
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Iterative decoding threshold analysis for LDPC convolutional codes

Lentmaier, Michael; Sridharan, Arvind; Costello Jr., Daniel J.; Zigangirov, Kamil

Published in:
IEEE Transactions on Information Theory

DOI:
10.1109/TIT.2010.2059490

2010

Link to publication

Citation for published version (APA):
Lentmaier, M., Sridharan, A., Costello Jr., D. J., & Zigangirov, K. (2010). Iterative decoding threshold analysis for
LDPC convolutional codes. IEEE Transactions on Information Theory, 56(10), 5274-5289.
https://doi.org/10.1109/TIT.2010.2059490

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/TIT.2010.2059490
https://portal.research.lu.se/en/publications/b25411a6-6e2a-4e40-a8c6-f7562b5ff562
https://doi.org/10.1109/TIT.2010.2059490

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 1

Iterative Decoding Threshold Analysis for
LDPC Convolutional Codes

Michael Lentmaier, Member, IEEE, Arvind Sridharan, Member, IEEE,
Daniel J. Costello, Jr., Life Fellow, IEEE, and Kamil Sh. Zigangirov, Fellow, IEEE

Abstract—An iterative decoding threshold analysis for termi-
nated regular LDPC convolutional (LDPCC) codes is presented.
Using density evolution techniques, the convergence behavior
of an iterative belief propagation decoder is analyzed for the
binary erasure channel and the AWGN channel with binary
inputs. It is shown that for a terminated LDPCC code ensemble,
the thresholds are better than for corresponding regular and
irregular LDPC block codes.
Index Terms—Low-density parity-check (LDPC) codes, LDPC

convolutional codes, iterative decoding, message passing, belief
propagation, threshold analysis, density evolution

I. INTRODUCTION
In classical coding theory, the efficiency of block and

convolutional coding schemes is characterized by two criteria:
decoding complexity and decoding reliability. The decoding
complexity is usually measured by the number of operations
per symbol or per frame. The decoding reliability of block
codes is typically measured by the bit error probability or
the block error probability. In convolutional coding, when
the length of the sequences becomes much larger than the
constraint length, the burst or first event error probability is
considered instead of the block error probability. Since an
analysis of particular codes is often difficult, the asymptotic
performance of code ensembles, when block or constraint
length tend to infinity, is frequently considered.
For maximum likelihood (ML) decoding, the decoding com-

plexity is an exponential function of block or constraint length.
At the same time, for most codes the bit or block/burst error
probabilities decrease exponentially with block or constraint
length if the code rate is less than the channel capacity. As
a consequence, both decoding complexity and reliability are

This work was supported in part by NSF Grants CCR-02-05310 and CCF-
0514801 and NASA Grants NNG05GH73G and NNX07AK53G. Some of
the material in this paper previously appeared in the Proceedings of the
2004 Allerton Conference [1] and the 2005 IEEE International Symposium
on Information Theory [2].
M. Lentmaier was with the Department of Electrical Engineering, Univer-

sity of Notre Dame. He is now with the Vodafone Chair Mobile Communi-
cations Systems, Dresden University of Technology (TU Dresden), D-01062
Dresden, Germany (e-mail: Michael.Lentmaier@ifn.et.tu-dresden.de).
A. Sridharan was with the Department of Electrical Engineering, Uni-

versity of Notre Dame, Notre Dame, IN 46556. He is now with Sea-
gate Technologies, 389 Disc Drive, Longmont, CO 80503, USA (e-mail:
arvind.sridharan@seagate.com).
K. Sh. Zigangirov is with the University of Notre Dame, Notre

Dame, IN 46556 USA, Lund University, Lund, Sweden, and the Insti-
tute for Problems of Information Transmission, Moscow, Russia (e-mail:
Kamil.Zigangirov@eit.lth.se).
D. J. Costello, Jr. is with the Department of Electrical Engineer-

ing, University of Notre Dame, Notre Dame, IN 46556, USA. (e-mail:
Daniel.J.Costello.2@nd.edu)

characterized by exponential functions of block or constraint
length. By definition, we call convergence to zero of the
block/burst error probability, when block or constraint length
tends to infinity, the reliable communication condition.
The reliability of codes of a fixed rate is characterized

by the Shannon limit, the boundary value of the channel
parameter for which the channel capacity exceeds the code
rate. For the additive white Gaussian noise (AWGN) channel,
it is the smallest signal-to-noise ratio (SNR), for the binary
symmetric channel (BSC) or the binary erasure channel (BEC),
the largest crossover or erasure probability, respectively, for
which reliable communication is possible.
Modern coding theory deals mostly with low-density parity-

check (LDPC) codes and iterative decoding methods. The
decoding complexity of these codes is usually characterized
by the number of operations per bit and per iteration. In most
cases this number is a constant, i.e., it does not depend on
the block or constraint length. At the same time, for LDPC
codes with symbol node degrees larger than two, the bit error
probability decreases at least doubly exponentially with the
number of iterations [3] as the block or constraint length goes
to infinity, given that the SNR is larger than some constant
(for the AWGN channel) or the crossover/erasure probability
is smaller than some constant (for the BSC/BEC). This makes
iterative decoding of codes with large block or constraint
lengths feasible.
We call the boundary value of the channel parameter for

which reliable communication is possible with iterative decod-
ing the iterative decoding limit. In some sense, the iterative
decoding limit is the counterpart of the Shannon limit, but it
is associated with particular ensembles of codes and particular
iterative decoding methods.
While an exact calculation of the iterative decoding limit is

difficult, it is possible to find bounds. The Shannon limit is an
obvious lower bound on the iterative limit for the AWGN chan-
nel and an upper bound for the BSC or BEC. Bounds in the
other direction are commonly called convergence thresholds.
These thresholds are often assumed to coincide with the actual
iterative decoding limit, although this is difficult to prove.
In this paper, we study the iterative decoding thresholds

of terminated (J,K) regular LDPC convolutional codes (LD-
PCC codes), with J > 2. LDPCC codes, the convolutional
counterpart of Gallager’s LDPC block codes [4], have been
described1 in [6]–[9]. Both LDPC block and LDPC convolu-

1Some suggestions for the construction and decoding of LDPCC codes
were earlier given in a patent application by Tanner [5].

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 2

tional codes are defined by sparse parity-check matrices and
can be decoded iteratively using message passing algorithms
with complexity per bit per iteration independent of the block
or constraint length. An example of a message passing decod-
ing algorithm for LDPC codes is belief propagation, which
will be considered throughout this paper. The ensemble of
LDPCC codes we analyze is defined by parity-check matrices
composed of permutation matrices and is described in Section
II. This ensemble was previously used to lower bound the
free distance of LDPCC codes [10]. The block counterparts
of these codes were introduced in the appendix of Gallager’s
book [4] and also studied in [11] and [12]. In particular, [12]
proved the existence of codes in this ensemble with a minimum
distance satisfying Gallager’s lower bound [4].
The calculation of convergence thresholds for LDPC codes

is based on estimating the bit error probability when the
block or constraint length and the number of iterations go
to infinity. The bit error probability, in turn, can be found
by calculating the probability density function of the decision
statistics used in the message passing algorithm in different
iterations. A commonly used recursive numerical algorithm
for the calculation of this density function is known as
density evolution [13]. Since numerical methods alone are not
sufficient to prove convergence of the error probability to zero,
density evolution can be combined with analytical methods,
e.g., bounding the evolution of the Bhattacharyya parameter
[3], [14]–[18]. Several papers have been devoted to analyzing
convergence thresholds for regular and irregular LDPC block
codes (e.g., [19] and [20]), with the result that thresholds of
irregular codes are generally better than those of regular codes.
The application of density evolution requires that all mes-

sages exchanged during the iterations are independent, i.e.,
that the decoder operates in cycle-free regions of the graph.
In Section III it is shown that the standard parallel updating
schedule can be used for the threshold analysis of terminated
LDPCC codes, provided that the constraint length can be
chosen sufficiently large. In the BEC case, density evolution
reduces to observing a single parameter, the erasure proba-
bility, and can be described by simple recursive equations.
Unfortunately, for the AWGN channel, performing density
evolution for the standard parallel updating schedule becomes
increasingly difficult in the case of large frame lengths.
In Section IV, a sliding window updating schedule for

threshold analysis is described. This approach can be used to
calculate thresholds even when the termination length of the
convolutional codes is large. Furthermore, we conjecture that
this approach can also be applied to analyze the thresholds of
unterminated LDPCC codes.
A numerical analysis of the calculated thresholds, with

results for the BEC and the AWGN channel, is given in Section
V, and we see that the thresholds of some regular LDPCC
codes closely approach the ML decoding thresholds of the
corresponding regular LDPC block codes [21], [22], which in
turn approach the Shannon limit exponentially with increasing
symbol node degrees. Further, it is surprising to note that
increasing the density of the parity-check matrices leads to
improved belief propagation thresholds, unlike the behavior
of regular LDPC block codes. Simulation results for the BEC

confirm the calculated thresholds.

II. LDPC CONVOLUTIONAL CODE ENSEMBLE
A rate R = b/c time-varying binary convolutional code can

be defined as the set of sequences

v = (. . . ,v1,v2, . . . ,vt, . . .) , vt ∈ F
c
2 , (1)

satisfying the equality vHT = 0, where the infinite syndrome
former matrix H

T is given by

H
T =

.
H

T
0 (1) . . . H

T
ms

(1 +ms)
.

H
T
0 (t) . . . H

T
ms

(t+ms)
.

,

(2)
and eachHT

i (t+i) is a c×(c−b) binary matrix. IfHT defines
a rate R = b/c convolutional code, the matrix H

T
0 (t) must

have full rank for all time instants t. In this case, by suitable
row permutations, we can ensure that the last (c− b) rows are
linearly independent. Then the first b symbols at each time
instant are information symbols and the last (c − b) symbols
are the corresponding parity symbols. The largest i such that
H

T
i (t+i) is a nonzero matrix for some t is called the syndrome

former memoryms [23]. LDPCC codes have sparse syndrome
former matrices. A (J,K) regular LDPCC code is defined by
a syndrome former that contains exactly J ones in each row
and K ones in each column.
We now describe the ensemble of LDPCC codes introduced

in [10]. Although the ensemble can be defined more generally,
in this paper we focus on the case K = 2J , J > 2. We con-
struct LDPCC codes defined by syndrome formers HT with
syndrome former memory ms = J−1. For i = 0, 1, . . . , J−1,
the sub-matrices of the syndrome former are equal to

H
T
i (t+ i) =

[
P

(0)
i (t+ i) P

(1)
i (t+ i)

]T
, (3)

where the matrices P (h)
i (t+i), h = 0, 1, areM×M permuta-

tion matrices. All other entries of the syndrome former are zero
matrices. Equivalently, each H

T
i (t + i), i = 0, 1, . . . , J − 1,

is a c × (c − b) binary matrix. In the case K = 2J , we
have c = 2M and b = M . By construction it follows
that each row of the syndrome former HT has J ones and
each column has K ones. Suppose the permutation matrices
P

(h)
i (t + i), t = 1, 2, . . . , i = 0, 1, . . . , J − 1, h = 0, 1,

are chosen independently and all M ! values are equally
likely. Then the corresponding ensemble of syndrome formers
H

T defines an ensemble CP (J, 2J,M) of (J, 2J) regular
time-varying LDPC convolutional codes. Figure 1 shows the
syndrome former matrix of a (3,6) regular LDPC convolutional
code in CP (3, 6,M).
Since H

T
0 (t) consists of two non-overlapping permutation

matrices, it has full rank. Hence HT defines a rate R = M
2M

code. Further, the constraint imposed by the syndrome former,
i.e.,

vtH
T
0 (t) + vt−1H

T
1 (t) + · · ·+ vt−ms

H
T
ms

(t) = 0 , (4)

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 3

t t+ 1 t+ 2

P
(0)
0 (t) P

(1)
0 (t) P

(0)
1 (t + 1) P

(1)
1 (t + 1) P

(0)
2 (t + 2) P

(1)
2 (t + 2)

v
(0)
t v

(1)
t

Fig. 2. Tanner graph connections of the 2M symbol nodes at time t for J = 3. Symbol nodes and constraint nodes are shown as black and white circles,
respectively.

H
T =

M ×M permutation
matrices

J = 3

K = 6

Fig. 1. Syndrome former matrix for a (3,6) regular LDPCC code in
CP (3, 6,M).

where t ∈ Z, vt = (v(0)
t ,v(1)

t), v(0)
t = (v(0)t,1 , v

(0)
t,2 ,, v

(0)
t,M),

v
(1)
t = (v(1)t,1 , v

(1)
t,2 ,, v

(1)
t,M), can be used to implement sys-

tematic encoding [6], [9]. The overall constraint length of the
codes in CP (J, 2J,M) is defined as ν = (ms + 1) · c =
J · 2M = KM . Thus, the overall constraint length of codes
in the ensemble CP (3, 6,M) is 6M .
The syndrome formers of codes in the ensemble

CP (J, 2J,M) have memory ms = J − 1 independent of M ,
while b and c depend on M . This is different from the LDPC
convolutional codes considered in [6]–[8], where the codes
have varying syndrome former memories ms, while b and c
are fixed. However, by a permutation of rows, the syndrome
former of each code in the ensemble can be converted into
the syndrome former of a conventional rate R = 1/2 LDPCC
code with b = 1, c = 2, and ms ≤ 3M − 1 [10]. This code
differs from the original one only in the order of the symbols,
i.e., it is an equivalent code.
The Tanner graph for a code in CP (J, 2J,M) can be

obtained from its syndrome former matrix. The graph consists
of symbol nodes and constraint nodes, each symbol node
corresponding to a particular row and each constraint node
to a particular column of the syndrome former matrix. There
is an edge between a symbol node and a constraint node if
the corresponding symbol takes part in the respective parity-
check equation. For the Tanner graph of a convolutional code
we can associate a notion of time. At each time instant t,
the sub-matrices H

T
i (t) of the syndrome former H

T (see
(2)) lead to c − b = M constraint nodes in the Tanner
graph. Similarly, for each time instant t, there are c = 2M
symbol nodes in the Tanner graph. Observe that HT

i (t) is
non-zero only for i = 0, 1, . . . ,ms, and hence nodes in
the Tanner graph can be connected at most ms time units
away. For J = 3, Fig. 2 illustrates how the information
symbols v(0)

t = (v(0)t,1 , v
(0)
t,2 ,, v

(0)
t,M) and the parity symbols

v
(1)
t = (v(1)t,1 , v

(1)
t,2 ,, v

(1)
t,M) at time t are connected through

different permutation matrices to parity-check equations at
time t, t+ 1, and t+ 2.
For practical applications, a convolutional encoder starts to

operate from a known state (usually the all-zero state) and after
the block of data symbols to be transmitted has been encoded,
the encoder is terminated back to the all-zero state using tail
bits. Trellis based decoding algorithms for convolutional codes
can exploit this known starting and ending state of the encoder
to simplify decoding. As we shall see, a message passing
decoder can also exploit the fact that the encoder starts and
ends in the all-zero state. For LDPCC codes in the ensemble
CP (J, 2J,M), the syndrome former matrix can be used to
determine the tail bits needed for termination. A termination
procedure is presented in the appendix, together with a sketch
of the proof of the following theorem (a complete proof can
be found in [24]):
Theorem 1: Almost all codes in CP (J, 2J,M) can be termi-

nated with a tail of length τ = ms+1 blocks, i.e., 2M(ms+1)
bits. !

Termination of LDPCC codes is not only a practical method
of transmitting finite blocks of data symbols but also a
convenient instrument for theoretical performance assessment.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 4

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

a)

b)
t = Lt = 1 t = 2 t = L+ms

Fig. 3. Tanner graph for the case M = 1 of a) the unique LDPCC code CP (3, 6, 1) and b) the corresponding terminated code.

By terminating LDPCC codes we reduce the investigation of
their thresholds to the estimation of thresholds of LDPC block
codes and we can apply analysis methods developed for the
latter.
In this paper we consider transmitting blocks of N = 2LM

code bits using a code from CP (J, 2J,M). We assume that
the encoder starts at time t = 1 in the zero state, encodes M
information bits into 2M code symbols at times t = 1, . . . , L−
τ , and then brings the encoder back to the zero state by adding
a corresponding tail at times t = L− τ + 1, . . . , L. It follows
that the resulting terminated code has rate

R =
(L− τ)

2L
≥

L− J

2L
=

1

2

(
1−

J

L

)
, (5)

where we assume, motivated by Theorem 1, that the chosen
codes satisfy τ ≤ ms + 1 = J . Note that the rate loss is
negligible for L >> J .
Fig. 3 shows the Tanner graph of an LDPCC code in the

ensemble CP (3, 6,M) and of the corresponding terminated
code. The depicted graphs correspond to the simplest case,
M = 1. They can be interpreted as protographs [25] for
the ensembles with larger M , whose Tanner graphs can be
obtained from the graphs in Fig. 3 by a copy-and-permute
procedure. In the terminated graph, two symbol nodes (black)
are followed by one constraint node (white) at each time
instant t, t = 1, . . . , L. As for regular LDPC block codes,
all symbol nodes and constraint nodes in the infinite Tanner
graph of the original convolutional code have fixed degree J
and K = 2J , respectively (compare Fig. 2). In the case of
termination, however, all symbol nodes at times t < 1 and
t > L are known to be zero. But known symbols do not affect
their associated parity-check equations and, consequently, their
nodes can be removed from the Tanner graph along with
all connected edges. As a result, while all symbol nodes
have fixed degree J = 3, the constraint nodes at times
t = 1, . . . , J − 1 and t = L + 1, . . . , L + J − 1 will have
a reduced degree. In particular, in Fig. 3, the constraint nodes
at t = 1 and t = L + 2 have degree two and the constraint

nodes at t = 2 and t = L+1 have degree four. At all other time
instants the constraint nodes have their full degree of K = 6.
It follows that, even though the convolutional code is regular,
knowing the bits at time instants t < 1 and t > L leads to
a slight irregularity in the Tanner graph of the convolutional
code. As a consequence, the constraint nodes of lower degree
provide better protection for the symbols at the beginning and
end of a block.

III. ITERATIVE DECODING ANALYSIS
A. Decoding Trees
While the implementation of a message passing decoder can

be described by a Tanner graph, for the analysis of iterative
decoding of a particular code symbol v(h)t,m, t = 1, 2, ...,
m = 1, 2, ...M , h = 0, 1, it is more convenient to consider
a tree-shaped graph (or a computation tree [26]) for symbol
v(h)t,m, showing how different code symbols contribute to the
decoding of this symbol as the iterations proceed.
Such a tree-shaped graph for an arbitrary code symbol v(h)t,m

of an LDPC code can be obtained directly from the Tanner
graph. In this case symbol v(h)t,m is called the clan head. Each
node at the 2#th level, # = 0, 1, ..., of the tree represents one
of the code symbols and each node at the (2# + 1)th level,
= 0, 1, ..., , represents one of the parity-check equations. We
call the set of code symbols corresponding to nodes at all the
even levels of the tree a clan. Symbol v(h)t,m located at the 2#th
level of the tree is designated as v(h)t,m(#). The clan head v(h)t,m is
located at level zero (the root of the tree) and is designated as
v(h)t,m(0). The set of code symbols at the 2#th level, where # is
a non-negative integer, is called the #th generation of the clan.
The code symbols in the clan, excluding v(h)t,m(0), are called
descendants of the clan head v(h)t,m(0). The configuration of
the tree, as we will see later, depends on the time instant t
corresponding to the position of the clan head v(h)t,m(0) in the
Tanner graph.
The edges leaving the root node, together with the nodes

at the first level of the tree, correspond to the J parity-check

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 5

t = 1 t = 2

t = 3 t = 4t = 1 t = 2 t = 2 t = 3

t = 3

t = 4 t = 5t = 3

Fig. 4. The first levels of the computation trees for t = 1, t = 2, t = 3
with J = 3.

equations that include the clan head. The nodes at this first
level are called families of the clan head. Each of these nodes,
in turn, is connected by edges to nodes at the second level.
For LDPCC codes in the ensemble CP (J, 2J,M), the number
of these edges/nodes can be 1,3,..., or 2J − 1, depending on
the time instant of the constraint node. These second level
nodes correspond to the code symbols that are included in
the same parity-check equations as the clan head. The second
level symbols are called direct descendants or children of the
clan head. Hence, the clan head has J families and in each
family there can be 1,3,..., or 2J −1 children. For the trees of
the clan heads v(h)t,m(0) at time instants t = 1, t = 2, t = 3, the
nodes at levels zero, one, and two are illustrated in Figure 4
for the case J = 3. Note that for terminated LDPCC codes,
the tree of the clan head v(h)t=L,m(0) is analogous to that of
v(h)t=1,m(0), and the tree of v(h)t=L−1,m(0) is analogous to that
of v(h)t=2,m(0).
Each of the direct descendants of the clan head has J − 1

families, i.e., J−1 edges leave each second level node leading
to J − 1 nodes in the third level of the tree. These J − 1
third level nodes correspond to the J − 1 other parity-check
equations that include a direct descendant of the clan head.
Each of the third level families can include a maximum of
2J − 1 children, i.e., the edges leaving each third level node
lead to at most 2J − 1 nodes at the fourth level, and so on.
This expansion of levels can be continued indefinitely, and
eventually different nodes in the graph will represent the same
code symbols, i.e., there is a cycle in the graph.
Using this tree representation, we will be able to analyze

the iterative decoding behavior of LDPCC codes.
Definition 1: The v(h)t,m(0)-clan is called #0-nondegenerate

if all nodes of the clan up to the #0th generation correspond
to different code symbols, but in the set of nodes of the clan
up to the (#0 + 1)th generation there is at least one pair of
nodes that corresponds to the same symbol.
Definition 2: A code is called #0-nondegenerate if the clans

of all code symbols are #-nondegenerate, where # ≥ #0, and
there exists at least one #0-nondegenerate clan.
Note that the girth g of the Tanner graph of an #0-

nondegenerate code satisfies either g = 4#0+2 or g = 4#0+4,
i.e., #0 = &(g − 4)/4'. The parameter #0 was introduced
by Gallager [4]. For message passing decoders with standard

parallel updating schedule this value defines the maximal
number of decoding iterations that can be performed before
the independence of the decision statistics becomes invalid.
The following theorem affirms the existence of a code in
CP (J, 2J,M) with #0 proportional to logM .
Theorem 2: There exists a code in CP (J, 2J,M) for which

the number of independent decoding iterations, l0, satisfies

l0 >
logM

2 log(2J − 1)(J − 1)
− c1 , (6)

where the constant c1 does not depend on M . !

Theorem 2 is the convolutional code counterpart of Gal-
lager’s theorem [4] which states existence of an LDPC block
code with #0 proportional to the logarithm of the block
length, and an analog of Theorem 2 for conventional LDPCC
codes was proved in [15]. Theorem 2 can be proved either
analogously to [15] or using a random ensemble approach [3].
Note that termination of an LDPCC code can only increase
#0, since termination only reduces the degrees of some symbol
nodes.

B. Binary Erasure Channel
In our threshold analysis of LDPCC codes, we will follow

the principles developed in [3] for analyzing the error prob-
ability of iteratively decodable block codes. Since terminated
LDPCC codes are, in fact, a special case of LDPC block codes,
we can directly use the methods described in that paper.
Consider first the binary erasure channel, as shown in Fig. 5.

The probability of an erasure is ε and with probability 1− ε
the transmitted symbol is received correctly. In each iteration,

ε

ε

1− ε

1− ε 00

11

e

Fig. 5. Binary Erasure Channel.

a message passing decoder exchanges messages between the
symbol nodes and the constraint nodes. A symbol node can
be recovered correctly if its channel value or at least one
message from the constraint nodes to which it connects is
not an erasure.
Thus convergence of message passing decoding on the

erasure channel can be analyzed by tracking the erasure
probability of the messages. This is straightforward as long as
the messages exchanged during the iterations are independent.
Theorem 2 guarantees the existence of a code in CP (J, 2J,M)
such that the number of independent iterations is lower-
bounded by the right hand side of (6).
Consider the ith iteration of the decoding procedure, where

1 ≤ i ≤ #0. Each symbol node is characterized by the time
instant t, i.e., the position in the Tanner graph, and by the
level 2# of the symbol in the computation tree. Analogously,
a constraint node is characterized by the time instant t and by
the level 2#+ 1.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 6

t

tt

t

t

channel

t− 1t− 1t− 2t− 2 t+ 1 t+ 2

(a) (b)

Fig. 6. Illustration of (a) a constraint node update and (b) a symbol node
update for the case J = 3.

The operations of the message passing decoder can be
divided into two stages, as illustrated in Figure 6. In both
stages, nodes receive messages from adjacent connected nodes
and combine them using a computation rule to form new mes-
sages, which are then sent back to the same nodes. The stage
where messages received from symbol nodes are combined
at a constraint node, we call a constraint node update. The
other stage, where messages received from constraint nodes
are combined at a symbol node, is called a symbol node
update. With the standard parallel updating schedule, first all
constraint nodes and then all symbol nodes are updated at each
decoding iteration. In this case Theorem 2 guarantees that the
number of independent iterations can be made arbitrarily large
ifM goes to infinity. Note that the nodes involved in an update
can belong to different time instants. For an iteration i we
study the probability distribution of messages sent by symbol
nodes to constraint nodes and the probability distribution of
messages sent by constraint nodes to symbol nodes. These
probabilities depend on the time instants of the nodes that
send and receive the messages, but not on the position of those
nodes within a time instant t of the Tanner graph.
The message computed at a constraint node update to send

to a connected symbol node (see Figure 6 (a)) is an erasure
if at least one of the other K − 1 neighboring symbol nodes
has been erased. It follows that the probability q(i)t+j,t that the
message from a constraint node at time instant (t + j) to a
symbol node at time instant t, j ∈ {0, J − 1}, is an erasure is
equal to

q(i)t+j,t = 1−

(
1− p(i−1)

t,t+j

) ∏

j′ "=j

(
1− p(i−1)

t+j−j′,t+j

)2

 , (7)

for j, j′ ∈ {0, J−1}, where p(i−1)
t,t+j denotes the probability that

the message sent in the previous, i.e., the (i − 1)th, iteration
from a symbol node at time instant t to a constraint node at
time instant (t+j) corresponds to an erasure. For i = 0, these
probabilities are initialized as p(0)t,t′ = 1 for all t and t′. For
terminated convolutional codes, we also have the boundary
conditions p(i)t,t′ = 0 if t < 1 or t > L. This condition takes
into account the lower constraint node degrees at the beginning
and the end of the Tanner graph.
The message computed at a symbol node update for a

constraint node (see Figure 6 (b)) is an erasure if all incoming
messages from the neighboring constraint nodes and from the
channel are erasures. Thus we have

p(i)t,t+j = ε
∏

j′ "=j

q(i)t+j′,t , j, j′ ∈ {0, J − 1} . (8)

For regular LDPC block codes, the distribution of the
messages exchanged in the ith iteration is the same for all
nodes regardless of their position within the Tanner graph.
Likewise, for the random irregular code ensembles considered
in [19], the message distributions are averaged over all codes,
and only a single density has to be considered for all constraint
and symbol nodes. In the LDPCC code case, while nodes at
the same time instant behave identically, the messages from
nodes at different time instants can behave differently and must
be tracked separately.
Thus the density evolution procedure in this case involves

calculating the erasure probabilities p(i)t,t+j in the ith iteration,
1 ≤ i ≤ #0, for all time instants t. It follows from [3] that,
if J > 2, it is sufficient to observe density evolution up to
iteration I , when the maximum of p(I)t,t+j over all t and j
becomes less than the breakout value

Bbr = ε−1/(J−2)(2J − 1)−(J−1)/(J−2) .

Then, if the number of independent iterations #0 tends to
infinity, the probability that one or more symbols in a block
are erased goes to zero at least doubly exponentially with
the number of iterations. This defines a strategy for threshold
calculation: we perform density evolution up to iteration I , at
which point all p(I)t,t+j have crossed the breakout value.

C. Binary-Input Output-Symmetric Memoryless Channels
The threshold analysis for LDPC block codes on an AWGN

channel with binary inputs in [3] required observing not
only the evolution of the probability density function (PDF)
but also the Bhattacharyya parameter. (Note that, for the
BEC, the erasure probability p(i)t,t+k is itself the Bhattacharyya
parameter.) If J > 2, then, as in the BEC case, the observations
can be stopped if the Bhattacharyya parameter became less
than some breakout value. In this case, the decoding error
probability goes to zero at least doubly exponentially with the
number of iterations as #0 and the number of iterations I tend
to infinity.
In the case of density evolution for terminated LDPCC

codes, the PDFs of the log-likelihood ratios (LLRs) for nodes
at different time instants are, generally speaking, different.
Thus we must observe the PDFs and the Bhattacharyya param-
eter separately for each time instant, and the observations can
be stopped only when the maximal Bhattacharyya parameter
over all time instants becomes less than the breakout value.
In each decoding iteration, messages are exchanged between

the symbol nodes and the constraint nodes. At a constraint
node update, extrinsic LLRs are computed by decoding the
associated single parity-check component code. The message
received by the kth symbol node from its jth neighboring
constraint node, j = 1, . . . , J , in the ith iteration can be
written as

β(i)
j,k = 2arctanh

∏

k′ "=k

tanh(z(i−1)
k′,j /2)

 , k, k′ ∈ {1,K} ,

(9)
where z(i−1)

k′,j is the message that the jth constraint node has
received from its k′th neighboring symbol node in the (i−1)th

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 7

iteration. At a symbol node update, the incoming extrinsic
LLRs are combined with the intrinsic channel LLR αk to give
the LLRs

z(i)k,j = αk +
∑

j′ "=j

β(i)
j′,k , j, j′ ∈ {1, J} , (10)

which form the messages to be sent by the kth symbol node
to the neighboring jth constraint nodes in the ith iteration.
Initially, before the first decoding iteration, the LLRs are set
to z(0)k,j = 0 for the symbols at time instant t, t = 1, . . . , L.
For t < 1 and t > L, the code symbols are defined to be
zero, which implies that the LLR messages sent by these
nodes are z(i)k,j = ∞ for all iterations. This boundary condition
automatically takes into account the lower constraint node
degrees at the beginning and end of the Tanner graph.
The standard parallel updating schedule assumes that, at

each decoding iteration, first all constraint nodes and then
all symbol nodes are updated according to (9) and (10),
respectively. The messages computed in this way are true
LLRs as long as they are produced from independent observa-
tions. Theorem 2 guarantees that the number of independent
iterations can be made arbitrarily large if M goes to infinity.
Given that all messages are formed from independent ob-

servations, it is possible to calculate the evolution of their
exact PDFs during the iterations [20]. Since, in general,
density evolution must be performed numerically, we follow
the approach in [3] and estimate the asymptotic convergence
rate by observing not only the PDFs of the LLRs z(i)k,j but also
their Bhattacharyya parameter.
Consider again the flow of messages shown in Fig. 6.

In Fig. 6(a), the messages z(i−1)
k′,j in (9) come from nodes,

generally speaking, belonging to different time instants. The
same holds for the messages β(i)

j′,k that are combined in (10)
(see Figure 6(b)). Then, as in the BEC case, the messages from
nodes at different time instants must be tracked separately. To
take this into account, at each time instant different PDFs
must be computed for both β(i)

j,k and z(i)k,j , k = 1, . . . ,K,
j = 1, . . . , J .
Consider now the ith decoding iteration, where 1 ≤ i ≤ #0.

Let ϕ(i)
t,t+j(z|0) and ϕ(i)

t,t+j(z|1) be the PDFs of the messages
sent from the symbol node v(h)t,m, m = 1, . . . ,M , h = 0, 1,
associated with the tth time instant in the Tanner graph,
to one of its neighboring constraint nodes associated with
the (t + j)th time instant, conditioned on v(h)t,m = 0 and
v(h)t,m = 1, respectively. (Note that the PDF of the messages
sent by the symbol v(h)t,m to one of its neighboring constraint
nodes at time instant (t + j) depends only on the symbol,
its position (time instant) t in the Tanner graph, and the
time instant increment j, i.e., they do not depend on h and
m.) It follows from symmetry arguments that we also have
ϕ(i)
t,t+j(z|0) = ϕ(i)

t,t+j(−z|1). The Bhattacharyya parameter
B(i)

t,t+j of these messages, j = 0, . . . , J − 1, is equal to

B(i)
t,t+j =

∫ ∞

−∞

√
ϕ(i)
t,t+j(z|0)ϕ

(i)
t,t+j(z|1)dz (11)

=

∫ ∞

−∞

√
ϕ(i)
t,t+j(z|0)ϕ

(i)
t,t+j(−z|0)dz .

Note that the Bhattacharyya parameter is an upper bound on
the bit error probability and hence can serve to estimate its
value. The Bhattacharyya parameter A of the intrinsic channel
LLRs α is equal to exp(−REb/N0), where Eb/N0 is the SNR
per bit [3]. The following theorem connects the Bhattacharyya
parameters corresponding to the LLRs of two consecutive
decoding iterations.
Theorem 3: The Bhattacharyya parameter B(i)

t,t+j , defined
by (11) for i = 2, . . . , #0 and j = 0, . . . , J − 1, satisfies the
following inequality

B(i)
t,t+j < A

∏

j′ "=j

B(i−1)
t,t+j′ +

∑

l "=j′

(B(i−1)
t+j′−l,t+j′)

2

 , (12)

where j′, l ∈ {0, . . . , J − 1} and B(1)
t,t+j = A. !

The proof of Theorem 3 is analogous to the proof of
Lemma 1 in [3]. Inequality (12) also follows from [18, Lemma
4.1 and equation (4.6)].
Now define B(i)

max as the largest value of B(i)
t,t+j over all

edges in the graph, i.e.,

B(i)
max = max

t,j
B(i)

t,t+j , j ∈ {0, . . . , J − 1} . (13)

Then it follows from (12) that

B(i)
t,t+j ≤ B(i)

max < A
(
(2J − 1)B(i−1)

max

)J−1
. (14)

Suppose now that, after some iteration i, i < #0, all Bhat-
tacharyya parameters B(i)

t,t+j are smaller than the breakout
value

Bbr = A−1/(J−1)(2J − 1)−(J−1)/(J−2) . (15)

Then, as shown in [3], if the number of independent iterations
#0 goes to infinity, the bit error probability of all symbols
converges to zero at least doubly exponentially with the
number of iterations.
Instead of observing the evolution of the Bhattacharyya

parameter B(i)
t,t+j , we can also observe the evolution of the

probability of hard decision error P (i)
t,t+j defined2 as

P (i)
t,t+j =

∫ ∞

0
ϕ(i)
t,t+j(z|1)dz =

∫ 0

−∞

ϕ(i)
t,t+j(z|0)dz . (16)

The integrals are the probabilities of error of the hard
decisions made with respect to a symbol, given that the symbol
is 1 and 0, respectively, after i iterations. Then it follows from
(11) that

B(i)
t,t+j = 2

∫ ∞

0

√
ϕ(i)
t,t+j(z|0)ϕ

(i)
t,t+j(−z|0)dz (17)

≤ 2

√∫ ∞

0
ϕ(i)
t,t+j(z|0)dz

∫ ∞

0
ϕ(i)
t,t+j(−z|0)dz

= 2
√

P (i)
t,t+j(1− P (i)

t,t+j) ,

2Strictly speaking, P (i)
t,t+j is the probability of hard decision error made on

the basis of a message (10) sent by a symbol node to one of its neighboring
constraint nodes, i.e., it does not include information sent by this constraint
node to the symbol node, but P (i)

t,t+j can be easily calculated in the process
of density evolution.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 8

were we have used Cauchy’s inequality. From (17), it follows
that it is sufficient to observe the evolution of

P (i)
max = max

t,j
P (i)
t,t+j , j ∈ {0, . . . , J − 1} , (18)

until it became less than

Pbr = B2
br/4 . (19)

This means that we can perform density evolution until the
hard decision error probabilities P (i)

t,t+j reach a sufficiently low
level defined by (19).
To determine the convergence thresholds of terminated

codes from the ensemble CP (J, 2J,M) it is possible, in
principle, to use the standard parallel updating schedule. In
this case we must evaluate numerically, iteration by iteration,
the different PDFs ϕ(i)

t,t+j(z|0) = ϕ(i)
t,t+j(−z|1) for all time

instants t, 1 ≤ t ≤ L, and for all j, 0 ≤ j ≤ J − 1. Note
that, in addition to the node degrees J and K, the termination
length L is another parameter that influences the result. While
increasing L reduces the rate loss of the terminated code,
the computational burden of performing density evolution
becomes increasingly difficult for larger L. Both the number
of different PDFs to be tracked and the number of iterations
needed for the effect of the strong nodes at the ends of the
graph to propagate to the time instants in the center increase
with L. Also, for the AWGN channel, the complexity of
density evolution is much greater than for the BEC, where a
simple one-dimensional recursion formula can be used. In the
next section we therefore consider a sliding window updating
schedule that reduces the number of operations required for
the threshold computation.

IV. SLIDING WINDOW DECODING
In the standard parallel updating schedule, considered in the

previous section, first all constraint nodes and then all symbol
nodes are updated in each iteration. This is convenient for
analysis, since then the computation trees of all symbols have
a very regular structure. An alternative schedule, where the
constraint nodes are activated one by one and a symbol node
is activated whenever a message is demanded by a neighboring
constraint node, was considered in [27]. It has been observed
from computer simulations that such an on-demand symbol
node updating schedule can reduce the required number of
decoding iterations [9], [27].
In this section we analyze the following message passing

schedule for decoding terminated LDPCC codes. Consider the
Tanner graph of a terminated LDPCC code, where symbol
nodes are labeled by time instants t, t = 1, . . . , L (see Figure
3). For simplicity, we assume that L is even. Suppose that
two decoders operate in turn on different regions of the graph
defined by two windows of size not exceeding W , W ≤ L/2.
In the k-th decoding round, k = 1, . . . , L/2, the first decoder
operates on symbol nodes within the window t ∈ [k,min(k+
W −1, L/2)] and the second decoder on symbol nodes within
the window t ∈ [max(L/2 + 1, L−W − k + 2), L− k + 1],
as illustrated in Figure 7.
Within their windows, the decoders perform Ik iterations

during round k according to the following updating schedule.

Decoder 1 Decoder 2

k = 1

k = 2

k = 8

k = 9

k = 10
t = 1 t = 20

...
...

Fig. 7. Decoding windows from symbol node perspective at different rounds
k for W = 3 and L = 20.

Symbol node updates are performed time instant by time
instant, from left to right for the first decoder and from
right to left for the second decoder. Before each symbol
node update, all its neighboring constraint nodes are updated,
i.e., we employ the on-demand constraint node updating
schedule. Compared to the parallel schedule, the contribution
of individual nodes to the exchanged messages flows faster
through the graph.
The window defines the time instants t of the symbol nodes

that are updated in a decoding round k. The activated check
nodes and also the symbol nodes of their incoming messages
may hence lie outside the window. As a consequence, the two
decoders exchange messages when the windows approach the
center of the graph, although the windows never overlap.
We now apply density evolution analysis to this schedule,

considering first the BEC. Assume that M is large enough so
that the decoders operate in cycle-free regions of the graph,
i.e., each symbol contributes to a message at most once. The
number of iterations in the kth round, Ik, is chosen such that
all erasure probabilities p(i)k,k+j , j ∈ {0, J − 1}, defined by (8)
become less than some sufficiently small value B0, where 0 <
B0 < Bbr (we call this the breakout value condition). Then the
window is shifted by increasing the starting time instant k by
one and the procedure is repeated for round k+1. Analogously,
in the kth round, the nodes in the second window are updated
until the probabilities p(i)L−k+1,L−k+1−j , j ∈ {0, . . . , J − 1},
reach the value B0. Then the window is shifted to the position
corresponding to the (k + 1)th round. From the symmetry
of the Tanner graph, it follows that the computations of the
two decoders are identical, and it is sufficient to perform the
calculations for the first decoder3 for k = 1, . . . , L/2.
For the AWGN channel, density evolution can be performed

analogously. In round k the PDFs ϕ(i)
t,t+j(z|0) = ϕ(i)

t,t+j(−z|1)
are evaluated numerically, iteration by iteration, for all time
instants t in the window. In parallel, the hard decision error
probabilities P (i)

k,k+j , j ∈ {0, . . . , J − 1}, defined by (16) are
calculated for the window’s leftmost time instant t = k. When
at some iteration Ik the probability maxj P

(Ik)
k,k+j reaches some

sufficiently small value P0, 0 < P0 < Pbr (the breakout value
condition), the window is shifted by increasing the starting
time instant k by one and the procedure is repeated for round
k + 1.
3Although the first decoder receives messages from the second one, the

PDFs of these messages are, by symmetry, equivalent to some of those from
decoder one, which are available from earlier computations and need not be
evaluated separately.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 9

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10−4

10−3

10−2

10−1

100

I(
t)

t
(a)

i
(b)

P
(i
)

m
ax

t = 1 t = 5 t = 10 t = 15 t = 20

t = 25 and 30

Fig. 8. (a) Total number of iterations I(t) for nodes at time t and (b) evolution of the bit error probability P
(i)
max at time t with iterations i = 1, . . . , I(t)

for J = 3, L = 100, and W = 20. The results correspond to an AWGN channel with Eb/N0 = 0.55 dB.

In Section III it was shown that fulfilling the breakout
value condition for all symbol nodes implies that the bit error
probability converges to zero with an increasing number of
iterations. However, this result was derived for a decoder based
on the standard parallel updating schedule and the number
of independent iterations guaranteed by Theorem 2 relies on
this assumption. In general, the node activation order used in
decoding determines the particular shape of the computation
trees for the different code symbols. Since, for any finite
number of node activations, the depths of the computation
trees will be finite as well, it follows that these trees can be
covered by trees corresponding to a parallel updating schedule
with a sufficient number of iterations. Consequently, any node
updating schedule can be interpreted as a parallel schedule,
where certain node activations are omitted. But, under the
independence assumption, such an omission of additional side
information can never improve the performance of decoding,
which results in the following proposition. (A similar result
has also been obtained in [28].)
Proposition 1: Consider density evolution with an arbitrary

node activation order. Assume that after a specific number of
node activations the Bhattacharyya parameters of all symbol
node messages are below some value B0 and the breakout
value condition is satisfied, i.e., B0 < Bbr. Then the value B0

can also be reached for a standard parallel updating schedule
after a sufficiently large number of iterations. !

To demonstrate the threshold computation procedure with
the window updating schedule, consider an AWGN channel

with an SNR of Eb/N0 = 0.55 dB for the case J = 3 , L =
100, and W = 20. By definition, Ik iterations are performed
within the window in each decoding round k. It follows that
the total number of iterations I(t) for each node at time t,
t = 1, . . . , L/2, is equal to

I(t) =
t∑

k=max(1,t−W+1)

Ik ,

which can be written recursively as

I(t) =

{
I(t−1) + It for 1 < t ≤ W

I(t−1) − It−W + It otherwise
. (20)

In this example, the values I(t) are shown in Fig. 8 (a)
for the time instants t within the operation region of the
first decoder. The number of iterations Ik at each decoding
round k is chosen such that the breakout value condition is
satisfied for t = k. The chosen channel SNR corresponds
to the estimated threshold, which explains the large number
of required iterations. In the first round, I1 = 509, but
only I2 = 220 iterations are required for the second round,
and a similar value is observed for the following rounds
k = 3, . . . , 37. As a consequence of (20), the number I(t)

increases until a maximum value is reached at t = W = 20.
Then it remains constant until the effect of the second decoder
reduces the number of iterations Ik at times t = k close to
the center of the Tanner graph.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 10

The bit error probability P (i)
max at time t, as a function of the

number of iterations i = 1, . . . , I(t), is shown in Fig. 8(b) for
different t. Observe from the figure that the P (i)

max curves for
time instants t = 25 and t = 30 are almost indistinguishable.
This is actually the case for all time instants t for which I(t)

stays constant. This behavior indicates that the calculations
tend to repeat themselves at different window positions. From
this we may conclude that the effect of the strong nodes at
the ends of the Tanner graph carries through to the center,
independent of the termination length L.
These observations suggest that detecting convergence at

time t = 1 is sufficient to determine the overall convergence
threshold, which is confirmed for the BEC by the following
theorem.
Theorem 4: Consider density evolution for the BEC with

erasure probability ε and the window updating schedule for an
arbitrary termination length L. Let the message probabilities
at times t < 1 and t > L be initialized by B0, 0 < B0 < Bbr.
If, under these conditions, the value B0 is reached at time
t = 1 after some number of iterations I1 in round k = 1, so
that the window can be shifted one step further, then, for the
actual initial probabilities, the value B0 can be reached at all
times t, t = 1, . . . , L. !

Proof: We prove the theorem by induction. Assume that
at the beginning of decoding round k the message probabilities
from symbol nodes to constraint nodes satisfy

p(i)t,t+j =

{
B0 if t < k

ε if t ≥ k
, ∀j ∈ {0, J − 1} , (21)

and that after I∗k further iterations the message probabilities
became smaller than or equal to B0 at time t = k and smaller
than or equal to ε at times t > k within the window. After
shifting the window, the same condition must then be fulfilled
for round k+1 after I∗k+1 ≤ I∗k iterations4. This follows since
the message probabilities within the window before round k+1
are all smaller than or equal to those in (21). If the messages
probabilities at times t < 1 are initialized by B0 before the
first round, then it follows by induction that B0 can be reached
at all other times up to the center of the Tanner graph. The fact
that the symbols at times t < 1 are known due to termination,
so that the actual initial probabilities are equal to 0 (which is
smaller than B0), can only improve the performance, which
finally proves the statement of the theorem.
Theorem 4 allows us to determine valid channel values ε for

which a decoder with the window updating schedule, under
the assumption that all exchanged messages are statistically
independent, can reach a given value B0 < Bbr at all time
instants t = 1, . . . , L for arbitrarily large termination lengths
L. If a channel value is identified as valid for a specific
termination length L and window size W , W < L/2, it
follows that it is valid for all termination lengths L′ > L
and even for non-terminated LDPCC codes. According to
Proposition 1, if the breakout value can be achieved under the

4Actually, the message probabilities are then smaller than B0 or ε. But
they could be set equal to B0 and ε by introducing some artificial additional
erasures. The conventional decoder can never perform worse than such a
modified decoder.

window updating schedule, then it can be achieved under the
parallel updating schedule as well, provided that the number
of iterations is chosen sufficiently large. But, for the parallel
updating schedule, Theorem 2 ensures that, for an arbitrary
number #0 of independent decoding iterations, we can find
a suitable code if M is chosen sufficiently large. It then
follows from (14) that the bit error probability of all symbols
in the terminated code converges to zero at least doubly
exponentially with the number of iterations under the standard
parallel updating schedule. As a result, Theorem 4 can be used
to obtain lower bounds on the density evolution threshold, as
stated in the following corollary.
Corollary 5: Consider standard belief propagation decod-

ing of codes obtained from the ensemble CP (J, 2J,M) by
termination. Any channel value ε that satisfies the condition of
Theorem 4 for some given values L,W < L/2, and B0 < Bbr
represents a lower bound on the density evolution threshold
ε∗ that can be achieved as M → ∞ for any fixed termination
length L′ ≥ L. !

We conjecture that the statements of Theorem 4 and Corol-
lary 5 are true for other binary-input memoryless channels as
well. Although this is technically difficult to prove, all our
calculations for the AWGN channel (see, e.g., Fig. 8) support
this conjecture.
In the following section, numerical calculations of thresh-

olds for the BEC and the AWGN channel are given.

V. RESULTS AND DISCUSSION

Let us first consider the BEC, for which a simple evaluation
of density evolution according to (7) and (8) is possible.
In Table I we present the thresholds ε∗conv for terminated

(3,6) LDPCC codes of frame length 2LM with (L − τ)M
information symbols, where τ ≤ ms + 1 = 3. Assuming
equality, the code rate is Rconv = (L − 3)/(2L). The first
column shows L, the second column shows the resulting
rate Rconv of the terminated convolutional code, and the third
column gives the threshold ε∗conv. For L = 10, the threshold
is quite high, in fact larger than the Shannon limit for rate
R = 1/2 codes. However, in this case there is a significant rate
loss and the rate Rconv of the terminated code is only 0.350.
For larger L and correspondingly larger rates, the threshold
remains constant at a value of 0.488. From Theorem 4, we
conclude that the threshold stays at this value for L going
to infinity and, consequently, that the rate of the terminated
code can be made arbitrarily close to 0.5 without affecting the
threshold.
The fourth column of Table I shows the thresholds ε∗irr-blk

for random irregular LDPC block codes having the same
degree distributions as the terminated convolutional codes (see
[19] or [20] for a definition of degree distributions). Note
that the degree distribution of the irregular codes depends
on L and that they have the same rate as the terminated
convolutional codes. We observe that the thresholds of the
terminated convolutional codes are better than those of the
corresponding irregular LDPC block codes. With increasing L,
the degree distribution of the terminated convolutional codes
tends to that of a (3,6) regular LDPC block code. Therefore

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 11

L Rconv ε∗conv ε∗irr-blk
10 0.350 0.504 0.501
25 0.440 0.488 0.456
50 0.470 0.488 0.442
100 0.485 0.488 0.436
150 0.490 0.488 0.433

TABLE I
BEC THRESHOLDS FOR THE ENSEMBLE CP (J, 2J,M). CORRESPONDING
IRREGULAR BLOCK CODE THRESHOLDS ARE SHOWN FOR COMPARISON.

L Iterations checked
at all t

Iterations
checked only at t = 1

18 523 514
20 1113 1090
30 5918 3060
50 15912 3064
100 40899 3064

TABLE II
BEC THRESHOLD CALCULATION WITH PARALLEL UPDATING SCHEDULE

FOR THE ENSEMBLE CP (3, 6,M): THE INFLUENCE OF L ON THE
REQUIRED NUMBER OF ITERATIONS.

it is not surprising that the thresholds of the corresponding
irregular LDPC block codes tend to the threshold of a (3,6)
regular LDPC block code, which is equal to ε∗reg-blk = 0.429.
However, the thresholds of the terminated LDPC convolutional
codes remain unchanged as L increases. The improvement in
threshold can be attributed to the structure imposed on the
Tanner graph by the convolutional nature of the code.
Table II shows how L influences the required number of

iterations with the parallel updating schedule. The second
column gives the number of iterations required for the erasure
probability of all messages to satisfy the breakout condition for
the value B0 = 10−5. The third column gives the number of
iterations for the case when the breakout condition is checked
for symbol nodes at time t = 1 only. The results in Table II
reflect the fact that, for larger L, the messages from the
stronger nodes at the ends of the Tanner graph need more
time to affect the symbols in the center.
Corresponding values for the sliding window approach are

shown in Table III for L = 100 and different window sizes
W . In this example, the number of iterations in the first
decoding round I(1) stays constant for W ≥ 30, indicating
that a larger window will not further improve the bit error
probability performance. As shown in the table, convergence
at the threshold ε∗conv can be guaranteed for any W ≥ 14.
However, for W < 30, the rate of convergence is slower and
the value I(1) increases.

W I(1) Average Iterations
checked at all t checked only at t = 1

14 3088 15899 865
15 2294 9987 688
20 2015 10246 806
30 2012 13820 1207
40 2012 16114 1610
on demand 26697 2004

TABLE III
BEC THRESHOLD CALCULATION WITH WINDOW UPDATING SCHEDULE
FOR THE ENSEMBLE CP (3, 6,M) WITH L = 100: THE INFLUENCE OF W
ON THE REQUIRED NUMBER OF ITERATIONS. ON DEMAND UPDATING

SCHEDULE WITHOUT WINDOW IS SHOWN FOR COMPARISON.

(J,K) Rconv ε∗conv ε∗blk
(3,6) 0.49 0.488 0.429
(4,8) 0.49 0.497 0.383
(5,10) 0.49 0.499 0.341

TABLE IV
BEC THRESHOLDS OF TERMINATED LDPCC CODES FOR THE ENSEMBLES

CP (M, 2M,J) WITH DIFFERENT J .

A measure of complexity for the threshold calculation in
density evolution is the average number of iterations over
all time instants. For larger windows this value increases,
since the nodes at a given time instant are activated during
a larger number of decoding rounds. In Table III, the required
number of iterations for the on demand updating schedule
without a window is also shown for comparison, and from
Tables II and III we see that the number of iterations can
be reduced from 40899 to 26697 without a window. For a
window of size W = 15, this number can be further reduced
to 9987 if the symbol nodes at all time instants are checked.
According to Proposition 1, the threshold is the same for all
these approaches. Finally, using Theorem 4, only 688 iterations
are required. This example illustrates the large computational
savings obtained from the sliding window approach, which is
especially useful for the AWGN channel, where the numerical
representation of the message distributions and hence the
computations within density evolution are more involved.
In Table IV, thresholds for the BEC are presented for

different J . In each case L is chosen so that there is a rate loss
of 2%. The first column in Table IV shows the values J and
K of the underlying convolutional code, the second column
the rate Rconv of the terminated code, the third column the
threshold ε∗conv, and the fourth column the threshold ε∗blk for
randomly chosen regular LDPC block codes with the same J
and K. We again observe that the thresholds of the terminated
convolutional codes are much better than for the corresponding
block codes. This is reasonable, since the constraint nodes at
either end of the Tanner graph in the terminated convolutional
codes have lower degrees than in the block codes. i.e., the
terminated convolutional codes have a structured irregularity.
Interestingly, the terminated convolutional codes with higher

J have better thresholds than those with lower J . This
behavior is different from that of randomly constructed (J,K)
regular LDPC block codes, where, for a fixed rate, increasing
J typically results in worse thresholds, since it is necessary
to increase K accordingly5. For randomly constructed regular
LDPC block codes, the loss due to the higher constraint node
degrees outweighs the gain resulting from the higher symbol
node degrees, adversely affecting performance. However, in
the LDPCC code case, the codes with higher J still have strong
constraint nodes with low degrees at either end of the Tanner
graph. Thus the symbols at the ends are better protected for
codes with larger symbol degrees, and this results in better
thresholds.
Oswald and Shokrollahi have constructed LDPC block code

ensembles from sequences of right regular degree distributions

5Recall that symbol nodes with higher degrees are stronger than those
with lower degrees, but higher degree constraint nodes are weaker than lower
degree constraint nodes.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 12

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

10−5

10−4

10−3

10−2

10−1

100

(3,6) conv.
(4,8) conv.
(3,6) block
(4,8) block

ε

Bi
tE
ra
su
re
Ra
te

Fig. 9. Simulation results of terminated LDPCC codes from the ensembles C(6000, 12000, 3) and C(6000, 12000, 5) (solid lines) for L = 100 and
L = 200, respectively. Regular LDPC block codes composed of permutation matrices of the same size M = 6000 are shown for comparison (dashed lines).
The vertical dashed-dotted lines show the convergence thresholds for the different ensembles.

(with fixed constraint node degrees) for which the convergence
thresholds of the bit erasure probability approach the Shannon
limit as the maximum symbol node degree tends to infinity
[29]. According to Table IV, with increasing J the conver-
gence thresholds of rate R = 0.49 terminated LDPCC codes
also tend toward the Shannon limit for rate R = 1/2 codes.
However, in this case, the degree distributions are not right
regular but left regular, i.e., all symbol nodes have the same
degree.
We now present the thresholds of terminated LDPCC codes

for a binary input AWGN channel, computed by discretized
density evolution [30]. In Table V, the thresholds (Eb/N0)∗,
calculated using the conventional parallel updating schedule
described in Section III, are presented for different J . The
values of L were chosen such that there is a rate loss of 2%,
i.e., R = 0.49, and the same values can be obtained using the
sliding window updating schedule described in Section IV.
Also shown in the table are the threshold values (Eb/N0)∗∗,
calculated for the case L → ∞, i.e., R = 1/2, using
the sliding window updating schedule, under the assumption
that Theorem 4 can be generalized to the AWGN channel.
Finally, the right hand side of the table shows the thresholds
(Eb/N0)∗∗blk of regular LDPC block codes with the same J .
The results of Table V for the AWGN channel are similar to

the results of Table IV for the BEC. In particular, we observe
that the thresholds of regular LDPCC codes are much better
than those of the corresponding regular LDPC block codes
and that the thresholds improve with increasing J .
In Table VI the thresholds of terminated LDPCC codes are

compared to upper bounds on the ML decoding thresholds of
regular LDPC block codes. The given upper bounds, which
were derived in [21], [22], follow from a lower bound on
the conditional entropy of the transmitted codeword given the
received sequence at the channel output. These information

(J,K) R (Eb/N0)∗ R (Eb/N0)∗∗ (Eb/N0)∗∗blk
(3,6) 0.49 0.55 dB 0.5 0.46 dB 1.11 dB
(4,8) 0.49 0.35 dB 0.5 0.26 dB 1.26 dB
(5,10) 0.49 0.30 dB 0.5 0.21 dB 2.05 dB

TABLE V
THRESHOLDS FOR THE ENSEMBLES CP (J, 2J,M) WITH DIFFERENT J FOR

AWGN CHANNEL WITH BINARY INPUT.

(J,K) ε∗conv ε∗blk,ML (Eb/N0)∗∗ (Eb/N0)∗∗blk,ML
(3,6) 0.488 0.49134 0.46 dB 0.371 dB
(4,8) 0.497 0.49798 0.26 dB 0.240 dB
(5,10) 0.499 0.49951 0.21 dB 0.203 dB

TABLE VI
BP THRESHOLDS FOR TERMINATED CODES FROM THE ENSEMBLES
CP (M, 2M,J) IN COMPARISON WITH UPPER BOUND ON THE ML
THRESHOLDS OF THE CORRESPONDING REGULAR BLOCK CODES.

theoretic bounds are given in terms of the degree distribution
of the parity-check nodes of an arbitrary code representation
and stay valid for any sequence of codes whose block error
probability vanishes. Surprisingly, the values in Table VI show
that terminated LDPCC codes almost achieve the bounds on
the ML thresholds even under the sub-optimal and practical
iterative belief propagation decoding algorithm. The results
also demonstrate the tightness of the information theoretic
bounds, which are easy to compute and can be useful as a
starting point in searching for the iterative decoding thresholds,
which is computationally intensive due to the large number of
iterations required to obtain low bit error probabilities at rates
close to capacity.
Finally, simulation results of some randomly chosen termi-

nated LDPCC codes with J = 3 (L = 100) and J = 5 (L =
200) are given in Fig. 9 and compared to the corresponding
regular LDPC block codes. The choice of L leads to an equal

(4,8) should be (5,10) in the legend
this is a typo, M Lentmaier

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 13

rate R = 0.49 for both LDPCC codes6. The curves in Fig. 9
are obtained with randomly selected permutation matrices of
size M = 6000 under standard belief propagation decoding
with the parallel updating schedule. In order to demonstrate
that low error rates close to the calculated thresholds are
achievable, a maximum number of 5000 iterations was allowed
in the simulations to allow a progression of reliable messages
through all time instants t = 1, . . . , L. Note that, although
the overall block length N = 2LM increases with L, for a
fixed M the performance improves with decreasing L at the
expense of a higher rate loss, as indicated in Table I. On the
other hand, after some sufficiently large L, convergence to a
steady behavior is expected (also seen in Table I), since the
potential strength of a convolutional code in C(M, 2M,J) is
determined by its constraint length ν = 2M(ms + 1), which
is independent of the termination length L. While the number
of required decoding iterations under the parallel updating
schedule increases significantly with L (see also Table II) , the
analysis in Section IV suggests that a sliding window decoder
can provide a good performance complexity trade-off with an
iteration number per decoded symbol that is independent of
the termination length L. We see this as a promising direction
for further research.

VI. CONCLUSION
In this paper, we have analyzed the iterative decoding

thresholds of a special class of terminated rate R = 1/2,
(J, 2J) regular LDPCC codes for the BEC and the AWGN
channel. We show that these thresholds not only are better than
the belief propagation decoding thresholds of corresponding
regular LDPC block codes, but that they are even very close
to the ML decoding thresholds of the latter. To calculate the
thresholds for a particular termination length, we made use
of the density evolution technique that is commonly used to
calculate the thresholds of LDPC block codes, noting that the
particular Tanner graph structure of the terminated LDPCC
codes must be taken into account. To calculate the thresholds
for large termination lengths, we proposed a sliding window
updating schedule. Using this approach, we proved for the
BEC that the calculated thresholds are valid for arbitrarily
large termination lengths, and we conjecture that this is also
true for the AWGN channel and for unterminated LDPCC
codes. Although we considered only rate R = 1/2 codes,
we can expect similar behavior for other rates. It is especially
interesting that the thresholds of regular LDPCC codes, in
contrast to the thresholds of regular LDPC block codes,
improve with increasing density of the parity-check matrices.

APPENDIX
Sketch of the proof of the Theorem 1.
Let the vector vL′ = (v(0)

1 ,v(1)
1 , . . . ,v(0)

L′ ,v
(1)
L′), v

(h)
t ∈

FM
2 , for t = 1, . . . L′, h = 0, 1, with v

(0)
1 += 0 denote

the systematically encoded codeword corresponding to an
information block of length L′ starting at t = 1. For each

6Both selected codes can be terminated within τ = ms = J − 1 time
instants.

time instant t, 1 ≤ t ≤ L′, the vector vL′ consists of an
information block v

(0)
t of length M and the corresponding

length M parity block v
(1)
t . For a code C in CP (J, 2J,M),

we define the partial syndrome vector [9] associated with vL′

at time t as st = (s(t,1), . . . , s(t,ms)), where

s(t,j) = [v(0)
t ,v(1)

t]HT
j (t+ j) + s(t−1,j+1), j = 1, . . . ,ms ,

(22)
and, by definition, s(0,j) = 0 for all j, s(t,j) = 0, 1 ≤ t ≤ L′,
j > ms, and each s(t,j), j = 1, . . . ,ms, is an M -dimensional
vector. Encoding can be carried out by solving the equation

0 = [v(0)
t ,v(1)

t]HT
0 (t) + s(t−1,1), (23)

to determine the parity-block v(1)
t for each t. Thus knowledge

of the partial syndrome vector st−1 at time t − 1 and the
information block v

(0)
t makes the future independent of the

past. The syndrome former trellis can be defined using the
partial syndrome vectors as states. Equations (22) and (23)
define the transitions, i.e., the next state and branch labels, of
this trellis. The initial syndrome former state s0 is the zero
vector, i.e., we start from the all-zero state.
To terminate the code to a total length N = 2LM ,

where L = L′ + τ , we seek a length 2τM tail vector
ṽ[L′+1,L′+τ] = (ṽ(0)

L′+1, ṽ
(1)
L′+1, . . . , ṽ

(0)
L′+τ , ṽ

(1)
L′+τ), ṽ

(h)
L′+t ∈

FM
2 , for t = 1, . . . , τ , h = 0, 1, such that the final syndrome
former state sL′+τ is the zero vector, i.e., we terminate back
to the all-zero state. This is equivalent to solving the system
of linear equations

ṽ[L′+1,L′+τ]H
T
[L′+1,L′+τ] = (sL′ ,0, . . . ,0)1×(τ+ms)M ,

(24)
where the 2τM × (τ +ms)M matrix H

T
[L′+1,L′+τ] is given

by (25).
To continue, we need the following property of the partial

syndrome vector for codes in CP (J, 2J,M) .
Lemma 1 ([24]): For any code C in CP (J, 2J,M), the

components s(t,j) of a partial syndrome vector st have even
weight. !

Theorem 1 is proved if we show that, for τ = ms + 1
and for almost all codes in CP (J, 2J,M), equation (24) has
a solution for any valid partial syndrome vector sL′ , i.e., a
vector with components of even weight. In other words, we
show that any sequence vL′ can be terminated with a tail of
2M ·τ = 2M(ms+1) bits. For simplicity, we consider below
the ensemble CP (3, 6,M). In this case τ = ms + 1 = 3 and
the tail bits are determined by solving the equation

ṽ[L′+1,L′+3]H
T
[L′+1,L′+3] = (sL′ ,0,0,0)1×5M , (26)

where the 6M × 5M matrix H
T
[L′+1,L′+3] is given by (27)

and the sub-matrices H
T
i (t) are composed of two M × M

permutation matrices. Figure 10 shows the permutation ma-
trices that comprise H

T
[L′+1,L′+3]. The existence or lack of

solutions of (26) depends on the rank of HT
[L′+1,L′+3]. We

now proceed to show that HT
[L′+1,L′+3] has almost full rank.

For convenience, let A denote the matrix H
T
[L′+1,L′+3].

With A viewed as a 6 × 5 block matrix, let A(i,j),
i = 1, . . . , 6, j = 1, . . . , 5, denote the M × M matrix in

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 14

P
(0)
0 (t) P

(0)
1 (t + 1) P

(0)
2 (t + 2)

P
(1)
0 (t) P

(1)
1 (t + 1) P

(1)
2 (t + 2)

P
(0)
0 (t + 1) P

(0)
1 (t + 2) P

(0)
2 (t + 3)

P
(1)
0 (t + 1) P

(1)
1 (t + 2) P

(1)
2 (t + 3)

P
(0)
0 (t + 2) P

(0)
1 (t + 3) P

(0)
2 (t + 4)

P
(1)
0 (t + 2) P

(1)
1 (t + 3) P

(1)
2 (t + 4)

Fig. 10. The matrix H
T
[L′+1,L′+3].

the ith row and jth column of A. Note that the matrices
A(i,j) are either permutation matrices or the all-zero matrix.
Consider the ensemble A consisting of matrices of the form
A with probability distribution inherited from the ensemble
CP (3, 6,M), so that each of the permutation sub-matrices
comprising A is chosen independently and all M ! values
are equally likely. We now perform row operations on A to
reduce it to diagonal form, using the following property of
permutation matrices:

For any two permutation matrices P 1, P 2, there exists a
permutation matrix P 3 such that

P 1P 3 = P 2 . (28)

This follows from the facts that a permutation matrix is
invertible and that the product of any two permutation matrices
is another permutation matrix. In fact, P 3 = P

−1
1 P 2.

The row operations on A are carried out by viewing it as
a 6 × 5 matrix with M × M matrices as entries. We next
consider a four step procedure of matrix transformation. Note
that operations in the procedure do not change the rank of the
matrix on which we operate.
Step 1: Let C(2,1) be such that A(1,1)C(2,1) = A(2,1).

Multiply each of the matrices A(1,j), j = 1, . . . , 6, in the
first row by C(2,1) and add the products to the matrices
A(2,j), j = 1, . . . , 6, in the second row. Then the matrix

Ā(2,1) in the first column of the second row, i.e., in position
(2, 1), of the resulting matrix is the all-zero matrix. The two
non-zero entries in the second row of the resulting matrix,
i.e., the matrices in positions (2, 2) and (2, 3), are sums of
two permutation matrices. Further, each of these matrices can
be assumed to be chosen independently and equally likely. We
now repeat the same process for the third and fourth and the
fifth and sixth rows ofA so that the matrices Ā(4,2) and Ā(6,3)

in positions (4, 2) and (6, 3) of the resulting matrix Ā are the
all-zero matrix. Step 2: The matrix in position (2, 2) of Ā is
the sum of two permutation matrices, say Ā

(1)
(2,2) and Ā

(2)
(2,2).

Let C̄(1)
(2,2) and C̄

(2)
(2,2) be such that Ā(3,2)C̄

(1)
(2,2) = Ā

(1)
(2,2)

and Ā(3,2)C̄
(2)
(2,2) = Ā

(2)
(2,2). Multiply each of the matrices

Ā(3,j), j = 1, . . . , 6, by C̄(1)
(2,2)+ C̄

(2)
(2,2) and add the products

to the second row. Then the matrix Ã(2,2) in position (2, 2) of
the resulting matrix Ã is the all-zero matrix, the matrix Ã(2,3)

in position (2, 3) is the sum of four permutation matrices,
and the matrix Ã(2,4) in position (2, 4) is the sum of two
permutation matrices. We then perform a similar operation on
the fourth and fifth rows so that the matrix Ã(4,3) in position
(4, 3) of the resulting matrix Ã is the all-zero matrix.
Step 3: The matrix Ã(2,3) in position (2, 3) of Ã is the sum

of four permutation matrices, say Ã
(i)

(2,3), i = 1, . . . , 4. Once
again we determine matrices C̃

(i)

(2,3), i = 1, . . . , 4, such that
Ā(5,3)C̃

(i)

(2,3) = Ā
(i)
(2,2), i = 1, . . . , 4. Then multiplying the

matrices Ā(5,j), j = 1, . . . , 6, by
∑4

i=1 C̃
(i)

(2,3) and adding
the products to the second row of Ã makes the matrix Â(2,3)

in position (2, 3) of the resulting matrix Â equal to the all-
zero matrix, and the matrices Â(2,4) and Â(2,5) in positions
(2, 4) and (2, 5) are sums of six and four permutation matrices,
respectively.
Step 4: Now reorder the rows of Â. The first and sixth

row of matrices in the resulting matrix A
′ are left unchanged.

The second row is moved to the fourth row, the third row to
the second, the fourth to the fifth, and the fifth to the third.
Observe that the 3×3 sub-matrix in the upper left corner ofA′

comprised of the matrices A′
(i,j), i = 1, . . . , 3, j = 1, . . . , 3,

has full rank, i.e., 3M .
We now state the following lemma, which is proved in [24].
Lemma 2: The probability that the 3× 3 sub-matrix B

T in
the lower right corner of A′ has rank less than 2M − 2 tends
to zero as M → ∞. !

From Lemma 2 and the definition of the matrix A follows
another lemma.

H
T
[L+1,L+τ] =

H
T
0 (L+ 1) . . . H

T
ms

(L+ms + 1)
.

H
T
0 (L+ τ) . . . H

T
ms

(L+ τ +ms)

 (25)

H
T
[L+1,L+3] =

H

T
0 (L+ 1) H

T
1 (L+ 2) H

T
2 (L+ 3)

H
T
0 (L+ 2) H

T
1 (L+ 3) H

T
2 (L+ 4)

H
T
0 (L+ 3) H

T
1 (L+ 4) H

T
2 (L+ 5)

 (27)

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 15

Lemma 3: The probability that the rank of any matrix A in
the ensemble A is less than 5M−2 tends to zero asM → ∞.

Proof: From the row operations described in the above four
step procedure, it follows that A has rank 3M+rank(BT).
Lemma 2 implies that the probability that rank (BT) < 2M−
2 tends to zero as M → ∞. This proves the lemma. !

Using Lemma 3 we now prove the existence of solutions to
(26).
Lemma 4: Equation (26) has a solution for almost all codes

in CP (3, 6,M).
Proof: Consider the matrix H

T
[L′+1,L′+3]. Since the sum

of columns of two permutation matrices is the zero vector,
it follows that the sum of the first, third, and fourth blocks
of columns of HT

[L′+1,L′+3] is the zero vector. Similarly, the
sum of the second, third, and fifth blocks of columns is the
zero vector. This implies that there are at least two depen-
dent columns in H

T
[L′+1,L′+3], or equivalently two dependent

equations in (26). From Lemma 3 it follows that, for almost
all codes, these are the only two dependent equations in (26).
Further, Lemma 1 implies that both components of the partial
syndrome state sL′ have even weight, i.e., the sum of its
components is zero. It is easy to check that the components
of the 5M -dimensional vector (s(L′,1), s(L′,2),0,0,0) corre-
sponding to the columns of HT

[L′+1,L′+3] that sum to zero
(i.e., the columns corresponding to the blocks of permutation
matrices that sum to zero) also sum to zero, i.e., the two
dependent equations are consistent. Hence, it follows that (26)
has a solution. !

Theorem 1 now follows from Lemma 4.

ACKNOWLEDGMENT

We would like to thank Dr. Igal Sason for pointing out and
providing his bounds on the ML decoding thresholds. Fur-
thermore we are grateful for the use of the high performance
computing facilities of the ZIH at TU Dresden.

REFERENCES
[1] A. Sridharan, M. Lentmaier, D. J. Costello, Jr., and K. S. Zigangirov,

“Convergence analysis of a class of LDPC convolutional codes for the
erasure channel,” in Proceedings of the 42nd Allerton Conference on
Communication, Control, and Computing, Monticello, IL, USA, 2004,
pp. 953–962.

[2] M. Lentmaier, A. Sridharan, K. S. Zigangirov, and D. J. Costello, Jr.,
“Terminated LDPC convolutional codes with thresholds close to capac-
ity,” in Proc. IEEE International Symposium on Information Theory,
Adelaide, Australia, Sept. 2005, pp. 1372–1376.

[3] M. Lentmaier, D. V. Truhachev, K. S. Zigangirov, and D. J. Costello,
Jr., “An analysis of the block error probability performance of iterative
decoding,” IEEE Transactions on Information Theory, vol. IT-51, no. 11,
pp. 3834–3855, November 2005.

[4] R. G. Gallager, Low-density parity-check codes. M.I.T. Press, Cam-
bridge, Massachusetts, 1963.

[5] R. M. Tanner, “Error-correcting coding system,” Patent No. 4,295,218,
Oct. 13, 1981.

[6] A. Jiménez Feltström and K. S. Zigangirov, “Periodic time-varying
convolutional codes with low-density parity-check matrix,” IEEE Trans-
actions on Information Theory, vol. IT-45, no. 5, pp. 2181–2190, Sept.
1999.

[7] K. Engdahl and K. S. Zigangirov, “On the theory of low density
convolutional codes I,” Problems of Information Transmission (Problemy
Peredachi Informatsii), vol. 35, no. 4, pp. 295–310, Oct.-Dec. 1999.

[8] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello,
Jr., “LDPC block and convolutional codes based on circulant matrices,”
IEEE Transactions on Information Theory, vol. IT-50, no. 12, pp. 2966–
2984, Dec. 2004.

[9] A. E. Pusane, A. Jiménez Feltström, A. Sridharan, M. Lentmaier, K. S.
Zigangirov, and D. J. Costello, Jr., “Implementation aspects of LDPC
convolutional codes,” IEEE Transactions on Communications, vol. 56,
no. 7, pp. 1060–1069, July 2008.

[10] A. Sridharan, D.V. Truhachev, M. Lentmaier, D.J. Costello, Jr., and
K.Sh. Zigangirov, “Distance bounds for an ensemble of LDPC con-
volutional codes,” vol. 53, no. 12, pp. 4537–4555, Dec. 2007.

[11] D. J. C. MacKay and M. C. Davey, “Evaluation of Gallager codes
for short block length and high rate applications,” in Codes, Systems
and Graphical Models, ser. IMA Volumes in Mathematics and its
Applications, B. Marcus and J. Rosenthal, Eds. , New York: Springer-
Verlag, 2001, vol. 123, ch. 5, pp. 113–130.

[12] A. Sridharan, M. Lentmaier, D. V. Truhachev, D. J. Costello, Jr., and
K. S. Zigangirov, “On the minimum distance of low-density parity-
check codes with parity check matrices constructed from permutation
matrices,” Problems of Information Transmission (Problemy Peredachi
Informatsii), vol. 41, no. 1, pp. 33–44, Jan.-March, 2005.

[13] T. Richardson and R. Urbanke, “The capacity of low-density parity
check codes under message-passing decoding,” IEEE Transactions on
Information Theory, vol. IT-47, no. 2, pp. 599–618, Feb. 2001.

[14] M. Lentmaier, D. V. Truhachev, and K. S. Zigangirov, “Analysis of the
asymptotic iterative decoding performance of turbo codes,” in Proc.
IEEE International Symposium on Information Theory, Washington,
USA, July 2001, p. 190.

[15] ——, “On the theory of low density convolutional codes II,” Problems
of Information Transmission (Problemy Peredachi Informatsii), vol. 37,
pp. 15–35, Oct.-Dec. 2001.

[16] K. S. Zigangirov, M. Lentmaier, and D. V. Truhachev, “Two approaches
to the analysis of low-density parity-check codes,” in Proc. IEEE
International Symposium on Information Theory, Lausanne, Switzerland,
July 2002, p. 29.

[17] A. Khandekar and R. J. McEliece, “A lower bound on the iterative
decoding threshold of irregular LDPC code ensembles,” in Proceedings
CISS 2002, Princeton, NJ, March 2002.

[18] A. Khandekar, “Graph-based codes and iterative decoding,” Ph.D. dis-
sertation, California Institute of Technology Pasadena, CA, 2002.

[19] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Ste-
mann, “Practical erasure resilient codes,” in Proceedings of the 29th
annual ACM Symposium on Theory of Computing, STOC, 1997, pp.
150–159.

[20] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Transac-
tions on Information Theory, vol. IT-47, no. 2, pp. 619–637, Feb. 2001.

[21] G. Wiechman and I. Sason, “Parity-check density versus performance
of binary linear block codes: New bounds and applications,” IEEE
Transactions on Information Theory, vol. 53, no. 2, pp. 550–579,
February 2007.

[22] I. Sason, “On universal properties of capacity-approaching LDPC code
ensembles,” IEEE Transactions on Information Theory, vol. 55, no. 7,
pp. 2956–2990, July 2009.

[23] R. Johannesson and K. S. Zigangirov, Fundamentals of convolutional
coding. IEEE Press, 1999.

[24] A. Sridharan, “Design and analysis of LDPC convolutional codes,” Ph.D.
dissertation, University of Notre Dame, Feb. 2005.

[25] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” in IPN Progress Report 42-154, JPL, Aug. 2003.

[26] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Linköping University, Sweden, 1996.

[27] A. E. Pusane, M. Lentmaier, K. S. Zigangirov, and D. J. Costello,
Jr., “Reduced complexity decoding strategies for LDPC convolutional
codes,” in Proc. IEEE International Symposium on Information Theory,
Chicago, USA, July 2004, p. 490.

[28] A. W. Eckford, “Low-density parity-check codes for Gilbert-Elliot and
Markov-modulated channels,” Ph.D. dissertation, University of Toronto,
2004.

[29] P. Oswald and A. Shokrollahi, “Capacity-achieving sequences for the
erasure channel,” IEEE Transactions on Information Theory, vol. IT-48,
no. 12, pp. 3017–3028, December 2002.

[30] S.-Y. Chung, J. Forney, G.D., T. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 db of the
Shannon limit,” Communications Letters, IEEE, vol. 5, no. 2, pp. 58–60,
Feb 2001.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION THEORY. 16

Michael Lentmaier received the Dipl.-Ing. degree in electrical engineering
from University of Ulm, Ulm, Germany in 1998, and the Ph.D. degree in
telecommunication theory from Lund University, Lund, Sweden in 2003. He
then worked as a Post-Doctoral Research Associate at University of Notre
Dame, Indiana, and at University of Ulm, Germany. From 2005 to 2007 he
was with the Institute of Communications and Navigation of the German
Aerospace Center (DLR) in Oberpfaffenhofen, working on high resolution
channel estimation techniques for multipath mitigation in satellite navigation
receivers. Since January 2008 he is a senior researcher and lecturer at the
Vodafone Chair Mobile Communications Systems at Dresden University of
Technology (TU Dresden). His research interests include design and analysis
of coding systems, graph based iterative algorithms and Bayesian methods
applied to decoding, detection and estimation.

Arvind Sridharan was born in Madras, India. He received the B.Tech degree
in electrical engineering from the Indian Institute of Technology, Madras,
India in 1999 the M.S. and Ph.D degrees in electrical engineering from the
University of Notre Dame, Notre Dame, IN, in 2001 and 2005, respectively.
Since February 2005 he has been with the coding and signal processing group
at Seagate Technology in Longmont, Colorado. His research interests include
the design and analysis of coding systems for recording, iterative decoding
and detection algorithms and information theory.

Kamil Sh. Zigangirov was born in the U.S.S.R. in 1938. He received the
M.S. degree in 1962 from the Moscow Institute for Physics and Technol-
ogy,Moscow, U.S.S.R., and the Ph.D. degree in 1966 from the Institute of
Radio Engineering and Electronics of the U.S.S.R. Academy of Sciences,
Moscow, U.S.S.R. From 1965 to 1991, he held various research positions
at the Institute for Problems of Information Transmission of the U.S.S.R.
Academy of Sciences, Moscow, first as a Junior Scientist, and later as a
Main Scientist. During this period, he visited several universities in the
United States, Sweden, Italy, and Switzerland as a Guest Researcher. He
organized several symposia on information theory in the U.S.S.R. In 1994, he
received the Chair of Telecommunication Theory at Lund University, Lund,
Sweden. From 2003 to 2009, he was a Visiting Professor at the University of
Notre Dame, Notre Dame, IN, the Dresden Technical University, Dresden,
Germany, and at the University of Alberta, Edmonton, AB, Canada. His
scientific interests include information theory, coding theory, detection theory,
and mathematical statistics. In addition to papers in these areas, he published a
book on sequential decoding of convolutional codes (in Russian) in 1974. With
R. Johannesson, he coauthored the textbook Fundamentals of Convolutional
Coding (Piscataway, NJ: IEEE Press, 1999). His book Theory of CDMA
Communication was published by IEEE Press in 2004.

Daniel J. Costello, Jr. was born in Seattle, WA, on August 9, 1942. He
received the B.S.E.E. degree from Seattle University, Seattle, WA, in 1964,
and the M.S. and Ph.D. degrees in Electrical Engineering from the University
of Notre Dame, Notre Dame, IN, in 1966 and 1969, respectively.
Dr. Costello joined the faculty of the Illinois Institute of Technology,

Chicago, IL, in 1969 as an Assistant Professor of Electrical Engineering.
He was promoted to Associate Professor in 1973, and to Full Professor in
1980. In 1985 he became Professor of Electrical Engineering at the University
of Notre Dame, Notre Dame, IN, and from 1989 to 1998 served as Chair of
the Department of Electrical Engineering. In 1991, he was selected as one
of 100 Seattle University alumni to receive the Centennial Alumni Award
in recognition of alumni who have displayed outstanding service to others,
exceptional leadership, or uncommon achievement. In 1999, he received a
Humboldt Research Prize from the Alexander von Humboldt Foundation in
Germany. In 2000, he was named the Leonard Bettex Professor of Electrical
Engineering at Notre Dame.

Dr. Costello has been a member of IEEE since 1969 and was elected Fellow
in 1985. Since 1983, he has been a member of the Information Theory Society
Board of Governors, and in 1986 he served as President of the BOG. He
has also served as Associate Editor for Communication Theory for the IEEE
Transactions on Communications, Associate Editor for Coding Techniques
for the IEEE Transactions on Information Theory, and Co-Chair of the IEEE
International Symposia on Information Theory in Kobe, Japan (1988), Ulm,
Germany (1997), and Chicago, IL (2004). In 2000, the IEEE Information
Theory Society selected him as a recipient of a Third-Millennium Medal.
He was co-recipient of the 2009 IEEE Donald G. Fink Prize Paper Award,
which recognizes an outstanding survey, review, or tutorial paper in any IEEE
publication issued during the previous calendar year.
Dr. Costello’s research interests are in the area of digital communications,

with special emphasis on error control coding and coded modulation. He has
numerous technical publications in his field, and in 1983 he co-authored a
textbook entitled ”Error Control Coding: Fundamentals and Applications”,
the 2nd edition of which was published in 2004.

