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ABSTRACT 

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic 
inflammation of the peripheral joints that eventually leads to cartilage destruction 
and bone erosion. The causes of RA remain largely unknown, but considerable 
evidence suggests a multifactorial aetiology involving both environmental and genetic 
factors. Large efforts have been directed towards the understanding of the molecular 
mechanisms underlying RA. Because of the complexity of the disease in humans, 
animal models for RA have become attractive tools for gene-identification. Use of 
such models not only overcomes genetic complications, but it also permits studies 
under stable environmental conditions. However, so far genetic studies using animals 
have had only limited success. In fact, researchers have encountered significant 
difficulties in the analysis of complex traits.  

The first part of this thesis is summarizing two major problems we have faced in the 
past years. In the first study we investigated the genetic setup and the response 
towards various arthritis models of two DA rat substrains. We detected several genetic 
and phenotypic differences, suggesting that one of the substrains had been 
genetically contaminated from another rat strain. The second study is based on the 
observation that a spontaneous mutation in our DA rat colony results in decreased 
arthritis susceptibility in the DA rats. We subsequently isolated the mutation in a 
new substrain of DA rats, called DACP, and using genetic linkage analysis we located 
the mutation and identified a new quantitative trait locus (QTL) for pristane-
induced arthritis (PIA) at chromosome 9, Pia27. In the second part of this thesis, we 
were utilizing the traditional congenic rat strain strategy in the identification and 
characterization of arthritis regulating loci. The third paper investigated the influence 
of different genetic backgrounds on the detection of previously reported loci for PIA. 
We found that the arthritis-regulating gene Ncf1 as well as the major histo-
compatibility complex (MHC) are silent in certain genetic backgrounds, while they 
can be detected in other genetic setups. The fourth study describes the positional 
cloning of the immunoglobulin lambda light chain (Igl) locus as one locus controlling 
rheumatoid factor (RF) production in rats. In addition, evidence suggests that this 
genetic region may be associated with Ovalbumin-induced airway inflammation, an 
animal model for allergic bronchitis or asthma. 

Identification of genes involved in complex disorders such as RA will be extremely 
valuable in understanding disease regulating mechanisms as well as improve diagnosis 
and identification of specific targets for therapeutic drugs. However, the findings in 
this thesis demonstrate that mapping those genes is a complex and challenging 
process and involving various problems, such as genetic variability and complex 
genetic interactions. 
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INTRODUCTION 

THE IMMUNE SYSTEM 

Every day we come into contact with a large variety of microorganisms such as 
viruses, bacteria and fungi. Many of these, known as pathogens, are capable of 
causing diseases. Our immune system is the collection of natural defence mechanisms 
to fight back those foreign invaders. The immune system consists of a complex 
network of specialized cells and molecules, each having specific tasks assigned to 
them.  

The innate immune system is regarded as the first line of defence against invading 
pathogens. It consists of cells and molecules that defend the host through a series of 
non-specific mechanisms, such as surface barriers (skin and mucous membranes), the 
complement system and phagocytic cells [1]. These cells bind to antigens using 
pattern-recognition receptors (PRRs), such as the Toll-like receptor family of proteins, 
which are specific to certain characteristics of broad classes of infectious organisms [2]. 
PRRs recognize patterns of bacterial and viral products such as lipopolysaccharides, 
petidoglycan, unmethylated CpG motifs of bacterial DNA, and double-stranded 
RNA, and mediate the uptake of microbes by phagocytes. A subset of those cells also 
functions as antigen presenting cells (APCs) by digesting the swallowed pathogen 
into smaller fragments and presenting them to specialized cells of the adaptive 
immune system [3].   

The main cells of the adaptive immune system are the B and T lymphocytes. 
Antibody-producing B cells mature in the bone marrow and oversee the humoral 
immune response. T cells are also produced in the bone marrow but are educated in 
the thymus and constitute the basis of cell-mediated immunity. Both cell types share 
the ability to somatically rearrange their variable (V), diversity (D), and joining (J) 
region gene segments and thus, generating millions of highly diverse lymphocyte 
receptors.  

 

IMMUNOLOGICAL TOLERANCE 

Every day new lymphocytes are produced and because the gene rearrangement is a 
random process there is a great risk that many of the receptors may also bind to self-
molecules. To prevent these self reactive lymphocytes from mounting an immune 
response there are a number of mechanisms that enables the immune system to 
discriminate between self and non-self antigens. This is known as immunological 
tolerance. Tolerance is classically divided into central and peripheral tolerance, 
depending on whether the control mechanisms operate in the central lymphoid 
organs (thymus, bone marrow) or the peripheral organs (lymph nodes, spleen, etc.). 

 

Central Tolerance 
There are two main mechanisms by which central B cell tolerance may occur. 
Immature B lymphocytes that encounter the native antigen in the bone marrow 
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during their process of maturation undergo apoptotic cell death or, alternatively, 
change their receptor specificity through receptor editing [4].  

The mechanisms responsible for central T cell tolerance and T cell maturation in the 
thymus are more complex and not yet completely understood. However, it is 
undisputed that T cell precursors emerging from the bone marrow are recruited to 
the thymus. The first step of T cell selection, known as positive selection, occurs in 
the thymic cortex where thymocytes showing no affinity for peptide-MHC 
presented by cortical thymic epithelial cells (cTECs) die of neglect [5]. 

Only lymphocytes showing a productive rearrangement of their T cell receptor 
(TCR) and a sufficient affinity for the peptid-MHC complex are positively selected. 
After positive selection they migrate to the medullary areas of the thymus, where they 
differentiate into single positive CD4+ or CD8+ T cells [6]. Obviously, this cell pool 
contains all possible T cell clones, including not only those potentially able to 
recognise exogenous peptides but also those reactive towards self-peptides. The 
following process, which results in the elimination of the great majority of 
thymocytes able to recognise self-peptides, is known as negative selection. Negative 
selection occurs, because thymocytes showing high affinity for a self-peptide in the 
thymus undergo apoptotic cell death following self-peptide interaction [7]. However, 
some of the T cells receiving a relatively strong signal, yet not strong enough for 
negative selection, can develop immune-suppressive functions and negatively 
regulate responses of other T cells [6].  

The main question puzzling researchers for years is how the T cells can encounter 
such a high number of self-peptides in the thymus, especially since many of these 
peptides are thought to be tissue- or organ-specific. It is now known that medullary 
thymic epithelial cells (mTECs) play a major role in the presentation of self-peptides 
and the process of negative selection. mTECs are capable of so called promiscuous 
gene expression, meaning that they can express peptides that are otherwise 
exclusively expressed in specific tissues or organs [8]. This promiscuous expression is 
regulated by a protein named “autoimmune regulator” (AIRE) [9]. AIRE is a 
transcription factor that drives the expression of certain organ-specific genes. 
Through this mechanism, diverse tissues and organs such as epidermis, liver, brain, 
pancreas and intestine can be represented by mTEC. More than a 100 different self-
antigens have been identified [10]. At the end of the process of negative selection, 
only single-positive CD4+ or CD8+ thymocytes equipped with TCRs not showing 
high affinity for self-peptides will survive. They migrate into the periphery and 
colonise secondary lymphoid organs, where they will encounter exogenous peptides 
that are captured and presented by dendritic cells. 

 

Peripheral Tolerance 

Central Tolerance is the most important mechanism in the deletion of autoreactive T 
cells. However, negative selection in the thymus is incomplete and not all self-reactive 
cells are deleted. To prevent that these cells may elicit an autoimmune response, there 
are additional tolerance mechanisms in the periphery, which induce unresponsiveness 
in mature lymphocytes. Peripheral tolerance for mature B cells can occur when the B 
cell encounters a specific antigen in the absence of specific T helper (Th) cells [11, 
12]. This leads to that the B cell not only remains inactive, but it also becomes 
incapable of activation, even if it would re-encounter the same antigen under 
appropriate conditions. The second possibility of tolerance induction is a partial 
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activation of the mature B cell. Under this condition the B cell is excluded from 
lymphoid follicles (follicular exclusion) [13]. 

The mechanisms for peripheral T cell tolerance are more complex. Four main 
mechanisms of peripheral tolerance play an important role in maintaining self-
tolerance and prevention of autoimmunity: deletion, anergy, ignorance, and 
regulatory T cells.  

Deletion is a mechanism of peripheral tolerance of mature T cells, which is based on 
their apoptotic cell death. Deletion usually occurs when T cells encounter high 
antigen concentrations or if they are heavily activated. This process is known as 
“activation-induced cell death” (AICD) and is mediated through the high expression 
of surface molecules known as Fas (CD95), as well as its ligand (FasL or CD95L) 
[14, 15].  

Anergy occurs when a T cell encounters its proper peptide under suboptimal 
stimulation conditions. In the absence of a co-stimulatory signal, provided through 
the interaction of CD80 or CD86 with CD28, T cells stay inactive, even if they 
would re-encounter the same peptide on the surface of professional APCs equipped 
with co-stimulatory molecules [16]. Another method to generate an anergic stage is if 
peptide recognition by the Th cell is accompanied by interaction with the 
suppressive cytotoxic T lymphocyte associated antigen (CTLA)-4 molecule instead of 
with the activating CD28 [17]. Under both conditions, the Th cell does not die and 
persists in the body, but becomes functionally unresponsive.  

Ignorance refers to the common occurrence of low numbers of low affinity 
autoreactive T cells existing in the presence of low levels of presented self-peptides 
without becoming activated. It has been estimated that each APC expresses a 
maximum of 105 MHC molecules per cell. T cells must bind at least 10-100 
identical peptides on an APC to become activated. Most peptides presented on APCs 
would therefore be below the threshold for T cell detection [1]. In addition, 
potentially autoreactive T cells may never encounter their antigen because the 
antigen is expressed in a so-called immune-privileged site, such as the brain or the 
eye, which is characterized by specific physical and immunological structures limiting 
the immune systems ability to enter this site. 

The fourth mechanism of peripheral tolerance is represented by regulatory T cells. 
The existence of suppressor cells was suggested already 30 years ago, but it is only in 
the past decade that the existence of T cells capable of suppressing the immune 
response has been conclusively demonstrated. These cells have been named T 
regulatory (Treg) cells. Tregs represent a heterogeneous subset of T cells, which have 
a variety of characterizations and functions. Perhaps one of the best described and 
most extensively studied population of regulatory T cells are the thymus derived, 
naturally occurring CD4+CD25+ Tregs, for which the expression of Foxp3 has 
been shown to be critical for the development of their unique regulatory phenotype 
[18]. CD4+CD25+ Tregs do not produce cytokines and seem to exert their 
suppressive activation via a cell contact-dependent mechanism [19]. Several other 
populations, such as the Tr1, Th3, NKT, γδ T and CD8+ T cells have also been 
described to possess regulatory activity, mainly via the production of cytokines, such 
as IL-10 or TGF-β [20]. 
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AUTOIMMUNITY 

In some individuals the immune system fails to properly distinguish between self and 
non-self and instead launches an inappropriate response against cells and molecules of 
its own host. This phenomenon is known as autoimmunity and the diseases it causes 
are called autoimmune disorders. Approximately 5% of the human population are 
affected by autoimmune diseases [21] and although the sex distribution varies 
between different diseases it is evident that women are generally more often affected 
than men [22].  

The reasons why the immunological tolerance is broken in some individuals are still 
not well understood, but it is commonly believed that a combination of genetic, 
environmental and hormonal factors plays together in the genesis of autoimmunity. 
It is hypothesised that certain mechanisms may trigger autoimmune responses. For 
example, antigens, which are normally restricted to one part of the body, and 
therefore not usually exposed to the immune system, are released into other areas, 
where they can be encountered by the immune system. So can for example in 
sympathetic ophthalmia, the damage to one eye result in an autoimmune response to 
eye proteins that then damages the uninjured eye [23]. Second, exogenous antigens 
may share structural similarities with certain host antigens, so-called molecular 
mimicry [24]. Cross-reactive antibodies are generated and bind to the host antigens, 
amplifying an immune response. It is known, that Lyme disease is caused by a tick-
borne spirochetal bacterium, known as Borrelia burgdorferi that causes inflammation 
of the joints. Although arthritis resolves with antibiotic treatment, about 10% of 
patients with Lyme arthritis develop persistent synovitis, which can last for several 
years [25, 26]. Molecular mimicry and its involvement in autoimmune processes 
have been discussed for many decades, but it still unresolved whether or not the 
infectious agents are only bystanders or true trigger of the autoimmune response 
[27]. Another possible cause of autoimmunity is that molecules in the body are 
altered by drugs, infections, tissue damage or other environmental factors, resulting in 
the creation of so-called neo-epitopes. These neo-epitopes are no longer recognized as 
self by the immune system and hence, an autoimmune response is mounted. Fourth, 
the immune system itself may be dysfunctional. For instance a genetic mutation in 
the AIRE gene, which leads to the impaired elimination of autoreactive T cells in the 
thymus, results in the manifestation of a rare autoimmune syndrome known as 
autoimmune polyendocrinopathy syndrome type 1 (APS1) [28]. Another example is 
the rare but fatal disorder called immunodys-regulation, polyendocrinopathy, 
enteropathy, X-linked (IPEX) syndrom, which is caused by mutations in the 
FOPXP3 gene that results in the defective development of CD25+ CD4+ regulatory 
T cells [29]. Both APS1 and IPEX are examples of monogenic diseases where a single 
mutation in a gene that plays a central role in immune regulation and tolerance is 
causing severe autoimmune disorders.  

Autoimmune diseases can be divided into two broad categories: organ-specific and 
systemic autoimmune diseases [3]. In organ-specific autoimmune diseases, the 
immune response is directed towards a target antigen unique to a single organ or 
gland, so that the manifestations are largely limited to that organ. The cells of the 
target organ may be damaged directly by humoral or cellular-mediated effector 
mechanisms. In insulin-dependent diabetes mellitus (IDMM), for example, the 
autoimmune attack is directed against specialized insulin-producing cells that are 
located in the pancreas. Another organ specific autoimmune disease is multiple 
sclerosis (MS), which affects the central nervous system (CNS: brain and spinal cord). 
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In MS, autoreactive T cells participate in the formation of inflammatory lesions along 
the myelin sheaths of nerve fibers, destroying the myelin and thus, interfering with 
the transmission of nerve impulses. Alternatively, autoantibodies may overstimulate 
or block the normal function of the target organ. In myasthenia gravis, 
autoantibodies bind to the acetylcholine receptors on the motor end-plates of muscles 
and thus, block the normal binding of acetylcholine and also induce complement-
mediated cell lysis. The result is a progressive weakening of the skeletal muscles. 

In systemic autoimmune diseases, the response is directed towards a broad range of 
target antigens and involves a number of organs and tissues. Tissue damage is 
widespread. One example of a systemic autoimmune disease is systemic lupus 
erythematosus (SLE), in which autoantibodies to a vast array of tissue antigens, such 
as DNA, RNA, histones, platelets, red blood cells and clotting factors, are produced. 

 

RHEUMATOID ARTHRITIS 

Another example of a systemic autoimmune disease is rheumatoid arthritis (RA) that 
primarily affects the synovial joints. In the joints inflammatory cells attack and 
eventually destroy bone and cartilage structures. The symptoms that distinguish RA 
from other forms of arthritis are the inflammation of many joints at the same time 
(polyarthritis) and that the pain of RA is usually worse in the morning (“morning 
stiffness”) compared to osteoarthritis (OA) where the pain worsens over the day.  

Usually, the joints are affected in a 
symmetrical fashion. Extra-articular 
manifestations, such as rheumatoid nodules 
in the skin, pulmonary fibrosis, vasculitis and 
glomerulonephritis occur in about 40% of 
individuals with RA and this also 
distinguishes the disease from osteoarthritis 
[30]. Also constitutional symptoms of 
appetite and weight loss, fever and fatigue 
are common in RA. In 1987 the American 
Rheumatism Association established a list of 
seven diagnostic criteria that since then are 
widely used for the classification of RA 
(Table 1) [31]. Rheumatoid arthritis is one 
of the most common autoimmune diseases 
and affects approximately 0.5-1% of the 
population worldwide [32]. It has been 
estimated that the peak age of onset of RA is 
in the fifth decade of life [32]. However, RA 
may occur as early as in the second decade of 

life and in fact the seropositive, polyarticular form of juvenile rheumatoid arthritis 
occurs predominantly in adolescent girls [33]. 

 

Pathology 
RA is characterized by a chronic synovial inflammation, which eventually leads to 
cartilage destruction and bone erosion, causing deformity and loss of function of the 

 

Table 1. The 1987 revised 
criteria for the classification of RA* 

* For classification purposes, a patient 
shall be said to have RA if he/she has 
satisfied at least 4 or these 7 criteria. 
Criteria 1 through 4 must have been 
present for at least 6 weeks. 

Criterion 

1. Morning stiffness 

2. Arthritis of 3 or more joint areas 

3. Arthritis of hand joints 

4. Symmetric arthritis 

5. Rheumatoid nodules 

6. Serum rheumatoid factor 

7. Radiographic changes 
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joint. RA is not a single disease entity but rather a heterogeneous syndrome caused by 
different pathways involving B cells and autoantibodies, T cells, the cytokine 
network as well as fibroblasts and many other cell types [34]. 

 

T cells and the cytokine milieu. Although the pathogenesis of this disease is far 
from completely understood, T helper cells and the cytokine milieu seem to play a 
central role in its autoimmune manifestation. The vast majority of cellular infiltrates 
in the synovial tissue of RA patients consist of CD4+ αβ T lymphocytes [35, 36], 
nearly all expressing the memory phenotype marker CD45RO and carrying a 
distinct profile of activation markers, such as CD69, CD44, CCR4, CCR5 and 
CXCR3 [37, 38]. It is assumed that arthritogenic peptides from foreign or self-
proteins are presented to T cells by professional APCs such as dendritic cells, 
macrophages, or activated B cells. This process involves binding of peptides to MHC 
class II molecules, and interestingly, about 50-80% of the patients with RA carry the 
so-called shared epitope (SE) of the HLA-DRB1 cluster [39, 40]. These alleles share a 
highly homologous amino acid sequence (QKRAA, QRRAA, RRRAA) at the third 
hypervariable region of the HLA-DR β chain, which confers binding of specific 
peptides and thus affects antigen presentation to TCRs [41]. Despite the fact that 
this hypothesis formulated by Gregersen and colleagues in 1987 is probably the 
most popular in the field of HLA genetics in RA, more than 20 years of extensive 
search for the arthritis-inducing peptide(s) remain inconclusive. Nevertheless, once 
the T cells recognize these hypothetical antigens in the articular tissues, the 
lymphocytes are retained in the synovium and the persistence of inflammation is 
ensured.  

Within the synovial environment, the T cell phenotype is altered. It is known that T 
helper cells can be divided into different subsets based on their cytokine profiles [42]. 
Th1 cells produce IFNγ, IL-2, but not IL-4, IL-5, IL-10, or IL-13; Th2 cells express 
the opposite profile. Th1 cells generally regulate cell-mediated immunity against 
viruses or intracellular pathogens and phagocyte-dependent inflammation, while 
Th2 cells evoke a strong humoral response, including isotype switching to IgE and 
favour eosinophil differentiation and activation to control helminth infections [43]. 
In addition, a new subset of T helper cells, denoted Th17 cells, has been identified 
recently. These cells are characterized as preferential producers of IL-17, IL-21 and 
IL-22, which mediate host defensive mechanisms to various infections, especially 
extracellular bacteria infections [44, 45]. Furthermore, Th1, Th2 and Th17 cells 
seem to be mutually antagonistic, and each can suppress the activity of the other.  

A vast number of studies have established that T cells in RA are primarily biased 
towards Th1 cells, and are thus triggered to secrete IFNγ and IL-2, as well as to 
supply help to other cell populations [46-48]. These include B lymphocytes in 
follicle-like structures of the synovium, which through cell-cell contact are activated 
and prompted to produce opsonizing and complement-fixing antibodies [49]. 
Moreover, the cell contact from T cells also induces the activation of 
monocytes/macrophages, as well as of resident synovial cells [50, 51].  

Whereas it has been clearly demonstrated that IFNγ producing Th1 cells can be 
found in increased numbers in synovium from RA patients, there is still inconsistency 
on whether or not the Th17 cytokine IL-17 is also present in synovial samples of RA 
patients [52-54]. However, it seems to be established that IL-17 is present at high 
levels and a driving force in a number of animal models for human RA. It may reflect 
one of the pathogenic pathways leading to chronic inflammation and destruction in 
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the joint [55-57]. It has many of the same functions as IL-1 and TNFα and can 
enhance cytokine and metalloproteinase production by fibroblast-like synoviocytes as 
well as osteoclastogenesis [53, 58]. 

 

B cells and monocytes. Most recently B cells came back into the spotlight. Under 
the appropriate conditions, autoreactive B cells will produce antibodies, and in the 
last decades various autoantibodies have been identified in sera of RA patients. 
Perhaps the most extensively studied autoantibodies in RA are the rheumatoid factors 
(RF), which bind to the Fc region of IgG and therefore contribute to the formation 
of immune complexes. This may lead to further activation of the monocyte lineage 
by triggering signalling cascades after Fc-receptor engagement [59, 60]. But most 
important for the flare of interest in B cells was the discovery of antibodies against 
citrullinated proteins, for example cyclic citrullinated peptide (CCP) and their high 
specificity for RA [61]. Only shortly after the discovery of anti-CCP antibodies, 
clinicians reported the first positive therapeutic results using a B cell depleting 
antibody [62]. B cells are usually involved in the adaptive immune response by 
producing specific antibodies, but once they are activated, they can also efficiently 
take up and present antigens to T cells and thus, a vicious cycle of events can be 
stimulated [63].  

Th1 cells produce a variety of cytokines, including IFNγ and IL-2. The latter, 
originally described as a T cell growth factor, is a powerful activator of monocytes/ 
macrophages [64]. Once activated, monocytes/macrophages respond to IL-2 with 
production of growth factors, microbicidal activities and secretion of various pro-
inflammatory cytokines, among them TNFα, IL-1 and IL-6 [65]. Additionally, IL-
12 produced by synovial macrophages, has been detected in RA and is known to 
bias T cell differentiation towards the Th1 phenotype. IL-18, which is a member of 
the IL-1 family and is also present in the RA joint, can synergize with IL-12 and 
enhance the Th1 cell differentiation [66]. 

All these cytokines are pivotally involved in the generation of inflammatory as well as 
destructive responses. In addition, many of the cytokines may come from various cell 
types and thus, support each other’s activity. So it is notable, that the high amount of 
TNFα for example, which is a key molecule in the cytokine world, may also come 
from several sources other than activated monocytes/macrophages. In fact, it has been 
shown that both T cells as well as B cells can produce significant amounts of TNFα 
[67-69]. 

 

Resident synovial cells and osteoclasts. The establishment of RA involves a 
number of events and cellular interactions. In the recent years it has become evident 
that resident synovial cells are not just innocent bystander cells but may be actively 
engaged in the joint inflammation and destruction. Most interestingly, it is these 
resident cells and not the migratory inflammatory cells that are usually found at the 
site of destruction [51]. When isolated from RA patients and implanted into SCID 
mice, fibroblast-like cells show an invasive behaviour, which may partly be explained 
through the upregulation of cellular proto-oncogens and anti-apoptotic molecules 
[70-72]. Except the resident cells, basically all effector cells are recruited from the 
blood into the synovium via chemotactic factors and therefore chemokines are 
considered key elements in the pathogenesis of RA. Fibroblast-like synovial cells 
produce chemokines, such as CCL19 and CXCL12, which attract monocytes and 
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lymphocytes into the joint [73, 74]. Furthermore, they constitutively express 
CXCL5, a ligand for CXCR2 mainly located on neutrophils, which further can be 
upregulated by stimulation with TNFα [75]. With respect to cartilage damage, 
fibroblast-like cells are thought to play an activate role through the release of matrix-
metalloproteinases (MMPs: MMP1 and MMP3) [76]. 

While all inflammatory responses induced by proinflammatory cytokines will directly 
translate into synovial inflammation with pain, swelling including effusion, and 
stiffness, bone destruction is primarily mediated by activation of osteoclasts via the 
RANK-RANKL receptor system [77, 78]. RANK is expressed on osteoclasts and 
fibroblasts, whereas its ligand RANKL is found on stromal cells but, equally 
important in the context of inflammation-mediated osteoclast activation, also on 
activated T lymphocytes [79]. Additionally, TNFα has a pivotal role in the 
pathogenesis of inflammatory osteolysis. While the cytokine alone does not induce 
osteoclastogenesis, it does so by directly targeting macrophages within a stromal 
environment that expresses permissive levels of RANKL. Thus, TNFα synergizes 
with minuscule amounts of RANKL, which promotes osteoclastogenesis and 
inflammatory osteolysis [77]. Like TNFα, IL-1 on its own is capable of osteoclast 
recruitment. Both cytokines act independent of each other, shown by blockage of 
either TNFα or IL-1. Separate inhibition of either of the cytokines could not 
completely arrest the periarticular damage of inflammatory arthritis, whereas 
inhibition of both is substantially more effective [80].   

 

Treatment 
Despite large research efforts, there is still no cure for RA. However, in the last 
decades many different types of treatments have been developed to alleviate 
symptoms and modify the disease process [81]. Disease modifying anti-rheumatic 
drugs (DMARDs: methotrexate, anti-malaria medication – hydroxy-chloroquine, 
sulfasalazine, leflunomide, gold salts, etc.) are used to suppress the immune system, 
decrease pain and reduce or prevent joint damage. DMARDs are so called “slow-
acting anti-rheumatic drugs” and it takes weeks or months before they have an effect. 
Thus, to provide faster relief of ongoing symptoms DMARDs are usually combined 
with non-steroidal anti-inflammatory drugs (NSAIDs: aspirin, ibuprofen, diclofenac), 
which reduce pain and minor inflammation by inhibition of cyclooxygenases (COX-
1 and COX-2) and thus, inhibition of prostaglandin production. Alternatively, 
DMARDs are prescribed in combination with steroids (glucocorticoids: prednisone, 
prednisolone), which have a strong anti-inflammatory effect and quickly decrease 
pain and joint swelling, but have only a modest ability to reduce cartilage damage 
and bone erosion. A recent advance in the past 10 years in the management of RA is 
the use of biological agents, which block certain key molecules involved in the 
pathogenesis of the disease [82, 83]. They include TNFα blocking agents, the anti-
CD20 antibody (depletion of B cells), CTLA4-Ig (inhibition of costimulatory 
molecules CD80 and CD86) and anti-IL-1 agents. In addition new biological agents 
that are in development include anti-IL6 receptor antibody and anti-CD22. Unlike 
DMARDs, biological agents work rapidly. Biological agents may be used alone or in 
combination with other drugs, but because of their extensive cost and their way of 
administration (injection) they are often reserved for patients who have not 
sufficiently responded to traditional DMARDs and for those who cannot tolerate 
DMARDs in doses large enough to control inflammation. 
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Environmental Risk Factors 
Although the cause of RA remains unknown, the general consensus is that both 
genetic and environmental factors contribute to its occurrence. While the 
identification of genetic risk factors has been rapidly progressing the past 5 years, the 
success defining the environmental risk factors has been limited. This is largely due to 
the fact that environmental factors important in RA may act many years before the 
first clinical symptoms become apparent and thus, are difficult to trace back. Several 
retrospective studies have shown that already up to 10 years before the onset of RA, 
an increased production of RF as well as anti-CCP antibodies could be detected in a 
large group of patients [84, 85]. The long interval of subclinical progression of 
disease hampers the identification of environmental triggers for RA immensely. 
Despite these challenges, studies have identified numerous candidates, including 
cigarette smoking, hormonal factors, stress, and various infectious diseases.  

 

Hormones and pregnancy. Approximatelly 0.5-1% of the population 
worldwide suffers from RA; 60-75% of those affected are women [22, 32]. This 
raises, of course, the question of why there is such an increased prevalence of 
autoimmunity in women. It has been shown that basic immune responses differ 
between females and males, where women have an increased antibody response after 
vaccination, a higher absolute number of CD4 lymphocytes and an increased 
production of Th1 cytokines [22, 86]. Furthermore, it is suggested that this sexual 
dimorphism of the immune response is mediated through sex hormones, mainly 
oestrogen, progesterone and testosterone. Perhaps the most striking evidence comes 
from studies of pregnant women with RA, of whom 75% have a decreased disease 
activity throughout pregnancy, when oestrogen and progesterone concentrations are 
highest. This is often followed by a relapse of disease within the first 6 month of the 
post-partum period, when oestrogen and progesterone concentrations fall [87]. This 
fluctuation of disease activity has been explained by the shift of Th1/Th2 cytokine 
responses during and after pregnancy due to the hormonal environment. At high 
levels, oestrogen and progesterone seems to favour cytokines of the Th2-type 
responses like IL-4 and IL-10. At the same time Th1 cytokines IFNγ, IL-2 and 
TNFα, which contribute to synovitis and joint destruction in RA, are suppressed 
[88]. Thus, the modulatory effects of oestrogen seem to be quite different between 
normal immune responses in non-pregnant women and immune responses in 
pregnant women with RA. This dilemma was partly resolved with the realization that 
oestrogen shows biphasic dose effects. While lower, non-pregnant levels facilitate 
cellular immune responses and stimulate IFNγ production, higher doses, as they 
occur in pregnancy, suppress T cell functions and have discrete regulatory effects on 
the Th1/Th2 balance [89, 90]. 

 

Infections. Potential microbial candidates implicated in the development of RA 
include Mycobacterium tuberculosis, Escherichia coli and Proteus mirabilis. But also viral 
infections with Epstein-Barr virus, retroviruses and parvovirus B19 have been 
suggested [32, 91]. A number of potential mechanisms have been proposed by 
which infections may alter the immune system and thereby elicit autoimmune 
responses. Potential mechanisms include the selection of the B and T cell repertoire, 
and the change of relative levels of Th1 and Th2 cytokines [92]. However, until 
now there is no consistent finding of a single infectious agent explaining the aetiology 
of RA.  
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Stress. Stress may also be an important risk factor in the pathogenesis of RA, 
considering that the activation of the stress response results in the release of 
neurotransmitters, hormones and activation of immune cells. It has been shown that 
disease flare-ups are linked to a higher number of minor stressors few days prior to the 
visit of a clinician. In addition, a study over a period of 5 years showed that RA 
patients with a higher daily stress level had a poorer outcome and significantly more 
bone erosion after 5 years [92]. 

 

Diet. Several epidemiological studies suggest a potential protective effect of lifelong 
consumption of fish, olive oil and cooked vegetables [93]. Mediterranean diet as a 
whole has also been reported as a factor reducing the risk or having a beneficial effect 
on the development of RA [94, 95]. Another study found that persons with a high 
level of red meat consumption and total protein intake were at an increased risk for 
developing inflammatory polyarthritis [96]. 

 

Cigarette smoking. A very early recognized risk factor for RA is smoking. 
Numerous studies have by now confirmed the association between cigarette smoking 
and development of RA [97-99]. But only most recently, smoking has been studied 
in a more mechanistic context. Several research groups have demonstrated that 
smoking is a risk factor in RF and anti-CCP positive RA, and that the risk is greatly 
enhanced in individuals carrying one of the disease-associated allele of HLA-DRB1 
(SE) [100, 101]. These data suggest, that smoking might trigger some rather specific 
immune reactions, for example the immunity towards citrullinated proteins in the 
presence of certain genes [102]. 

 

Mineral oil  exposure.  Worth mentioning are the results from a Swedish case-
control study, which analyzed the association between occupational exposure to 
mineral oil and RA. It was found that among men, exposure to any mineral oil was 
associated with a 30% increased relative risk of developing RA [103]. This finding is 
of particular interest with regard to this thesis, since the same mineral oils can induce 
polyarthritis in rats. 

 

Heterogeneity and Genetic Influence  
RA is not a single disease entity with a well-defined disease mechanism. Rather, it is a 
group of heterogeneous diseases of unknown aetiology, which are manifested by 
chronic joint inflammation. This is also reflected in the genetic heterogeneity of RA. 
RA is a so-called complex disease in which various genes are contributing to the 
pathology. Studies of twin concordances have estimated that the shared genetic effect 
explains as much as 60% of disease susceptibility [104]. However, finding the 
underlying genes is not simple and exactly how complex the genetics of RA can be, is 
demonstrated promptly with the first example, the association with the human 
MHC region.  

Already 30 years ago the association to the human leukocyte antigen HLA-DR4 
(HLA-DRB1*04) was detected [105]. This is the strongest RA associated gene and it 
has since its discovery been confirmed in many populations across the world. 
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Subsequent studies showed that not one but several HLA-DRB1 alleles are associated 
with disease [106-108]. Based on those findings, Gregersen et al. formulated the 
shared epitope hypothesis, which proposed that all RA-associated HLA-DRB1 alleles 
share a conserved motif of amino acid residues (QRRAA, QKRAA, RRRAA) in the 
third hypervariable region of the DRβ1 molecule [41]. According to this theory, 
binding of certain arthritis-inducing peptides to the identical antigen binding 
pockets of the HLA molecules may then trigger an immune response of autoreactive 
T cells. Although the predisposing effect of the SE-encoding HLA-DRB1 alleles is 
generally accepted, the hypothesis of the shared epitope has been challenged in 
recent years. It has become increasingly clear that it is not simply the SE alleles 
conferring an increased risk of disease. Several reports have shown that the risk for RA 
associated with different but SE-identical DRB1 alleles varies considerably, for 
example HLA-DRB1*0404 is a much stronger susceptible factor than HLA 
DRB1*0101 [109]. In addition, protective HLA-DRB1 alleles carrying another 
amino acid sequence (DERAA) instead of the SE sequence confer dominant 
protection against RA both in the presence and absence of SE susceptibility alleles 
[110, 111]. It is however, still a matter of debate whether this protection is mediated 
by regulatory T cells. Furthermore, several reports have postulated a number of other 
important associations to polymorphisms in this very gene rich area of the genome, 
which may be in linkage disequilibrium with HLA-DRB1. These include certain 
DQ-DR haplotypes, while others have implicated additional loci telomeric to the 
HLA, for example the TNFα locus [110, 112, 113]. Regardless on whether all 
genetic contributions to RA arising from the HLA locus is accounted for by the HLA-
DRB1-SE association or not, in total the HLA region contributes with about 30-
50% to the genetic component of RA. 

From the discovery of the HLA association in the 1970’s until 5 years ago, basically 
no other gene could be conclusively linked to the development of RA. However, this 
changed rapidly with the completion of the Phase I HAPMAP project in 2005, 
which identified over 1 million single nucleotide polymorphisms (SNPs) in 269 
individuals from four populations [114]. In addition, advances in SNP genotyping 
technologies have reduced the time and costs and improved the accuracy to such 
levels that genotyping of extremely large numbers of genotypes are now feasible. As 
an example, chips containing 500,000 to 1,000,000 SNPs have been developed 
recently. At the same time large patient and control cohorts have been generated, and 
the exchange of data and collaboration of research groups has been intensified. 

These are the key factors leading to the considerable progress that has been made in 
the identification of non-MHC genes implicated in the susceptibility to RA. Among 
these genes is the PTPN22 gene, which was first discovered as a type 1 diabetes 
susceptibility gene four years ago [115]. Shortly after, Begovich and colleagues 
confirmed the association of the minor T-allele of the non-synonymous SNP 
(rs2476601, R620W) with RA [116]. The PTPN22 gene encodes the lymphoid-
specific phosphatase (Lyp), an important negative regulator of T cell activation. 
Paradoxically, the disease-associated variant has been described to result in a gain-of-
function form of the enzyme, leading to stronger suppression of the early T cell 
activation process. This might lead to a failure in deleting autoreactive T cells during 
thymic selection or a decrease in the activity of regulatory T cells [117]. Interestingly, 
PTPN22 appears to be a common autoimmune regulator, as it is not only associated 
to type 1 diabetes and RA, but also to SLE, juvenile idiopathic arthritis, Graves’ 
disease and generalized vitiligo [118]. Notably, the variant confers the second largest 
genetic risk to development of RA and the susceptible TT and TC genotypes are 
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strongly associated with RF positive disease but were not linked to the shared epitope 
[116, 119]. 

Three more genetic associations have been reported and successfully replicated in 
numerous studies in the past two years. The first is the disease association to STAT4, 
which was identified in a North American and a Swedish cohort [120] and was later 
on confirmed in a Korean [121], Colombian [122], Japanese [123] and 4 more 
European populations [124, 125]. STAT4 encodes a transcription factor that 
transmits signals induced by several key cytokines, including IL-12 and IL-23, and 
stimulates the transcription of specific genes, including IFNγ. Therefore, STAT4-
dependent signalling by IL-12 receptor plays a critical role in the development of a 
Th1-type T cell response [126]. No correlation between the risk allele and the 
presence of RF or anti-CCP has been observed. Unlike several other risk genes for 
RA, the Odds ratios observed in the Asian population were quite similar to those in 
the Caucasian population, indicating that STAT4 is a common genetic risk factor for 
RA, with similar strength across major racial groups. Additionally, STAT4 was also 
found to be associated to SLE [122, 123]. 

The second locus found to be associated with the development of RA was identified 
in an intergenic region between TRAF1 and C5 [127]. Later studies replicated the 
finding from the British cohort in the North American, Swedish, Dutch [127-129], 
another British [130] and Greek populations [124]. The disease-associated SNP is 
located within a region encoding a putative binding site for the immune and 
inflammatory response related CCAAT/enhancer binding protein, which may be 
disrupted by the minor T allele of the associated variant [131]. In addition, the SNP 
was most strongly associated with an increased risk for RA in the anti-CCP positive 
and RF positive subgroups respectively [127, 129]. Interestingly, there appears to be 
a strong interaction between TRAF1-C5, HLA-DRB1 and PTPN22 and when 
combining the three highest risk variants together (two alleles of the SE, TT or TC 
genotype at PTPN22 and GCG/GCG genotype at TRAF1-C5), they generate a 
more than 45-fold increased relative risk for developing RA [129]. 

The third genetic region that has been implicated to harbour an autoimmune 
disease-regulating gene is located at chromosome 6q23. In two independent genome-
wide association scans from Caucasian cohorts of RA patients and additional case-
control samples an association was detected near the TNFAIP3 gene [132, 133]. In 
fact, two statistically independent SNPs have been discovered in this region, one 
conferring a protective haplotype and the other a risk haplotype, suggesting the 
existence of two independent susceptibility alleles. Interestingly, the identified SNPs 
are located in a 63kb region of linkage disequilibrium that falls outside of any coding 
sequence; the nearest genes, TNFAIP3 and OLIG3, are ~185kb away. In both 
studies, the disease conferring SNPs were strongly associated in the RF positive and 
anti-CCP positive subgroups. As for PTPN22 and STAT4, also this region was 
associated with SLE susceptibility and appears to be a regulator of various 
autoimmune conditions even though more studies are needed in order to find the 
disease-underlying mechanism [134]. 

 

There is considerable variation of the disease frequency among different populations. 
Some ethnic groups, for example native American-Indian populations have an 
increased prevalence of RA, while other countries, for example developing countries 
or China and Japan have a relative low occurrence of RA [135]. Even in Europe 
scientists have detected a clear North-South divide, where south European countries 
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have lower incidence and prevalence rates than North European and North 
American countries [136]. These discrepancies might have several causes, which 
could be of either environmental (diet, infections) or genetic nature. Thus, one must 
assume that genetic associations to certain disease alleles will only be detected in 
distinct ethnic groups. One example is the disease association to the PTPN22 gene, 
which was highly reproduced in various Caucasian populations but could not be 
detected in a Japanese cohort [137]. On the other hand, the PADI4 gene with 
significant associations in Asian populations cannot be linked to RA patients with 
Caucasian origin. The association to PADI4, which is involved in the citrullination 
pathway and thus, is thought to play an important role in the pathogenesis of RA, 
was originally detected in a Japanese cohort [138]. Later it could be replicated in 
another Japanese and Korean population, but it does not seem to have any effect in 
European populations [139-142].  

Despite the recent advances in gene identification, many susceptibility genes are yet 
to be discovered. Among the difficulties involved in gene identification in humans 
are factors inherent to this complex trait such as variable penetrance, variable and 
most important low relative risk associated to a single disease allele and epistatic 
interactions between various disease alleles. But also the genetic heterogeneity of the 
human population and complex interactions between environmental and genetic 
factors hamper the identification of genes associated with human RA [143]. Thus, it 
is not surprising that only a minor fraction of disease-associated genes have been 
conclusively identified so far. The challenge now is to identify the remaining, 
probably smaller, genetic effects and explore how these variants interact with each 
other as well as environmental factors to induce development of RA. Therefore, 
animal models are very attractive tools because use of such models not only overcomes 
these genetic complications, but also permits studies under stable environmental 
conditions. Being able to model the genetic background and adjust it to the specific 
demands of each study, as well as changing one or two genetic and environmental 
factors at the time will be an advantage of animal models in the future. 

 

RAT AS A MODEL ORGANISM FOR HUMAN RA 

The Laboratory Rat 
The Norway rat, brown rat or Rattus norvegicus, is a mammal in the order Rodentia. It 
originated in Asia and then spread over the world in close association with human. It 
may have reached Europe around 1700 and then largely supplanted the smaller 
Rattus rattus (black rat). All laboratory rat strains are derived from the Rattus norvegicus 
species. It is commonly believed that the domestication of wild rats began in the 
eighteenth and nineteenth centuries, originally in Europe and later in America, when 
rats where trapped and sold for food or used for rat-baiting contests. In this era 
albino, nonagouti black and hooded coloured rats were preferentially captured or 
selected from offspring of captive rats due to their distinct and attractive appearance. 
Because behavioural traits, such as calmness and docility, are associated with black 
and hooded fur colour, the process of domestication may therefore have increased the 
incidence of these particular rats in the domesticated rat population [144, 145]. 
Albino and mutant rats were brought to the laboratories as early as in the nineteenth 
century to serve as objects of physiological and behavioural studies. It is safe to state 
that the R. norvegicus was the first animal species to be domesticated strictly for 
scientific purposes [146]. The Wistar Institute in Philadelphia is one of the first 
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laboratory animal breeding and research facilities and one of the most popular strains 
used for research, the Wistar rat strain as well as most other laboratory strains today, 
are descended from a colony of rats established at this institute. Today there are more 
than 200 inbred strains and substrains and the list of congenic, consomic, 
recombinant inbred and transgenic strains is constantly growing 
(http://rgd.mcw.edu/). The laboratory rat and the laboratory mouse are by far the 
most commonly used experimental animals in many fields of medical and biological 
research. The ease of breeding combined with short generation times have 
contributed to the widespread use of these species as experimental mammals. The rat 
is a high valuable model organism for the analysis of many complex areas of 
biomedical research, such as cardiovascular diseases, metabolic disorders (diabetes 
mellitus), neurological disorders and behaviour (learning, epilepsy research), 
autoimmune diseases (arthritis, experimental allergic encephalomyelitis), cancer and 
renal diseases. Of essence for the genetic research was the sequencing of the rat 
genome, whose first draft was published in 2004, shortly after the human and 
mouse genomes [147]. This and other recent advances in rat genetics will hopefully 
provide the tools of successful gene-identification for complex traits in the laboratory 
rat. 

 

The DA rat strain and substrains.  Although in the literature the name DA rat 
is often wrongly designated as “dark agouti”, it was, in fact, named because it 
expressed the “d” blood group allele of Joy Palm, and it is “A” agouti in color 
(http://rgd.mcw.edu/). It was developed by Dr. T.T. Odell, Jr. at the Oak Ridge 
National Laboratory, Tennessee until filial generation F11, and then completed by 
Dr. Darcy Wilson at the Wistar Institute in about 1965 [148]. Its origin is unknown, 
and for a long time assumed to be closely related to COP, however, recent genetic 
studies suggest a close relation to ACI instead. After 20 generations of brother/sister 
matings a strain is considered to be inbred and shortly after this was achieved, the DA 
rat was brought to many institutes around the world. Inbreeding was continued, and 
consequently various substrains have been established. Currently, there are 11 
different DA substrains listed at the rat genome database (RGD), among them 
DA/OlaHsd and DA/ZtmRhd, but it must be assumed that there are many more 
since not all of them have been reported to RGD. As all the other rat strains, also the 
DA rat has many strain specific physiological, biochemical and immunological 
characteristics, but what makes the DA rat to such an exceptional rat strain in arthritis 
research is its susceptibility to a vast variety of arthritis models. 

 

Experimental Models 
Unlike in the mouse, there is no spontaneous model for arthritis in rats. However, 
there exists a wide spectrum of inducible arthritis models that can be used in these 
rodents. In principle, rat models can be divided into three general groups. In the first 
group, arthritis is induced by immunization with cartilage-derived antigens such as 
collagen type II (CII), collagen type XI or cartilage oligomeric matrix protein in 
incomplete Freund’s adjuvant (IFA) [149-151]. The second group is induced by 
intradermal injection of various oil-based adjuvants, for example pristane and IFA 
alone [152, 153]. But also exogenous chemicals such as hexadecane or endogenous 
lipids such as squalene can induce arthritis [154, 155]. The third group of rat models 
is induced with various forms of yeast and bacterial cell wall products, for example 
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peptidoglycan-polysaccharide fragments from group A streptococci [156, 157]. Each 
of the rat models has clinical features that resemble RA in humans. The models, 
however, also differ among themselves and in comparison to RA with respect to 
disease onset, severity of the joint inflammation, patterns of involved joint, and 
various additional clinical and systemic manifestations. Although none of the models 
mirrors all features of human RA, each of these models might provide unique insights 
into certain pathogenic pathways leading to RA.  

 

Collagen-induced Arthritis (CIA) 

The CIA model in rats was first described by Trentham et al. in 1977 [149], and has 
since then become one of the most common rat models for human RA. There are 
substantial variations in the induction of CIA in respect to the origin and preparation 
of the collagen, which is also reflected in the disease outcome. CIA is typically 
induced by a single intradermal injection of either heterologous (non-rat) or 
homologous (rat) CII in IFA. While heterologous collagen is highly arthritogenic in a 
broad number of rat strains (BB(DR), DA, LEW, LOU, SD, W, WF), homologous 
collagen is only arthritogenic in DA and LEW rats. Interestingly, Larsson and 
colleagues described a remarkable difference between those strains in the latter model. 
LEW rats showed disease onset characterized by involvement of only the ankle and 
knee joints with a self-limiting, acute disease course, whereas DA rats showed disease 
onset characterized by symmetric involvement of the interphalangeal joints with a 
chronic relapsing disease course, suggesting that clinical features of arthritis induced 
with identical stimuli are different depending on the genetic background [158]. 
Further studies have shown that the DA strain is the only rat strain susceptible to 
CIA when induced with lathyritic (pepsin-free) collagen II. The susceptibility to 
homologous CII in LEW rats is strongly dependent on contaminating pepsin derived 
from porcin, which is known to form stable complexes with collagen and induce a 
strong immune response [159]. It is apparent that the clinical features of homologous 
collagen-induced arthritis in DA rat are more similar to those seen in RA than those 
observed in other variant of collagen-induced arthritis, therefore a majority of studies 
are focused on this particular rat strain. 

After immunization of DA rats with rat CII, rats develop a symmetric and severe 
polyarthritis within 14-18 days (Figure 1). Both autoreactive T cells as well as B cells, 
which produce arthritogenic antibodies against CII, play a critical role in disease 
progression. The involvement of pathogenic antibodies was demonstrated by Stuart 
et al. who transferred antibodies from immunized rats into naïve recipient and thus, 
provoked development of arthritis within 1-3 days, displaying all of the major 
histopathological characteristics of the early lesion 
in immunized rats [160].  However, the disease 
was transient, the lesions less severe and without 
pannus formation. It was further shown, that 
development of arthritis after passive transfer of 
anti-CII antibodies is dependent on complement 
activation, as rats depleted of complement factor 3 
were protected and did not show any 
accumulation of neutrophils in the joints or 
erosion of cartilage [161]. Besides B cells and 
production of pathogenic antibodies, also T cells 
are crucial in the establishment of CIA. While 

 

Figure 1. Arthritic hind paw 
from a DA rat 15 days (day of 
onset) after collagen injection. 



 

 16 

normal rats develop severe arthritis after collagen-injection with T lymphocytes, 
contributing significantly to the cellular infiltrates, nude rats of the same strain did 
not develop any signs of arthritis [162]. In addition, CIA can be reduced by 
depletion of the αβT cells before immunization, before onset or after disease 
development, however, it is not as effective when the disease is already established 
[163, 164]. As in human RA, it is the pro-inflammatory cytokines TNFα and IL-1 
driving the disease progression and joint destruction [165-167]. Furthermore, there 
appears to be an altered Th1/Th2 balance towards Th1 cytokine profile 
accompanied by IL-2 and IFNγ expression [168]. 

Apart from the pathological features similar between CIA in rats and RA in humans, 
also the genetic contribution appears to be regulated in similar ways. The disease is 
genetically controlled by MHC and non-MHC genes [169]. Whereas the MHC 
association appears to be very broad in CIA induced with heterologous collagen 
(RT1av1, RT1u, RT1l, RT1a, RT1c), its MHC association is very limited in homologous 
collagen-induced arthritis (RT1av1, RT1i, RT1a) [169-173]. A large number of 
crosses, with DA or BB(DR) as susceptible and F344, ACI, and BN as resistant 
strains, have been studied in order to identify genetic regions associated with the 
disease [174-177]. In each cross a selected set of genes seems to regulate disease 
susceptibility and severity. These studies show that CIA is indeed complex and 
polygenic. 

 

Pristane-induced Arthritis (PIA) 

Pristane is a saturated polyisoprenoid alkane (2,6,10,14-tetramethylpentadecane) 
and can be found in substantial amounts in the liver of sharks and other marine 
animals, which is the source of pristane used in our studies [178]. It is known to be a 
degradation product of chlorophyll and therefore omnipresent in the diet. However, 
intradermal injection of small volumes of pristane (50-150µl) at the base of the tail 
induces severe arthritis in susceptible rats (DA, LEW) [152]. Although it does not 
exactly mimic human RA, PIA, nevertheless, shares many clinical, histological, 
serological and genetic features with RA. Another main advantage of PIA is its highly 
predictable disease course (Figure 2). Using the PIA model in DA rats, arthritis 
develops suddenly 10-14 days after immunization followed by an episode of severe 

and destructive arthritis 
in the peripheral joints. 
The peak of disease 
severity is typically 
reached around 3 weeks 
after pristane injection 
and gradually subsides 
another 2 weeks later. 
After the acute phase of 
the disease, a chronic 
relapsing disease 
develops, which may 
persist for many months. 

Although the 
pathological mechanisms 
leading to the 
development are still 

Figure 2. Arthritis curve after pristane injection in DA 
rats. In addition to the daily disease score, parameters such 
as day of onset, maximum severity and chronicity can be 
assessed. 
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unclear, it is proposed that during the induction phase the T cell population is 
polyclonally activated, including already primed self-reactive T cells [179]. These 
cells, which were held in balance by various tolerance mechanisms may then expand 
and drive the disease. There is substantial evidence for the role of T cells in the 
induction and development of PIA. For example, depletion of αβT cells in the 
induction and in the chronic stage of PIA reduces the incidence as well as the severity 
of arthritis [152]. But also blocking of Th1 cytokines IFNγ and TNFα ameliorates 
the disease [180]. Six days after pristane injection a polyclonal expansion of B and T 
lymphocytes can be detected in the draining lymph nodes [180] and the expansion 
continues until 12 days post immunization. A few days after onset, large pannus 
formations are evident in the ankle joints, with cartilage destruction and bone erosion 
[152]. Inflamed joints contain several inflammatory cell types, including 
macrophages and neutrophils. In addition, a vast number of highly differentiated 
CD4+ αβT cells can be detected in the synovial tissue [180]. Sera from affected rats 
show elevated IL-6 cytokine levels as well as acute phase protein levels during the 
acute stage of disease, suggesting the presence of an acute systemic inflammation 
[181]. In the acute and chronic phase of arthritis, cartilage oligomeric matrix protein 
(COMP) is elevated in blood reflecting the degree of cartilage degradation [182]. In 
contrast to CIA, pathogenic antibodies against type II collagen are not produced in 
PIA, and neither in PIA nor in other oil-based arthritis models can passive transfer of 
serum or purified Igs provoke arthritis, suggesting a very limited role of arthritogenic 
B cells in this model [152, 183]. However, RF, which are found in about 60% of 
the patients with RA, are also produced in PIA [184].  

Various crosses between DAxE3 rats have been analyzed in detail to describe the 
genetic basis of this model. The findings demonstrate that different phases of the 
disease (onset, acute, chronic) are associated with distinct sets of genes, but that there 
is substantial overlap with other forms of autoimmune disease [181, 184-189]. 
Although non-MHC genes play a more dominant role in the disease susceptibility to 
PIA, there is strong evidence for a MHC association. However, this association is 
clearly weaker than the one, which has been observed in CIA models [152, 185, 
188, 190]. Nevertheless, the MHC association is surprising because there is no 
exogenous immunogen involved, nor has it been possible to isolate antigen-specific T 
cells in pristane-primed DA rats. However, recently Holmberg et al. demonstrated 
that pristane-primed T cells require activation through MHC II complexes, as 
treatment with blocking antibodies against RT1B (DQ) and RT1D  (DR) molecules 
ameliorates arthritis development [180]. In regard to the MHC restriction, only 
syngenic and semi-allogenic, but not allogenic recipients, developed arthritis after 
transfer of pristane-primed donor cells. Moreover, studies of MHC congenic DA rats 
showed that RT1f restricted, pristane-primed T cells restimulated in vitro with 
heterogenous nuclear ribonucleoprotein (hnRNP)-A2 produced large amounts of 
IFNγ and TNFα, suggesting that hnRNP-A2 may be one of the antigens involved 
in pristane-induced arthritis [191]. 

 

Adoptive spleen cell transfer 

Pristane- and other oil-induced arthritis models are T cell mediated diseases. This is 
supported by the fact that concanavalin A (Con A)-stimulated, adjuvant-primed 
αβT cells derived from lymph nodes can transfer disease, whereas only Con A 
stimulated, but not adjuvant-primed cells, do not transfer disease [183]. Further 
studies have shown that only transfer of CD4+ but not CD8+ αβT cells transfer 
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arthritis to naïve donor rats [180]. Subsequently, it has been found that both spleen 
and lymph node derived, IFNγ and TNFα producing CD4+ αβT cells are able to 
transfer arthritis. In fact, donor T cells are dependent on their Th1 cytokine secretion 
in order to provoke arthritis, as the disease is ameliorated after treatment with 
blocking antibodies against IFNγ and TNFα in recipients [180]. Typically, rats 
develop arthritis within 5-7 days after adoptive transfer of primed lymphocytes, with 
the severity strongly depending on the amount of arthritogenic cells injected. The 
disease severity reaches its maximum score at around day 9-12, followed by a 
regression period of approximately 3-4 weeks. Arthritic lesions are histologically 
characterized by synovitis, consisting of hyperplasia of the synoviocytes and 
infiltration by numerous mononuclear cells. Twelve days after transfer, severe pannus 
formation in ankle joints has been observed, in which also the donor cells could be 
located. In opposite to PIA, only minimal bone and cartilage destruction is observed 
after transfer. Typically, adoptive transfer of pristane-primed spleen cells has a self-
limiting acute disease course. However, Holmberg et al. has shown that a chronic 
relapsing disease can develop in irradiated recipients after transfer of lymph node, but 
not spleen cells (Holmberg et al., 2004, Manuscript).   

 

From Disease To The Gene 
Identification of arthritis-regulating genes in rats is a complicated process and can be 
separated into two major stages; first, from phenotype and genotype to QTL, and 
second from QTL to the gene (Figure 3). The first step consists of correlating genetic 
markers with a phenotype in a segregating population, known as genetic linkage 
analysis. The second step involves narrowing down the chromosomal region that is 
correlated with the phenotype to an interval as small as possible, preferable 

Figure 3. From disease to the gene. Positional cloning strategy of arthritis-regulating genes. 
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containing only one gene, which is known as positional cloning. Because this is 
usually not possible, one must assign the phenotype to a single gene by other means, 
for example functional assays, transgenics or knock-in animals, which is also known as 
positional candidate gene identification [192]. 

 

Mapping Suceptibility Genes 

The first step in gene-identification is genetic linkage studies and QTL mapping. 
These are used to locate the chromosomal positions of arthritis-regulating genes, by 
the development of segregating crosses of rats. Usually, the segregating population is 
constructed by crossing two phenotypically distinct, for example arthritis-susceptible 
and arthritis resistant, and genetically different inbred strains of rats, to produce a first 
filial (F1) generation. All rats in the F1 population are identical, as they have 
inherited one chromosome from each parental strain. The F1 population is then 
either intercrossed to generate a second filial (F2) generation or backcrossed to one of 
the parental strains (N2 generation). Each rat in the F2 and N2 generation has a 
unique genotype, due to recombination events during meiosis. Therefore, every 
individual rat taking part in the linkage study needs to be both phenotypically 
evaluated for the particular disease trait and genotyped using genetic markers, evenly 
spaced along the chromosomes in order to detect their parental origin. Linkage 
analysis is then performed by computer software packages such as Mapmarker [193] 
or RQTL [194], which first construct a genetic linkage map and then detect the loci 
related to the phenotype. A measurement of the probability that two loci at the same 
chromosome are linked is the logarithm of the odds (LOD) score. A LOD score 
higher than 3 is generally accepted as evidence for linkage, when the whole genome is 
screened with 100 to 300 markers. Genetic linkage analysis is based on the 
observation that genes residing physically close on a chromosome remain linked 
during meiosis. Morgan and colleagues showed that the degree of linkage increases 
with physical proximity of the genes. For theses genes, the segregation ratio for the 
genotypes and phenotypes departs from the Mendelian independent assortment 
ratios. Therefore, if arthritis-regulating genes are often passed to the offspring along 
with specific marker alleles, then it can be concluded that the genes responsible for 
the disease are located close by on the chromosome of these markers. A quantitative 
trait locus (QTL) is defined as a chromosomal region that segregates with a 
phenotype in a cross between rat strains at a defined statistical significance [146].  

Genetic linkage analyses using various arthritis models for RA, including adjuvant-
induced arthritis, collagen-induced arthritis, oil-induced arthritis and pristane-
induced arthritis, have led to the detection of more than 60 QTLs across the whole 
rat genome [195]. Nearly every autosome and the X and Y chromosomes, except 
Rattus norvegicus (RNO)11, 13 and 17, contain at least one arthritis QTL. Some of 
the QTLs appear to be model specific, for example Cia7 on RNO2 and Pia3 on 
RNO6 [175, 177, 185, 196]. However, a substantial number of QTLs overlap 
between various arthritis models, such as Aia1, Cia1, Oia1 and Pia1 on RNO20 (rat 
MHC locus) or Aia3, Cia3, Pia5 and Scwia1 on RNO4 [152, 174, 185, 197-199]. 
Also RNO1 (Cia2, Pia8) and RNO10 (Cia5, Oia3, Pia10) have a high number of 
model-overlapping QTLs [174, 186, 187, 200]. Interestingly, these are also the 
regions where the most RA-associated genes are located, suggesting that these 
chromosomes may play an important role in the regulation of arthritis. Overall, there 
are significantly more RA-associated genes in rat QTL regions as contrasted with non-
QTL regions, indicating the relevance of the QTL mapping studies in rat [201].  
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From QTL To Genes  
Congenic Strains 

The second step of gene identification is often more tedious and laborious than 
genetic linkage analyses, because it involves breeding and analysing of many rat 
generations. Once a QTL has been identified it is important to confirm its location 
and eventually dissect the locus into such a small region that it will be possible to 
positionally clone the gene. Traditionally, this is done using the congenic strain 
approach. Congenic strains are generated by transferring a specific genetic locus from 
a donor strain to a recipient inbred strain (Figure 4, right) [202]. The function of the 
donor strain is to provide the differential locus, whereas the recipient strain provides 
the new genetic background for the differential region. It involves two mating steps. 
First, the donor and recipient rat strains are outcrossed to introduce the differential 
locus to the recipient. However, this step also leads to the introduction of undesired 
donor strain alleles. Therefore, multiple backcrosses to the recipient strain are 
performed in order to replace the contaminating donor strain alleles with alleles from 
the recipient strain (Figure 5). In each backcross generation heterozygous carriers of 
the differential locus are selected for further breeding. With each backcross generation 
the contaminating donor alleles are statistically reduced by half. According to this 
equation, congenic animals crossed to the recipient inbred strain for 10 generations 
will harbour < 0.20% of heterozygous loci in those parts of their genomes not linked 
to the differential region. By definition, 10 crosses to the recipient inbred strain have 
to be performed in order to consider the resulting variant as congenic. 

Since the generation time of rats is about 3 months, it will take about 3 years to 
generate such a congenic strain. This considerable time factor resulted in new 
strategies to create congenic strains in a shorter time by using additional selection 
criteria. By using marker associated selective breeding protocols congenic animals 
could be generated in significantly fewer generations (5-6) than with the 
conventional method. It is based on a genome-wide analysis of genetic 
polymorphisms. The selection at each backcross generation is based not only on the 
presence of the differential locus but also on the absence of contaminating donor 
alleles form other parts of the genome (Figure 4, left) [203, 204]. Lander and Schork 
introduced the term “speed congenics” in 1994 describing congenic strains 
developed using such methods [143]. Once a congenic strain has been generated 
and the QTL has been confirmed the genetic fragment needs to be reduced to a size 
as small as possible, preferable so it contains only one or a few genes. This is 
accomplished by the generation of subcongenic lines, which have been selected for 
recombinant fragments in the region of interest and tested for the disease-regulating 
phenotypes. Finally, once this locus has been successful reduced to a feasible size, yet 
still containing several genes, there are several methods in order to identify the 
disease-regulating gene. This may involve extensive DNA sequencing to identify all 
genetic polymorphisms, differential expression analyses of all genes in this region and 
functional assays, such as in vitro stimulation of various cell populations, transfection 
experiments or promotor assays. Also transgenic, deficiency-complementation tests in 
knock-out, as well as knock-in mice are well-established tools for the evaluation of 
potential candidate genes. However, the latter techniques are only of limited 
availability in rats and due to species differences, might not be possible to use for all 
identified genes. Further, proof of gene-identification may include the verification of 
those genes in humans when association studies would demonstrate a clear correlation 
between the functionally relevant allelic variant and the risk of disease. 
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Although the first linkage studies for arthritis models in rats were reported more than 
10 years ago, and more than 60 QTLs have been mapped since, only one gene 
(Ncf1) and one gene-complex (APLEC) have been linked to arthritis by positional 
candidate gene identification so far. The first gene to be identified was Ncf1, which 
was found to be polymorphic in the coding region, leading to an amino acid 
substitution in the encoding P47phox protein [205]. As part of the NADPH 
complex, it is involved in the production of radical oxygen species (ROS). 
Paradoxically, a high production of ROS leads to protection from experimentally 
induced arthritis, both in rats and in mice [206]. The second genes that have been 
associated with arthritis in rats are the antigen-presenting lectin-like receptor gene 
complex (APLEC), which encodes immunoregulatory C-type lectin-like receptors 
[207]. A large number of polymorphisms and many differentially expressed genes 
complicated the association to a single gene of this complex, and it is possible, that in 
fact more than one gene of this complex could be responsible for the arthritis-
regulating effect.  

The phenomenon that one QTL is caused by multiple linked genes, each with a 
small effect size, may be one explanation for why there has been only limited success 
in positional gene-identification so far. Actually, there are many examples of this 
phenomenon in different research areas, and also some of the arthritis-regulating 
QTLs have been dissected into sub-QTLs, for example Cia5 (Cia5, a, d) on 
chromosome 10 in rat and Cia5 (Cia5, 21, 22) on chromosome 3 in mouse [208, 
209]. Notably, the only QTLs that have led to gene identification were caused by 
single genes and have had exceptionally large effect sizes [210]. For example, Pia4, 
the positionally cloned QTL harbouring the Ncf1 gene, had an estimated effect size 
of 25%, whereas the effect sizes of most unresolved QTLs are believed to be much 
smaller than 5%.  

Figure 4. Generation of congenic rat strains strains through conventional backcross breeding 
(right) or marker associated selective breeding (left). 
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Alternative Strategies 

Several alternative strategies have been proposed to close the gap between QTL 
identification and gene identification. Many of them are based on recent 
developments, including new genomic resources (rat genome sequence, SNP 
database), animal resources (recombinant inbred lines, heterogeneous stock), and 
techniques (chip-based SNP typing, whole-genome expression studies). Whereas 
some of the strategies are aiming at detection of new and improved fine-mapping of 
already existing QTLs, other are targeting the process of gene-identification. 

Advanced intercross lines (AIL) are crosses of two parental inbred strains, which 
have been outcrossed to produce an F1 generation and subsequently intercrossed to 
produces an F2, F3, etc., until F15 to F20 generation (Figure 5). Through 
repeatedly and pseudo-randomly intercrossing, the rats accumulate new 
recombinations in every generation. As for an F2 generation, every rat has a unique 
phenotype and genotype and thus, must be individually evaluated. Because many 
more recombination events occur in AIL, the markers for genotyping must be set 
much more densely than for an ordinary F2 intercross. However, a vast number of 
SNP data for more than a 100 rat inbred strains have recently become available. 
Simultaneously the costs for SNP genotyping continued to decrease. Both factors 
might make the AIL studies more and more popular. Although the generation of an 
appropriate AIL requires many years and at least 50 breeding couples, it is a valuable 
tool to map and fine-map QTLs with high resolution [211, 212]. 

Partial  advanced intercrosses (PAI) combine the strategies of AIL and congenic 
strains and have been used, so far, for fine-mapping and interaction studies in 
arthritis models in mice [209, 213]. PAIs are advanced intercrosses of two congenic 
strains and thus, differ only at two loci whereas the rest of the genome is fixed. This 
limits the costs of genotyping and interactions with other loci and therefore increases 
the power for detecting the loci of interest. However, the PAI strategy is very time 
consuming as it first involves the establishment of the congenic strains and then the 
generation of the advanced intercross between them. With this in mind, it can be a 
valuable tool of studying interactions between two loci either on different or on the 
same chromosome, but regarding fine-mapping it is not superior to the conventional 
congenic approach. 

Recombinant inbred (RI) lines are crosses between two inbred strains, which have 
been outcrossed to produce an F1 generation and then randomly intercrossed for a 
few generations to accumulate sufficient recombination events. Finally, 
approximately 100 breeding couples are repeatedly sibling mated for a sufficient 
number of generations to produce identical offspring (Figure 5). This results in a 
great number of inbred lines whose genome is a mosaic of the genomes of the 
parental strains. Once a set of RI lines has been genotyped, the marker data are 
available for all subsequent mapping experiments. One can also phenotype multiple 
individuals from the same line to reduce individual, environmental and measurement 
variability [214]. However, the generation and maintenance of such high number of 
animals is extremely time consuming and costly and has therefore not been used in 
many mapping studies. Currently, the largest sets of rat RI lines are derived from the 
BN and SHR rat strains (32 lines) as well as from F344 and LE (34 lines), which are 
used for QTL mapping, expression QTL (eQTL) mapping and gene-identification 
in metabolic and behavioural traits [215, 216]. 
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Figure 5. Breeding scheme and genetic setup of three experimental crosses used for gene-
mapping. 
 

Heterogeneous stocks are advanced intercross lines of more than two inbred 
strains. The existing HS stocks in mice and rats are derived from eight strains, but 
theoretically any number of initial strains can be used. Using a pseudo-random 
breeding protocol, which reduces the loss of genetic variations in the population, 
recombinations accumulate in the rats, which allow high-resolution mapping of 
QTLs with a confidence interval of less than 1 cM. The drawback is that the rats 
need to be individually phenotyped and genotyped with an even denser marker 
setting than for ordinary AILs. Genetic variations from many strains complicate the 
analysis and a special designed QTL mapping program (HAPPY), which estimate the 
probability that an allele descends from each progenitor strain, had to be developed 
[217]. The best characterized rat HS panel was established more than 20 years ago 
and is derived from eight genetically distinct and phenotypically diverse inbred 
strains (ACI, BN, BUF, F344, M520, MR, WKY and WN) [218]. Panels of these 
HS rats are maintained in USA and Europe and currently used for mapping studies 
of a wide variety of traits, including behavioural, metabolic and inflammatory traits. 
Although, arthritis is not one of them, other inflammatory traits may provide 
valuable knowledge that can be transferred to the arthritis research. 

 
Knockout rats are still rare among all available rat strains. To date, it is still not 
possible to culture germline-competent rat embryonic stem cells, the basis for 
generating traditional knockouts. Yet the knockout strategy has been a basic tool for 
the proof of gene-identification so far. Some disease models however, will be species 
specific, and thus, mouse knockouts cannot be used in the process of gene-
identification in rats. Nevertheless, in the past years, new strategies have been 
described to generate gene knockouts in rats. These involve random chemical 
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mutagenesis techniques or transposon insertional mutagenesis combined with 
improved high-throughput screening strategies [219]. Knockout rats can eventually 
be used for gene-identification per se or as a tool for gene-identification in complex 
traits, by studying QTL-knockout interactions [220]. 

Gene-expression profiling can help to identify genes when combined with 
other genetic mapping approaches. New technologies, such as a commercial rat 
microarray platform, made it possible to perform whole-genome expression analysis of 
up to 31,000 genes or 850,000 exons, which can be used for comparing inbred or 
congenic strains. Notably, even for large chromosomal fragments of genetically 
distant strains the number of differentially expressed genes is relatively small.  The 
identification of Cd36 as an insulin resistance gene was the first example of cloning a 
complex-trait gene using combined expression-microarray and linkage approach. In 
the last two years a significant number of genes have been positionally identified 
through the integrated use of genetic mapping and gene expression [219, 221]. 

Many databases focusing on rat genetics or having rat genetics integrated in their 
program are publicly available and continuously updated. The rat genome database 
(RGD), Ensembl, US National Center for Biotechnology (NCBI), University of 
California, Santa Cruz (UCSC) and Mouse Genome Informatics (MGI) are some of 
the most important sources for data mining. They include the rat gene catalogue 
(position, expression, function), all rat QTLs, simple sequence length polymorphism 
(SSLP) and SNP map locations and rat strain catalogues. By combining all possible 
information gathered so far it might be possible to fine-map QTLs and point out 
candidate genes. For example, when a QTL has been identified in different 
combinations of inbred crosses, the strain distribution pattern can be combined with 
mapping data to refine the region, which contains the functional variant. However, 
this assumes that genetic information from all strains are available and so far, this has 
not been the case. Currently, there is one additional inbred strain (SHR) to be 
sequenced but many more are needed in order to provide the tools for so called “in-
silico mapping” strategies. 

 



 

 25 

PRESENT INVESTIGATIONS 

The first part of this thesis investigates the genetic setup and the phenotypical 
response towards various arthritis models of three DA rat substrains. The genetic 
study involved a whole-genome scan using SSLP marker, linkage analysis and the 
generation of congenic lines. In addition to the genetic experiments, three different 
models for RA have been tested in these rats. The study originated from our 
observation of increasing variation of arthritis susceptibility in our previously 
established DA/ZtmRhd rat colony, which after months of struggle forced us to 
establish a new DA colony from a different source (DA/OlaHsd). Although this 
crippled all intended investigations of previously generated DA.E3-Pia congenic rats, 
including QTL fine-mapping and positional cloning of disease-regulating genes, it 
led, however, to the identification of a new QTL regulating arthritis susceptibility 
and the characterization of three substrains of DA rats. We found all three substrains 
to be different in their genetic setup and in their phenotypical response towards 
various arthritis models. 

 

PAPER I 

DA rats from two colonies differ genetically and in their arthritis 
susceptibility 
Aim. The goal of this study was to genetically compare two DA substrains, 
DA/ZtmRhd and DA/OlaHsd, which have been used in numerous linkage studies 
in arthritis research. At the same time we wanted to address whether they differ in 
their arthritis susceptibility or severity following pristane- and collagen-injection.  

Results.  We performed a whole genome scan using 248 SSLP markers; 35 of them 
were found to be polymorphic between DA/ZtmRhd and DA/OlaHsd. Using the 
initially typed markers, we identified seven regions on chromosome 2, 3, 5, 10, 13 
and X with two or more consecutive polymorphic markers. After adding additional 
markers in close proximity to those initially typed, we found only one genetic region 
on chromosome 3, which contained a large contaminating fragment. Fine-mapping 
of this locus revealed a fragment size > 15 Mb, with 16 SSLPs and 2 SNPs between 
both strains. After conclusively establishing the genetic difference between the 
substrains, we investigated their phenotypic characteristics in two different arthritis 
models. In both models, DA/OlaHsd rats were found to be more prone to develop 
severe arthritis than DA/ZtmRhd rats. Because the large contaminating region on 
chromosome 3 colocalized with a previously reported QTL, Cia11, we generated 
partly congenic lines for this region, to investigate their arthritis susceptibility. Studies 
of these congenic rats, however, did not detect any arthritis difference between the 
three possible genotypes (homozygous DA/OlaHsd, homozygous DA/ZtmRhd or 
heterozygous), and we therefore ruled out this region to be responsible for the 
phenotypical difference observed in the parental DA substrains.  

Discussion. Although we could not confirm the existence of other contaminating 
regions, we do not rule out this possibility. In fact, later available SNP data revealed 
several other polymorphic regions besides chromosome 3, including chromosome 1, 
2, 7 and 13. Not mentioned in Paper I is the observation, that besides Cia11 on 
chromosome 3, two additional Cia QTLs colocalized with contaminating fragments, 
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which were found to be polymorphic in the SNP genome scan. This is Cia10 on 
chromosome 2, and Cia4 on chromosome 7 [175, 222]. Both have been found in 
DA crosses, either with ACI (Cia10) or F344 (Cia4) and both have already been 
confirmed in congenic rats [190, 223, 224].  

Future plans. Because the SNP data from the STAR consortium became available 
only after we had already performed our study, we did not systematically investigate 
all genetic variations found in that study [225]. However, with this in mind, an F2 
intercross between both DA substrains would be an extraordinary opportunity to 
localize the arthritis QTL(s) that varies between them. Not only is the chance of 
detection of this/these QTL(s) high, due to a minimum of possible interactions with 
the background genome, but the contaminating fragments are also extremely small. 
This minimizes the number of markers to genotype and has a great advantage in 
proceeding with congenic rats. In addition, the generation of a speed congenic rat 
derived from these strains would only need 3-4 generations until the background 
genome is cleared from all other contaminations. Therefore, the proposed future 
studies building on the findings from paper I would be an excellent tool in fine-
mapping and positionally clone arthritis-regulating gene(s). 

 

PAPER II 

A spontaneous mutation at rat chromosome 9 protects DACP rats from 
experimentally induced arthritis 

Aim. This study was based on the observation that a spontaneous mutation in our 
DA/ZtmRhd rat colony resulted in decreased arthritis susceptibility. We aimed to 
isolate the mutation in a new substrain of DA rats, named DACP, to genetically 
localize it, and to phenotypically characterize the effects of this mutation. 

Results. We performed genetic linkage analysis and identified a new QTL for PIA at 
chromosome 9, Pia27, harbouring the mutation. This QTL also regulates 
subphenotypes, such as the number of B and T cells, levels of Igs in serum, as well as 
expression levels of CD25 and number of CD25+ CD4 T cells. Studies from DA 
and DACP rats supported these findings. Furthermore, these studies established 
clearly that the mutation is involved in up regulating the number of T cells, which 
appear to be more activated than T cells in non-mutant DA rats. Controversially, 
these activated T cells from DACP rats are non-arthritogenic and are unable to 
provoke disease when transferred into DA rats. Furthermore, we detected no 
evidence that T cells from DACP rats have increased regulatory functions.  

Discussion. Despite large efforts to identify the causative mutation, sequencing and 
expression analysis of various candidate genes at chromosome 9 did not reveal any 
difference between DA and DACP rats. In particular the Vav1 gene, which has been 
strongly implicated in two different disease models [226](Maja Jagodic, personal 
communication), was found to be non-polymorphic and not differentially expressed, 
suggesting that this gene does not account for the actions of Pia27. We anticipate 
that the identification of the Pia27 regulating gene will generate an important novel 
candidate gene or candidate pathway for inflammatory diseases. Not mentioned in 
paper II is the observation that we obtained extremely small confidence intervals for 
the QTLs found on chromosome 9. It should be mentioned, however, that the 
genetic map is based on the 51 animals from our cross and might therefore be 
different from other maps that have been published for chromosome 9. Nevertheless, 
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for arthritis incidence, for example, the 1.5-LOD support interval was found to be 
smaller than 7 cM. And for other subphenotypes, which were highly penetrant and 
appeared to be influenced only by this single QTL, we observed even smaller 
confidence intervals, for example < 2 cM for the number of B cells and levels of 
IgG2a, and <3 cM for the number of CD25+ CD4 T cells. Taking advantage of 
these phenotypes will be extremely helpful in the generation of minimal congenic 
rats and positional cloning of the underlying gene. In fact, we have already begun to 
generate a DACP congenic rat harbouring a fragment from the E3 strain. By selective 
phenotyping of recombinant rats and breeding of only those animals that were 
found to be positive for the phenotypes, we have minimized the congenic fragment 
in the third backcross generation to a fragment size of less than 4 cM. However, as 
discussed in paper II, this region still suffers from incomplete sequencing and most of 
the SSLP markers used for genotyping are still not annotated or are clearly at the 
wrong position. This has hampered the development of a correct physical map of this 
region. 

Future plans. Future experiments are therefore focused on testing additional SSLP 
as well as SNP markers in order to determine the physical size of the congenic 
fragment. It will also help to identify or rule out possible candidate genes. At the 
same time we are continuing to sequence already annotated genes in this region and 
performing gene expression analysis. Detected polymorphisms between DACP and 
E3 will be utilized in further narrowing down the congenic fragment, while a 
polymorphism between DACP and DA might be the relevant mutation we seek to 
identify. The positional identification of the gene regulating arthritis susceptibility 
and the further characterization of the disease-regulating mechanism will be the goal 
of this study. 

 

PAPER III 

Detection of arthritis susceptibility loci Ncf1 and the major 
histocompatibility complex region in rats depends on the genetic 
background 
Aim. In paper III, we assessed the influence of the genetic background on the 
detection capacity of previously described arthritis regulating loci. 

Results. We show that the disease enhancing DA allele of Ncf1 did not break the 
arthritis resistance of the E3 rat and thus, was silent in this certain genetic 
background. On the other hand, the E3 allele of the MHC was found to be silent in 
a pure DA background but protected from arthritis in a mixed (DAxE3) 
background. In the last part of this study we examined epigenetic effects in F1 
hybrids. Although we observed a significantly increased arthritis severity in female 
rats from a DA mother, the effect was very small and brief. Thus we concluded that 
epigenetic effects play no major role in the arthritis development in this genetic setup. 
Because male rats showed nearly no difference in arthritis severity, we exclude the Y-
chromosome as a carrier of PIA-regulating genes in this genetic setup. 

Discussion. This study reveals a dramatic difference of the arthritis-regulating 
potential of two previously identified loci in various genetic backgrounds. This needs 
to be considered in future investigations that involve the isolation of genes in a 
certain genetic setup or the transfer of those into different genetic backgrounds. 
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Future plans. A follow up study will focus on the identification of small effect size 
QTLs for PIA. In addition, we will aim to identify the genetic regions interacting 
with the MHC locus or other arthritis regulating loci. This involves a whole-genome 
analysis of the 650 animals from the previously described (E3.DA-Pia457xDA)F2 
intercross. At the same time we are constructing an E3.DA-Pia1457 quadruple 
congenic rat, which will be tested for arthritis susceptibility and used for studying 
possible interactions of Pia1, Pia4, Pia5 and Pia7.  

 

PAPER IV 

Positional cloning of the Igl genes controlling rheumatoid factor production 
and allergic bronchitis in rats 
Aim. The aim of this study was to physically map the most prominent QTL for the 
production of RF (Rf1). 

Results. Using a strategy that combined congenic mapping and high genetic 
resolution mapping in an advanced intercross line (AIL) we have positionally cloned 
the immunoglobulin lambda light chain (Igl) locus. This locus explains the 
previously described Rf1 quantitative trait locus controlling RF levels in rats. The E3 
allele of the Igl gene was associated with higher levels of both RF-IgG and RF-IgM in 
serum. In addition, there is suggestive evidence that the Rf1 locus may control 
pathogenic inflammation as it was found to be associated with allergic eosinophilic 
bronchitis and increased IgE levels. 

Discussion. Although RF are found in 70-90% of RA patients, they are not 
specific for the disease and found in many other chronic inflammatory conditions. 
However, until now the research has focused exclusively on biological and 
pathological roles of RF in RA. The findings of this study will allow a more precise 
dissection of the role of RF in specific pathological pathways occurring in a wide 
spectrum of inflammatory diseases, including asthma. 

Future plans. The main goal in future studies will be the identification of the 
genetic polymorphism(s) underlying this trait and to conclusively associate the Igl 
locus with the severity of airway inflammation. This will involve the generation and 
phenotypic testing of recombinant rats with minimal congenic fragments and large-
scale sequencing.  
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CONCLUDING REMARKS 

The genetic dissection of complex traits is an intricate process, but when it is 
successful it will lead to the identification of disease-regulating genes, and elucidating 
molecular mechanisms involved in the pathogenesis of these traits. These discoveries 
provide the opportunity for more accurate diagnostics, development of new, more 
specific drugs and an individual treatment of each patient. For many years, animal 
models of RA were thought to be the basic tools of hypothesis free gene 
identification, but so far genetic studies using rats have had only limited success. In 
fact, researchers have encountered significant difficulties in the analysis of complex 
traits. This thesis is summarizing two major problems we have faced in the past years. 
Both problems concern the genetic variability of inbred animals, which were either 
found to be contaminated or mutated. Hence despite these hassles, we present future 
perspectives on how we could turn around these difficulties and use them in our 
favour. Genetic linkage studies of two DA rat strains that are genetically highly 
similar and yet differ in their arthritis susceptibility might be a fast way in QTL 
identification and congenic strain development. Positional cloning of a spontaneous 
mutation that regulates easy accessible and highly penetrant phenotypes will be 
relatively easy compared to cloning of low penetrant QTLs usually found in arthritis 
models. Although the exact molecular variant of this gene is highly unlikely to be 
relevant in human RA, there is the potential that another variant of this gene may be 
associated with human RA. In addition, the identification of this gene will be 
extremely valuable in understanding disease regulating mechanisms.  

Recent genome-wide association studies in human populations have provided a 
direct approach of identifying genes in complex traits, hence raising the question 
about the continuing need of animal genetic studies. Despite the problems we 
encountered in this thesis, I share the beliefs of other researchers that rat models will 
be, in many ways, valuble tools in the gene discovery of complex traits [219]. First, 
genome-wide association studies in humans still have the problem to precisely 
identify the gene or their mechanisms of actions. For example, disease-associated 
SNPs are often found in regions with no genes or, alternatively, span several genes. 
Second, positionally cloned animal QTLs will be excellent tools for the 
characterization of molecular pathways and study of mechanisms involved in the 
pathogenesis of the particular disease. These detailed studies would be mostly 
impossible in humans. Third, the advantages of new technologies, cloning strategies 
and genomic resources, which are now available for animal studies and continuously 
develop, will potentially increase the success in gene discovery in rats. After a decade 
of QTL mapping, we are clearly just at the beginning of understanding the complex 
genetics in RA and other multifactorial diseases, but it will be exciting to see what in 
the next 10 or 15 years will be achieved in this area of research.   
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