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Evaluation of retinol binding protein 4 and
carbamoylated haemoglobin as potential renal
toxicity biomarkers in adult mice treated with
177Lu-octreotate
Johanna Dalmo1,2*, Emelie Westberg3, Lars Barregard4, Lisa Svedbom4, Martin Johansson5,6, Margareta Törnqvist3

and Eva Forssell-Aronsson1,2
Abstract

Background: The kidneys are regarded as one of the main dose-limiting organs in the treatment of neuroendocrine
tumours with 177Lu-[DOTA0, Tyr3]-octreotate (177Lu-octreotate), despite the successful use of kidney uptake blocking
agents such as lysine and arginine. To avoid renal toxicity but still give each patient as high amount of 177Lu-octreotate
as possible, there is a need for methods/biomarkers that indicate renal injury in an early stage of the treatment. The
aim of this study was to investigate the potential of using urinary retinol binding protein 4 (RBP4) and carbamoylated
haemoglobin (Hb) in blood as biomarkers of nephrotoxic effects on adult mice after 177Lu-octreotate treatment.

Methods: Adult BALB/c nude mice were injected with 60 MBq or 120 MBq of 177Lu-octreotate or with saline (control).
Urine was collected before injection and concentrations of urinary RBP4 and creatinine were determined 14 to 90 days
after injection Blood samples were collected after 90 days, and carbamoylated N-terminal valine in Hb, formed from
urea, was measured as valine hydantoin (VH) after detachment from Hb.

Results: The RBP4 values increased with administered activity and time. For the 60 and 120 MBq groups, statistically
significantly higher RBP4 levels (p <0.05) were found at day 60 and 90 compared to baseline, also at day 30 for 120
MBq group. For VH, the mean values were similar for the 60 MBq and control groups, while a small increase was
observed for the 120 MBq group; but there were no statistically significant differences between any of the groups
(p >0.05). No morphological changes in the kidney tissue were found.

Conclusions: Urinary RBP4 is a promising new biomarker for radiation-induced renal toxicity. For the conditions used
in this experiment, carbamoylated Hb (from urea) measured as VH may not be a sufficiently sensitive biomarker to be
used for renal toxicity.
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Background
The radiolabeled somatostatin analogue 177Lu-[DOTA0,
Tyr3]-octreotate (177Lu-octreotate) is used for treatment of
somatostatin receptor (SSTR) expressing neuroendocrine
tumours [1-3]. Such treatments have shown promising re-
sults, e.g. longer median overall survival and higher re-
sponse rate compared to chemotherapy [4,5]. However,
compared to the high cure rates of 177Lu-octreotate ther-
apy obtained in mice transplanted with human SSTR ex-
pressing tumours [6-8], the clinical results obtained so far
are modest, and treatment of humans should be optimised.
The kidney is one of the most exposed organs after ad-

ministration of 177Lu-octreotate, and despite the success-
ful use of kidney uptake blocking agents such as lysine
and arginine, the kidneys are regarded as the main dose-
limiting organ (together with bone marrow). Based on
experience from external beam radiation therapy, a tol-
erance dose of 23 or 28 Gy to the kidneys has been used
[9]. The tolerance dose for the kidneys after radionuclide
therapy is, in general, not known, but will most probably
be higher than that of external irradiation due to lower
dose rate, continuous irradiation and heterogeneous dis-
tributions within the organ [10]. Very few adverse effects
have been presented so far. Under-treatment may then
be suspected, with interruption of treatment before
complete tumour remission due to feared renal toxicity.
There is a great interindividual difference in uptake and

retention of 177Lu in the kidneys, and the mean absorbed
dose per administered radioactivity may vary up to a factor
of eight between patients [11]. Furthermore, it is well
known that there is a high individual difference in general
radiosensitivity between humans. This has been demon-
strated for the kidneys after 90Y-[DOTA0, Tyr3]-octreotide
treatment and discussed also for 177Lu-octreotate treat-
ment [12]. Patients with renal risk factors, such as hyper-
tension, diabetes, age-related decrease in renal function,
but also morphological abnormalities should be treated
with higher precaution [13,14].
To enable individually optimised treatment, i.e. to give

each patient as much 177Lu-octreotate as possible without
inducing nephrotoxicity, there is a need for methods/
biomarkers that early indicate risk of renal injury.

177Lu-octreotate is mainly excreted via the kidneys. The
177Lu activity distribution in the kidneys is heterogeneous
with the highest activity located in the cortex, especially in
the proximal tubules [6,15-18]. There are several reasons
for the accumulation of 177Lu in the tubular system:
receptor-mediated endocytosis via megalin-cubilin recep-
tors and SSTRs, uptake via amino acid/oligopeptide trans-
porters, pinocytosis and passive diffusion. All five SSTR
subtypes (SSTR1-5) are expressed both in the human and
mouse kidneys [19-22].
Today the most commonly used method for estimat-

ing the impairment of the kidney function is to measure
the glomerular filtration rate (GFR), which can be deter-
mined by 99mTc-DTPA scintigraphy. GFR can also be es-
timated by, e.g. the serum creatinine level correcting for
age, gender, race and body size [23,24]. The tubular ex-
traction rate may be determined by 99mTc-MAG3 scin-
tigraphy [25,26].
Radiation may cause both short- and long-term effects

on kidney function, most probably both on glomeruli and
on the proximal tubules, and therefore, reduction in GFR
and tubular extraction rate is not a fully adequate meas-
ure. The correlation between the radiation dose from
177Lu-octreotate, and the serum creatinine level seems
not to be high, especially not at high absorbed doses
[13,14,27]. Therefore, other biomarkers better reflecting
the actual kidney damage are required.
Renal proximal tubular injury may occur before a reduc-

tion of GFR, and therefore, tubular biomarkers are needed.
Retinol binding protein (RBP) is a low molecular weight
plasma protein (21 kD) which is secreted by the liver and
transports vitamin A in the blood. RBP is filtrated in the
glomeruli and thereafter nearly completely reabsorbed in
the proximal tubule cells via the megalin-cubilin receptor
complex and catabolised [28,29]. Urinary RBP (RBP4 is
used when analysing mice urine) might therefore be pos-
sible to be used as an early and sensitive biomarker of im-
pairment of the reabsorption of the proximal tubular cells
[30,31]. To our knowledge, no studies on urinary RBP and
radiation effects on kidney function have been performed.
The serum urea level might be an alternative to serum

creatinine as an indicator of reduced GFR if other im-
pairments, for example hyper catabolism or gastrointes-
tinal bleeding can be excluded [32]. Serum urea can be
reflected by the level of carbamoylated Hb. The carba-
moylated N-terminal valine in Hb can be detached from
the rest of the globin chain by acidification (in vitro) and
be measured as valine hydantoin (VH) [33-37]. VH has
been proposed as a good indicator of the uremic status
for patients with acute and chronic renal failure [33-35].
VH is an indicator of average urea levels over the life-
time of Hb, while serum urea gives the renal status at
the moment the sample is taken. In the present work,
the HPLC-MS/MS technique was introduced for quanti-
fication of VH [36,37].
The aim of this study was to investigate the potential

of using urinary RBP4 and carbamoylated Hb in blood
measured as VH as biomarkers of nephrotoxic effects on
adult mice after 177Lu-octreotate treatment.

Methods
Radiopharmaceuticals
177Lu-trichloride and [DOTA0, Tyr3]-octreotate was pur-
chased from the Nuclear Research and Consultancy Group
(NRG, Petten, the Netherlands), and radiolabeling was per-
formed according to the instructions of the manufacturer,
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resulting in 177Lu-octreotate with a specific activity of 26
MBq/μg. The fraction of peptide-bound 177Lu was higher
than 98%, determined by instant thin layer chromatography
(ITLC-SG, Pall Corporation, New York, USA) with 0.1 M
sodium citrate as the mobile phase.

Animal experiments
Six months old female BALB/c nude mice (n = 6/group)
were injected into the tail vein with saline solution (the
non-treated group), or with 60 MBq, or 120 MBq of
177Lu-octreotate, corresponding to a mean absorbed dose
to the kidneys of approximately 21 and 42 Gy, respect-
ively, according to the previously published data [38].
Urine was collected before injection (used as baseline
values) and subsequently 14, 30, 60 and 90 days after in-
jection. To get the volume needed for analysing RBP4 and
creatinine (minimum 150 μL), spot urine samples were
collected from each animal on three consecutive days at
the same time each day. The last sample collection (after
90 days) was only made during one day. The urine was
then frozen at −20°C until analysis.
Blood samples (0.5 to 1 ml) were taken by cardiac punc-

ture when the animals were sacrificed (after 90 days).
Erythrocytes were isolated from the whole blood, washed
and thereafter frozen until further analysis of VH. One
kidney from each animal was fixed in 4% paraformalde-
hyde for histological evaluation.
All animals had free access to food and water. The

study was approved by the Ethical Committee for Animal
Research at the University of Gothenburg, Sweden, Trial
registration ID 326-2008.

Analysis of urinary RBP4
RBP4 in urine samples (50 μL diluted to 100 μL) was ana-
lysed using the Mouse RBP4 ELISA kit (R&D Systems
Europe Ltd., Abingdon, UK) according to the manufac-
turer's instructions. About 15% of the samples had to be
Figure 1 Valine hydantoin. Isocyanic acid is formed when urea dissociate
isocyanic acid form a stable adduct with the nitrogen in amino groups, e.g
be analysed as a valine hydantoin detached by acid hydrolysis.
further diluted in order to obtain a reading within the ap-
propriate part of the calibration curve. Repeated analysis
of the kit's control samples showed good precision (coeffi-
cient of variation (CV) of 3% within assay and 10% be-
tween assays).

Analysis of urinary creatinine
To be able to correct for variations in body mass and
urinary flow rate, the urinary creatinine level was deter-
mined in each urine sample. Creatinine in urine (10 μL
diluted to 200 μL) was analysed using the commercially
available Creatinine kit (R&D Systems Europe Ltd.,
Abingdon, UK), based on the Jaffe reaction, according to
the manufacturer's instructions. Duplicate analysis of 12
mouse urine samples showed good reproducibility (CV
6% within assays).

Analysis of VH in erythrocytes
When urea dissociates, it spontaneously forms isocyanic
acid and ammonia. In a non-enzymatic carbamoylation
reaction (in vivo) the isocyanic acid can form stable ad-
ducts with nitrogen in amino groups, e.g. N-terminal
valine in Hb chains. The adduct can be detached by acid
hydrolysis and analysed as VH (5-isopropyl hydantoin)
(Figure 1).

Sample preparation
The erythrocyte samples (100 to 400 μL) were thawed,
haemolysed and mixed with a solution of acidified iso-
propanol. The cell residues were discarded by centrifu-
gation, and globin was isolated through precipitation
with ethyl acetate [39].
The dry globin were weighed and prepared for analysis

as earlier described [40] with some modifications such as
the amounts of globin and chemicals that were downscaled
approximately five times. Globin from the 18 individual
mice was transferred to glass tubes (4 to 16 mg/tube). A
s into cyanate and ammonium. In a carbamoylation reaction, the
. to N-terminal valine in Hb chains. The carbamoylated N-terminal can
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sample with myoglobin (without valine as the N-terminal
amino acid) from horse skeletal muscle was added as blank
reference. In addition, to measure the repeatability of the
complete procedure, three samples from the same mouse
(untreated) were prepared. In brief, a mixture of concen-
trated acids (hydrochloric acid: acetic acid) was added, and
the tubes with lids were placed in 100°C for 1 h. Ammo-
nium sulphate was added as a buffer, and the samples were
neutralised with NaOH (10 M), and then the mixture was
extracted twice with ethyl acetate. The organic phase was
evaporated to dryness with a gentle flow of N2 in a heat
block (60°C). The samples were dissolved in acetonitrile
(AcN):H2O (1:1) to a concentration of 0.01 mg globin/μL,
and phenylvaline hydantoin (PVH) was added as a volu-
metric standard to the final concentration of 0.2 μM. The
samples were analysed by LC-MS/MS, and the ratio be-
tween VH and PVH was calculated. VH and PVH, used as
standards, were synthesised earlier [37].

Instrumentation
The LC-MS/MS system consisted of a Shimadzu
Prominence HPLC system coupled to an API 3200 Q trap
instrument (AB SCIEX, Stockholm, Sweden). The mass
spectrometer was optimised using standards of VH and
PVH and operated by using an electrospray ionisation
source in the positive ion mode (ESI+). Acquisition and
data processing were done with the Analyst software ver-
sion 1.5 (AB SCIEX, Stockholm, Sweden). The separation
was performed with a C18 column (3 μm, 2.1 × 150 mm,
Fortis Technologies Ltd., Neston, UK). The mobile phase
system consisted of (A) H2O:AcN (95:5, v/v) and (B) H2O:
AcN (5:95, v/v) both with 0.1% formic acid (FA). The gra-
dient was 5% B for 1 min, followed by a linear increase to
25% B in 1 min, and 25% to 100% B in 7 min followed by
isocratic 100% B in 3 min, with a flow rate of 120 μL/min.
The MS/MS operated in multiple reaction monitoring

(MRM) mode with transitions established earlier [37] for
VH m/z 143.1 > 115.0 and 143.1 > 72.1 and for the volu-
metric standard PVH m/z 219.2 > 120.1 and 219.2 > 72.1.
The instrumental settings used for the MRM was ion
source temperature 500°C, ion spray voltage 5,500 V,
curtain gas (N2) 20, ion source gas (GS1) (N2) 20, colli-
sion gas (N2) 5 and turbo gas (GS2) (N2) 10 (latter four
are arbitrary units from the Analyst software). Some
other parameters were optimised for the different transi-
tions and conditions used. All the samples were orga-
nised in a batch with injections of standard mixture and
blank samples before, in between and after the samples.
The batch was analysed for three times. Injection vol-
ume was 10 μL. The data show that the method gave
repeatable results: CV was 2% to 21% for repeated ana-
lyses on three different occasions of the same sample
(n = 18). The repeatability in the work-up procedure
showed a CV of 11% of three equivalent Hb samples
prepared and analysed at the same occasion. VH was not
detected in the blank sample. The peaks were always >10
times the noise level.

Morphological evaluation of the kidney tissue
The kidneys fixed in paraformaldehyde were embedded in
a paraffin wax, and parallel sections (2-μm thick) were
routinely stained with haematoxylin and eosin. Morpho-
logical evaluation was made by an experienced pathologist.

Statistical analyses
Three out of 218 values of RBP4 were below the detection
limit (DL) and imputed by DL/2. Five values were above
the value corresponding to the highest standard used and
were imputed by 1.5 times this specific value. RBP4 levels
were highly skewed and log10-transformed before statis-
tical analysis. As repeated samples were available for each
mouse, mixed-effects models were used (PROC MIXED
in SAS version 9.1; SAS Institute, Cary, NC, USA) with ac-
tivity and time as fixed effects and mice as a random ef-
fect. The models also included the interaction between
activity and time. The effect of activity and time after in-
jection on RBP4 levels was analysed, and p values <0.05
were considered statistically significant.
The mean VH/PVH level of each group was calculated

from the mean value of three repeated analyses of the
same sample, for which the coefficient of variation was
calculated. Student's t test was used to analyse data be-
tween groups, and p <0.05 was considered statistically
significant.

Results and discussion
Results
Urinary RBP4
The urinary creatinine, RBP4 and RBP4/creatinine levels
for each group are shown in Table 1. The difference be-
tween the log10-transformed value after treatment (14 to
90 days) and the log10-transformed baseline value of
urinary creatinine and RBP4, and corresponding ratios
(Log (RBP4/creatinine)) levels for each group, is shown
in Figure 2. The reason for using log10-transformation is
the skewness of RBP4 values. Two samples in the non-
treated group at day 90, one sample at day 60 and the
creatinine value at day 90 in the 60 MBq, and one sam-
ple in the 120 MBq group were not possible to evaluate
correctly since the urine volume needed to perform the
analyses could not be collected from these animals during
three consecutive days. A few samples could not be exactly
quantified regarding RBP4, because the RBP4 concentra-
tion was too high (>80 or >200 ng/mL, indicated by thin
and bold upward arrows, respectively; Figure 2B) or too
low (<1.25 or <6.25 ng/mL, indicated by downward thin
and bold arrows, respectively; Figure 2B) to permit quanti-
fication. The samples with high RBP4 levels could not be



Table 1 Mean absolute urinary RBP4 and creatinine concentrations and RBP4/creatinine concentration ratios

RBP4 (ng/mL) Creatinine (mg/dL) RBP4/creatinine (ng/mg)

Treatment group Days after therapy

Non-treated Study start 2.5 (0.2) 47 (5) 5.5 (0.7)

14 2.6 (0.3)b 53 (6) 5.1 (0.7)

30 3.5 (0.2) 50 (6) 7.5 (0.8)

60 2.9 (0.3)b 46 (4) 6.6 (0.8)

90 9.6 (2.1) 51 (5) 19 (5)

60 MBq Study start 3.4 (0.3) 59 (6) 5.9 (0.6)

14 4.2 (0.8) 60 (7) 7.1 (1.2)

30 5.2 (0.5) 62 (7) 8.9 (1.2)

60 17 (8) 68 (9) 31 (17)

90 57 (28) 61 (11) 150 (93)

120 MBq Study start t 3.5 (0.3)b 53 (4) 7 (1)

14 5.6 (0.9) 48 (6) 12 (2)

30 38 (20)a 43 (5) 94 (49)

60 97 (17)a 22 (4) 480 (73)

90 120 (31)a 41 (4) 350 (72)

Mean absolute urinary RBP4 and creatinine concentrations and RBP4/creatinine concentration ratios at each time-point before and after therapy for non-treated
mice or mice treated with 60 or 120 MBq 177Lu-octreotate. Values are given as mean (SEM).
aRBP4 concentration too high to permit exact quantification.
bRBP4 concentration too low to permit exact quantification.
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further diluted and reanalysed since no urine remained
after the first analysis.
After 30 and 60 days in the 120 MBq group, a reduction

in urinary creatinine was observed (p = 0.058 and p <0.05,
respectively) compared with baseline values, while in the
two other groups given 177Lu-octreotate, the creatinine
value was relatively constant throughout the study (no sig-
nificant differences between baseline and the following
time points were found) (Figure 2A).
Mean RBP4 values increased with time in the 120

MBq group, and statistically significant differences were
found between baseline and 30, 60 and 90 days (p <0.05)
(Figure 2B). The RBP4 value in the 60 MBq group in-
creased after day 30 (p = 0.051) and was statistically sig-
nificant higher than baseline at days 60 and 90. An
increased value was found in the non-treated group after
90 days.
For mean RBP4/creatinine, statistically significant differ-

ences were seen between baseline and all time points in
the 120 MBq group except at day 14 p = 0.076 (Figure 2C).
For the 60 MBq group, RBP4/creatinine was increased
compared to baseline at day 30 (p = 0.080) and statistically
significant higher at days 60 and 90. The RBP4/creatinine
value increased in the non-treated group at day 90.

Analysis of VH in erythrocytes
VH was quantified relative to the internal standard PVH
(ratio between peak areas). The mean VH/PVH values
(±SD) calculated for the different groups were similar
for the non-treated (0.65 ± 0.29, n = 6) and the 60 MBq
group (0.65 ± 0.14, n = 6), while a small increase was
observed for the 120 MBq group (0.73 ± 0.20, n = 6)
(Figure 3). There were, however, no statistically signifi-
cant differences in the mean VH/PVH level between any
of the groups (p >0.05).

Morphological evaluation of the kidney tissue
In all the analysed kidney tissue samples, no signs of
renal injury that could be causally associated to the ad-
ministration of 177Lu-octreotate were found. More spe-
cifically, as compared to control tissue, the glomeruli
displayed no proliferative or lytic changes, the capillary
loops displayed normal patency. The tubules demon-
strated no signs of cellular stress or necrosis, as judged
by cytoplasmal vacuolization or sloughing of plasma
membrane material into the tubular lumen. The only
finding that could be noted was discrete and focal signs
of tubulointerstitial inflammation, where minimal nests
of lymphocytes were seen grouped in the interstitium of
the cortex. These changes were indeed microscopic and
much dispersed. No correlation could be seen with treat-
ment, since also the control animals displayed these
changes. They are histologically regarded as a normal
finding in the mouse kidney tissue. The most prominent
nest of lymphocytes was demonstrated in one kidney in
the control group (n = 1 of 6), followed by smaller areas
in the 120 MBq group (n = 3 of 6) and in the 60 MBq
group (n = 1 of 6).



Figure 2 Analysis of urinary RBP4. Mean differences between the
log10-transformed mean values (from three consecutive days) and the
log10-transformed baseline mean values (from three consecutive days)
for (A) creatinine and (B) RBP4 and (C) RBP4/creatinine, in non-treated
mice (blue circle, n = 4 to 6), and in mice treated with 60 MBq (red
square, n = 5 to 6) or 120 MBq 177Lu-octreotate (green diamond, n = 5
to 6) vs. time after study start. Log10-transformation was done since the
values are skewed (see ‘Methods’). All values are shown as mean ±
SEM. Upward arrows indicate that the mean RBP4 value is higher and
downward arrows that it is lower than presented (see text). The heavy
asterisk indicates data statistically significant different from baseline
(p <0.05).
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Discussion
In this study, we evaluated the possibility to use RBP4
and carbamoylated Hb measured as VH as biomarkers
of renal toxicity after 177Lu-octreotate treatment on
adult BALB/c nude mice. These biomarkers, to our
knowledge, have not been tested in this type of appli-
cation. It is important to find biomarkers that can early
reflect enhanced risk of late nephrotoxicity due to irradi-
ation, in order to optimise and individualise treatment of
patients with 177Lu-octreotate.
In a previous study, the effects of similar amounts of

177Lu-octreotate were followed in the same type of mice,
although at a young age (5 weeks) with longer follow-up
time (6 months), but with other kidney toxicity markers
Figure 3 Analysis of VH in erythrocytes. Erythrocyte levels of VH/
PVH in mice 90 days after injection of 60 MBq (n = 6) or 120 MBq (n = 6)
177Lu-octreotate or in non-treated mice (non-treated, n = 6). Each data
point represents the mean value of three analyses on the same sample
from one mouse. Error bars indicate SD. The horizontal lines are the
mean values for each group ± SD; non-treated group: 0.65 ± 0.29, 60
MBq: 0.65 ± 0.14, and 120 MBq: 0.73 ± 0.20. Statistical analysis of the
effect of treatment resulted in p(60 MBq) = 0.98, and p(120 MBq) = 0.61
compared to the non-treated group.
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[27]. In that study, serum creatinine was elevated and mor-
phological changes in proximal tubules were obtained after
administration of 90, 120 or 150 MBq 177Lu-octreotate,
while higher urea values were obtained in the 150 MBq
group after 6 months. The relative differences in weight
between treated animals and control animals were similar
in the present study and in the previous one, but the mor-
phological changes were more limited in the present study,
which had a lower maximum activity (120 MBq) and
shorter follow-up period (3 months). Nevertheless, also an
increased excretion of the low molecular weight protein
RBP represents an impairment of renal (tubular) function.
A similar study on rats has also been performed demon-
strating similar effects [41].
In the present study, increased levels of urinary RBP4 were

found after injection of 60 or 120 MBq 177Lu-octreotate,
with higher RBP4 values and earlier elevation in the 120
MBq group. This type of dose-dependency, both regarding
RBP4 level and time for increased RBP4 level, has been
demonstrated earlier [27,41]. Increased urinary RBP4
levels indicate radiation-induced effects on the proximal
tubules, resulting in reduced reabsorption of RBP4. In the
present study, no morphological changes were seen in any
of the groups, while effects on proximal tubules were seen
in the previous study. This difference probably depends
on the difference in follow-up time, but could also be due
to the younger age (potentially higher radiation sensitivity)
and smaller kidneys (resulting in higher absorbed dose) in
the previous study. Thus, RBP4 may be used as an early
biomarker for radiation-induced late nephrotoxicity.
In general, we did not find consistent changes in urin-

ary creatinine levels, but the decrease in urinary creatin-
ine at 30 and 60 days in the 120 MBq group may be
caused by a decreased GFR. If this is the case, creatinine
adjustment of RPB values is inappropriate. When taking
spot urine samples, the urine creatinine levels are used
to adjust for differences in urinary flow rate, making
urine more or less concentrated, since urinary creatinine
excretion is relatively constant during the day [42,43].
Urinary creatinine reflects the concentration of fluid
passing through the glomerulus and is only to a small
extent affected by tubular reabsorption or secretion. In
this study, RBP4/creatinine values did not add any new
information compared to RBP4 values alone.
For VH used as marker for urea, no statistically signifi-

cant increase was observed in any of the groups 90 days
after 177Lu-octreotate administration. Only a small, non-
significant increase was indicated for the 120 MBq group
compared with the non-treated group. One explanation
for the lack of significant changes in VH level in this case
was probably that the renal injury was not severe enough
to cause sufficient changes compared to the background
level of VH; the steady-state background level would cor-
respond to 20 days accumulation of carbamoylated Hb in
mouse; cf. [44]. A lower CV for the analytical method for
VH, e.g. through the use of isotope-substituted VH as in-
ternal standard, would further improve the possibilities to
detect changes in urea concentrations. The introduction
of LC-MS/MS for analysis of VH is a step forward
compared to the earlier used less specific HPLC analysis.
Another explanation may be low effects on urea level due
to irradiation, which might be supported by our previous
findings [27,41]. It should be noted that the lifetime of
erythrocytes and these adducts in mouse is approximately
40 days, why it is not unrealistic to obtain higher levels
already after 90 days.
In the present study, the mean absorbed dose to the

kidneys was approximately 21 and 42 Gy after injection
of 60 and 120 MBq 177Lu-octreotate, respectively, as-
suming homogeneous activity distribution [38]. It is
known that the 177Lu distribution is heterogeneous with
the highest uptake in the kidney cortex [45]. Due to the
relatively small size of the mouse kidney, the range of
the electrons emitted by 177Lu will result in a relatively
homogeneous exposure of the entire kidney. In our pre-
vious study on nude mice, the absorbed dose to kidney
cortex was 47 Gy after administration of 120 MBq
177Lu-octreotate [27], which is only about 10% higher
than the mean absorbed dose to the kidney from homo-
geneous 177Lu distribution.
The results indicate a possibility to use RBP as an

early responding marker of late renal impairment after
177Lu-octreotate treatment in humans. It should be noted
that urinary RBP4 level only indicates impairment of prox-
imal tubular cells and may not reflect effects on the other
parts of the kidney. Before RBP can be used in clinical rou-
tine, studies correlating urinary RBP excretion kinetics
with absorbed dose to the kidneys and risk of renal tox-
icity must be performed. The lowest RBP detection level
should be determined and correlated to absorbed dose to
the kidney (cortex). Furthermore, it is also important to
establish the relationship between absorbed dose to the
kidneys from 177Lu-octreotate administration and the se-
verity of renal toxicity on a short- and long-term basis.
There are several low molecular weight proteins, such as
beta-2-microglobulin (B2M) and alpha-1-microglobulin
(A1M) that also could serve as urinary biomarkers of renal
tubular damage in humans, but RBP has the advantage of
better stability in urine than B2M and longer experience
of normal levels in urine than for A1M.
Further long-term studies on mice are ongoing not

only to validate if RBP4 may be efficient in predicting
late renal toxicity at lower absorbed doses and for frac-
tionated administration but also to investigate other bio-
markers of proximal tubular and glomerular damage in
serum and urine. These studies have larger group size
and a longer follow-up period (up to 1 year). Clinical
studies are also planned.
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Conclusions
Urinary RBP4 is a promising new biomarker for radiation-
induced renal toxicity. Higher absorbed dose to the kid-
neys resulted in higher RBP4 excretion occurring earlier in
time. Measurement of VH, marker for urea in blood, was
either not sensitive enough to detect differences in urea
concentrations due to renal toxicity during the conditions
applied in this work or urea is not suitable for early detec-
tion of renal impairment.
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