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Abstract

Macroscopic properties of metallic materials are to a large extent dictated by the grain

size and the presence and arrangement of grain boundaries. Plastic slip deformation will

lead to the formation of dislocation pile-ups at grain boundaries, causing a heterogeneous

distribution of dislocation density. This will on the macroscale manifest itself as a grain

size dependence of the yield stress. Considering dynamic recrystallization, new grains will

nucleate at sites of high stored energy. The existence of such favored nucleation sites is

also largely due to a heterogeneous dislocation density distribution. To properly account

for processes such as these in microstructure modeling, dislocation density gradients and

grain boundary influence need to be considered. In the present contribution, the evolu-

tion of dislocation density is viewed as a reaction-diffusion system, involving mobile and

immobile dislocations. Gradient effects are introduced by making the immobilization of

mobile dislocations sensitive to the distance to grain boundaries. Through simulations of

both single grains and polycrystals, it is shown that the present model provides a macro-

scopic yield stress behavior of Hall-Petch type, without explicitly incorporating a yield

stress dependence on the grain size. In addition, the model is employed in a cellular au-

tomaton algorithm, allowing a polycrystalline microstructure to evolve due to dynamic

recrystallization. It is shown that the introduced gradients provide important additions to

recrystallization modeling.

Keywords: Gradient effects, Dislocation density, Grain boundaries, Hall-Petch, Recrys-

tallization, Modeling, Cellular automata
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1 Introduction

Many important aspects of the macroscopic material behavior in metals are controlled by

the microlevel grain structure. Strength and ductility depends largely on the size and

distribution of the grains. Especially the presence of grain boundaries plays an important

role, not least in the macroscopic deformation hardening of the material. Grain boundaries

pose obstacles to slip deformation by preventing dislocation motion, resulting in localized

dislocation storage and heterogeneous deformation fields within the grains. Dislocation

density gradients have been observed in experiments, e.g. on Aluminum bi-crystals in [1],

on Copper in [2], on dual-phase steels in [3] and on polycrystalline Ti6Al4V in [4].

The dislocation structure at grain boundaries facilitates lattice compatibility across the

boundaries [5] and has led to the distinction between geometrically necessary dislocations

(GND) in the vicinity of grain boundaries and the statistically stored dislocations (SSD)

in the grain interiors [6].

The dislocation storage at grain boundaries increases as the area fraction of grain bound-

aries increase, i.e. as the average grain size decreases. This is the mechanism behind the

well-established Hall-Petch effect, suggesting a proportionality between the macroscopic

yield stress and the inverse of the square root of the average grain size [7, 8]. The Hall-

Petch effect has been verified experimentally and its validity holds over a wide range of

grain sizes, reaching down to the sub-micron scale [9]. However, at very fine grain sizes,

the Hall-Petch relation is less applicable since grain boundary effects become appreciable

throughout the grains.

Continuum models considering different dislocation species are frequent in the liter-

ature. A separation of mobile and (nearly) immobile, or forest, dislocations are made

in [10, 11, 12, 13, 14, 15, 16, 17]. Three types of dislocation densities, immobile dis-

locations within dislocation cells and mobile/immobile dislocations in the cell walls are

distinguished in [18, 19]. Dislocation density gradients are also considered on a continuum-

level in [20, 21, 22]. Gradient effects due to inhomogeneous distribution of plastic slip and

dislocation accumulation at grain boundaries have also been considered in crystal plasticity

models, e.g. [23, 24], mainly aiming at retrieving a Hall-Petch effect in the homogenized

macroscopic yield stress. Different dislocation species and their role in interface accom-

modation is studied in a crystal plasticity model of martensitic phase transformation in

[25].

Reaction-diffusion modeling of dislocation density was originally considered in [26] and

later employed in [27] and in the series of papers [28, 29, 30] on dislocation patterning,

cf. also [31, 32, 33, 34, 35, 36]. Dislocation density gradients, evolving through a reaction-

diffusion process, is considered in a crystal plasticity setting in [37]. The focus of the work

in [37] lies on simulation of plastic slip behavior and dislocation interaction with grain

boundaries in an idealized single crystal.
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To the knowledge of the authors, there exist no reaction-diffusion models where dislo-

cation density gradients are studied in conjunction with recrystallization and grain growth,

being the dominant mechanisms for grain size evolution in metallic materials [38]. This is

addressed in the present work.

A mesoscale model of microstructure evolution is established where a distinction is

made between the densities of mobile and immobile dislocations. The two dislocation

species are allowed to evolve through a reaction-diffusion process, driven by macroscopic

deformation. Dislocation density gradients are introduced by making the reaction-diffusion

system sensitive to the presence of grain boundaries, increasing dislocation immobilization

as grain boundaries are approached and effectively modeling dislocation pile-ups at the

boundaries. The model is employed in simulations of dislocation density evolution in both

single grains and polycrystals and the homogenized macroscopic flow stress exhibits the

expected grain size dependence in both cases.

Cellular automata provide a versatile and widely used tool in materials science for

simulating microstructure evolution in terms of e.g. phase transformation, solid state

precipitation, dendrite growth during solidification of melts, spherulite growth in polymers

and recrystallization. Cellular automata modeling of recrystallization has been studied by

several authors, e.g. [39, 40, 41, 42, 43, 44, 45]. Static recrystallization is simulated in

a coupled crystal plasticity/cellular automaton algorithm in [46]. A cellular automaton

algorithm was used for modeling of diffusion in [47] and for reaction-diffusion processes in

[48, 49].

However, none of these models consider dislocation density gradients or dislocation

interaction at grain boundaries. In [50], a cellular automaton formulation is adopted where

the dislocation density within each grain is said to vary from the grain center to the

boundary. No details on how the distribution is achieved are given.

In the present work, grain boundaries are assumed impenetrable to dislocations as a

simplifying view of the dislocation absorption, emission and transmission that has been

observed at grain boundaries in experiments [51, 52, 53]. This is achieved by prescribing

a zero flux of dislocations across the grain boundaries. Dislocation migration across grain

boundaries can, however, be incorporated in the present model and will be the subject of

forthcoming studies.

To represent increased storage and immobilization of dislocations as the grain bound-

aries are approached, the reaction term whereby mobile dislocations are immobilized due

to interaction with forest dislocations, is taken as a function of the distance to the grain

boundary. By this formulation, immobilization of mobile dislocations accelerates in the

vicinity of grain boundaries. The resulting heterogeneous distribution of dislocation densi-

ties and how it influences the macroscopic flow stress behavior is scrutinized as well as its

effect on grain boundary migration behavior and nucleation of recrystallized nuclei.

The polycrystal model is formulated in a cellular automaton setting and a methodology
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for treating the dislocation density gradients due to grain boundaries is introduced. The

combination of a finite difference scheme for the evolution of dislocation densities and a

cellular automaton formulation for the evolution of microstructure topology results in an

efficient hybrid algorithm for mesoscale modeling of grain microstructures.

The present paper is divided into section. In Section 2, the dislocation density evolution

laws and the components of the dislocation reaction-diffusion system are discussed. The

gradient terms in the dislocation reactions are also introduced in this section. In Section 3,

it is shown that the proposed model of dislocation density evolution in the grain interiors

results in a variation of the macroscopic yield stress with grain size as predicted by the

Hall-Petch relation, without explicitly including the grain size in the calculation of the

yield stress. Instead, the size dependence enters the formulation on the microlevel through

a length parameter related to the dislocation density gradients. Section 4 discusses the

extension of the model to represent polycrystals. The 2D case is shown, noting that the

extension to 3D is straight-forward. Simulations using the polycrystal model is related in

Section 5. A Hall-Petch behavior of the flow stress is retrieved also in the case of poly-

crystals and it is shown how the Hall-Petch formulation looses in validity as very small

grains are considered, where grain boundary effects dominate throughout the grain interi-

ors. Prior to simulation of dynamic recrystallization, Section 6 summarizes the necessary

equations for recrystallization modeling. Some further notes on the cellular automaton

implementation are given in Section 7 and simulation of microstructure evolution during

dynamic recrystallization is performed in Section 8. Finally, some concluding remarks are

given in Section 9.

2 Evolution of dislocation densities

The dislocation density is assumed to be comprised of the density of mobile dislocations ρm

and the density of (nearly) immobile dislocations ρi. The two populations are here assumed

to evolve according to a reaction-diffusion process where the two types of dislocations are

allowed to react with each other and each type is allowed to diffuse through the crystal

structure, presently viewed as a continuous media. Following [27, 31], the balance equation

for each type of dislocation density is given by

∂ρm

∂t
+ ∇jm = [pm (ρm, ρi) + qm (ρm, ρi)] ε̇

p
eff

∂ρi

∂t
+ ∇j i = [pi (ρm, ρi) + qi (ρi)] ε̇

p
eff

(1)

where ∇ is the divergence operator and jm,i the fluxes of mobile and immobile disloca-

tions, respectively. Eqs. (1) renders a scalar description of the evolution of the dislocation

densities and macroscopic material behavior will later on be considered in terms of J2

plasticity.

DOI: 10.1016/j.commatsci.2012.09.016 4
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The fluxes in eqs. (1) are given by

∇jm = −Dm∇ρm

∇j i = −Di∇ρi

(2)

where Dm,i is the diffusion coefficient of each type of dislocation species, satisfying Dm ≫ Di,

cf. [27, 28, 14, 36].

Note that the terminology “diffusion coefficients” is used here in order to be consistent

with the reaction-diffusion approach. In the present application, however, these coefficients

rather measures the mobility of moving dislocation than diffusion of matter.

The right-hand sides of eqs. (1) are in the present model allowed to depend on the rate

of macroscopic effective plastic strain ε̇p
eff , where a superposed dot denotes differentiation

with respect to time t. Such slip rate dependence is also considered in [33, 54, 17]. The

dependence on ε̇p
eff is motivated by both generation of dislocations, e.g. due to Frank-Read

sources, and dynamic recovery being dependent on the amount of plastic slip deformation

in the material. Based on the model in [12], the coupling terms pm,i in eqs. (1) are cast in

the form

pm (ρm, ρi) = −k2ρm − k3

√
ρi

pi (ρm, ρi) = k2ρm + k3

√
ρi

(3)

where conservation of the dislocation density is satisfied by pm+pi = 0 in the absence of the

terms qm,i in eqs. (1). The parameter k2 controls the decrease of mobile dislocation density

due to interaction between mobile dislocations and the term with the coefficient k3 governs

the immobilization of mobile dislocations with the mean free path being proportional to√
ρi, e.g. at cell walls. The density of mobile dislocations in eq. (1) is further influenced

by a production term

qm (ρm, ρi) = k1

ρi

ρm

(4)

where the k1-parameter is related to dislocation generation from immobile dislocation

sources. Similarly, the density of immobile dislocations in eq. (1) evolves under the in-

fluence of a dynamic recovery term

qi (ρi) = −k4ρi (5)

where the extent of dynamic recovery of immobile dislocations due to processes of climb

and cross-slip is controlled by the parameter k4. The form of the production component

in eq. (4) and of the dynamic recovery component in eq. (5) is based on the model in [12].

The total dislocation density, measuring the stored energy in the material, is taken as

the sum of the mobile and immobile dislocation densities, i.e.

ρ = ρm + ρi (6)

DOI: 10.1016/j.commatsci.2012.09.016 5



Computational Materials Science 2013, 67(373-383)

To introduce dislocation density gradients in the vicinity of the grain boundaries, the fluxes

in eq. (2) are assumed to be zero at the grain boundaries and the parameter k3 in eq. (3)

is allowed to vary with the distance l to the boundary, i.e.

k3 = k3 (l) (7)

This formulation represents the physical processes of increased immobilization and storage

of dislocations as the grain boundary is approached, which in the present model is assumed

to be impenetrable for mobile dislocations. Transmission of dislocations across the grain

boundaries can be incorporated into the present formulation by prescribing non-zero fluxes

of dislocations across the boundaries. Grain boundaries, allowing dislocation transmission,

are considered in a crystal plasticity model in [55].

The explicit form of the l-dependence in eq. (7) is chosen as

k3 (l) = k3,max − (k3,max − k3,min) g (l) (8)

where

g (l) = 1 − exp (−wl) , l ≥ 0 (9)

From eqs. (8) and (9) it is apparent that the k3 parameter is allowed to vary between

a maximum k3,max at the boundaries and a minimum k3,min in the grain interior. The

parameter w in eq. (9) controls how far into the grain interior the boundary influence

should reach, cf. Fig. 1. Lacking experimental data on values pertaining to this length

parameter, it is heuristically chosen in the present study. Setting k3,min = 0 prevents

immobilization of mobile dislocations due to interaction with immobile dislocations within

the grains, a distance away from the boundary.

A length scale, similar to the present l, is introduced in the crystal plasticity model

in [56] where a distinction is made between statistically stored and geometrically neces-

sary dislocation species. The size dependence of the model enters due to the presence of

geometrically necessary dislocations.

The function g (l) in eq. (9) is discussed further in the 2D polycrystal formulation in

Section 4.

2.1 One-dimensional case study

To illustrate the behavior of the dislocation reaction-diffusion equations in eq. (1), a one-

dimensional grain of diameter d is studied. To account for boundary effects at each end of

the one-dimensional domain, eq. (9) is made symmetric around l = d/2 according to

g̃ (l) = 1 − exp (−wl) − exp (−w (l − d)) , 0 ≤ l ≤ d (10)

DOI: 10.1016/j.commatsci.2012.09.016 6
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Figure 1: Variation of the k3 parameter from the grain boundary, where l = 0, towards the
grain center. The different lines show the effect of varying the parameter w in eq. (9).

and with consequent notation the k3-parameter appears as k̃3. For illustration purposes,

the parameters in the dislocation density evolution laws are chosen according to [12], giving

k1 = 3.1×1014 m−2, k2 = 5.5, k̃3,max = 4.2×107 m−1 and k4 = 6.7. For simplicity k̃3,min = 0

is set. A strain rate of ε̇p
eff = 1×10−2 s−1 is assumed. The diffusion coefficients Dm and Di

are set to Dm = 1 × 10−12 m2/s and Di = 1 × 10−14 m2/s. The initial densities of mobile

and immobile dislocations are set as ρ0
m = 1×1010 m−2 and ρ0

i = 1×1010 m−2, respectively.

It can be noted that, as also observed in [12], the influence of initial dislocation densities

on subsequent dislocation density evolution is negligible.

Eqs. (1) are solved using an explicit finite difference scheme with a centered difference

approximation in space and a forward Euler approximation in time. The one-dimensional

domain under consideration is given by 0 ≤ l ≤ d, where d is the grain size. Zero-flux

boundary conditions are prescribed at l = 0 and l = d. The parameter w in eq. (10) is set

to w = 15, cf. Fig. 1. In the numerical solution, the spatial domain 0 ≤ l ≤ d is divided

into 100 segments and a grain size of d = 1 µm is used.

The effect of varying the grain size d is shown in Fig. 2. These graphs show the varying

influence of the grain boundary gradients as the grain size change. The results are obtained

at a total macroscopic effective plastic strain of εp
eff = 0.5. In the numerical scheme, the

spatial discretization is varied to keep the segment length ∆l fixed at 0.01 µm, i.e. to

maintain the same spatial resolution for all grain sizes under consideration. From Fig. 2 it

is evident that the grain boundaries will have an increasing influence on the distributions

of dislocation densities as the grain size is reduced. This is closely related to the Hall-Petch

effect, considered in the following section.

Fig. 3 shows the average dislocation densities as a function of macroscopic effective

DOI: 10.1016/j.commatsci.2012.09.016 7
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Figure 2: Distribution of dislocation density in grains of different diameter d at an effective
plastic strain of εp

eff = 0.5. Note that the individual dislocation densities are normalized
by their values at l = 0: a) d = 0.5 µm, b) d = 1 µm and c) d = 5 µm.

plastic strain, obtained from the one-dimensional calculations using the stated parameter

values and a grain size of d = 1 µm.

3 Hall-Petch relation obtained from one-dimensional calculations

Classically, the relation between the macroscopic yield stress and the average grain size of

a material is given by the Hall-Petch relation [7, 8], indicating a proportionality between

this yield stress σ̄y and the inverse of the square root of the average grain size, i.e.

σ̄y = σ̄y0 +
k̄√
d

(11)

where σ̄y0 and k̄ are parameters.

DOI: 10.1016/j.commatsci.2012.09.016 8
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Figure 3: Average dislocation densities in a one-dimensional grain with diameter d = 1 µm
as functions of macroscopic effective plastic strain.

The Hall-Petch relation is usually demonstrated based on the variation of the initial

yield stress with average grain size. It has, however, been shown that a corresponding grain

size dependence is valid for arbitrary deformation states after initial yielding [57, 58, 59, 60].

In this view, the parameters σ̄y0 and k̄ are constants for a given value of strain.

The relation in eq. (11) is a manifestation of the increasing interaction between grain

boundaries and dislocations as the grain size is reduced, i.e. as the area fraction of grain

boundaries increases. By this reasoning, the Hall-Petch relation should be recovered in the

present study as an effect of considering dislocation density gradients, influenced by the

presence of grain boundaries.

To retrieve the Hall-Petch effect from the present dislocation density-based model, J2

plasticity is assumed and the macroscopic yield stress is taken as a function of the average,

total, dislocation density 〈ρ〉 according to

σy = σy0 + αµb
√

〈ρ〉 (12)

where σy0 is the Peierls’ stress needed to overcome lattice friction, µ is the shear modulus,

b is the magnitude of the Burgers vector and α a constant.

Using the one-dimensional model, described in the previous section, the average dislo-

cation density is calculated for different grain sizes. The corresponding yield stress values

are obtained from eq. (12) by assuming σy0 = 200 MPa, µ = 77 GPa, b = 0.3 nm and

α = 0.5, which are values representative for steel. The results are plotted in Fig. 4 as

circles. These results are shown together with a solid line, representing the Hall-Petch

relation in eq. (11). The parameter values σ̄y0 = 239.6 MPa and k̄ = 0.01 MPa·m1/2 were

obtained by a least squares fitting procedure.
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Figure 4: Variation of the macroscopic yield stress with the square-root of the grain size
d1/2. Results obtained from one-dimensional calculations at εp

eff = 0.25, and using eq. (12),
are shown as symbols and the solid line shows the fitted Hall-Petch relation in eq. (11).

From Fig. 4, it is seen that the one-dimensional calculations result in a grain size-

dependence of the macroscopic yield stress that agrees well with the Hall-Petch relation.

The present modeling approach, with dislocation density gradients and viewing the

evolution of dislocation densities as a reaction-diffusion system, is capable of representing

the effect of reduced grain size on the macroscopic flow stress behavior without explicitly

including the grain size as is done in the Hall-Petch formulation. Instead, the grain size-

dependence enters naturally as dislocation interaction with grain boundaries is taken into

account. In fact, the present results, as shown in Fig. 2, are in close agreement with the

original works by Hall and Petch, cf. [7, 8], and also by Cottrell [61]. In these papers, the

Hall-Petch effect is explained in terms of dislocation pile-ups at the grain boundaries that

cause stress concentrations at, or slightly ahead of, the dislocation pile-up.

4 Model formulation for polycrystals

To investigate the behavior of the reaction-diffusion model of dislocation densities in the

case of polycrystalline materials, a 2D microstructure is considered in this section. The

2D case is used for simplicity although it is noted that extension to 3D is straight-forward.

Again, an explicit finite difference scheme is used for the evolution of the dislocation den-

sities. The scheme is applied to an RVE described by a fixed two-dimensional grid with

dimensions 512 × 512 µm and a total of 1024 × 1024 grid divisions.

As the present dislocation model will be applied to cellular automata modeling of

dynamic recrystallization in subsequent sections, the notion of each grid point being a

DOI: 10.1016/j.commatsci.2012.09.016 10
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“cell” is introduced at this stage. To each cell belongs a number of state variables. For the

present purpose, the state variables consist of the cell’s density of mobile and immobile

dislocations, respectively, and an identifying number stating to which grain the cell belongs.

With the RVE dimensions just stated, each cell will have a side-length of lc = 0.5 µm.

Periodic boundary conditions are applied at the boundaries of the domain.

In the polycrystal formulation, microstructure evolution is described by a cellular au-

tomaton algorithm, except for the evolutions of the dislocation densities which are obtained

by employing a finite difference scheme on the cellular automaton cell grid. In this section,

grain boundaries are set to remain fixated and immobile to allow studying the effects of

the reaction-diffusion dislocation density model alone. In later sections the migration of

grain boundaries and nucleation of new grains due to dynamic recrystallization will be con-

sidered in a cellular automaton formulation. Additional details on the cellular automaton

implementation are given in Section 8.

A Taylor assumption is presently made, whereby the deformation is viewed as being

equal in all grains. Macroscopic flow stress behavior is assumed to obey standard J2

plasticity.

The 2D microstructure is viewed as a cross-section of the corresponding 3D polycrys-

talline material. This allows the average diameter of grain i to be calculated as

d̄i = 2lc

√
ncell,i

π
(13)

where ncell,i is the number of cells belonging to grain i.

In eq. (7), the immobilization of mobile dislocations due to interaction with immobile

dislocations, in terms of the parameter k3, was made dependent on the distance l to the

grain boundary by introducing the function g (l). To keep track of the distance of each

cell in a single grain, relative to the grain boundary, a distance number ndist is assigned

to the individual cells. The boundary cells of the grains are identified and are given the

distance number 1. All cells within the grain, having a neighbor with distance number 1

are subsequently given the distance number 2 and so on. This is continued until all cells

are numbered, cf. Fig. 5. When recrystallization with migrating grain boundaries and

appearance/disappearance of grains are considered later on, the distance numbers have to

be recalculated in each time step.

Based on the distance numbers, the distance l in eq. (7) is identified as an integer

number of cells nl defining the distance from the boundary – where nl = 1, cf. Fig. 5 –

and the function k3 (l) in eqs. (8) and (9) is recast in the form

k3 (nl) = k3,max − (k3,max − k3,min) (1 − exp [−w (nl − 1)]) , nl ≥ 1 (14)

In this form, eq. (14) satisfies k3 = k3,max at the boundary where nl = 1 and k3 = k3,min a

distance away from the boundary, indirectly determined by the parameter w. The behavior

of eq. (14) is illustrated in Fig. 6 for different values of w.

DOI: 10.1016/j.commatsci.2012.09.016 11
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The macroscopic yield stress is obtained from the cellular automaton RVE by consid-

ering

σy = σy0 + αµb
√

ρ̄ (15)

where the homogenized dislocation density is obtained from

√
ρ̄ =

1

V

∑

g

∫

Vg

√
ρgdV (16)

In this expression, V is the total RVE volume and Vg and ρg are the volume and total

dislocation density of grain g, respectively. The summation is performed over all grains.

This homogenization procedure is discussed further in [45].

5 Polycrystal simulations

Initial microstructures with different grain sizes are generated by allowing different numbers

of nuclei to grow until they impinge upon each other under purely curvature-driven motion.

Such grain growth kinetics are further discussed in Section 6. Some of the microstructures

used are shown in Fig. 7. In total, 20 different microstructures with average grain sizes

ranging between 2 µm and 111 µm are employed.

The ki-parameters in the dislocation density evolution equations, cf. eqs. (3)-(5), are

set to the same values as was used previously in Section 2. Also the strain rate of ε̇p
eff =

1×10−2 s−1 and the diffusion coefficients Dm = 1×10−12 m2/s and Di = 1×10−14 m2/s are

maintained as well as the initial densities of mobile and immobile dislocations which are
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Figure 5: Schematic illustration of the use of distance numbers to keep track of a how far
the cells in a grain are from the grain boundary. The grain boundary is indicated by a
thick line.
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Figure 6: Variation of the k3-parameter within a grain in the computational cell grid using
the distance numbers ndist. Note that the lines are only shown to indicate the trends
since in the cell grid, each value of ndist represents an individual cell in which k3 attains a
constant value.

homogeneously set as ρ0
m = 1× 1010 m−2 and ρ0

i = 1× 1010 m−2 to represent the annealed

initial state.

The discrete variation in one dimension of the parameter k3 is illustrated schematically

in Fig. 6 for different values of w. The same variations of k3 are also illustrated in a 2D

polycrystal with 75 grains in Fig. 8.

From Fig. 8 it is obvious that as the value of w is reduced, the dislocation density

gradient protrudes deeper into the grains and the boundary effects become increasingly

influential in the grain interiors, cf. Fig. 8a. For small grains, and small values of w,

boundary effects will dominate throughout the grain. Correspondingly, higher values of w

sharpens the dislocation density gradient and the gradient-affected region of the grains lies

close to the grain boundaries, cf. Fig. 8d.

The different microstructures are utilized with the present reaction-diffusion model to

simulate the evolution of dislocation densities up to a total strain of εp
eff = 0.5. Fig. 9 shows

the resulting, homogenized, flow stress for some of the grain sizes under consideration when

w = 0.1. As expected, an increased flow stress can be observed in Fig. 9 as smaller grain

sizes are considered.

In Fig. 9, it is worth noting that the flow curves have the same origin, regardless of

grain size. This is due to all simulations starting with a homogeneous dislocation density

distribution without any gradients. This has been chosen as a modeling assumption since

a qualitative study is performed, instead of postulating some initial heterogeneity.

The variation of the flow stress with grain size at εp
eff = 0.25 is shown in Fig. 10 for the

DOI: 10.1016/j.commatsci.2012.09.016 13
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a) b)

c) d)

Figure 7: Examples of the microstructures used in the present simulations. The microstruc-
tures have different average grain size: a) 78 µm (50 grains), b) 35 µm (250 grains), c)
25 µm (500 grains) and d) 18 µm (1000 grains).

different values of the parameter w also considered in Fig. 8. In Fig. 10, symbols represent

simulation results and the solid lines represent the Hall-Petch relation in eq. (11).

From the results in Fig. 10, it can be noted that as w = 0.1 is employed, grain boundary

effects tend to dominate far into the grain interior, cf. Fig. 8a. Consequently, the simulation

results in Fig. 10 deviate significantly from a Hall-Petch type of behavior as smaller grain

sizes are considered. This is in fact a manifestation of how the Hall-Petch formulation is

less applicable as the grain size is reduced, i.e. as boundary effects prevail throughout the

grain interiors. However, as the value of w is increased and the dislocation density gradients

near the grain boundaries become steeper – i.e. as dislocation pile-ups are more confined

to a region close to the boundaries – the simulation results in Fig. 10 more closely follows

a typical Hall-Petch behavior. The solid lines in Fig. 10 are fitted to the simulation results

through a least-squares procedure, resulting in σ̄y0 = 243.6 MPa and k̄ = 52.7 MPa·m1/2

for w = 0.5, σ̄y0 = 240.9 MPa and k̄ = 52.0 MPa·m1/2 for w = 1 and σ̄y0 = 239.9 MPa and

k̄ = 50.3 MPa·m1/2 for w = 2.
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a) b)

c) d)

k3,max

k3,min

Figure 8: Variation of the k3 parameter in a 2D microstructure with 75 grains and an
average grain size of d = 64 µm. The different figures are obtained by different choices of
the parameter w: a) w = 0.1, b) w = 0.5, c) w = 1 and d) w = 2.
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Figure 9: Homogenized flow stress obtained from the polycrystal simulations for some
different grain sizes and with w = 0.1.
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Figure 10: Variation of the flow stress, obtained at εp
eff = 0.25, for different grain sizes and

for different values of the w-parameter, corresponding to the values used in Fig. 8. Symbols
represent simulation results and solid lines least-squares fittings of the Hall-Petch relation
in eq. (11).

6 Recrystallization kinetics

Prior to applying the proposed model to a cellular automata simulation of recrystallization,

the necessary recrystallization kinetics need to be established.

Considering dynamic discontinuous recrystallization, i.e. recrystallization driven by

plastic deformation and proceeding by nucleation and growth of new grains, the rate of

nucleation per unit grain boundary length is chosen as

ṅ = cε̇p
eff exp

(
− Qn

RT

)
(17)

where Qn is the activation energy for nucleation, R the gas constant and T the absolute

temperature, a constant parameter in the present isothermal study. The activation energy

Qn can be a function of local conditions of e.g. stored energy, but is here taken as a constant

for simplicity. The coefficient c is generally a temperature dependent material parameter,

but is presently set as a constant parameter as isothermal conditions are assumed. This

parameter is further discussed in relation to the calibration of the model below.

The local migration velocity of a grain boundary, directed along the boundary normal,

has the format

v = mp (18)

where m is the mobility and p the driving pressure, taken as

p = τ [ρ] − 2γκ (19)
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The dislocation line tension is here denoted by τ = µb2/2, the jump in total dislocation

density across a grain boundary by [ρ] and the grain boundary energy by γ. The local

boundary curvature κ is approximated, based on the cellular automaton grid discretization,

as discussed later on.

The grain boundary mobility, appearing in eq. (18), may depend on both temperature

T and relative crystallographic misorientation θ across the boundary. Following [62, 38,

63, 64, 65], the mobility is taken as

m (T, θ) = m0 (T )

[
1 − exp

{
−B

(
θ

θm

)k
}]

exp

(
−Qm

RT

)
(20)

where Qm is the activation energy for grain boundary migration and k = 4 and B = 5 are

parameters, chosen according to [62]. The shift from low-angle to high-angle boundaries

is assumed to occur at θm ≈ 15◦. According to [65], the pre-exponential term in eq. (20)

appears as

m0 (T ) =
δDGBb

kT
(21)

where δ is a typical grain boundary width, DGB is the coefficient of grain boundary self

diffusion and k the Boltzmann constant. Again, as isothermal conditions are considered,

T as well as m0 are treated as a constant parameters.

The grain boundary energy is here assumed to follow the Read-Shockley relation [66]

for low-angle boundaries, where θ ≤ θm. For high-angle boundaries, the grain boundary

energy is assumed to attain the constant value of γ0, cf. [38]. In the present study, the

grain boundary energy is thus taken as

γ (θ) =





γ0

θ

θm

[
1 − ln

(
θ

θm

)]
if θ ≤ θm

γ0 if θ > θm

(22)

The parameters in eq. (17) and in eqs. (20)-(22) are given in relation to calibration of the

model, as shown later on.

7 Cellular automaton implementation

Having established the reaction-diffusion model of dislocation densities in a 2D polycrystal

in previous sections, the cellular automaton implementation of the model can now be com-

pleted. One remaining issue is the local boundary curvature, first appearing in eq. (19).

In the present cellular automaton implementation, this quantity is approximated by con-

sidering an expanded neighborhood to each cell as was used in [67, 45]. The curvature is
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by this approach obtained from

κ =
aκ

lc

nk − ni

nc + 1
(23)

where aκ is a fitting parameter and lc the side length of a cellular automaton cell. In the

present case an expanded neighborhood containing the nc = 24 nearest- and second-nearest

neighbors is used. The number of cells within this expanded neighborhood that belongs to

grain i is denoted by ni and nk = 10 is the number of cells in the expanded neighborhood

that would represent a locally planar interface, giving nk = ni and κ = 0. Following the

procedure in [45] for calibration of the parameter aκ in eq. (23), aκ = 3.5 is obtained.

During a cellular automaton simulation, the size of the time step must be controlled

with respect to the physical processes that are studied. In the case of recrystallization,

the time step ∆t is continuously adjusted to allow the fastest migrating grain boundary,

with velocity vmax, to advance a single cell distance lc during a step. However, since the

reaction-diffusion evolution of dislocation densities in the present model is solved by an

explicit central difference scheme in the cellular automaton, an additional restriction is put

on the allowable time step, given by the diffusion coefficients Di and Dm. Noting that

Dm ≫ Di, the time increment is in each step obtained from

∆t = min

(
lc

vmax

,
1

2

l2c
Dm

)
(24)

Following the approach in [45], a probabilistic cell state switching rule is used. In each time

step, the maximum grain boundary velocity vmax occurring in the modeled polycrystal is

calculated. Next, a switching probability wswitch = v/vmax is calculated for all cells residing

at grain boundaries, having the local migration velocities v ≤ vmax. A random number

ξ ∈ [0, 1] is generated for each of these cells and if ξ ≤ wswitch, the cell switch is accepted and

otherwise it is rejected. This use of a probabilistic switching rules avoids the nonphysical

situation where all migrating boundaries, having different velocities, would be allowed to

advance during a common time step.

Further details of the cellular automaton algorithm are discussed in [45].

8 Cellular automata simulation of dynamic recrystallization

To perform simulations of dynamic recrystallization, the ki-parameters previously used are

employed again and additional parameter values are chosen in ranges pertaining to copper.

It is noted that the values of the ki-parameters are not necessarily representative for this

material, but they are chosen for simplicity since a qualitative study is aimed for. The

additional material parameters are summarized in Table 1, also cf. [45]. The parameter

w is set to w = 1 and a process temperature of T = 800 K is assumed. This temperature
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is within the range where dynamic recrystallization has been experimentally observed in

pure copper, cf. [45].

The grains are given a random initial orientation from a uniform distribution in the

interval between 0 and 90◦, resulting in an isotropic orientation distribution.

Nucleation of new grains is initiated as the total dislocation density reaches a critical

threshold value ρc. Once this condition is fulfilled, nucleation proceeds according to the

nucleation rate defined by eq. (17). The dislocation density threshold value is in the present

case taken as ρc = 1× 1014 m−2 and the coefficient c in eq. (17) is set to c = 2× 1021 m−2.

Recrystallization nuclei are given random orientations from the same distribution as

the original grains and the nuclei are also defined by zero initial dislocation densities.

By the above combination of chosen parameter values, and using an initial RVE mi-

crostructure with 150 grains and an average initial grain size of 45 µm, the flow stress

behavior shown in Fig. 11 is obtained. Serrations in the flow stress occur due to repeated

cycles of recrystallization in the microstructure [38, 45]. In the simulation, the initial grain

size of 45 µm is reduced to a saturation value of 16 µm at the end of the deformation.

A qualitatively similar behavior, exhibiting oscillatory flow stress as in Fig. 11 and grain

refinement, can be observed in the experimental results on copper presented in [71].

The distribution of total dislocation density at the onset of recrystallization, cf. point A

in Fig. 11, is shown in Fig. 12. The close-up view shows how the highest levels of dislocation

density can be found at triple junctions followed by somewhat lower concentrations along

grain boundaries. The dislocation density gradients gradually decline as one moves away

from the grain boundaries and into the grain interiors where the dislocation density is

considerably reduced.

The concentration of dislocation density at grain boundaries and primarily at triple

junctions, illustrated in Fig. 12, has an important implication in recrystallization modeling.

Nucleation of new grains occur at sites of high stored energy, i.e. of high dislocation density,

and experiments locate the nucleation sites to triple junctions and grain boundaries [38].

The usual approach in simulation models of recrystallization – and particularly so in

Table 1: Material parameters entering the present model. The values are representative
for pure Cu.

Parameter Value Description Source
γ0 0.625 J·m−2 Grain boundary energy for HAGBs [68]
δDGB 5×10−15 m−3/s Grain boundary diffusivity [69]
α 0.5 Dislocation interaction strength parameter [63]
Qm 104 kJ·mol−1 Activation energy for grain boundary migration [38]
b 0.256 nm Magnitude of the Burgers vector [70]
Qn 261 kJ·mol−1 Activation energy for nucleation [71]
µ 28 GPa Shear modulus [68]
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Figure 11: Flow stress behavior obtained from the cellular automaton simulation. The
onset of recrystallization occurs at point A. Results from a simulation with recrystallization
(RX) is shown by a solid line and results without recrystallization is shown by a dashed
line.
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Figure 12: Distribution of total dislocation density at the onset of recrystallization, in-
dicated as point A in Fig. 11. The close-up shows how the dislocation is concentrated
primarily at triple junctions and secondly along grain boundaries.

cellular automata models – is to manually place the recrystallization nuclei at preferred

sites in the microstructure. Using the present approach with dislocation density gradients,

the nucleation sites emerge naturally without manual intervention.

Some stages of the microstructure evolution during the cellular automata simulation are
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a) b)

c) d)

Figure 13: Microstructure at different deformation states, cf. Fig. 11a. Recrystallized
grains are shaded gray. a) Initial microstructure with 150 grains and an average grain size
of 45 µm at εp

eff = 0, b) Growth of the first nuclei from triple junctions at εp
eff = 0.56, c)

Necklace pattern of recrystallized grains at εp
eff = 0.63 and d) Final grain structure with

977 grains and an average grain size of 16 µm at εp
eff = 2.

illustrated in Fig. 13. Recrystallized material is shaded gray. The first picture, Fig. 13a,

shows the initial grain structure. The appearance of recrystallization nuclei is illustrated

in Fig. 13b. After additional nucleation and growth, the recrystallized grains are localized

along the grain boundaries of the initial microstructure, forming a necklace pattern, cf.

Fig. 13c. The resulting recrystallized microstructure, at the end of the deformation process,

is shown in Fig. 13d. At this point, the initial average grain size of 45 µm has been reduced

to approximately 16 µm.

In addition to providing physically sound nucleation sites, the present model also in-

fluence the grain boundary migration rate. Recalling eq. (19), the driving pressure acting

on a grain boundary is dependent on the jump in dislocation density across the bound-

ary. With dislocation density gradients and dislocation pile-ups along the boundaries, a

more physically realistic driving pressure is obtained than in the usual approach with a

homogeneous dislocation density distribution.
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9 Concluding remarks

To account for heterogeneous distributions of stored energy in grain microstructures, a

model is established where mobile and immobile dislocations are allowed to evolve as a

reaction-diffusion system. It is shown in the present work how dislocation density gra-

dients can be introduced through the presence of grain boundaries. By this approach,

one-dimensional calculations verify that a macroscopic flow stress with a Hall-Petch type

of dependence on the grain size is obtained, without explicitly making the flow stress a

function of the grain size. The size dependence enters the formulation on the microlevel

through a length parameter related to the dislocation density gradients.

In addition, a methodology is established to introduce the dislocation density gradients

in polycrystal simulations on the grain scale, using a fixed spatial grid for the numer-

ical algorithm. This method is then applied to finite difference and cellular automata

simulations of polycrystalline microstructures. Again, it is shown how the macroscopic,

homogenized, flow stress exhibits a Hall-Petch variation with the average grain size of the

microstructure. In addition, the polycrystal simulations illustrate how the Hall-Petch re-

lation becomes less applicable for materials with very small grain sizes. In these cases, the

interaction between dislocations and grain boundaries becomes influential throughout the

microstructure, changing the flow stress dependence on grain size.

The polycrystal model is finally employed in a cellular automaton simulation of dy-

namic recrystallization and it is shown that the present formulation – involving dislocation

density gradients – provide important additions to the common modeling approach where

homogeneous dislocation density distributions are used. Due to the reaction-diffusion evo-

lution of dislocation density, the stored energy level will be highest at triple junctions and

along grain boundaries. This allows nucleation of recrystallization grains to occur spon-

taneously at those sites where experiments suggest, without having to manually specify

suitable nucleation sites as is the usual approach in recrystallization simulations. It is also

recognized that the presently introduced stored energy gradient will influence the migration

velocity of mobile grain boundaries, altering recrystallization kinetics.

References

[1] S. Sun, B.L. Adams, and W.E. King. Observation of lattice curvature near the interface

of a deformed aluminum bicrystal. Phil. Mag. A, 80(1):9–25, 2000.

[2] E. Demir, D. Raabe, N. Zaafarani, and S. Zaefferer. Investigation of the indenta-

tion size effect through the measurement of the geometrically necessary dislocations

beneath small indents of different depths using EBSD tomography). Acta Mater.,

57:559–569, 2009.

DOI: 10.1016/j.commatsci.2012.09.016 22



Computational Materials Science 2013, 67(373-383)

[3] M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe. Orientation gradients and geo-

metrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D

and 3D EBSD. Mater. Sci. Eng., A527:2738–2746, 2010.

[4] P.D. Littlewood, T.B. Britton, and A.J. Wilkinson. Geometrically necessary disloca-

tion density distributions in Ti-6Al-4V deformed in tension. Acta Mater., 59:6489–

6500, 2011.

[5] J.F. Nye. Some geometrical relations in dislocated crystals. Acta Metall. Mater.,

1:153–162, March 1953.

[6] M.F. Ashby. The deformation of plastically non-homogeneous materials. Phil. Mag.,

21(170):399–424, 1970.
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