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Abstract—Massive MIMO, also known as very-large MIMO
or large-scale antenna systems, is a new technique that poten-
tially can offer large network capacities in multi-user scenarios.
With a massive MIMO system, we consider the case where
a base station equipped with a large number of antenna el-
ements simultaneously serves multiple single-antenna users in
the same time-frequency resource. So far, investigations are
mostly based on theoretical channels with independent and
identically distributed (i.i.d.) complex Gaussian coefficients, i.e.,
i.i.d. Rayleigh channels. Here, we investigate how massive MIMO
performs in channels measured in real propagation environments.
Channel measurements were performed at 2.6 GHz using a
virtual uniform linear array (ULA) which has a physically
large aperture, and a practical uniform cylindrical array (UCA)
which is more compact in size, both having 128 antenna ports.
Based on measurement data, we illustrate channel behavior of
massive MIMO in three representative propagation conditions,
and evaluate the corresponding performance. The investigation
shows that the measured channels, for both array types, allow us
to achieve performance close to that in i.i.d. Rayleigh channels.
It is concluded that in real propagation environments we have
characteristics that can allow for efficient use of massive MIMO,
i.e., the theoretical advantages of this new technology can also
be harvested in real channels.

Index Terms—Massive MIMO, very-large MIMO, multi-user
MIMO, channel measurements

I. INTRODUCTION

Massive MIMO is an emerging technology in wireless
communications, which has attracted a lot of interest in recent
years. With massive MIMO, we consider multi-user MIMO
(MU-MIMO) systems [1] where base stations are equipped
with a large number (say, tens to hundreds) of antennas.
As a comparison, the LTE standard only allows for up to 8
antennas at the base station [2]. In this way, massive MIMO
scales conventional MIMO by an order or two in magnitude.
Typically, a base station with a large number of antennas
serves several single-antenna users in the same time-frequency
resource.

It has been shown in theory that such systems have po-
tential to remarkably improve performance in terms of link
reliability, spectral efficiency, and transmit energy efficiency
[3]–[6]. Massive MIMO can also reduce intra-cell interference
between users served in the same time-frequency resource,
due to its focus of transmitted power to desired users. The
fundamental idea is that as the number of base station antennas
grows large, channel vectors between users and base station
become very long random vectors and, under “favorable”

propagation conditions, these channel vectors become pairwise
orthogonal. The term “favorable” is first defined in [6] as
the mutual orthogonality among user channels, and “favor-
able” propagation is further investigated in theory in [7]. We
can also interpret “favorable” propagation as a sufficiently
complex scattering environment. Under these conditions, even
simple linear precoding/detection schemes, e.g., zero-forcing
and matched-filtering, become nearly optimal [3], [4], [8].

The attractive features of massive MIMO are, however,
based on optimistic assumptions about propagation conditions
in combination with available low-cost hardware making it
possible to deploy large number of antennas. So far, inves-
tigations are mostly based on theoretical independent and
identically distributed (i.i.d.) complex Gaussian, i.e., Rayleigh
fading, channels and for antenna numbers that grow without
limit. Bringing this new technology from theory to practice, we
must ask to what degree the optimistic theoretical predictions
can be maintained in real propagation environments when
using practical antenna array setups. In attempts to answer
this question, massive MIMO propagation measurements have
been conducted and measurement data used to assess mas-
sive MIMO performance in real channels [8]–[12]. Channel
measurements in [8], at 2.6 GHz with an indoor base station
using a 128-port uniform cylindrical array (UCA) of patch
antennas, showed that orthogonality of user channels improves
significantly with increasing number of base station antennas.
Already at 20 antennas, linear precoding schemes operating
on measured channels achieve near-optimal performance for
two users. From measurements using a 128-element virtual
uniform linear array (ULA) at 2.6 GHz, presented in [9] and
[10], it was concluded that the angular power spectrum (APS)
of the incoming waves varies significantly along the physically
large ULA. This is a clear indication that large-scale/shadow
fading across the array is an important mechanism when
dealing with physically large arrays. As a comparison, the
UCA studied in [8] is relatively compact and much smaller
in size, but still a similar effect of variation in channel
attenuations can be experienced over the array. In this case it
is not primarily a large-scale/shadow fading effect, but rather a
consequence of the circular array structure and directive patch
antenna elements pointing in different directions. No matter
the source of these power variations over the array, they can
have a large influence on massive MIMO performance [13].
A measurement campaign independent of our investigations,
with an antenna array consisting of up to 112 elements, is
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reported in [12]. Results obtained there, which to a large
extent agree with our own experience [11], show that despite
fundamental differences between measured and i.i.d. channels
in terms of propagation characteristics, a large fraction of
the theoretical performance gains of massive MIMO can be
achieved in practice. A different approach to characterize
massive MIMO performance has been presented in [14], where
real propagation environment is replaced by simulation in a
reverberation chamber.

In this paper, we aim for a deeper insight into how
massive MIMO performs in real propagation environments.
The investigations are based on outdoor-to-outdoor channel
measurements using a 128-port UCA and a 128-port virtual
ULA, as described in [11]. We study the channel behavior
of massive MIMO under three representative propagation
conditions, where users are: 1) closely located with line-
of-sight (LOS) to the base station, 2) closely located with
non-line-of-sight (NLOS) to the base station, and 3) located
far from each other. When users are located close to each
other, spatial multiplexing with good isolation between users
can be particularly difficult, as compared to the case when
users are located far from each other. LOS conditions may
prove particularly difficult with highly correlated channels to
different users, making spatial multiplexing less efficient. The
more complex propagation in NLOS conditions is expected to
decorrelate channels to different users to a larger extent. We
investigate the corresponding performance obtained in these
scenarios, by calculating sum-rates based on measured channel
data and comparing with those obtained in i.i.d. Rayleigh
channels. As a complementary tool, we also study the sin-
gular value spreads for the measured channels. This gives
an indication of how large the difference is between the
most favorable and least favorable channels. Small singular
value spreads indicate stable channels to all users, while large
spreads indicate that one or more users may suffer from
significantly worse conditions than others.

In this investigation we compare two different large array
structures. From a practical point of view it is preferable to
have a compact array, such as the UCA, since it is easier
to deploy. However, if we make the array small, it will bring
drawbacks such as higher antenna correlation and poor angular
resolution. A two-dimensional structure like the UCA will,
however, have the ability to resolve incoming waves in two
dimensions. Using a much larger one-dimensional ULA with
the same number of elements, we benefit from a higher angular
resolution, but only in one dimension. Since both array struc-
tures have different characteristics, we can expect that they
perform differently in a massive MIMO setting. Depending
on how well the propagation environment suits each array
type, one may be better than the other. To investigate this,
we compare massive MIMO performance with the two arrays
in the same propagation environments.

The rest of the paper is organized as follows. In Sec. II,
we describe our massive MIMO channel measurements and
Sec. III, outlines the system model and performance met-
rics used when evaluating the measured channels, includ-
ing singular value spread and sum-rate capacity. Propagation
characteristics in three measured scenarios are illustrated and

discussed in Sec. IV. In Sec. V we evaluate singular value
spreads and sum-rate capacities for the measured channels.
Finally, in Sec. VI, we summarize our contributions and draw
conclusions.

II. CHANNEL MEASUREMENTS

In this section, we present the measurement campaigns for
massive MIMO channels, on which we base our study of prop-
agation characteristics and evaluations of system performance.
First we introduce the measurement setups, including antenna
arrays and measurement equipment. Then we describe the
semi-urban environment where measurements were performed
under different propagation conditions.

A. Measurement setups

Two channel measurement campaigns were performed with
two different large arrays at the base station side. Both arrays
are for the 2.6 GHz range and contain 128 antenna ports each,
with antenna elements spaced half a wavelength apart. Fig. 1a
shows the UCA having 64 dual-polarized patch antennas,
with 16 antennas in each of the four stacked circles, giving
a total of 128 antenna ports. This array is compact in size
with both diameter and height around 30 cm. Fig. 1b shows
the virtual ULA with a vertically-polarized omni-directional
antenna moving along a rail, in 128 equidistant positions. In
comparison, the ULA spans 7.4 m in space, which is more than
20 times the size of the UCA. In both measurement campaigns,
an omni-directional antenna with vertical polarization was
used at the user side.

Channel data were recorded at center frequency 2.6 GHz
and 50 MHz bandwidth. With the UCA, measurements were
taken with the RUSK LUND channel sounder, while for the
virtual ULA, an HP 8720C vector network analyzer (VNA)
was used. With the virtual ULA and VNA, it takes about half
an hour to record one measurement, when the antenna moves
from the beginning of the array to the end. In order to keep
the channel as static as possible during one measurement, we
performed this campaign during the night when there were
very few objects, such as people and cars, moving in the
measurement area. To verify that channel conditions were
static enough, some measurements were repeated directly after
the full array length was measured. The two measurements
done half an hour after each other were compared and found
to match well1.

Mutual coupling among antenna elements should also be
mentioned, since it is a critical issue that may affect massive
MIMO performance, if a large number of antennas are tightly
placed [15], [16]. Although the UCA is compact, the worst
case of mutual coupling between the neighboring elements is
-11 dB [17]. The virtual ULA, however, experiences no mutual
coupling effect. This may lead to different performance of the

1Comparing the two measured channels, i.e., the original one and the
verification one, we found that the two transfer functions are very similar,
however, there are minor differences due to channel variation and noise.
Average amplitude correlation coefficients between the two measured transfer
functions over all antenna positions are in the range of 0.95-0.99. Besides,
we observed that the two measured channels give very similar angular power
spectrum.
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a) UCA b) ULA

Fig. 1. Two large arrays at the base station side: a) a UCA with 64 dual-
polarized patch antenna elements, giving 128 ports in total, and b) a virtual
ULA with 128 vertically-polarized omni-directional antennas.

virtual ULA, as compared to a practical ULA. However, a the-
oretical study in [18] shows that coupling has a major impact
on MIMO capacity only when the element separation is below
0.2 wavelengths. Indeed, practical studies are also needed on
the impact of coupling on massive MIMO performance. This is
closely related to antenna array design, a topic not covered in
this paper. We focus on the propagation aspects and investigate
how different propagation conditions affect massive MIMO
performance.

B. Measurement environments

The channel measurements were carried out outdoors at
the E-building of the Faculty of Engineering (LTH), Lund
University, Sweden (N 55◦42′37.96′′, E 13◦12′39.72′′). Fig. 2
shows an overview of the semi-urban measurement area. The
two base station antenna arrays were placed on the same
roof of the E-building during their respective measurement
campaigns. More precisely, the position of the UCA was on
the same line as the ULA, near its beginning, and for practical
reasons about 25 cm higher than the ULA.

At the user side, the omni-directional antenna was moved
around the E-building at 8 measurement sites (MS) acting
as single-antenna users. Among these sites, three (MS 1-
3) have LOS conditions, and four (MS 5-8) have NLOS
conditions, while one (MS 4) has LOS for the UCA, but the
LOS component is blocked by the roof edge for the ULA,
due to the slightly lower mounting. Despite this, MS 4 still
shows LOS characteristic for the ULA, where one or two
dominating multipath components due to diffraction at the roof
edge cause a relatively high Ricean K-factor [19], [20]. At
MS 4, besides the roof-edge diffraction to the ULA, there is
also strong scattering from the building in the south. At each
measurement site, 40 positions with about 0.5 m inter-spacing
were measured with the UCA, and 5 positions with 0.5-2 m
inter-spacing were measured with the ULA. The reason for
having fewer positions with the ULA was due to the long
measurement time.

For all the measurements with the ULA, the average signal-
to-noise ratio (SNR) over all antenna elements was above
28 dB, while the lowest per-antenna SNR was above 23 dB.
With the UCA, at MS 1-4 and MS 7, the average SNR over

Fig. 2. Overview of the measurement area at the campus of the Faculty of
Engineering (LTH), Lund University, Sweden. At the base station side, the
two antenna arrays were placed on the same roof of the E-building during
their respective measurement campaigns. At the user side, the omni-directional
antenna was moved around at MS 1-8 acting as single-antenna users.

all antenna elements was above 33 dB, while the lowest per-
antenna SNR was above 20 dB. At MS 5-6 and MS 8, the
measurement SNR was lower but still good enough, i.e., for all
antenna elements of the UCA, the SNR was about 10-25 dB.
In the measured 50 MHz bandwidth, we observe a coherence
bandwidth about 25 MHz in the LOS scenarios, and about
5 MHz in the NLOS scenarios.

III. SYSTEM DESCRIPTION

The acquired measurement data allows study of various
aspects of massive MIMO systems. Before discussing channel
behavior and evaluating performance of massive MIMO, we
first define our system model.

A. Signal model

We consider a single-cell multi-user MIMO-OFDM system
with N subcarriers in the downlink. The base station is
equipped with M antennas and simultaneously serves K
(K ≤ M ) single-antenna users in the same time-frequency
resource. We assume that the base station has perfect channel
state information (CSI), and that the channel can be described
as narrow-band at each OFDM subcarrier.

As shown in Fig. 3, the signal model of the considered
narrow-band MU-MIMO downlink channel is

y` =

√
ρK

M
H`z` + n`, (1)

where H` is a K×M channel matrix at subcarrier `, z` the
normalized transmit vector across M base station antennas,
satisfying E

{
‖z`‖2

}
= 1, y` the vector of received signals

at the K users, and n` a complex Gaussian noise vector
with i.i.d. unit variance elements. The term ρK/M scales the
transmit energy and ρ relates to the average per-user receive
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Fig. 3. System model of the downlink of an MU-MIMO system with an
M -antenna base station and K single-antenna users.

SNR2. From the term ρK/M , we increase the transmit power
with the number of users and reduce it as the number of base
station antennas grows. As K increases, we keep the same
transmit power per user. With increasing M the array gain
increases and we choose to harvest this as reduced transmit
power instead of increased receive SNR at the users3.

Let us now return to the channel matrix H` in (1) and how
it is formed. From our measurements, we have channel data
obtained with 128 antenna ports at the base station and, at
the user side, each measured position represents one single-
antenna user. With the selection of K positions, we have a
measured channel matrix of size K×128, which we denote
Hraw

` , at subcarrier `. The channel matrix H` is then formed
by selecting M columns from a normalized version of Hraw

` .
Two different normalizations of Hraw

` are used in different
investigations. The two channel normalizations are:
• Normalization 1. The measured channel vectors of each

user, i.e., the rows of Hraw
` , denoted as hraw

i,` , i =
1, 2, . . . ,K, are normalized such that the average energy
over all 128 antenna ports and all N subcarriers is equal
to one. This is achieved through

hnorm
i,` =

√√√√√ 128N
N∑̀
=1

‖hraw
i,` ‖2

hraw
i,` , (2)

where the vector hnorm
i,` is the ith row of the normal-

ized channel matrix Hnorm
` . With this normalization,

the imbalance of channel attenuations between users is
removed, while variations over antenna elements and
frequencies remain.

• Normalization 2. The measured channel matrix is nor-
malized such that the channel coefficients have unit
average energy over all 128 antenna ports, K users and

2With the defined signal model and channel normalization, the average
receive SNR at the users is smaller or equal to ρ, and different values can
be obtained depending on used precoding scheme. For example, when user
channels are not completely orthogonal and inter-user interference exists, the
average receive SNR using dirty-paper coding would be higher than for zero-
forcing precoding. Equality between average per-user receive SNR and ρ, both
for DPC and ZF precoding is obtained when user channels are orthogonal,
i.e., when the Gram matrix H`H

H
` is diagonal.

3With realistic low-cost terminals it can be expected that only a limited
SNR can be handled by the terminals, before quantization noise and dynamic
range start to limit performance. Further, sum-rate capacities in i.i.d. Rayleigh
channels are closer to those in interference-free channels at lower SNRs [4].
For these reasons, we keep a constant interference-free SNR ρ at the users
when the number of antennas M at the base station changes. This is to make
fair and realistic comparisons of different settings.

N subcarriers. This is achieved through

Hnorm
` =

√√√√√ 128KN
N∑̀
=1

‖Hraw
` ‖2F

Hraw
` , (3)

where ‖ · ‖F represents the Frobenius-norm of a matrix.
Compared with Normalization 1, here we keep the dif-
ference in channel attenuation between users, as well as
variations over antenna elements and frequencies.

Both normalizations are done for the originally measured
channel matrix with 128 columns, rather than the matrix
with M columns, obtained by selecting a subset of the 128
antennas. The reason for this is that we would like to maintain
the imbalance of channel attenuations over the antenna arrays
due to power variations over the antenna elements. These vari-
ations, caused by large-scale fading/shadowing and/or directive
antennas with different orientation, are critical for performance
evaluation of massive MIMO. When investigating singular
value spreads of measured channels, we use Normalization 1.
For capacity evaluation, Normalization 2 is used in scenarios
where users are closely located, while Normalization 1 is used
when users are far from each other and have large channel
attenuation imbalance. The detailed reasons for using each
normalization are given in the following.

B. Singular value spread

As mentioned in Sec. I, by using a large number of
antennas at the base station, massive MIMO has the potential
to separate users so that all spatial modes are useful in such
a system. However, this relies on “favorable” propagation
where user channels become pairwise orthogonal with growing
number of antennas, i.e., the off-diagonal terms of the Gram
matrix H`H

H
` become increasingly small compared to the

diagonal terms. As this phenomenon can be easily seen in
i.i.d. Rayleigh channels, many theoretical studies are based on
this assumption. We need to investigate to what degree real
massive MIMO channels are “favorable”. One way to evaluate
joint orthogonality of all users is singular value spread of
the normalized propagation matrix [21]. Here Normalization 1
applies, since the imbalance of channel attenuations between
the users should be removed, so that the singular value spread
does not contain the difference in channel norms, but only
reflects the joint orthogonality of the users.

The propagation matrix H` at subcarrier ` has a singular
value decomposition (SVD) [22]

H` = U `Σ`V
H
` , (4)

where U ` and V ` are unitary matrices, and the K×M diagonal
matrix Σ` contains the singular values σ1,`, σ2,`, ..., σK,`. The
singular value spread is defined as

κ` =
max

i
σi,`

min
i
σi,`

, (5)

i.e., the ratio of the largest and smallest singular values. A
large κ` indicates that at least two rows of H`, i.e., the channel
vectors of two users, are close to parallel and thus relatively
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difficult to separate spatially, while κ`=1, i.e., 0 dB, implies
the best situation where all rows are pairwise orthogonal.
The singular value spread can be an indicator whether the
users should be served in the same time-frequency resource.
It also has close connection with the performance of MIMO
precoders/detectors [23]–[25].

With massive MIMO, as the number of antennas increases
and becomes much larger than the number of users (M�K),
we expect better orthogonality between user channels and thus
smaller singular value spreads, as compared to conventional
MIMO. More importantly, we expect the singular value spread
to become more stable over channel realizations. The stability
of singular value spread implies that bad channel conditions
can be avoided and also leads to stability of MIMO pre-
coders/detectors. While the above is true for i.i.d. Rayleigh
channels, we investigate the measured channels in Sec. V, in
an attempt to find out if realistic channels also can provide
sufficiently good and stable user orthogonality.

C. Dirty-paper coding capacity

Through the singular value spread, we can investigate the
potential of massive MIMO to spatially separate the users.
However, singular value spread cannot fully quantify the
performance of an MU-MIMO system, since it only offers
an indication of the minimum quality of service that can be
guaranteed for all users. We would also like to know the
overall performance of a massive MIMO system in terms of
sum-rate capacity. A small singular value spread leads to high
capacity, as interference between all users is low and they
can get relatively good quality of service. A large singular
value spread, however, does not imply a low channel capacity.
In this case, at least one user has relatively poor quality of
service, but we do not know how many that still can get good
quality of service. For example, in a rank-deficient channel
with one singular value being zero, i.e., two user channels
are aligned, the singular value spread goes to infinity, but the
channel capacity can still be relatively high, depending on
the remaining singular values. By combining the two metrics,
singular value spread and sum-rate capacity, we can get a good
understanding of massive MIMO performance.

Sum-rate capacity in the narrow-band MU-MIMO downlink
channel is [26],

CDPC,` = max
P `

log2 det

(
I +

ρK

M
HH

` P `H`

)
, (6)

which is achieved by dirty-paper coding (DPC) [27]. The
diagonal matrix P ` with P`,i, i = 1, 2, ...,K on its diagonal
allocates the transmit power among the user channels and
capacity is found by optimizing over P ` under the total power
constraint

∑K
i=1 P`,i = 1. This can be done using the sum-

power iterative water-filling algorithm presented in [28].
In measured channels where users are far from each other,

large variations in channel attenuations to different users can
have a strong influence on sum-rate capacity. In order to
maximize the downlink sum-rate, a large proportion of the
transmit power will be allocated to users with low channel
attenuation. These users will have relatively high date rates,

compared to users with higher channel attenuation. We can
imagine an extreme case where only one user has a very
high data rate and the multi-user transmission is reduced to
single-user transmission. When this happens, it is difficult to
investigate the effect of user channel orthogonality on the
system performance. To avoid large imbalance of channel
attenuations, users with similar attenuation should be grouped
and served simultaneously, while the user groups are, e.g,
time multiplexed. Due to a limited number of measurement
positions, we do not have enough data to analyze this situation.
We therefore focus on orthogonality between channels to dif-
ferent users and remove attenuation imbalance between users
that are far apart, when evaluating their sum-rate capacity, as
described in Normalization 1. When users are closely located,
the path losses can be expected to be similar and any attenu-
ation imbalance is mainly due to small-scale and large-scale
fading. From our measurements, we observe that attenuation
imbalance between co-located users is very small. Thus, for
capacity evaluation in this case, we apply Normalization 2
on the measured channels and keep the small attenuation
imbalance among the users, as is the case in i.i.d. Rayleigh
channels.

Ideally, in massive MIMO, as the number of base station
antennas goes to infinity in “favorable” propagation conditions,
the channels to different users become interference free (IF)
[4] with per-user receive SNRs approaching ρ as given in our
model (1). This leads to an asymptotic, interference free, sum-
rate capacity

CIF = K log2 (1 + ρ) , (7)

to which i.i.d. Rayleigh channels converge, as the number of
antennas grows. For the measured channels we would like to
know how large a fraction of this capacity we can achieve.
This is investigated and discussed in Sec. V.

IV. PROPAGATION CHARACTERISTICS

Before presenting numerical performance evaluation results,
we focus on propagation characteristics in the investigated
scenarios, as briefly outlined in Sec. I. While not providing
quantitative measures of massive MIMO performance, this
description gives an intuitive understanding of real massive
MIMO propagation mechanisms, and also helps to understand
the evaluation results of singular value spreads and sum-rate
capacities, presented later in Sec. V. By understanding these
propagation mechanisms observed in massive MIMO, we also
gain insight into what needs to be considered and included in
a massive MIMO channel model [29], [30].

For a simple and clear illustration of massive MIMO
propagation characteristics in each of the three scenarios, we
start with four users (K = 4), which is the number of users
supported in LTE MU-MIMO [2]. In two of the scenarios,
the four users are located close to each other, with only 1.5-
2 m inter-spacing, representing situations where the spatial
separation of user signals can be expected to be particularly
difficult. In the third scenario, the four users are located
far from each other, with more than 10 m inter-spacing,
representing situations where users are well distributed around
the base station and we can expect good channel orthogonality.
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Combining difference in user inter-spacing with LOS/NLOS
conditions, the three investigated scenarios are:

1) four users close to each other at MS 2, having LOS
conditions to the base station,

2) four users close to each other at MS 7, with NLOS
conditions,

3) four users far apart, at MS 1-4, respectively, all having
channels with LOS characteristics.

With the aim of assisting understanding of the physical
propagation channels, we estimate the APS at the base station
side. The directional estimates for the ULA are obtained
through the space-alternating generalized expectation maxi-
mization (SAGE) algorithm [31], which jointly estimates the
delay, incidence azimuth, and complex amplitude, of multi-
path components (MPCs) in radio channels. The frequency-
dependent SAGE algorithm is applied to a sliding window of
10 neighboring elements on the ULA and, for the measured
channel within each window, 200 MPCs are estimated. The
reason for estimating the MPC parameters based on 10-
antenna windows is that the incoming waves can be considered
planar if the array is small enough. This aperture corresponds
to a Fraunhofer distance of about 5 m, making waves origi-
nating from reflections beyond that distance to appear planar.
Using 10 antennas also provides a relatively high angular
resolution for the directional estimation. Note that the range
of azimuth estimation is 0-180 degrees for the ULA, due to
inherent directional ambiguity problem when using this type
of array structure [32].

Based on the SAGE estimates, we obtain the APS in
azimuth at each position along the ULA. For each scenario,
we compare the APS from different users as seen at the
base station. For the convenience of comparison, we simplify
the APS from each user. Instead of showing the estimated
power levels from all the azimuth directions, we only show
from which directions the incoming energy is strongest. The
colored patches show where 90% of the total energy across
the whole array is concentrated. This simplified form of APS
illustrates the directional pattern of the incoming energy from a
specific user. Since it is a highly simplified form of the spatial
properties of the channel from a specific user, we call it a
“spatial fingerprint”. In Fig. 4, for each scenario, we plot the
four users’ spatial fingerprints on top of each other. The four
colors in each plot represent the spatial fingerprints of the four
different users. Since the UCA was positioned at the beginning
of the ULA, as indicated by the dashed lines in Fig. 4, we
consider that it experiences the propagation channels at that
particular part of the ULA, but with directional patch antennas
oriented in different directions.

What can we learn from these spatial fingerprints? First,
they provide an intuitive understanding of the distribution of
incoming energy from different users in real channels under
different propagation conditions. Secondly, by comparing fin-
gerprints, we get an understanding of how much the APS
changes between users in different scenarios. Through this we
can acquire qualitative information about how difficult it is to
do spatial separation of signals from different users. Distinct
fingerprints indicate relatively good spatial orthogonality of the

user channels, and we can expect that the user signals can be
separated with rather simple means. In this case, the channels
have relatively small singular value spreads and relatively high
sum-rate capacities. Similar and overlapping fingerprints, on
the contrary, represent a more difficult situation and spatial
separation of user signals may be much harder. With incoming
energy from largely the same directions, detailed knowledge
about amplitude and phase is needed to fully assess the situa-
tion. Thirdly, these fingerprints allow for a direct comparison
of the propagation channels experienced by massive and more
conventional MIMO systems. This can be done by comparing
fingerprints along the entire ULA with the local fingerprint
somewhere along the ULA, that would be experienced by
a smaller conventional MIMO array. Lastly, an attempt to
develop a sophisticated geometry-based channel model for
massive MIMO should likely take these spatial fingerprints
into consideration. Our point of view is that if a channel
model does not reflect the spatial properties observed through
these fingerprints, it does not accurately model the nature of a
massive MIMO propagation channel. We discuss these issues
in the following.

First we turn our attention to propagation conditions and
spatial separability of user channels in the three investigated
scenarios. In Fig. 4a, we can see that in the LOS scenario
with co-located users, incoming energy from all users is
concentrated around 160 degrees, which is the LOS direction.
For some users, a significant amount of energy also comes
from some scatterers at around 20 degrees at the end of the
ULA. The overlap of the four users’ fingerprints indicates
that we may have a relatively high correlation4 between their
channels, making it difficult to spatially separate signals from
the co-located users. However, as discussed above, amplitude
and phase differences may still make users easier to separate
than they appear from studying the fingerprints.

An entirely different situation is shown Fig. 4b, where the
four users are still closely located but in an NLOS scenario
with rich scattering. Incoming energy from all four users
is distributed over a much larger angle across the whole
array, reflecting a rich scattering environment. The four users’
fingerprints are very complex and quite different from each
other, as compared to the case in Fig. 4a. This indicates that the
spatial correlation between channels to the users is relatively
low, which should allow for a better spatial separation of user
signals, even though they are still closely located.

Fig. 4c shows the scenario where four users are located far
from each other, all having LOS propagation characteristics.
Users at MS 2 and 3, whose fingerprints are in blue and
green, respectively, have the strongest LOS characteristics with
incoming energy concentrated to a certain direction along the
entire array. This is in stark contrast to users at MS 1 and
4, whose fingerprints are in red and yellow. At MS 1, the
LOS is at the end-fire direction of the ULA, and its power
contribution is weakened due to the superposition with the
ground reflection. At MS 4, besides the energy from the
roof-edge diffraction to the ULA, strong scattering from the

4The spatial correlation we talk about here is an instantaneous property
between users, rather than an average property, e.g., over time realizations of
the channels.
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Fig. 4. Spatial fingerprints (simplified forms of the angular power spectral density along the 128-element ULA), in (a) a LOS scenario where the four users
are co-located at MS 2, (b) an NLOS scenario where the four users are co-located at MS 7, (c) a LOS scenario where the four users are far away from each
other, at MS 1-4, respectively. The four different colors in each plot represent the spatial fingerprints of the four different users. Dashed vertical lines indicate
where the UCA is located and which part of the ULA propagation channel it is exposed to. Distinct fingerprints, as in (b) and (c), indicate relatively good
conditions for spatial separation of user signals, while similar fingerprints, as in (a), indicate that spatial separation may be more difficult.

building in the south also contributes considerably. Since the
users are located at different sites, their fingerprints should be
very different from each other. Note that the signals from users
at MS 2 and 3 appear to come from the same direction due
to the inherent angular ambiguity of the ULA. However, as
seen later in Sec. V it is possible to spatially separate the two
users. A good spatial separation of all users can be expected
in this scenario.

Now, let us turn our attention to propagation channels ex-
perienced by massive and more conventional MIMO systems.
In the fingerprint plots, we can see that the ULA potentially
experiences channels with much more spatial variations, as
compared to small arrays spanning only a few wavelengths
in space. Large spatial variations can help to decorrelate
channels even when users are closely located, as in Fig. 4b.
Fingerprints may overlap locally, but over longer distances
along the array they are quite distinct. This indicates that, with
small arrays users may have relatively low spatial correlation
on average, e.g., over time, while with a physically large
ULA decorrelation of user channels can be instantaneous.
However, strong LOS may reduce the ability of the ULA
to spatially separate signals from co-located users, such as
the situation shown in Fig. 4a. Since we do not consider the
phase information over the array there, we later investigate
this situation in more detail by evaluating both singular value
spreads and sum-rate capacities.

For the compact UCA, experiencing only a small part

of channels seen by the ULA, separation of user signals
may be more difficult. When users are closely located and
incoming energy is concentrated to similar and narrow di-
rections, patch antennas oriented in “wrong” directions may
have high channel attenuations and contribute little to spatial
separation of signals from co-located users. Despite this, the
UCA may still gain from its circular structure and provide
good user decorrelation, when users are distributed around the
base station, and incoming energy is distributed in different
directions, as shown in Fig. 4c.

V. PERFORMANCE EVALUATION

To get a more quantitative understanding of how massive
MIMO would perform in our measured channels, we turn our
attention to singular value spreads and sum-rate capacities in
the three measured scenarios. First we focus on the case of
four users (K=4), as we did in the propagation characteristics
in Sec. IV. We then increase the number of users to sixteen
(K = 16) and investigate the performance when more users
are served simultaneously.

A. Four users (K=4)

In all three scenarios, over N = 161 subcarriers and 2000
random selections of antenna subsets, i.e., selections of M
antennas out of the 128, we show a) the cumulative distribution
functions (CDFs) of the singular value spreads in the channels,
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when using 4, 32 and 128 base station antennas, and b)
the average DPC capacities including their 90% confidence
intervals, as the number of base station antennas M grows
from 4 to 128. Note that for M =128 there is only a single
choice of selecting the antenna subset, and the CDFs of the
singular value spreads and the capacity confidence intervals
are therefore computed over frequencies only. For M < 128,
as the number of all possible antenna subsets can be extremely
large, we randomly select 2000 subsets, and let the CDFs of
the singular value spreads and the capacity confidence intervals
also take the random antenna selections into account. As a
reference, we also show simulated results for i.i.d. Rayleigh
channels. We select the interference-free SNR to ρ = 10 dB
5, and with four users the asymptotic capacity (7) becomes
4 log2 (1+10) = 13.8 bps/Hz. In the following we discuss
the singular value spreads and DPC capacities in the three
scenarios.

1) Four users co-located with LOS: As discussed in
Sec. IV, this scenario represents a particularly difficult situa-
tion for spatial separation of user signals, which can be seen
from the four users’ similar fingerprints in Fig. 4a. First we
study the CDFs of singular value spreads, as shown in Fig. 5.
We observe that for i.i.d. Rayleigh channels, the median of
the singular value spread significantly reduces from 17 dB to
below 4 dB, as the number of antennas increases from 4 to 32
and 128. Singular value spreads also become much more stable
around small values, as the CDF curves have no substantial
upper tails.

For the measured channels, using either ULA and UCA,
the singular value spreads are significantly larger than those
of i.i.d. Rayleigh channels, for all three numbers of antennas.
This indicates a much worse user channel orthogonality in the
measured channels, due to co-location of users and strong LOS
conditions in this scenario. Still, trends similar to those seen
in i.i.d. Rayleigh channels can be observed in the measured
channels. The median of the singular value-spread decreases
by 14 dB with the ULA and 12 dB with the UCA, as the
number of antennas increases from 4 to 128. Meanwhile, when
using a large number of antennas, the substantial upper tails
of the CDF curves reduce, and almost disappear in the case of
128 antennas. With only 4 antennas, the selections of antenna
subsets and subcarriers can make a big difference on the
user orthogonality. This means that with small arrays we may
encounter propagation channels with very good conditions as
well as very bad ones, depending on the choice of antenna
positions and used subcarriers. When increasing the number
of antennas to 32, user orthogonality improves and becomes
much more stable over antenna selections and subcarriers.
Thus, bad channel conditions can largely be avoided by adding
more antennas at the base station. When using all 128 anten-
nas, user orthogonality improves further and becomes more
stable over subcarriers. The above observations tell us that
despite a significant gap between measured and i.i.d. Rayleigh
channels in this scenario, spatial separation of signals from co-
located users can be greatly improved by using a large number

5The performance of i.i.d. Rayleigh channels at different SNR levels has
been derived in [4]. We select the interference-free SNR to be 10 dB since it
is a middle-level SNR.
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Fig. 5. CDFs of singular value spreads when using 4, 32 and 128 antennas,
in the scenario where the four users are closely located at MS 2, all having
LOS to the base station antenna arrays.

Fig. 6. Sum-rate capacity in the downlink, achieved by DPC, in a scenario
where four users are close to each other at MS 2, all having LOS to the base
station antenna arrays.

of antennas, and more importantly, the results become more
stable over both subcarriers and different antenna selections.

We now move to sum-rate capacities achieved by DPC,
as shown in Fig. 6. As a reference, the average capacity in
i.i.d. Rayleigh channels converges to the asymptotic capacity
value of 13.8 bps/Hz and the capacity variation becomes
smaller as the number of antennas increases. In the mea-
sured channels, however, averages are significantly lower and
variations are larger. Let us focus on the average capacities
first, and discuss the variations later. The drops in average
capacities for measured channels coincide with larger singular
value spreads. Despite this, in this potentially difficult spatial
separation situation, the ULA and UCA perform at 90% and
75% of the asymptotic capacity, respectively, when the number
of antennas is above 40, i.e., when the number of antennas is
10 times the number of users.



FINAL MANUSCRIPT: PUBLISHED IN IEEE TRANS. WIRELESS COMMUN., 2015 9

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Singular value spread [dB]

I.i.d. channels
ULA
UCA

# of BS antennas

4 32 128

Fig. 7. CDFs of singular value spreads when using 4, 32 and 128 antennas,
in the scenario where four users are closely located at MS 7, with NLOS to
the base station antenna arrays.

2) Four users co-located with NLOS: In this scenario we
still have users closely located, but now in NLOS conditions.
NLOS with rich scattering, as illustrated in Fig. 4b, where
spatial fingerprints of users are complex and distinct, should
improve the situation by providing more “favorable” propaga-
tion and thus allowing better spatial separation of user signals.
The benefits of complex propagation are reflected in the CDFs
of singular value spreads in Fig. 7. Singular value spreads
in this scenario become significantly smaller, as compared to
those in the corresponding LOS case. Especially for the ULA,
the CDF curves are very close to those of i.i.d. Rayleigh
channels. The substantial upper tails of the CDF curves
observed when using a small number of antennas disappear
when using all 128 antennas in the measured channels. This
means that over the measured bandwidth the probability of
seeing a singular value spread much larger than 2 dB for the
ULA, and 7 dB for the UCA, is very low.

Correspondingly, the benefits brought by the NLOS con-
dition with rich scattering can also be observed in DPC
capacities, as shown in Fig. 8. Despite co-located users,
the ULA here provides average performance very close to
the asymptotic capacity achieved in i.i.d. Rayleigh channels,
while the UCA reaches more than 90%, when the number of
antennas is above 40.

3) Four users located far from each other with LOS:
In this scenario, despite LOS characteristics, increased inter-
spacing between users should help to improve performance.
As can be seen in Fig. 4c, the users’ spatial fingerprints are
reasonably different, which indicates a favorable decorrelation
situation between user channels for the large arrays. In the
CDFs of singular value spreads shown in Fig. 9, the ULA
again performs very close to i.i.d. Rayleigh channels. The
UCA has a significant improvement as compared to the two
previous scenarios: the median of the singular value spread
reduces to below 5 dB when using 128 antennas. Singular
value spreads in the measured channels again become quite
stable when using a large number of antennas.
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Fig. 8. Sum-rate capacity in the downlink, achieved by DPC, in the scenario
where the four users are close to each other at MS 7, with NLOS to the base
station antenna arrays.
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Fig. 9. CDFs of singular value spreads when using 4, 32 and 128 antennas,
in the scenario where four users are well separated at MS 1-4, respectively,
with LOS characteristics.

As can be seen in Fig. 10, both the ULA and the UCA per-
form very close to that of the asymptotic capacity achieved in
i.i.d. Rayleigh channels, when having more than 40 antennas.
The UCA shows slightly lower performance than the ULA.

Throughout the three scenarios discussed above and whose
performances are shown in Fig. 5 - Fig. 10, we observe that the
ULA performs better than the UCA. Due to its large aperture,
the ULA experiences more spatial variations in the channels
over the array, which provide better distinction between user
channels and thus better spatial separation. In other words, the
ULA has a very high angular resolution, which helps it resolve
scatterers better than the compact UCA. The small aperture
of the UCA and its patch antennas facing different directions
make it difficult to resolve scatterers at similar azimuth angles,
which is usually the case when users are located close to each
other. When users are well distributed around the base station,
the UCA can separate scatterers at different azimuth angles,
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Fig. 10. Sum-rate capacity in the downlink, achieved by DPC, in the scenario
where the four users are well separated at MS 1-4, respectively, with LOS
characteristics.

and achieves better performance.
For the DPC capacities, we focused on averages in the pre-

vious discussions. Now we turn our attention to the variations
over frequencies and random antenna selections. Comparing
with i.i.d. Rayleigh channels, we notice that capacity variations
in measured channels are much larger, and decrease much
slower as the number of antennas increases. This is due
to larger power variations over antenna elements and over
frequencies in the measured channels. For the ULA, power
variation over antenna elements is due to large-scale/shadow
fading experienced across the array, as reported in [9], [10],
while for the UCA, it is mainly due to its circular structure
with directional patch antennas oriented differently. With
omni-directional antenna elements, the ULA has larger power
variations over the measured bandwidth, as compared to the
UCA with directional antenna elements. This gives the ULA
larger capacity variations than the UCA, especially in the case
of 128 antennas when the capacity variations are only across
frequencies. Note that although the average capacity increases
with the number of antennas, for some antenna selections a
small number of antennas can perform better than a larger
number of antennas. This can be observed from the upper part
of the 90% confidence intervals of the UCA in Fig. 8. This is
because in our signal model we reduce the transmit power
with increasing number of antennas, while some antennas
contribute more to the capacity than the others. It implies that
we may gain by selecting the “right” antennas, as discussed
in [13].

In all three scenarios with four users and the ULA, as
few as 20 antennas gives very competitive performance, while
slightly higher numbers are required for the UCA. However,
when using more practical precoding schemes, such as zero-
forcing (ZF) and matched-filtering (MF) precoding, sum-rate
converges slower, which means that more antennas are needed
to achieve the required performance. This is shown in [5] and
[11]. More antennas are also needed, if we want to serve more
users in the same time-frequency resource.

B. Sixteen users (K=16)

While only four users are supported in LTE MU-MIMO,
with more than one hundred antennas at the base station,
massive MIMO can potentially serve many more users si-
multaneously. Here we increase the number of users to six-
teen (K = 16), and again investigate singular value spreads
and achieved sum-rate capacities. Due to limited number of
measurement positions with the ULA, we concentrate on the
UCA. In the two scenarios with co-located users, we simply
increase the number of users from 4 to 16, and the inter-
spacing between users is about 0.5 m. In the scenario where
users are located far from each other, we select two users
from each of the sites MS 1-8, with an inter-spacing larger
than 10 m. Doing so, eight users have LOS conditions while
the other eight have NLOS.

CDFs of singular value spreads in the three scenarios are
shown in Fig. 11 - Fig. 13. In both measured channels and
i.i.d. Rayleigh channels, singular value spreads are larger than
those in the four user cases. This indicates, as expected,
that with more users it is more difficult to spatially separate
their signals. In the scenario where sixteen users are co-
located with LOS, as shown in Fig. 11, singular value spreads
are much larger than those in i.i.d. Rayleigh channels. The
situation improves significantly in the NLOS scenario, as
shown in Fig. 12. The gap in singular value spreads between
measured and i.i.d. Rayleigh channels becomes smaller, which
again indicates that NLOS with rich scattering provides more
“favorable” propagation for the spatial separation of user
signals, even when they are located close to each other. When
sixteen users are located far from each other, the CDF curves
of singular value spreads in the measured channels are closer
to the ones for i.i.d. Rayleigh channels, as shown in Fig. 13.
This implies that spatial separation of user signals improves
even more. In all three scenarios, despite larger singular value
spreads in the measured channels, trends similar to those for
i.i.d. Rayleigh channels can be observed. The singular value
spread becomes smaller and much more stable, as the number
of base station antennas increases.

DPC capacities in the three scenarios are shown in Fig. 14.
With sixteen users, asymptotic capacity given in (7) is
16 log2 (1+10) = 55.4 bps/Hz. Average performance in
i.i.d. Rayleigh channels gets closer and closer to this asymp-
totic capacity, as the number of antennas increases. Perfor-
mance in the measured channels is, however, significantly
lower. Despite this, in the worst case where sixteen users are
co-located with LOS, the average performance reaches about
50% of the asymptotic capacity when all 128 antennas are
used, i.e., 8 times the number of users. The situations in the
other two scenarios are better. With 128 antennas, the UCA
performs at 75% and 90% of the asymptotic capacity, when
sixteen users are co-located with NLOS and are far apart,
respectively.

With more users and equal number of base station antennas,
spatial separation becomes more difficult, but with the UCA
we still obtain a large fraction of the i.i.d. Rayleigh perfor-
mance, especially in NLOS conditions with rich scattering
and when users are far apart. Although we lack measurement
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Fig. 11. CDFs of singular value spreads when using 16, 32 and 128 antennas,
in the scenario where sixteen users are closely located at MS 2, all with LOS
to the UCA.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I.i.d. channels

UCA

# of BS antennas

16 32 128

C
D

F

Singular value spread [dB]

Fig. 12. CDFs of singular value spreads when using 16, 32 and 128 antennas,
in the scenario where sixteen users are located close to each other at MS 7,
all with NLOS to the UCA.

data for sixteen users with the ULA, we can expect that
the ULA would provide better spatial separation also in this
case, especially for co-located users, due to its higher angular
resolution.

VI. SUMMARY AND CONCLUSIONS

The presented investigation shows that in the studied real
propagation environments we have characteristics that allow
for efficient use of massive MIMO: the advantages of this new
technology, as predicted by theory, can also be obtained in real
channels. Based on channel measurements, using one practical
UCA and one virtual ULA, both having 128 elements, we have
illustrated the channel behavior of massive MIMO in three rep-
resentative propagation scenarios and discussed corresponding
singular value spreads and achieved sum-rate capacities.

In all scenarios, the singular value spread decreases con-
siderably, and becomes more stable around a smaller value
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Fig. 13. CDFs of singular value spreads when using 16, 32 and 128 antennas,
in the scenario where sixteen users are located far from each other at MS 1-8,
among which eight have LOS conditions and eight have NLOS to the UCA.

Fig. 14. Sum-rate capacity in the downlink, achieved by DPC, in the scenario
where sixteen users are located close to each other at MS 2 with LOS, MS 7
with NLOS, and are far from each other at MS 1-8, respectively.

over the measured bandwidth, when using a large number
of antennas. This indicates that massive MIMO provides
better orthogonality between channels to different users and
better channel stability than conventional MIMO. In the most
difficult situation studied, i.e., closely located users with
strong LOS to the base station, the singular value spread is
significantly larger than that in i.i.d. Rayleigh channels, which
indicates worse user orthogonality in the measured channels.
Despite this gap, a large fraction of the asymptotic capacity
achieved in i.i.d. Rayleigh channels can still be harvested in
the measured channels. In the other studied scenarios, NLOS
conditions with rich scattering provide more “favorable” prop-
agation and allow better spatial separation of the users, even
though they are closely located, while well distributed users
also help to improve the performance. In the scenarios where
users are in NLOS or in LOS but located far from each other,
the measured channels with the ULA and the UCA achieve
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performance close to that in i.i.d. Rayleigh channels.
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