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Spectral distribution and wave function of electrons emitted from a single-particle source
in the quantum Hall regime

F. Battista and P. Samuelsson
Division of Mathematical Physics, Lund University, Box 118, S-221 00 Lund, Sweden

(Received 19 December 2011; published 23 February 2012)

We investigate theoretically a scheme for spectroscopy of electrons emitted by an on-demand single-particle
source. The total system, with an electron turnstile source and a single-level quantum dot spectrometer, is
implemented with edge states in a conductor in the quantum Hall regime. Employing a Floquet scattering
approach, the source and the spectrometer are analyzed within a single theoretical framework. The nonequilibrium
distribution of the emitted electrons is analyzed via the direct current at the dot spectrometer. In the adiabatic
and intermediate source frequency regimes, the distribution is found to be strongly peaked around the active
resonant level of the turnstile. At high frequencies the distribution is split up into a set of fringes, resulting from
the interplay of resonant transport through the turnstile and absorption or emission of individual Floquet quanta.
For ideal source operation, with exactly one electron emitted per cycle, an expression for the single-electron
wave function is derived.

DOI: 10.1103/PhysRevB.85.075428 PACS number(s): 72.10.−d, 73.23.−b, 73.43.−f

I. INTRODUCTION

The last decade has shown an increasing interest in
transport in the integer quantum Hall regime, largely motivated
by realizations of electric analogs of fundamental quantum
optics experiments. Conductors in the quantum Hall regime
provide the two key elements for electron optics experi-
ments: Unidirectional edge states play the role of electronic
waveguides1,2 and quantum point contacts with controllable
transparency act as tunable electronic beam splitters.3–5 In their
pioneering electron optics experiment, Ji et al.6 investigated an
electronic single-particle, or Mach Zehnder, interferometer.7

This work was followed by a number of investigations, both
experimental8–13 and theoretical,14–22 with the focus on the
coherence and interaction properties of the interferometer.
Recently, following the proposal in Ref. 23, a two-particle
interferometer was realized experimentally by Neder et al.24

The demonstration of two-particle interference provided a
clear experimental connection25 between edge-state transport
and quantum-information processing.26–34

Another important aspect of edge-state transport, the high-
frequency properties, was investigated in two key experiments.
Gabelli et al.35 analyzed the frequency-dependent admittance
of a mesoscopic capacitor system. Good agreement was found
with early theoretical predictions,36 motivating additional
investigations focusing on the effects of electron-electron
interactions.37–43 In the experiment by Feve et al.44 a time-
controlled single-particle source working at gigahertz fre-
quencies was realized. It was demonstrated that a mesoscopic
capacitor coupled to an edge state can serve as a time-periodic
on-demand source, producing exactly one electron and one
hole per cycle. The experiment was followed by a number
of works investigating the accuracy and coherence of the
source45–51 and also proposing novel geometries with one
or more on-demand sources as building blocks.52–55 As an
interesting example, a scheme for time-bin entanglement
generation on demand was proposed in Ref. 56. Also other
types of edge-state single-electron sources were investigated,
both theoretically57 and experimentally.58,59 Of particular

importance for the present work is the nonlocal electron-hole
turnstile proposed by us,57 which during ideal operation
produces noiseless streams of electrons and holes along
spatially separated edges.

An additional important tool for investigations of edge-state
transport was demonstrated recently by Altimiras et al.60

They developed a method for a spectroscopic analysis of
the edge-state distribution, by weakly coupling a quantum
dot with a single active level to the edge. In a series of
works60–62 the energy relaxation and the limitation of the
electron-optics picture were investigated. Taken together, the
achievements in the field to date makes it both experimentally
accessible and fundamentally interesting to investigate spectral
properties of electronic states emitted from single-particle
sources. A successful experiment would open up for a detailed
characterization of the state of the emitted particles. Moreover,
for a source emitting electrons well above Fermi energy,
the modification of the spectral properties of the particles
propagating along the edge is a sensitive tool for investigating
electronic interactions.63–65

In this work we perform a theoretical investigation of
the electron spectral properties by analyzing a combined
single-particle source-spectral detector system implemented
with edge states in a multiterminal conductor; see Fig. 1.
As the single-particle source we consider the turnstile of
Ref. 57, although the analysis can readily be extended to other
sources.33,44,66,67 The distribution function of the electrons
emitted by the source is investigated via the direct current
flowing through the spectroscopic dot. We investigate the
spectral distribution for the three physically distinct turnstile
frequency regimes, adiabatic, intermediate, and high, identi-
fied in Ref. 57. It is found that in the adiabatic and intermediate
regimes, the distribution is peaked around the energy of the
active resonance of the turnstile. At the crossover to high
frequencies the peak splits up, developing fringes due to the
Floquet sidebands. At high frequencies a large number of
features in the spectral distribution appears, related to resonant
transport through higher lying turnstile levels. We discuss
how these findings relate to earlier work on time-dependent
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FIG. 1. (Color online) Schematic of the combined source-
spectrometer system, implemented in a multiterminal conductor in
the quantum Hall regime. Active spin-polarized edge states are
shown with thick, blue lines, with arrows denoting the direction of
propagation. The turnstile source (of Ref. 57) is shown to the left. A
bias difference V is applied between terminals 1,3 and 2,4. Quantum
point contacts A and B are driven by time periodic voltages. The
double barrier (DB) region between A and B is capacitively coupled
to a top gate (transparent green box), kept at a constant potential Vg .
The emitted electron wave packet is shown schematically in red at
position X. The spectrometer (of Ref. 60), shown inside the dashed
box, consists of a quantum dot (QD), formed by static quantum point
contacts S and D. The quantum dot, acting as an energy filter, has
a single active level at energy Espec, controlled by the voltage Vspec

applied to a top gate (red transparent box). Current is measured at
terminal M .

transport in quantum-dot and double-barrier systems.68–72

Moreover, we assess the robustness of our findings to, e.g.,
rectification effects and stray capacitive couplings. In addition,
in the ideal turnstile regime we derive an expression for the
wave function of single electrons emitted from the turnstile,
giving complete information about the emitted state.

II. MODEL

The combined source-spectrometer system is implemented
in a multiterminal conductor in the integer quantum Hall
regime; see Fig. 1. Transport takes place along a single
spin polarized edge channel. The single-particle source is the
nonlocal electron-hole turnstile proposed in Ref. 57. Terminals
1 and 3 are biased at eV while terminals 2 and 4 are grounded.
Electrons scatter between edges at the two quantum point
contacts A and B, driven by time periodic voltages VA(t)
and VB(t) with a period T = 2π/ω, π out of phase. The
time-dependent transparencies of the contacts are TA(t) and
TB(t). Throughout the paper, in the numerical analysis we
model the contacts as saddle point constrictions73,74 with
sinusoidal driving potentials VA(t) = V dc

A − V ac
A sin(ωt) and

VB(t) = V dc
B + V ac

B sin(ωt). However, the analytical results are
valid for any contact transparencies and driving potentials
giving a proper turnstile operation. The two quantum point
contacts form a double barrier (DB) with a set of resonant
levels in between. The energies of the resonant levels are taken
to be time independent, controlled by the potential Vg applied

to a top gate (see Fig. 1). The top gate has a large capacitance
making charging effects negligible.44

In this paper we focus on the energy distribution of the
electrons emitted toward terminal 2, while the properties of the
emitted holes could instead be investigated by, e.g., changing
the sign of the bias V at terminals 1 and 3. For the spectroscopy
device we follow the edge channel spectroscopy experiment
in Ref. 60 and consider a quantum dot weakly coupled to
the output edge channel leading to terminal 2 (dashed box in
Fig. 1). The quantum dot has only one active level at energy
Espec, controlled by a top-gate voltage Vspec. Electrons emitted
by the turnstile can tunnel through the quantum dot to an edge
channel fed from a grounded reservoir. The quantum dot acts
as an energy filter and the energy distribution of the emitted
particles can be extracted from the dc component of the current
at lead M . We point out that the distance between the turnstile
and the spectroscopy dot along the edge is smaller than the
energy relaxation length.61,62

III. FLOQUET SCATTERING APPROACH

The energy distribution of the emitted particles is calculated
within the Floquet scattering approach.75–77 We first focus on
the energy distribution f̄out(E) of the electrons emitted from
the turnstile propagating toward the spectroscopy device, at a
point denoted with X in Fig. 1. The relevant scattering matrices
are the Floquet transmission matrices from lead 1 to X, t̃X1(E),
and from 4 to X, t̃X4(E). The element tXβ(Em,En) of the
matrix t̃Xβ is the amplitude for an electron incoming at energy
En = E + nh̄ω from terminal β = 1,4 to be emitted at energy
Em at X, picking up m − n Floquet quanta h̄ω when scattering
at the time-dependent potentials. We have the matrices

t̃X1(E) = t̃B P̃ (E)[1 − r̃AP̃ (E)r̃BP̃ (E)]−1 t̃A,

t̃X4(E) = r̃B + t̃B[1 − P̃ (E)r̃AP̃ (E)r̃B]−1 (1)

× P̃ (E)r̃AP̃ (E)t̃B .

The matrix P̃ (E) is diagonal with elements P (Em,Em) =
exp[iφ(Em)]. The phase φ(Em) = φ0 + πEm/� is acquired
when the particle, at energy Em, propagates a length L inside
the DB, along the edge from A to B (or B to A) at drift
velocity vD . Here � = πh̄vD/L is the resonant level spacing
in the DB and φ0 is a constant phase, controlled by Vg . The
Floquet matrices t̃A,r̃A, describing the scattering properties of
quantum point contact A, are taken energy independent on
the scale max{kT ,eV,Nmaxh̄ω}, with T the temperature and
Nmax the total number of contributing sidebands. The matrix
elements tA,nm of t̃A are then given by the Fourier transform
of the time-dependent scattering amplitude tA(t) = i

√
TA(t),

i.e.,

tA,nm = 1

T

∫ T

0
ei(n−m)ωt tA(t)dt, (2)

and similarly for rA(t) = √
1 − TA(t). The matrices t̃B ,r̃B

describing the scattering properties of B are obtained in the
same way.
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The distribution function f̄out(E) is given by76 the quantum
statistical average of the occupation number of the outgoing
edge at X. It can be written

f̄out(E) =
∑

n

[
T n

X1(E)fV (En) + T n
X4(E)f0(En)

]
, (3)

where T n
Xβ(E) = |tXβ(E,En)|2 and fV (E) and f0(E) are the

Fermi distribution functions of the biased and grounded
reservoirs, respectively.

The experimental quantity of main interest is IM , the
direct, or time averaged, part of the current flowing into
terminal M of the spectroscopy device (see Fig. 1). The
spectroscopic quantum dot is weakly coupled to the edges
via two quantum point contacts S and D with transparencies
TS,TD � 1. Since there is only one active spin-polarized level
in the dot, Coulomb effects are unimportant and the transport
through the dot can be described as transmission through a
Breit-Wigner resonance. A calculation, along the same line as
for f̄out(E), of the direct current flowing into terminal M then
gives

IM = e

h

∫
TQD(E)fout(E)dE, (4)

where TQD(E) = �S�D/[([�S + �D]/2)2 + (E − Espec)2]
with �S/D = TS/D�spec/2π and �spec the level spacing of
the dot. The distribution function fout(E) = f̄out(E) − f0(E)
is the difference between the distribution function of the
electron emitted by the turnstile f̄out(E) and the distribution
function f0(E) of a grounded reservoir. Importantly, to have
a good resolution of the energy distribution, the width of the
quantum dot resonance must be smaller than the energy scale
δE on which fout(E) changes, �S + �D � δE. In this limit
we can effectively take TQD(E) ∝ δ(E − Espec) and Eq. (4)
turns into

IM = e

h̄

�S�D

�S + �D

fout(Espec). (5)

Equation (5) shows explicitly that the direct current flowing to
lead M is proportional to the energy distribution function fout

at energy Espec. The full energy dependence of the distribution
can thus be reconstructed by continuously shifting Espec,
achieved by tuning Vspec.60

As will be clear from the discussion below, it is physically
motivated to part the energy distribution function fout(E) into
two contributions: one due to the applied bias f bias

out (E),

f bias
out (E) =

∑
n

T n
X1(E)[fV (En) − f0(En)], (6)

and one coming from the pumping effect f
pump
out (E),

f
pump
out (E) =

∑
n

[
T n

X1(E) + T n
X4(E)

]
[f0(En) − f0(E)], (7)

similar to the current partition in Ref. 57.

IV. FREQUENCY REGIMES

In the remaining part of the paper we focus on the distri-
bution function fout(E) and its parts f bias

out (E) and f
pump
out (E)

in different frequency regimes. Based on the findings in
Ref. 57 we consider three qualitatively different regimes

(a)

(b)

(c)

FIG. 2. (Color online) (a) Charge Q transferred by the turnstile
per period, as a function of frequency with the three different regimes
highlighted. Inset: Transparencies TA(t) and TB (t) for the driving
scheme used in the numerical calculations throughout the paper. (b)
Energy distribution fout(E) as a function of pumping frequency and
energy. (c) Energy distribution fout(E) at h̄ω = 10−6� (adiabatic
frequency), h̄ω = 10−2� (intermediate frequency), h̄ω = 10−1�

(transition to high frequency), and h̄ω = 10−0.5� (high frequency)
with (solid, thick black line) and without (dashed green line) pumping
contribution. The red dashed lines show the analytical expressions
obtained in the adiabatic [Eq. (11)], intermediate [Eq. (20)], and
transition to high frequency regime [Eq. (22)]. In all the plots
kT � �.

with adiabatic, intermediate, and high pumping frequencies
highlighted in Fig. 2(a). We will for simplicity focus our
investigation on the case with the applied voltage eV = � and
one DB resonance within the bias window at energy εd = �/2.
However the main results of the paper rely only on the fact
that there is a single DB level well inside the bias window.

A. Adiabatic-frequency regime

In the adiabatic regime the pumping period T is much
longer than the time the particles spend inside the DB
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region and many particles flow through the turnstile during
one period.57 Formally Nmaxh̄ω � �mint [TA(t) + TB(t)]; i.e.,
the total scattering matrix is energy independent on the
scale Nmaxh̄ω. The numerically calculated energy distribution
function fout(E) is plotted as a function of frequency in
Fig. 2(b). We see that in the adiabatic regime the distribution
is sharply peaked around the DB-region resonance energy.

To obtain a quantitative estimate of the shape of the
distribution peak we note that to lowest order in frequency the
Floquet scattering matrix elements defined in Eq. (1) are given
by the Fourier coefficients of the frozen scattering amplitude76

t0
Xβ(E,t) as

tXβ(En,Em) = 1

T

∫ T

0
ei(n−m)ωt t0

Xβ(E,t)dt. (8)

In our case the relevant frozen amplitudes are

t0
X1(E,t) = tB(t)tA(t)eiφ(E)

1 − rA(t)rB(t)ei2φ(E)
,

(9)

t0
X4(E,t) = rB(t) + rA(t)t2

B(t)ei2φ(E)

1 − rA(t)rB(t)ei2φ(E)
.

Substituting Eq. (8) into Eqs. (6) and (7), and taking fV (En) −
f0(En) � fV (E) − f0(E), we find that the bias contribution to
the energy distribution is

f
bias,ad
out (E) = 1

T

∫ T

0

∣∣t0
X1(E,t)

∣∣2
[fV (E) − f0(E)]dt. (10)

The pump component is found to be a factor ω/� � 1 smaller
than the bias contribution f

bias,ad
out (E) and f

pump,ad
out (E) is thus

completely negligible; in Fig. 2(c) fout(E) and f bias
out (E) fully

overlap.
It is known57 that the current flows through the DB region

at times when the product TA(t)TB(t) is maximal, i.e., around
t = nT /2. For those times TA(t),TB(t) � 1 and the electrons
emitted by the turnstile will be distributed in energy according
to the time average of a Breit-Wigner resonance at εd , with
time-dependent width ∼ [TA(t) + TB(t)]�. Equation (10) then
simplifies to

f ad
out(E) � 1

T

∫ T

0

TA(t)TB(t)(
TA(t)+TB (t)

2

)2 + ( 2π(E−εd )
�

)2 dt, (11)

where we used that fV (E) − f0(E) � 1 for the energies of
interest. From the plot in Fig. 2(c) we see that f ad

out(E) is in good
agreement with the full numerics (the small-shape discrepancy
is due to the frequency not being in the deep adiabatic regime).

B. Intermediate-frequency regime

In the adiabatic regime, for increasing pumping frequency
the number of particles transversing the DB region during
one period decreases as 1/ω. After a rapid transition into
the nonadiabatic regime, there is57 a wide pumping fre-
quency interval �mint [TA(t) + TB(t)]/h̄ � ω � ωmax

A ,ωmax
B

with h̄ωmax
A/B = �min{1,

∫ T
0 (dt/T ) ln[1/RA/B(t)]}, in which

the turnstile works optimally and only one particle per period
is pumped through the turnstile. As is clear from Figs. 2(b)
and 2(c) the energy distribution of the electrons emitted in

the optimal regime is still centered around εd , similar to the
adiabatic regime, but it broadens and changes shape.

Again, to obtain a quantitative expression for the distri-
bution function we first note that the pumping contribution
f

pump
out (E) is still a factor ω/� � 1 smaller than f bias

out (E). We
can thus write

fout(E) � f bias
out (E) �

∑
n

T n
X1(E)[fV (E) − f0(E)]. (12)

For the energies of interest, around εd , fV (E) − f0(E) � 1.
To be able to treat arbitrary, nonadiabatic frequencies we
introduce the dynamical scattering amplitude tX1(E,t), defined
as77

tX1(E,t) =
∑

n

einωt tX1(E,En), (13)

for an electron injected from terminal 1 at time t to be emitted
to X with energy E. We can then write Eq. (12) as

fout(E) = 1

T

∫ T

0
|tX1(E,t)|2dt. (14)

From Eqs. (1) and (13) we obtain (similar to Ref. 77)

tX1(E,t) = tA(t)
∞∑

q=0

ei(2q+1)φ(E)Lq(t)tB(t + [2q + 1]τ ),

(15)

where τ = L/vD and Lq(t) = ∏q

p=1 rA(t + 2pτ )rB(t +
[2p − 1]τ ) for q � 1 and 1 for q = 0. In the intermediate
regime the time of flight τ through the DB region is much
smaller than the pumping period, τ � T . We can then go
from a discrete to a continuous description in time and write
tX1(E,t) in Eq. (15) as

tX1(E,t) � −tA(t)
1

2τ

∫ ∞

0
exp

[
i
(E − εd )

h̄
t ′
]
tB(t + t ′)

× exp

{
1

2τ

∫ t ′

0
ln[rA(t + t ′′)rB(t + t ′′)]dt ′′

}
dt ′.

(16)

In the optimal turnstile regime we can neglect57 the times
when both contacts A and B are simultaneously open and put
tB(t) = 0 for 0 < t < T /2 and tA(t) = 0 for T /2 < t < T .
Moreover, the current flows in and out of the DB region when
the respective quantum point contacts are starting to open, i.e.,
TA(t),TB(t) � 1, and we can expand the logarithm in Eq. (16)
to first order in TA(t),TB(t). We can then write the quantity of
interest

|tX1(E,t)|2 = CA(t)|cB(E)|2, (17)

where we can identify

CA(t) = TA(t) exp

[
− 1

2τ

∫ T /2

t

TA(t̄) dt̄

]
(18)

as the probability that an electron is injected at t and thereafter
stays inside the DB region until T /2. The energy-dependent
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function

cB(E) = 1

2τ

∫ ∞

T /2
exp

[
i
(E − εd )

h̄
t ′
]
tB(t ′)

× exp

[
− 1

4τ

∫ t ′

T /2
TB(t ′′)dt ′′

]
dt ′ (19)

depends on the scattering properties of contact B only. The
distribution function, Eq. (14), is then

fout(E) = h̄ω

�
|cB(E)|2 (20)

since the time integral

1

2τ

∫ T /2

0
CA(t)dt = 1 − exp

[
− 1

2τ

∫ T /2

0
TA(t̄)dt̄

]
� 1

(21)

gives57 the probability that the DB region is charged at T /2,
unity in the optimal pumping regime.

The expression for fout(E) in Eq. (20), together with
Eq. (19), allows for a straightforward evaluation of the distri-
bution function of the emitted electrons for any ideal turnstile
driving scheme, once the time-dependent transparency TB(t)
is known. As is clear from Fig. 2(c), the expression in Eq. (20)
gives very good agreement with the full numerics.

1. Floquet fringes

At frequencies ωmax
A/B < ω < �/h̄ the transferred charge

starts to decrease, Q < 1 [see Fig. 2(a)], a consequence of
incomplete charging and discharging of the DB region during
the pumping cycle. In this frequency regime f bias

out (E) still
determines the spectral distribution of the emitted charge;
the pumping contribution f

pump
out (E) can be neglected as the

numerics show in Fig. 2(c).
From Fig. 2(b) we note that the resonance at εd starts to

split up; i.e., fout(E) develops a set of fringes at energies ±nh̄ω

around εd , with n = 0,1,2,3.... The fringes are a manifestation
of the integer number of Floquet quanta which the electrons
gain or loose when transmitting through the DB region.
Such manifestations of the interactions of transport electrons
with an applied, time-dependent field have been intensively
investigated in various forms in mesoscopic conductors; see,
e.g., Refs. 68–71 for early works and Ref. 72 for a review. Typ-
ically the effect of the time-dependent field was investigated
via transport quantities such as average current, differential
conductance, or noise. Here we focus on the manifestation of
the time-periodic field, i.e., the Floquet fringes, directly in the
distribution function.

To obtain a quantitative description of the Floquet fringes
we note that for well-separated fringes, only electrons which
scatter resonantly through the DB contribute significantly to
fout(E). The resonant paths in energy-position space are shown
in Fig. 3. One can divide the resonant process into three
subsequent parts: (I) only electrons incident with an energy
around εd ± ph̄ω, i.e., such that they can hit the resonance at
εd by losing or gaining p = 0,1,2, . . . Floquet quanta h̄ω at
contact A, can enter the DB region; (II) inside the DB region
electrons scatter elastically back and forth between A and
B, i.e., without acquiring any quanta; (III) electrons emitted
out through contact B pick up or lose n quanta and thereby

FIG. 3. (Color online) Schematic of the resonant paths in energy-
position space, with three regions I, II, and III. In I electrons incident
from terminal 1 pick up or lose a given number of Floquet quanta at
contact A, to hit the resonance energy εd . In II, the DB region between
A and B, the electrons scatter elastically back and forth between
the contacts. In III the electrons acquire 0, ±1, ±2,... quanta when
transmitting out through B.

contribute to the fringes at εd ± nh̄ω. Summing up all resonant
paths we have from Eq. (6) and Eqs. (1), (2) that

fout(E) = �

2π

∑
n

�̄A|tB,0n|2
([�̄A + �̄B]/2)2 + (En − εd )2

, (22)

where we use that fV (En) − f0(En) � 1 and introduced
�̄A/B = (1/T )

∫ T
0 dt�A/B(t), the time average of the tunneling

rate �A/B(t) = TA/B(t)�/2π . The expression in Eq. (22)
gives good agreement with the full numerics as shown in
Fig. 2(c). From Eq. (22) we also see that fringes are given by
a set of Lorentzians centered around εd + nh̄ω, with a width
�̄A + �̄B . The peak height of the fringes are proportional to
|tB,0n|2, the modulus square of the Fourier components of the
transmission amplitude through contact B. We point out that
further numerical investigations (not presented) show that the
occurrence of fringes of fout(E) given by Eq. (22) is a generic
feature for a turnstile with a single active DB level and hence
not due to the specific parameters used in Fig. 2(b).

C. High-frequency regime

In the high-frequency regime the Floquet quantum h̄ω

becomes comparable to the DB-level spacing �. As a result
the Floquet fringes from electrons scattering through DB
resonances at energies εd + m�, m = ±1, ±2,... start to
contribute to fout(E). As shown in Fig. 4, this leads to a
dense pattern of fringes moving up and down in energy with
increasing frequency ω > �/h̄. In contrast to the adiabatic-
and intermediate-frequency regimes, in the high-frequency
regime the pumping contribution f

pump
out (E) and the bias

contribution f bias
out (E) are comparable [see Fig. 2(c)].

It is helpful for the physical understanding to discuss
the properties of the two contributions separately. Starting
with the bias contribution, we first note that f bias

out (E) is
manifestly positive [see Eq. (6)], describing Floquet scattering
of electrons injected from terminal 1, in the bias window.
Moreover, with the resonance εd = �/2 in the middle of
the bias window, the symmetry f bias

out (εd + E) = f bias
out (εd − E)

follows from Eq. (6) and is directly visible in Fig. 4(c). The
energy of the fringes in f bias

out can be found by extending the
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(a)

(b)

(c)

(d)

FIG. 4. (Color online) (a) High-frequency regime of the trans-
ferred charge Q per period, displaying dips at frequencies given by
Eq. (23). (b)–(d) Energy distributions as functions of energy and drive
frequency. The total distribution fout(E) [in (b)], the bias contribution
f bias

out [in (c)], and the pumping contribution f
pump

out (E) [in (d)] are
shown. In all the plots TA(t),TB (t) as in Fig. 2 and kT � �.

reasoning above: An incident electron which scatters through
a DB resonance at εd + m� and emits an additional n =
0, ±1, ±2,... quanta when transmitting out through contact
B contributes to a fringe at an energy E = εnm, given by

εnm = εd + m� + nh̄ω. (23)

Since the incident energy of the electron is restricted to the
bias window, the bias component f bias

out will only show fringes
at energies εnm fulfilling the additional requirement h̄ωp �
εnm � eV + h̄ωp, with p = 0, ±1, ±2,.... For h̄ω > eV this
leads to bands of fringes, eV wide and separated by h̄ω, as is
clearly seen in Fig. 4(c).

Turning to the pump contribution, f
pump
out (E) describes the

creation of electron-hole pairs out of the Fermi sea, due to
the time-dependent potentials at the quantum point contacts A

and B. The pump contribution has the symmetry f
pump
out (E) =

−f
pump
out (−E), also visible in Fig. 4(d). The origin of the fringes

in f
pump
out (E) is the same as for the bias part; however, since all

electrons below Fermi energy in principle can contribute, in
contrast to the bias part the fringes appear at all energies εnm

given by Eq. (23).
Common for the fringes in f bias

out (E) and f
pump
out (E) is

that they typically are described as a set of superimposed
Lorentzians of width �̄A + �̄B in energy, just as described
above for the intermediate-frequency regime [see Eq. (22)].

However, the height of the peaks depends in a more com-
plicated way on through which resonances the particles have
scattered as well as on the available energies for the injected
electrons, giving a more complex peak structure. This is
clear from the high-frequency regime panel in Fig. 2(c),
where f bias

out (E) as well as the total distribution fout(E), the
experimentally accessible quantity, are shown.

1. Relation to transferred charge

It is interesting to relate the fringe properties of fout(E)
and its components to the transferred charge Q per cycle,
discussed in Ref. 57 and plotted as a function of frequency for
reference in Fig. 4(a). In the high-frequency regime, in addition
to a slow, ∼ 1/ω, overall decrease with increasing frequency,
the charge Q displays sharp dips at certain frequencies. In
Ref. 57 these dips were explained by appealing to semiclassical
electron paths through the turnstile leading to zero or small
charge transfer. Here we first note that the charge Q is
determined by f bias

out (E) only, since Q = (e/h)T
∫

fout(E)dE

and f
pump
out (E) is antisymmetric in energy around E = 0. By a

direct comparison of the fringe structure of f bias
out (E) in Fig. 4(c)

with the dips of Q in Fig. 4(a), we note that all dips occur for
frequencies where different fringes cross, i.e., [from Eq. (23)]
when εnm = εn′m′ with n 	= n′,m 	= m′ giving the frequencies

h̄ω = m − m′

n′ − n
�. (24)

However, not all fringe crossings correspond to charge dips;
e.g., while for h̄ω = �/2 the dip in Q is large, for h̄ω = �

there is no dip at all. The fringe structure around these two
frequencies is illustrated in detail in Fig. 5(a).

To understand both the position and magnitude of the dips
we note that crossing fringes correspond to a situation when
an injected electron can take two (or more) different resonant
paths in energy space and be emitted at the same energy
E; see illustration in Fig. 5(b). As a consequence the two
paths interfere, constructively or destructively, depending on
the relative amplitudes for the two paths. To illustrate this
which-energy-path interference76 we consider two different
paths where an electron injected at energy Eq scatters through
a resonance at energy En = εd + m� or En′ = εd + m′� and
thereafter loses or gains n or n′ quanta, respectively, and is
emitted at energy E. The contribution to f bias

out (E) for this
process is, then, similar to Eq. (22), exactly at resonance

4
|tA,nq tB,0ne

iπmh̄ω/� + tA,n′q tB,0n′eiπm′h̄ω/�|2
(�̄A + �̄B)2

. (25)

For the symmetric turnstile with π out of phase driving
considered here we have TA(t) = TB(t + T /2) and conse-
quently tA,mn = tB,mne

i(m−n)π . The ratio of the interference,
or coherent part and the incoherent part, is then given by

2tB,nq tB,0ntB,n′q tB,0n′ cos([m − m′]π [1 + h̄ω/�])

|tB,nq tB,0n|2 + |tB,n′q tB,0n′ |2 . (26)

Noting that tB,mn is purely imaginary, for e.g. h̄ω = � this
ratio is maximal (the cosine term is 1 for all m,m′), i.e.
constructive interference for all fringe crossings; see Fig. 5(a).
For e.g. h̄ω = �/2, the ratio summed over all resonances
is minimal (the cosine term alternates between 0, − 1 and
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(a)

(b)

FIG. 5. (Color online) (a) Close-up of distribution function
f bias

out (E) around frequencies h̄ω ∼ �, for energies around resonance
εd = �/2. Strong suppression due to destructive interference is
clear for h̄ω = �/2 (dashed arrow) while no suppression occurs
for h̄ω = � (full line arrow). (b) Schematic of two energy-position
paths, going through two different resonances.

1 for different m,m′), i.e. destructive interference. For most
crossings the ratio in Eq. (26) is somewhere in between,
determined by the different probabilities for the individual
paths |tA,nq tB,0n|2 and the ratio ω/�. Taken together, the
energy-path interference picture provides a quantum mechan-
ical explanation for both the origin and the magnitude of the
dips in the transferred charge Q, complementing and extending
the semiclassical explanation given in Ref. 57.

V. WAVE FUNCTION OF EMITTED ELECTRONS,
OPTIMAL TURNSTILE REGIME

Complete information about the state emitted by the
turnstile is obtained from the full many-body wave function.
The wave function is of key importance when investigating
the possibilities for quantum-information processing with
electrons in the quantum Hall regime. Of particular interest
is the wave function for the electrons emitted in the optimal
regime, with exactly one electron transferred per cycle. It
would be desirable to derive the many-body wave function
in the optimal regime along the lines of Ref. 66, where it was
formally shown that the pump in the Fève et al.44 experiment
under ideal conditions creates a single electron (or hole)
excitation on top of a filled Fermi sea. Here we however take
a simpler path, which we nevertheless argue gives the same
result in the optimal pumping regime.

During optimal operation the turnstile is completely
charged and subsequently discharged, once each period.

In the second half of the pumping period, during the
discharging, the quantum point contact A is closed and the

FIG. 6. (Color online) Sketch of the simplified model used to
derive the single-particle wave function in the ideal regime. At t = 0
the electron is trapped between barriers, in a single level at energy
εd = 0. For t > 0 the electron can start to tunnel to the right lead.
The time-dependent lead-level coupling is J (t).

electron trapped in the DB can escape out through B (as
sketched in Fig. 6). For h̄ω � � the escape takes place during
times when TB(t) � 1, i.e., soon after the opening of B at
t = T /2. Then only energies in a narrow interval ∼ TB(t)�
around εd = �/2 are of importance. This allow us to neglect
many-particle processes, related to excitations out of the filled
Fermi sea, and consider a simplified single-particle model for
the wave function of the emitted state. We thus describe the
system during discharging with the Hamiltonian

H = εd |d〉〈d| +
∑
E

E|E〉〈E| +
∑
E

J (t)[|d〉〈E| + |E〉〈d|],

(27)

where |d〉 denotes the DB level and |E〉 the chiral edge state
of energy E, outside the DB region. The tunnel coupling
J (t) between the DB level and the edge is assumed to be
energy independent. For notational convenience, in the model
we count energies away from the dot resonance [εd = 0 in
Eq. (27)] and take the onset of the tunneling to occur at t = 0.
We substitute the ansatz

|ψ(t)〉 = cd (t)|d〉 +
∑
E

cE(t)|E〉 (28)

into the time-dependent Schrödinger equation ih̄d|ψ(t)〉/dt =
H |ψ(t)〉 and get the system of equations

ih̄ċd (t) =
∑
E

J (t)cE(t), ih̄ċE(t) = EcE(t) + J (t)cd (t),

(29)

subjected to the initial condition

cd (t = 0) = 1, cE(t = 0) = 0. (30)

Equations (29) with the boundary conditions in Eq. (30) can
conveniently be solved by means of a Laplace transformation.
For a continuum of states outside the DB, we find

cd (t) = exp

[
−

∫ t

0
�(t̄)dt̄

]
, �(t) = πν

h̄
J 2(t), (31)

075428-7



F. BATTISTA AND P. SAMUELSSON PHYSICAL REVIEW B 85, 075428 (2012)

where ν is the density of states of the edge. Using this
expression for cd (t) we can solve the remaining equations
in Eq. (29) and find

cE(t) = exp

(−iEt

h̄

) ∫ t

0
exp

(
iEt ′

h̄

)
J (t ′)
ih̄

× exp

[
−

∫ t ′

0
�(t̄) dt̄

]
dt ′. (32)

At times much longer than the emission time the DB region
is completely discharged, cd (t) → 0, and the wave function
|ψ(t)〉 only describes the emitted electron in the edge, a wave
packet

|ψ(t)〉 = √
ν

∫
cE(t)|E〉dE. (33)

To employ this result for composite systems, with, e.g., two or
more turnstiles, it is desirable to construct the full many-body
state corresponding to |ψ(t)〉. Reintroducing the Fermi sea, in
second quantization we have

|ψ〉 =
∫ ∞

0
c̃Ea

†
E|0〉dE (34)

in the Heisenberg picture. Here a
†
E creates an elec-

tron in the edge toward X in Fig. 1 at energy
E; |0〉 is the filled Fermi sea. The coefficient c̃E =√

ν/(ih̄)
∫ t

0 exp [ i(E−εd )t ′
h̄

]J (t ′) exp [− ∫ t ′

0 �(t̄)dt̄]dt ′ reintro-
ducing the turnstile level energy εd = �/2. From the wave
function in Eq. (34) the average occupation number at energy
E is given by 〈n̂(E)〉 ≡ 〈a†

EaE〉 = |c̃E|2.
To connect the wave function result with the Floquet

approach above we first compare the probability for an electron
to remain inside the DB after opening contact B, |cd |2, with the
result of Ref. 57. We find, shifting the onset of the tunneling
T /2 in time in J (t),

J (t) = 1

2π

√
�TB(t)

ν
, t ∈ [0,T /2]. (35)

We can then compare the distribution function in the optimal
regime in Eq. (20) with the average occupation number from
the wave function, giving

fout(E) = h̄ω〈n̂E〉. (36)

The factor h̄ω in front of 〈n̂E〉 simply reflects the fact that while
the wave function |ψ〉 describes a single electron emission,
fout(E) describes the periodic emission of single electrons,
with a frequency ω. The relation in Eq. (36) provides evidence
that the full many-body wave function for a single discharging
event is given by Eq. (34). To obtain the wave function for
several emitted electrons, well separated in time, one acts upon
|0〉 with a product of wave packet operators

∫ ∞
0 dEc̃Ea

†
E with

time translated tunnel couplings J (t) [or equivalently TB(t)],
describing different emission times.

Importantly, the single-particle wave function for the
emitted electron in Eq. (33) is valid for arbitrary tunnel
coupling J (t). However, we emphasize that special care must
be taken when making the connection to the many-body wave
function in Eq. (34). This is clearly illustrated by considering

a steplike onset at t = 0; i.e., J (t) = Jθ (t). This gives an
amplitude

c̃E =
√

h̄

π

√
�

ih̄� + (E − εd )
, (37)

i.e., a Lorentzian wave packet centered around εd . The
problem is that such a wave packet is not well confined
inside the bias window 0 � E � �; the occupation decays
as ∼1/E2 far away from resonance. As a consequence there
is a nonnegligible probability to find the electron inside the
filled Fermi sea or in a higher lying DB level, incompatible
with the assumptions for the optimal pumping regime. This
demonstrates that to make the connection between the wave
functions in Eqs. (33) and (34), the time dependence of J (t),
and hence TB (t), has to be such that the resulting single-particle
wave packet has no spectral weight outside the bias window.

VI. IMPERFECTIONS AND ROBUSTNESS

To assess the feasibility of our proposal it is important
to investigate possible imperfections or deviations from the
model which might become important in an experiment. In
our opinion, the most important issue is the various effects
of the capacitive coupling between the different components
in the system, e.g., the gates, the reservoirs, and the electrons
in the DB region.

First and foremost, we have so far in the paper assumed that
the electrostatic potential of the DB is constant in time, due
to a dominating capacitive coupling to the metallic top gate
kept at a constant potential Vg (see Fig. 1). In an experiment,
this might not be the case and it is interesting to investigate
the effect of a capacitive coupling also to the gate at A and
B, with applied time-dependent potentials VA(t) and VB(t).
Second, a capacitive coupling between the gates at A and B

and the electronic reservoirs 1 to 4 introduces a time-dependent
component of the bias potential at the reservoirs. Such a time-
dependent potential can lead to a rectification current78 which
can obscure the physical phenomena under investigation.79,80

Starting with the latter type of coupling, in our proposed
turnstile, the rectification effects are typically not important
in the adiabatic- and in the intermediate-frequency regimes.
The reason for this is that a small ac potential at the reservoirs
only leads to electron-hole excitations around energies 0 and
eV of the grounded and biased reservoirs, respectively. These
energies are far away from the resonance εd = �/2 where
the net transport takes place. Hence, similar to the pumping
contribution f

pump
out (E), the rectification effects are negligible

for frequencies ω � �/h̄. At high frequencies h̄ω ∼ �/e

rectification effects might become important; their magnitude
depends on the strength of the capacitive coupling between the
gates at A and B and the reservoirs. A detailed investigation
of these issues is however outside the scope of this paper.

For the first type of coupling, inducing a time-dependent
potential in the DB, the situation is a priori less clear and we
therefore investigate it in more detail. The isolated system,
consisting of the spatially constant DB region capacitively
coupled to the two quantum point contact gates A and B and
the DB region top gate, can be represented in a simple circuit
theory model as three capacitors of capacitances CA,Cg,CB

put in parallel [see Fig. 7(a)]. Each of the capacitors is
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subjected to a different voltage, VA(t),Vg,VB(t), respectively,
with VA/B = V dc

A/B ± V ac
A/B sin(ωt) discussed above. The ef-

fective potential that the electron will experience in the DB
region is U (t) = U0 + δU (t). For a typical driving scheme
V ac

A = V ac
B = V ac we find

δU (t) = αV ac sin(ωt), α = CB − CA

CA + Cg + CB

. (38)

The constant part U0 (determining φ0 discussed above) is
determined by the top-gate potential Vg . Equation (38) shows
that in case of a dominant coupling with the gate, Cg �
CA,CB , the asymmetry parameter α � 1, and we can neglect
δU (t), as was done in the previous sections. Furthermore
due to the π -shifted driving between A and B, the induced
time-dependent potential is proportional to the difference
CB − CA. For a symmetric capacitive coupling, CA = CB , we
can thus also neglect δU (t). To have an effect on fout(E)
the capacitive A,B-gate couplings thus have to be sizably
asymmetric and of comparable strength to the DB top-gate
coupling.

To calculate the effect of δU (t) we note that a time-
dependent, spatially constant potential in the DB can be
formally taken into account77 by modifying the Floquet matrix
P̃ (E) in Eq. (1) to

P (En,Em) = 1

T

∫ T

0
ei(n−m)ωtdt

× exp

(
i

[
φ0 + πEn

�
− e

h̄

∫ t+τ

t

δU (t ′)dt ′
])

,

(39)

which is then no longer diagonal. With the modified expression
for the transmission matrices in Eq. (1) the spectral distribution
fout(E) can be calculated along the same line as above.

The effect of the induced time-dependent DB potential can
be seen in the plot of fout(E) in Fig. 7(c), where eαV ac = 0.1�.
For the adiabatic (not shown) and intermediate frequencies the
main effect is to shift the resonance in energy, away from εd ,
with the shift increasing for increasing frequency. While the
size of the shift depends on ω and |αV ac|, the direction, up
or down in energy, is determined by the sign of αV ac. The
origin of the resonance shift can be understood by noting that
the discharging of the DB region, at low and intermediate
frequencies, takes place during a time interval much shorter
than the period T . As a consequence the electron leaving the
DB region sees an essentially instantaneous potential U (t).
We can thus describe the shift by considering an effective,
time-dependent level energy εd (t), depicted in Fig. 7(a). For
the parameters in Fig. 7(c), the effective energy εd (t) is
slightly below εd when the electron is emitted. The effective
level picture is supported by the fact that the expressions for
fout(E) in the adiabatic- and intermediate-frequency regimes
can be found by substituting εd → εd (t) in Eq. (11) and
εd t

′ → ∫ t ′

0 εd (t ′′)dt ′′ in Eq. (19), respectively, where εd (t) =
εd + eδU (t). Importantly, the relatively small magnitude of
the shift, given that eαV ac = 0.1�, results from the emission
taking place soon after contact B starts to open, i.e., close
to t = T /2, where the time-dependent part δU (t) is small.
The lower the frequency, the closer to t = T /2 the emission

(a)

(b)

(c)

FIG. 7. (Color online) (a) Left: Circuit representation of the
turnstile DB region capacitively coupled to quantum point contact
gates A, B subjected to time-dependent bias VA/B (t) and a top
gate kept at constant bias Vg . Right: Sketch of the oscillation of
the effective, instantaneous resonant level energy εd (t). Times for
absorption and emission of the electron from the DB region for typical
system parameters are shown with black dots. (b) Energy distribution
fout(E) for asymmetry factor eαV ac = 0 to compare with (c) fout(E)
for eαV ac = 0.1� for a selected interval of E and ω.

takes place. We also note that the fraction of the driving
period during which the emission takes place becomes larger
when the frequency increases, explaining the broadening of
the resonance with increasing frequency seen in Fig. 7(c).

The picture with emission from a time-dependent turnstile
level at εd (t) breaks down for frequencies h̄ω ∼ �. In this high-
frequency regime the main effect of a finite δU (t) is to modify
the magnitude and width of the individual Floquet fringes.
In particular, an asymmetry between fringes corresponding to
absorption and emission of Floquet quanta is clearly visible
in Fig. 7(c). The details of this asymmetry can be analyzed in
terms of which-energy-path arguments, similar to the above;
this is however outside the scope of the present paper.

The main conclusion from this analysis is that the electron
distribution, and hence the transferred charge, in the physically
most interesting intermediate-frequency regime, is to a large
extent unaffected by a time-dependent component of the
potential inside the DB. Only when the time-dependent
component becomes comparable to the level spacing �, of
the order of meV in closely related experiments,44,47 are
the properties of the turnstile significantly modified. In our
opinion, this investigation provides strong evidence for the
robustness of the turnstile proposed in Ref. 57.
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VII. CONCLUSIONS

We have performed a detailed theoretical investigation
of the spectral properties of electrons emitted from an on-
demand single-electron source. This was done by analyzing
a combined single-particle source spectral detector system
implemented with edge states in a multiterminal conductor.
The single-particle source and spectrometer consisted of an
electron turnstile and a single-level quantum dot, respectively.
The distribution function of the electrons emitted by the source
was investigated via the direct current flowing through the
spectroscopic dot. We investigated the spectral distribution
for three physically distinct frequency regimes: adiabatic,
intermediate, and high. It was found that in the adiabatic
and intermediate regimes, the distribution is narrowly peaked
around the energy of the turnstile resonance. At the crossover
to high frequencies the peak splits up, developing Floquet
fringes. At high frequencies an analysis of the properties
of the fringes and their relation to the charge transferred
through the turnstile was examined, highlighting the role of

which-energy-path interference. The robustness of the turnstile
operation in the optimal regime was assessed, providing
evidence for a large resilience to capacitive stray couplings and
rectification effects. Moreover, in the ideal turnstile regime we
derived an expression for the wave function of single electrons
emitted from the turnstile and explained how to relate this
to the full many-body wave function of the emitted particles.
Our findings motivate an experimental investigation of the
spectral distribution of electrons emitted from on-demand
single-electron sources and put in prospect an observation
of Floquet fringes, or sidebands, directly in the electron
distribution.
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Glattli, T. Kontos, B. Plaçais, G. Fève, A. Cavanna, and Y. Jin,
Phys. Rev. B 82, 201309 (2010).

48M. Albert, C. Flindt, and M. Büttiker, Phys. Rev. B 82, 041407
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