semantically compared to those of the TPPIN, significant overlap between both 

protein groups was found, showing that the TPPIN is both T cell-specific and 

immunome interactome representative. Fifth, essential genes enrichment analysis 

was performed with the TPPIN protein coding genes. The human orthologs of the 

mouse essential genes from the Mouse Genome Informatics database were used 

(Drabkin et al., 2012). Highly significant enrichment of essential genes of the 

TPPIN protein coding genes was found. Lastly, the TPPIN was mapped to crucial 

T cell activation and response pathways, including the TCR, JAK-STAT, MAPK 

pathways. TPPIN includes almost all the essential components of these pathways, 

including most components necessary for the early signaling events of the NF-κB, 

NFAT and AP1 transactivation pathways. Further, the mapping shows the 

interconnection between the pathways. These demonstrate that the filtering process 

was successful in capturing the core T cell-specific network.  
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Modeling and simulating PID perturbation effects on T 

and B cells 

Reconstructing network models for naive T and B cells 

The naïve T and B cell activation network models were reconstructed and used to 

simulate the semi-dynamic effects of PID perturbations (Papers II and III). To 

reconstruct the T cell network, the 227 TPPIN interactions were used as the basis 

for mining the literature. Eighty-five interactions that are crucial for T cell receptor 

(TCR) and CD28 coreceptor signaling were used to reconstruct the CD4+ T cell 

Boolean network model. Similarly, the literature was mined for the major 

interactions for the B cell receptor (BCR) activation and response. Boolean 

equations for the interactions were generated and used for further analysis. The 

Boolean equations were represented in the sum-of-product form (Klamt, Saez-

Rodriguez, Lindquist, Simeoni, & Gilles, 2006). 19 and 20 nodes in the T cell and 

B cell model, respectively, were source nodes (i.e., had no incoming edges). 

Underlying structure of the network models 

The structure of the network models was probed for signaling paths from the 

receptors to downstream transcription factors. In the T cell model, paths from the 

TCR (signal 1) and coreceptor CD28 (signal 2) to major TCR-dependent activation 

transcription factors, NF-κB, NFAT and AP1 (Smith-Garvin, Koretzky, & Jordan, 

2009) were examined. In the B cell model, paths from the BCR to major 

transcription factors ELK1, BCL6, EGR1, AP1, NFAT, and NF-κB were probed. 

To achieve this, the network models were converted into the underlying interaction 

graphs. The T cell interaction graph consisted of a connected component of 85 nodes 

and 146 links. Moreover, a strongly connected component was identified with 25 

nodes and 48 links. This strongly connected component shows the part of the 

network where the signaling paths experience the most signaling cross-talk. The B 

cell interaction graph consisted of a single strongly connected component with 107 

and 188 links, respectively. 

Feedback loops (FFLs) and feedforward loops (FBLs) were used to identify proteins 

that are essential along signaling paths in the models. Proteins that are in many such 

loops are considered essential to the dynamics of the network. In both interaction 

graphs, the shortest loops had 2 nodes, while the longest had 20 nodes, for the T 

cell, and 27 for the B cell interaction graph, respectively. Most of the PID proteins 

were found in many loops in the T cell graph (LCK, 409; ZAP70,380; CBM, 316; 

CARD11, 312; BCL10, 210; ITK, 120; PI3K, 110 and MALT1 in 106 FBLs) and 
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in the B cell graph (BCL10, 724; BLNK, 912; BTK, 3952; CARD11, 2896; CD19, 

1484; CD21, 371; CD81, 371; IKKB, 362; KRAS, 2394; LYN, 6216; NEMO, 1448; 

NFKB1 and NFKBIA, 2172; ORAI1, 2700; PI3K, 6840; PLCG2, 8208; STIM1, 

4050). Unlike in the B cell graph, NEMO, IKKB, NFKBIA and MAP3K14 PID 

proteins were in none of the loops. The presence of the PID proteins in many loops 

shows that their disruption can significantly affect the normal signaling dynamics 

of the cells. 

Simulating the wild-type scenarios 

To make sure that the model agrees with the literature and can reproduce normal or 

wild-type TCR- and BCR-dependent activation, the network was refined with in 

silico validation. Normalized HillCube simulation (Krumsiek et al., 2010; Wittmann 

et al., 2009) was used to validate the network models. The state of nodes was 

iteratively changed while constraining major network components during 

simulations. Further, scenarios in which signal 1 and/or signal 2 are turned on or 

off, separately and together in each of the models, were investigated. When either 

signal was turned off, the transcription factors AP1 and NFAT, but not NF-κB, were 

activated for the T cell model. In the B cell model, except for NFAT and NF-κB, all 

other transcription factors (ATF2, BCL6, CREB1, EGR1, ELK1, ETS1, FOXO1, 

JUN, MEF2C) were turned on. When both signals 1 and 2 were turned on, the results 

were comparable to the literature (LeBien & Tedder, 2008; Mitchell, Vargas, & 

Hoffmann, 2016; Smith-Garvin et al., 2009). Simulations were performed until the 

network reached an attractor state.  

With the T cell model, a cyclic attractor was obtained after 40 update cycles or 

arbitrary time points. The network stayed in the attractor state with a period of 20 

arbitrary time points. With the B cell model, a two-phase simulation was performed. 

The first phase simulated the dynamics of the early activation cascades after the 

BCR and its coreceptors (CD19/21/81) were activated, while the second phase 

represented late BCR modulating signaling events. In the first phase, the B cell 

model reached a point attractor after 80 time points. Following this, the modulators 

of the BCR were turned on, and the simulation was executed until an attractor was 

reached again. This second attractor was reached after 230 time points. Like the T 

cell, the attractors of the B cell model were in accordance with the literature as seen 

in the activation of all the major activating transcription factor pathways. 
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Simulating PID perturbations 

The models were used to study the semi-dynamic effects of PID perturbations. To 

achieve this, 12 and 22 T and B cell PID proteins were obtained, respectively, from 

the ImmunoDeficiency Resource (Samarghitean, Väliaho, & Vihinen, 2007), 

IDbases (Piirilä et al., 2006), the most recent classification by the IUIS expert 

committee for PIDs (Picard et al., 2015) and a recent review (Vihinen, 2015). 

Variations in these proteins affect T and B cells from the pre-CD4+ and pre-B cell 

developmental stages, respectively. The T cell PIDs included BCL10, CARD11, 

IKKB, ITK, LCK, MALT1, MAP3K14, NEMO, NFKBIA, PI3K, PTPRC, TRAC 

and ZAP70. The B cell PIDs included BCL10, BLNK, BTK, gain- and loss-of-

function CARD11, CD19, CD21, CD40, CD81, IKKB, KRAS, LYN, MALT1, 

MS4A1, NEMO, NFKB1, NFKBIA, ORAI1, PI3K, PLCG2, PTPRC and STIM1 

deficiencies. Normalized HillCube simulations for each PID perturbation had 

significant effects on all three major transactivation factor pathways. The exceptions 

were as follows: 

1. the overexpression perturbations (PI3K and NFKBIA in the T cell model; 

CARD11, IKKB, KRAS, PI3K, and PLCG2 in the B cell model), and, 

2. the knockout perturbations (BCL10, CARD11, MS4A1, PTPRC, WIPF1) 

in the B cell model. 

Severity of PIDs 

Next the severity of the PIDs was examined. Except for the knockin perturbed PIDs 

in both models, all other PIDs were associated to SCIDs and deficiencies, which are 

associated to infectious disease susceptibilities (van der Burg & Gennery, 2011). 

PID discovery is evolving and leads to the cataloging, classification, and 

prioritization to ease cheaper and earlier diagnosis (Ortutay & Vihinen, 2009a; 

Picard et al., 2015; Samarghitean et al., 2009). Perturbed simulations for proteins 

that are in many loops on the models were conducted to probe their dynamic effects. 

Like PIDs, most of the proteins had significant effects on the main signaling 

pathways. Interestingly, these proteins are also disrupted in most PID attractors. 

Further interrogation of these proteins with the Human Genome connectome (Itan 

& Casanova, 2015) showed that many are connected to PID proteins. Thus, these 

proteins could be investigated during gene prioritization. The proteins include ABL, 

LCK, MAPK1, PRKCQ, LAT, RAS and VAV1 in the T cell model, and IKKA, 

CRACR2A, GAB1, GRB2, and ITPR1 in the B cell model.  
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Characterizing neoepitopes: a pan-cancer analysis 

A pan-cancer analysis was performed to characterize neoepitopes (Paper IV). 

Sequence data and prediction 

Data for 783,615 AASs on proteins experimentally identified in 30 cancer types 

were obtained and used in the analysis (Alexandrov et al., 2013). For each AAS, a 

21-mer peptide was constructed with the AAS position at the center, for both the 

wild-type and the variant peptide, and used as the input to NetMHC. NetMHC made 

4,706,079,200 affinity predictions between 8- to 11-mers, to 80 human HLAs. 

Strong and weak peptide binders to HLAs 

Strong binding peptide-HLA affinity was defined as those below 50 nM. Weak 

binders were those with affinity above 50 nM but below 500nM, and non-binders 

were defined as those with affinity above 500 nM.  

The number of binders for wild-type and variant datasets was 41,667,139 and 

44,853,374, respectively. The number of 9-mer binders was extremely larger than 

peptides of the other lengths. 

Peptide binders 

Less than 2% of all predictions were either weak or strong binders. The wild-type 

and variant datasets had similar distributions of AAS positions within the binding 

peptides. The distribution of binders in cancer types followed the individual cancer 

variation rate and was similar for both the wild-type and variant datasets. Thus, the 

overall distribution of binders was quite similar across cancers and also across 

HLAs, in both the wild-type and variant datasets. 

Stong and weak binders 

The proportion of wild-type and variant binders that are strong binders was 0.24% 

and 0.22%, and those for weak binders, 0.67%, and 0.72%, respectively, based on 

the total number of predictions. AAS positions within the binding peptides were 

distributed evenly, except for positions 10 and 11, both across the wild-type and 

variant datasets, and the weak and strong binders. Similar to the overall binders 

datasets, the distribution across cancer types and HLAs for wild-type and variant 

binders, were similar among weak and strong binders. Further, the proportion of 9-

mers within HLAs was similar within weak and strong binders (like that for all 
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binders). Thus, the characteristics of the weak and strong binders were similar, when 

compared to each other, and to the overall peptide binders.  

Neoepitopes 

The characteristics of neoepitopes were subsequently studied. Neoepitopes were 

defined as strong binding peptides whose equivalent wild-type peptides had weak 

affinity or were predicted as non-binders. Of all the predicted peptides over 11 

million (0.24%), from over 95% of all proteins fulfilled the criteria as neoepitopes. 

This implies that peptides derived from virtually every protein potentially generated 

antigenic epitopes. 

Neoepitope distribution among n-mers and proteins 

The 9-mers were the most abundant (72%) among neoepitopes, followed by 10-, 

11-, and 8-mers. Less than 2% of variants gave rise to neoepitopes of all lengths, 

and only 6.1% of two different lengths. The proportion of neoepitopes generated by 

variants is in the range 1-231. Most variants generated only a few neoepitopes, while 

0.17% generated many neoepitopes (1,282 variants yielded ≥100 neoepitopes).  

Neoepitope distribution among HLAs, at AAS positions and cancer type 

The distribution of neoepitopes across HLAs varied slightly, whereas there were 

considerable differences in the distribution of n-mers. The percentage of AASs at 

each amino acid position in the neoepitopes was very similar to those observed for 

the wild-type and variant binders. As observed for the wild-type and variant binders, 

the distribution of neoepitopes in the cancer types followed the cancer mutation rate, 

and the proportion of n-mers in each cancer type was almost uniform.  

The neoepitope data were mapped to the patient data from which the AASs were 

derived to study the distribution of neoepitopes in the patients. The minimum, 

maximum and median number of neoepitopes per patient were 4, over a half a 

million and about 6,856, respectively. Cancer types with a high mutational burden 

also had the highest proportions of neoepitopes per patient.  

GO term enrichment for proteins that yield many neoepitopes 

GO analysis was performed to identify the functional group enrichment of the 

proteins from which neoepitopes are derived (Eden et al., 2009). All human proteins 

were used as background and the proteins from which neoepitopes are derived, were 

used as targets. The most enriched biological process term categories comprised 

nucleic acid and RNA metabolism, whereas nucleic acid and RNA binding 
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consisted of the most significant molecular function enriched terms. The most 

enriched cellular compartment terms included the nucleosome and the nucleus. 

Neoepitope amino acid residue analysis  

The MultiDisp software was used to investigate the effects of the AASs on 

neoepitopes by examining the frequency of the different types of amino acid 

residues at the AAS positions. Albeit similar residues in some positions, an 

enrichment of F, I, L, V, Y was observed, and a reduced frequency of D, E, R, S, 

and T residues at the last position of the neoepitopes compared to the wild-type 

peptides. The enriched amino acids were hydrophobic, which confirms results 

(Chowell et al., 2015). Similar amino acids were observed at other positions in both 

the neoepitopes and the wild-type.  

Moreover, with the Kyte-Doolittle hydropathy scale, the hydropathic characteristics 

of the amino acid residues at the AAS positions in both the neoepitopes and the 

wild-type peptides were investigated. Hydropathy is an essential feature of epitopes 

that is connected to the binding preference of amino acids within the HLA binding 

sites. Some positions in HLAs are essential for recognition and response. However, 

our results show that hydrophobic characteristics are preferred in neoepitopes, at all 

sites and in all n-mers, than in wild-type peptides. 
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General discussion 

The effects of variation in normal and disease conditions were described. The core 

T cell-specific network was reconstructed, in Paper I. In Papers II and III, the focus 

was on the effects of immunodeficiencies on naïve CD4+ T and B cells from the 

pre-T and pre-B cell developmental stages. In Paper IV, the effects of AASs to the 

preponderance of MHC I-associated neoepitopes, as well as their characteristics 

were investigated. Below, the results and their implications are discussed. 

How can the central components of a cell-type be 

identified with time series microarrays? 

The core T cell-specific PPI network was identified after filtering the immunome 

interactome (Paper I). A list of immunome proteins was curated from the IDR and 

the KEGG pathways database (Kanehisa et al., 2012; Samarghitean et al., 2007). 

The immunome interactome was constructed from the immunome protein set by 

obtaining and preprocessing PPIs maintained in the iRefIndex compendium of PPIs. 

To weigh the immunome interactome links, time series gene expression profiles for 

human T cells were obtained from public repositories, preprocessed, normalized and 

merged together after careful batch effect correction analysis. Using the merged 

data, the mean of the jackknife Pearson correlation between all gene pairs whose 

products were in the immunome protein set was used to weigh the links of the 

immunome interactome. The weighted immunome interactome network was filtered 

to obtain the TPPIN. The resulting TPPIN was investigated and supported with 

multiple sources of evidence, including GO term enrichment and semantic 

similarity. 

The TCR activation and signaling is critical for T cell development (Smith-Garvin 

et al., 2009), survival and functions, and most important components involved in 

the early TCR signaling events, are present. Except for CD3G and CD3D, most 

components that participate in the activation of the TCR complex and ITAMs, the 

coreceptors (CD4 and CD8) and the Src family kinases (LCK and FYN) are present 

in the TPPIN. After activation of the TCR and the ITAMs, ZAP70 and other crucial 

adaptor proteins are activated, leading to the formation and stimulation of the 
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macromolecular signaling complex that leads to downstream events of the TCR 

activation pathways. Except for a few adaptor molecules, most components of the 

macromolecular complex are present in the TPPIN. 

After the formation of the proximal molecular complex, PLCG1 is activated (Cruz-

Orcutt, Vacaflores, Connolly, Bunnell, & Houtman, 2014). PLCG1 cleaves PIP2, 

forming DAG and IP3 as second messengers. DAG activates PRKCQ which in turn 

leads to the activation of the CARD11-BCL10-MALT1 (CBM) and the IKK 

complexes (Isakov & Altman, 2012; D. Wang et al., 2004). The activation of the 

IKK complex leads to the activation of NF-κB (Mitchell et al., 2016). Additionally, 

RASGRP is activated by DAG, which in turn activates the MAPK cascade of 

signaling events that culminates in the activation of FOS (Smith-Garvin et al., 

2009). AP1, a transcription factor complex of FOS and JUN, is formed after the 

activation of JUN through a PRKCQ-dependent pathway (Liu, Shepherd, & Nelin, 

2007). Further, IP3 activates CaN, which in turn activates the transcription factor 

NFAT through the calcium signaling pathway (Oh-hora & Rao, 2008). All three 

transcription factors, NF-κB, AP1, and NFAT, are crucial response factors of the 

TCR activation signaling (Smith-Garvin et al., 2009). Almost all signaling proteins 

essential for the downstream activation of the transcription factors are present in 

TPPIN. 

T cell specific network studies have previously been done (Mendoza, 2006; 

Mendoza & Pardo, 2010; Mendoza & Xenarios, 2006; Saez-Rodriguez et al., 2007; 

R. S. Wang & Albert, 2011). Most of these studies are centered on transcriptional 

networks. Such networks are small, consisting of a few dozen well-known 

transcription factors and their targets, as nodes. In this study, using an unsupervised 

approach, the T cell specific network was identified, TPPIN consisting of 288 nodes 

and 227 links that were derived from the immunome interactome, composed of 

1,149 nodes and 5,164 links. The size of TPPIN can be used for systems biology 

studies. 

The knowledge of T cell biology was used as the criteria to stop the filtering 

procedure. Central to T cell biology are the TCR and downstream signaling 

pathways that lead to T cell activation. The transcription factors NF-κB and NFAT, 

though present in many cell-types, are crucial to T cell activation and function 

(Smith-Garvin et al., 2009). The connectivity between the TCR and NF-κB, as well 

as TCR and NFAT, were maintained during the filtering. This ensured that the 

remaining network retains the central signaling components relevant for T cells. 

Functional annotation of the proteins in the TPPIN was investigated for independent 

lines of evidence for the T cell specificity of TPPIN. The enrichment of GO terms 

for the TPPIN proteins for both the biological process and molecular function 

categories were analyzed. The result showed highly significant terms that are central 

to T cell function. To investigate the similarity between the TPPIN and the 
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immunome interactome proteins, semantic similarity of GO terms in biological 

process and molecular function categories were analyzed. The results show highly 

significant similarity between the TPPIN and immunome interactome. Since the 

survival of a cell depends on a set of indispensable genes, the TPPIN was probed 

for the enrichment of these genes. The results showed a high significance in essential 

genes in the TPPIN. The above lines of evidence demonstrate the relevance of the 

filtering routine. 

Most publicly available data for microarray gene expression profiles are of diverse 

designs. As a result, experimental datasets of diverse designs were used. However, 

preprocessing, normalization, and batch effect correction analysis were 

implemented to minimize the effects of bias in the data used for the correlation 

analysis. 

Gene expression experiments measure the aggregate relative expression of the genes 

expressed in the tissue under study, and the coexpressed gene products are 

functionally related. In the same light, the gene expression correlation between gene 

pairs used as link weights in the immunome interactome provides the T cell specific 

data on the strength between the gene products at an aggregate level. 

During the filtering process, TPPIN maintains most of its network integrity and 

connectivity. Network statistics that indicate the connectivity and robustness of a 

network were used to monitor the effect of link removal during the filtering. The 

results suggest that the connectivity and robustness of the TPPIN were maintained 

throughout the filtering process.  

The main limitation of the filtering routine used to identify the TPPIN is in the 

availability of data. Time series expression profiles for the cell-type under 

investigation is required. Further, each experiment should have at least 3 samples, 

and a set of proteins have to be used to track the connectivity of the network and set 

a stopping criterion when central pathways are about to lose their connectivity and 

robustness. However, large amounts of high throughput experimental data are 

available to the public. Thus, the availability of data might not pose a big challenge 

in many cases. 

How do the T cell PID proteins affect the T cell 

receptor-dependent activation dynamics? 

In Paper II, the normalized HillCube method (Krumsiek et al., 2010) was used to 

study the effects of PID protein perturbations in a network model for naive CD4+ T 

cell reconstructed from literature mining and a previously published core T cell 

protein network (Paper I). With the normalized HillCube approach, the network was 
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refined, and in silico validated, and used to study the dynamic effects of PID protein 

perturbations. The model and simulation were able to reproduce the effects of 

knocking out PID proteins from naïve CD4+ T cells.  

Attractors for knockout perturbations for LCK, PTPRC, TRAC, and ZAP70 caused 

the most severe effects compared to the wild-type. The attractors for BCL10, 

MALT1, CARD11, MAP3K14, NEMO and IKKB severely affected the NF-κB 

pathway. Knocking out any of these proteins may dysregulate the IKK complex, 

which prevents NFKBIA from proteasomal degradation. The the intact NFKBIA 

sequesters NFKB1 in the cytosol, preventing it from being transported into the 

nucleus for response gene transactivation (Mitchell et al., 2016). Minor effects were 

observed for perturbed knockouts of MAP3K14, NEMO, and IKKB. Knockin 

perturbations for PI3K and NFKBIA had no effect on the dynamics of the network. 

Most PID proteins were found in most of the FFLs. Our approach showed severe 

effects for perturbed proteins along non-redundant and core pathways. On the other 

hand, knockout perturbation of proteins located in the periphery or along pathways 

with redundant paths displayed minor effects. 

Although no effect was observed for knockin perturbations, gain-of-function 

variations in the catalytic subunit of PI3K are linked to serious respiratory 

infections, cancer and T cell senescence (Angulo et al., 2013; Crank et al., 2014; 

Lucas et al., 2014). On the other hand, the heterozygous and truncated NFKBIA 

knock-in variants sequester NFKB1 in the cytosol, preventing it from 

transactivation of response genes (Courtois et al., 2003; Janssen et al., 2004; 

McDonald et al., 2007). Since no effect was observed in the overexpression or 

knockin perturbations for the NFKBIA and PI3K, more detailed quantitative 

dynamic simulations may be needed to study their effects. 

Upon MHC-antigen binding of the TCR, the CD3 ITAMs are activated. This leads 

to a plethora of critical signaling events that culminates in the transactivation of 

response genes by the major TFs (Smith-Garvin et al., 2009). Therefore, perturbing 

the TCR causes severe dysregulation of signal transduction. A homozygous variant 

of the TCR causes TRAC deficiency with severe effects (Morgan et al., 2011). This 

is corroborated by the profound dysregulation of the attractor of TRAC knockout, 

in which all signaling pathways are blocked. 

LCK takes part in activating the ITAMs after TCR ligation (Palacios & Weiss, 

2004). LCK’s catalytic activity is regulated positively by PTPRC (Thomas & 

Brown, 1999). Lack of LCK activity causes low numbers of, and unresponsive T 

cells, which causes infectious disease predisposition (Hauck et al., 2012; Palacios 

& Weiss, 2004; Sawabe et al., 2001). Thus, PTPRC deficiency, caused by several 

variants in different individuals, including large deletions and AASs, causes severe 

phenotypic effects (Cale et al., 1997; Kung et al., 2000; Tchilian et al., 2001). This 
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is confirmed by disrupted signaling in all activation response pathways in the 

attractor of TRAC deficiency.  

The absence of LCK disrupts NFAT and abrogates T cell response, which in turn 

leads to defects in TCR, NF-κB and calcium signaling (Hauck et al., 2012). LCK 

PID is associated with many disease phenotypes, including CD4+ T cell 

lymphopenia and respiratory tract infections. Our simulations confirmed the 

abrogation of the NF-κB, calcium signaling, and thus NFAT and AP1 pathways in 

the LCK PID-perturbed attractor.  

Due to the proximity between ZAP70 and LCK in the early events of TCR signaling 

their knockout effects are similar. Many ZAP70 deficient patients have been 

diagnosed with severe disease phenotypes (Karaca et al., 2013; Picard et al., 2009; 

Schroeder, Triggs-Raine, & Zelinski, 2016). The ZAP70 knockout attractor shows 

significantly impaired signaling for major downstream effectors, especially in the 

calcium signaling pathways.  

ITK is a major component of the LAT signalosome and TCR proximal signal 

transduction (Malissen, Aguado, & Malissen, 2005). The ITK deficiency is caused 

by several heterozygous variants that are associated with many disease phenotypes, 

including naïve CD4+ lymphopenia and recurrent infections (Ghosh, Bienemann, 

Boztug, & Borkhardt, 2014; Huck et al., 2009; Linka et al., 2012; P. Stepensky et 

al., 2011). Genotypic studies also associate this PID with several signaling defects, 

including activation-induced cell death and defective TCR activation signals. In 

these simulations, pathways downstream of the LAT signalosome are disrupted for 

all three major transcription factors. This is in agreement with defective T cell 

numbers and defective TCR activation and response. 

After the formation of the LAT signalosome, PRKCQ is recruited and activated 

(Isakov & Altman, 2012). PRKCQ activates CARD11, which in turn binds and 

activates BCL10 and MALT1 to form the CBM complex (Thome, 2004; D. Wang 

et al., 2004). The PIDs associated with the components of the CBM complex are 

caused by homozygous variations in their genes (Jabara et al., 2013; Polina 

Stepensky et al., 2013; Torres et al., 2014). These PIDs cause diseases of diverse 

phenotypes in diagnosed patients. The CBM complex is an essential signaling 

component in the NF-κB pathway (Mitchell et al., 2016). CBM complex 

deficiencies are related to many T cell defects, including predominantly naïve CD4+ 

T cells and defective NF-kB pathway signaling. Our simulations confirm these 

findings as seen in the abrogated NF-κB and AP1 pathways in the attractors of the 

CARD11, BCL10, and MALT1. 

The IKK complex, a major regulator of NF-κB, consists of the kinases IKKA and 

IKKB and NEMO, a regulatory protein (Smith-Garvin et al., 2009). The CBM 

complex activates TRAF6 through polyubiquitination, which in turn activates 



54 

MAP3K7 (Turvey et al., 2014). MAP3K7 regulates the assembly of the IKK 

complex. IKKB deficiency is associated with homozygous, duplicating and 

nonsynonymous substitution variants that cause many life-threatening diseases. 

Although IKKB deficiencies are connected with normal T cell numbers, the T cell 

subsets are low, peripheral T cells are non-responsive, and NF-κB signaling is 

disrupted (Pannicke et al., 2013). NEMO deficiencies are caused by AAS and exon 

skipping variations and are connected to several diseases, including colitis and 

ectodermal dysplasia (Fusco et al., 2015). Like IKKB, NEMO deficiencies are 

associated with normal T cell count but impaired TCR and NF-κB signaling. The 

attractors for IKKB and NEMO show severely impaired NF-κB signaling, while 

AP1 and NFAT signaling had minor effect, confirming the previous findings. 

MAP3K14 is a major component in both the canonical and noncanonical NF-κB 

pathways (Mitchell et al., 2016). In the canonical pathway, MAP3K14 is activated 

via the AKT1 pathway and is involved in the activation-induced degradation of 

NFKBIA. In the noncanonical pathway, activated MAP3K14 associates with IKKA. 

This association mediates the degradation of the p100 unit of the NF-κB complex, 

allowing the nuclear transport of the NFKB2 dimers and transactivation response. 

The MAP3K14 deficiencies are caused by variants at its kinase activity site 

(Willmann et al., 2014). This causes impairment of both the canonical and non-

canonical NF-κB signaling pathways and leads to severe microbial infections. This 

PID is associated with normal T cell numbers but inadequate activation response. 

In the MAP3K14 perturbed attractor, AP1 and NFAT pathways are unaffected while 

the NF-κB pathway was abrogated. 

The above results capture the trends in the dynamic effects of knocked out PID 

proteins. Generally, more severe defects are associated with PIDs that are involved 

in the early events of the TCR signal transduction, while downstream events are less 

severe unless the perturbation is along a non-redundant signaling path to a crucial 

transcription effector. This work is the first to my knowledge that investigates the 

dynamic effects of PID proteins in CD4+ T cells using a network model. 

Several proteins occurred along many loops in the network, and were found to be 

necessary for TCR response, were dysregulated in several PID perturbed attractors, 

and connected with disease phenotypes. Further, most of these proteins have been 

proposed as candidates during PID diagnosis, and are highly connected to PID 

proteins in the Human Gene Connectome (Itan & Casanova, 2015). Thirteen of the 

proteins are kinases, and 3 have guanyl-nucleotide exchange factor activity. Except 

for 7 genes, all are linked to diseases. Although these proteins have not yet been 

associated with any PID, they are strong candidates to be considered during 

diagnosis. 

Several studies use diverse methods to arrive at a small set of suggested candidates 

for PID diagnosis (Itan & Casanova, 2015; Keerthikumar et al., 2009; Ortutay & 
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Vihinen, 2009a). Our approach which accounts for the dynamic signaling effects 

that PID perturbation has on the T cell network model, coupled with several sources 

of evidence, permitted us to detect the proposed set of proteins as candidate PIDs. 

How do the B cell PID proteins affect the B cell 

receptor-dependent activation dynamics? 

The literature was mined and the naïve B cell network model reconstructed and used 

it to investigate the dynamic effects of PID perturbations (Paper III). The 

reconstructed and refined network was in silico validated and used to simulate its 

dynamics. The normalized HillCube approach (Krumsiek et al., 2010) was used for 

simulating the wild-type, as well as the PID perturbations of the network. The results 

both recapitulates previous studies, and reveal novel dynamic effects of PID-

dependent failure modes. 

Profound defects were observed in the LYN, BTK, STIM1, ORAI1, CD19, CD21, 

and CD81 perturbed attractors compared to the wild-type. These are crucial 

components of BCR-dependent B cell activation (Dal Porto et al., 2004; LeBien & 

Tedder, 2008), and is captured by the severe defects trend in the perturbed attractors. 

On the other hand, lesser effects were observed in the perturbed attractors for 

BCL10, IKKB, loss-of-function CARD11, MALT1, NEMO and WIPF1 

deficiencies. 

The BCR-dependent B cell activation signaling culminates in the transcription of 

response genes by major transcription factors, each of which is necessary for the 

cell’s function (Dal Porto et al., 2004; LeBien & Tedder, 2008). Receptor signals 

are transduced through adaptors and effectors to the downstream transcriptional 

regulators. Perturbing these signaling pathways may cause slight to complete 

impairment in the response controlled by the affected transcription factor. The PID 

attractors for MALT1, CARD11, PI3K and PLCG2 knockouts disrupted the NF-κB 

pathways. BCL6, a transcription factor that suppresses apoptotic and DNA damage 

signals, whose activity is reduced during BCR activation (Basso & Dalla-Favera, 

2012; Basso et al., 2005), is turned off in all perturbed attractors. The pathways for 

EGR1, ELK1, and ETS1, transcriptional controllers for survival, proliferation and 

differentiation (Healy et al., 1997; Sementchenko & Watson, 2000; Yasuda et al., 

2008), are dysregulated in several PID attractors, including those for BTK, CD19 

and STIM1. The remaining transcription factors that are involved in controlling 

survival and proliferation in BCR-dependent B cell activation are disrupted in at 

least a few of the PID perturbed attractors. 
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The attractors for the knockin or overexpression PID perturbations, including PI3K, 

gain-of-function CARD11, KRAS, and NFKBIA, showed no effect compared to the 

wild-type. Hence, comprehensive kinetic approaches are required to study the 

consequences of these overexpression PIDs in the naïve B cell network dynamics. 

All the PID proteins were found along loops. However, LYN, STIM1, ORAI1, and 

CD19 were found in most of the loops. Interestingly, LYN, STIM1, ORAI1 and 

CD19 perturbation had the most severe effects in the simulations. This is expected 

as the dynamics of a signaling network is closely related to the structure of its cycles 

or loops.  

What are the characteristics of neoepitopes analyzed 

from pan-cancer data? 

Understanding the features that make epitopes antigenic will facilitate cancer 

diagnosis and therapies (Capietto, Jhunjhunwala, & Delamarre, 2017; Schumacher 

& Schreiber, 2015). In Paper IV the features of neoepitopes across 30 cancer types 

were studied. A preponderance of neoepitopes was observed in all cancers. The 

predictions were made with NetMHC, a peptide-MHC class I affinity predictor, 

which is among the best performing predictors (Andreatta & Nielsen, 2016; Gfeller 

et al., 2016). However, the software overpredicts neoepitopes, and a huge number 

of wild-type peptides were predicted as neoepitopes. This is likely not possible 

because the immune system uses negative selection mechanisms to maintain self-

tolerance and avoid autoimmune diseases. 

The most likely neoepitopes were defined as high binding variant peptides whose 

corresponding wild-type either binds weakly or not at all. This yielded over 11 

million neoepitopes, constituting 0.24% of the studied peptides. Although amino 

acids were uniformly distributed to peptide positions and that peptides of different 

lengths were similarly distributed among HLAs, 9-mers were the most abundant, 

accounting for close to three-quarters of the neoepitopes. 

95.44% of the proteins in this study were retained after filtering for most likely 

neoepitopes. It is improbable that all the neoepitopes are antigenic. The biological 

mechanisms that lead to neoantigens for T cells are complex and not yet fully 

understood. Thus, prediction tools may over-predict, since their algorithms do not 

incorporate the full biological mechanism. 

Peptide binding to an HLA, the peptide-HLA complex ligation to an antibody, or 

receptor that leads to an adaptive immune response depends on several biological 

processes. Further, the protein from which the peptide is derived is degraded in the 

cytosol and the peptides are transported and processed in the endoplasmic reticulum. 
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The processed peptide binds to the HLA and is presented and binds to antibodies or 

receptors to elicit an immune response. To keep ATP expenditure to the minimum, 

only peptides with high binding affinity are processed and presented. Besides high 

affinity, the amount and stability of the peptide is also essential for its antigenicity. 

Moreover, because the peptides have to be recognized as non-self to elicit an 

immune response, only a small fraction of predicted neoepitopes are 

immunodominant.  

The number of experimentally verified neoantigens is limited. A previous study 

with vaccinia virus indicates that only a tiny fraction of peptides bind HLAs with 

high affinity (Assarsson et al., 2007). However, due to a large number of possible 

peptides under consideration, the number of potential antigenic peptides is in the 

order of thousands.  

Although neoepitopes and their usage in clinical applications have been discussed 

(Boegel, Lower, Bukur, Sahin, & Castle, 2014; Brown et al., 2014; Hartmaier et al., 

2017; Linnemann et al., 2015; Matsushita et al., 2016; Pritchard et al., 2015), there 

are also notes that immunogenic neoepitopes are uncommon (Anonymous, 2017). 

Correlating the findings in this study to the knowledge on T-cell response to the 

vaccinia virus WR strain (Moutaftsi et al., 2006), the number of effective peptides 

in the dataset from this study will be about 1.3 million peptides, which is still a large 

number. 

Although there are thousands of HLA alleles, an individual has six HLA genes. 

Databases for HLA allele information include 12,351 class I alleles (Robinson et 

al., 2015). The most common alleles are very recurrent. Thus the results reported 

here are representative of human populations. 

1,282 variants yield more than 100 peptides of various lengths that are neoepitopes 

to diverse HLAs. It is likely that peptides like these can raise T cell response, and 

hence, would be an important set to consider for therapy and other applications.  

The GO term analysis showed enrichment of nucleic acid metabolism and RNA 

metabolic processes as the most significant biological process terms. Molecular 

functions of neoepitopes included terms for nucleic acid binding, protein 

dimerization, receptor binding, catalytic and protein complex binding. Additionally, 

several cellular compartments were enriched. 

The most frequent variants originate from proteins that have catalytic, transporter 

and binding activity. Among proteins with the largest number of neoepitopes, only 

a few are known cancer proteins. However, almost all the proteins in the Cancer 

Gene Consensus yield numerous neoepitopes.  
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Conclusions 

The filtering routine used to identify the TPPIN can be used to retain the core cell-

type specific PPI network and can be applied for any cell-type for which sufficient 

time series gene expression datasets exist. This provides a means to study, model 

and simulate protein networks for any cellular system, however complex its network 

may be. 

Diagnosis and prognosis of PIDs are frequently challenging. A novel approach was 

provided to investigate the effects of PIDs on naïve CD4+ T cell and B cell signal 

transduction network models. Novel proteins that may be investigated during 

diagnosis were also highlighted. This method is applicable in studying the effect of 

PIDs of any cellular system, including non-immune system diseases. 

Most tools that perform well in predicting peptide-HLA binding affinity will 

improve in performance with the availability of more experimentally verified 

neoantigen data. With improved predictions and better experimental assays, 

neoantigen applications for diagnosis and cancer therapy will become personalized 

and established in clinical settings. The characteristics of neoepitopes presented in 

this study can be used to inform cancer vaccine development and potentially reduce 

its cost. 
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Abstract

Background: Data-driven studies on the dynamics of reconstructed protein-protein interaction (PPI) networks
facilitate investigation and identification of proteins important for particular processes or diseases and reduces
time and costs of experimental verification. Modeling the dynamics of very large PPI networks is computationally
costly.

Results: To circumvent this problem, we created a link-weighted human immunome interactome and performed filtering.
We reconstructed the immunome interactome and weighed the links using jackknife gene expression correlation of inte-
grated, time course gene expression data. Statistical significance of the links was computed using the Global Statistical Sig-
nificance (GloSS) filtering algorithm. P-values from GloSS were computed for the integrated, time course gene
expression data. We filtered the immunome interactome to identify core components of the T cell PPI network
(TPPIN). The interconnectedness of the major pathways for T cell survival and response, including the T cell re-
ceptor, MAPK and JAK-STAT pathways, are maintained in the TPPIN network. The obtained TPPIN network is
supported both by Gene Ontology term enrichment analysis along with study of essential genes enrichment.

Conclusions: By integrating gene expression data to the immunome interactome and using a weighted
network filtering method, we identified the T cell PPI immune response network. This network reveals the most
central and crucial network in T cells. The approach is general and applicable to any dataset that contains
sufficient information.

Keywords: Protein-protein interaction, Network, Filtering, T cell, TPPIN, Signaling, PPI

Background
Cellular interactomes often consist of large numbers of
proteins with even larger numbers of connections between
them. Typically in protein-protein interaction (PPI) net-
work nodes represent proteins and the links represent re-
lationships between them. This network representation
enables the study and visualization of the reconstructed
cellular systems.
Data-driven studies on the dynamics of reconstructed

PPI networks facilitate investigation and identification of
proteins important for a particular process and reduces
time and costs of experimental verification [1,2]. Modeling
the dynamics of very large PPI networks is computationally

very costly. To circumvent this problem, one needs to
identify relevant core components of networks without los-
ing vital information. A PPI network constituting most of
the relevant core of a cellular system is sufficient to study
its dynamic properties [3].
Many methods have been developed to reduce com-

plex directed and undirected networks to their core
components. Some of the methods include topological
centrality techniques [4], synthetic biology approaches of
the minimal gene set of a cell [5,6], complex systems
coarse-graining [7,8], and filtering approaches [9-11]. In
the centrality methods, topological centrality of nodes is
used to identify the non-redundant links and to delete
the redundant ones [11]. Minimal gene set approaches
aim to identify genes that are crucial for life sustenance
and cannot be inactivated under specific optimal growth
conditions. These approaches do not take into account
interactions between essential gene products [5]. The
coarse-graining approaches identify specific motifs in a
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network, and collapse and replace them by a single node
[8]. This process is repeated until there are no more mo-
tifs. The final network is less complex but does not con-
sider the structural heterogeneity and broad weight
distribution, i.e. the multi-scale nature, of cellular networks.
Network filtering approaches have also been used to

reduce network complexity [10-13]. Those that preserve
the inherent multiscale structure of natural complex net-
works have been shown to be better in revealing most of
the important components of networks [11,13]. These
approaches score the nodes or links, and enable the de-
letion of those that do not deviate significantly from a
null model.
In this study, we identified the network of proteins

relevant in T cells by filtering the immunome interac-
tome using the result from Global Statistical Significance
(GloSS) [13] algorithm and a constraint of connectivity
of the T cell receptor (TCR) signaling pathway. We com-
piled genes for the major immune processes and used
them to reconstruct the immunome interactome, i.e., all
the PPIs of the immunome. We then integrated gene ex-
pression profiles for the corresponding genes across sev-
eral experiments. Jackknife correlation for gene expression
was then used to weigh links between the proteins
encoded by the genes. To maintain the multiscale struc-
ture of the network during filtering, we used the GloSS al-
gorithm. This algorithm utilizes a global null model of the
link weight and the degree distribution of the network. It
computes the statistical significance for each link. For the
null model, GloSS assigns weights from the weight distri-
bution of the network, independently and randomly, with-
out changing its topology. We filtered the network by
deleting links based on their p-values (computed by
GloSS) in descending order. To determine the endpoint of
the filtering, we imposed as a constraint, the existence of a
single path between the components of the NF-κB and
TCR complexes.
Because we investigated the global and aggregate char-

acteristics of the system and integrated T cell gene ex-
pressions, we can assume that the filtered network
contains most of the components central for T cell sig-
naling [14]. This was supported by Gene Ontology (GO)
and essential genes enrichment analysis.

Results
Protein-protein interaction network
We used altogether 1579 proteins for the network filtering
(Additional file 1). Eight hundred and eighty five human
immunome genes were obtained from the Immunome
Knowledge Base (IKB) [15]. As IKB contains only the
most essential immunome genes and does not necessarily
contain full pathways, it was supplemented with proteins
for key immune system pathways derived from the KEGG
Pathway database [16] (Table 1).

The PPI network was reconstructed for the immu-
nome proteins (see workflow in Figure 1). PPI data were
retrieved from iRefIndex database (version 9.0) which
compiles PPIs from the major repositories [17]. ppiTrim
(version 1.2.1) was used for general filtering according to
Stojmirovic et al. [18]. Only experimentally verified and
binary PPIs were retained. Moreover, multiple binary
PPIs encoded by the same gene pair were collapsed into
a single PPI. Finally, binary interactions to proteins out-
side the immunome were eliminated. A total of 5603
PPIs between 1259 immunome proteins were available
after these pre-processing steps (Additional files 2 and 3).

Gene expression correlation
T cell gene expression datasets were obtained from
NCBI GEO [19] and EBI ArrayExpress [20] databases.
Altogether 16 time series datasets (Additional file 4)
containing 384 samples derived from 5 platforms ful-
filled the set criteria. After pre-processing, batch effect
analysis was performed. Further, exploratory Principal
Component Analysis (PCA) was done to examine the
effect and performance of the batch effect analysis
(Figure 2). The samples cluster according to experi-
ment and platform before batch effect analysis. How-
ever, after batch effect correction, samples performed
on all three platforms overlap with each other. The
batch effect-corrected expression data were integrated

Table 1 KEGG pathways used to supplement IKB dataset

KEGG identifier Name of KEGG pathway

path:hsa04010 MAPK signaling pathway

path:hsa04062 Chemokine signaling pathway

path:hsa04514 Cell adhesion molecules

path:hsa04612 Antigen processing and presentation

path:hsa04620 Toll-like receptor signaling pathway

path:hsa04621 NOD-like receptor signaling pathway

path:hsa04622 RIG-1-like receptor signaling pathway

path:hsa04630 Jak-STAT signaling pathway

path:hsa04640 Hematopoietic cell lineage

path:hsa04650 Natural killer cell mediated cytotoxicity

path:hsa04660 T cell receptor signaling pathway

path:hsa04662 B cell receptor signaling pathway

path:hsa04664 FcεRI signaling pathway

path:hsa04666 FcγR-mediated phagocytosis

path:hsa04670 Leukocyte trans-endothelial migration

path:hsa04672 Intestinal immune network for IgA production

path:hsa04610 Complement and coagulation cascades

path:hsa04623 Cytosolic DNA-sensing pathway

The protein products of the genes that take part in these pathways were used
to supplement the protein data from the IKB database. The combined protein
data represent the immune response protein dataset.
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or merged together. Of the genes encoding the 1259
immunome proteins, 1149 were expressed in at least
80% of the samples in the merged dataset and were
thus included in the analysis.
Next, the mean of the jackknife Pearson product-

moment correlation coefficient was calculated for the
pre-processed and merged expression values for all gene
pair combinations. In total, 1140 genes representing
5164 gene pairs encoding interacting proteins in the
immunome interactome were used for further analysis.
The distribution of the integrated jackknife correlation

values is shown in Figure 3. The maximum gene expres-
sion correlation is 0.88, between ITGA2B (integrin α-IIb
or CD41) and ITGB3 (integrin β-3 or CD61). The encoded
proteins form an integrin receptor complex [21] and are
thus co-expressed. Their functions include cell adhesion,
cell-cell interaction, receptor for several molecules and
platelet activation [21]. The minimum correlation of -0.62
was observed between LCK, coding for lymphocyte-
specific protein tyrosine kinase, and PAK2, p21 protein
(Cdc42/Rac)-activated kinase 2. LCK is an important

signaling protein in many cellular processes, especially in
T cell receptor (TCR) activation and T cell development
[22]. PAK2 is a member of the PAK proteins (a family of
serine/threonine kinases) targeted by small GTP proteins,
CDC42 and RAC1 [23,24]. They take part in several sig-
naling pathways, including the TCR signaling network. Al-
beit association of increased PAK2 activity in cells that
overexpress Src kinases, PAK2 and LCK have not been
shown to directly interact with each other [25]. The mean
of the correlation values for all gene pairs is 0.09 and most
of the correlation coefficients lie between -0.5 and 0.5.

T cell-specific PPI network
We reconstructed the immunome PPI network as a
weighted and undirected graph. The nodes, links, and link
weights of the graph represent, respectively, the immu-
nome protein coding genes, the PPIs and the absolute
value of the mean jackknife expression correlation be-
tween the connected immunome protein coding genes.
The topology and weight distribution of naturally oc-

curring complex weighted networks are heterogeneous

IKB database KEGG Pathways

Immunome protein 
dataset

iRefIndex database

Quality control of PPIs

GEO microarray 
data

ArrayExpress raw 
microarray data

Human T cell, time 
series raw data

Normalization of Affymetrix 
whole transcript arrays 

Batch effects analysis and 
integration of gene 

expression across arrays

Jackknife correlation of gene 
expression

Link-weighted 
immunome 
interactome 

Immunome 
interactome

Extract 
immunome 

PPIs

Figure 1 Workflow for the reconstruction of the immunome interactome. The general steps taken to reconstruct the immunome
interactome are shown. The cylinders represent data repositories from which data was retrieved. Parallelograms represent data, either retrieved
from databases or obtained by analyses. Rectangles represent performed analyses. T cell microarray experiments available in ArrayExpress and
the GEO databases were retrieved. These experiments included at least 3 samples. The selected experiments were normalized using the
R/Bioconductor libraries. Batch effect analysis was done and all experiments were merged or integrated. Jackknife Pearson correlation coefficient
was calculated for the integrated dataset. Immunome proteins were retrieved from the Immunome knowledge Base (IKB) and the KEGG
pathways databases. Major immune response pathways from the KEGG were used to supplement the IKB immunome proteins. Immunome
interactome was obtained by retrieving PPIs for the immunome protein dataset from the iRefIndex database. To reduce noisy PPIs we used the
ppiTrim method and further filtered its output of redundant and non-immune response PPIs. The Jackknife correlation coefficients were used as
link weights.
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and tightly connected. This makes the identification of
the relevant structure that maintains the multiscale na-
ture of the network nontrivial. Thus, we used the GloSS
algorithm [13] to compute a p-value, for each link.
GloSS identifies the relevant backbone of a weighted
graph while retaining the multiscale coupling of its
weight distribution and topological characteristics. It
uses a global null model that describes both the struc-
ture of the network and its weight distribution. The
p-values computed by GloSS were used to filter the
network by deleting links based on their p-values, in
descending order. We monitored the filtering process to
make sure that the central networks between TCR, and
NF-κB and NFAT signaling pathways remained intact.
These pathways have been shown to be crucial for T cell
signaling [26,27] and therefore cannot be disconnected
without destroying essential cellular processes.
We followed changes of structural and biological fea-

tures in the PPI network during the filtering process
with network parameters. The diameter of the network
represents the longest minimum distance between the
nodes. We used as measures the changes in diameter,
the relative size of the largest connected component and
the average size of the isolated components [28]. These
network topology scores show how connectivity, integ-
rity and robustness of the network are changed when
links are removed during the filtering process (Figure 4).
All the panels in Figure 4 indicate that at the cutoff
point most of the remaining network’s connectivity and
integrity is still maintained. We call the remaining net-
work the T cell PPI Network, TPPIN (Figure 5). TPPIN
consists of 288 nodes, 227 links in 73 connected compo-
nents (Table 2).

Correlation distribution before and after filtering
Threshold algorithms filter a network by removing edges
whose weights are below an arbitrary cutoff. Such a net-
work loses its multiscale and, thus, its core structure.
We probed the distribution of the gene expression cor-
relation coefficient to establish whether the multiscale
structure of the immunome interactome is retained in
the filtered T cell PPI network (Figure 6). The filtering
process succeeds in maintaining not just the links with
large weights but also links with lower weights. Thus,
the filtering process maintains the multi-scale structure
of the network and retains edges that are crucial for the
T cell PPI network.

Effect of noise on the filtering procedure
To test the sensitivity of our filtering procedure to noise
we introduced randomness to the immunome interac-
tome, before performing filtering, by randomizing frac-
tions of the link weights while preserving the topology
of the network. We refer to these networks as the Link

Weight-Randomized Networks (LWRNs). Nine such
networks were created based on the fraction of weights
randomized. Thirty iterations were conducted for each
LWRN. Each iteration consists of choosing randomly a
fraction of links, reassigning their weights randomly,
conducting the filtering procedure, and calculating net-
work topology statistics. The topology features calcu-
lated for each iteration include node degree, average
path length, betweenness centrality of both the nodes
and the links, clustering coefficient of the network, and
the intersection between the TPPIN and the LWRN.
These measures indicate the local and global connectiv-
ity of a network. We retained the average of the above
quantities.
Figure 7 shows the similarity or dissimilarity between

TPPIN and LWRNs. Figure 7 A-E, shows that as more
of the link weights are randomized, the topology of the
LWRNs diverges significantly from TPPIN. Moreover, as
Figure 7 F shows, there is very little overlap of links be-
tween the LWRNs and TPPIN.

Gene Ontology over-representation and semantic
similarity analysis
GO term over-representation analysis was performed for
the TPPIN proteins and shows that, at level two details,
most of the biological process terms are relevant for
T cell function (Table 3 and Additional file 5). For example,
the term positive regulation of lymphocyte activation
pathway (GO:0051251, p-value = 9.74 × 10-7), regulation
of immune response (GO:0050776, p-value = 1.11 × 10-6),
and intracellular protein kinase cascade (GO:0007243,
p-value = 3.40 × 10-6) terms are among the most sig-
nificantly enriched after adjusting for multiple compari-
sons. In addition to significant immune response-related
terms, there are also those for general cellular processes.
To better investigate the similarity or difference be-

tween the immunome interactome and the TPPIN net-
work, we explored semantic similarity of the networks
using the GOSemSim package available from R/Biocon-
ductor. The semantic similarity ranges between 0 and 1.
The similarity between the immunome interactome and
TPPIN proteins in the biological process and molecular
function terms were very high, i.e., 0.91 and 0.92, re-
spectively, indicating that the TPPIN is very representa-
tive of the immunome interactome.

Essential genes over-representation analysis
Essential genes are indispensable to the survival of a cell
or organism. To account for how essential the genes are,
we performed an over-representation analysis to identify
the proportion of the essential TPPIN genes. We con-
ducted a hypergeometric test on the human orthologs of
the mouse lethality genes from the Mouse Genome In-
formatics resource [29]. The results show a highly
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significant enrichment of essential genes in the TPPIN
(p-value = 1.37 × 10-10, Table 4 and Figure 5).

Interconnection of T cell-specific pathways
The TPPIN proteins were mapped onto the TCR, JAK-
STAT and MAPK signaling pathways that are central for
T cell functions [30] (Figure 8). Albeit containing just a
third of the proteins in the initial network, the TPPIN
includes almost all the main components for the
remaining pathways. Except for CD3γ and CD3δ, all the
CD3 proteins of the TCR complex are present in the
TPPIN. Further, most proteins important for early T cell

activation, NFAT, AP1, NF-κB, T cell co-inhibitory and
co-stimulatory signal transduction are present. Overall,
most of the proteins in the important pathways for T cell
signaling are present in the TPPIN. This indicates that
the filtering procedure was able to, first of all, identify
central pathways and, secondly, to keep their connectiv-
ity. As a novel feature the TPPIN indicates the intercon-
nection of the central pathways.

Discussion and conclusions
In this study, we identified the network of proteins rele-
vant for T cells by filtering the multiscale immunome
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Figure 4 Network topology changes during GloSS-, NFAT- and NF-κB-assisted filtering. The immune response PPI network topological
changes during the filtering process. Network measures were used to investigate the immunome interactome during filtering. The x-axis in each
panel is the fraction of nodes removed during filtering. On the y-axis, the top panel shows changes in the network diameter, the middle panel
changes in the average size of the isolated components excluding the largest or giant component (<s>). The bottom panel shows changes in
the relative size of the largest or giant component (S). The relative size of the largest component is the number of nodes in the largest compo-
nent divided by the number of nodes in the whole network. That is, nrel = n/N, where nrel is the relative size of the largest component, n is the
number of nodes in the largest component and N is the number of nodes in the whole network). Each of the network measures were plotted
against the fraction of links removed during filtering. The vertical line shows the point at which the paths between the TCR complex and the
NF-κB and NFAT downstream components are broken. This also represents the point at which the filtering process stops. This indicates that
the connectivity and robustness of the filtered network at this endpoint is maintained. Thus the connectivity and robustness inherent in the
immunome interactome is maintained in the TPPIN.
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interactome using the GloSS filtering algorithm [13]. We
compiled the genes for the major immune processes and
reconstructed the immunome interactome. Then we in-
tegrated gene expression profiles across several gene ex-
pression experiments. The jackknife correlation for gene
expression was used to weigh links between the proteins
encoded by the genes. Next, we used the output from
GloSS to filter the network. The filtered network con-
tains most of the relevant T cell functional components
and was designated TPPIN. This was confirmed by the
overrepresentation analysis conducted with GO terms
and essential genes.
Many important components of the TCR-dependent

signaling pathways are present in the TPPIN. Except for

CD3γ and CD3δ, other components of the TCR complex
which are included in the microarrays used in this study,
are present (TCR-α and -β are not present in the micro-
arrays). The co-receptors CD4 and CD8 are both
present, as well as, all the proteins that make up the im-
munological synapse. With the exception of LAT, GADS
and ITK, most proteins that are central in the immediate
TCR receptor-associated intracellular signaling after the
formation of the immunological synapse and TCR acti-
vation are present in the TPPIN, including LCK, FYN,
CD45, ZAP70, SLP-76 and PLC-γ.
After its activation, PLC-γ cleaves PIP2 into the sec-

ond messenger IP3 and DAG [31,32]. This event sets off
the activation of three important signaling pathways in
T cells that end up with transcriptional activation of
NFAT, NF-κB and AP-1 [30]. DAG activates PKC-θ,
which in turn activates NF-κB [33]. IP3 activates CaN
through the calcium signaling, and CaN subsequently
activates NFAT [34]. DAG activates RasGRP [35,36],
which in turn initiates the activation of the MAP kinase
cascade [37], culminating in the activation of FOS [38].
Key proteins in the NF-κB pathway including PKC-θ,
IKK-β and IκB [39] are present in the TPPIN. With the
exception of RasGRP, MEK1/2 and ELK co-complexes,
the other vital proteins in the MAP kinase signaling cas-
cade [40] and the JAK-STAT pathway [41] are captured
by the TPPIN. These results show how the TPPIN repre-
sents relevant T cell-related parts of the immunome
interactome.
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Figure 5 T cell PPI Network and essential genes enrichment. After removing non-immunome genes and immunome genes without the
lethality annotations, we calculated the hypergeometric distribution and Fisher’s exact test for significance. The figure demonstrates the enrichment
of essential genes across almost every component of the TPPIN and for the whole network (p-value = 1.37 × 10-10). The node labels are gene
identifiers for the genes coding the proteins. The nodes colored red represent essential genes. The essential genes data is based on the
human orthologs of the mouse lethality genes from the Mouse Genome Informatics database.

Table 2 General structure of the T cell PPI network

Number of nodes in
connected component

Number
of links

Number of components
in the network

91 100 1

14 14 1

6 5 2

5 4 3

4 3 5

3 2 13

3 3 1

A component represents a set of nodes that are all connected to each other,
either directly or indirectly. Components with two nodes are not included in
the table.

Teku et al. BMC Systems Biology 2014, 8:17 Page 7 of 14
http://www.biomedcentral.com/1752-0509/8/17



During the filtering step the central networks connect-
ing the TCR complex to the NF-κB and NFAT signaling
pathways were kept intact. Although the NFAT and NF-
κB pathways are present in many different cell-types, they
are central for T cell survival and functions. The connect-
ivity of these components was used to determine the end
point for the filtering process. The filtering was continued
until there was a minimum number of links, i.e., one, be-
tween the TCR, and NF-κB and NFAT components.
GO term enrichment analysis confirms that several of

the TPPIN proteins have important T cell functions. As an
example of biological process term enrichment, the positive
regulation of lymphocyte activation pathway (GO:0051251),
regulation of immune response (GO:0050776), and intracel-
lular protein kinase cascade (GO:0007243) terms are sig-
nificantly enriched. To further probe the similarity between
the immunome interactome and the TPPIN proteins we
calculated their semantic similarity with respect to bio-
logical process and molecular function GO terms. The net-
works were semantically very similar in both types of GO
terms. Because essential genes are indispensable for the
survival of a cell, their enrichment in the cellular network
would indicate that the network is crucial to the cell. Thus,
we investigated the enrichment of essential genes in the
TPPIN. The analysis showed a highly significant enrich-
ment of essential genes in the TPPIN. These independent
lines of evidence support the applicability of the network
filtering routine.
Due to the scarcity of time course microarray experi-

ments with uniform design, gene expression datasets

with different designs were used. Integrated analysis was
carried out to identify and exclude biased datasets [42,43].
The normalization and batch effect analysis steps served
to considerably minimize the effect of bias for correlation
calculation from the experimental studies.
Global and aggregate cellular interactions are more

plausible between proteins encoded by co-expressed
genes than between gene products whose expression
patterns are uncorrelated [14]. Since we investigated the
global and aggregated characteristics of the immune re-
sponse in T cells by integrating gene expression experi-
ments conducted for T cell lines, the correlation coefficients
represent the aggregate strength of the T cell-specific rela-
tionship between the genes and their interacting protein
products [14,44].
To explore the changes in the network during the fil-

tering process we investigated changes in the diameter,
relative size of the largest component and the average
size of the connected components of the network. These
network measures have been shown to indicate the con-
nectivity status of a network and its robustness against
link removal or loss [28,45]. The changes in network sta-
tistics during the filtering process showed that TPPIN
maintains most of the integrity and connectivity of the
immunome interactome.
Certain aspects of T cell function have been previously

modeled [46-49]. Most of these studies are related to
gene regulatory networks and modeling of small signal-
ing networks involving transcription factors and their
targets, selected to include genes or proteins well-known
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Figure 6 Distribution of correlation coefficient before and after filtering. Threshold algorithms filter a network by removing edges whose
weights are below an arbitrary cutoff. Such a network would have lost its multiscale structure and thus its core structure. We probe the
distribution of the gene expression correlation coefficient to establish whether the multiscale structure of the immunome interactome is retained
in the filtered T cell PPI network. The red and blue curves represent, respectively, the distribution of gene expression correlation before and after
filtering. The filtering approach preserves a broad distribution of link weights, i.e., most with large weights and some with small weights.

Teku et al. BMC Systems Biology 2014, 8:17 Page 8 of 14
http://www.biomedcentral.com/1752-0509/8/17



in the modeled system. In these studies, the typical num-
ber of genes or proteins is in a few tens, whereas we
started with the entire immunome interactome of 1149
proteins and 5164 links, and ended up with a core net-
work that contains 288 proteins and 227 links. The
number of nodes and links in the TPPIN makes it amen-
able to tailored cellular systems modeling and experi-
mental studies. Our approach is unsupervised and does

not utilize any preconceptions, yet, it reveals the central
proteins and their networks.
The filtering process carried out in this study has some

potential limitations. It needs several time course expres-
sion datasets for the cell-type or tissue of interest and each
experiment should consist of at least 3 samples. A set of
proteins is needed to track the connectivity of the vital
pathways and a stop criterion when key pathways are
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Figure 7 Comparison of T cell PPI network and link weight-randomized networks. Robustness analysis on the filtering procedure was
performed by randomizing the immunome interactome link weights to introduce noise. Thirty iterations were conducted so that a fraction of
links are selected randomly and their weights randomly reassigned for each iteration. The Link Weight-Randomized Network (LWRN) was filtered
and node degree, average path length, betweenness centrality of both the nodes and the links, clustering coefficient of the network, and the
intersection between TPPIN and the LWRNs, were calculated. The blue line curves are for the LWRNs and red lines for the TPPIN. A. Change in
average degree, B. change in mean path length, C. change in mean betweenness of nodes, D. change in mean betweenness of links, E. change
in mean clustering coefficient, F. Link intersection between TPPIN and LWRNs.
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broken. However, these limitations are not of great prac-
tical importance in the present era of high throughput
studies.
The reported filtering routine can capture the core

cell-type-specific PPI network for any cell-type from
time series gene expression datasets, and is not limited
to well-known systems. The approach opens ways for
modeling protein interaction networks of cellular sys-
tems, even when pathways are not previously well
characterized.

Methods
Protein-protein interaction network reconstruction
Human immunome proteins were obtained from the
IKB [15] and supplemented with key immune system
pathways from the KEGG pathways database [16].
Experimentally verified and consolidated PPI data for

the human immunome proteins was retrieved from the
iRefIndex database version 9.0 [17]. First, the ppiTrim
version 1.2.1 [18] was used to filter the iRefIndex data-
set. This algorithm maps protein interactants to NCBI
gene identifiers and removes undesired raw interactions,
deflates potentially expanded complexes, and reconciles
annotation labels from the different PPI databases. Sec-
ond, non-experimentally verified, non-human, complex
and self-self PPIs were omitted. Third, we collapsed mul-
tiple binary PPIs whose interactants are products of the
same genes. Finally, we eliminated PPIs for which both in-
teractants were not immunome proteins (Figure 1). The
igraph library [50] in the R statistical programming

environment [51] was used to reconstruct and analyze the
PPI network. Visualizations were done using Cytoscape
version 2.8 [52].

Gene expression data
We retrieved microarray time course datasets for human
T cell-lines from GEO [19] and ArrayExpress [20]
databases. Each experiment had to contain at least three
samples and at least one for time zero for baseline data.
GEO datasets that consisted of samples from multiple
platforms were split into multiple experiments, so that
each experiment consisted of samples for the same
microarray platform. To reduce bias during gene expres-
sion integration across experiments we included only ex-
periments performed on Affymetrix whole transcript
array platform U133A, U133A 2.0, U133B, U133 plus
2.0 and U95A arrays.

Pre-processing of gene expression data
R and Bioconductor libraries were used for data pre-
processing [51,53]. The raw data for each gene expres-
sion dataset was retrieved. Pre-processing consisted of
quality control using boxplots, arrayPLM and simpleaffy
routines. For each experiment, samples were normalized
using default parameters of the Robust Multi-Array al-
gorithm [54] implemented in the affy library [55]. To
convert probe sets to gene expressions, we used the
mean of the probe sets to represent the corresponding
gene’s expression using the platform-dependent libraries
in the Bioconductor project [56]. Gene expressions for

Table 3 GO biological process term enrichment for TPPIN

GO ID Term Number of significant vs.
annotated genes

Expected number
of genes

Raw vs. adjusted P value

GO:0051251 positive regulation of lymphocyte activation 128/61 32.51 5.40 × 10-09/9.74 × 10-07

GO:0043067 regulation of programmed cell death 289/114 73.41 4.77 × 10-10/4.60 × 10-07

GO:0050776 regulation of immune response 313/118 79.51 6.79 × 10-09/1.11 × 10-06

GO:0048523 negative regulation of cellular process 401/142 101.86 1.05 × 10-08/1.62 × 10-06

GO:0050867 positive regulation of cell activation 144/64 36.58 7.04 × 10-08/5.59 × 10-06

GO:0048584 positive regulation of response to stimulus 401/140 101.86 5.10 × 10-08/4.40 × 10-06

GO:0042981 regulation of apoptotic process 285/113 72.39 4.04 × 10-10/4.60 × 10-07

GO:0007243 intracellular protein kinase cascade 330/121 83.82 3.13 × 10-08/3.40 × 10-06

GO:0019221 Cytokine mediated signaling pathway 163/73 41.40 3.85 × 10-09/8.07 × 10-07

GO:0006468 protein phosphorylation 313/116 79.51 3.63 × 10-08/3.51 × 10-06

The “universe” is the immunome protein data and the enrichment is for the filtered immunome interactome, the T cell PPI network (TPPIN).

Table 4 Essential genes overrepresentation

Number
of genes

Number of genes
annotated in MGI

Number of lethality genes
annotated in MGIa

Expected number of
lethality genes in MGI

P-value for hypergeometric
test

Immunome interactome 1140 949 312

TPPIN 288 256 105 59 1.37 × 10-10

The T cell PPI network is the resulting network after filtering the immunome interactome. MGIa is the Mouse Genome Informatics database.
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non-protein coding genes in the immunome protein
dataset were removed.
The gene expression datasets were merged and batch

effects were analyzed. We also performed PCA analysis
before and after batch effect analysis to examine its ef-
fect and performance on the normalized datasets. The
batch effects and PCA analysis were performed using
the ComBat [43] and plotMDS algorithms implemented
in the inSilicoMerging library [42] in Bioconductor.

Gene expression correlation
The mean of the jackknife Pearson correlation coeffi-
cient of the merged and pre-processed expression values
for all gene pair combinations was calculated using the
bootstrap library implemented in R. These correlation
values were converted to absolute values and used as
link weights for the immunome interactome.

Protein network filtering
We reconstructed the immunome PPI network as a
weighted and undirected graph using the igraph package
in R. The nodes, links, and link weights of the graph
represent, respectively, the immunome protein coding

genes, the PPIs and the average jackknife gene expres-
sion correlation between the immunome protein coding
genes.
Network filtering was achieved with the GloSS algo-

rithm [13], which identifies the relevant backbone of a
weighted graph while retaining its weight distribution
and structure. It uses a global null model to calculate
the significance of the links by maintaining the topology
of the network while assigning link weights randomly,
from the observed weight distribution. The link weights
(jackknife correlation coefficients) were multiplied by
100 to allow the p-values to be computed by GloSS. The
computed link p-values by GloSS were used to filter the
network by removing links in decreasing order of p-value.
We monitored the filtering process to make sure that at
least a path or connectivity remained between the TCR
complex and NF-κB signaling pathways. The steps below
represent the filtering procedure:

Step 1: Using GloSS, determine p-value for each edge
of the network
Step 2: Select the link with the largest p-value
Step 3: Remove the link from the network

Figure 8 T cell PPI Network mapped to TCR, with main JAK-STAT and MAPK signaling pathways. The figure shows the TCR and the main
JAK-STAT and MAPK signaling networks that are connected to the TCR-dependent T cell response. The pathway information is adapted from the
KEGG Pathways resource. The TPPIN proteins are represented by red-colored boxes with protein names in white text. The signaling network
demonstrates the effectiveness of the filtering approach as many of the central proteins in T cell response are left intact after filtering.
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Step 4: Check for presence of connectivity between the
NF-κB components and the TCR complex
Step 4.1: If connectivity exists discard the link and go
to step 2.
Step 4.2: If connectivity does not exist, return the link
to the network and stop.

This procedure was performed for both the NF-κB
and the NFAT signaling pathways. Network diameter is
the maximum of the shortest paths between the nodes
of the network. A connected component is the region of
a network in which there is a path connecting all node
pairs. We followed changes in the network diameter, the
relative size of the largest connected component and the
average size of the isolated components [28]. The rela-
tive size of the largest component is the number of
nodes in the largest component divided by the number
of nodes in the whole network. That is, nrel = n/N,
where, nrel is the relative size of the largest component,
n is the number of nodes in the largest component and
N is the number of nodes in the whole network. These
measures were plotted against the fraction of filtered
nodes. The ratio,

number of deleted nodes
number of nodes in the network

;

represents the fraction of the filtered nodes. The igraph
package was used to calculate the network scores [50].

Robustness of the T cell PPI network
Link weight-randomized networks were created by ran-
domizing the weights of a fraction of links, keeping the
topology unchanged. The following fractions of links
were used to create each of the link weight-randomized
networks: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9.
Thirty iterations were performed on each link weight-
randomized network. For each iteration, a fraction of
links were randomly selected, their weights randomly
reassigned, the filtering procedure performed and net-
work topology statistics calculated. Node degree, average
path length, betweenness centrality of both the nodes
and the links, clustering coefficient of the network, and
the intersection between the TPPIN network and the
link weight-randomized networks, were calculated. After
the iterations for each link weight-randomized network,
the average of each of the network topology statistics
was retained.

Gene Ontology term enrichment, over-representation and
semantic similarity analysis
The interconnected proteins in the TPPIN were sub-
jected to GO [57] term enrichment analysis. The GO
terms for the proteins in the immunome interactome

were used as the background. Fisher's exact test of the
hypergeometric distribution was calculated and correc-
tion for multiple comparisons was performed using the
Benjamini-Hochberg procedure [58]. The enrichment
analysis was performed with Webgestalt [59]. Semantic
similarity between the immunome interactome and the
TPPIN was calculated using the clusterSim routine of
the GOSemSim library [60] (version 1.18.0) available in
R/Bioconductor.

Analysis of essential genes
We retrieved the human orthologs of the mouse lethality
genes from the Mouse Genome Informatics database
[29]. A gene was included in the set of lethality genes
with the following criteria: phenotype contains the word
“lethality”, the type of lethality annotation contains nei-
ther “partial” nor “wean”. After removing non-immunome
genes and those without the above-mentioned lethality
annotations, we calculated the hypergeometric distribu-
tion and Fisher’s exact test for significance. Essential genes
were retrieved using the biomaRt package in R [61] and
visualization of the TPPIN with essential genes was done
using Cytoscape 2.8.3.

Pathway gene mapping
The TPPIN genes were mapped to the KEGG pathways
using the KEGG pathway mapper tool [16].

Additional files

Additional file 1: Protein data from the Immunome Knowledge
Base and the immune response pathways from KEGG. This file
contains the Entrez-gene identifiers of the genes encoding the immune
response proteins from the IKB database and the KEGG immune response
pathways listed in Table 1 of the main document. This dataset represents
the immunome protein dataset and was used to generate the immunome
interactome from PPIs in the iRefIndex database.

Additional file 2: Immunome interactome network figure. The figure
represents the immunome interactome constructed from the immunome
protein list of Additional file 1. The figure shows the complex nature of the
network and thus cannot be studied by intuition alone. To reduce the
complexity of the network the filtering procedure, reported in this study, was
performed.

Additional file 3: Immunome interactome table. This is a table of the
PPIs of the immune response proteins of Additional file 1. They were
reconstructed from the iRefIndex which is a compendium
of PPI data from major PPI databases. Additional filtering was carried out
such that only experimentally verified, human, binary PPIs were obtained
(see methods). The identifiers are entrez gene identifiers of the genes that
code for the immune response genes.

Additional file 4: A summary of the gene expression datasets. This
consists of a summary of all microarray datasets that were used in this
study. The datasets were retrieved from NCBI’s GEO and EBI’s
ArrayExpress databases. The dataset with asterisk (*) contains 3
experiments conducted on 3 different platforms. The 3 experiments were
separated into separate data sets throughout the pre-processing. After
pre-processing only samples from the experiment conducted on
Affymetrix Human Genome U133A Array were merged with data sets
from other experiments.
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Additional file 5: Full Gene Ontology analysis results table. This
contains details of the GO term enrichment analysis performed by the
Webgestalt web resource. The background of the GO analysis is the
immune response proteins. The null hypothesis significance test is the
hypergeometric test and the p-values were corrected using the
Benjamini–Hochberg procedure.
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Abstract

Primary immunodeficiencies (PIDs) form a large and heterogeneous group of mainly rare

disorders that affect the immune system. T-cell deficiencies account for about one-tenth of

PIDs, most of them being monogenic. Apart from genetic and clinical information, lots of

other data are available for PID proteins and genes, including functions and interactions.

Thus, it is possible to perform systems biology studies on the effects of PIDs on T-cell physi-

ology and response. To achieve this, we reconstructed a T-cell network model based on

literature mining and TPPIN, a previously published core T-cell network, and performed

semi-quantitative dynamic network simulations on both normal and T-cell PID failure

modes. The results for several loss-of-function PID simulations correspond to results of pre-

viously reported molecular studies. The simulations for TCR PTPRC, LCK, ZAP70 and ITK

indicate profound changes to numerous proteins in the network. Significant effects were

observed also in the BCL10, CARD11, MALT1, NEMO, IKKB and MAP3K14 simulations.

No major effects were observed for PIDs that are caused by constitutively active proteins.

The T-cell model facilitates the understanding of the underlying dynamics of PID disease

processes. The approach confirms previous knowledge about T-cell signaling network and

indicates several new important proteins that may be of interest when developing novel

diagnosis and therapies to treat immunological defects.

Introduction

The human immunome consists of the genes and proteins essential both for the innate and

adaptive immunity. Interactions between these proteins are indispensable for immune

responses [1]. Studies have been carried out to identify and characterize the essential immu-

nome interactome, i.e. the totality of interactions in the immune system [1, 2]. Knowledge

from these studies enables the investigation of the dynamic behavior of networks in both

health and disease. The immunome interactome varies depending on the cell-type, timing and

localization of expressed and active proteins.

CD4+ T-cells are crucial immune response white blood cells. They recognize and bind to

antigens on antigen-presenting cells via the cell surface T-cell receptor (TCR) complex [3].

Antigen binding to the TCR triggers a sequence of signaling events that lead to the activation

and nuclear transportation of specific transcription factors (TFs) [3]. In the nucleus, these TFs
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transactivate genes that are required for T-cell responses. CD4+ T-cells are divided into sub-

populations of T helper 1 (Th1), Th2, Th17, regulatory T (Treg) and follicular helper T (Tfh)

cells [4]. Each cell type plays different roles in the immune response by virtue of their different

master regulator TFs and signature cytokine expression [5].

Here, we investigated the qualitative dynamics of the naïve CD4+ T-cells in both health and

in disease in primary immunodeficiencies. Protein interaction networks in T-cells and their

role in various diseases have been investigated [6, 7]. Primary immunodeficiencies (PIDs) are

intrinsic diseases of the immune system, and are typically rare with heterogeneous phenotypes.

Currently about 300 PIDs are known. Disease-causing variants in PIDs have been collected

into the IDbases [8] and other databases and are available for more than 150 PIDs. Differential

diagnosis of PIDs can be difficult due to overlapping signs and symptoms. Several classification

schemes have been made, including the frequently updated classification by the International

Union of Immunological Societies (IUIS) expert committee for PIDs [9]. PIDs have also been

classified with a network approach that clusters the diseases based on signs, symptoms and lab-

oratory parameters [10]. The severity of PIDs ranges from mild to moderate, and severe to

lethal. By integrating the diverse information sources, systems level studies of the underlying

mechanisms on PIDs can be conducted.

In systems biology, the reconstruction of cellular networks and their simulations facilitate

studies of diseases as perturbations (or alterations) to the networks [11, 12]. These approaches

provide insight on the dynamics of biomolecular interactions that drive cellular processes

and contribute towards deciphering biological processes in both health and disease. Disease-

causing variations can affect protein-protein interaction (PPI) networks at the cellular or tissue

level. Studies of quantitative dynamics of PPIs require kinetic parameters and reaction con-

stants. A problem emerges as reaction constants for most of the reactions have not been deter-

mined. Further, these network calculations are very computer intensive. The number of

parameters, even for a moderate size network is so large that calculations would be very costly

and time-consuming. Another approach amenable to larger networks of few tens to hundreds

of nodes is to use qualitative and semi-quantitative dynamic methods [13–15], which provide

useful models for approximating systems.

In this study, we employed a semi-quantitative method, the normalized HillCube Boolean

approach [16], to simulate the dynamics during the activation of naïve CD4+ T-cells. With

these simulations, we investigated the mechanisms of perturbations of known PID-causing

proteins and revealed novel putative PID-related factors. Semi-quantitative simulations with

synchronous updates were performed, and in silico validated. The simulations qualitatively

replicated PIDs due to variations in PID-related proteins which disrupt essential signal trans-

duction pathways during T-cell development from pre- to mature CD4+ T-cells [12]. Further,

several novel proteins affected by PIDs were identified.

Results

The naïve CD4+ T-cell activation network

We reconstructed the signal transduction network for naïve CD4+ T-cells by using the T cell

PPI network, TPPIN [17] as a basis for formulating reaction equations. The nodes and links of

the PPI network were used to mine the published literature for valid reaction equations on

CD4+ T-cells. The TPPIN is a PPI network that contains 227 core signal transduction interac-

tions derived from integrated, time series, gene expression data sets. This network does not

include link directions and, in most cases, lacks cellular context. Thus, we mined manually the

direction, interaction and cellular context information by literature survey. We included only

signaling interactions that were TCR/CD28-dependent and CD4+ T-cell-specific, leaving 85

Simulation of the dynamics of PIDs in CD4+ T-cells
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interactions, which were used for reconstructing the Boolean network model (S1 Table). The

interactions were defined manually as Boolean equations using the sum-of-product (SOP)

form. The SOP representation offers a convenient means to represent Boolean equations of a

signaling network in a hypergraph [18]. Proteins, i.e. the nodes, represent the Boolean vari-

ables. The edges (hyperarcs) represent the interactions between proteins and are signed either

activating (+) or inhibiting (-). Edges have a tail that begins from a start node and a head (or

arrow), which points to an end node, indicating the direction of signal transduction. Multiple

edges with the same end node were summed by an OR operator. The AND gate was used as a

product operator for multiple incoming edges that together are required to activate or inhibit

a protein. 19 input nodes did not have in-coming links (Fig 1).

We started by analyzing the structure of the network and the signaling paths between the

initial events of the TCR-dependent activation and the late events that involve the activation of

the major TFs that turn on the expression of response genes. The TCR complex, its co-receptor

CD4, and the co-stimulatory receptor CD28, are involved in the initial events, while the TFs

AP1, NFAT, and NF-κB control the late events of T-cell activation [3].

The TCR is activated when it binds to an antigen (signal 1) presented by an antigen present-

ing cell. Another signal (signal 2) through the co-activation receptor CD28 is needed to elicit

Fig 1. Naïve CD4+ T-cell activation Boolean network model. The network consists of 182 links and 118 nodes (including Boolean operators), 19 of

which are input nodes, i.e., no link points to them (S1 Table). The Boolean network represents the naïve CD4+ T-cell activation events. The boxes

represent non-PID (white) and PID proteins (gray). Spheres denote the AND gate. Activating links have a pointed head and solid line while inhibiting links

have a blunt head and dashed line. Signal 1 represents peptide-MHC/TCR complex while Signal 2 represents co-receptor-ligand association, e.g.

CD80-B7. Since the network focuses on TCR/CD28 signaling events, some events, e.g. for survival signaling that occur after antigen mediated T-cell

activation and response through interleukin 2 (IL2), have not been fully considered.

https://doi.org/10.1371/journal.pone.0176500.g001
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activation, survival and response [19]. The multiple paths from receptors to TFs guarantee a

fail-safe and robust T-cell activation [20, 21]. It may also imply that the sensitivity of the level

of activation is modulated by different routes [22]. On the other hand, signal transduction may

be critical if only a single route exists from the receptors, through the network, to the TFs.

We identified signaling paths from signals 1 and 2 to the major response TFs NF-κB, AP1

and NFAT. For this purpose, we converted the Boolean network into an interaction network

(Fig 2). Such a network captures the dependencies, interactions, and thus, the paths through

which signals are transduced through the network. The interaction network consists of a con-

nected component with 85 nodes interconnected by 146 links. To detect the part of the net-

work with the most cross-talk between the signaling pathways, we identified the strongly

connected component that consists of 25 nodes and 48 links (Fig 3).

To identify proteins essential for signal transduction from the receptors to the downstream

actuators we analyzed the feedback loops (FBLs) in the network. Those proteins whose Bool-

ean update equations are along most of the FBLs are considered essential. Input and output

nodes were not included in the FBLs. We identified 419 such loops, of which the longest spans

20 nodes and the shortest 2 nodes (Fig 4). The median and mean length of the FBLs is 14

nodes long. Among the PID proteins, LCK was in 409 FBLs, ZAP70 in 380, CBM in 316,

CARD11 in 312, BCL10 in 210, ITK in 120, PI3K in 110 and MALT1 in 106 FBLs. The other

PID proteins, NEMO, IKKB, NFKBIA and MAP3K14, do not occur in any of the FBLs.

PTPRC is an input node and is thus not included in any of the FBLs.

Fig 2. Boolean model transformed into its underlying interaction graph. The network consists of nodes and links derived from the Boolean network

model without the AND operator. The interaction graph consists of 85 nodes and 146 links, and represents the underlying interaction network of the model.

The nodes are as described in Fig 1. The network shows the paths through which signals from the receptors are channeled through the network to the

TFs, which turn on the response genes.

https://doi.org/10.1371/journal.pone.0176500.g002
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Validation of reconstructed network and identification of the wild type

attractor

After the engagement of the TCR complex and the co-activator CD28, a series of signal trans-

duction cascades occur in naïve CD4+ T-cells [23] and are captured by the reconstructed

network. The signaling cascades lead to response either via NF-κB, AP1 or NFAT [3]. The

reconstructed network is cogent if the major TFs (here TFs NF-κB, AP1 and NFAT

that together activate IL2) and the signaling components that lead to their activation are

turned on.

To ensure that the reconstructed model reproduces CD4+ T-cell activation, we performed

simulations by iteratively changing the initial states of the input nodes while making sure that

the network represented the main signaling events. We used normalized HillCube dynamic

simulations [16] with signals 1 and 2 turned on and validated the simulations in silico. This

network model was used for the subsequent analyses. Additionally, we performed simulations

by turning signal 1 on and signal 2 off, and vice versa. When either of the signals were turned

off, only AP1 and NFAT, but not NF-κB, were activated.

The normalized HillCube simulations were run until the networks reached their attractor

states. The model settled in a cyclic attractor or limit cycle after about 40 update rounds (arbi-

trary time units, Fig 5). The network subsequently continues in a cycle attractor after about

every 20 updates. This attractor is in accordance with published experimental results [3, 24],

which also is evident in the activation of the major downstream TFs (AP1, NF-κB, and NFAT)

when signals 1 and 2 are turned on.

Fig 3. The strongly connected components of the interaction graph. The strongly connected component of the interaction graph consists of 25 nodes

and 48 links. This subnet shows the interconnectedness and cross-talk of the early signals after the antigen-TCR ligation.

https://doi.org/10.1371/journal.pone.0176500.g003
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PID failure analysis

To study the effects of disease-causing variations on the long-term dynamics of naïve CD4+

T-cells, we perturbed PID proteins in the network model and simulated their dynamics with

the normalized HillCube update approach. Twelve PIDs are known to affect the proteins in

the network including BCL10, CARD11, IKKB, ITK, LCK, MALT1, MAP3K14, NEMO,

NFKBIA, PI3K, PTPRC, TCR (TRAC, a component of the TCR complex) and ZAP70. The

proteins were identified from the ImmunoDeficiency Resource [25], IDbases [8], the most

recent classification by the IUIS expert committee for PIDs [9] and a recent review [26]. These

proteins are expressed at the pre-CD4+ stage during T-cell development and differentiation.

The effects of knockouts or overexpression of these proteins to the signaling pathways were

investigated by turning them off (on) during simulation. The resulting perturbed attractors

were probed for differences compared to the wild type attractor.

The three major TF pathways were dysregulated in the attractors of PIDs involved in the

early events of the TCR-dependent T-cell activation including ITK, LCK, PTPRC, TCR and

ZAP70 perturbations (Fig 6). AP1 was inactive in the PID attractors for BCL10, CARD11,

Fig 4. Feedback loops or cycles in the interaction graph. Signaling paths having FBLs from signals 1 and 2 to the major transcription factors identified

from the interaction graph. The columns represent the Boolean update equations and are labeled with the updated protein. Each row represents an FBL,

and consists of the proteins located along it. On each row, cells with a black background indicate proteins that are along the FBL. There are 419 loops,

containing on average 14 proteins.

https://doi.org/10.1371/journal.pone.0176500.g004

Simulation of the dynamics of PIDs in CD4+ T-cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0176500 April 27, 2017 6 / 21

https://doi.org/10.1371/journal.pone.0176500.g004
https://doi.org/10.1371/journal.pone.0176500


ITK, LCK, MALT1, MAP3K14 and PTPRC. The NF-κB pathway was dysregulated in all the

PID-perturbed attractors, except that for PI3K and NFBIA. The NFKBIA knockout and the

PI3K overexpression simulations were identical to the wild type. The perturbations indicate

profound effects in the networks for almost all the PIDs. Several novel proteins were found to

be affected by the complete and partial knockouts (knockins) of the PID proteins.

Correlation to PID severity

The severity of PIDs varies greatly from very mild to life-threatening conditions. Severe com-

bined immunodeficiency (SCID) is associated with high susceptibility to bacterial, viral and

Fig 5. Attractor basin of the CD4+ T-cell network model normalized HillCube simulation. The basin of

attractors of the CD4+ T-cell network model simulated using the normalized HillCube algorithm. The

horizontal axis denotes time in arbitrary units.

https://doi.org/10.1371/journal.pone.0176500.g005

Fig 6. Wild type and PID attractors of the CD4+ T-cell network simulation. The node states for the wild

type and the PID-perturbed attractors (knockout perturbation of LCK, ZAP70, ITK, IKKB, NEMO, CARD11,

MALT1, BCL10, NFKBIA, PTPRC, MAP3K14 and knockin perturbation of PI3K) attractors. The attractors are

represented by the rows while the states of the nodes in the attractors are represented on the columns. The

state of a node for an attractor is represented by the color of the cell on the row of the attractor; black means

inactive whereas white means activate.

https://doi.org/10.1371/journal.pone.0176500.g006
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fungal infections [27]. Persistent infections with respiratory and gastrointestinal viruses and

opportunistic pathogens are frequent and often associated with protracted diarrhea and failure

to thrive. According to the IUIS classification [9], most of the PIDs in this study are associated

with SCIDs with reduced numbers or absent T and B cells. These include BCL10, CARD11,

IKKB, ITK, LCK, MALT1, MAP3K14, NEMO, PTPRC, TCR and ZAP70 deficiencies. Interest-

ingly, the attractors for these proteins show severe dysregulation (Fig 6).

Gain-of-function variants in the PIK3CD gene, a catalytic subunit of the PI3K heterodi-

meric complex is associated with a milder PID [28–30]. Additionally, variants in the gene that

code for NFKBIA are associated with various forms of ectodermal dysplasia with immunodefi-

ciency (EDA-ID) [31–34]. The attractors for these two proteins are very similar to the wild

type form.

Novel PID-associated proteins

The discovery and cataloging of the PIDs is an ongoing effort. With the improvement, devel-

opment and reduction in the cost of new technologies, more PIDs are identified. Due to the

large number, rarity and overlapping symptoms of PIDs, the diagnosis may be late, difficult

and costly. Several efforts have been made to ease diagnosis by classifying PIDs [9, 10], predict-

ing and prioritizing candidate genes and proteins [35–38]. The FBLs of our model and the

PID-perturbed attractors from simulations provide information about proteins that affect sev-

eral pathways and could be involved with PIDs. Proteins which are along at least 20 FBLs

include the majority of the investigated PIDs and several proteins essential for CD4+ T cell

activation and functions. Interestingly, most of these proteins also indicate abrogated signaling

in the attractors for most of the PIDs. To evaluate, in silico, the effects of perturbing the non-

PIDs in Table 1, we performed knockout simulations for each node, except for CBL for which

knockin simulation was performed, as CBL is turned off in the wild type attractor. Twenty-one

(70%) of the perturbed nodes are impaired in TCR-dependent T cell activation. Further, we

investigated the Human Gene Connectome (HGC) (ref) and found that many of the proteins

involved in numerous FBLs have significant connections to known PID proteins. Taken

together, the genes coding for these proteins are worth considering when prioritizing genes

during challenging diagnosis.

Discussion

In this study, we used the normalized HillCube approach to simulate the PID knockout effects

in the naïve CD4+ T-cell network dynamics. To achieve this, a network was reconstructed

based on evidence from the literature and a previously identified core T-cell network. By using

normalized HillCube simulations, we refined and in silico validated the reconstructed network.

The normalized HillCube perturbation studies qualitatively replicated complete loss-of-

function variation effects for several PIDs at CD4+ T-cell developmental stages.

Comparison of the wild type to the PID attractors highlighted significant differences in the

signal transduction patterns for ITK, LCK, PTPRC, TCR and ZAP70. The effects of the LCK,

PTPRC, TCR and ZAP70 perturbations are severe. Knockout simulations for these proteins

qualitatively capture major changes in signaling patterns. The differences between the wild

type and MAP3K14, NEMO and IKKB PID simulations were somewhat minor. In the BCL10,

MALT1, CARD11, MAP3K14, NEMO and IKKB knockouts, the NF-κB pathway was the most

affected. This is because these proteins connect receptor-dependent signals to the distal NF-κB

pathway [24]. Knockout of any of these genes may cause the IKK complex, the major NF-κB

regulator, to be impaired, leaving NFKBIA bound to NFKB1, and preventing its nuclear trans-

portation and function as a TF [24]. These results show that our approach of simulating effects

Simulation of the dynamics of PIDs in CD4+ T-cells
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of protein variations in networks is effective when the affected proteins are in the core of the

interconnected network or along non-redundant paths belonging to crucial pathways. No

major changes were revealed in overexpression perturbation, as in PI3K, or redundant signal-

ing path between the receptor to the TF. In the NFKBIA PID heterozygous variants that

either lack the phosphorylation sites [31, 32] or truncate the protein [34] protect it from phos-

phorylation-induced proteosomal degradation. The inactivated NFKBIA sequesters NFKB1 in

the cytosol [32]. Thus, the deficient NFKBIA acts as a dominant negative form for NFKB1,

reducing NFKB1’s activity and causing the reduction of TCR activation-dependent cytokine

Table 1. Number of FBLs along which each protein is in the T cell network model.

Protein No of

FBLs

Effect on NFAT

pathway

Effect on NF-κB

pathway

Effect on AP1

pathway

BRP Core proteinsb

LCK 409 0 0 0

MAPK1 404 1 1 1 0.00275 NFKBIA (PI3K, PTPRC)

ZAP70 380 0 0 0

DAG 344 1 0 0

CBMa 316 1 0 0

PRKCQ 312 1 0 0 0.00024 IKKB (CARD11, LCK, MALT1, NEMO, PTPRC,

ITK, PI3K, NFKBIA)

CARD11 312 1 0 0

MAP3K7 312 1 0 0 0.00281 IKKB (CARD11, MALT1, NEMO, NFKBIA, ZAP70,

ITK, PI3K)

LCP2 310 1 0 0 0.00048 ITK (LCK, ZAP70, PTPRC, PI3K, NFKBIA, IKKB)

PLCG1 304 1 0 0 0.00167 ITK (PI3K, LCK, ZAP70)

BCL10 210 1 0 0

LAT 193 1 0 0 0.00119 ZAP70 (PTPRC, ITK, PI3K, LCK, NFKBIA)

CBL 190 0 0 0 0.00114 ITK (PI3K, ZAP70, LCK, PTPRC)

ABL1 189 0 0 0 0.00633 NFKBIA (LCK, ZAP70, ITK, PI3K)

GRAP2 171 1 0 0 0.00048 ITK (PTPRC, PI3K, NFKBIA, IKKB, MALT1)

TRAF6 160 1 0 0 0.00191 NFKBIA (MALT1, IKKB, CARD11, LCK, NEMO,

ZAP70, PI3K)

VAV1 120 1 0 0 0.00036 ITK(PI3K, LCK, ZAP70, NFKBIA)

ITK 120 0 0 0

PI3K 110 1 1 1

MALT1 106 1 0 0

MAP2K1 92 1 1 1 0.00072 PI3K (ITK, NFKBIA)

RAF1 92 1 1 1 0.00329 PI3K (LCK, ITK, NFKBIA)

RAS 92 1 1 1 0.00335 LCK (ZAP70, PI3K, NFKBIA, IKKB)

RASGRP1 86 1 1 1 0.00125 ZAP70 (PI3K, IKKB, MALT1, CARD11, LCK, ITK,

PTPRC, NEMO)

PIP3 70 1 0 0

SOS 47 1 1 1 0.00036 ITK (PI3K, LCK, ZAP70, CARD11)

TCRP 40 1 1 1

DGK 40 1 1 1 0.00556 NFKBIA (ZAP70, CARD11)

PDPK1 30 1 0 0 0.00102 MALT1 (CARD11, PI3K, IKKB, NFKBIA, LCK,

NEMO, ZAP70)

MAP3K4 24 1 0 0 0.01673 PI3K (LCK, IKKB, NEMO)

Rows with tan background are for PIDs.
aCBM deficiency is considered as a PID because it is a complex, all of whose components are related to PIDs.
bThe first core protein is the most significant to the target and those in parenthesis are other significant ones for the target (BRP < 0.05).

https://doi.org/10.1371/journal.pone.0176500.t001
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response [32]. Indeed, there were no observed differences between the PI3K and NFKBIA PID

simulations compared to the wild type. LCK and ZAP70 perturbations that cause major effects

are present in over 90% of the FBLs in the network and CARD11 and the CBM complex in

75% of the FBLs. Seven of the 12 PID proteins emerge in the FBLs, most of which are proximal

TCR activation events, highlighting the fact that the simulation studies are effective for detect-

ing effects of centrally located proteins.

Antigen-TCR complex ligation causes conformational alterations of CD3 chains, which

contain immunoreceptor tyrosine-based activation motifs (ITAMs) on which they are phos-

phorylated by LCK [3]. This is an essential step in early TCR activation. The LCK kinase activ-

ity is regulated by the antagonistic actions of the membrane protein tyrosine phosphatase

PTPRC and the carboxy-terminal Src kinase (CSK) (30). The phosphorylation of Tyr505 in

LCK by CSK inhibits LCK activity via auto-phosphorylation of Tyr394 in the catalytic domain.

The dephosphorylation of the Tyr505 by PTPRC relieves this inhibition [39]. TCR is crucial

for T cell activation and cytokine response, and simulation of TCR deficiency shows profound

impairment of all TF pathways. A homozygous variant of TRAC, a crucial component of the

TCR complex, causes this deficiency [40]. The deficiency is associated with lymphadenopathy,

recurrent infections and hepatosplenomegaly. Because the increased activity of LCK is crucial

for the T cell response after antigen stimulation, the PTPRC knockout causes a severe pertur-

bation. This is confirmed by disease-causing variations in the gene [41–45]. The known vari-

ants include large deletions [44] and amino acid substitutions [45]. Immunodeficiencies

caused by the lack of LCK activity lead to T cells that are low in number and non-responsive,

which in turn causes susceptibility to infections. Our PTPRC-perturbed simulations indicate

that all the signaling paths of NFAT, NFKB1 and AP1 TFs, crucial for TCR-dependent

response, are disrupted.

The activation of LCK is a crucial early step for T-cell activation and response. The phos-

phorylation of the CD3 ITAMs leads to the recruitment of ZAP70 and its activation by LCK.

ZAP70 subsequently phosphorylates LAT, leading to the formation of the LAT signalosome

(the proximal signaling complex) [46]. LAT signalosome transduces signals to pathways that

are indispensable for the three major TFs necessary for T-cell activation and response. Thus,

the improper constitution of this signaling site affects multiple pathways and disrupts the

transduction of TCR activation signals, as verified by our simulations.

The absence of LCK signaling disrupts the NFAT pathways and abrogates the T-cell

response. The LCK deficiency is associated to naive CD4+ T-cell lymphopenia, respiratory

tract infections, and early-onset autoimmune inflammation [47–49]. The major effects of this

PID on naïve CD4+ T-cells are a profoundly defective TCR signaling, lack of calcium/magne-

sium signaling and defective NF-κB response. Our simulation of the knockout perturbation

confirms the dysregulation of most signaling events associated with the calcium signaling,

thereby affecting the AP1, NFKB1 and NFAT signaling pathways. LCK and ZAP70, the two

vital components necessary for the formation of the LAT signalosome, are turned off in the

LCK-perturbed attractor. This suggests that the LAT signalosome is disrupted and thus, down-

stream signaling is impaired. As shown in Fig 6, the signaling components required for the

AP1, NF-κB, NFAT family of proteins, including the calcium-dependent signaling, are turned

off in the LCK knockout attractor. The affected signaling components include PLCG2, PIP2,

IP3, DAG and CALN.

Because of the proximity of ZAP70 to LCK in the early activated TCR signaling events, the

effects of ZAP70 are expected to be similar. This is indeed the case. Partially affected signaling

occurs in ZAP70 deficiency, but downstream responses, like proliferation, are abrogated

because of the TCR signaling defect. Severe conditions caused by the ZAP70 deficiency have

been diagnosed in several patients [50–55]. Like the PTPRC and LCK knockout simulations,
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the major effectors associated to the calcium signaling are turned off in the ZAP70 perturbed

attractor. Based on these results, the activated T-cells would become anergic and/or undergo

apoptosis. SYK, the ZAP70 homolog in non-T-cells, is expressed at high levels in the CD4+

T-cells of ZAP70-deficient patients [50, 53]. The SYK expression might compensate for the

lack of ZAP70, and has been used to explain the less severe phenotype of the ZAP70 deficiency

[50].

During the constitution of the LAT signalosome, LCP2 and PLCG1 bind to LAT and are

phosphorylated by ZAP70 [46]. The phosphorylated LCP2 then recruits ITK, which leads to

the activation of PLCG1. PLCG1 hydrolyzes its substrate PIP2 to generate second messengers,

IP3 and DAG. ITK is a non-receptor tyrosine kinase expressed in T-cells and has been

described as an important component of proximal TCR signaling [56].

Several homozygous ITK variants cause PID [57–60]. The ITK deficiency is associated with

naive CD4+ T-cell lymphopenia, modest change in the number of CD4+ T-cells, impaired

positive and negative selection of thymocytes due to reduced TCR signal levels, recurrent

infections (for example, herpes virus infections), autoimmune cytopenias, lymphoprolifera-

tion, lymphadenopathy and hepatosplenomegaly. Genotype studies point to a twofold increase

in activated CD4+ T-cells, impaired activation-induced cell death and decreased levels of TCR

signaling. Additionally, there is evidence that TXK could substitute for ITK [61]. The lack of

ITK in mice is mitigated by the ability of TXK to activate PLCG1 [62]. ITK is present in both

the strongly connected component and several (29%) of the FBLs. These findings indicate that

in the absence of ITK, T-cells are activated, but signaling resulting from TCR stimulation leads

to impaired response. Indeed, the attractors from our perturbed simulations showed abro-

gation of the NFAT, AP1 and NF-κB pathways. This agrees with normal, but progressive

decrease in T cell numbers that may be caused by defective response in the TCR-dependent

response pathways, which are indispensable for IL-2 transactivation and T cell response

[63, 64].

The constitution of the CBM complex is an essential event in the regulation of NF-κB path-

way. After the TCR/CD28 activation, PRKCQ is activated and recruited to the proximal signa-

losome. Here, PRKCQ activates CARD11 [65], which leads to its association with BCL10.

Because BCL10 is constitutively bound to MALT1, the association of CARD11 to BCL10 leads

to the formation of the CBM complex. Several PIDs have been connected to variations that

occur on the genes that code for CARD11 [66], MALT1 [67] and BCL10 [68]. The CARD11

PID case is caused by a homozygous premature stop codon on the gene that codes for

CARD11, and truncates its kinase-like domain. A homozygous variant in the CARD domain

of MALT1 causes MALT1 PID. The known BCL10 PID case is due to a homozygous splice-site

variation at intron 1 of the gene encoding BCL10. The CARD11 PID is associated with hypo-

gammaglobulinemia, severe interstitial pneumonia, dyspnea and respiratory tract infections

[66]. The MALT1 deficiency is associated with bronchiectasis, mastoiditis, chronic aphthous

ulcers, gastritis, gingivitis, duodenitis and meningitis while the BCL10 PID is associated with

hypogammaglobulinemia, gastroenteritis, otitis, respiratory tract infection and several viral

infections [68]. Although the CBM PIDs show normal T cell counts, the BCL10 and MALT1

deficiencies show predominantly naïve CD4+ T cells, including severely abrogated TCR-

dependent NF-kB signaling and cytokine response [69]. As expected, the pathways for NF-κB

and AP1 are severely disrupted in the attractors of the CARD11, MALT1 and BCL10 PIDs.

The major regulator of NF-κB is the IKK complex [24]. It consists of two protein kinases,

IKKA and IKKB and a regulatory protein, NEMO [70]. The activation of the IKK complex is

NEMO-dependent. After the TCR/CD28 activation PRKCQ is activated and recruited to the

proximal signalosome, where it activates CARD11 [65], which leads to the formation of the

CBM complex. The TRAF6 oligomerizes with the CBM complex through the association with
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MALT1 and BCL10 [71]. This oligomerization recruits UBE2V1 which polyubiquitinates and,

thus, activates TRAF6 [72]. The activated TRAF6 in turn activates MAP3K7, which subse-

quently coordinates the assembly of the IKK complex [71, 73].

Some PIDs have been linked to both IKKB and NEMO [74–77]. A complete loss of function

homozygous truncating variant, a duplicating variant, and a nonsynonymous nucleotide sub-

stitution on the gene that codes for IKKB have been reported to cause the disease [77–79].

IKKB deficiency is associated with life-threatening bacterial, fungal, and viral infections, defec-

tive immunoglobulin production and hypo- or agammaglobulinemia. Although T cell num-

bers are normal, T cell subsets are lower, and peripheral T cells fail to respond to stimulation.

IKBKB loss of function variants abrogates signaling and response via the NF-κB pathway in

these patients [24]. Genetic studies have revealed several PID cases linked to IKBKG, the gene

that codes for NEMO [74, 75, 80–82]. The disease results from amino acid substitution and

exon skipping variations. The NEMO deficiency is associated with anhidrotic ectodermal dys-

plasia, polysaccharide non-response, various infectious diseases, colitis, ectodermal dysplasia,

conical teeth, variable defects of skin pigmentation and monocyte dysfunction [74, 75]. The

T cell counts are normal but TCR activation is impaired, especially NF-κB activation. In accor-

dance with these studies, our simulation indicates that the NEMO and IKKB perturbations

lead to inactivation of NF-κB, despite normal activation of AP1 and NFAT [24, 83, 84].

MAP3K14 is a member of the family of mitogen-activated protein kinases that is involved

in both the canonical [24] and non-canonical [85] NF-κB pathways. In the canonical NF-κB

pathway, the CD28 co-stimulatory signal is required for the MAP3K14 activation through

MAP3K8 (COT). After activation by AKT1, MAP3K8 activates MAP3K14, which in turn con-

tributes in the activation and subsequent ubiquitination of NFKBIA [71, 73, 86]. The ubiquiti-

nation of NFKBIA releases NFKB1 which is translocated into the nucleus and results in T-cell

response. In the non-canonical NF-κB pathway, MAP3K14 associates with IKKA to induce

the phosphorylation and subsequent ubiquitination of the p100 subunit [85, 87]. This leads to

the proteolysis of NFKB2/p100 to NFKB2/p52-RELB dimer, which is translocated to the

nucleus and transactivates κB-containing genes for response [85].

A PID caused by a biallelic variation in the gene coding for MAP3K14 protein leads to loss

of its kinase activity [88]. This variant disrupts both the canonical and non-canonical NF-κB

pathways in immune response cell-types [88]. Despite the normal overall T cell numbers, sev-

eral T cell subsets show defective response and perturbation. The MAP3K14 PID is associated

with several microbial infections, including bacterial and viral infections [88]. The MAP3K14

PID-perturbed simulations are in accordance with its crucial and non-redundant role in

T cells as seen in the defective activation of NFKB1, albeit normal activation of AP1, NFAT

and MAPK14 [89].

The results for simulations of NFKBIA and PI3K did not differ from wild type. To investi-

gate the effects of variants and knockouts in these proteins, dedicated networks would be

needed with more information about downstream factors.

Our results show PID-caused trends in the cellular dynamics of the CD4+ T-cells when the

affected proteins are involved in non-redundant paths along major TF signaling pathways.

The downstream signaling events show minor effect on the network dynamics than the early

events. This paper is the first attempt, as far as we are aware, to investigate, with systems bio-

logical simulations, the effects of variations in immune response proteins in PIDs. We found

profound effects in the ITK, LCK, PTPRC, TCR and ZAP70 perturbed simulations, and less

profound but noticeable effects in the BCL10, CARD11, IKKB, MALT1, MAP3K14 and

NEMO perturbed simulations.

The non-PID proteins in Table 2 are indispensable for T cell activation and response, are

affected in several of the simulated PID attractors and have also been associated with other
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diseases. Several of them have been identified as candidate PIDs. VAV1, RAF1, LAT, LCP2 and

MAPK1 were identified as candidate PID genes with high confidence by Keerthikumar et al.

[37]. Moreover, 15 out of 22 of the proteins are predicted to be candidates by another recent

study [38]. These include LCP2, CBL, TRAF6, MAP3K7, VAV1, PLCG1, PRKCQ, RAF1,

ABL1, PDPK1, GRAP2, LAT, MAPK1, MAP3K4 and MAP2K1. Several of the candidate

genes are central in the Human Gene Connectome (Table 2) providing independent proof

for their significance. As the connectome is not complete, the fact that there is no support

from this method does not mean that our findings were not significant even from this point of

view.

Nine of the proteins in Table 2 are protein kinases (MAPK1, PRKCQ, MAP3K7, PLCG1,

LAT, MAP2K1, RAF1, PDPK1, MAP3K4), 4 are mitogen-activated protein kinases (MAPK1,

MAP2K1, RAF1 and MAP3K4), 3 are serine-threonine kinases (PRKCQ, MAP3K7, and

PDPK1), and 3 have guanyl-nucleotide exchange factor activity (VAV1, RASGRP1 and SOS).

Four of the proteins are linked to various forms of the Noonan syndrome (CBL, MAP2K1,

RAF1 and SOS), 5 to various types of tumors (MAPK1, PRKCQ, ABL1, GRAP2 and RAS) and

one to an autoimmune disorder (RASGRP1). Seven of the genes are not linked to any disease

(MAP3K7, LCP2, LAT, VAV1, DGK, PDPK1 and MAP3K4). The listed proteins are strong

PID candidates; however, their involvement in PIDs needs to be experimentally verified. In

the case of the NFKBIA perturbed simulations we observed local effect on NF-κB and for

PI3K, no effects. Further simulation studies of these PIDs will require more specific networks,

if applicable.

Several studies suggest candidate PID genes [35, 37, 38]. Ortutay and Vihinen constructed a

PPI network of immune system-specific proteins, proteins with high network statistics and

PID-related Gene Ontology term enrichment scores [35]. Itan and Casanova identified the top

1% of genes that were biologically close to known PIDs and, and from these selected the ones

with similar Gene Ontology terms as the known PIDs [38]. A machine learning technique,

support vector machine, was applied by Keerthikumar and colleagues to identify candidate

Table 2. Tuned parameters of nodes in the Odefy-simulated T cell network model.

Influenced node Influencing node(s) τ n k

PAG1 []a 1 20 0.9

PAG1 [] 1 20 0.9

DAG DGK 1 20 0.9

DGK [] 1 20 0.9

DGK [] 1 3 0.9

DGK [] 1 3 0.9

LCK MAPK1 10 20 0.1

CBL [] 3 20 0.9

CALN CABIN1 1 3 0.9

CALN RCAN1 1 3 0.9

CALN AKAP5 1 3 0.9

aAll influencing nodes.

PAG1, phosphoprotein membrane anchor with glycosphingolipid microdomains 1; DAG, second messenger,

diacylglycerol; DGK, diacylglycerol kinases; LCK, LCK proto-oncogene, Src family tyrosine kinase; MAPK1,

mitogen-activated protein kinase 1 (ERK); CBL, Cbl proto-oncogene; CALN, calcineurin complex; CABIN1,

calcineurin Binding Protein 1, RCAN1, regulator of calcineurin 1, AKAP5, A-kinase anchoring protein 5.

https://doi.org/10.1371/journal.pone.0176500.t002
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PIDs by utilizing binary features from PIDs and non-PIDs [37]. The above approaches were

successful in identifying several candidate genes that were subsequently verified to be PID

related. Our approach focuses on T-cell-specific PIDs and how they affect other components

of the cellular signaling dynamics. This, as well as other evidence presented above, allowed us

to identify the candidate PIDs.

Diagnosis and prognosis of PIDs is still often problematic. Our approach provides novel

insights into the mechanisms of PID effects on signaling cascades and may highlight novel tar-

gets for therapy downstream of the defective proteins. The presented approach can be used to

study PIDs of any cellular system and even diseases outside the immune system.

Methods

Network reconstruction and analysis

The T-cell PPI network (TPPIN), a core network of PPIs specific to T-cells [17], was used as

the basis for extensive literature survey and the reconstruction of the Boolean equations for the

T cell model. Only those nodes that have been demonstrated to play a crucial role in the TCR/

CD28-dependent activation of CD4+ T cells were retained.

The CellNetAnalyzer version 2016.1 [18] was used for identifying feedback loops in the

underlying interaction graph of the model. The base R software version 3.2.3 [90] and Cytos-

cape version 3.3.0 [91] were used for data analysis and network visualization, respectively. The

strongly connected components were calculated using igraph, a library for network and graph

analyses in R [92].

A Boolean model consists of N nodes/proteins X1, X1,. . ., XN. The proteins are represented

by variables xi that take values {0, 1} [93]. Each protein, xi is influenced by a set of proteins

Ri = {X1, X1,. . ., XN} connected to it. Based on the values of their influencing proteins Ri, for

each time step, the value of each protein xi, is calculated from the update function B:{0, 1N}.
Because the time is discretized in Boolean simulations, at time point t + 1, updates are done

synchronously as follows [93, 94],

xiðt þ 1Þ ¼ Biðxi1ðtÞ; xi2ðtÞ; . . . ; xiNi
ðtÞÞ � f0; 1g; i ¼ 1; 2; . . . ; N:

The Boolean update functions, Bi, are converted into a system of continuous ordinary dif-

ferential equation (ODE) model where xi takes values [0, 1] using the following ODE equation

_xi ¼
1

ti
ð�Bi ð�xi1; �xi2; . . . ; �xiNi

Þ � �xiÞ;

where, �Bi is a continuous homologue of the discrete function Bi, parameter τi represents the

life-time of the protein, and �xi describes its decay.

Odefy [16], a toolbox compatible with MATLAB, transforms Bi to the ODE system and

computes the solution of the system using the BooleCubes [95] as follows,

�BIð�x1; �x2; . . . ; �xNÞ ¼
X1

x1¼0

X1

x1¼0

. . .
X1

xN¼0

Bðx1; x2; . . . ; xNÞ:
YN

i¼1

ðxi�xi þ ð1 � xiÞð1 � �xiÞÞ

" #

:

�BI , the BooleCube, is obtained from the multilinear interpolation of the Boolean update

function Bi. Biomolecular interactions show switch-like behavior and are modeled using sig-

moidal functions. Thus, the Hill function, f ð�xÞ ¼ �xn=ð�xn þ knÞ, was used to smoothen the

affine multilinear BooleCube, to obtain the sinusoidal HillCube [95]. Hence, the parameter

n was introduced (the Hill coefficient or slope of the Hill function), to represent the coopera-

tivity between the protein interactions and parameter k represent the value at which the
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activation is half-maximal. The HillCube is obtained from the BooleCube as follows,

�BHð�x1; . . . ; �xNÞ ¼
�BIðf1ð�x1Þ; . . . ; fNð�xNÞÞ:

To obtain perfect homologues of the Boolean update functions Bi, the HillCube functions

are normalized to the unit interval to give the normalized HillCube [95] as follows,

�BHnð�x1; . . . ; �xNÞ ¼
�BI f1ð�x1Þ

f1ð1Þ
; . . . ;

fNð�xNÞ

fNð1Þ

� �

:

The network model used in this study is available in SBML qual format (S1 Text) on the

website http://structure.bmc.lu.se/tcell_net/web_session/#/.

Basin of attraction and attractor identification

The Odefy was used to simulate the qualitative dynamics of the network model. It provides

simulation algorithms for both synchronous and asynchronous updates and allows simula-

tions based on the BooleCubes [16]. We used the normalized HillCube functions, which repre-

sent the normalized BooleCubes in the range [0–1]. Boolean dynamic simulations were

performed using normalized HillCube simulations [95]. Except for nodes involved in some

negative feedback loops, the default parameter values were used. The default parameters for

the normalized HillCube were n = 3, k = 0.5 and τ = 1. Table 2 lists non-default parameters for

nodes on some feedback loops. The variable n represents the Hill exponent of the Hill function

and is used for converting the discrete Boolean update functions that take value {0, 1} into

their continuous BooleCube equivalents that have values [0, 1]. It captures the influence that

nodes of the same Boolean equation have on each other. k is a variable to control the continu-

ous relaxation of the Boolean step function. It represents the value at half-maximal activation

of a protein. τ is a decay parameter; for each protein, the higher its value the slower the decay

of the protein. The simulations were run until the network dynamics settled in an attractor.

Perturbation

The Analysis of PID effects was performed for each protein encoded by a PID gene using the

normalized HillCube simulations. For each perturbation, the node was converted to an input

before assigning a state, either off or on, depending on the PID. For example, if the PID occurs

as a result of over-activity of the protein, then the perturbed state is ON. This state was main-

tained until the simulation transitioned into the attractor. The parameter values used in the

wild type simulations were maintained for all the PID perturbed simulations. The end result of

the simulation represents the perturbed PID attractor.

Primary immunodeficiency data

PID proteins expressed after the pre-CD4+ T-cell development stage were retrieved from the

IDbases [8], the most recent updated IUIS expert committee classification of PID data [9], and

a recent survey [26], and used for the PID failure mode simulations. The PIDs included LCK,

ZAP70, ITK, IKKB, NEMO, CARD11, MALT1, BCL10, NFKBIA, PTPRC, MAP3K14 and

PI3K deficiencies.
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S1 Table. CD4+ T-cell activation Boolean network model update equations. The table lists

Boolean equations of protein activation used in the network model and simulations.

(DOCX)

Simulation of the dynamics of PIDs in CD4+ T-cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0176500 April 27, 2017 15 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176500.s001
https://doi.org/10.1371/journal.pone.0176500
http://structure.bmc.lu.se/tcell_net/web_session/#/


S1 Text. SBML qual. The CD4+ T-cell network model in SBML qual format. The contains

the CD4+ T-cell network qualitative model in the SBML qual format.

(SBML)
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