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Abstract 

Glioma is the most common type of primary tumor in the adult central nervous 

system (CNS). However, the current classification of gliomas is highly subjective 

and even inaccurate in some cases, which leads to clinical confusion and hinders 

the development of targeted therapies. EGFR and PDGFRA play crucial roles in 

glia development and glioma pathogenesis. In this thesis we aim to establish a 

glial genesis-guided molecular classification scheme for gliomas based on the 

genes co-expressed with EGFR or PDGFRA and to clarify the clinical relevance 

and the mechanism of PDGFRA expression in different glioma subtypes. We also 

aim to investigate the role of cell surface PDGFRA expression in regulating 

glioma cell proliferation. 

In order to establish a glial genesis-guided classification scheme, we identified 69 

genes co-expressed with EGFR (EM) or PDGFRA (PM) as classifiers. Using these 

69 classifiers, gliomas are clarified into EM (highly expressing EM genes), PM 

(highly expressing PM genes), and EM
low

PM
low

 (lowly expressing both EM and 

PM genes) subtypes in a morphology-independent manner. Our results showed 

that besides their distinct patterns of genomic alterations, EM gliomas were 

associated with higher age at diagnosis, poorer prognosis, stronger expression of 

neural stem cell genes and astrogenesis genes, while PM and EM
low

PM
low

 gliomas 

were associated with younger age at diagnosis and better prognosis. PM gliomas 

were enriched in the expression of oligodendrogenesis genes, whereas EM
low

PM
low

 

gliomas were enriched in the signatures of mature neurons and oligodendrocytes. 

These findings constitute a framework for improving molecular diagnosis and 

identifying therapeutic targets to combat gliomas.  

To investigate the clinical relevance of PDGFRA in gliomas, the clinical outcomes 

of gliomas with the top 25% of PDGFRA expression levels (PDGFRA-high) were 

compared with the gliomas with lowest 25% of PDGFRA expression levels 
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(PDGFRA-low). We found that PDGFRA-high gliomas contained nearly all 

morphological subtypes, which was associated with frequent IDH1 mutation, 1p 

LOH, 19q LOH, less EGFR amplification, younger age at disease onset and better 

survival compared to PDGFRA-low gliomas. We also found that the PDGFRA 

expression can be induced and maintained by fibroblast growth factor 2 (FGF2) in 

primary glioma cells. FGF2-dependent maintenance of PDGFRA expression was 

concordant with the maintenance of a subset of gliogenic genes and higher rates of 

cell proliferation. Our findings suggest a role of FGF2 in regulating PDGFRA 

expression in the subset of gliomas. 

To investigate the role of cell surface expression of PDGFRA in regulating cell 

proliferation, we compared the growth rate of primary glioma cells having high 

cell surface PDGFRA expression level with the glioma cells having low cell 

surface PDGFRA expression level. We demonstrated that glioma cell proliferation 

correlated with the extent of surface expression of PDGFRA in both glioma cell 

lines and their corresponding tumor samples. We also found that MEK inhibitor 

U0126 treatment can decrease the surface PDGFRA expression and result in 

deviation of PDGFRA from endosomal trafficking and recycling compartment to 

the Golgi network in a reversible, dose- and time-dependent manner without 

affecting total PDGFRA expression. U0126 mediated down-regulation of 

PDGFRA surface expression correlated with diminished cell proliferation. Our 

findings suggested that the trafficking of PDGFRA in glioma cells is regulated by 

ERK activity and can potentially be manipulated to combat glioma growth. 
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Populärvetenskaplig 

sammanfattning på svenska 

Gliom är den vanligaste typen av hjärntumörer hos vuxna. Den mikroskopiska 

klassificeringen av de olika formerna av gliom är subjektiv och i vissa fall t.o.m. 

felaktig, vilket leder till klinisk oklarhet som kan hindra utvecklingen av terapier 

som riktas mot speciella egenskaper som kännetecknar speciella typer av gliom. 

EGFR och PDGFRA är en cellreceptor som har en central roll i utvecklingen av 

hjärnans normala gliavävnad (vävnad som omger nervcellerna), och har en analog 

huvudroll i gliavävnadens motsvarande tumör–omvandling till gliom. Denna 

avhandling syftar till att dels etablera en molekylär klassifikation av gliomen på 

basen av den stegvisa utmognaden av de olika typerna av normala gliaceller och 

dess association med gener som uttrycks tillsammans med generna för 

cellreceptorerna EGFR eller PDGFRA, dels klargöra mekanismen och den 

kliniska relevansen för uttrycket av PDGFRA i olika typer av gliom, samt studera 

den roll PDGFRA lokaliserat till cellytan har för reglering av gliomcellers 

delningshastighet. 

För att etablera en molekylär gliomklassificering baserad på den normala 

gliavävnadens utmognad identifierades 69 gener som var aktiva tillsammans med 

generna EGFR (EM) respektive PDGFRA (PM). Utan hänsyn till mikroskopiskt 

utseende klassificeras gliom från olika patienter i 3 grupper: EM (EM-gener 

uttrycks starkt), PM (PM-gener uttrycks starkt) och EM
low

PM
low 

(lågt uttryck av 

både PM- och EM-gener). Resultatet visar att EM-gliom har starkare uttryck av 

omogna nervcellsgener och gener associerade med en typ av gliaceller (astroglia), 

sämre prognos för patienten som insjuknar vid högre ålder. PM och EM
low

PM
low

 är 

associerade med bättre prognos och lägre ålder vid insjuknandet. PM-gliom har 

starkare uttryck av gener associerade med en annan typ av gliaceller 



 12 

(oligodendrocyter) liksom EM
low

PM
low

. De senare har starkare uttryck av gener 

associerade med mogna nervceller. Dessa resultat utgör en bas för att förbättra den 

molkylära diagnosticeringen och för att identifiera molkylära 

målstrukturer/mekanismer för riktad terapi. 

Den kliniska relevansen av PDGFRA-uttryck i gliom har också analyserats genom 

att jämföra det kliniska utfallet för gliompatienter som har gliom med de 25% 

högsta uttrycken med patienterna med de 25% lägsta uttrycken. De 

höguttryckande gliomen innefattar nästan alla mikroskopiskt skilda typer av 

gliom, har lågt uttryck av EGFR och har ofta vissa specifika genmutationer, och 

patienterna insjuknade vid lägre ålder och hade bättre prognos än patienterna med 

lågt PDGFRA-uttryck. En tillväxtfaktor för bindvävsceller (FGF2) visas kunna 

inducera uttrycket av PDGFRA hos gliomceller i vävnadskultur. Graden av 

PDGFRA-uttryck på gliomcellers yta visas korrelera med cellernas 

delningshastighet.  

Aktiveringen av ett enzym (MEK) utgör ett viktigt steg i den kaskad av 

molekylära interaktioner som leder från att en receptor internaliseras till att 

responderande gener aktiveras i cellens kärna. En hämmare av MEK visas minska 

PDGFRA-uttrycket på cellytan men däremot inte cellens totala PDGFRA. Det 

minskade receptoruttrycket på cellytan uppfattas vara beroende på en hämning av 

signalering av återtransport av internaliserade receptorer till cellytan. Att cellens 

totala PDGFRA inte minskar kan hänga samman med att en annan väsentlig 

molekyl (ERK) i de aktuella signalvägarna har visats få kompensatoriskt ökat 

uttryck som en långsam effekt av MEK-hämmaren. Hämmaren framkallar en 

minskad delningshastighet hos gliomceller i vävnadsodling, vilket går parallellt 

med det minskade PDDGFRA-uttrycket på cellytan. Den ökade insikten i den 

molekylära styrningen av PDGFRA på cellytan och därigenom 

delningshastigheten kan tänkas öppna för ny terapiutveckling. 
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Abbreviations 

CNS Central nervous system  

GBM Glioblastoma multiforme 

Ig Immunoglobulin  

WHO World Health Organization 

SNP Single nucleotide polymorphism 

CGH Comparative genomic-hybridization 

GEP Gene expression profiling 

TCGA The Cancer Genome Atlas 

YKL40 (CHI3L1) Chitinase-3-like protein 1 

VEGF Vascular endothelial growth factor 

VEGFR2 VEGF receptor 2 

PDGF Platelet-derived growth factor  

PDGFRA PDGF receptor alpha 

PDGFRB PDGF receptor beta 

CDK Cyclin-dependent kinase 

MET (HGFR) Met proto-oncogene (hepatocyte growth factor 

receptor) 

IDH Isocitrate dehydrogenase 

PIK3CA Phosphatidylinositol-4, 5-bisphosphate 3-kinase, 

catalytic subunit alpha 

PIK3R1 Phosphatidylinositol 3-kinase regulatory subunit 1 

TP53 (P53) Tumor protein p53 

EGF Epidermal growth factor  

EGFR EGF receptor 
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PTEN Phosphatase and tensin homolog 

CDKN2A Cyclin-dependent kinase inhibitor 2A 

NF1 Neurofibromin 1 

DLL3 Delta-like 3 (Drosophila) 

OLIG2 Oligodendrocyte lineage transcription factor 2 

CD40 (TNFRSF5) TNF receptor superfamily member 5 

LGALS3 Lectin, galactoside-binding, soluble, 3 

FDA Food and Drug Administration 

MGMT O-6-methylguanine-DNA methyltransferase 

wt Wild-type 

1p Short arm of chromosome 1 

19q Long arm of chromosome 19 

LOH Loss of heterozygosity 

LGGs Low-grade giomas 

α-KG α-ketoglutarate 

HIF-1α Hypoxia inducible factor-1 α 

NADPH Nicotinamide adenine dinucleotide phosphate 

2-HG (R)-2-hydroxyglutarate 

AML Acute myeloid leukemia 

TET2 Ten-eleven translocation 2 

MRS Magnetic resonance spectroscopy 

10q Long arm of chromosome 10 

CCNU Lomustine 

PVC Procarbazine, vincristine and CCNU 

TMZ Temozolomide 
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EORTC European Organisation for Research and Treatment 

of Cancer 

RTOG Radiation Therapy Oncology Group 

NCIC National Cancer Institute of Canada 

NPC Neural progenitor cell 

NSC Neural stem cell 

SVZ subventricular zone 

TK Tyrosine kinase 

TGFα Transforming growth factor α 

PI3K Phosphatidylinositide 3-kinase 

AKT (PKB) Protein Kinase B 

MAPK Mitogen-activated protein kinase 

NSCLC Non–small cell lung cancer  

EGFRvI Type I EGFR variant deletion mutant 

EGFRvI Type II EGFR variant deletion mutant 

EGFRvIII Type III EGFR variant deletion mutant 

EGFRvIV Type IV EGFR variant deletion mutant 

EGFRvV Type V EGFR variant deletion mutant 

mTOR Mammalian target of rapamycin 

CRTC2 CREB-regulated transcription co-activator 2 

NF-κB Nuclear factor kappa-light-chain-enhancer of 

activated B 

SFK Src family kinase 

DOCK1 (DOCK180) Dedicator of cytokinesis 1 

IL Interleukin 

LIF Leukemia inhibitory factor 
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SH2 Src Homology 2 

SHP2 (PTPN11) Protein tyrosine phosphatase, non-receptor type 11 

OPC Oligodendrocyte precursor cells 

bp Base pair 

APC Astrocytes precursor cells  

MADM Mosaic analysis with double markers 

NG2 Neuron-glial antigen 2 

RTK Receptor tyrosine kinase 

EM EGFR module 

PM PDGFRA module 

PDGFRA-high High levels of PDGFRA expression 

PDGFRA-low Lower levels of PDGFRA expression 

FGF2 Fibroblast growth factor 2 

MEK Mitogen-activated protein kinase kinase 

ERK Mitogen-activated protein kinase 
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Introduction 

Gliomas  

Glioma is referred to tumor that starts in the brain or the spine. The most common 

site of gliomas is the brain[1]. Symptoms of gliomas depend on which part of the 

central nervous system (CNS) is affected. Brain gliomas can cause headaches, 

nausea, volmiting, seizures, and/or visual loss, and cranial nerve disorders as a 

result of increased intracranial pressure, while spinal cord gliomas can lead to 

pain, weakness, or numbness in the extremities. Gliomas do not metastasize 

through the bloodstream, but they can spread via the cerebrospinal fluid and cause 

"drop metastases" to the spinal cord.  

Epidemiology 

Gliomas, the most frequent primary brain tumours in adults, make up 

approximately 30% of all brain and central nervous system tumors and 80% of all 

malignant brain tumors[2]. The annual incidence is 6 cases per 100 000 [3]. Each 

year, more than 14 000 new cases are diagnosed in the United States [3]. 

Glioblastoma multiformes (GBMs) account for approximately 60%-70% of 

malignant gliomas, anaplastic astrocytomas for 10%-15%, and anaplastic 

oligodendrogliomas and anaplastic oligoastrocytomas for 10%; less common 

tumors such as anaplastic ependymomas and anaplastic gangliogliomas account 

for the rest [3, 4]. The incidence of these tumors has increased slightly over the 

past two decades, especially in the elderly as a result of improved diagnostic 

imaging.  

Malignant gliomas are 40% more common in men than in women and twice as 

common in whites as in blacks [3]. The median age of patients at the time of 

diagnosis is 64 years in the case of GBMs and 45 years in the case of anaplastic 
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gliomas [3, 5]. Currently, there is no cure for gliomas and most available 

treatments provide only minor symptomatic relief.  

The cause of glioma is unknown, although previous exposure to ionizing radiation 

is a known risk factor [6]. Radio frequency electromagnetic fields emitted by 

mobile phones have been suspected to induce gliomas in excessive users of 

cellular phones. However, the association between radio frequency waves and 

brain tumours remains unclear [6]. Evidence for an association with head injury, 

foods containing N-nitroso compounds, occupational risk factors, and exposure to 

electromagnetic fields is inconclusive [6]. There is suggestive evidence of an 

association between immunologic factors and gliomas. Patients with atopy have a 

reduced risk of gliomas [7], and patients with glioblastoma who have elevated 

immunoglobulin E (IgE levels) appear to live longer than those with normal levels 

[8]. The importance of these associations is unclear. Gene polymorphisms that 

affect detoxification, DNA repair, and cell-cycle regulation have also been 

implicated in the development of gliomas [6]. 

Approximately 5% of patients with malignant gliomas have a family history of 

gliomas. Some of these familial cases are associated with rare genetic syndromes, 

such as neurofibromatosis types 1 and 2, the Li−Fraumeni syndrome (germ-line 

p53 mutations associated with an increased risk of several cancers), and Turcot’s 

syndrome (intestinal polyposis and brain tumors) [9].  

Histological classification of gliomas  

Gliomas are classified by subtype and further by grade on the basis of 

histopathological features. According to the similarity to normal glia cells, gliomas 

are first classified into astrocytomas (including GBMs), oligodendrogliomas, and 

ependymomas [4], whose tumor cells show morphological  similarity to 

astrocytes, oligodendrocytes and ependycytes, respectively. Tumors that display 

similarity with a mixture of these different cells are called mixed gliomas [4]. 
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Gliomas are further separated into grades I through to IV according to the 2007 

World Health Organization (WHO) system which is based on the presence or 

absence of nuclear atypia, mitosis, microvascular proliferation, and necrosis [4].  

 Astrocytic 

tumors 

Oligodendroglial 

tumors 

Mixed tumors Median of Survival 

(years) 

Grade I Pilocytic 

astrocytoma 

NA NA >10 

Grade II Diffuse 

astrocytoma 

Diffuse 

oligodendroglioma 

Diffuse 

oligoastrocytoma 

5-8 

Grade III Anaplastic 

astrocytoma 

Anaplastic 

oligodendroglioma 

Anaplastic 

oligoastrocytoma 

3 

Grade IV GBM GBM GBM 1-1.5 

Table 1. 

Current diagnostic scheme of gliomas according to the 2007 WHO classification of tumors of CNS. 

NA: Not applicable 

 

The WHO classification of gliomas is prognostic between the grades and subtypes. 

Grade I gliomas (pilocytic astrocytomas) typically have a good prognosis and 

more frequently occur in children [10], and grade II gliomas (diffuse 

astrocytomas) are characterized on histologic examination by hypercellularity. 

Patients with grade II gliomas have a 5–8-year median survival [10]. Grade III 

gliomas (anaplastic astrocytoma tumors) are characterized according to 

hypercellularity, as well as nuclear atypia and mitotic figures. Patients with 

anaplastic astrocytoma has a 3-year median survival [10]. Grade IV gliomas, also 

known as GBMs, are characterized according to hypercellularity, nuclear atypia, 

mitotic figures, and evidence of angiogenesis and/or necrosis [3]. The median 
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survival for patients with GBM is 12–18 months, and older patients (>60 years of 

age) typically have a somewhat shorter survival than younger patients [10]. While 

90%–95% of GBMs are considered ‘‘primary,’’ 5%–10% of GBMs develop from 

lower grade gliomas in younger patients and are termed ‘‘secondary’’ [11, 12]. 

Together with grade III anaplastic astrocytoma, these gliomas consist of the 

clinical entity termed ‘‘malignant glioma’’. 

Oligodendrogliomas are divided into two grades: well-differentiated 

oligodendrogliomas and oligoastrocytomas (WHO grade II), and anaplastic 

oligodendrogliomas (WHO grade III). All of these tumors may contain perinuclear 

halos and a delicate network of branching blood vessels (chicken-wire pattern) [4]. 

Patients with oligodendrogliomas have a 5-year survival rate of approximately 

80% [3]. 

The problems of histological classification of gliomas  

Accurate pathological classification of gliomas is essential because it guides 

treatment and prognosis. The 2007 WHO classification system is a practical and 

effective approach of glioma diagnosis for most cases in which it provides a 

means for placing tumors into specific, relevant prognostic categories. These 

classification schemes are mainly based on the morphological observations of 

glioma cells. However, the morphology of cells is dynamic regulated by the actin 

cytoskeleton that is sensitive to the signals from microenvironments [13]. Same 

types of glioma in different patients may show distinct cell morphology, which 

may cause the wrong diagnosis by observers. So this classification schemes are 

subjective, lack reproducibility, and remain imperfect in their ability to predict 

individual outcomes [14]. In addition, traditional groupings are only satisfactory 

for series of cases, and not necessarily adequate predictors of behavior, response to 

therapy or survival for individual tumors and patients [14].  
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Some diffuse gliomas are also difficult to place into one of the WHO categories, 

which can result in diagnostic dilemma, or nebulous diagnoses such as “malignant 

glioma, not otherwise specified.” Many studies have indicated that approximately 

20-30% of all gliomas are incorrectly classified [15-18]. For a large proportion of 

these patients, discrepancies in classification result in different treatment strategies 

[18] whereas these have been optimized for the different glioma subtypes. 

Moreover, no specific treatment has been found for any type of gliomas.  

 These problems clearly indicate the importance of improving the current approach 

to glioma classification. In this regard, classification for gliomas based on 

molecular signatures has a greater likelihood of achieving broadly clinical 

relevance.  

Molecular classification of gliomas  

The ongoing characterization of the genetic alterations in glioma tumor cells is 

revealing considerable variability among tumors of the same morphological type 

and grade. This heterogeneity may contribute to the current limitations in 

predicting patient survival on the basis of histologic analysis of glioma type and 

grade alone [10, 15-18] and suggests that classification of certain types and grades 

of gliomas according to their genetic phenotype will lead to a more accurate 

prediction of survival and response to therapy [15-18].  

High-throughput genomic techniques will accelerate this process. Screening for 

gene polymorphisms and loss of heterozygosity (LOH) by single nucleotide 

polymorphism (SNP) microarrays; analyzing chromosomal gains and losses by 

comparative genomic-hybridization (CGH) arrays; determining global patterns of 

methylation, acetylation and alternative splicing on microarrays; gene expression 

profiling (GEP) on microarray; and identifying characteristic proteomic profiles 

will probably all play a part in the new molecular diagnosis [19-27].  
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GEP studies have been used to identify subclasses of gliomas based on 

transcriptomic signatures. It is increasingly clear that these signatures can convey 

information about prognosis and can, in part, reflect underlying patterns of 

mutation and signaling alterations. Most recently, transcriptomic signatures have 

been associated with alterations in DNA sequence and copy number [28] as well 

as with proteomic markers of key signaling pathways [29] and with patterns of 

DNA methylation [30]. These studies aimed either to identify differentially 

expressed genes among morphologically subtypes or to define prognostically 

distinct molecular subtypes of gliomas.  

Identification of differentially expressed genes among morphologically 

defined gliomas 

The earliest GEP studies were performed mainly to identify differentially 

expressed genes among morphologically defined gliomas. Such genes were found 

in low-grade versus high-grade astrocytomas [31], high-grade 

oligodendrogliomas versus GBM [32, 33], primary versus secondary GBM [34-

36], adult versus pediatric GBM [37], or a variety of morphologically defined 

glioma subtypes [34, 35, 38]. Using primarily hierarchical clustering on 

differentially expressed genes, transcriptomal profiles of individual tumors were 

shown to be most similar to those from the same diagnostic subtype. These studies 

demonstrated that morphological differences among gliomas are reflected at the 

mRNA transcript level and that differentially expressed genes could be utilized to 

distinguish among morphologically defined subtypes.  

However, discordance between morphological diagnosis and GEP-defined 

molecular subtype was frequent, likely due in part to inclusion of morphologically 

non-typical gliomas. Moreover, the relatively small sample sizes and lack of data 

on known prognostic covariates prohibited comprehensive multivariable analyses. 

Particularly for the earlier studies, the prognostic impact of GEP signatures could 

not be validated in large, external data sets [39].  
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GEP-guided prognostically distinct molecular classification  

The primary clinical interest of a novel molecular classification of gliomas is 

whether it can improve the current clinical practice. To achieve this goal, The 

Cancer Genome Atlas (TCGA) piolt project, established by the US National 

Cancer Institute and National Human Genome Research Institute in December 

2005, with the mission of understanding ‘the molecular basis of cancer through the 

application of genome analysis technologies,’ selected GBM as its first cancer 

type for study, based on its uniformly poor prognosis and limited treatment 

options. Two studies have currently provided the foundation for classification of 

GBM subtypes [28, 40]. 

The study by Phillips et al. identified three distinct subtypes of high-grade gliomas 

based on prognosis-related gene expression signatures [40]. This approach 

clustered high-grade gliomas into three distinct subtypes termed as proneural, 

proliferative, and mesenchymal gliomas. The proneural subtype was defined 

by genes implicated in neurogenesis, composed predominantly of non-GBM, and 

associated with significantly better survival for the patients than either of the other 

two tumor subtypes. In contrast, the proliferative and mesenchymal gene 

signatures contained markers of proliferation and extracellular matrix/invasion-

related genes, respectively, and were both associated with poor outcome. 

Prognostic significance of molecular subtype was validated in an independent 

cohort of 184 gliomas of various histological subtypes. Of note, although this 

investigation was the first to use the terms proneural, proliferative, 

and mesenchymal, the categories delineated by Phillips et al. are similar to an 

earlier scheme of prognostically relevant high-grade glioma subclassification [41], 

and the mesenchymal signature described contains markers, such as YKL40 and 

VEGF, previously reported to distinguish GBMs from lower-grade tumors [34, 42, 

43]. 
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In the second study, based on stable unbiased gene expression clusters among 

glioma samples, Verhaak et al. classified 176 classifiable GBMs out of 202 TCGA 

GBM samples into proneural, neural, classic and mesenchymal subtypes, which 

were subsequently validated using previously published data from 260 

independent samples [28]. Each of the four subtypes was ultimately defined by the 

expression signature of a 210-gene list. By incorporating the available copy 

number and sequence data, three of the four subtypes were found to harbor distinct 

molecular alterations. Specifically, the proneural subtype was enriched for 

amplifications of PDGFRA, CDK6, CDK4, and MET; IDH1 and 

PIK3CA/ PIK3R1 mutations; and loss of heterozygosity (LOH) or mutation of 

TP53. Of note, this subtype contained the highest percentage of young patients, 

likely due in part to the high frequency of IDH1 mutation in this subtype. 

However, the proneural subtype was not associated with improved prognosis. The 

classical subtype was enriched for amplification of EGFR and loss of PTEN 

and CDKN2A, whereas the mesenchymal subtype harbored mutations and/or loss 

of NF1, TP53, and CDKN2A.  

Although the number of subtypes identified by the Verhaak et al. and Phillips et 

al. studies is different, the proneural and mesenchymal classifications identified 

using distinct methodologies and sample sets are the most stable and concordant 

[44]. For instance, both groups identified proneural class expression of DLL3 and 

OLIG2 and mesenchymal class expression of CD40 and YKL40, the latter of 

which appears to be a potential serum protein marker of prognosis in GBM 

patients [45]. Moreover, a subset of the genes represented in these subtypes is 

represented in a nine-gene panel shown to predict outcome in glioblastoma, as 

increased expression of mesenchymal genes such as YKL40 and LGALS3 

combined with decreased expression of a proneural gene, OLIG2, were associated 

with typical short-term survival compared with longer-term survivors [46].  
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Other studies have also identified characteristic gene expression signatures among 

high-grade gliomas [32, 47-49] or all major glioma subtypes [50, 51], and found 

correlations between expression signatures and the prognoses of patients and the 

cellular and genomic abnormalities of gliomas.  

These studies have made important steps forward in establishing an objective 

molecular classification for gliomas. However, further investigation is needed to 

optimize the selection of classifiers so as to reflect the full range of tumor 

pathogenesis from low- to high-grade gliomas.  

Barriers for clinical application 

Up to now, only a few molecular classifiers based on GEP have been 

established as diagnostic tests, and the FDA has only cleared two assays for 

diagnostic application: Agendia’s MammaPrint [52] and Pathwork Diagnostics’ 

Tissue of Origin [53]. Several factors prohibit the molecular classifiers from 

practical application. First, the method is technically demanding. Although DNA 

microarrays are now well established in laboratory, the quality control issues for 

using DNA microarrays, as diagnostic tests can be quite difficult to achieve. 

Second, defining a molecular classifier needs mathematics methods, which are 

often a “black box” for clinicians. The difficulty of understanding the concept of 

the mathematical method constitutes a psychological hurdle for clinicians to 

accept as part of the diagnostic routine. Third, a new diagnostic test must have 

apparent advantages over existing methods. For example, in 

gastrointestinal cancer, the stage classification is dominant, and most prognostic 

factors, including the gene expression profile, are too weak for practical use. The 

first two barriers against using DNA microarrays for diagnostic purposes are more 

easily to overcome, but the third point is critical and is the main reason for why 

there are not more established diagnostic tests using these new technologies. 
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Current known genetic hallmarks in gliomas 

Recent developments in anti-cancer drug research have resulted in a new type of 

diagnostic approach that is often called “personalized medicine.” The goal of 

personalized medicine is the selection of patients with particular molecular 

diagnoses for treatment with a specific anti-cancer drug. Some molecular 

targeted drugs, such as trastuzumab or gefitinib, are already used for patients who 

undergo routine diagnostic tests that involve selection based on aberrations of 

target genes [54-56]; the selection process allows for the treatment of patients who 

will successfully respond to the therapy. Because most anti-cancer drugs in 

the pharmaceutical pipeline are molecularly targeted, personalized medicine will 

definitely be important for the treatment of gliomas as well [54-56].   

Many molecular changes in gliomas have been extensively studied for possible 

clinical applications. Several studies have indicated a strong correlation between 

isocitrate dehydrogenase (IDH) mutations, 1p/19q co-deletion, methylation of the 

promoter region of the methylguanine methyltransferase (MGMT) gene, EGFR 

amplification and the malignant potential of gliomas [57-61].  

IDH mutations 

The recent identification of glioma-associated mutations in the IDH1 and IDH2 

has added new insight to evolving notions of molecular stratification in malignant 

gliomas [62]. Point mutations in either IDH1 or IDH2 have been demonstrated in 

most WHO grade II and III diffuse gliomas and secondary GBMs but are rare in 

primary GBMs [63, 64].  

GBMs with IDH1 mutations are phenotypically and genotypically distinct from 

IDH1 wild-type (wt) GBMs [65]. Over 60% of IDH1 mutant GBMs are localized 

in the frontal lobe and the peak incidence occurs in the third decade of life. 

IDH1 mutant GBMs share radiographic features with grade II and III gliomas 

and often have cystic or diffuse components more often than IDH1 wt GBMs. 
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IDH1 mutant GBMs also have a higher frequency of MGMT 

promoter methylation and TP53 mutation [65].  

Several studies suggest that IDH1/2 mutation may be an early event in IDH1/2 

mutant neoplasms. IDH1 or IDH2 mutations occur in 70% or more of low-grade 

gliomas (LGGs) [64]. The majority of LGGs with TP53 mutations or 1p/19q co-

deletion have IDH mutations [66]. This possibility is also supported by recent 

sequencing analysis of IDH1 and TP53 genes in a separate study [65]. IDH2 

mutations are rare and occur mainly in oligodendrogliomas [64]. IDH mutations 

are strongly associated with 1p/19q co-deletion and MGMT promoter methylation 

in anaplastic oligodendrogliomas [67]. A total of 90% to 100% of 1p/19q co-

deleted gliomas also harbor IDH1 or 2 mutations [66, 68].  

Whether mutant IDH results in a loss of tumor suppressor function or acts as an 

oncogene is an area of intense research. The exact mechanisms associated with 

tumorigenesis and improved prognoses are yet to be defined. Mutant IDH enzyme 

produces decreased cytoplasmic levels of α-ketoglutarate (α-KG) and NADPH 

[69, 70]. Resulting decreased cytosolic α-KG may stabilize hypoxia inducible 

factor-1 α (HIF-1α) facilitating cellular proliferation [69, 70]. It has been 

demonstrated that mutant cells contained extremely high levels of (R)-2-

hydroxyglutarate (2-HG) [71], which was also found in primary IDH1 mutant 

gliomas and in the serum of IDH mutant acute myeloid leukemia (AML) patients 

[72, 73]. This indicated an oncogenic role of IDH mutant in cancer development.  

Work on the downstream biological effects of IDH1/2 mutation expression has 

focused largely on the inhibition of α-KG-dependent dioxygenases by 2-HG. This 

diverse group of enzymes regulates a broad range of physiological processes, 

including hypoxic sensing, histone demethylation, demethylation of 

hypermethylated DNA, fatty acid metabolism, and collagen modification, among 

others [74]. Several studies have provided evidence to demonstrate that several of 

these functions are influenced by the expression of mutated IDH1/2 [63, 64, 69-
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72]. IDH1 mutant gliomas exhibit a global DNA hypermethylation state, termed 

the glioma CpG island methylator phenotype (G-CIMP) [30]. Furthermore, 

this methylation phenotype correlated with a gene expression signature comprised 

of a limited set of down-regulated genes that discriminated between IDH1 mutant 

and wt proneural tumors. This hypermethylation state may be caused in part by the 

2-HG-mediated inhibition of the α-KG-dependent ten-eleven translocation 2 

(TET2) [75, 76]; the resultant decrease in 5-hydroxymethylcytosine was also 

observed in GBM specimens [75]. 

Despite our incomplete understanding of mutant IDH biology, the mutant status of 

the IDH1/2 genes may serve as an important prognostic indicator. Specifically, 

patients with anaplastic astrocytoma [62-64, 77] and GBM [64] harboring mutant 

IDH1 show a significantly longer overall survival compared with wt IDH1 

counterparts and are younger at disease presentation, and this survival benefit has 

also been observed in grade II gliomas [77]. Patients with G-CIMP
+
 GBM also 

experience a similar survival benefit [30]. In addition, a comprehensive genomic 

and clinical analysis of GBMs harboring mutant and wt IDH1 suggests that, while 

histopathologically similar, these tumors may represent disease processes far more 

disparate than has been appreciated. Specifically, IDH1 mutant tumors display less 

contrast enhancement, less peritumoral edema, larger initial size, greater cystic 

components, and a greater likelihood of frontal lobe involvement compared with 

IDH1 wt tumors [65].  

Several methods have been developed to assess IDH1 mutant protein status [78] or 

its 2-HG by-product [79] in clinical settings. While 2-HG is easily detected in 

the serum of AML patients, the correlation between serum 2-HG and tumor 

mutation status may be weaker in glioma patients [78]. It may also be possible to 

monitor the presence of 2-HG non-invasively using magnetic resonance 

spectroscopy (MRS) imaging of the brain [80].  
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Together, these studies provide overwhelming evidence for the clinical relevance 

of IDH1 status in gliomas from grades II to IV and support the view that its status 

should be incorporated into the current WHO histopathological scheme for every 

glioma analyzed [63]. Despite their histological similarities, IDH1mutant and wt 

GBMs are clearly distinct diseases, and understanding the biological basis behind 

the differences in their natural histories will surely be a major area of focus in the 

field. 

1p/19q co-deletion 

Co-deletion of the short arm of chromosome 1 (1p) and the long arm of 

chromosome 19 (19q) has been frequently reported in gliomas during the last 

decade. The frequency of 1p/19q co-deletion is approximately 80%-90% in grade 

II oligodendrogliomas and 50%–70% in grade III oligodendrogliomas [81], which 

indicates the strong association between 1p/19q co-deletion and oligodendroglial 

lineage gliomas [82, 83]. The 1p/19q co-deletion has also been identified in mixed 

glial tumors (oligoastrocytomas), albeit in a lower proportion than in pure 

oligodendrogliomas [84]. Moreover, these oligoastrocytomas with 1p/19q co-

deletion seem to behave more like oligodendrogliomas than comparable tumors 

lacking the co-deletion.  But 1p/19q co-deletions are uncommon in GBMs [85, 86] 

and the clinical association between 1p/19q co-deletion and GBMs is still 

controversial [86, 87].  

Although the 1p and 19q regions have been extensively mapped and many genes 

have been evaluated as candidate tumor suppressor genes, no tumorigenic genes 

have currently been definitively identified. In most cases, deletions seem to 

represent complete chromosomal arm loss, which might be the result of an 

unbalanced centromeric translocation of 1p and 19q [88, 89]. Even though 

the genes on 1p and 19q remain unidentified, many correlations have been made 

regarding 1p/19q co-deletion. For example, gliomas with 1p/19q co-deletion 

frequently show classic histology [83, 90, 91] and frequently have IDH1 and IDH2 
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mutations [58, 64, 68]. Anaplastic oligodendrogliomas with 1p/19q co-deletions 

preferentially have a proneural gene expression profile [92]. This profile, which is 

partly characterized by expression of neuronal genes, is over-represented among 

low-grade gliomas and might predict therapeutic response in GBMs [93]. 

However, 1p/19q co-deletion correlates inversely with TP53 mutations, 

10q deletions, and amplification of EGFR [94].  

Many studies have demonstrated the potential therapeutic value of 1p/19q co-

deletions for glioma treatment. A recent study showed that patients with anaplastic 

oligodendrogliomas carrying 1p/19q co-deletion treated with PCV (procarbazine, 

CCNU, vincristine) had better-improved survival outcomes compared to the 

patients treated with temozolomide (TMZ) [95]. The long-term follow-up data 

from the European Organization for Research and Treatment of Cancer (EORTC) 

[96] and Radiation Therapy Oncology Group (RTOG) [97] trials testing 

radiotherapy vs radiotherapy plus adjuvant or neoadjuvant PCV in anaplastic 

oligodendrogliomas indicated that 1p/19q co-deletion is both prognostic and 

predictive of improved outcomes with PCV chemotherapy [84, 98]. Such data 

suggest that this marker is more useful as an indicator of tumor vulnerability to a 

broad range of therapeutic options than as a specific predictor of chemosensitivity. 

As a result, assessment of 1p and 19q status has been widely implemented in the 

neuro-oncological management of patients with anaplastic oligodendroglioma 

[99]. 

Thus, the 1p/19q status in oligodendroglial tumours has been frequently examined 

over the past 10 years. This molecular signature denotes a clinically distinct tumor 

type with progression, prognosis, and treatment responses that are different from 

those for other gliomas [81, 100]. Although the mechanisms by which 1p/19q co-

deletion generates these clinical differences remain unclear, given the range of 

survival outcomes and challenge of reproducibly classifying astrocytomas, mixed 
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oligoastrocytomas, and oligodendrogliomas, 1p/19q co-deletion has become an 

important biomarker and predictor for glioma diagnosis and prognosis.  

MGMT methylation  

MGMT is a DNA repair enzyme that repairs O
6
 alkyl guanine adducts [101]. 

Chemotherapy-induced alkylation at O
6
 position triggers cytotoxicity and 

apoptosis. Tumor cells that express high levels of the MGMT repair protein may 

thereby counteract the therapeutic effect of alkylating agents, including 

nitrosourea compounds and temozolomide that are most commonly used for the 

treatment of malignant gliomas [102]. MGMT promoter methylation is frequently 

associated with other prognostic biomarkers: 1p19q co-deletion and IDH 

mutations. A strong association of MGMT hypermethylation with 1p/19q co-

deletions [102-104] and IDH1 mutations [77] has been observed in 

oligodendroglial neoplasms. The co-incidence of MGMT promoter 

hypermethylation and IDH1 mutations has also been frequently found in diffusely 

infiltrating astrocytic gliomas [77]. 

MGMT is epigenetically inactivated via hypermethylation of the 5′-CpG island in 

approximately 40% of primary GBMs and over 70% of secondary GBMs [105]. 

MGMT promoter methylation is also observed in 50% of the diffuse and 

anaplastic astrocytomas as well as approximately 70% of the oligodendroglial 

and mixed tumors [105]. Aberrant methylation of CpG islands in the MGMT 

promoter region results in epigenetic silencing of gene transcription [106, 107]. 

Among malignant gliomas, however, the MGMT promoter methylation patterns 

are highly heterogeneous among tumors and it is unknown which particular CpG 

sites or combinations thereof need to be methylated for silencing the gene and 

conveying benefit from alkylating agent therapy. The various assays that are in 

current use to evaluate MGMT status assess different numbers of CpGs at distinct 

locations within the MGMT promoter, typically between 3 and 20 of a total of 97 

CpGs [108, 109].  
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The clinical value of MGMT as a molecular marker is for predicting the patient’s 

survival outcome regarding the response of malignant gliomas to alkylating 

chemotherapy using either nitrosourea compounds [110], temozolomide [111], or 

a combination of both [112]. In the EORTC/National Cancer Institute of Canada 

(NCIC) 22981/26981 trial [56, 111], patients with a methylated MGMT promoter 

survived significantly longer than patients without methylated MGMT promoter 

after treated with radiotherapy and temozolomide [56, 111]. Even though data 

from EORTC/NCIC 22981/26981 trial and another clinical study [113] showed 

that MGMT promoter methylation was predictive for longer survival only in 

patients who received temozolomide, a recent clinical study reported that MGMT 

promoter methylation may also be predictive of response to radiotherapy and 

associated with longer survival in the absence of adjuvant chemotherapy in 

glioblastoma patients [114].  

While the prognostic role of MGMT in GBM patients not treated with 

chemotherapy is a matter of debate, recent data from the NOA-04 and the EORTC 

26951 trials both showed that MGMT promoter methylation predicted prolonged 

survival irrespective of the initial treatment, i.e., radiotherapy, chemotherapy or 

a combination of both [67, 115]. However, the prognostic role of MGMT promoter 

methylation in patients with low-grade gliomas is unclear. One study showed that 

MGMT promoter methylation was a negative prognostic factor for progression of 

gliomas whereas no correlation with survival in low-grade gliomas [116]. In 

contrast, a phase II study of low-grade gliomas reported that patients with MGMT 

promoter methylated tumor had a better outcome than patients with tumor without 

MGMT promoter methylation after temozolomide treatment [117]. So the role of 

MGMT promoter methylation as a predictive biomarker of temozolomide 

sensitivity is still controversial. These results suggest MGMT promoter 

methylation may be a predictive biomarker in certain patient subsets. 
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Therefore, MGMT promoter methylation can be considered as an important 

clinical molecular marker in neuro-oncology. While treatment decisions in the 

routine setting are not yet based on this marker, the MGMT promoter methylation 

status is now used as an important stratification or selection parameter in ongoing 

clinical trials.  

EGFR pathway alterations  

EGFR signaling has the fundamental roles in regulating the differentiation of 

neural stem cells (NSCs) and neural progenitor cells (NPCs) [118, 119] and glia 

genesis [120, 121]. EGFR signaling through regulating NOTCH pathway maintain 

the balance between the NSC and NPC numbers in the subventricular zone (SVZ) 

[118]. Enhanced EGFR signaling in vivo results in the expansion of the NPC pool, 

and reduces NSC number and self-renewal. This occurs through a non-cell-

autonomous mechanism involving EGFR-mediated regulation of Notch signalling 

[118]. Inhibition of EGFR signaling induces the neuronal differentiation of glial 

progenitors in vivo [120].  Furthermore, activation EGFR triggers quiescent 

astrocytes into reactive astrocytes [121].  

In contrast, deregulated EGFR signaling (cell-surface EGFR 

overexpression, autocrine activation and EGFR gene mutation) contributes to the 

formation of many epithelial malignancies in humans [122, 123]. The oncogenic 

role of EGFR has been functionally validated in both cell culture–based systems 

and animal models with several tumor types including GBM tumorigenesis [122, 

124, 125]. 

Normal EGFR pathway 

EGFR belongs to ErbB/EGFR family, which consists of four members in 

mammals (EGFR, also known as ErbB1 or HER1; ErbB2, also known 

as HER2/neu; ErbB3, also known as HER3; and ErbB4, also known as HER4) that 

are thought to diverge from a common ancestral receptor [126, 127]. The structure 
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of each of the members comprises: a ligand-binding ectodomain with 2 cysteine-

rich regions; a single transmembrane region; and, a cytoplasmic tyrosine kinase 

(TK) domain [128].  

These four receptors utilize 13 different ligands to convert extracellular cues into 

intracellular signals [127]. The most common ligands for HER receptors are 

members of epidermal growth factors (EGF, such as heparin binding EGF-like 

growth factor, amphiregulin, epiregulin, betacellulin) and transforming growth 

factor α (TGFα) [129]. Interestingly, there is no known ligand for ERBB2, which 

is believed to undergo ligand-independent activation [126].  

Binding of a cognate ligand to the ligand-binding site of HER receptors induces 

receptor homo- or hetero-dimerization, resulting in a conformational change that 

activates the intracellular TK domain. This results in autophosphorylation of the 

cytoplasmic tail of the receptor, which activates downstream signalings (such as 

phosphatidylinositol 3-kinase (PI3K)/AKT and the Ras-Raf-mitogen-activated 

protein kinase (MAPK) pathways) [126], and induces the transcription of genes 

controlling multiple cellular responses [126]. ErbB/EGFR family mediate various 

cellular processes, including cell division, migration, adhesion, differentiation, and 

apoptosis [130]. Because so many fundamental cellular processes are regulated 

by the EGFR signaling, deregulation of these components can lead to cancer and 

other diseases [126].  

Deregulation of EGFR signaling in gliomas 

EGFR overexpression 

Deregulation of EGFR signaling is associated with poor prognosis in various 

tumor types, including breast cancer, head and neck cancer, prostate cancer, non–

small cell lung cancer (NSCLC), and gliomas [131-136]. There are multiple 

mechanisms that can lead to deregulation of EGFR signaling in gliomas.  
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Of these mechanisms, increased EGFR abundance is frequently found in primary 

GBMs and can be caused by gene amplification, increased translation of the 

EGFR gene, or both. EGFR amplification occurs in 40%-70% of primary GBMs, 

but is not observed in lower-grade astrocytomas [132, 137], which indicates that 

EGFR activation may drive tumorigenesis in primary GBMs. Focal EGFR 

amplification occurs usually at an extremely high level (>20 copies) [124]. All 

primary GBMs with EGFR gene amplification have concurrent EGFR protein 

overexpression, but only a subset (70%-90%) of tumors with EGFR protein 

overexpression also show EGFR gene amplification, indicating that a fraction of 

GBM tumors show increased receptor abundance in the absence of 

gene amplification [138]. EGFR overexpression in primary GBMs is 

occasionally accompanied by increased abundance of its cognate ligands, EGF and 

TGFα. This suggests the existence of an autocrine loop that results in unregulated 

chronic EGFR signaling [139].  

EGFR mutations 

In addition to increases in receptor and ligand abundance, activating mutations of 

EGFR have also been found in GBMs. TCGA consortium has identified EGFR as 

the fourth most highly mutated gene in GBM tumors [140]. EGFR mutations can 

occur in extracellular domain and the cytoplasmic tail of the receptor [141-145]. 

A number of deletion mutations that occur in the EGFR extracellular domain 

are exclusively found in GBMs. These include the mutants that encode the EGFR 

type I and type II variants (EGFRvI and vII) [144, 145], which give rise to 

truncated proteins that are believed to be oncogenic. Other point mutations that 

also reside primarily in the extracellular region of EGFR are identified in ~14% of 

GBMs [142]. These mutations include R84K and A265V/D/T at the domain I/II 

interface, and P545L and G574V at the domain II/IV interface. Interestingly, these 

mutants are constitutively active but still capable of binding ligand [142]. 

Moreover, EGFR kinase domain mutations commonly found in NSCLCs are 
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rare in GBM, whereas extracellular mutations that are common in GBMs occur 

rarely in NSCLCs [134, 142]. However, the molecular basis of the organ site 

specificity of these mutations and their functional consequences remain unknown. 

The cytoplasmic tail deletion mutants EGFRvIV and vV are also found 

exclusively in GBMs [141]. These mutations are thought to occur at a low 

frequency (~15% of EGFR-overexpressing GBMs) and may exhibit defects in 

receptor internalization. However, EGFRvIV and vV can still bind ligand and have 

the potential to modulate oncogenic signaling pathways commonly elicited by wt 

EGFR [146].  

EGFRvIII mutant 

The most common and best-studied EGFR mutation found in GBM is the type III 

EGFR variant deletion mutant (EGFRvIII), which is also found in NSCLCs, 

breast, and prostate cancers, albeit at much lower frequencies than in GBMs [147, 

148]. This mutation has not been observed in normal tissue [148], but has been 

found in 20%-30% of overall GBM patients and 50%-60% in patients with EGFR 

amplification GBM [149-151]. However, EGFRvIII is not reported to be as 

prevalent in the secondary GBMs. Moreover, clinical studies have shown a 

correlation between the presence of the EGFRvIII receptor and poor prognosis in 

patients with GBM [152]. 

EGFRvIII is generated from a deletion of 801 base pairs in exons 2–7 of EGFR 

gene [153]. This deletion removes 267 amino acid from the extracellular domain, 

creating a junction site between exons 1 and 8 and a new glycine residue [154, 

155]. The molecular mass of EGFRvIII is approximately 145 kDa [156]. This 

mutant has similarities to the v-ErbB transforming protein of avian 

erythroblastosis virus, which also is an EGFR-related auto-activating oncogene 

generated by a large extracellular deletion [157]. 
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The disarrangement in the extracellular domain of EGFRvIII results in crucial 

changes in the functional characteristics of the receptor. Although the truncated 

extracelluar domain is unable to bind any known EGFR ligand [158, 159], the 

receptor shows constitutive tyrosine kinase activity [160]. While the strength of its 

constitutive kinase activity remains controversial [160-162], it is generally 

accepted that this constitutive activation is important for its pro-oncogenic effects 

because a kinase-deficient EGFRvIII is unable to confer a similar 

oncogenic advantage [132, 162, 163].  

EGFRvIII shows defective internalization, resulting in its constitutive localization 

to the plasma membrane [162]. EGFRvIII is internalized at a much slower rate 

than unstimulated wt EGFR [164], and the small amount of internalized EGFRvIII 

receptors is not transported to the lysosome for degradation but rather recycled 

back to the cell surface [165]. So it is likely that the signaling potency of 

EGFRvIII is increased by its ability to prolong kinase activity and downstream 

signaling through its inefficient endocytosis and degradation and rapid recycling 

[132, 162, 165, 166].  

Another mechanism for enhanced EGFRvIII signaling is through forcing 

EGFRvIII to form homodimers or heterodimers with either the EGFR or ErbB2 

[158, 161, 167-170]. Moreover, EGFRvIII positive glioma cells can secrete 

microvesicles delivering EGFRvIII into surrounding EGFRvIII negative cells, 

thereby ‘‘passing on” EGFRvIII-mediated signaling and enhanced tumourigenicity 

[171]. 

EGFRvIII activates several downstream pathways, but a considerable amount of 

evidence indicates that it preferentially activates the PI3K/AKT signal 

transduction pathway [172-176]. EGFRvIII expression is tightly correlated with 

the activation of downstream targets of PI3K/AKT, including the mammalian 

target of rapamycin (mTOR), the forkhead box (FOX) transcription factor family 

and S6 [177].  EGFRvIII could activate CRTC2 via the PI3K/AKT pathway, 
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which in turn leads to stimulation of the NF-κB pathway and resistance 

to chemotherapy [178]. Selective activation of the PI3K/AKT pathway by 

EGFRvIII is also thought to mediate the resistance to radiation in EGFRvIII-

positive GBM [177, 179-183]. Moreover, EGFRvIII signaling via the PI3K/AKT 

pathway may be facilitated by associated loss or mutation of the PTEN gene, 

which occurs in approximately 40% of patients with EGFRvIII mutant GBM [184-

187].    

EGFRvIII is also reported to co-operatively work with Src family kinases (SFKs) 

to enhance GBM tumorigenicity [188, 189]. Genetic or pharmacological 

inhibition of SFKs inhibited cell motility in vitro and growth of EGFRvIII-

expressing GBM xenografts in vivo [188, 190]. EGFRvIII signaling leads to the 

phosphorylation of Tyr772 on SFKs and thereby activates dedicator of cytokinesis 

1 (DOCK1; also known as DOCK180), a guanine nucleotide exchange factor with 

roles in cell motility, survival and proliferation [190]. Genetic ablation of DOCK1 

blocked the EGFRvIII-mediated tumorigenicity of GBM cells [190]. 

The EGFRvIII signaling is also thought to be associated with the enhanced 

signaling of angiogenesis in GBM cells. The tumorigenicity of GBM cell lines can 

be increased by EGFRvIII transfection [191, 192]. Genetically inhibiting the NF-

κB pathway could reverse this increased tumorigenicity and concurrently lead to 

reducation in the VEGF and interleukin-8 (IL-8) expression and with decrease in 

tumor angiogenesis [191, 192]. In contrast, EGFRvIII transfection could 

significantly increase IL-8 expression through the NF-κB pathway in GBM cells. 

RNA-interference-mediated knockdown of the IL-8 pathway or the NF-κB 

pathway inhibited GBM xenograft growth and attenuated angiogenesis [191], 

Furthermore, EGFRvIII could activate multiple receptors in glioma cells such as 

MET, platelet-derived growth factor receptor beta (PDGFRB) and VEGF receptor 

2 (VEGFR2) [193-195], all of which regulate the cell proliferation. EGFRvIII has 

also been showed to stimulate the production of cytokines, including IL-6 and 
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leukemia inhibitory factor (LIF) [196]. Importantly, these cytokines can activate 

overexpressed wt EGFR in neighboring GBM cell, which led to enhanced GBM 

cell proliferation [196]. Thus, EGFRvIII contributes to the growth of 

surrounding GBM cells through bystander effect. This indicates that EGFRvIII 

actively contributes to the heterogeneity of GBM by acting indirectly on EGFRvIII 

negative neighboring cells. This hypothesis is consistent with the observation that 

wt EGFR amplification and EGFRvIII expression are usually co-exist in GBM 

samples.  

Finally, both EGFRvIII and wt EGFR/ErbB family proteins have been identified 

in the nucleus and are thought to drive proliferation and DNA damage repair 

through both transcriptional and signaling functions [197]. Moreover, EGFR is 

also observed to translocate to the mitochondria [198]. All these provide evidence 

that the contributions of EGFR malignancy may not be limited to its conventional 

cell membrane location.  

PDGFRA pathway  

PDGF ligands 

Platelet-derived growth factor (PDGF) was discovered in the mid-1970s and is an 

approximately 30 kDa dimeric glycoprotein composed of two chains [199, 200]. 

Each chain is encoded by an individual gene located on chromosomes 7, 22, 4, and 

11, respectively [201]. There are four identified genes encoding the PDGF 

monomer chains: PDGF-A, PDGF-B, PDGF-C and PDGF-D [200, 202-204]. The 

products of these genes dimerize and form five PDGF proteins: PDGF-AA, -AB, -

BB, -CC, and –DD [205].  

PDGF target a broad spectrum of mesoderm-derived cells, such as fibroblasts, 

pericytes, smooth muscle cells, or mesangial cells and glial cells [206]. PDGFs are 

major mitogens for connective tissue cells and glia cells, play a number of 

critical roles in normal embryonic development, cellular differentiation, and 
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response to tissue damage, as well as in pathologic processes, such as wound 

healing, inflammation, and neoplasms [207-210]. 

The receptor for PDGF (PDGFR) belongs to class III family of RTK. Two genes, 

PDGFRA and PDGFRB, encoding the alpha-type and beta-type PDGFRs, are 

highly homologous and share a common architecture [211]. They consist of five 

N-terminal Ig-like domains, which bind to various isoforms of PDGF, a single 

transmembrane domain and a split protein tyrosine kinase domain. PDGFRA binds 

to PDGF-AA, PDGF-BB and PDGF-AB, whereas PDGFRB binds with high 

affinity to PDGF-BB and PDGF-AB [212]. Upon activation by PDGF, these 

receptors dimerise, and are "switched on" by auto-phosphorylation of several sites 

on their cytosolic domains, which serve to mediate binding of cofactors and 

subsequently activate signal transduction [213].   

PDGFRA 

The gene encoding PDGFRA is located at chromosome 4q11-12, which spans 23 

exons and encodes a transmembrane protein composed of five IgG-like domains in 

the extracellular region, a transmembrane domain, an ATP binding site and a 

hydrophilic kinase insert domain in the intracellular portion [214]. 

Ligand-activated PDGFRA promotes its interaction with and activation of SH2 

domain–containing proteins, including SFKs, phosphotyrosine phosphatase SHP2, 

PI3K, and PLCγ [215, 216]. In particular, PI3K has been identified as the major 

effector of PDGFRA signaling in vitro and in vivo [216-218]. SFKs and PLCγ 

contribute to some but not all PDGFRA functions [217-219], whereas SHP2 is not 

required for cell survival during Xenopus embryogenesis [217].  

Involvement of PDGFRA pathway in glia genesis 

Many studies show that PDGFRA is required for the genesis of oligodendrocyte 

precursor cells (OPCs) [220, 221]. PDGFRA regulates the timing of 

oligodendrocyte maturation through controlling the cell cycle progression of OPCs 
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[220]. PDGFRA signaling promotes OPC proliferation and therefore regulates the 

OPC number combining with PI3K and PLC-γ pathways [220, 222]. Furthermore, 

PDGFRA-expressing B cells in SVZ have been demonstrated functioning as 

progenitors of neurons and oligodendrocytes in vivo [221]. Increased PDGF 

signaling in these cells stimulates their proliferation and blocks their ability to give 

rise to differentiated progeny, causing them to form tumor-like growths 

resembling astrocytomas. Interestingly, similar PDGFRA-expressing astrocytes 

are found to exist in the adult human SVZ [221]. 

Involvement of PDGFRA pathway in glioma pathogenesis 

PDGFRA has been reported overexpressed and/or activated in many tumor types, 

such as gliomas [223, 224], gastrointestinal stromal tumors [225], 

medulloblastomas [226], sarcomas [227], ovarian tumors [228] and lung cancers 

[229]. PDGFRA activation in cancer occurs as a consequence of 

gene amplification [223, 224], chromosomal rearrangements [230], mutations [28, 

231], or autocrine/paracrine engagement [232]. The receptors mediate signals 

critical to cell growth and survival [233], transformation [234], migration [235], 

and vascular permeability [236]. Inhibition of PDGFRA signaling resulted in a 

reversion of transformed phenotype in glioma cell lines [237], or a reversion from 

high-grade to lower grade tumor histology in mouse model [238].  

PDGFRA amplification is identified in 15% of all gliomas and is enriched in the 

proneural subtype of GBMs [28, 40]. A recent study showed that PDGFRA 

amplification was detected in 27 (16.3%) of 166 diffuse astrocytomas, 

significantly more frequent than in diffuse oligodendrogliomas (3 [2.6%] of 115). 

The vast majority of diffuse astrocytomas showed IDH1/2 mutations and/or 

PDGFRA amplification (154 [93%] of 166). Mean survival of diffuse astrocytoma 

patients with PDGFRA amplification was similar to that with IDH1/2 

mutations[224]. Another study reported that PDGFRA amplifications were more 

frequent in anaplastic astrocytomas than in diffuse astrocytomas, 
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oligodendrogliomas, and oligoastrocytomas [239]. Approximately 11% of GBMs 

are reported with PDGFRA amplification that is the second most frequent RTK 

gene amplification in GBMs. However, one study shows that some gliomas with 

PDGFRA gene amplification do not display PDGFRA protein expression [240]. 

Moreover, the pattern of PDGFR-pathway activation at the protein level even in 

the absence of PDGFRA amplification is also reported in GBM [29]. So the 

mechanism of regulating PDGFRA gene amplification in gliomas should be 

further investigated. 

The PDGFRA gene rearrangements and mutations are also found in human 

gliomas. Deep sequencing analysis of GBM has found several point mutations of 

the Ig-like domain [28]. Recent work shows that 40% of GBMs with PDGFRA 

amplification harbor an intragenic deletion, termed PDGFRA
Δ8, 9 

[241], in which 

an in-frame deletion of 243 base pairs (bp) of exons 8 and 9 leads to a truncated 

extracellular domain [230]. In addition, in-frame gene fusion of the extracellular 

domain of KDR/VEGFR-2 and the kinase and intracellular domains of PDGFRA 

has also been identified, and both the PDGFRA
Δ8, 9 

and KDR-PDGFRA mutant 

proteins were constitutively active and transforming and could be inhibited with 

inhibitors of PDGFRA [230]. Tumors with these two types of 

PDGFRA rearrangement displayed histological features of oligodendroglioma 

[230].  

Of the additional ways to activate PDGFR signaling, PDGF ligands (A–D) are up-

regulated in 30% of glioma surgical samples and cell lines [237, 242]. In clinical 

glioma specimens, PDGFRA and PDGF-A are overexpressed in tumor cells, while 

PDGFRB is only expressed in endothelial and peri-endothelial compartments 

[243]. Specific activation of PDGFRA signaling by infusion of PDGF-A proteins, 

which only bind to PDGFRA in PDGFRA-positive type B NSCs in the SVZ, leads 

to glioma-like growth of these cells in adult brain [221]. PDGF-B, which binds to 

both PDGFRA and PDGFRB, is an oncoprotein that causes glioma formation in 
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the brain [244]. In mice, PDGFB overexpression in neonatal CNS or adult CNS, 

either by the transgenic approach on a p53-/- background [245], or by the 

retroviral gene transfer approach [244, 246, 247], generated glioma-like tumor 

growth. Interestingly, tumors generated in these models all expressed PDGFRA 

[245, 246, 248]. The intratumoral co-expression of PDGF and PDGFR suggests 

that both autocrine and paracrine loops play roles in gliomas.  

However, the occurrence and clinical relevance of PDGFRA expression in 

different glioma subtypes is debated and controversial as both enhanced as well as 

negative expression patterns have been reported in GBM [240, 249, 250]. 

Recently, enriched PDGFRA expression was reported in the proneural GBM 

subtype which was seen to be associated with a better prognosis compared to the 

other molecular subtypes of GBM [28, 40], while other studies reported no 

correlation between PDGFRA expression and clinical-pathological parameters of 

glioma patients [240].  

Cellular origins of gliomas 

It has been accepted that cancer occurs as a consequence of genetic and epigenetic 

alterations in a differentiated cell. These alterations could provide a proliferative 

advantage and ultimately lead to uncontrolled growth and spread of the malignant 

cells. This theory suggests that tumors, such as gliomas, arise from terminally 

differentiated astrocytes and oligodendrocytes that obtain accumulated mutations 

and therefore “de-differentiate” into a less differentiated phenotype [251-253]. 

However, this hypothesis has not been adequately tested. This theory also fails to 

explain adequately the origin of mixed glioma, the oligoastrocytoma.  

As in other cancers, the continued interest in cellular origins of gliomas is 

stimulated by the possibility that an improved understanding of cellular origin will 

help identify fundamental pathways and lineage dependencies that could 
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represent novel diagnostic and therapeutic targets [254]. However, the cellular 

origins of gliomas remain controversial. Some studies showed that glioma might 

originate from NSCs. Successful isolation of tumor cells with stem cell features 

(termed as cancer stem cells) from human gliomas [255] implies NSCs as the cell 

of origin. However, such NSC-like features of malignant glioma cells could be 

acquired during transformation rather than reflect the nature of the original cell 

type [254]. Nevertheless, another study reported that introducing genes such as v-

myc and H-Ras into human fetal NSCs led to tumorigenic transformation of NSCs, 

which resulted in heterogeneous glial tumors with some characteristics of cancer 

stem cells (small numbers of nestin-positive neural stem-like cells) [256]. 

Further evidence supporting the NSC origin of glioma was obtained from mouse 

genetic studies. The inactivation of tumor suppressor genes TP53 and NF1 or the 

expression of a mutant form of TP53 in NSCs consistently led to glioma formation 

in mouse models, and the physical locations of tumors appeared to associate with 

the SVZ where adult NSCs reside [257-259].  

Although many studies have demonstrated the role of NSCs in gliomagenesis, 

glial progenitors may be as more plausible cellular origins of gliomas because they 

are much more susceptible to neoplastic transformation [260]. Adult glial 

progenitors have the proliferative and self-renewing capacity that is needed to 

form malignant tumors [260]. Glial precursors can also be found throughout the 

brain and can behave in a malignant manner when overstimulated with high levels 

of growth factors such as PDGF and EGF [246, 261, 262]. Moreover, several 

studies have showed that the glial progenitors including astrocytes precursor 

cells (APCs) or OPCs might directly transform into glioma cells [263-265].  

Recently, the OPC origin of glioma has been successfully and convincingly 

demonstrated in mouse models [266, 267]. In this study by using mosaic analysis 

with double markers (MADM) techniques, a mouse genetic mosaic system was 

generated to analyze aberrations in individual cell lineages before the final 
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transformation, which allows for the screening of the cell of origin. After initiating 

p53/Nf1 mutations sporadically in NSCs, mutant NSCs and all of their progeny at 

pre-malignant stages were analyzed. Only mutant NSCs generated neoplastic 

oligodendrocyte precursor cells (OPCs), which were PDGFRA-positive. All other 

NSCs-derived cell types, including NSCs themselves, remained mostly unaffected 

by the disruption of the two tumor suppressive pathways. When p53/Nf1 

inactivation is targeted specifically to OPCs, tumors form as NSCs-

derived gliomas. Interestingly, these tumors acquired the expression of NSCs 

genes, which could be misleading during analysis in further stages of the tumor 

development. The findings demonstrate that, in p53/Nf1 mutation-driven 

gliomas, mutations may initially occur in either NSCs or OPCs, but only OPCs 

provide the suitable cellular context needed for transformation. 

Even though murine studies have been helpful in clarifying glioma origins, it 

remains to be verified whether the findings can be fully extended to human 

disease. For example, human and mouse OPCs may be biologically similar, as 

recent study has demonstrated conserved mechanisms of oligodendroglioma 

formation through disruption of asymmetric division of NG2
+
 OPCs in 

mouse verbB/p53
+/-

-induced oligodendrogliomas and in 

human oligodendrogliomas [268]. However, in adult mice, the SVZ is a prominent 

regenerative zone including many types of stem cells, but the analogous region in 

adult human brains may not harbor similar numbers or types of stem cells [269]. 

However, it is still important to continue to model human disease in 

mice considering the powerful and mature technologies that make 

sophisticated genetic targeting possible. These approaches will be invaluable 

to explore clinical observations such as the distinct differences in location between 

IDH1 mutant and wt GBMs [65].  

Finally, given the diversity of histological subtypes, various subsets of 

molecular patterns and subclasses, and increasingly number of stem and progenitor 
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cells in the brain, further studies will be required to clarify the origins of 

malignant gliomas and the mechanisms that drive their pathogenesis. 
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This thesis 

Background  

The current WHO classification scheme for glioma is highly subjective and cannot 

clearly diagnose a substantial fraction of gliomas due to their atypical histology. 

Transcriptome-based molecular classification is expected to overcome the 

limitations of morphological diagnosis and to develop new treatment strategies in 

an era of personalized medicine. However, challenges in defining molecular 

classifiers limit the development and clinical application of molecular 

classification of gliomas.  

EGFR and PDGFRA are two RTKs that govern cell fate specification, cell 

proliferation and migration in NSCs compartment and glial development [270, 

271]. EGFR is frequently amplified, mutated and overexpressed in GBMs [28, 

141]. Enforced EGFR signaling results in expansion and blocked differentiation of 

OPCs [272].  

Contrary to EGFR, PDGFRA is a characteristic marker for widely distributed 

OPCs, depletion of PDGFRA signaling resulted in diminished generation of 

oligidendrocytes [221]. Autocrine stimulation of PDGFRA signaling is suggested 

to be important for glioma initiation and progression [243, 244]. However, 

compared to frequent amplification and mutation of EGFR, alterations of 

PDGFRA are less frequent in glioma genomes [273]. These findings indicated 

distinct expression pattern of EGFR and PDGFRA in gliomas. Therefore, EGFR 

and PDGFRA may serve as the candidates for molecular classification of gliomas.  
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Aims of the present studies 

The overall goal of the present study was to investigate the role of EGFR and 

PDGFRA in the classification and identification of therapeutic targets for human 

gliomas, in particular, to study the clinical relevance of PDGFRA expression and 

trafficking.  

Specific aims of the studies 

Paper I 

To establish a glial genesis-guided molecular classification scheme for gliomas 

based on the genes co-expressed with EGFR or PDGFRA  

Paper II 

To clarify the mechanism of PDGFRA expression and the clinical relevance of 

PDGFRA expression in diffierent glioma subtypes 

Paper III 

To investigate the role of cell surface PDGFRA expression in regulating glioma 

cell proliferation. 
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Results and discussion 

Glioma molecular classification defined by co-expression modules of 

EGFR and PDGFRA (Paper I) 

Using 69 genes that are co-expressed with EGFR (EGFR module, EM) or 

PDGFRA (PDGFRA module, PM), we have shown here that adult low- and high-

grade gliomas from disparate institutions and ethnic backgrounds can be classified 

into EM, PM and EM
low

PM
low

 subtypes. This classification scheme is not guided 

by the morphological diagnosis of glioma or the survival outcome of the patients. 

EM gliomas are associated with enriched expression of genes involved in the NSC 

compartment and astrogenesis, and they occur predominantly in patients older than 

50 years and with an overall survival period of less than 2 years. Conversely, PM 

gliomas are associated with enriched expression of genes regulating 

oligodendrogenesis and occur predominantly in patients younger than 50 years and 

with significantly longer survival time. EM
low

PM
low

 gliomas are enriched in 

mature neuron and oligodendrocyte signatures with ages at diagnosis and survival 

outcomes similar to the PM gliomas. The three glioma subtypes show 

unique patterns of genomic alteration. Our findings suggest that EM, PM and 

EM
low

PM
low

 glioma subtypes might represent biologically separate entities with 

distinct cellular origins, genetic alterations and prognoses.  

Previous classifications have identified genes that were expressed highly variably 

between glioma samples [28, 49-51] or that correlated significantly with the 

survival outcome of glioma patients [40, 41, 274]. The relevance of those 

classifiers to glioma pathogenesis and the relationships between the classifiers 

were largely unknown. Based on the significance of EGFR and PDGFRA 

signaling in glial genesis and glioma development, we chose these two genes as a 

basis for our identification of co-expression networks to classify gliomas.  
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The co-expression signatures of EM and PM were found to be reproducible in 

three independent glioma data sets from three countries (China, USA and the 

Netherlands) that contain all major morphological subtypes and grades. These data 

sets differ in their composition of patients and controls, in the measurement 

platforms used, and likely also in the details of biopsy processing. Subsets of EM 

were enriched in murine astrocyte precursor cells and subsets of PM were enriched 

in oligodendrocyte precursor cells. Furthermore, chromosomal regions 

encompassing subsets of EM or PM genes were recurrently and concomitantly 

altered in glioma genomes. Gene products of EM and PM are predicted to form 

protein-protein interaction networks. Thus, EM and PM networks likely reveal the 

inherent organization of glioma transcriptomes. Although only a small subset of 

EM and PM genes are currently known to be involved in glial development and 

glioma genesis [275, 276], our findings indicate that coherent functions of EM and 

PM genes are involved in the pathogenesis of EM and PM glioma subtypes 

respectively, and that hub genes of the EM and PM networks could be candidate 

therapeutic targets for the respective glioma subtypes. 

Between the EM and PM glioma subtypes, we found differential expression of 

SVZ astrocyte markers, genes regulating astrogenesis or oligodendrogenesis, and 

the signatures of astrocytes, oligodendrocytes or neurons during development or at 

maturation. EM gliomas show gene expression patterns related to NSCs and their 

progenitors along the astrogenesis pathway, PM along the OPC differentiation 

pathway, and EM
low

PM
low

 along the oligodendrocyte and neuron maturation 

pathway. 

In summary, the EM/PM classification scheme described here is applicable to 

gliomas of all major morphological subtypes, and can predict the prognosis of 

glioma patients. EM/PM glioma subtypes are specifically associated with glial 

genesis activities, signatures of glial cell types during development or maturation, 

and known glioma genomic abnormalities. This suggests that signaling pathways 
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specific for CNS cell lineages and differentiation stages are differentially involved 

in, and may account for, the etiology of EM/PM glioma subtypes. Our findings 

create a new framework towards establishing molecular diagnostic tools and 

identifying new therapeutic targets to combat gliomas. 

Better prognosis of patients with glioma expressing FGF2-dependent 

PDGFRA irrespective of morphological diagnosis (Paper II) 

Using two large data sets consisting of 648 glioma samples of all major 

morphological subtypes and grades, we found that under the supervision of 

morphological diagnosis, PDGFRA expression was enriched in low-grade gliomas 

compared to high-grade gliomas. However, all morphological subtypes were 

represented among gliomas with enriched PDGFRA expression. The top 25% of 

gliomas with high levels of PDGFRA expression (PDGFRA-high) were 

significantly associated with concomitant IDH1 mutation, higher frequency of 

deletions at 1p and 19q, lower frequency of EGFR amplification, younger age at 

diagnosis and better patient survival, compared to the below 25% of gliomas with 

lower levels of PDGFRA expression (PDGFRA-low).  

However, different mechanisms may account for high-level PDGFRA expression 

in gliomas. PDGFRA gene amplification and mutation in gliomas with high 

expression levels was reported previously [230, 241]. Our findings showed that in 

adulthood gliomas as analyzed in this report, amplification of PDGFRA gene was 

unlikely the main cause of PDGFRA overexpression in gliomas. Our findings in 

cell culture studies and expression analysis in glioma samples supported the 

hypothesis that PDGFRA expression was dependent on the niche factors in 

gliomas. However, correlated expression between FGF2 and PDGFRA at the 

mRNA level was not observed in either the Rembrandt or GSE16011 data sets. 

FGF2-dependent PDGFRA expression as observed in our study is likely an 

indirect effect; FGF2-dependent PDGFRA expression is probably applicable only 

to a specific subset of gliomas.  
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FGF2 is widely expressed in normal brain astrocytes and also in gliomas [249, 

277-280]. In large numbers of glioma samples, our results showed that the pattern 

of FGF2 expression was similar to that of PDGFRA expression. In the low-

passage cell lines tested in our study, FGF2 was able to induce and maintain 

PDGFRA expression in vitro. Moreover, Maintenance of PDGFRA expression 

was concordant with the expression of a subset of gliogenic genes. We speculate 

that FGF2 mediated signaling can potentially be manipulated to suppress 

PDGFRA expression and thereby inhibit niche factor-dependent glioma growth.  

FGF2-dependent PDGFRA expression appears to be a converged mechanism in 

normal glial development and glioma genesis. Enhanced signaling of FGF2 or 

PDGFRA results in proliferation but blocked differentiation of OPCs towards 

oligodendrocytes [248, 281, 282]. Although it is beyond the scope of this report, 

we speculate that additional features governing differentiation and proliferation of 

oligodendrocyte lineage can be detected in gliomas with enriched PDGFRA 

expression.       

Glioma cell proliferation controlled by ERK activity-dependent surface 

expression of PDGFRA 

In this study we demonstrate that glioma cell proliferation correlated with the 

extent of surface expression of PDGFRA in both glioma cell lines and their 

corresponding tumor samples. We also find that MEK inhibitor U0126 treatment 

can decrease the surface PDGFRA expression and result in deviation of PDGFRA 

from endosomal trafficking and recycling compartment to the Golgi network in a 

reversible, dose- and time-dependent manner without affecting total PDGFRA 

expression. U0126 mediated down-regulation of PDGFRA surface expression 

correlates with diminished cell proliferation.  

PDGFRA signaling is likely dependent on PDGFRA endocytosis because 

endocytosis of receptor into endosomes (where the MEK signal molecules reside 
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and ERK molecules are activated) is required for the activation of signaling [283]. 

However, our findings suggest a causal relationship in the reverse direction, with 

surface PDGFRA expression being regulated by the activity of MEK-ERK. Our 

results show that the number of PDGFRA molecules in plasma membrane 

decreases following enhanced ERK activity. Consequently, the ability of glioma 

cells to respond to their microenvironment may be blunted. Moreover, MEK and 

ERK are aberrantly active in gliomas and in many other cancers. Our findings 

indicate a new possibility that the trafficking of the receptors can be targeted by 

the signaling activities of the receptors.  

MEK might regulate PDGFRA surface expression via the activation of ERK 

molecules, which in turn translocate to the nucleus to activate RTK related 

transcriptional programs; surface expression of PDGFRA could be a consequence 

of the activated transcriptional programs [284]. In this scenario, PDGFRA surface 

expression increases in proportion to total PDGFRA expression, which is both 

inefficient and slow. Our findings suggest the existence of more efficient 

mechanism to regulate PDGFRA surface expression via controlling the 

intracellular trafficking system. Our data clearly show that the MEK inhibitor 

U0126 down-regulated surface PDGFRA expression within 6 hours without 

noticeably changing total PDGFRA expression. Surprisingly, after an initial drop 

in ERK phosphorylation in response to U0126 treatment, a strong enhancement 

was seen after 18 hrs. This U0126 induced positive feedback of ERK activity has 

also been observed in hepatocellular carcinoma cells [285]. Moreover, our 

findings suggest that inhibition of MEK coupled with a strong positive feedback of 

ERK activity may in turn regulate steady-state RTK trafficking, resulting in a re-

localization of PDGFRA from internalizing and recycling endosomes to the Golgi 

apparatus.  

Previous reports demonstrate that Ras-PI3K, but not MEK, signaling regulates the 

trafficking of signal molecules between the cytoplasm and nucleus [286]. In 
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contrast, MEK but not PI3K signals regulate cellular global trafficking events, i.e. 

tubulin nucleating [287, 288] or actin remodeling [289, 290]. Both these processes 

are of fundamental importance for trafficking of signal proteins between the 

plasma membrane and cytosolic compartments. Furthermore, our findings 

demonstrate that the MEK signaling could directly regulate the trafficking-related 

endocytic and recycling processes. U0126 treatment significantly decreased co-

localization of PDGFRA molecules to clathrin and caveolin, but increased 

PDGFRA localization to the Golgi apparatus, as assessed by co-localization with 

giantin. This re-localization of PDGFRA coincided with diminished localization of 

PDGFRA to EEA1-positive early endosomes and RAB11-positive recycling 

endosomes. These results clearly show that positive feedback of ERK activity 

deviates PDGFRA from the intracellular recycling trafficking network to the Golgi 

apparatus. These findings are compatible with the localization and generation of 

Ras-Raf-MEK-ERK complexes in the early endosome compartment [291]. These 

results indicate an interesting scenario in that in addition to PDGFRA trafficking 

in gliomas, this mechanism might be applicable to the trafficking of other RTKs in 

other cancers, thereby providing a new approach to design cancer therapy strategy.  
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Conclusions and future perspectives 

The current thesis has firstly focused on establishing a glial genesis-guided 

molecular classification scheme for gliomas based on the gene modules co-

expressed with EGFR (EM) or PDGFRA (PM). From our results we can conclude 

that 1) EM/PM classification scheme can be successfully established using 69 

genes that are co-expressed with EGFR or PDGFRA; 2) the EM/PM classification 

scheme is applicable to gliomas of all major morphological subtypes, and can 

predict the prognosis of glioma patients; 2) EM/PM glioma subtypes are 

specifically associated with glial genesis activities, signatures of glial cell types 

during development or maturation, and known glioma genomic abnormalities. 

As discussed above, EGRFR and PDGFRA are both key regulators in normal and 

malignant glia genesis. That is the critical reason why we choose them to identify 

classifiers for glioma classification. Not only RTKs but also other key regulators 

in glia genesis may also be good candidates for using molecular classification for 

gliomas. Furthermore, identifying the crucial therapeutic targets for each subtype 

of glioma under EM/PM classification should be the missions in future. 

Secondly, we also have made effort to clarify the clinical relevance of PDGFRA in 

gliomas and the mechanism of regulating PDGFRA expression in primary glioma 

cells. We found that 1) PDGFRA expression was enriched in low-grade gliomas 

compared to high-grade gliomas; 2) gliomas with high level PDGFRA expression 

are associated with concomitant IDH1 mutation, higher frequency of deletions at 

1p and 19q, lower frequency of EGFR amplification, younger age at diagnosis and 

better patient´s survival; 3) amplification of PDGFRA gene was unlikely the main 

cause of PDGFRA overexpression in gliomas; 4) FGF2 can induce and maintain 

PDGFRA expression in primary glioma cells. 

Even though our data showed that gliomas with high level PDGFRA expression 

have better patient’s survival, the abnormal expression of PDGFRA was only 
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found in gliomas but not in non-tumor samples. So the reason why abnormal 

PDGFRA expression can lead to good clinical outcome needs to be found out in 

further studies. In addition, how FGF2 maintain and induce PDFDRA should also 

be further studied. Moreover, FGF2-dependent PDGFRA expression should also 

be verified in vivo.  

Thirdly, we also investigated the role of cell surface expression of PDGFRA in 

regulating glioma cell proliferation. Our results showed that 1) glioma cell 

proliferation correlated with the extent of surface expression of PDGFRA in both 

glioma cell lines and their corresponding tumor samples; 2）MEK inhibitor 

U0126 treatment can decrease the surface PDGFRA expression and result in 

deviation of PDGFRA from endosomal trafficking and recycling compartment to 

the Golgi network in a reversible, dose- and time-dependent manner without 

affecting total PDGFRA expression; 3) U0126 mediated down-regulation of 

PDGFRA surface expression correlated with diminished cell proliferation.  

In our study we demonstrated that gliomas with high level PDGFRA expression 

have better patient’s survival. We also demonstrated that glioma cells with high 

cell surface expression level of PDGFRA have stronger capacity of cell 

proliferation. It seems these two findings are conflictive. There are many possible 

explanations for this confliction. However, the best way to clear the conflict is to 

clarify the potential mechanisms of regulating these two findings. Moreover, the 

mechanism of U0126 decreasing PDGFRA cell surface expression in glioma cells 

should be further studied.  
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