
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Assemblies of Pervasive Services

Svensson Fors, David

2009

Link to publication

Citation for published version (APA):
Svensson Fors, D. (2009). Assemblies of Pervasive Services. [Doctoral Thesis (monograph), Department of
Computer Science]. Department of Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/49e4c695-3a24-4966-abe7-90c73f94e5c5

Assemblies of
Pervasive Services

David Svensson Fors

Doctoral Dissertation, 2009

Department of Computer Science
Lund University

ISBN 978-91-976939-1-2
ISSN 1404-1219
Dissertation 31, 2009
LU-CS-DISS:2009-1

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: david@cs.lth.se
WWW: http://www.cs.lth.se/~david

Typeset using LATEX 2ε

Printed in Sweden by Tryckeriet i E-huset, Lund, 2009

c© 2009 by David Svensson Fors

Abstract

Pervasive computing is a vision about computers blending into the back-
ground, being there to assist us when we need them, but not requiring
constant attention. The vision covers scenarios in the home, at work, and
out in the street, and builds on the ongoing development towards an in-
creasing number of embedded computers with network connectivity.
The thesis presents the assembly as a lightweight mechanism for combina-
tion of devices and services in pervasive computing environments. The as-
sembly is intended to be modifiable by an end user, and to facilitate ad-hoc
combinations of services as well as adaptations to changes in services. It
does so by separating configuration and coordination, specified in an assem-
bly descriptor, from computation, specified in the services. It supports end-
user understanding by using service descriptions that can be inspected and
interacted with directly through rendered user interfaces. This gives more
flexibility than approaches based on domain-level standardization. An as-
sembly can give rise to services of its own, referred to as synthesized services.
The synthesized services can be used by other assemblies in turn, for deal-
ing with complex systems in a hierarchical way.
Assemblies and services are elements of the open architecture developed
in the project PalCom, and are supported by its communication and dis-
covery protocols. The protocols target resource-constrained devices and
situations with varying network connectivity, as required in several of the
scenarios studied in PalCom, and they presume no central infrastructure.
A central mechanism is the Pacemaker Protocol, which lets devices become
aware of each other, using a heartbeat frequency that can be controlled at
the application level.
A language for assembly descriptors has been defined, tools have been
developed, and frameworks and middleware have been implemented for
the developer of PalCom services. These have been used by PalCom part-
ners when building prototypes for scenarios, studied in cooperation with
prospective end users in the fields of emergency response, landscape archi-
tecture, neonatology, and physical-functional and cognitive rehabilitation.

Sammanfattning

Avhandlingen presenterar resultat från det europeiska forskningsprojektet
PalCom inom pervasive computing. Detta område handlar om hur små in-
byggda, uppkopplade datorer blir allt fler i arbets- och vardagsliv och hur
man ska dra nytta av och hantera det.
I PalCom är assemblyn ett centralt begrepp. En assembly används för att
kombinera tjänster som erbjuds av ett antal enheter. Ett exempel som vi ar-
betat med i projektet kallas för GeoTagger. I detta scenario är en landskaps-
arkitekt ute i fält för att dokumentera inför planeringen av ett nytt vind-
kraftverk. Med sig i ryggsäcken har han en kamera, en handdator, en GPS
och en kompass. Landskapsarkitekten vill märka varje bild han tar med ak-
tuell koordinat och kompassriktning, vilket underlättar när bilderna senare
ska sorteras. Var för sig erbjuder enheterna den funktionalitet han behöver:
kameran kan ta bilder, GPS:en ger koordinater och kompassen ger rikt-
ningar. Men inte för någon av dem har tillverkaren förberett för den kom-
binerade funktionaliteten.
Eftersom enheterna erbjuder PalCom-tjänster är det dock möjligt för land-
skapsarkitekten att bygga en assembly som kombinerar tjänsterna, utan
att behöva programmera om enheterna eller själv skriva program i t ex C
eller Java. Han kan experimentera med tjänsterna i en PalCom-browser på
handdatorn, och också bygga assemblyn med sammankopplingslogiken
inifrån browsern. Assemblyn kör sedan på handdatorn, och bilderna märks
med koordinater och riktningar. Om han senare byter ut någon av en-
heterna, eller kanske uppdaterar kamerans programvara till en nyare ver-
sion, så är det möjligt att göra anpassningar i assemblyn om det behövs.
I PalCom-projektet har vi tagit fram en mjukvaruarkitektur som beskriver
hur enheter ska kunna annonsera sina tjänster i ett nätverk, och kopplas
samman i en assembly. Vi har också byggt den grundläggande program-
vara som behövs för detta, programvara som sedan använts av olika grup-
per i projektet för att bygga prototyper. Prototyperna har testats i scenar-
ier tillsammans med representanter för de tänkta användarna. Dessa kom-
mer bl a från sjukhuset i Siena, Italien och från brandkåren, polisen och
sjukhuset i Århus, Danmark.

Acknowledgments

First of all, I wish to thank my supervisors, Professor Boris Magnusson and
Dr. Görel Hedin. Your support, ideas and experience have been absolutely
vital for me during the thesis work.
The work presented in the thesis has been carried out at the Department of
Computer Science, Lund University, and within the PalCom project.1 The
work has also been supported by VINNOVA.2

Thanks to Sven Gestegård Robertz, who has implemented the PalCom as-
sembly manager and the Developer’s Browser, both of which are very im-
portant for the work, and to Thomas Forsström, who has implemented
the more sophisticated parts of the PalCom protocols, including routing.
Thanks to Torbjörn Ekman and Emma Nilsson-Nyman for help with Jast-
Add and the PalCom Java compiler for the Pal-VM. Torbjörn Eklund has
my gratitude for our cooperation during the first parts of the MUI project.
Thanks to our PalCom master’s thesis students, who have all given valu-
able input to our research: Boel Mattsson, Brice Jaglin, Thomas Forsström,
David Raimosson, Johan Kristell, and Jörgen Ellberg.
I wish to thank all people in PalCom for creating an inspiring atmosphere
that has really made me feel like a palcomer, even though the project has
been spread across six countries. It has been great both to be able to build
on work done in the project, for example when using the Pal-VM, and that
the framework we have built has been used by other PalCom teams. For
joint paper writing, I especially thank Aino Vonge Corry, Klaus Marius
Hansen, Jeppe Brønsted, and Erik Grönvall.
Thanks to the people at the department for good company and interesting
lunch room conversations. Klas Nilsson deserves a special thanks for in-
troducing me to the ARTES++ graduate school, where I learned about real-
time systems and saw research environments at other universities. Anne-

1PalCom, IST-002057. Palpable Computing: a new perspective on Ambient Computing.
In the Future and Emerging Technologies activity of the Information Society Technologies
priority, within the European Commission’s Sixth Framework Programme.

2VINNOVA projects Migrating User Interfaces, 2002-00935, and Mechanisms for Integrat-
ing Computer Support in Health Care, 2005-02498.

Marie Westerberg, Lena Ohlsson, Anna Nilsson, Mikael Antic, Jonas Wis-
brant, Tomas Richter, Peter Möller and Lars Nilsson have been very helpful
with practical things.
Thanks to my football friends in Stora Harrie IF and Staffanstorps GIF,
for great fun both on and off the pitch. My deepest thanks to my family
for always supporting me, and to my wife Emma Fors for your love and
support, and for your way of looking at small and big things in life.

viii

Contents

1 Introduction 1
1.1 Non-preplanned interaction and ad-hoc combinations 2
1.2 Traditional approaches: standardization 3
1.3 Method of work . 4
1.4 PalCom and palpable computing 5

1.4.1 Broad competencies in the project 5
1.4.2 Explorative work . 6
1.4.3 Traveling Architects 6

1.5 Scenarios . 6
1.5.1 GeoTagger . 7
1.5.2 Active Surfaces . 8
1.5.3 Tall Ships’ Race . 9

1.6 Architecture and implementation 10
1.6.1 Devices . 10
1.6.2 Services . 10
1.6.3 Discovery . 11
1.6.4 Connections . 12
1.6.5 Browsers . 12
1.6.6 Tunnels . 13
1.6.7 Assemblies . 13
1.6.8 Versioning . 16
1.6.9 Communication protocols 16
1.6.10 Middleware and framework 17
1.6.11 Hardware platforms 17
1.6.12 An open source implementation 18

1.7 Scalability and security . 18

CONTENTS

1.8 Previous work . 19

1.8.1 Ubiquitous computing architectures 19

1.8.2 Interoperability in ubiquitous computing 22

1.8.3 Technical issues . 24

1.9 Contributions . 25

1.10 Thesis outline . 26

1.11 Publications . 27

2 Devices and services 29
2.1 Scenarios . 29

2.1.1 A music scenario . 30

2.1.2 A slide show scenario 31

2.2 Devices . 33

2.3 Three kinds of services . 33

2.4 Trees of services . 35

2.5 Naming and versioning . 36

2.6 Service descriptions . 36

2.7 Asynchronous, peer-to-peer communication 37

2.8 User interfaces . 39

2.8.1 User in the loop . 39

2.8.2 Rendering of user interfaces 40

2.9 Related work . 40

2.9.1 Jini . 40

2.9.2 UPnP . 42

2.9.3 Zeroconf . 42

2.9.4 OSGi . 43

2.9.5 Web technologies . 43

2.10 Summary . 45

3 Connections 47
3.1 Connecting two services from a third device 47

3.2 Properties of connections . 48

3.3 Multiple networking technologies 49

3.4 Tunnels . 50

3.5 Related work . 50

3.6 Summary . 51

x

CONTENTS

4 Assemblies 53
4.1 Scenarios . 53
4.2 The anatomy of an assembly 57
4.3 Assembly descriptors . 59
4.4 Bindings . 61
4.5 Synthesized services . 62
4.6 Unbound services . 62
4.7 Assembly managers . 63
4.8 Configuration, coordination and computation 63
4.9 The assembly is external to the services 65
4.10 Connecting services directly to each other 66
4.11 End-user work patterns . 67
4.12 Programming at different levels 68
4.13 Related work . 69
4.14 Summary . 71

5 Communication protocols 73
5.1 A layered model: overview 73
5.2 Requirements . 75
5.3 The PalCom protocols . 77
5.4 The Wire Protocol . 78

5.4.1 DeviceIDs . 78
5.4.2 Selectors . 79
5.4.3 Heartbeats . 80
5.4.4 Routing between networking technologies 83
5.4.5 Connections . 85
5.4.6 Message formats . 85
5.4.7 Large messages and reliable delivery 87

5.5 The Discovery Protocol . 87
5.5.1 Service naming . 88
5.5.2 Descriptors . 90
5.5.3 Status information . 93
5.5.4 Versioning . 94
5.5.5 Caching . 94
5.5.6 Small devices . 95

5.6 The Service Interaction Protocol 95

xi

CONTENTS

5.7 Related work . 96
5.7.1 Discovery . 97
5.7.2 Service interaction . 101

5.8 Summary . 103

6 The language of assemblies 105
6.1 Configuration . 105

6.1.1 Name and versioning information 107
6.1.2 Devices and services 107
6.1.3 Connections . 108
6.1.4 Bindings . 109
6.1.5 The interface of synthesized services 111

6.2 Coordination . 112
6.2.1 Script and event handling clauses 112
6.2.2 Variables . 113
6.2.3 Synthesized services 113
6.2.4 A loopback mechanism 114

6.3 Computation . 115
6.4 Representations of an assembly 115
6.5 Execution of assemblies . 116
6.6 Updating and versioning of assemblies 117
6.7 Related work . 119
6.8 Summary . 120

7 Browsers 121
7.1 The Handheld Browser . 121
7.2 The PalCom Overview Browser 123
7.3 The PalCom Developer’s Browser 124
7.4 Domain-specific browsers . 125
7.5 Summary . 125

8 Framework and middleware 127
8.1 Service Framework . 128
8.2 Middleware . 131

8.2.1 Communication . 131
8.2.2 Assembly manager . 132
8.2.3 Service manager . 133

xii

CONTENTS

8.3 Platform . 133

8.3.1 PalcomThreads . 134

8.4 Simulated devices . 135

8.5 Summary . 136

9 Implemented scenarios 137

9.1 GeoTagger . 138

9.2 SiteTracker . 139

9.3 The Incubator . 143

9.4 Active Surfaces . 144

9.4.1 The prototype . 145

9.4.2 Games . 146

9.4.3 A tiles simulator . 147

9.4.4 Groupcast tiles . 148

9.4.5 Puzzle game logic . 148

9.4.6 Services and assemblies 150

9.5 PalCom on a Sun SPOT . 153

9.6 A bridge between PalCom and UPnP 154

9.7 Tall Ships’ Race . 156

9.8 Summary . 157

10 Evaluation 159

10.1 Ad-hoc combinations and non-preplanned interaction 159

10.1.1 Usability . 161

10.1.2 Palpable challenges . 162

10.2 PalCom for developers . 164

10.3 Scalability . 165

10.3.1 Large numbers of devices 165

10.3.2 Execution on resource-constrained devices 167

10.3.3 Conclusion . 177

10.4 Summary . 178

11 Conclusions and future work 179

11.1 Summary of the architecture 180

11.2 Future work . 181

11.2.1 The assembly descriptor language 182

xiii

CONTENTS

A Message node types 185
A.1 Data nodes . 185
A.2 Header nodes . 186

B Descriptor grammars 189
B.1 Devices, services and connections 189
B.2 Assemblies . 192

Bibliography 195

xiv

Chapter 1

Introduction

The vision of ubiquitous computing was introduced in 1991 by Mark Weiser
at Xerox Palo Alto Research Center [123]. When that vision is realized,
computation blends into the environment: computers are there to assist
us when we need them, but do not require constant attention. This is a
shift from the focus on desktop computers, towards computers of many
different form factors. The ubiquitous computers may be virtually invis-
ible, such as wearable computers [98] or computers in furniture [55], but
they may also be handheld devices, such as handheld computers or mo-
bile phones, or larger devices, such as wall-sized displays. The important
thing is that they are at hand when we need them, but disappear from hu-
man attention when not used.
During the past decades there has been rapid progress towards the vision
of ubiquitous computing, and the vision has guided a lot of research. From
a technological perspective, this progress builds on the ongoing rapid im-
provements in areas such as network technology and embedded systems.
A key factor is the increasing number of devices that use wireless com-
munication: Wi-Fi, Bluetooth, and similar technologies let devices connect
and form local ad-hoc networks, independent of a central network infras-
tructure. In these networks, services can become available to users when
needed. As an example, consider a user that carries his handheld com-
puter and comes into the vicinity of a particular device. The device might
be a DVD player in his home, a ticket vending machine at the train station,
or a printer at the office. Thanks to the wireless communication, services
from these devices can be brought to the handheld computer. The services
can be presented on its screen, and the user can interact with the devices
remotely through the handheld.
There are two other terms, pervasive computing and ambient computing, that
are used for the same vision as ubiquitous computing. In this thesis, the
three are treated as synonyms. They all convey the sense of computers be-

CHAPTER 1. INTRODUCTION

ing in the background, everywhere around us. In addition, the concept of
ambient intelligence has been introduced. That denotes a vision of ubiqui-
tous computers acting more autonomously, making intelligent decisions
and thereby providing enhanced user experiences [2].

1.1 Non-preplanned interaction and ad-hoc com-
binations

Some of the central issues in ubiquitous computing have to do with inter-
operability between devices and services: that they can work together in a
way that fits with the expectations of the user. In this thesis, we formulate
the following two properties of ubiquitous computing systems, capturing
what we see as essential for the vision to succeed:

Non-preplanned interaction In order to make adequate use of services in
a ubiquitous computing context, special preparation of personal de-
vices, such as handhelds, must not be needed each time you want
to use a service. Instead, services should ideally just emerge on the
handheld, ready for immediate use.

Ad-hoc combinations It should be possible to combine services into new
applications, in order to provide functionality that is not given by
any of the individual services themselves. It should not be necessary
for the services to be designed together in order to combine them.

Providing support for non-preplanned interaction and ad-hoc combinations has
been the overall goal and motivation of the work presented in this thesis.
The two properties are particularly valuable for ubiquitous computing sys-
tems, compared to systems in a traditional setting. This has to do with the
scale of the systems. As noted in, e.g., [33], ubiquitous computing systems
can be expected to offer many more services than what is available in cur-
rent networks. The rate at which new versions of services will be offered,
and at which completely new services will become available, will also be
much higher. Ubiquitous computing systems are, at least partly, localized:
they are limited to a geographic location where particular devices are avail-
able. As people move, they will encounter new services. Therefore, config-
uration for each new service, or for each new version of a service, would
become too much of a burden. It would also be very beneficial to be able to
combine services directly, instead of having to wait for a dedicated service
being programmed with the wanted combined functionality.
The rest of this introduction is organized as follows. In the next section, tra-
ditional approaches to interoperability will be discussed. After that come a
discussion of the method of work used in the thesis, and a brief presenta-
tion of the PalCom project, in which we have worked. The architecture we

2

1.2. TRADITIONAL APPROACHES: STANDARDIZATION

have developed, and its implementation, will be briefly summarized, fol-
lowed by a discussion of previous work in the area. The introduction will
be concluded with a summary of the main thesis contributions, an outline
of the rest of the thesis, and a list of included papers.

1.2 Traditional approaches: standardization

The traditional approach for achieving interoperability between services
in networks is standardization at the domain level, i.e., specifically for the
application area where the services are used. Jini, UPnP, and Bluetooth all
rely on this, in different ways. In Jini [121], Sun’s technology for network
services, a client program obtains a proxy (Java) object from a service, and
invokes operations on that proxy object for interacting with the service.
Therefore, when writing a Jini client program, you need to know the type,
or interface, of the proxy object. For example, in order to be able to use a
printer from a client program, you need to know the exact type of printer
proxy objects, including the names and parameter formats of all the op-
erations you can perform on a printer. This means that standardization of
service types is needed, so that independently written service and client
programs can interoperate. The Jini community has started a process for
standardizing common service types. Up to this point, that process has re-
sulted in a standard type for printers, but no standards for other domains,
except standards closely tied to the core of the Jini technology [56].
In UPnP [114], a set of protocols for networked devices managed by the
UPnP Forum, devices are categorized into different classes. Domain expert
committees work out standards for devices and their services. This process
has resulted in UPnP standards for printers, scanners, lighting controls,
and digital security cameras, among others [113]. The standards specify
device and service descriptions, which all follow the same XML Schema.
Still, we have noticed that different syntactical conventions are used for dif-
ferent device types: e.g., different characters are used for separating items
in lists of values. In practice, this means that interaction with UPnP devices
always has to be done after studying the written specification, and cannot
be done at a more generic, meta level.
For Bluetooth [12], the specification for short-range wireless communica-
tion standardized as IEEE 802.15.1, there are specifications for a number
of different profiles. These profiles specify protocols and procedures that
a device must follow in order to be profile-compliant and certified to be
interoperable. Some of the profiles are domain-independent, but several
are domain-specific, e.g. the profiles for audio/video remote control, for
phone book access, and for basic printing [11].
Zeroconf [99], the technology for zero-configuration networking developed
by Apple, has chosen a different path. For Zeroconf, there are no standard

3

CHAPTER 1. INTRODUCTION

committees, but a very informal process where anyone can add a service
protocol to the list of registered protocols [28]. There are currently hun-
dreds of protocols on the list. Those protocols do, however, have nothing
or very little in common, because Zeroconf does not specify anything re-
garding the format of communication with services. Therefore, the situa-
tion for Zeroconf can be seen as similar to the other ones, just with a larger
number of standards.
While this standardization work comes from a very real need—making
services and devices from different manufacturers interoperable—there are
problems inherent in the approach. With domain-specific standards, a quite
static situation is bound to arise. In a ubiquitous computing setting, stan-
dardization processes cannot possibly keep up with the pace at which new
kinds of services arrive, as has also been noted, e.g., in [81]. Furthermore, it
is impossible to combine new services with old ones, unless they follow the
old standards at the level of individual service operations. For ubiquitous
computing, we see a need for more dynamic combinations.

1.3 Method of work

As indicated above, the overall goal in this thesis is to find techniques
for enabling more flexible, ad-hoc, use and combination of services in ubi-
quitous computing networks. This way, we intend to help making non-
preplanned communication and interaction more feasible than today, and
to ease the process of integrating new devices and services into existing
systems. The work has been carried out in an iterative fashion, with an
emphasis on experimentation and demonstration of the techniques in im-
plemented systems. With this focus, we have developed communication
protocols, middleware, tools and programming frameworks, and demon-
strated them in prototype scenarios.
The initial part of the work was done in a project called MUI, with fund-
ing from VINNOVA, the Swedish Agency for Innovation Systems [118].
The name MUI stands for Migrating User Interfaces, which reflects our ini-
tial focus on the migration of user interfaces between devices. MUI started
with a master’s thesis project [35], where a prototype with a video cas-
sette recorder (VCR) was built and demonstrated in a user scenario. A
user-interface description could be migrated from the VCR to a handheld
computer via Bluetooth, enabling the handheld computer to be used as a
remote control for the VCR. MUI was a generic framework, and the paper
[109] presented MUI’s discovery protocol, and XML-based languages for
service and user-interface descriptions.
Since then, the scope has broadened to also cover ad-hoc combinations of
devices and services, and the main part of the work has been done within
the PalCom project, as described in the following section.

4

1.4. PALCOM AND PALPABLE COMPUTING

Invisibility complemented with visibility
Construction de-construction
Heterogeneity coherence
Change stability
Scalability understandability
Sense-making and negotiation user control and deference

Table 1.1: The palpable challenges.

1.4 PalCom and palpable computing

PalCom is a project in the area of ubiquitous computing. It was funded
by the European Commission for four years, 2004–2007, within the Infor-
mation Society Technologies priority in the Sixth Framework Programme
[23]. PalCom introduces palpable computing, a new flavour of ambient com-
puting. Through this notion, the project seeks to make ambient computing
systems more understandable for humans.
The essence of palpable computing can be illustrated by the palpable chal-
lenges, as listed in Table 1.1. These challenges are formulated as pairs of
complementary properties. For each challenge, the property on the left is
one traditionally sought in ambient computing systems, while the property
on the right is added by PalCom for achieving better human understand-
ability. Palpable computing is about balancing these pairs. For the work
in this thesis, the most important of the PalCom challenges are balancing
invisibility with visibility, and finding ways of allowing construction and
de-construction of systems at appropriate levels.
The two main objectives of the PalCom project have been to design an open
architecture for palpable computing, and to develop a conceptual frame-
work for it. The latter is needed for understanding the specifics of what
palpability means, and for being able to talk about it.

1.4.1 Broad competencies in the project

The PalCom objectives span a wide area, across several disciplines. Con-
sequently, there have been people involved from computer science, in-
teraction design, industrial design, ethnography, and sociology. These re-
searchers, more than 100 people in total, come from eleven academic and
industrial partners in six European countries.
The main part of the work presented in the thesis has been done within the
PalCom project. Our work has been on the technically-oriented side, on de-
velopment of the open architecture, with a focus on non-preplanned inter-
action and ad-hoc combinations, and on work with its reference implemen-

5

CHAPTER 1. INTRODUCTION

tation. The problems targeted by the thesis do not cover the whole concept
of palpable computing, and on the technical side there have been several
other results in PalCom. Important examples are the Pal-VM virtual ma-
chine and the concept of H-Graphs, as discussed below in sections 1.6.10
and 1.6.11. Section 1.6 presents the technology developed in PalCom, from
the perspective of this thesis.

1.4.2 Explorative work

The work in PalCom has been highly explorative. It has been carried out
both as software design and development, and as construction of phys-
ical prototypes. The prototypes have been used for evaluating and giv-
ing input to the open architecture and the conceptual framework. They
have been tested out in the field, in cooperation with people representing
the anticipated end users. In these prototyping activities, there have been
subprojects working on support for landscape architecture field work, for
personnel at the site of a major incident, for women in their contact with
hospitals during pregnancy, for rehabilitation of hand-surgery patients, for
training of children needing physical-functional and cognitive rehabilita-
tion, and for treatment of premature children in an incubator. Section 1.5
will present three of the scenarios in more detail.

1.4.3 Traveling Architects

One of the activities in PalCom, intended to help the geographically dis-
tributed groups from different backgrounds working together, was the so
called Traveling Architects. As part of this activity, the author was involved
as a member of a team of software architects that visited the different sites
where prototypes were developed. Ideas and architectural input from the
prototypes were transferred to the PalCom open architecture, and guide-
lines from architecture work was spread to prototype developers. Expe-
riences from the Traveling Architects activity have been reported in the
paper [24].

1.5 Scenarios

In this section, we will give brief presentations of three of the scenarios in
the PalCom project: GeoTagger, Active Surfaces and the Tall Ships’ Race.
For the work reported in the thesis, the scenarios both serve as inspiration,
and give concrete requirements for middleware and protocols developed.
They illustrate what kinds of situations the PalCom technology is intended
for.

6

1.5. SCENARIOS

Figure 1.1: Devices in the GeoTagger scenario.

1.5.1 GeoTagger

The GeoTagger scenario takes place out in the field, where a landscape ar-
chitect works with visual assessment: the environment of a planned building
project is documented, with the purpose of analyzing how it would impact
the scenery from different points in the surroundings. In this activity, we
have worked with landscape architects in Scotland, who assess the impact
of planned wind mills. The landscape architect takes a large number pho-
tos, and would benefit from an automatic way of tagging each photo with
the geographical location and direction of the camera, so it is easier to sort
the photos when coming back to the office.
Out in the field, the landscape architect has a camera, a GPS, a compass and
a handheld computer. These are off-the-shelf devices, and none of them
have been prepared from the beginning for the functionality of tagging pic-
tures with coordinates and direction. What the landscape architect wants
is to combine the devices, so each time a photo is taken with the camera,
it is automatically tagged, and uploaded to a server back at the office. The
set-up is illustrated in Figure 1.1.
Combining the devices in this way is possible, because each device has
PalCom services, and the services can be combined into a PalCom assembly
(see Section 1.6 for further explanation about how services and assemblies
work). The landscape architect creates the assembly in a browser appli-
cation on a handheld computer, which connects to the other devices in a
wireless network. He incorporates a third-party component that performs
the actual tagging, by writing the coordinate and direction as meta-data in
the JPEG data of the photo. When activated, the assembly saves the current
coordinate and direction, each time they are delivered from the GPS and
the compass. When the landscape architect takes a picture with the cam-
era, the assembly fetches the picture, tags it, and sends it over GPRS to a
storage service at the office.

7

CHAPTER 1. INTRODUCTION

Figure 1.2: The Active Surfaces scenario.

1.5.2 Active Surfaces

Active Surfaces is a PalCom prototype that has been developed in cooper-
ation with therapists and doctors at the ’Le Scotte’ hospital in Siena, Italy.
It is used for physical-functional and cognitive rehabilitation of disabled
children in a swimming pool setting. Exercises are performed in the water,
which is interesting from a therapeutic perspective, because many of the
children feel safer in the water and can move more freely. It is also inter-
esting from a digital-communications perspective: infrared (IR) communi-
cation is used between the devices, partly because radio communication
does not work well in water.
The prototype consists of a set of floating tiles (Figure 1.2) that can be con-
nected to each other to form an IR network. The tiles support multiple
games, by having a simple composable physical appearance and multi-
purpose programmable hardware. On each of the tiles’ four sides magnets
are placed, to make the tiles snap together when they are in close vicin-
ity. On the top of the tile is a replaceable plastic cover, also held in place by
magnets. The image on the cover depends on the game. On each side of the
tiles light emitting diodes (LEDs) provide visual feedback to the user. In-
side the tile, there is a UNC20, an ARM7-based embedded system running
uClinux [111].
In one of the games, the child practices reflexes, speed and coordination
by placing his or her tile next to one that lights up, as quickly as possible.
Other games are different kinds of puzzles, where tiles should be placed in
a pattern, forming a solution. The games are configured by the therapist,
both before and during the exercise with the child. She needs to be able to
adapt the game, depending on how the exercise goes. The configuration is
done using a special tile, called the assembler tile, that has a button and a
display. When preparing a puzzle exercise, the therapist arranges the tiles
in the solution pattern, places the assembler tile next to the other tiles, and

8

1.5. SCENARIOS

Figure 1.3: A screenshot from the Topos application used in the Tall Ships’ Race
scenario. The Overview Assembly prototype was developed at the University of
Aarhus.

presses the button. Information about the correct solution is distributed
to all the tiles. When the child plays around with the tiles, LEDs light up
when two tiles are placed correctly, giving feedback in the exercise. When
the complete puzzle is solved, all LEDs start blinking.
The functionality of the games is not pre-programmed into the tiles. In-
stead, the therapist configures the tiles for a new game by loading a new
assembly onto them. The assembly connects to services on the tiles, that
expose the hardware functionality to other devices on the network. In ad-
dition to the advantage of better flexibility, the possibility to load new as-
semblies dynamically makes it possible to use PalCom mechanisms for in-
specting the tiles, and finding out what happens if something breaks down
or behaves unexpectedly [14].

1.5.3 Tall Ships’ Race

The GeoTagger and Active Surfaces scenarios both contain assemblies used
by one or a few people at a time. An example of a bigger, more complex
PalCom scenario is the use of the PalCom Overview Assembly prototype
at the Tall Ships’ Race in Aarhus, Denmark, 5th–8th of July 2007 [83]. Tall
Ships’ Race was a big event, where over 100 sailing ships took part in a
competition, and about 200 000 people gathered in Aarhus harbour each of
the four days.

9

CHAPTER 1. INTRODUCTION

The Overview Assembly prototype is illustrated in Figure 1.3. It is a tool
for emergency response personnel, such as police and fire brigade officers,
medics and paramedics, at the site of a major event or a major incident. Tall
Ships’ Race is an example of a major event. A major incident could be, e.g.,
a train crash. The tool helps to give overview and coordination between
personnel of different professions working at the site.
The prototype consists of PalCom assemblies that collect and display in-
formation about what takes place at the site. At the Tall Ships’ Race, there
was live tracking of ships and key personnel, live streaming of still pic-
tures from mobile phones, and live streaming of video data from cam-
eras mounted in strategic locations. The data from the assemblies was pre-
sented using the application Topos from 43D [1], that visualized the data
in a 3D model of the area.

1.6 Architecture and implementation

The scenarios in PalCom, the three described in the previous section and
others, pinpoint different aspects of the PalCom challenges, and of non-
preplanned interaction and ad-hoc combinations. Requirements have been
drawn from the scenarios. A set of communication protocols, middleware
components and tools have been developed, as part of PalCom, in order
to demonstrate support for those requirements, and a reference implemen-
tation of the PalCom open architecture has been made in the project. This
section will give a brief overview of concepts in the implementation, and
their place in the architecture.

1.6.1 Devices

The device is a central concept in PalCom. Hardware devices provide an
execution platform for the services, and for middleware components. Fur-
thermore, since the architecture is made for ubiquitous computing sys-
tems, exposing some aspect of the hardware functionality is often the main
purpose of a PalCom service. Such examples are the photo service of the
camera in the GeoTagger scenario, and a service exposing LED functional-
ity on an Active Surfaces tile. Therefore, devices have an explicit place in
the architecture, not only as an execution platform for the services, but also
in their own right.

1.6.2 Services

The service is the fundamental interaction point and building block in Pal-
Com systems. Figure 1.4 shows the symbol of a service on a device, using

10

1.6. ARCHITECTURE AND IMPLEMENTATION

Figure 1.4: The symbol of a service on a device.

the notation adopted in this thesis. The small hook on the service box indi-
cates that the service can be connected to.
A service announces itself on the network in a service description, which
is transferred in an XML representation. The service description describes
the functionality of the service: it lists what commands the service can send
or receive, and their parameters. Users can interact directly with services
through user interfaces that are rendered from the service descriptions. The
service description makes the service self-describing, and users can inspect
the service descriptions when interacting directly with the services. Service
descriptions are also useful for the second main use of PalCom services,
namely to combine them into assemblies, as discussed below.
The most important aspect of a service is the interface that it exposes on
the network; that it can be announced and interacted with as a PalCom
service. How the service is implemented is orthogonal to that: the service
can be written in any programming language, as long as it behaves as a
service on the network. For example, PalCom services have been imple-
mented in Java using the Service Framework in the PalCom reference im-
plementation, and also in C as Linux daemons on an Axis network camera,
as demonstrated in the master’s thesis project [72]. In that project, the Axis
camera offered PalCom photo services, and was used in a version of the
GeoTagger scenario.

1.6.3 Discovery

In order to announce and use services, PalCom devices follow communi-
cation and discovery protocols that have been developed and defined in
the project. When discovering devices and services, it is important that the
user is not overwhelmed by the sheer amount of discovered entities. The
devices and services shown to the user have to be those that are relevant
for him or her to use. The approach taken by PalCom is to limit discovery
to the local network: in particular, devices and services are not automat-
ically discovered across the entire Internet. This fits with the picture that
you interact with physical devices that you can see and touch, and with
the requirements drawn from scenarios. Tunnels, as discussed below, are
used for extending PalCom communication beyond the local network.

11

CHAPTER 1. INTRODUCTION

Figure 1.5: A connection between two services.

1.6.4 Connections

In addition to devices and services, a third element in the architecture
is also made visible to the user as a result of discovery: connections. The
connections are paths of communication between PalCom services, or bet-
ween a service and an assembly. Figure 1.5 shows the graphical notation
for a connection between two services. Connections are announced explic-
itly during discovery, in order to make the communication situation in a
PalCom system visible to the user, and as support for the execution of as-
semblies.

1.6.5 Browsers

PalCom browsers are tools used for discovering and interacting with Pal-
Com services. The browsers are applications running on the user’s device,
performing discovery and displaying nearby devices and services. In the
browser, the user can interact with services through user interfaces that are
generated from the service descriptions. These user interfaces can be gen-
erated without the browser having to be prepared for the exact contents of
the description—for what particular commands that service has. It suffices
that the browser can interpret the general format of service descriptions
and commands. This generic, domain-independent rendering of a service

Figure 1.6: Three local PalCom networks connected by tunnels.

12

1.6. ARCHITECTURE AND IMPLEMENTATION

Figure 1.7: The symbol for an assembly.

description is part of what makes non-preplanned interaction possible. As
tools for interaction with PalCom systems, browsers also have other func-
tionality, most importantly as assembly editors, and as assembly managers
that execute assemblies (see Section 1.6.7).

1.6.6 Tunnels

The way we have chosen for extending PalCom networks beyond the some-
times too limited local network is PalCom tunnels. Tunnels, as designed
and implemented in the master’s thesis project [38], are manually-adminis-
tered, secure connections between local PalCom networks that may be geo-
graphically distant. Devices and services can be discovered through the
tunnel, and thereby the two PalCom networks are combined into one. The
model, when working in a scenario where devices are geographically dis-
tributed, is that small local networks are tied together by tunnels, as illus-
trated in Figure 1.6. In the figure, the local networks are shown as clouds,
and the tunnels as tubes. A few devices communicate in each network.
For the required scalability of PalCom systems and communication proto-
cols, this means that we do not target the discovery mechanism towards
networks with huge numbers of devices, such as the Internet, but smaller
networks with more limited numbers of devices.

1.6.7 Assemblies

The assembly is the element in the PalCom architecture that enables combi-
nations of services. Assemblies can be defined by users or developers, and
may contain an assembly script which adds to the combined behaviour of
the services. Figure 1.7 shows the symbol for an assembly.
The assembly is intended to be used with services available in a particu-
lar, local situation. When creating a new assembly, or adapting one that
has been created for similar services on other devices, the user can try
the services and the assembly out in the interactive assembly editor in the
browser. This possibility to explore available services and try things out is
important for being able to create useful ad-hoc combinations.

13

CHAPTER 1. INTRODUCTION

Figure 1.8: A hierarchy of PalCom assemblies in a major incident scenario.

The basic contents of an assembly is the following:

• A list of devices included in the assembly

• A list of services on those devices

• A list of connections between services, and between services and the
assembly

A simple assembly, containing only these parts, facilitates repeated use of
a set of services. When the assembly is executed, it monitors the network
and establishes the listed connections, unless they are already established.
Building on simple assemblies, it is possible to add coordinating logic to
the assembly in an assembly script. The assembly script contains one or
more event handlers, specifying how commands coming to the assembly
should be handled, and forwarded to other services. In the script, it is also
possible to keep state in variables. An example of this is in the GeoTagger
assembly, where the latest coordinate from the GPS is saved, every time it
arrives.

Synthesized services

It is sometimes useful to let the assembly provide one or more services,
which are referred to as synthesized services. Those are services that offer
some combined functionality of the included services to other devices in

14

1.6. ARCHITECTURE AND IMPLEMENTATION

the network, and they can capture aspects that are not covered by the indi-
vidual services themselves. In Figure 1.8, which illustrates assemblies used
in a major incident scenario, the assembly PatientStatus has a synthesized
service Status, as indicated by a service symbol with a hook on the border
of the assembly symbol. PatientStatus combines the services HeartRate and
RFID on the pulse monitor and tag devices.
Like other services, the synthesized services can be interacted with directly
in the browser, where user interfaces can be rendered for them. It is also
possible to use synthesized services from other assemblies, building a hi-
erarchy of assemblies. Such a hierarchy is illustrated in Figure 1.8. The as-
sembly PatientStatus uses HeartRate and RFID, and provides the synthe-
sized service Status. The assembly PatientCamera uses Status and Photo, and
itself provides a synthesized service PatientPhoto. PatientCamera combines
patient status information with photos, for use by emergency response per-
sonnel at the incident site.

Unbound services

It is possible to incorporate services written in a general-purpose program-
ming language, such as Java, into an assembly, for including more ad-
vanced functionality than what can be specified directly in the assembly
script. We refer to such services as unbound services. The name reflects that
they are not tied to the hardware of any particular device, but built for per-
forming computations in assemblies. An example of an unbound service is
the service that tags JPEG images with GPS coordinates in the GeoTagger
assembly.
One of the ideas behind unbound services is to keep the assembly script
language simple. The script language should be possible to work with for
an end user. Therefore, we do not want to add features to the language that
allow computations as complex as, e.g., dealing with JPEG image meta-
data. Such computations are left to unbound services.

Bindings

The assembly lists a set of connections between services and assemblies.
For handling dynamic cases, where an assembly functions with a varying
set of available services, there is support in the assembly description lan-
guage for different bindings. The first type of binding defines whether the
presence of a service is mandatory or optional for the assembly to function as
intended. The second type of binding is alternatives, which means that one
of a list of services should be used, in a prioritized order. Alternative bind-
ings are used, e.g., in scenarios with varying network connectivity, where
services can act as back-ups for others. Optional bindings can be used in
scenarios where all currently available services in a set of services are rele-

15

CHAPTER 1. INTRODUCTION

vant to use—they can all be defined as optional—or simply where a service
is not necessary for the core functionality of the assembly.

Assembly managers

At runtime, an assembly executes in an assembly manager. The assembly
manager can be integrated in a browser, or it can run by itself on a device
on the network. The assembly manager’s task is to handle the execution of
assemblies, by monitoring the network and establishing connections that
are possible but not already established. The manager interprets assembly
scripts, and executes event handlers when messages arrive at the assem-
bly. It runs on one device, but if assembly managers are available on other
devices, the assembly can be moved to another assembly manager in order
to optimize use of network bandwidth, as discussed in Chapter 4.

1.6.8 Versioning

The possibility for users to make adjustments to assemblies, adapting them
to local needs, in itself means that there can be many very similar assem-
blies, solving similar problems. As a means of making it possible to keep
up the order in this situation, a versioning scheme has been designed for
assemblies and services. An assembly lists particular versions of its in-
cluded services, and it is tested with those before it is released. A funda-
mental property of the versioning scheme is that if the assembly is changed
to refer to a newer version of one of its services, this means a new version
of the entire assembly is created.
Assemblies can be migrated to assembly managers on other devices. After
that, updates to the assembly can happen independently on the different
devices. Version numbers are created in a way that makes it possible to
re-create the version tree of an assembly when receiving one that might
already exist in several versions on the receiving device. This versioning
scheme is handled at the level of the PalCom communication protocols.

1.6.9 Communication protocols

For making it possible for PalCom devices, services, assemblies and tools
to discover each other and communicate, there has to be common proto-
cols governing the basic communication. Such protocols have been defined
in the project. At the bottom level, the so called Wire Protocol defines how
messages are packaged on top of different underlying network technolo-
gies. The architecture supports routing across network technologies such
as UDP, Bluetooth or infrared, and the Wire Protocol defines basic message
formats that are independent of the technology used. It also defines how

16

1.6. ARCHITECTURE AND IMPLEMENTATION

routing information is put into the messages. On top of the Wire Proto-
col, the Discovery Protocol specifies how PalCom devices and services can
announce and discover each other and their descriptions. This protocol is
based on periodic announcements, with caching of received information
for reducing the network traffic. The third protocol is the Service Interaction
Protocol, which specifies how services communicate once they have been
discovered: how commands with parameters are packaged when sent over
the network, etc.
Regarding the protocols, it is important to note that these are not protocols
defined at the domain level. Instead, the protocols are at a generic level:
how to make a service known in the network, how to announce its ser-
vice description, and how to format messages. The service description lists
what commands the service can send and receive. The interpretation of
the contents and meaning of the commands is left to the constructor of the
services and assemblies.

1.6.10 Middleware and framework

As support for developers of PalCom devices and services, the reference
implementation of the PalCom open architecture contains middleware com-
ponents, referred to as middleware managers, that perform various tasks that
are common for all services on a device. There are managers for announce-
ment and discovery, for execution of assemblies, for loading of unbound
services, as well as for the lower-level communication protocols. For the
service developer, there is also a Service Framework that provides the basics
of implementing a PalCom service and interfacing the middleware man-
agers.
In the PalCom open architecture, and in the reference implementation and
the framework, there is also support for the concept of H-Graphs, which is a
technique for allowing devices and services to be inspected by organizing
their data in externally accessible tree-like graphs [86]. The author has not
been directly involved in the development of the H-Graphs concept nor its
implementation, and H-Graphs are not covered in this thesis.

1.6.11 Hardware platforms

PalCom software, as implemented in the reference implementation, runs
on two different virtual machines, which in turn run on several hardware
platforms. The virtual machines are the Pal-VM, a virtual machine devel-
oped in the PalCom project, and the JVM, Sun’s Java Virtual Machine [70].
The Pal-VM is targeted for resource-constrained devices, and has support
for interfacing between classes written in different languages, such as Java
and Smalltalk [86]. The Pal-VM has been ported to desktop versions for

17

CHAPTER 1. INTRODUCTION

Mac OS X, Windows and Linux, and also to UNC20, the ARM7-based em-
bedded system running in the Active Surfaces tiles.
The implementation of the Pal-VM is one of the big efforts in PalCom. The
work presented in this thesis has consisted of building software running
on the Pal-VM—as a user of the Pal-VM and the special Java compiler de-
veloped for it in the project—but not of work on the Pal-VM or compiler
implementations themselves.

1.6.12 An open source implementation

The source code for the reference implementation of the PalCom open ar-
chitecture, and for a number of example devices and services, has been
published as open source under a BSD license. The code, and pre-built bi-
naries, are available for download from the PalCom web site [88].

1.7 Scalability and security

Scalability is important for ubiquitous computing systems. In the work
on the PalCom communication protocols, efficiency and performance have
been taken into account, in addition to the functional requirements drawn
from scenarios. Efficiency and performance considerations are important
both for the services and browsers that run on devices, and for the proto-
cols developed. For the interaction with users, responsiveness is important,
and the protocols must tolerate unreliable networks and, preferably, a large
number of devices.
The performance of software running on the devices is most critical for
smaller devices, offering limited memory and computing power. The Pal-
Com communication components that implement the protocols run on the
Pal-VM, which is intended for small devices. For these devices to provide
a PalCom service, an advantage is that they will generally only need to re-
spond to requests in the protocols, often with a fixed description of their
services, and handle a small set of commands. The smallest devices need
not support, e.g., execution of assemblies or rendering of user interfaces.
As mentioned above, the protocols initially target networks of limited phys-
ical range, in the vicinity of a single person. Therefore, they do not need to
scale up to, say, thousands of devices. As discussed in Chapter 5, we have
used a very light-weight heartbeat mechanism, combined with caching, for
limiting the network traffic. In order to cope with unreliable networks and
transient devices, frequently joining and leaving networks, the protocols
are based on asynchronous communication.
Like in all ubiquitous computing systems, the qualities of security and pri-
vacy are also important in PalCom. These have not been our focus, though,

18

1.8. PREVIOUS WORK

and we rely on mechanisms in lower layers for keeping data secure and
private. In ubiquitous computing literature, the physical boundaries of sys-
tems are mentioned as helpful for keeping security in ubiquitous systems
[62]. Social models for security have also been suggested [57].

1.8 Previous work

The area of ubiquitous computing started with the work of Mark Weiser
and others at Xerox PARC in the late 1980s [122]. The ideas were based
on the observation that successful technologies tend to disappear into the
background. One example, mentioned in Weiser’s 1991 paper [123], is elec-
tric motors. There are more motors in a modern car than the driver can
meaningfully keep track of—he does not need to—while a hundred years
ago in a factory there was typically a single engine that drove dozens or
hundreds of different machines. Weiser speaks of calm computing, mean-
ing computing systems that disappear from the attention of the user when
they work as intended.
At Xerox PARC, the ideas were evaluated and elaborated by developing
a ubiquitous computing infrastructure, that was used in projects and in
day-to-day work. The technology developed included a large, wall-sized
display called the LiveBoard, the book-sized computer ParcPad, and the
palm-sized computer ParcTab. Weiser envisioned hundreds of computers
per room, most of them, of course, on the smallest scale.
In later projects, the ubiquitous computing research community has con-
tinued to work towards the vision of a potential third generation of com-
puting systems, with many computers per user, after the mainframe (many
users per computer) and the personal computer (one computer per user)
[2]. There are many challenges, both on the technical and the sociologi-
cal levels. Tiny sensors that cooperate in networks need to function with
minimal energy consumption. Redundancy may be needed for achieving
precision in sensor values. More powerful devices may need to handle de-
manding computations on behalf of others [37]. User interaction becomes
quite different than with screen-mouse-keyboard. E.g., implicit commands
based on the user’s physical actions in a certain context have been sug-
gested [3]. Taking ubiquitous computing from the research laboratory to
large-scale use in real environments leads to issues about robustness, soft-
ware integration, privacy and service payment [25].

1.8.1 Ubiquitous computing architectures

Like PalCom, several research projects have built architectures for ubiqui-
tous computing, and evaluated them in labs or in contact with end users.
This section will give a brief walkthrough of some of those projects.

19

CHAPTER 1. INTRODUCTION

Interactive Workspaces

Interactive Workspaces at Stanford [57] focuses on specially equipped meet-
ing rooms, iRooms, and how ubiquitous computing technology can be
used in that setting. The rooms have large, interactive touch screens that
can be used cooperatively by meeting participants. The software infra-
structure consists of the meta-operating system iROS, that has support for
moving data between applications on screens and on handheld devices,
for remote control of devices and applications by any user in the room,
and for coordination between applications. The iROS subsystem ICrafter
[90] generates user interfaces for services, and the Event Heap subsystem
is used for coordination. The Event Heap is based on a tuple space model,
for achieving loose coupling (as used in the Linda language [16]). One gen-
eral commonality between Interactive Workspaces and PalCom is the focus
on letting the user adjust the environment, as opposed to having the envi-
ronment react autonomously and intelligently to user behaviour.

One.world

The project One.world [43, 44] aims to give system support for building
pervasive applications. The main overall goals are (1) to embrace contex-
tual change, i.e., to make applications aware that location and execution
context change as people move around, (2) to encourage ad-hoc composition
by making devices and applications possible to just plug together, and (3)
to facilitate sharing of information between applications and devices. The
One.world system has been tested in a number of experimental applica-
tions, among them a digital biology laboratory. Corner stones in the archi-
tecture are an environment mechanism, which makes it possible to group
data and running applications, and migration of code and data using the
environments. Also One.world uses a tuple space model, for loose cou-
pling and data sharing. PalCom has similar goals of ad-hoc composition,
but an important difference, compared to PalCom, is that PalCom does not
rely on code migration.

Gaia

Gaia [94] is another meta-operating system for active spaces, i.e., for en-
vironments such as offices and meeting rooms. The purpose of Gaia is to
provide abstractions for the heterogeneous devices in such environments,
and make the environments programmable. Gaia is organized at three lev-
els, where the lowest level corresponds to a traditional OS, the middle level
is the application level which provides frameworks and tools to build app-
lications, and the upper level is the active space behaviour-level, where the
active space can be programmed by orchestrating interactions among app-

20

1.8. PREVIOUS WORK

lications (dynamic application composition). For the orchestration there is
a mechanism called application bridge, which can be compared to PalCom’s
assemblies. Gaia has been evaluated through implemented applications
such as a speech engine, a slide show manager and a location service, and
through implemented bridges between the applications.

Aura and PICO

A project with a slightly different focus is Aura at Carnegie Mellon [40].
Aura is more directed towards proactivity and self-tuning, where the system
adapts to the user’s actions in an autonomous way. The ultimate goal is
a system that distracts the human user as little as possible. Prism, which
is the Aura subsystem that handles proactivity and self-tuning, uses task
descriptions for keeping track of users’ intentions. One of the example app-
lications keeps track of people’s location by analyzing the traffic in a wire-
less LAN. PICO [66] is another project that aims for an autonomous and
proactive system. PICO has agents, referred to as delegents, that are proac-
tive and cooperate for solving tasks for users and applications. In an exam-
ple telemedicine scenario, delegents detect that an accident has happened
out in the street, and establish a community that contacts an ambulance
community. That community in turn connects to a hospital community for
giving fast and accurate information about the accident. With their more
AI-like approach, both Aura and PICO differ a lot from PalCom.

Accord

The home has been an important target for ubiquitous computing projects.
The Accord project [93] presents an architecture supporting the introduc-
tion of new ubiquitous devices and services in the home. The architecture
has an assembly mechanism. One goal is to be able to introduce ubiquitous
computing in a piecemeal fashion, without having to build a new house
from scratch. There is a focus on rapid reconfiguration. Smart-Its compo-
nents [9] are used for giving the physical things a digital representation.
The basis of the assembly mechanism is a shadow digital space that acts as
a digital representation of the physical environment. The assembly concept
seems to be simpler than PalCom’s, but with a jigsaw puzzle-style editor
for combining components, the model might be too simple.

InterPlay

For enabling a user to combine and use a number of discovered services,
there are also task-oriented approaches, where the user formulates what he
wants to do as a task description, and not as a combination of a specific
set of services. One example is InterPlay [75], which is a middleware for

21

CHAPTER 1. INTRODUCTION

integrating devices in a networked home. The InterPlay designers let the
user express his wanted functionality as a pseudo sentence, following a re-
stricted form of English. The subject, verb and target device of the pseudo
sentence are taken from descriptions available in that particular home, and
the middleware handles the orchestration of devices accordingly. There is
also a notion of task sessions, where the middleware handles the execution
state of a task across several devices. Some features of the InterPlay system
do not carry over directly to our situation. One is the presence of central di-
rectories of available devices and available content, that are used for build-
ing the pseudo sentence. Another one is the use of device attributes for
automatically selecting the best device for a given task. We see the creation
of such an attribute hierarchy as an obstacle in a more general setting.

1.8.2 Interoperability in ubiquitous computing

While the projects mentioned in the previous section give a context for the
PalCom project as a whole, and its open architecture, there are also projects
that are more directly related to the ad-hoc combinations and non-preplanned
interaction dealt with in this thesis. In [62], Kindberg et al. mention sponta-
neous interoperation as an important challenge for ubiquitous software sys-
tems. By this the authors mean that components should be able to com-
municate easily without too much human administration, also in environ-
ments with frequent changes, where new components often enter and oth-
ers leave. The authors argue that mobile computing, which is seen as a
pre-cursor of ubiquitous computing, has not been able to solve the inter-
operability problem with many heterogeneous and physically integrated
devices. The concept of the semantic Rubicon is introduced for the border
between semantics handled by the system and by humans, and it is ar-
gued that clear mechanisms are needed for how to deal with that border.
One example is discovery protocols, which are traditionally completely on
the system side, making them blind for human territories and conventions.

Obje

Obje at Xerox PARC [32, 34, 81] is a project that targets very similar prob-
lems as we do. They seek to enable interoperability between ubiquitous de-
vices or components with only limited a priori knowledge of one another,
and without relying on domain-specific standards.1 Obje introduces the
term recombinant computing for an architecture where the user can combine
functionality from several services into one. There should be easy configu-
ration, use and re-use in an ad-hoc manner.

1The project has also been referred to as Speakeasy.

22

1.8. PREVIOUS WORK

A central part of the Obje approach is mobile code. Using mobile code, in
the form of a proxy object that is distributed to clients and executed there,
services are able to “teach” clients how to communicate. This way, it is pos-
sible to let users combine their clients with new services, some of whose
features were unknown at the time the clients were written. There is also a
possibility to let the proxy object generate a user interface, giving function-
ality similar to that of our migrated user interfaces, where the proxy ob-
ject corresponds to our service description. A second main point in Obje is
that there should be a small set of generic, trans-domain, interfaces, without
domain-specific details. Applications should be written against the generic
interfaces, and the interfaces are used for combining components into new
combinations. MIME types are used for determining what connections can
be made. A third key point is what Obje refers to as user-in-the-loop inter-
action, which means that the user should always be in control when con-
necting services, leaving it up to him to make sure the connection makes
sense. Users are expected to sort out much of the semantics, by determin-
ing when and why components should interact. This, the Obje designers
claim, helps keeping the trans-domain interfaces small and generic.
There are similarities between Obje and PalCom in the way of involving
the user in the process of sorting out how services can be combined. This is
in contrast to systems with more AI-like techniques. The idea of rendering
a user interface from a service description is also similar. Still, the focus in
Obje and PalCom are partly different. The focus in Obje has been on pro-
viding mechanisms for an end user without programming expertise. This
is an important aspect of PalCom as well, but in addition we have a fo-
cus on building assemblies, using the control part of a remote device as an
API. PalCom puts the interoperation logic in the assembly, instead of rely-
ing on mobile code. Assemblies in PalCom can offer new services, which
can be used in other assemblies in their turn, thus providing a hierarchical
composition mechanism. There is no concept in Obje corresponding to the
assembly.
Mobile code requires some platform-independent code representation, and
Obje has used Java in their implementation. For data communication, such
as audio or video, the Obje solution puts the requirement of having a JVM
also in dedicated devices such as MP3 players and speakers. The use of
downloaded Java code also raises security issues, as has been observed
when using applets. In addition, Obje’s trans domain interfaces offer only
very generic operations, such as reading a chunk of data. In contrast, Pal-
Com’s service descriptions are distributed as XML, which are more light-
weight and can be handled on almost any device, and they contain domain-
specific operations: the operations are invoked by the user through a user
interface, or by the assembly script. The textual descriptions used in Pal-
Com allow the output devices to control the rendering. Furthermore, the
PalCom solution gives an architectural advantage in that the same inter-

23

CHAPTER 1. INTRODUCTION

face description can be used both to drive a user interface and to drive a
programmatic API.

Ponnekanti et al.

Ponnekanti et al. at Stanford have also spotted the problems associated
with the use of standardized domain-specific service interfaces [91]. They
have implemented an approach that is more different from ours, than is
Obje’s. Ponnekanti et al. separate the two problems of (1) sorting out if
it is semantically meaningful to interact with a service, and (2) the me-
chanics of interacting with it. They argue that existing service frameworks
such as Jini and UPnP mix the two, and that this makes interoperability
severely restricted. The presented approach relies on standardized appli-
cation-independent invocation mechanics, and on human-understandable
natural language descriptions in service advertisements. For the seman-
tics, the system first narrows down the possible targets from all the ser-
vices in the environment to a small set of related services, and then relies
on the user to select the desired service. For the mechanics, the system
dynamically constructs a suitable proxy by assembling stubs and adapters,
that are downloaded from directories available in the network. Chaining
of adapters is used for avoiding a combinatorial explosion. The adapters
can be lossless or lossy, depending on if they support the whole interface
of the service they represent.
Ponnekanti et al. distinguish between single-standard and multi-standard
assumptions about the world. While Jini and UPnP strive for a single stan-
dard for each domain, Ponnekanti et al. want to support a multi-standard
situation, with several different interfaces for printers, for search engines,
etc. The authors have noted that the single-standard assumption is hard to
follow, even for well-understood services, and that market-driven consol-
idation is slow where that mechanism is in play. A crucial difference from
PalCom is that the pre-programmed stubs and adapters must be available
in a central directory at combination time, instead of having an assembly
that can be modified by the end user. From the PalCom scenarios, we have
concluded that we cannot rely on that kind of central directory.

1.8.3 Technical issues

In addition to the ubiquitous computing architecture level, the work in this
thesis has also been carried out at other, more technical levels, primarily in
the areas of networked services, service composition and communication
protocols. For each of these areas there is much related work, which will
be presented in more detail in conjunction with the respective discussions
in Chapters 2–6.

24

1.9. CONTRIBUTIONS

Among technologies for networked services, Jini and UPnP are based on
domain-level standardization of service interfaces, and Jini is tied to the
Java language, which has implications for the runtime system on devices. It
is not clear to us if technologies for Web Services [120] can be made as light-
weight as is needed for ubiquitous computing environments, and several
of those approaches are based on the Semantic Web and on ontologies,
which we argue lead to problems similar to those of domain-level stan-
dardization.
Our approach for service composition is the assembly, which is targeted at
the end user, unlike Gaia’s application bridges that are created by devel-
opers. The assembly is not focused on autonomous agents, like Aura and
Amigo [115], and can be used for more sophisticated compositions than
Obje’s direct connections between services. We also believe the assembly is
more powerful than the producer-consumer patterns used by ICrafter.
At the communication protocol level, there are many dimensions along
which to compare with other protocols. UPnP and Zeroconf [99] are based
on IP, whereas PalCom supports different underlying technologies by means
of an abstraction mechanism. Jini, Zeroconf and Web services focus strictly
on services and have no notion of physical devices, which is important
in PalCom and in pervasive computing. Some protocols, such as Jini and
Salutation [96], base their discovery mechanisms on central directories,
which we cannot rely on in PalCom. There are also different approaches
to the issue of devices frequently joining and leaving networks. UPnP and
PalCom use periodic broadcasts, where in PalCom the broadcasting period
is adapted to the needs of the currently present devices. Jini uses a mech-
anism called leasing, while Zeroconf does not detect sudden device disap-
pearances at all, until some service tries to communicate with the device.
For the communication with services, Jini’s proxy mechanism builds on
mobile code, while PalCom is specified as a set of protocols and message
formats. Jini, UPnP and Web services use variants of Remote Procedure Call
(RPC) for communication with services. PalCom has asynchronous com-
munication, with commands sent to services without blocking the sender.

1.9 Contributions

The main contributions of this thesis are architectural ideas and a proto-
type implementation for non-preplanned interaction and ad-hoc combinations
in pervasive computing environments. In particular, we have made

• designs of the notions of services and assemblies in the PalCom
open architecture,

• definitions of domain-independent discovery and communication
protocols that support the services and assemblies,

25

CHAPTER 1. INTRODUCTION

• a design of a language for assembly descriptors, that is interpreted
by assembly managers, and

• implementations of frameworks and middleware that support the
developer of PalCom services.

1.10 Thesis outline

The rest of this thesis is organized as follows:

Chapter 2: Devices and services presents the concepts of device and ser-
vice in the architecture from a user perspective, starting from two
scenarios.

Chapter 3: Connections discusses the concept of connections, which are
made explicit in the architecture.

Chapter 4: Assemblies presents assemblies, and the role of the assembly
in providing flexible combinations of services, starting from user sce-
narios.

Chapter 5: Communication protocols presents PalCom communication pro-
tocols that have been developed as part of the thesis, supporting ser-
vices and assemblies.

Chapter 6: The language of assemblies gives a presentation of the assem-
bly descriptor language, and how it supports a separation of the as-
pects of configuration, coordination and computation.

Chapter 7: Browsers presents PalCom browsers that have been implemented.

Chapter 8: Framework and middleware discusses the implemented Ser-
vice Framework and middleware from a developer’s perspective.

Chapter 9: Implemented scenarios describes PalCom scenarios where the
reference implementation has been tested, in cooperation with end
users and on resource-constrained platforms.

Chapter 10: Evaluation evaluates the proposed architecture and implemen-
tation, looking at non-preplanned interaction and ad-hoc combina-
tions, at developers’ use of the framework, and at the scalability of
the architecture to large networks and small devices.

Chapter 11: Conclusions and future work concludes the thesis and gives
directions for future work.

26

1.11. PUBLICATIONS

The work has been part of the big PalCom project, which means that most
of it has been done in cooperation with others. The detailed notions of ser-
vices, connections and assemblies, as presented in Chapters 2–4, have been
developed mainly by our group in Lund, but in cooperation with the other
PalCom partners. Likewise for the communication protocols presented in
Chapter 5, and for the assembly descriptor language in Chapter 6. Of the
browsers presented in Chapter 7, I developed the first so called Handheld
Browser, while the PalCom Developer’s Browser was developed by Sven
Gestegård Robertz at Lund University, the PalCom Overview Browser at
the University of Aarhus, and the NICU Browser at the University of Siena.
In the implementation of the framework and middleware, as presented
in Chapter 8, I developed the Service Framework and initial versions of
a UDP media manager, a routing manager, a communication manager,
an announcement manager, a discovery manager and a service manager.
This work has been continued by Thomas Forsström at Lund University.
Sven Gestegård Robertz has implemented the assembly manager. I imple-
mented the PalcomThreads thread library, and worked on the interface
to the underlying virtual machines, but did not work on the Pal-VM im-
plementation, or the compilers for it. The framework for simulated de-
vices was developed as part of this thesis. The work on PalCom scenarios,
from where examples are reported in Chapter 9, was carried out mainly
at the PalCom partners outside Lund. Of the examples in Chapter 9, the
first GeoTagger example with simulated devices (not the one with Google
Earth support), and the experiment with Groupcast tiles (Section 9.4.4)
were implemented by me. The others were implemented at the Univer-
sity of Aarhus, at the University of Siena, and as master’s thesis projects in
Lund, as explained in Chapter 9. The performance measurements, reported
in the evaluation in Chapter 10, were done as part of the thesis.

1.11 Publications

The thesis is largely based on material from published papers. An early
version of the architecture, with a focus on remote control of services through
migrating user interfaces, was published in

David Svensson2 and Boris Magnusson. An Architecture for
Migrating User Interfaces [109]. In NWPER’2004, 11th Nordic
Workshop on Programming and Software Development Tools and Tech-
niques, pages 31–44, Turku, Finland, August 2004.

2I changed my last name to Svensson Fors in 2007.

27

CHAPTER 1. INTRODUCTION

Simple assemblies, that coordinate services through a set of saved connec-
tions, and an initial version of scripted assemblies were presented in

David Svensson, Boris Magnusson, and Görel Hedin. Compos-
ing ad-hoc applications on ad-hoc networks using MUI [110]. In
Proceedings of Net.ObjectDays 2005, 6th Annual International Con-
ference on Object-Oriented and Internet-based Technologies, Concepts,
and Applications for a Networked World, pages 153–164, Erfurt,
Germany, September 2005.

The assembly descriptor language, and an implementation of the GeoTag-
ger scenario using the language, were described in

David Svensson, Görel Hedin, and Boris Magnusson. Pervasive
applications through scripted assemblies of services [108]. Per-
vasive Services, IEEE International Conference on, pages 301–307,
July 2007.

Work on a simulator for the Active Surfaces scenario, that built on the im-
plemented Service Framework and middleware, was published in

Jeppe Brønsted, Erik Grönvall, and David Fors. Palpability Sup-
port Demonstrated [14]. In Embedded and Ubiquitous Computing,
volume 4808/2007 of Lecture Notes in Computer Science, pages
294–308. Springer Berlin/Heidelberg, 2007.

In [14], the author of this thesis contributed mainly with work on the middle-
ware and the framework. There are also other publications, which are not
considered part of the thesis:

Aino Vonge Corry, Klaus Marius Hansen, and David Svensson.
Traveling Architects – A New Way of Herding Cats [24]. In
Quality of Software Architectures, volume 4214/2006 of Lecture
Notes in Computer Science, pages 111–126. Springer Berlin/Hei-
delberg, 2006.

Erik Grönvall, Alessandro Pollini, Alessia Rullo, and David
Svensson. Designing game logics for dynamic Active Surfaces
[46]. MUIA 2006: third international workshop on mobile and
ubiquitous information access. Espoo, Finland, September 2006.

28

Chapter 2

Devices and services

Interacting with services is the main way to use PalCom systems. The ba-
sic services are the ones that are offered on the network by devices in the
environment of a user, for example in a room. In PalCom, these services
are referred to as native services, because they are tied to the hardware.
This chapter discusses such services, and how they can be interacted with
through user interfaces rendered in a browser. Assemblies, as discussed
in Chapter 4, can also offer services, so called synthesized services. Those are
structured and announced in the same way as the native services presented
here.
The most important aspect of a service is how it behaves on the network.
In order to work together with other services, it has to follow the PalCom
communication protocols, as described in Chapter 5. Chapter 8 discusses
how the PalCom reference implementation, and its Service Framework,
support a programmer in building services that work this way. The current
chapter, Chapter 2, discusses the main features of PalCom services, with a
focus on the underlying design choices and taking user scenarios as the
starting point.
In the following section, two illustrating scenarios will be presented, where
users connect to services and use them. After that follows more detailed de-
scriptions of how PalCom services are structured on a device, how service
descriptions are built, and how user interfaces can be rendered from ser-
vice descriptions. The chapter ends with a discussion about how PalCom
services relate to other architectures built around services.

2.1 Scenarios

The two simple scenarios presented in this section illustrate how PalCom
services are used. They are not as elaborate as the scenarios that have been

CHAPTER 2. DEVICES AND SERVICES

data
AudioUser−interface

information

information
User−interface

Figure 2.1: An example scenario with a handheld computer, an MP3 player, and
loudspeakers.

studied in cooperation with end users in PalCom, but serve to give require-
ments for the technical mechanisms involved when using PalCom services.

2.1.1 A music scenario

Figure 2.1 shows an example scenario where the PalCom architecture is at
work:

With a handheld computer in his hand, and a portable MP3 player in
his pocket, John enters a room where a set of loudspeakers are in the
corner. The loudspeakers and the MP3 player are automatically dis-
covered, and they show up in a browser application on the handheld.
There are audio services on both the MP3 player and the loudspeakers.
John can see that they match, and connects them by joining them in
the browser. Now, the MP3 player sends its music to the loudspeak-
ers. The volume is a little low, though, so he chooses to control the
loudspeakers by clicking their volume control service in the browser.
A user interface is moved to the handheld and shown. It looks as in
Figure 2.2(a). John presses “Volume up”, the volume is adjusted, and
he can enjoy the music. At the same time, the user interface on the
handheld is updated to that of Figure 2.2(b). If John wants to con-
trol also the MP3 player from the handheld, a user interface can be
obtained for it in the same way.

30

2.1. SCENARIOS

(a) Before adjusting the
volume.

(b) After adjusting the vol-
ume.

Figure 2.2: A migrated user interface for the loudspeakers.

2.1.2 A slide show scenario

As another example of a scenario where PalCom can be applied, consider
a slight variant of the traditional presentation session scenario, where slide
shows are projected onto a large white screen. In the traditional scenario,
the slide shows run on a laptop connected with a wire to the projector.
When it is time for the next speaker, the user either switches to his slide
show, which has been copied in advance to that laptop, or he plugs in his
own laptop. In our variant of this scenario, we make use of PalCom to
provide more flexibility. Rather than physically connecting a laptop to the
projector, we use a computerized projector that the laptops can communi-
cate with via the wireless network. Furthermore, a mobile phone can be
used as a remote controller for the slide show on the laptop. This scenario
is more flexible than the traditional setup in several ways: First, the slide
shows can be run on the different speakers’ own laptops, giving an obvi-
ous advantage in terms of less preparation in advance. Second, the laptops
can be left anywhere in the room, and the speaker can also be located any-
where in the room, not necessarily beside the laptop. Third, more than one
slide show can be shown at the same time, with images interleaved. This
can be useful in group discussions, where one person might want to jump
in with a few slides in the middle of a presentation.
Figure 2.3 shows a setup for this scenario. The arrows show how com-
mands and images flow between services. The devices in this scenario,
projectors, laptops, etc., run PalCom software. The projector has a PalCom
service, Screen, that can receive JPEG images and project them onto the
physical screen. The laptops have PalCom services, Control, which give
user interfaces for controlling a slide show (with buttons Play, Stop, Next,
etc.), and a service Slides which can send out slide show JPEG images over
network connections. The mobile phone has a PalCom browser, which can
discover nearby devices and their services. Through the browser, the user
can ask the Screen to connect itself to the Slides service of a specific laptop,
causing the images sent out from that laptop to appear on the screen. In
the browser, the user can also ask for the slide show user interface, which

31

CHAPTER 2. DEVICES AND SERVICES

Figure 2.3: The slide show scenario.

causes this to migrate from the service Control on the laptop and pop up
on the display of the phone. Now, the user can use the phone to change
slides during the presentation. Alternatively, the user can set up service
connections and issue user-interface commands (Play, Stop, Next, ...) using
a PalCom browser on the laptop. If several people have their slide shows
connected to the projector, the latest slide is shown on the screen whenever
one of them changes to a new slide.

Extending the scenario: adding a camera

PalCom is open-ended, allowing new devices with new services to easily
be added and connected. Suppose the presentation is at a conference for
bottle cap collectors, and a person in the audience would like to show a
particular rare bottle cap. With a camera with a service Pictures that can
send JPEG images, she can simply take a picture of the bottle cap, and
send it to the projector to show the image. The projector and its services
have automatically been discovered in the browser on her camera.

32

2.2. DEVICES

2.2 Devices

In the two scenarios presented in Section 2.1, physical devices play a cen-
tral role. The MP3 player, the loudspeakers, the handheld computer, the
projector, the screen, etc., offer PalCom services and are what users inter-
act with physically in different ways. Devices also have a central place in
the PalCom architecture. This is reflected, e.g., in the Discovery Protocol,
where devices are announced as first-class citizens (see Chapter 5). The un-
derlying intention is to make the connection between the software and the
hardware devices easier to see for users. In contrast, Jini [121] and Web Ser-
vices [22] focus on the services, making the connection to hardware devices
secondary.
PalCom devices have two kinds of names, that are both announced in
the Discovery Protocol. There is a short, friendly name that is shown in
browsers, and, as discussed below in Section 2.5, there is also a unique
name that is used for identifying the device on the network. Both names
are independent of network-specific addresses, such as IP addresses.
The devices range from “small”, specialized devices that provide a sim-
ple service—the loudspeakers and small devices carried around by users
are examples—to powerful devices such as laptops. The more powerful
devices have general functionality and can execute assemblies and load
unbound services, which are PalCom services that are loaded dynamically
at runtime.

2.3 Three kinds of services

In the scenarios, three kinds of PalCom services are used: control, streaming
and meta services. All PalCom services fall into one of these categories:

• An example of a control service is the loudspeaker volume control
service in the music scenario. Communication with a control service
is done using commands, i.e., individual messages sent to or from the
service. When John pressed “Volume up”, a command was sent to the
volume control service. Communication with control services can be
bi-directional. This could be seen when the volume control service
sent out a command indicating that the volume level was “Normal”,
which led to an update in the migrated user interface. The graphical
notation for a connection between two control services was given in
Figure 1.5 in Chapter 1.

• The MP3 player audio service is an example of a streaming service.
Streaming services send out or receive a uni-directional stream of
data of a certain type, such as the audio data sent from the music

33

CHAPTER 2. DEVICES AND SERVICES

Figure 2.4: A connection between two streaming services. Service 1 sends stream-
ing data to Service 2.

service to the loudspeakers. MIME types [52] are used for describing
the data types of streaming services: audio/mpeg in this case. In the
other example scenario, the Screen service is a receiver of a stream of
images of type image/jpeg, and can be connected to senders of the
same type, such as those in SlideShow and SendPicture. Figure 2.4
shows a connection between two streaming services, with double ar-
rows indicating the direction of the streaming.

• Meta services are services that provide no “domain” functionality,
but interact with other services based on their descriptions. An exam-
ple of a meta service is UIDisplay, which is part of the browser on the
mobile phone, and which renders user interfaces based on descrip-
tions of other services. Other examples of meta services are logging
services, that log messages from other services, and services for de-
bugging. A connection between a control service and a meta service
is shown in Figure 2.5.

It is the user that connects suitable services, either based on information
about the data types the services can handle, or by initiating a user inter-
face migration, and inspecting services in order to see if they match. All
services have service descriptions that describe the set of commands or the
data types supported. Examples of service descriptions are given in Sec-
tion 2.6 below.
For the streaming services, the ability to connect them based on MIME
types permit a simple kind of ad-hoc combinations. This is in contrast to
systems that rely on standardized service types, like Jini [121], where the

Figure 2.5: A connection between a control service, Service 1, and a meta service,
Service 2. Service 2 interprets the service description of Service 1, e.g. by rendering
a user interface for it.

34

2.4. TREES OF SERVICES

Figure 2.6: The tree of information about devices and services, as shown in John’s
PalCom browser in the music scenario.

set of operations of a service has to be known when writing another ser-
vice that uses it. I.e., in PalCom it is possible to connect the laptop to the
projector because they send and receive JPEG images. The service Screen
does not need any prior knowledge of the service Slides, or vice versa. This
allows a service to be used in new, perhaps unforeseen, ways. Slides can be
connected to any other service that can receive JPEG images as well, e.g.,
printers, file storage devices, etc.

2.4 Trees of services

There can be several PalCom services on a device. The services can be ar-
ranged in a tree structure, as shown in Figure 2.6. Services are at the leaves
of the tree. Non-leaf nodes are used for grouping related services, and are
not services themselves (the group “Music” in the figure is used for group-
ing the “Audio out” and the “Track selection” services on the MP3 player).
This structure is presented to other devices on the network through the
PalCom Discovery Protocol, and can be used when visualizing available
services graphically. The grouping is for making the services on a device
easier to understand for users: it has no pre-defined semantic meaning, and
each of the services in the tree can be accessed individually.

35

CHAPTER 2. DEVICES AND SERVICES

2.5 Naming and versioning

For each device and service, there is a human-readable name that is dis-
played in browsers (the names shown in Figure 2.6). Devices and services
also have other names, that are used below the surface for identifying them
uniquely, and for keeping track of different versions of a service. These
unique PalCom names abstract over technology-specific addresses, such
as IP addresses, and are used independently of the underlying network
technology. Chapter 5 presents the details about unique names and ver-
sioning information, which, because of the uniqueness requirements, are
often quite verbose and are therefore normally not shown to the user.
The scheme for naming and versioning is strict in the sense that exact
matching of names and versions are required in order for an assembly of
services to execute. If the right version of a service cannot be discovered,
the assembly will not interact with it. This is a corner-stone for the ad-hoc
combinations and assemblies to work reliably. It is important that when a
service is used in an assembly, the user can trust that the assembly has been
tested with that particular version of the service. If not, he may have to test
it himself first.
The naming scheme supports several instances of one service on a device.
This is especially useful for unbound services, which can be loaded dy-
namically, as the result of an action by a user or an assembly. There is also
support for simultaneous execution of multiple versions of the same ser-
vice, which makes graceful upgrading possible.

2.6 Service descriptions

The details about how a service can be used and interacted with is specified
in a service description. The two main uses of service descriptions are

(1) as blueprints for generated user interfaces, as will be discussed fur-
ther in Section 2.8, and

(2) as programmatic interfaces to services when combining them in as-
semblies (see Chapter 4).

Service descriptions have different contents for different kinds of services:

• For control services, the service description contains a number of
commands. Each command has a name and a direction, either in-
going or out-going. In-going means that the command goes over a con-
nection to the service, out-going means that the service can send that
command out over connections to other services. A command can

36

2.7. ASYNCHRONOUS, PEER-TO-PEER COMMUNICATION

have parameters, and each parameter has a name and a MIME type.
Before a command is sent, parameter values are filled in with data
of the indicated type. In service descriptions, there is also a group
construct, which can be used for grouping commands hierarchically.
As an example of a service description for a control service, consider
the Loudspeakers’ “Volume control” service that is controlled via the
handheld in the music scenario: an XML description for a simplified
version of this service description is shown in Figure 2.7.

• For streaming services, the service description specifies the direction
of the stream, and its MIME type. The XML service description for
the “Audio out” service of the MP3 player is in Figure 2.8.

• For meta services, the service description lists the MIME types of
command parameters, or streams, that the service can handle. The
meta service does not restrict itself to particular names of commands.
An example of a service description for a meta service, the UIDisplay
service of John’s handheld, is in Figure 2.9.

As can be seen in the service description examples, there is an XML format
for service descriptions, which gives human and machine readability. We
have chosen not to announce and use a binary class interface for services,
as is done in Jini [121] and OSGi [6]. Those systems require Java program-
ming for using services, while PalCom services are accessible in browsers
and through assemblies. Another advantage with XML is that systems pro-
viding PalCom services, and those that do use them programmatically, can
be implemented in any language, not Java only.

2.7 Asynchronous, peer-to-peer communication

An important thing to note is that all communication with PalCom services
is asynchronous. All commands are sent in one direction between two ser-
vices, and there is no built-in blocking of the sender, waiting for a reply
from the receiver (for streaming services, there is no blocking either). One
reason for this design decision is that the communication between services
often takes place in networks with varying connectivity, where network
delays and package drops can be frequent. In RMI [107], and other mech-
anisms based on Remote Procedure Call (RPC), the caller of a method is
blocked until the method has completed, and a return value has been re-
ceived. With dropouts in the communication, this means that the caller
may, theoretically, get blocked forever. We therefore do not want to build
waiting for responses into the protocols. Where synchronous communica-
tion is needed, that can be built on top of the asynchronous communica-
tion, and where guaranteed delivery of messages is wanted, mechanisms

37

CHAPTER 2. DEVICES AND SERVICES

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<SD id="Volume control">
<CmdI id="Volume up" direction="in" />
<CmdI id="Volume down" direction="in" />
<CmdI id="Volume" direction="out">
<PI id="level" type="text/plain" />

</CmdI>
</SD>

Figure 2.7: A service description for a control service, the “Vol-
ume control” service of the loudspeakers. CmdI elements are for
commands, and PI elements are for parameters.

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<SD id="Audio out">
<StrI direction="out" type="audio/mpeg" />

</SD>

Figure 2.8: A service description for a streaming service, the
“Audio out” service of the MP3 player. The StrI element holds
information about the stream.

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<SD id="UI Display">
<Type name="text/plain" />
<Type name="image/jpeg" />
<Type name="audio/mpeg" />

</SD>

Figure 2.9: A service description for a meta service, the UIDis-
play service of John’s handheld. A Type element contains a
MIME type that the meta service supports.

38

2.8. USER INTERFACES

for reliable communication in the Wire Protocol can be used (see Chap-
ter 5).
Another point is that for control services, after the service description has
been distributed and the connection has been set up, the roles of the two
sides are really symmetric—we have a peer-to-peer arrangement, where,
e.g., both pull and push are possible. It is not the case that a client always
sends a request to a service that replies, or any other such pre-defined or-
der. A PalCom service may send commands to other services at any time.
It is up to the service programmer, who also writes the service description,
to decide upon the details of this service protocol.

2.8 User interfaces

As illustrated by the two scenarios in Section 2.1, an important basic case is
when a user connects to a PalCom service in a browser, and a user interface
for the service is rendered there. The user can interact with the service re-
motely. The user interface may look as in Figure 2.2(a), which corresponds
to the service description in Figure 2.7.
This simple user-interface mechanism is one of the key points in our app-
roach to ad-hoc, non-preplanned interaction, as discussed in Chapter 1. It
lets the user inspect the functionality of the service, examine the service op-
erations in the user interface, and experiment with the service by interact-
ing with it directly. When a user encounters services in a new environment,
this is how they can be tried out. In this case, the human is in the loop, and
can make intelligent interpretations of changes in the service descriptions
(which show up in the user interfaces). When a new feature is added to a
device, perhaps through an update of its firmware, a change in the service
can be directly spotted and utilized. There is nothing in UIDisplay itself
that is tied to the specific service.
In the previous project [35], we implemented the user interfaces in Java,
and moved a small Java application to the client, instead of XML data. The
application was run on the client, displaying the interface. That gave the
full power of Java, and the ability to create very dynamic interfaces, but
we also felt that it was a quite heavy process to transfer, install, and start
an application for each interface. In addition, our XML service descriptions
can be used as programmatic interfaces from assemblies (as elaborated in
Chapter 4), in a way that such Java applications cannot.

2.8.1 User in the loop

The user interface follows the structure of the service description, and in
that sense the service becomes self-describing. It is the intention that users

39

CHAPTER 2. DEVICES AND SERVICES

should be able to understand how the service works, both when using it
directly, when combining it with other services in assemblies, and when
adapting assemblies after changes in service interfaces. This user-in-the-loop
idea has similarities with the approach taken by Obje (see Section 1.8.2).
The responsibility of sorting out the semantics of services is partly left to
the user.
When rendering a user interface, the browser does not need to be prepared
in advance for the exact messages to be exchanged with the service, be-
cause they are provided by the service in the service description, and the
rendering of a user interface is generic. The intention is to make it possible
to interact with minimal or no preparation in advance.

2.8.2 Rendering of user interfaces

Another aspect of the user-interface migration is that it gives the possibility
to interact with devices with no or limited input/output capabilities. A
small device without a display, or a device that is inconveniently placed
in a room, can be reached and controlled. The browser typically runs on a
device with suitable input/output resources, such as a display and some
type of keyboard. The handheld works as a “universal remote control” for
devices in the room.
Rendering user interfaces from abstract descriptions, such as PalCom ser-
vice descriptions, also has the advantage that the different browsers on dif-
ferent devices, having different display capabilities, can use different ways
to present the user interface. It can be rendered differently depending on
screen-size, e.g. This is a research area in itself, see for example [51, 92],
and there are a number of XML-based user-interface markup languages,
e.g. UIML and XForms [4, 8]. Ubiquitous computing work in this area in-
cludes ICrafter [90], which also generates user interfaces from service de-
scriptions, and the iStuff toolkit [7]. The adaptation to different target de-
vices has not been our focus, though, and we have not worked on finding
new dynamic mechanisms for it.

2.9 Related work

There are many systems where services communicate in networks. This
section will relate the PalCom services to some of the most important ones.

2.9.1 Jini

Jini from Sun [121] is an early approach to support for combination of dis-
tributed services. Communication with services is done through proxy ob-

40

2.9. RELATED WORK

jects, Java objects that are kept in lookup directories. To use a service, a
client first discovers a lookup directory, and then requests a proxy object
for the service from there. The interaction with a service is done through
method calls on the proxy object, which are transferred to the service across
the network. A central part of Jini is the use of leasing: services lease their
place in a lookup directory for a short while at a time, and if a service goes
down unexpectedly, its entry can be removed from the directory when the
lease has timed out. This gives a kind of self healing to the system.
The signatures of proxy objects have to be known when client applications
are written. As discussed in Chapter 1, this problem has been tackled by
defining domain-level standard service types. We argue this leads to a too
static situation, where services cannot be combined in an ad-hoc way. As
a partial relaxation, there is a specification for user interfaces in Jini, in the
ServiceUI API [117]. The user interfaces are associated with a service, and
are written to use the proxy object interface of that service. A problem, as
we see it, is that the user interfaces themselves have specific programmatic
interfaces and different semantics. As new services are standardized, they
are expected to come with new user-interface types, so clients will still have
to be written against a specific service.
The focus of Jini is programmatic, i.e. it is about programs that communi-
cate. Proxies for services are defined as Java code, and in practice also the
service provider is a Java program. In contrast, PalCom has a user focus,
i.e., it is a user that finds and combines services, at least initially. In prac-
tice, Jini’s tight connection to the Java language, with Java objects moved
across the network, puts demands on all participating devices of running a
JVM. This is too limiting for smaller devices, as mentioned in Section 1.8.2
about Obje. There is a notion in Jini of “surrogate devices”, devices pro-
viding a JVM for the benefit of less powerful ones, but that makes the
smaller devices dependent on their surrogate. Further, Jini is tied to Re-
mote Method Invocation (RMI, [107]), a scheme for making method calls
on objects across the network. The problem with RMI is that a method call
is synchronous, forcing the caller to block until a response has been re-
turned from the callee. There is also an event mechanism in Jini, but for
simple messages, RMI is used. With the unreliable nature of networks in
pervasive computing settings, we have instead opted for a scheme with
only asynchronous messaging between services.
PalCom uses a lightweight, XML description of services rather than Java
code, which enables PalCom services and browsers to be implemented in
any language. The PalCom service descriptions can be used both to di-
rectly drive user interfaces, and also as programmatic interfaces. In the lat-
ter case, an assembly will bridge between the services, rather than relying
on standardized Java APIs that are defined and must be known prior to
connecting to the service. Jini has no concept corresponding to the assem-
bly.

41

CHAPTER 2. DEVICES AND SERVICES

2.9.2 UPnP

UPnP [114] is a technology designed to support automatic discovery and
zero-configuration use of devices and services in a network. Devices are
discovered and controlled from client applications, which are referred to
as control points. UPnP specifies a set of protocols, not dictating a specific
implementation on the devices. Device descriptions and messages to ser-
vices are in XML, and UPnP does not rely on mobile code. There are no in-
termediate lookup directories, but control points discover devices directly,
using a multicast scheme.
One difference, compared to PalCom, is that UPnP focuses on IP networks,
while the PalCom protocols are intended also for other lower-layer proto-
cols, like Bluetooth. Another difference is that UPnP uses SOAP over TCP
as its standard form of simple communication. With SOAP over TCP, the
sequence of messages is like for RMI, with a blocking caller.
Like Jini, UPnP is based on domain-level standardization of device types.
In addition to the 16 UPnP device types [113], there is also the DLNA
[116] technology, which builds on UPnP and which specifies Digital Me-
dia Servers and Digital Media Players for the home. There is no concept
in UPnP that corresponds to the assembly. In his master’s thesis [64], Jo-
han Kristell built bridging software that connected PalCom and UPnP net-
works. Using that bridge, a PalCom assembly could combine UPnP devices
into a larger application. Given that different UPnP device types use differ-
ent conventions for how UPnP actions and their arguments are structured,
specific adaptations had to be done for each device type.

2.9.3 Zeroconf

Zeroconf [99] is a set of technologies for allowing IP devices to communi-
cate in small, local networks, without infrastructure in the form of DHCP
or DNS servers.1 The goal of Zeroconf is the same kind of zero-configuration
use of services as for UPnP.
Zeroconf has three legs: addressing, naming, and browsing. The addressing
leg uses IPv4 Link-Local Addressing for obtaining an IP address in the ab-
sence of a DHCP server (or a manually assigned address). The naming leg
uses multicast DNS for assigning names to devices that are not listed in
any available DNS server. The browsing leg uses a protocol called DNS-SD
[20] for allowing browsing for services from a Zeroconf-enabled applica-
tion. In contrast to Jini and UPnP, Zeroconf does not specify any further
steps that that: it does not specify how services are described or interacted
with. There is a published list of public, standard Zeroconf service types
[28], but the interaction with the service is entirely service-type specific:

1Apple’s name for Zeroconf is Bonjour.

42

2.9. RELATED WORK

Zeroconf only distributes an IP host and port for connecting to a service.
Therefore, we can only compare PalCom to Zeroconf at the discovery pro-
tocol level (see Chapter 5), not at the service interaction level discussed in
this chapter, which is not covered by Zeroconf.

2.9.4 OSGi

OSGi [6] is a technology that is often mentioned in the context of Service
Oriented Architecture (SOA), the way of structuring systems into services
that has gained much attention recently. OSGi decouples services’ inter-
faces from their implementations, and, with its package concept called the
bundle, it provides a much more flexible model for loading and unloading
of services, than with the standard Java model which uses class files and
JAR files. For the comparison with PalCom services, though, OSGi is not
at the same level. The OSGi specification defines how services are discov-
ered and used within one node on the network, and is not about networked
services. In addition, OSGi builds heavily on Java, which has runtime im-
plications in our context, as discussed for Jini above.

2.9.5 Web technologies

An obvious set of technologies to relate to is those of the Web. With its
explosive growth during the past fifteen years, the Web has an enormous
user base. There are Web browsers available in devices of many different
sizes and form factors. This means that for realizing remote control of de-
vices, it seems like a natural choice to interact with locally available devices
through a Web interface. This was the approach of Cooltown, an early per-
vasive computing project that put Web servers into things, for bringing
the Web to the physical world [61]. The Wireless Microservers project put
small Web servers into things, so they could be controlled using WAP over
Bluetooth [50]. A fundamental limitation of the Web technologies, though,
is that they are based on pull mechanisms. From a user interaction perspec-
tive, the user experience has been improved with the introduction of Ajax
and related technologies [41], which let parts of a Web page be updated
without reloading the whole page. Still, the messages over the network
follow a request-reply scheme, initiated by the client. This is different from
how PalCom services communicate. After a service description has been
transferred in PalCom, there is a true peer-to-peer situation between two
communicating services, with messages flowing in both directions.

Web Services

It is also interesting to compare Web Services to PalCom services. Web Ser-
vices is a set of technologies enabling communication between applications

43

CHAPTER 2. DEVICES AND SERVICES

residing on Web servers, and not only between a browser and a server.
There is a language, WSDL (Web Services Description Language [22]), for
describing Web Services, by listing messages sent and received. Web ser-
vices described using WSDL most often communicate using SOAP [48],
a protocol defined on top of HTTP which is generally used for RPC-like
communication. There are also so called RESTful Web services, which view
services as Web resources and communicate without SOAP. With RESTful
services, HTTP methods such as POST, GET, PUT and DELETE are used
for manipulating the services directly, in a more light-weight way.
Regardless of representation, the description of a Web service has to be
known to both the service requester and the service provider, together with
some knowledge about the semantics of the service. The semantics can be
encoded as different kinds of metadata, but, as noted in [120], current de-
scription technologies are not sufficient for describing the complete seman-
tics of complex services. The notion of physical devices, which is impor-
tant to facilitate in pervasive computing, is missing in Web Services. Fur-
ther, the way of announcing and discovering available Web Services, called
UDDI (Universal Description Discovery and Integration, [79]), is based on
a central registry where services are looked up. As will be discussed in
Chapter 5, relying on a central registry is not feasible for the PalCom archi-
tecture, even if the registry can be managed collectively by multiple nodes,
as in UDDI.

The Semantic Web

In relation to Web Services, the effort to build a Semantic Web should also
be mentioned [10]. Tim Berners-Lee et al. recognized that for making it pos-
sible for a computer to make use of Web servers, the structure of a Web ser-
vice must be made known to the computer in a format different from that
which humans read. At the same time, they saw a risk in standardizing at
the level of Jini or UPnP, considering that to be too much “at a structural
or syntactic level”. The Semantic Web approach, instead, builds on the cre-
ation of a global ontology, formed by connecting many smaller ontologies.
An ontology is a collection of information that defines classifications and
relationships among terms. When constructing a service, the programmer
describes the service, using the OWL language (Web Ontology Language
[26]). The OWL description can then be used by agents, together with the
global ontology, for finding out what the service does. This, again, is dif-
ferent from the approach we have followed. Our main objection is that the
global ontology suffers from similar problems as the domain-level stan-
dardization. The classifications of things into the ontology will always lag
behind. Instead, for the situations we target, we want the user to be able to
make ad-hoc modifications in the assembly.

44

2.10. SUMMARY

2.10 Summary

• PalCom devices and services offer textual, XML descriptions of them-
selves, and no domain-level standardization or ontology is used.

• Service descriptions can be used both as blueprints for generating
user interfaces, and as programmatic interfaces.

• Rendered user interfaces make the services self-describing, and facil-
itate experimentation with discovered services.

• Communication between services is asynchronous, and services are
in a peer-to-peer relationship when they communicate.

45

Chapter 3

Connections

When services communicate, through commands or through streaming,
data is transmitted in the network between the services. In PalCom, such
a path of communication is referred to as a connection. In the scenarios dis-
cussed in Chapter 2, there are connections between the audio service on
the MP3 player and the audio service on the loudspeakers, between the
volume control service on the MP3 player and the UIDisplay service on
the handheld computer, etc.
Connections are made explicit in the PalCom architecture. They are an-
nounced in the Discovery Protocol, and can be viewed in a browser when
inspecting the communication situation in, e.g., a room. This support for
connections gives more visibility for the user, and the announced connec-
tions are useful for the execution of assemblies. While executing an assem-
bly, an assembly manager monitors what connections are currently up and
what need to be established, as discussed further in Chapter 4.
This chapter discusses the concept of connections from a user perspective.
At the end, there is a brief discussion about the relation to connectors in the
field of software architecture. Chapter 5 goes into details about how the
PalCom communication protocols support connections.

3.1 Connecting two services from a third device

In PalCom it is not only possible to connect a service on a local device to
a service on a second device, but it is also possible to connect two services
from a third device. This was exemplified in the slide show scenario, where
the user connected the laptop’s slide show to the projector’s Screen, using
the browser on the mobile phone. In order to allow this, there is a sim-
ple protocol, called RemoteConnect (see Chapter 5), which can be used by
browsers or services for instructing a device to connect one of its services

CHAPTER 3. CONNECTIONS

to a service on another device: the mobile phone instructed the projector
to connect its Screen to the laptop’s Slides service. Similarly, it is possible
to disconnect two services that are currently connected. This functionality
builds on the property of the Discovery Protocol, that devices announce in-
formation not only about the devices themselves, and about their services,
but also about established connections. The user can see not only what de-
vices and services there are, but he can also view and control the connec-
tions. This is important in order to be able to inspect the communication
situation.

3.2 Properties of connections

An established connection is a path of communication between PalCom
services. However, there is no built-in overall assumption about the deliv-
ery of data over the connection, like, e.g., for TCP connections. Not all Pal-
Com connections implement guaranteed delivery of messages: one of the
properties of a connection is whether it is used for reliable or unreliable com-
munication, as defined by the PalCom Wire Protocol (see Chapter 5). For
neither reliable nor unreliable communication, there are any periodic con-
nection maintenance messages, which could give problematic overheads.
Instead, timeouts in the Discovery Protocol are used for cleaning up con-
nections where one of the parties has gone down uncleanly.
Another property of a PalCom connection is its topology. The basic case, and
the case appearing in the scenarios in Chapter 2, is a unicast, one-to-one
connection between two services. There are also radiocast connections (one-
to-many), and groupcast (many-to-many). In Figure 3.1, Service 1 sends to
Service 2 and Service 3 over radiocast connections. Radiocast connections
can be used where several services connect to and receive from one service,
which sends out commands or streaming data, but does not itself receive.
The receiving services are aware of the identity of the sender, but not the
other way around. A typical example is streaming of real-time data over
a shared medium, where performance is increased by having several ser-
vices listen to the same transmission, instead of sending to each in turn.
With multiple loudspeakers receiving audio data in the music scenario,
this would be beneficial.
Groupcast connections are used where a set of services communicate ac-
cording to a common protocol, and all can potentially both send and re-
ceive. In Figure 3.2, Service 1 and Service 2 are both connected to the group
named Group. Neither service needs to be aware of the identities of the oth-
ers in order to communicate. Examples of this are communication between
PalCom assembly managers for distributing information about assembly
updates (see Section 6.6), and communication between tiles in the Active
Surfaces scenario during puzzle games (see Sections 1.5.2 and 9.4).

48

3.3. MULTIPLE NETWORKING TECHNOLOGIES

Figure 3.1: Radiocast connections. Service 1 sends to Service 2 and Service 3.

Figure 3.2: Groupcast connections. Two services are connected to the group
named Group.

3.3 Multiple networking technologies

In several of the user scenarios studied in PalCom, devices communicate
across different networking technologies. This can be seen, e.g., in the Geo-
Tagger, Active Surfaces and Tall Ships’ Race scenarios, introduced in Sec-
tion 1.5. In the GeoTagger scenario, the landscape architect’s handheld
computer communicates both with the other devices that he has with him
out in the field, using short-range wireless communication such as Blue-
tooth, and with the storage server at the office, using GPRS. In Active Sur-
faces, the assembler tile communicates both with other tiles using infrared,
and, during the configuration phase, with a PC using IP over Ethernet. At
the Tall Ships’ Race, there was both short-range and long-range wireless
communication, as well as wired.
Thus, there is a requirement that PalCom connections can span multiple
network technologies. This requirement has been taken into account in the
communication protocols, presented in Chapter 5. The approach is to de-
fine a PalCom addressing scheme and message format that abstracts the
technology-specific details, hiding them down in the lowest protocol lay-
ers. At the level of connections, and communication between services, the
services are only aware of PalCom messages, and do not treat different
networking technologies specifically.

49

CHAPTER 3. CONNECTIONS

3.4 Tunnels

As mentioned in Chapter 1, PalCom discovery is, in the first step, limited
to the local network. Services cannot directly discover each other, and com-
municate, across multiple routers on the Internet. This is for shielding both
the user and the hardware and software from overwhelming numbers of
discovered devices and services.
Still, a service should be able to connect to a service outside the local net-
work where needed, potentially at the other side of the world. This has
been solved through the use of tunnels, as discussed in Section 1.6.6 in
Chapter 1 (see [38]). Tunnels, which are set up manually, connect geograph-
ically distant PalCom networks in a secure way. Through each tunnel, there
can be multiple PalCom connections of the topologies discussed in the pre-
vious section, connecting services and assemblies to each other.

3.5 Related work

In the field of software architecture, software connectors make interactions
between components explicit, and they are treated as first-class elements
[74]. Architecture Description Languages (ADLs) model connectors as links
of communication between components [73], and connectors are explicit in
the language ArchJava, which extends Java with mechanisms for express-
ing the architectural structure of an application within the source code [5].
The concept of software connectors is used not only between nodes in a dis-
tributed system, but also for describing transfer of control, and for conver-
sions and adaptations between components. A background to this work is
that in software implementations, interactions between components are of-
ten much less clearly described than the components themselves. In Arch-
Java, the explicitly declared required interfaces associated with connectors
are intended to reduce coupling between components, and promote un-
derstanding of the components in isolation. Further, a connector used to
bind two components together is specified in a higher-level component, so
that the communicating components are not aware of and do not depend
on the specific connector being used [5].
The way of making connections explicit in the PalCom architecture, and
in the information given to the user through the Discovery Protocol, has
similarities with the concept of software connectors. The points made in
ArchJava about loose coupling, and about specification of connectors in
higher-level components, are valid also for PalCom connections, which
are established by the user or by an assembly, and not initiated by ser-
vices themselves. This property is discussed more in the following chapter,
about assemblies.

50

3.6. SUMMARY

3.6 Summary

• PalCom connections are first-class, and discoverable in par with de-
vices and services.

• It is possible to connect and disconnect two services from a third de-
vice.

• Connections can have different distribution schemes (one-to-one, one-
to-many, many-to-many), and transfer commands as well as stream-
ing data.

• Connections can connect services on a local network, networks con-
nected through PalCom routers, and aggregated PalCom networks
through PalCom tunnels.

51

Chapter 4

Assemblies

The elements of the PalCom architecture discussed in Chapters 2 and 3 let
the user discover and interact with individual PalCom devices and services.
The concept of an assembly is defined in order to enable the use of combina-
tions of services. The assembly can be defined by a user or by a developer.
Optionally, it can contain logic in the form of a script, extending the com-
bined behaviour. As discussed in Chapter 1, the assembly is intended to
be used with services available in a particular situation. The user can try
out the services and the assembly in the interactive assembly editor in a
browser, both when creating a new assembly, and when adapting one that
has been created for similar services on other devices. This possibility to
explore available services and try things out is important for being able to
create useful ad-hoc combinations of services.
In the next section, two scenarios follow that illustrate how PalCom as-
semblies are used. After that, the assembly concept is discussed in more
detail: how assemblies are structured, and their role in providing flexible
combinations of services.

4.1 Scenarios

Consider the following simple scenario:

A university professor has weekly lectures in room E:1406 at the uni-
versity. On the first lecture, she creates an assembly RemoteSlide-
Show by connecting a slide show service on her laptop, the PalCom
browser on her mobile phone, and the video projector in room E:1406.
This is done by a few graphical commands on the phone. After that,
she uses her phone to select the desired presentation, and to step through
the slides. At the next lecture, she simply activates the existing assem-

CHAPTER 4. ASSEMBLIES

Figure 4.1: RemoteSlideShow. An assembly on the mobile phone (shown as a scroll
symbol) sets up connections for controlling the slide show from the mobile phone,
and for displaying slide show images on the projector.

bly, which will then discover and connect the devices according to the
assembly descriptor. She can then immediately select the appropriate
presentation and step through the slides.

RemoteSlideShow is an example of an assembly that consists only of a set
of connections between services on particular devices, and has no further
logic of its own. It builds on the slide show scenario presented in Sec-
tion 2.1.2. The assembly composes a video projector, a laptop, and a mo-
bile phone, as shown in Figure 4.1. Slides are sent from the laptop to the
video projector, and the user controls the actions, next slide, previous slide,
etc., from the mobile phone, where the assembly itself also resides. The
RemoteSlideShow assembly is a way for the professor to automate the es-
tablishment of connections, avoiding having to do it manually each time
she comes to the lecture room.
Another example of an assembly is one that combines a photo service on
a camera device with a coordinate service on a GPS device and a direction
service on a compass (see Figure 4.2). This is the GeoTagger scenario, which
is a little more complex, and which was introduced in Section 1.5.1:

Mark is a landscape architect at a landscape architecture firm. He reg-
ularly goes out in the field for visual assessment, documenting a site
for understanding how a planned project would affect the scenery.
Over coffee, Mark and his colleagues get the idea that it would be
nice if the equipment that Mark carries with him could automatically
tag the photos he takes with GPS coordinates and compass directions.

54

4.1. SCENARIOS

Figure 4.2: The GeoTagger scenario. Assemblies on the handheld computer com-
bine services on the camera, the GPS and compass, tagging images before sending
them to the server at the office.

That would help when sorting the pictures back at the office. Mark has
devices performing all the necessary functions—the camera takes pic-
tures, the GPS and compass deliver coordinates and directions—but
the desired combined behaviour is not provided by any of the devices.

As all the devices are PalCom-enabled, Bill, the firm’s computer spe-
cialist, realizes that it would be easy for him to create an assembly that
performs the desired actions. Bill borrows Mark’s devices and opens
the PalCom browser on his computer, where the devices and their ser-
vices show up as discovered. He inspects the service descriptions and
experiments with the services by opening their user interfaces in the
browser. In order to reduce complexity, and to make the assemblies
more reusable, Bill chooses to to make two assemblies: one, which he
calls TaggingCamera, for handling the problem of tagging the pic-
tures, and another one, Uploader, that uploads the pictures tagged
by TaggingCamera to the storage service at the office.

For TaggingCamera, Bill starts from a service CoordinateStuffer
that he finds in a repository of PalCom unbound services on the Inter-
net. CoordinateStuffer takes a JPEG image, a GPS coordinate and a
compass direction, and writes the coordinates and directions as meta-
data in the JPEG image. By dragging-and-dropping in the browser,
Bill declares connections from the assembly to services on the camera,
on the GPS, on the compass and on the CoordinateStuffer. In the as-
sembly, he makes a small script. This is done using drag-and-drop, by
dragging commands from discovered service descriptions. The script
saves the latest coordinate and direction each time they are received
from the the GPS and the compass. It also reacts when a new pic-
ture has been taken by the camera, by asking CoordinateStuffer to tag

55

CHAPTER 4. ASSEMBLIES

Figure 4.3: A view from Bill’s assembly editor, while he works on the
TaggingCamera assembly. He has just added an event handler that
sends the image to CoordinateStuffer for tagging, when it has been
received from the storage service on the camera.

the image with the latest saved coordinate and direction. Figure 4.3
shows TaggingCamera, as it looks in the assembly editor while Bill is
working.

Further, Bill declares a synthesized service, provided by the Tagging-
Camera assembly, that makes the tagged image available for users of
the assembly. After that, he tests the assembly by starting it and con-
necting to its synthesized service from the browser. A user interface is
shown. When Bill takes a test picture with the camera, it shows up in
the interface.

Bill continues with the Uploader assembly. He declares connections
from the assembly to the synthesized service of TaggingCamera, and to
the storage service at the office. When a new tagged picture is available
from TaggingCamera, a script in Uploader sends the picture to the
storage service. Bill tests Uploader by starting it and taking a picture
with the camera. He checks on the server and sees that the picture has
been saved there. When he looks at it in his image viewing program,
he can see that the coordinate and direction have been saved as image
meta-data.

On the next day, Mark brings his equipment to a site for doing visual
assessment. On his handheld computer, he has the two assemblies and
the CoordinateStuffer that he got from Bill. Bill has set up a tunnel
over GPRS, connecting the small network formed by Mark’s devices
to the office. Out in the field, Mark starts his PalCom browser on

56

4.2. THE ANATOMY OF AN ASSEMBLY

Figure 4.4: Deployment diagram of the RemoteSlideShow assembly.

the handheld computer, where the devices and their services are auto-
matically discovered. He starts the two assemblies, and can see in the
browser that connections are established between the services and the
assemblies. He starts working, and each time he takes a picture, it is
tagged and sent to the storage server back at the office.

This example illustrates several key aspects of assemblies: how they com-
bine services of other devices, how behavior can be automated, how an
assembly itself can be seen as a service (through its synthesized service),
and thereby how new assemblies can be built on top of existing ones.

4.2 The anatomy of an assembly

An assembly consists of

• references to devices included in the assembly,

• references to services on those devices,

• declarations of connections between the services, and between the
services and the assembly,

• an optional script, defining what actions the assembly takes upon
receiving messages from services, and

• an optional set of synthesized services, offered by the assembly.

When the assembly is executed, it monitors the network and makes sure
the listed connections are established. Figure 4.4 shows how RemoteSlide-
Show and the involved services are deployed on the different devices. The

57

CHAPTER 4. ASSEMBLIES

Figure 4.5: Deployment diagram of the TaggingCamera assembly.

assembly, marked with a scroll symbol, executes on the mobile phone. The
dotted arrows point to the connections managed by the assembly. On the
laptop, there is a streaming service called Slides that sends out JPEG im-
ages (the double arrows denote a streaming service). The service Screen
on the projector receives the images and displays them. For controlling the
slide show, the meta service UIDisplay on the phone is connected to the
service Control on the laptop. The meta service takes the service descrip-
tion of Control (marked with SD) and renders a user interface for it.
It is possible to add coordinating logic to the assembly in the form of a
script. Figure 4.5 shows the TaggingCamera assembly, which executes on
the handheld. TaggingCamera has five connections to services: to Position
on the GPS, to Direction on the compass, to Photo and Storage on the cam-
era (the camera offers its functionality split into multiple services), and to
the unbound service CoordinateStuffer on the handheld. The script in Tag-
gingCamera receives and sends commands over these connections. The
synthesized service of TaggingCamera, CameraSynth, is shown as a ser-
vice symbol at the border of the assembly: it is a service offered by the
assembly.
Uploader also has a script, and also executes on the handheld, as shown
in Figure 4.6. It builds on the functionality provided by TaggingCamera,
and therefore has a connection to TaggingCamera’s synthesized service.
There is a connection to the service PhotoDB on the server at the office.
The server is on a remote network, and Uploader is connected to it via a
tunnel. The tunnel has been set up by Bill, and is handled at the PalCom
communication protocol level. The Uploader assembly is not aware of it.
As shown in the examples, an assembly sits between a number of services,
governing their interaction. It can be seen as a kind of tailored wiring bet-
ween the services. Connections directly to an assembly come into play for
assemblies with scripts, as for TaggingCamera and Uploader. The assembly-

58

4.3. ASSEMBLY DESCRIPTORS

Figure 4.6: Deployment diagram of the Uploader assembly.

side end-points of these connections can be seen as services, representing
the part of the script functionality that deals with that specific connec-
tion. We refer to these services as implicit services, because their behaviour,
in terms of commands sent and received, is implicitly defined by the be-
haviour in the script. Connections to implicit services cannot be initiated
from the outside: only the assembly itself can establish them. In the figures,
this is indicated by showing implicit services as gray service symbols with-
out hooks. For each implicit service, a service description can be automati-
cally generated from the event handlers that describes the interaction with
that specific service. Taken together, the service descriptions of implicit and
synthesized services describe an assembly’s command communication.

4.3 Assembly descriptors

An assembly is deployed according to an assembly descriptor that defines
the devices, services and connections present within the assembly, and the
optional script and synthesized services. The script is written as a set of
event handlers, and the actions possible in the script are to send messages
to services, and to store values in local variables.
Assembly descriptors are stored in XML, but there are several presenta-
tion formats. One is used for presentation and editing in the browser (Fig-

59

CHAPTER 4. ASSEMBLIES

1 assembly TaggingCamera 1.3 released {
2 this = ServiceID;
3 devices { ... }
4 services { ... }
5 connections { ... }
6 script {
7 variables {
8 text/plain latestCoord;
9 text/plain latestDirection;

10 }
11 eventhandler {
12 when coord from Position {
13 latestCoord = thisevent.value;
14 }
15 when dir from Direction {
16 latestDirection = thisevent.value;
17 }
18 when photoTaken from Photo {
19 send getPhoto() to Storage;
20 }
21 when photo from Storage {
22 send stuff(latestCoord, latestDirection,
23 thisevent.img) to CoordinateStuffer;
24 }
25 when imageTagged from CoordinateStuffer {
26 invoke taggedPicture(thisevent.img);
27 }
28 when takePicture from CameraSynth {
29 send takePhoto() to Photo;
30 }
31 }
32 synth CameraSynth {
33 in takePicture();
34 out taggedPicture(image/jpeg img);
35 }
36 }
37 }

Figure 4.7: Assembly descriptor for the TaggingCamera assembly.

60

4.4. BINDINGS

ure 4.3), and a more programming-language-like syntax is used in Fig-
ure 4.7, which shows the assembly descriptor for TaggingCamera:1

• Line 1 shows the name of the assembly and versioning information,
and also line 2 contains versioning information, as explained in Chap-
ter 6.

• There are variables in the script for holding the latest GPS coordinate
and compass direction, which are sent out periodically by the devices
(lines 8 and 9).

• When a coordinate arrives, it is saved (line 13), and similarly for the
direction (line 16).

• When an indication comes from the Photo service that a photo has
been taken, a request for the photo is sent to the Storage service on
the camera (line 19).

• In the next event handler, the returned photo is sent to the Coordi-
nateStuffer (line 22).

• As the tagged image is returned to the assembly, it is sent out through
the synthesized service by means of an invoke action (line 26).

• The synthesized service is defined on lines 32–35, with one in-going
and one out-going command.

• The in-going command takePicture is handled on line 29: a com-
mand takePhoto is sent to the Photo service. This makes the syn-
thesized service provide the functionality of “pressing the button” on
the camera.

The assembly descriptor for Uploader has a similar structure, but without
variables and with only one event handler that forwards a tagged picture
from CameraSynth to PhotoDB. RemoteSlideShow has no script, but only
declarations of devices, services and connections. See Chapter 6 for an in-
depth discussion of assembly descriptors.

4.4 Bindings

In the assembly descriptor, different kinds of bindings can be specified,
which govern how the assembly behaves when services appear and dis-
appear. The two types of bindings are (1) whether the presence of a service
is mandatory or optional for the assembly to function as intended, and (2)

1The contents of the devices, services and connections sections have been omitted
for brevity, see Chapter 6 for examples.

61

CHAPTER 4. ASSEMBLIES

alternatives. Alternative bindings mean that one of a prioritized list of ser-
vices should be used. This can be used for redundancy, where services act
as back-ups for others, e.g. in situations with unreliable network connectiv-
ity. Optional bindings can be used in scenarios where one or more of a set
of services are adequate to use, or where a service is not necessary for the
core functionality of the assembly. Bindings are specified in the services
section, as detailed in Chapter 6.

4.5 Synthesized services

Synthesized services, as exemplified in the TaggingCamera assembly, are
services that offer some combined functionality of the included services to
other devices in the network. They can capture aspects that are not covered
by the individual services themselves. Synthesized services can forward
messages to and from the services included in the assembly.
Synthesized services behave as any other service on the network, and can
be interacted with directly through user interfaces in a browser. This prop-
erty makes it possible to use synthesized services in other assemblies, and
build a hierarchy of assemblies. Such a hierarchy is exemplified where Up-
loader builds on TaggingCamera. This way, complex systems of services
can be handled, with assemblies grouped at multiple levels (see also Fig-
ure 1.8 on page 14).

4.6 Unbound services

The assembly language is simple, with only a limited set of possible ac-
tions. But, as seen in the GeoTagger scenario, services written in a general-
purpose programming language, such as Java, can be incorporated into an
assembly. This way, the assembly can perform more advanced functional-
ity than what can be specified directly in the script. CoordinateStuffer is
an example of such a service, referred to as an unbound service. The name
reflects that these services are not tied to the hardware of any particular
device, but built for performing computations in assemblies.
One of the ideas behind the unbound services is to keep the script language
simple. The language should be possible to work with for an end user. We
do not want to add features to the language that allow computations as
complex as the ones performed by CoordinateStuffer. Instead, they are left
to unbound services. The possibility of unbound services means that a user
with knowledge of Java is not locked in by the restrictions of the script
language.

62

4.7. ASSEMBLY MANAGERS

4.7 Assembly managers

Assemblies are executed by assembly managers. The assembly managers can
be integrated in browsers, or run stand-alone on devices in the network.
They store assembly descriptors, and handle the execution of assemblies
by monitoring the network and establishing connections that are possible
but not already established. The assembly managers interpret scripts, and
execute event handlers when messages arrive at an assembly. The running
assembly is announced as running on the device where the assembly man-
ager runs.
An assembly manager runs on one device, but the assembly descriptor can
be moved to another assembly manager with no or little modification and
execute there. This was done in the GeoTagger scenario, when the assem-
blies made and tested by Bill were moved to Mark’s handheld. It can also
be done in order to optimize use of network bandwidth. E.g., if the camera
in the GeoTagger scenario had an assembly manager and capabilities of
executing unbound services, TaggingCamera and CoordinateStuffer could
have been put there, minimizing the number of JPEG image transfers over
the network. Note that moving an assembly does not affect the services it
uses, and is thus a lightweight operation that can be performed by an end
user.

4.8 Configuration, coordination and computation

An assembly combines a set of services on devices into a larger system. A
useful way to look at such a system is from the perspectives of configura-
tion, coordination and computation (see [16, 63, 124]). Different parts of the
assembly descriptor capture those different aspects of the system, and this
separation is key to the usefulness of assemblies as a mechanism for ad-hoc
combinations:

• Configuration is the most coarse-grained of the three system aspects.
It specifies what devices and services are involved in the assembly,
and how they are connected.

• Coordination, at the next level, regards the communication between
the connected devices and services, and how they interact over the
connections by sending messages to each other.

• Computation, finally, is the most fine-grained aspect, specifying the
internal operation of individual devices and services.

63

CHAPTER 4. ASSEMBLIES

The three aspects can be illustrated by the deployment diagram for Tag-
gingCamera (Figure 4.5 on page 58):

• The configuration specifies that there are four devices (GPS, compass,
camera and handheld) and five used services on those devices (Posi-
tion, Direction, Photo, Storage and CoordinateStuffer), and how these
are connected to the assembly. Further, the interface of the synthe-
sized service is also part of the configuration, because it defines how
the assembly can work as a building block in other assemblies. Spec-
ifications of bindings are part of the configuration as well.

• The coordination part is specified in the script, where the sequencing
of messages over the connections is defined.

• Computation, finally, is in the implementation of the services, both in
native services (which are tied to the devices), in unbound services
(CoordinateStuffer in the example), and, recursively, in synthesized
services of other assemblies. The computation is thus primarily in the
implementation of a service, rather than in the assembly descriptors.

The main advantage of separating configuration, coordination and compu-
tation is that the aspects can be varied independently:

• The configuration can change dynamically at run-time, if flexible bind-
ings are used, or be changed manually by a user, who modifies an
assembly descriptor using a tool. Manual modifications are typically
made for adapting an existing assembly to a new set of available de-
vices.

• If the behaviour of services on the new devices differ from the old
ones, the next step is to modify the coordination in the assembly by
changing the script. That would typically require deeper understand-
ing of the behaviour of the services.

• Adapting computation in the assembly, finally, means to modify one
of the involved services, which requires programming in Java or an-
other general-purpose language, or the incorporation of a pre-written
unbound service.

Chapter 6 will discuss the language of assembly descriptors in more detail,
and how it supports the separation of the three aspects.
Linda [16] is the first example of a coordination language, a language that
makes an explicit split between computation and coordination. Linda is
based on a tuple space model, where processes communicate by inserting
tuples into an abstract “space” using the operation in, and by reading from
the space using out or read (blocking and non-blocking, respectively). One

64

4.9. THE ASSEMBLY IS EXTERNAL TO THE SERVICES

Figure 4.8: The traditional approach.

motivation behind the language design is to give an uncoupled program-
ming style, where senders and receivers are not tightly dependent on each
other. The language has the property of communication orthogonality, which
means that the sender of the message needs not have any prior knowledge
of the receiver of the message, just as the receiver has no knowledge of
the sender in the case of a procedure call. This way of using the few sim-
ple, atomic operations for communication between processes is intended
to give the mentioned separation of coordination from computation.
The separation of the concerns of computation, coordination, and config-
uration has also been studied in the field of software maintenance, e.g. in
the work of Wermelinger et al. [124]. That paper proposes a three-layer ar-
chitecture, separating each concern into one layer, for supporting system
evolution. The presented system allows reconfiguration at runtime, and
the separation makes it possible to vary the three aspects independently.

4.9 The assembly is external to the services

From the perspective of ad-hoc combinations, the separation of computa-
tion from the other two aspects, configuration and coordination, deserves
special focus in PalCom. The property that computation is in the services,
and the other two are expressed in the assembly descriptor, makes the as-
sembly external to the services. A service has no knowledge of other ser-
vices that it is connected to. This makes it possible to adjust the assembly
after changes in new versions of service descriptions, and to include new
services after the initial construction of the assembly: the assembly concept
is designed for handling changes in services. In addition, combinations can be
made of services that were not created together, without restraining all of
them to use standard service interfaces that were already established when
the oldest service was created.
A metaphor with wires and connectors can be used for illustration. The tra-
ditional case of interoperation between two services is shown in Figure 4.8,
where the service S2 uses service S1. Here, S1 has a female connector, rep-
resenting its service interface. S2 connects directly to it, using a wire with
a male connector that has been constructed to fit with S1. Interoperability
with S1 is built into S2. As indicated in the figure, the implementation of
S2 specifies both configuration, coordination and computation.

65

CHAPTER 4. ASSEMBLIES

Figure 4.9: Our approach.

In our approach, shown in Figure 4.9, both services have female connec-
tors. It is the assembly in the middle that connects to both services using
male-connector wires, and there are no direct dependencies between ser-
vices. Here, computation is in the services, and the assembly specifies con-
figuration and coordination. The assembly works as a mediator, and the
advantage is that when either S1 or S2 changes, it is possible to change the
mediator, instead of changing the other service. It is not so that both ser-
vices must conform to a standard that was established when the first one
was built.
In the GeoTagger example, it can be noted that the camera, the GPS and
the compass are not prepared in advance for this scenario, except being
PalCom-compliant at a general level. The service descriptions are used as
programmatic interfaces by the assembly, which runs on the handheld. The
preparation of the handheld consists of installation of the special Coor-
dinateStuffer service, and of writing the assembly script. Further, if after
some time of use the service on the GPS is updated to a new version, it is
possible to accommodate for the new service interface by modifying the as-
sembly. The modifications do not have to be done in the implementations
of the services on the handheld, the camera and the compass.
The idea of having an assembly in the middle can be compared to the Me-
diator design pattern [39, p. 273]. The Mediator pattern gives similar ad-
vantages of looser coupling, and the possibility to vary the interaction bet-
ween objects independently. Mediators have also been studied in the field
of software architecture [101].

4.10 Connecting services directly to each other

When discussing the wire-connector metaphor, the following question may
arise: does having the assembly in the middle mean that communication
always has to go via the assembly? The answer is no: the RemoteSlide-

66

4.11. END-USER WORK PATTERNS

Show assembly (Figure 4.4 on page 57) is an example where data flows
over connections directly between services. That assembly does not vio-
late our principles of ad-hoc combinations: the configuration is still in the
assembly, external to the services (as illustrated by dotted arrows in the
figure). In addition, none of the services has been created especially for
cooperating with the other:

• One of the connections is a streaming connection, for which the match-
ing of MIME type decides whether the connection makes sense. This
kind of data type matching enables connections that are more ad-
hoc, compared to matching based on named commands with typed
parameters. Matching based on data types allows meaningful con-
nections of services from different domains. One example is that the
JPEG slides could equally well be connected to a printer service that
receives a JPEG stream, without the Slides services having to be aware
of the notion of printing. This kind of type-based connections have
also been explored in the Obje project [81].

• The other connection in RemoteSlideShow is to the UIDisplay meta
service, which can render any type of command in a user interface.
Meta services are not created for cooperating with any specific ser-
vice.

Common to all direct connections between services is that there is no co-
ordination part in the assembly for these connections—no event handlers
are used. This is simply because commands flowing over the connection
do not reach the assembly. An advantage of direct connections can be per-
formance, that communication does not have to go over the network to the
assembly, but can go directly between the services. This is important in par-
ticular for services which send or receive a continuous flow of information,
such as audio and video.

4.11 End-user work patterns

From the scenarios and application prototypes studied in PalCom, we en-
vision that end users will define and interact with assemblies in an exem-
plar, or prototype-based way, in analogy to prototype-based object-oriented
programming languages, as advocated by Lieberman [69] and in the lan-
guage Self [112]. An assembly is built as an example directly in an envi-
ronment where it can be used. A user can switch between explicitly remote
controlling services, and constructing an assembly that connects and con-
trols the services. When the user so decides he or she can share an assembly
with others using an object cloning metaphor rather than object instantia-
tion. A user will typically also change an existing assembly “in vivo”, that

67

CHAPTER 4. ASSEMBLIES

is, when the devices and services it depends on are available. This allows
changes to the assembly to be tested right away. The user can also experi-
ment with assemblies using simulated devices and services, as will be dis-
cussed in Chapter 8.
An example of this kind of live editing could be the landscape architect
who in the field realizes that the GeoTagger assembly he brought with him
does not work. He opens up the assembly in the browser and notices that
the GPS is shown as not available. Closer inspection of the device shows
that it is out of battery. Luckily he has a spare GPS in the car. He turns it
on and interacts with it directly through his handheld (where the assem-
bly is also stored). He concludes that the spare GPS works the same way
as the failing device, and modifies the assembly so it will use the new de-
vice. He runs the complete assembly while inspecting both the assembly
and the GPS, to verify that the pictures taken are marked with the proper
coordinates from the GPS.

4.12 Programming at different levels

For the use of assemblies to be beneficial, it is of course important that
it is easier to construct and change the assembly than to rewrite the ser-
vices (if rewriting the services is possible at that time). In general, the dif-
ficulty of changing the interaction depends on the complexity of the in-
cluded services—adapting to a new standard for streaming video, e.g., is
probably a complex task. Our aim is to enable end users to work with a
large portion of assemblies. Configuration, and coordination up to a cer-
tain level of complexity, can be expressed in the assembly descriptor. For
the most complex cases, we provide the possibility of incorporating an un-
bound service. The unbound service can handle computation-level tasks,
and can also be used for cases with more complex coordination than what
can be expressed in the assembly script.
Putting together different kinds of assemblies requires different levels of
programming skill. Interacting directly with services, in a remote control
fashion, is possible for an end user, using simple operations in a PalCom
browser. The same is true for setting up simple assemblies, that are basi-
cally a set of connections between services, saved for later re-establishment.
Working with unbound services requires knowledge about a general-pur-
pose programming language. We see the middle case, constructing a scrip-
ted assembly with an assembly script, reasonable to manage for an ad-
vanced end user.
Recognizing these different levels of user expertise, the main distinction
is still between the programmer of the services on a hardware device, and
the user of an assembly that combines two or more such services—between
the computation on the one hand, and configuration and coordination on the

68

4.13. RELATED WORK

other. The pre-programmed services on the device cannot be assumed to
be possible to modify for the end-user. Those are often proprietary soft-
ware, and not available for change. They may access hardware functional-
ity, and be implemented in a low-level language for running on a resource-
constrained device. If the services are PalCom services, possible to combine
with others in an assembly, the cooperation between services is possible to
modify, because the assembly in the middle can be changed. This is not the
case if the interoperation is built into the services.

4.13 Related work

The research area of service composition is very active. In [13], Brønsted
et al. make a survey of service composition mechanisms in ubiquitous
computing, and place PalCom and other projects in a categorization ma-
trix. Projects are categorized according to the composition specifications
used, and according to runtime and deployment issues. Of projects that let
the end-user create service compositions, like PalCom does, Aura [40] is
more geared towards agents and autonomic behaviour. The same is true
for Amigo [115], which is based on Semantic Web technologies. ICrafter
[90] has mechanisms for service composition, and for generating user inter-
faces for the combinations. ICrafter’s service composition mechanisms are
based on letting services implement certain generic Java interfaces, such
as DataProducer and DataConsumer, and on patterns of such generic inter-
faces for which user-interface generators can be written. The patterns are
expressed using a regular expression syntax, and the matching relies on
matching data types. Our impression is that the PalCom assembly is more
powerful than ICrafter’s regular-expression patterns, and it is not depen-
dent on Java programming, as the user-interface generators are. Obje [81]
is focused on letting the end user create direct connections between com-
ponents, based on matching data types, while PalCom has the assembly
concept for more complex interactions. The application bridges in Gaia [94]
are created by developers, and only used by end users.
Tuple spaces, as introduced by the Linda language [16], have been used in
several ubiquitous computing projects, for achieving loose coupling and
more data-oriented interaction between services. An example is Interactive
Workspaces [57]. One.world [44] uses tuples for representing data. PalCom
has, however, not opted for service communication based on tuple spaces,
partly because PalCom has no fixed surrounding environment where the
tuple space can be implemented, like the Interactive Workspaces iRoom
has. We have instead chosen to structure the communication between ser-
vices and assemblies in commands with typed parameters, and in typed
data streams.

69

CHAPTER 4. ASSEMBLIES

In the Web Services world, composition of Web Services can be done using
both orchestration and choreographies [89]. Both mechanisms are intended
for describing workflows including the services:

• Orchestration, as specified using the language BPEL (Business Pro-
cess Execution Language [80]), is most similar to our assemblies: it
gives an executable process that can actively send messages to its in-
cluded services.

• A choreography, as specified in WS-CDL (Web Services Choreogra-
phy Description Language [58]) is more like a contract that is signed
by a number of cooperating service providers, and which can be
checked while the services cooperate.

Both BPEL and WS-CDL are expressed in XML, and work with Web Ser-
vices described using WSDL [22]. Both have constructs for sending mes-
sages to services, for receiving messages from services, for performing ac-
tions in parallel and in sequence, and for loops. BPEL orchestrations are
executed by orchestration engines, corresponding to our assembly man-
agers.
BPEL orchestrations specify partner links that correspond to connections in
a PalCom assembly. For each partner link, the interface of the Web Ser-
vice at one or both ends is specified in the BPEL description (partner links
can only be one-to-one, not one-to-many or many-to-many like PalCom
connections). In general, one of the partner links goes to the user of the
process. The process side of that link can be compared to a PalCom syn-
thesized service, because it serves as the service interface of the process
itself. However, the BPEL specification does not mention the use of such
interfaces for structuring BPEL processes at multiple levels, like PalCom
assemblies can be structured with synthesized services. Furthermore, the
service interface of the link to the user is not treated especially in a BPEL
description, unlike the interface of the synthesized service for a PalCom
assembly.
A point in common with assemblies, at a more conceptual level, is that with
both BPEL and WS-CDL, the composition is external to the services, and
modifications can be done without modifying the included services. But
that is not the focus or goal of Web Services, and the level of complexity
in the composition specifications, with, e.g., BPEL partner link types, means
that substantial technical skills are required. Further, there is no notion of
physical devices, which are important in our approach, and in pervasive
computing in general.
Lately, approaches based on mashups of RESTful Web Services have also
gained much attention. Mashups are generally made by external develop-
ers, not under control of the providers of the original services, for combin-

70

4.14. SUMMARY

ing a set of services on a Web page. There is current research on how to
make mashups easy to create for end users [67, 95].
As Web Services were originally designed for business-to-business com-
munication, primarily in wired networks, it is not self-evident that they
scale down to the resource-constrained devices involved in ubiquitous com-
puting scenarios, or that they are suitable for use in networks where ser-
vices join and leave frequently. BPEL has some support for dynamic modi-
fication of partner links by calling assign statements, imperatively, but there
is no declarative way to specify dynamic partner links, as with connection
declarations in a PalCom assembly. The WSAMI project [54] presents one
approach to use of Web Services in a pervasive setting, and demonstrates
a language and middleware for dynamic composition of Web Services,
which executes on PDAs running the CDC configuration of Java ME [105].
One point where WSAMI differs from the situation targeted by PalCom
is that it relies on Web Services descriptions being available in so called
universal repositories in the network. PalCom cannot rely on such central
directories, as will be discussed in the following chapter.

4.14 Summary

• A PalCom assembly is a customizable multi-connector wiring bet-
ween services.

• An assembly stores a particular configuration of services on devices,
and connections between them.

• Assemblies can handle configurations with fixed sets of services, and
dynamic bindings support situations where services join or leave dy-
namically.

• An assembly stores a script used to mediate between services, en-
abling ad-hoc combinations of services that were not designed to
work together.

• Assemblies enable end-users in the loop, without detailed program-
ming needed for configuration and coordination.

• Unbound services can be programmed for involved computations
where needed.

• An assembly can offer new services, so called synthesized services,
and can be further aggregated by other assemblies.

• An assembly is executed by an assembly manager, which can reside
on any suitable device.

71

Chapter 5

Communication protocols

The PalCom protocols are used both for announcement and discovery of
devices, services and connections, as well as for interaction between ser-
vices and assemblies. Their design has been made according to functional
requirements drawn from the PalCom scenarios, as presented in Chap-
ters 2–4. At the same time, once the protocols are defined, supporting them
is the main requirement for being a PalCom device or service. This is im-
portant in order to enable independent implementations of the PalCom
open architecture in different languages.

5.1 A layered model: overview

The PalCom communication architecture is designed as a layered architec-
ture, as shown in Figure 5.1. There are five layers:

• At the lowest level, the Media Abstraction Layer (MAL) has the
purpose to bridge between the PalCom communication model and
the actual network technology used. This layer effectively hides all
the implementation details of the used network from the upper lay-
ers. Figure 5.1 shows three implementations in this layer, for the In-
frared, IP and Bluetooth communication technologies, respectively.
The MAL Layer also handles the basic heartbeat mechanism that lets
PalCom devices become aware of each other.

• For PalCom devices that support more than one media interface,
there are some issues which are handled in the Routing Layer. If a
receiver can be reached in more than one way, the choice of which
media to use for communication is made here. The layer supports the
implementation of tunnels, i.e., secure communication over hostile

CHAPTER 5. COMMUNICATION PROTOCOLS

Figure 5.1: The PalCom Communication Model.

media between two or more local PalCom networks. It also handles
messages that are too large to send in one go on a particular interface
or network.

• In the Communication Layer, the common part of all PalCom com-
munication is implemented. The layer supports both message-based
communication and streams. There is support for communication
between two endpoints (unicast), as well as radiocast and groupcast.
There are also facilities for establishing stable connections, sending
of single-shot messages, and reliable communication.

• The Function Layer, on top of the Communication Layer, implements
two specific protocols. The Discovery Protocol is internal to the Pal-
Com architecture, and supports the discovery of devices, services,
and established connections. The other protocol in the Function Layer
is the Service Interaction Protocol, used by services for exchanging mes-
sages. The message format of this protocol is defined, but the contents
of the actual messages depends on the services involved.

• The Service Layer is the application layer, structured as services that
use the communication architecture to communicate with other ser-
vices. Services can be individually addressed, so at this level the model
is that a service connects to another service, and then the two services
can start exchanging messages.

74

5.2. REQUIREMENTS

5.2 Requirements

The requirements behind the PalCom communication protocols naturally
have many dimensions. This section presents the main ones, as we have
identified them. First, there are a number of general requirements for the
communication between devices and services:

1. Device awareness. In addition to discovering and addressing ser-
vices, users and programs should be able to discover devices with
meaningful identities, and address them. As discussed in Section 2.2,
the identities of the physical devices are important in pervasive sys-
tems.

2. Names of devices and services. Devices and services should have
both human-readable names, and globally unique names that can be
used for addressing and identification (Section 2.5).

3. Communication with services. There have to be mechanisms allow-
ing services to communicate over unicast, radiocast and groupcast
connections, using messages and streams (Section 2.5). Where needed,
a service should be able to communicate over reliable connections,
and to send long messages which are guaranteed to be delivered as a
unit (Section 2.7). Further, for communication between services, the
protocols have to be open, allowing special service protocols for sit-
uations with special requirements on encryption, bandwidth, etc.

4. Efficient communication. The format of messages sent to and from
devices and services has to be compact, allowing small devices with
limited bandwidth to offer services, e.g. over IR (Section 2.2). At the
same time, we strive for a format which is convenient for debugging
while messages arrive over the network.

5. RemoteConnect. A device should be able to connect a service on a
second device to a service on a third device (Section 3.1).

6. Routing between networking technologies. There has to be support
for communication with services using different networking tech-
nologies, with routing between technologies (Section 3.3).

7. Versioning. There have to be versions of services and assemblies,
which are followed strictly when an assembly connects to services,
and which allow a device to run more than one version of a service
at the same time (Section 2.5).

8. Asynchronous communication. The unreliable nature of wireless ad-
hoc networks calls for a model based on asynchronous communica-
tion. A synchronous model, such as one based on Remote Method

75

CHAPTER 5. COMMUNICATION PROTOCOLS

Invocation (RMI [107]), is not suitable, because that may leave the
sending service in a blocked state if the network goes down (Sec-
tion 2.7).

For the Discovery Protocol, there are a number of additional requirements:

9. Discovery of connections. In addition to discovery of devices and
services, it should be possible to discover the currently established
connections (Chapter 3).

10. Descriptors.

(a) For devices, the descriptors that are announced in the Discov-
ery Protocol have to contain name, addressing and versioning
information (Chapter 2).

(b) For services, there have to be name, addressing and version-
ing information, information about what distribution the service
uses (i.e., if it communicates using unicast, radiocast or group-
cast), and whether it uses reliable communication or not. There
also have to be service descriptions describing the in- and out-
going commands (Chapter 2).

(c) Together, the descriptors for devices and services have to de-
scribe the tree of services on the device (Chapter 2).

(d) Descriptors of connections have to contain the identities of the
two involved services, or the service and the group for a group-
cast connection (Chapter 3).

11. Transient devices. It is normal in pervasive systems that devices join
and leave networks frequently. When a device leaves the network
range, or goes down unexpectedly, this must become known to the
other devices within a reasonable time, as will be discussed more in
Section 5.7.1.

12. Scalability. The Discovery Protocol has to allow implementation on
small devices, while scaling up to reasonably large numbers of de-
vices (Section 3.4). Still, we want a human-readable descriptor for-
mat, for the same reason as for requirement 4 above.

13. Advertisements, not queries. It must not be necessary to specify the
properties of a service in order to discover it, as discussed more in
Section 5.7.1.

14. No central directory. The Discovery Protocol should not rely on a
central lookup directory, because in the ad-hoc networks we target,
such a central node cannot always be expected to be available. This
is discussed more in Section 5.7.1.

76

5.3. THE PALCOM PROTOCOLS

5.3 The PalCom protocols

Three PalCom protocols have been defined, based on the requirements and
the layered model. A central design decision, made in response to require-
ment 6 on page 75, Routing between networking technologies, is to let the Pal-
Com protocols abstract from the protocols used for different network tech-
nologies, such as IP, Bluetooth and IR. This means that PalCom device and
service descriptors can look the same, regardless of what kind of network
the device is in. By addressing each other using PalCom addresses, which
abstract from concrete addresses such as IP addresses, PalCom devices can
communicate across network technologies in several hops, relying on Pal-
Com routing functionality. For limited environments, the mapping to a
concrete technology can be tailored specifically for resource constraints.
The protocols are the following:

• The Wire Protocol abstracts from concrete network technologies, and
defines the format of messages in the communication. It has been de-
signed as a compromise between compactness, flexibility, and read-
ability, and is based on a terse representation in readable characters.
Message headers are structured as a set of nodes, where new nodes
can be introduced with little or no changes to existing nodes. This
supports a high level of flexibility for new demands, at the price
of some parsing of the header information. The Wire Protocol also
defines a heartbeat mechanism, known as the Pacemaker Protocol,
which lets devices become aware of each other, as a basis for the
upper-level Discovery Protocol. The Wire Protocol is handled by the
lower layers in the communication architecture: the MAL Layer, the
Routing Layer and the Communication Layer.

• The Discovery Protocol enables devices to find and get information
about other devices, services and connections. This is a standard pro-
tocol, supported by all PalCom devices. At the heart of the discovery
mechanism, in the heartbeats, broadcasting is used, but as soon as
devices are in contact, information is transported using unicast, and
on demand. The protocol is designed with embedded status infor-
mation, which makes it safe to cache information, trusting that the
originator will flag when the information is no longer valid.

• The Service Interaction Protocol is used after services have been
discovered, for establishing connections between PalCom services,
using the RemoteConnect sub-protocol, and for communication bet-
ween services, by means of commands that can be sent and received.
There is a standard format for command messages that can be used,
but for services with special demands on performance, encryption,
etc., a non-standard format can also be used, for utilizing available

77

CHAPTER 5. COMMUNICATION PROTOCOLS

technology in an optimal way (requirement 3 on page 75). The con-
tent of the messages is service-specific, and not standardized—it is
the provider of the service who decides what messages it can handle.

The following sections will present each of the three protocols in turn.

5.4 The Wire Protocol

The Wire Protocol is handled in the three lower layers of the PalCom com-
munication architecture, up to and including the Communication Layer
(see Section 5.1). To upper layers, that layer offers functionality for sending
and receiving messages over different types of connections, using a com-
mon PalCom message format, and access to the heartbeat mechanism that
lets devices discover each other at a fundamental level.
There are two basic kinds of addressing information that make a PalCom
message reach the right receiver: a DeviceID points out the device, and
a selector points out the receiver within the device that will get the mes-
sage. Such as receiver is typically a service, but can also be, e.g., a discovery
manager that handles discovery centrally on a device. The Communication
Layer presents addresses to upper layers in terms of DeviceIDs and selec-
tors.

5.4.1 DeviceIDs

Each PalCom device is identified by a DeviceID, which is a unique identi-
fier that remains stable. It represents the device itself, rather than a particu-
lar network interface, and is used both for addressing of the device, and for
unique naming of the device and its services. A DeviceID can be formed in
several ways:

• Assigned names are DeviceIDs that are assigned by a manual pro-
cess, which makes sure that no two such names are given to two dif-
ferent devices. These names start with an ’A’, followed by a suitable
unique bit pattern, and are used in situations where it is important to
be able to give devices short unique identities.

• MAC names start with a ’B’, followed by the 48-bit binary address of
a network interface card of the device.

• UUID names start with a ’C’, followed by a 128-bit number, using
the UUID standard [68].

Independently of the method used, the unique identities are guaranteed
to be unique, so that a DeviceID created in this way always signifies one

78

5.4. THE WIRE PROTOCOL

and the same specific device. Because of their global uniqueness, they are
generally quite long and non-intuitive. When written out in hexa-decimal,
using ASCII characters, a MAC name occupies 13 bytes (1 byte for the ’B’,
and 12 bytes for the 48-bit address).
The DeviceIDs are independent of what communication medium a device
uses. As discussed below, they are mapped to network-specific addresses
in the MAL Layer, depending on the available communication interfaces.
It is important that DeviceIDs identify devices, rather than network inter-
faces. This makes it possible to support PalCom routing in several hops,
with seamless use of multiple networking technologies without affecting
implementations at the service level. This is in contrast to IP networking,
where devices that communicate in more than one network have separate,
typically unrelated, IP addresses for its different network interfaces. In Pal-
Com, it is up to the Routing Layer to decide which of several possible net-
work paths to use when sending a message to a device, while the same
DeviceID is used at the service level.
A related important point is that when a PalCom device moves to a new
network, the DeviceID is kept and can be used for addressing the device
the same way as before. It is not like in IP, where a new IP address is as-
signed and handling of the move is needed at the application level.

5.4.2 Selectors

Selectors are compact, local identifiers, allocated dynamically by a device
for pointing out a receiver within the device. While the lower MAL and
Routing layers handle the problem of delivering messages to the right de-
vice, based on DeviceIDs, the Communication Layer handles internal de-
livery of incoming messages, based on selectors.
The selectors put minimal requirements on the underlying network, in that
they enable multiplexing over lower-level addresses, such as IP ports. In an
IP network, it is possible for a PalCom device to receive all messages on the
same IP port. The selectors in the PalCom messages, which are packaged
inside the IP-level messages, are used for handling multiple receivers when
messages arrive. This can be useful, e.g., in situations where all but a few IP
ports are blocked, and, in general, for technologies where the underlying
addressing mechanisms are restricted.
The Communication Layer provides a connection mechanism, which builds
on selectors. Selectors are used both for establishment of connections, and
for communication when connected. A service listens on one selector, and
when a connection set-up message is received on that selector, the Com-
munication Layer provides a new, dynamically allocated, selector for that
particular new connection (much like how TCP handles ports). Selectors

79

CHAPTER 5. COMMUNICATION PROTOCOLS

for established connections are short-lived, and become invalid after a de-
vice reboots.

5.4.3 Heartbeats

The Wire Protocol defines a heartbeat protocol, which we have named the
Pacemaker Protocol, with the purpose of letting devices on the network
discover each other’s addresses. This basic functionality is at the device
level: when devices have become aware of each other, they can get informa-
tion about each other’s services and connections through further requests
at the Discovery Protocol level.
According to requirement 14 on page 76, the discovery mechanism cannot
be based on a central directory. Instead, in the heartbeat scheme devices
broadcast information about themselves on the local network. Broadcasting
facilities are assumed to be available in the underlying network technolo-
gies, facilities which are also used for the implementation of radiocast and
groupcast communication. The Pacemaker Protocol works as follows:

1. When a new device enters, it broadcasts a HeartBeat message contain-
ing its address. The address can be used by other devices for request-
ing more information about it.

2. When any device hears a HeartBeat from another, it broadcasts a
HeartBeatAck with information about its own address.

3. When a device has not heard any HeartBeat within a time frame that
exceeds its own upper limit for times between HeartBeats, it sends
out a new HeartBeat.

This simple scheme makes discovery of new devices instant, because the
new device makes a first HeartBeat. Discovery of device disappearances
are also important, according to requirement 11 on page 76, Transient de-
vices. For handling this, each device has a time limit of its own. When no
HeartBeat or HeartBeatAck has been heard from a particular device within
that time limit, that device is considered gone, and removed from caches.
The most “eager” device (with the shortest time limit) will drive the heart-
beat sequence for all the devices. All devices will listen in on broadcasted
HeartBeats and HeartBeatAcks, irrespective of who triggered them.
The Pacemaker Protocol has been designed so the usage of network band-
width is kept down, in order to meet requirement 12 on page 76, Scalability.
The total number of broadcasts in every heartbeat period is equal to the
number of devices, and the length of the period is controlled by the most
eager device. In non-critical situations, devices can extend the period, for
decreasing bandwidth usage.

80

5.4. THE WIRE PROTOCOL

(a) A heartbeat sequence.

IP address DeviceID
10.0.0.5 C1E34A0...
10.0.0.12 C6E8291...
10.0.0.3 C0501AB...

(b) Mappings in the MAL Layer.

Figure 5.2: An example heartbeat sequence is shown in (a). (1) At first, De-
vice 1 broadcasts a HeartBeat h (broadcasts are shown with filled arrowheads).
But, Device 1 is alone on the network, so the HeartBeat only reaches the device
itself. (2) Next, Device 2 appears and immediately broadcasts a HeartBeat h. In
response to that, Device 1 broadcasts a HeartBeatAck H. Now, both devices have
each other’s technology-specific addresses (IP addresses, or similar). (3) Following
that, two pairs of unicast HBInfoRequests i and HBInfoReplies I give the devices
each other’s DeviceIDs. Mappings between technology-specific addresses and De-
viceIDs are maintained in tables in the MAL layer, as illustrated in (b) for an IP
example. (4) Device 2 has the fastest heartbeat rhythm, so after a while it sends out
the next HeartBeat h, and Device 1 replies with a HeartBeatAck H. Both devices
are now known, so nothing more happens as a result of the heartbeat. (5) Then,
Device 1 goes down unexpectedly (shown with a cross). It does not respond to the
next HeartBeat h from Device 2, and after a while Device 2 removes Device 1 from
its cache.

81

CHAPTER 5. COMMUNICATION PROTOCOLS

h;6;2564;G

(a) A HeartBeat.

H;5;532;G

(b) A HeartBeatAck.

Figure 5.3: Heartbeat messages in the Pacemaker Protocol.

It should also be mentioned that the timeout in the heartbeat scheme is
not the only way for a device to disappear from caches. When a device is
about to make an orderly shut down, it broadcasts a HeartAttack message.
This enables other devices to promptly remove information about the de-
vice from its cache, or mark the device as inaccessible. Devices that do shut
down without sending a HeartAttack message will eventually be removed
as well, when other devices notice that they do not provide HeartBeat mes-
sages. This will be the case, e.g., when a device moves out of reach, or sim-
ply crashes.
In the implementation of the heartbeat mechanism, there is a space opti-
mization, intended to help meet requirement 4 on page 75, Efficient com-
munication. This optimization lets some of the addressing information be
omitted from many PalCom messages. Conceptually, the DeviceIDs and
selectors of both the sender and the receiver are present in every message.
However, especially the DeviceIDs can be quite bulky, because of their
global uniqueness. Therefore, DeviceIDs are translated to the primitive ad-
dressing mechanism of the underlying network as often as possible, while
maintaining the guarantee of binding to the particular device.
This DeviceID optimization is handled through a mapping between De-
viceIDs and technology-specific device addresses in the MAL Layer (in
the IP case, the technology-specific address is an IP address-port combi-
nation). This mapping is established when a first HeartBeat or HeartBeat-
Ack (which does not contain the DeviceID) is heard from a device. In the
MAL Layer, the technology-specific sender address of the HeartBeat or
HeartBeatAck is saved, and a unicast HBInfoRequest is sent to the device.
An HBInfoReply, sent in return using unicast, contains the DeviceID (both
HBInfo messages are unicast, because they should only be processed by the
intended receiver, not by all devices). After this request-reply sequence, the
DeviceID mapping is saved in the MAL Layer, and DeviceIDs do not have
to be included in future messages sent to that device: for devices within
the same local network, the network-specific address at a lower layer will
suffice (see the next section for a presentation of how routing is handled).
Above the MAL layer, the technology-specific addresses are not visible,
and DeviceIDs are used as if they were transferred in every message. Fig-
ure 5.2 shows an example heartbeat sequence.
The HeartBeats and HeartBeatAcks themselves contain no DeviceIDs, only
technology-specific addresses, which makes them very compact. This is

82

5.4. THE WIRE PROTOCOL

Figure 5.4: A schematic view of three PalCom devices, communicating in IP and
Bluetooth networks. The right-most column shows what addressing mechanisms
are offered by the respective layers: above the MAL layer, no medium-specific ad-
dresses are used. Device 2 is on both networks. The other devices are only on one
network each, but can communicate by addressing each other using DeviceIDs and
selectors. The communication is routed through Device 2.

important, because HeartBeats and HeartBeatAcks are sent repeatedly also
when no new devices appear, and should put as little load as possible on
the communication channel. Figure 5.3 shows examples of the contents of
heartbeat messages (see Section 5.4.6 for an explanation of the PalCom wire
format). The size of the two messages are 10 and 9 bytes, respectively. All
addressing information is in technology-specific message headers, so there
is no addressing overhead in the heartbeats. The information in the exam-
ple heartbeats are that device cache numbers are 2564 and 532, and that the
device status is G, for green (discussed below in Section 5.5.3). The direct
representation of heartbeats at this level, in the Wire Protocol, is motivated
by the need for very compact communication in some situations, where
the heartbeats can be tailored for specific technologies.

5.4.4 Routing between networking technologies

The optimization of omitting device addresses from PalCom messages, as
described above, works within one local network, where a technology-
specific address can be used for addressing the receiver directly. For com-
munication between networks, there are additional mechanisms in the pro-
tocols. As illustrated in Figure 5.4, some PalCom devices (Device 2 in the
figure) sit on more than one network, with one MAL layer manager for
each. These devices are referred to as PalCom routers, and communication
is routed through them. PalCom DeviceIDs and selectors span across net-

83

CHAPTER 5. COMMUNICATION PROTOCOLS

c;3;m;1︸ ︷︷ ︸
Node 1

d;8;palpable︸ ︷︷ ︸
Node 2

Figure 5.5: A non-routed messages over a connection.

s;3;521︸ ︷︷ ︸
Node 1

r;2;86︸ ︷︷ ︸
Node 2

c;3;m;1︸ ︷︷ ︸
Node 3

d;8;palpable︸ ︷︷ ︸
Node 4

Figure 5.6: A routed message over a connection.

works, while technology-specific addresses are assumed to be valid only
within one local network.
For messages going to a PalCom device that is not on the same local net-
work, the local device cannot send directly to the technology-specific ad-
dress of the receiver. Instead, the message goes to a PalCom router that
knows how to reach the receiver on some other network. As a secondary
optimization at this level, PalCom ShortIDs are used instead of sending
DeviceIDs in all messages. ShortIDs are names that are assigned by routers
for referring to PalCom devices on remote networks (the limited scope, de-
vices known by one router, makes them more compact than DeviceIDs).
Routers perform translations of ShortIDs as messages pass through them.
The initial distribution of ShortIDs is done in the heartbeat phase. Heart-
Beats and HeartBeatAcks are routed, and as they pass a router, the router
attaches the sender’s ShortID to them. When a device receives a ShortID
in a routed HeartBeat, it looks up the corresponding DeviceID through
an HBInfoRequest, which is sent to the originating device, routed back
through the router that forwarded the HeartBeat. An HBInfoReply is re-
turned, which contains the DeviceID, and the DeviceID can be exposed to
upper layers. In continued communication with the device, the ShortID is
put as receiver device address in messages. It should be noted that this
mechanism works also across more than one router, for multiple hops.
Figures 5.5 and 5.6 show examples of messages sent over a connection,
without and with ShortIDs as routing information. The node structure of
the messages is shown, as explained below in Section 5.4.6. The difference
between the contents of the messages are the two nodes added at the be-
ginning of the message in Figure 5.6 (13 bytes in total). The ShortIDs for
the sender and the receiver of that message are 521 and 86, respectively.
In summary, the DeviceID optimization and the mechanism of ShortIDs
mean that DeviceIDs are only transferred once per pair of communicating
devices. PalCom-specific device addressing information is only needed in
routed messages, in the form of compact ShortIDs.

84

5.4. THE WIRE PROTOCOL

5.4.5 Connections

The Communication Layer gives support for unicast, radiocast and group-
cast connections:

• Unicast (one-to-one) connections build on selectors. When a service
on one device wants to connect to a service on another, the Com-
munication Layer reserves a local selector and sends a connection
establishment message to a listening selector on the other device. The
Communication Layer on the other device reserves a new selector
for the communication, and sends a reply containing that. On both
sides, the layer then presents a connection interface to upper layers,
which hides the handling of selectors and lets messages flow in both
directions.

• Radiocast (one-to-many) connections are uni-directional: data flows
from a sender on one device to multiple receivers, and the sender is
not aware of the exact identities of the receivers. This is implemented
in the Communication Layer, on top of a broadcast mechanism pro-
vided by the MAL Layer. A sender is identified by a DeviceID and a
selector, where the selector points out the sender within the device.
No connection establishment messages are exchanged for radiocast
connections: the Communication Layer at the receiver simply starts
to listen for broadcasts that have been packaged as radiocasts from a
specific sender.

• Groupcast (many-to-many) connections do not involve selectors. For
these connections, where all members of a group can send and all
can receive, there is a GroupID that identifies the group. When the
Communication Layer receives a broadcasted message, packaged as
a groupcast and intended for a group to which the local device has
one or more connections, the message is delivered up to those con-
nections. There are two types of groupcast connections: one which
is local to one network, and one which works across routers. For the
former, devices can just start sending to the group and receive from it,
but for the latter there are connection-establishment messages, which
let routers keep track of group memberships in the networks they
are in. This way, groupcast messages can be forwarded between net-
works when needed.

5.4.6 Message formats

PalCom defines a general wire format for messages, as exemplified in Fig-
ures 5.3, 5.5 and 5.6. This format is used for packaging of messages in the
Discovery Protocol, and for messages between services, except for those

85

CHAPTER 5. COMMUNICATION PROTOCOLS

services that use their own, private message formats (those special services
implement their communication against the network layer directly, as dis-
cussed in Section 5.6). For each type of underlying network, the MAL layer
implementation handles how PalCom wire format messages are packaged
in technology-specific messages (such as UDP packets for IP).
A wire format message is structured as a set of message nodes, concatenated
after each other. The general format of a message node is the following:

MessageNode ::= <F>;<L>;<d>

Here, <F> is a one-byte format identifier, <L> is the length of <d>, and <d>
is the contents of the rest of the node, whose format depends on the value
of the format byte. Semicolons separate the three parts of a message node.1

The format byte is an ASCII printable character, usually a letter, and the
length is written in decimal, with ASCII characters. This means that the
whole node can be printed in readable characters, if the data is readable,
which makes inspection and debugging easier, and helps meeting the Pal-
Com visibility challenge (see Section 1.4). The node structure also gives
flexibility, because, if the protocol changes, it is possible to introduce new
nodes with little or no changes to existing nodes, in contrast to fixed-width
header formats. When a message goes down through the layers on its way
out from a device, nodes are added by lower layers at the beginning of
the message. At the receiving device, the nodes are processed from the be-
ginning, as the message goes up through the layers. Appendix A lists the
different message node types.
There are message nodes for addressing (selectors), to be used for messages
sent over connections (unicast, radiocast and groupcast) and for single-
shot messages. The actual data in a message is packaged in a data node. In
Figure 5.5, node 1 indicates that it is a message over a unicast connection,
to selector 1 on the receiver device (c is for connections, and m;1 is the
<d> part of the node, which is in turn semicolon-separated, with m mean-
ing a message over a unicast connection and 1 being the selector). Node 2
contains the data in the message (format byte d): the 8 bytes of the word
palpable.
There are additional nodes for routing. In Figure 5.6, node 1 contains the
ShortID of the sender (format byte s), and node 2 the ShortID of the re-
ceiver (r). The rest of the message is independent of the routing, and simi-
lar to the non-routed message.
The message format also permits hierarchically structured messages, with
messages inside messages at any number of levels. There is a format byte ’+’

1Calculating the <L> involves taking the length of <d>, but not including the <F>;<L>;
parts in the length. This means that the reader of a message needs to parse the <F>;<L>;
parts and then add the <L> to the current position in order to get just past the current message
node (and thus to the start of the next message node).

86

5.5. THE DISCOVERY PROTOCOL

for multi-part messages, which can be used for grouping a set of data (d)
nodes, possibly mixed with inner multi-part-nodes. This can be used by
upper layers as a mechanism for structuring data, or for grouping a num-
ber of related pieces of data to be sent in one message to the same receiver,
as an optimization that decreases the network overhead. An example of
structuring using multi-part nodes is the packaging of commands in the
Service Interaction Protocol (see Section 5.6 for an example). Regarding this
hierarchical structure, and the human readability, an obvious choice would
have been to base the wire format directly on XML. We have not done that
for the basic message format, though, because we need a more compact
format, and binary data in the messages has to be permitted. However, the
message formats for discovery and service descriptions, sent as data inside
wire format messages, are XML-based.

5.4.7 Large messages and reliable delivery

The message format supports transfer of large messages and reliable mes-
sage delivery, handled in the Routing and Communication layers. There
are special message nodes for these mechanisms at the PalCom level, which
means that PalCom services can communicate reliably on top of unreliable
networks, and send messages that are larger than the maximum transmis-
sion unit of the underlying network. As an example of this, the implemen-
tation for IP in the MAL Layer uses UDP, and does not require TCP. UDP
has an upper packet size limit that can be as low as 8K, and there are no
guarantees for packet delivery. Using the PalCom mechanisms gives a uni-
form handling, without TCP-specific overheads for IP.
The nodes supporting large messages let a message be chopped up into
numbered small pieces, which are put together at the receiver side. When
the message has been completely received, it is forwarded to the layer
above, or it is all dropped. The nodes for reliable communication put se-
quence numbers on messages, which let the Communication Layer on the
receiver side ask for re-sends if messages arrive out-of-order, or report fail-
ure if a message fails to arrive. For detecting dropped messages, the Com-
munication Layer keeps track of a timeout for each message during reliable
communication.

5.5 The Discovery Protocol

On top of the heartbeat mechanism in the Wire Protocol, the Discovery
Protocol defines how PalCom devices can describe themselves and their
services and connections, and discover other devices, services and connec-
tions. Section B.1 in Appendix B contains the grammar of the descriptors,
addresses and messages used in the Discovery Protocol.

87

CHAPTER 5. COMMUNICATION PROTOCOLS

5.5.1 Service naming

As given by requirement 2 on page 75, Names of devices and services, two
different kinds of device names are distributed in the Discovery Proto-
col. There are unique names in the form of DeviceIDs, used for identifying
devices unambiguously, and there are human-readable names, which are
shown to users. The short device names, ShortIDs, are not dealt with at the
Discovery Protocol level. They are hidden by lower layers.
Services also have human-readable and unique names, which are distri-
buted in the Discovery Protocol. The unique names, which identify ser-
vices unambiguously, are called ServiceIDs and ServiceInstanceIDs. These
are used for making sure that connections are made to the same device
and the same service, in the same version from one time to another.
A service can be created on one device and later deployed, cloned, to many
other devices. In some situations it is interesting to know that two services
have exactly the same interface. For this reason it is necessary to have an
identity of a service that is independent of the device it is residing on. On
the other hand, when addressing a service, the identity of the device it
resides on is important. Furthermore, particular services provided by as-
semblies, or unbound services, can be updated many times on different
devices after being deployed. We need to represent the version of a service
so the relations between such modifications can be understood and man-
aged. Our approach is to let versioning information be part of the unique
service names.
A ServiceID is an aggregated, unique identifier of a version of a service.
Part of the ServiceID stays stable when a service is moved or cloned to
another PalCom device. ServiceIDs are structured so they can be used for
constructing the version tree of a service: when an update is made to a ser-
vice on one device, the DeviceID of the updating device is included in the
new ServiceID. A ServiceID is put together as follows:

ServiceID ::= CreatingDeviceID CreationNbr
UpdatingDeviceID UpdateNbr
PreviousDeviceID PreviousNbr

• CreatingDeviceID is the DeviceID of the device where this service was
initially created. CreationNbr is a number that, together with the Cre-
atingDeviceID, uniquely identifies the service even if there are sev-
eral services created on the same device.

• UpdatingDeviceID is the DeviceID of the device where this service
was last updated. UpdateNbr is a number that uniquely identifies this
version of the service, together with UpdatingDeviceID, chosen such
that newer versions of the service have higher numbers, within the
device.

88

5.5. THE DISCOVERY PROTOCOL

• PreviousDeviceID is the UpdatingDeviceID of the previous version of
the service. PreviousNbr is a number that uniquely identifies the pre-
vious version of the service, together with PreviousDeviceID.

The six parts of the ServiceID identify a version of the implementation of
the service. The first two parts will stay the same even when the service is
updated and forms new versions. All six parts will be the same on what-
ever device this particular version of the service is instantiated.
A ServiceInstanceID identifies an instance of a service. There can be sev-
eral instances of the same version of a service, provided simultaneously by
the same device. An example of this is when an unbound service is started
twice or more on the same device. ServiceInstanceIDs are managed by the
device where the service is instantiated. After an instance has been started
the first time, the ServiceInstanceID can be used unambiguously for refer-
ring to that instance in the future:

ServiceInstanceID ::= [DeviceID] ServiceID
[InstNbr]

• The DeviceID identifies the device on which the service runs. This is
optional, as indicated by the brackets, because the DeviceID may be
left out in situations where the device is given by the context, (e.g., in
the services section of assembly descriptors, as explained below in
Chapter 6). Conceptually, a DeviceID is part of every ServiceInstan-
ceID.

• The ServiceID identifies the version of the service.

• InstNbr is a string that distinguishes otherwise similar instances of
a service on a device. InstNbr is optional: when there is only one
instance of a service on a device, the ServiceInstanceID does not need
to contain an InstNbr part.

When establishing a connection, a ServiceInstanceID is translated into a
selector, which is used for connecting to the service. Selectors to be used for
connecting to services are communicated as part of the Discovery Protocol.
ServiceInstanceIDs are also stored in assembly descriptors. They make it
possible to safely change to a service on another device, knowing that it
provides exactly the same interface. ServiceIDs are used when updating to
a new version of an assembly.
In the same way as for devices, services also have short names. The short
names for services are called LocalServiceIDs, and these are handled in the
Discovery Protocol. A LocalServiceID maps one-to-one with a ServiceIn-
stanceID on a given device. It can be more compact, because, in contrast

89

CHAPTER 5. COMMUNICATION PROTOCOLS

Figure 5.7: The logical tree of information about services on a device.

to a ServiceInstanceID, it only needs to be unique within the device. When
a service is updated, its ServiceInstanceID is changed, and the service is
given a new LocalServiceID. It is possible that the device will continue to
offer several versions of a service in parallel.
There is a request/reply pair of messages in the Discovery Protocol, used
for fetching the LocalServiceID of a service, given its ServiceInstanceID. In
a similar way, there is one pair of messages for looking up a ServiceInstan-
ceID from a LocalServiceID, and one pair for fetching the current selector
the service listens on, given a ServiceInstanceID. These messages are used
for translating names directly, without looking them up in the service de-
scriptors, that are announced as presented in the following section. The
possibility of direct lookup is useful, e.g., when establishing a connection
to a service whose ServiceInstanceID is in an assembly descriptor.

5.5.2 Descriptors

The Discovery Protocol distributes descriptors of devices, services and con-
nections, as given by requirement 10 on page 76, Descriptors. The informa-
tion about services on a device forms a tree, as illustrated in Figure 5.7.
These descriptors are the following:

• PRDDevice2 (marked with D in the figure) holds information about
the device, including the human-readable and the unique name.

• PRDServiceList describes a list of services (shown as a box, with S
and SL inside). It can have the following elements:

2PRD stands for PalCom Resource Descriptor.

90

5.5. THE DISCOVERY PROTOCOL

– PRDService (marked with S) contains name and addressing in-
formation about a service, including the human-readable and
unique names. Each PRDService has a service description at-
tached.

– PRDSubList (marked with SL) is a placeholder for a child list
in a PRDServiceList. A PRDSubList has a PRDServiceList below
it. In the PRDSubList there is an attribute kind, which indicates
if the services in the child list are ordinary services, services pro-
vided by an assembly, or unbound services.

• A service description (marked with SD) contains the in- and out-
going commands for a service. The commands have zero or more
parameters, and can be grouped hierarchically within the service de-
scription.

For connections, the Discovery Protocol contains the following descriptors:

• PRDConnectionList is a list with information about the currently es-
tablished connections that a device has initiated.

• PRDConnection is a descriptor for one connection in a PRDConnec-
tionList.

Connections of different topologies are described in slightly different ways
when announced in the Discovery Protocol:

• One-to-one connections are described by the identities of the two
involved services.

• For radiocast connections, each service that connects to the sending
service announces a new descriptor, containing the sender’s identity
and its own.

• When a service makes a groupcast connection, it announces in a de-
scriptor that it is connected to the group, which has an identifier known
by the involved services.

The descriptors follow an XML format, which is human-readable. Figures
5.8 and 5.9 show descriptors for the loudspeakers in the music scenario
of Chapter 2. For the PRDDevice, it can be noted that the DeviceID is not
part of the XML. It is obtained in the earlier heartbeat phase, and having
it in the XML would make the PRDDevice heavier. For similar reasons,
ServiceInstanceIDs are not in the PRDServices. Instead, they are looked
up from the LocalServiceIDs, which are in the descriptors. Examples of
XML for service descriptions, with commands, parameters and streaming
information, were shown in Figures 2.7–2.9.

91

CHAPTER 5. COMMUNICATION PROTOCOLS

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<D name="Loudspeakers" v="0.1" ds="G" rcs="5" />

Figure 5.8: The PRDDevice (D) for the Loudspeakers device, as
shown in the tree of Figure 2.6. name is the human-readable name
of the device, v is the device version, ds is the current device sta-
tus, and rcs is a selector used in the RemoteConnect protocol (see
Section 5.6).

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<SL>
<S name="Audio in" ls="3" d="1" p="P1" r="0"

vn="1" h="In-going audio stream" />
<S name="Volume control" ls="2" d="1" p="P1"

r="0" vn="1" h="Loudspeaker sound volume" />
</SL>

Figure 5.9: The PRDServiceList (SL) for the two services of the
Loudspeakers device in Figure 2.6. The descriptor contains two
PRDService elements (S). ls is the LocalServiceID of a service, d
indicates the type of distribution (unicast, radiocast or groupcast),
and p says what version of the Discovery Protocol the services
follow (allowing graceful upgrading). r being zero means that the
services do not communicate using reliable communication. vn is
a human-readable name of the version of a service. h is a help text.

92

5.5. THE DISCOVERY PROTOCOL

At each point in time, a device holds a set of descriptors about itself and its
services and connections. This information is distributed to other devices
by means of the Discovery Protocol. For efficiency reasons (requirement 12,
Scalability), the whole set is not sent out in one big message each time. This
is because

(1) not all devices are interested in all the information (e.g., when visu-
alizing a number of discovered devices in a browser, the user might
only be interested in inspecting the services of some of them), and

(2) when the state of a service or connection changes, it is inefficient to
send all descriptors each time.

Especially the service descriptions are envisioned to sometimes be quite
bulky. Therefore, the descriptors are distributed in separate messages, and
there are request messages for requesting exactly the information a de-
vice needs. These requests, and the corresponding replies, are unicast. A
caching scheme is used for optimizing this communication, as discussed
in Section 5.5.5.

5.5.3 Status information

The Discovery Protocol supports distribution of status information about
devices and services. This information can be shown for discovered entities
in browsers, helping users when interacting with services or combining
them in assemblies. The main status information is one byte with one of
three values:

• R means “not operational” (red).

• Y means “partially operational” (yellow).

• G means “fully operational” (green).

This information can, e.g., be visualized as traffic lights for devices and
services. For services, the status byte is accompanied by StatusHelpText, a
text field, possibly empty, that explains the status further. Exactly how the
status should be interpreted depends on the device and service itself. It
is mainly intended as a source of feedback to a human user when things
are not working as expected. The StatusHelpText can be used to further
explain for an interested user what the source of the problem is. Taking
a digital camera as an example, one way of using the status mechanism
could be:

• R, with the text “No flash card available”, when there is no flash card.

93

CHAPTER 5. COMMUNICATION PROTOCOLS

• Y, with the text “Flash card full”, when the flash card is full.

• G, with no text, when everything is fine.

The device status is sent out in every heartbeat from the device, as shown
in Figure 5.3 (where the status is G). For obtaining status information for
a service, there are special request and reply messages in the Discovery
Protocol. As for the descriptor requests and replies, the caching scheme is
used for minimizing this traffic.

5.5.4 Versioning

The support for versioning of services is built into the naming scheme, as
discussed above in Section 5.5.1. When a service is updated, the DeviceID
of the device where the update is made is put into the new ServiceID, in
a way that makes it possible to reconstruct a (partial) version tree from a
number of available versions of a service.
There is versioning support also for devices. This is not part of the Devi-
ceIDs, which stay stable, but there is a device version field in the PRD-
Device, which uniquely defines a version of the “platform” of a device.
When the device version is the same, assembly managers and services can
trust that the underlying software on the device is the same, including the
device firmware and the implementation of PalCom managers. The device
version changes if manager implementations change, or when the hard-
ware or underlying software changes.

5.5.5 Caching

The basic functionality in the Discovery Protocol builds on the light-weight
heartbeat mechanism, defined in the Wire Protocol. A second aspect that
makes the Discovery Protocol bandwidth-efficient is the use of caching.
The purpose of this caching is to minimize the unicast request-reply traf-
fic, and the basic idea is that when some of a device’s descriptors have
changed, it should be possible to see that by looking at the device’s cache
number, which is part of the heartbeat. If the cache number is unchanged,
compared to the latest saved cache number from that device, all descrip-
tors are unchanged and cached information can be used. For small devices,
with a fixed set of services, and which initiate no connections that need to
be announced, this means that at most one sequence of requests will be
received from each device. After that, the other devices will see that the
cache number is unchanged, and not ask again.
As a refinement of the caching scheme, there are also a number of more
fine-grained cache numbers, indicating what kind of information has chan-
ged when the device cache number changed. The purpose of this is not

94

5.6. THE SERVICE INTERACTION PROTOCOL

having to request many types of descriptors, when only one type has chan-
ged. There are cache numbers for services, connections, selectors, service
status and device version. As an example, the set of connections typically
changes more frequently than the set of services on a device, and the ser-
vice descriptions might be bulky, so it is a useful optimization to look at
the connections cache number and request only connection descriptors.

5.5.6 Small devices

As mentioned above, it is important that the overhead inflicted by the Dis-
covery Protocol is as small as possible for resource-constrained devices.
Such a device would be one that simply offers one or a few services, does
not initiate any connections and does not dynamically start any assemblies
or unbound services. The small device can take further advantage of the
request-reply scheme in the protocol: it will never initiate a discovery pro-
cedure, because it is itself not interested in replies. It can be reactive and
answer HeartBeats and requests with simple, fixed answers, and it can ig-
nore the HeartBeatAcks from other devices. The small device does not need
to keep track of a heartbeat period, which simplifies the implementation of
the Discovery Protocol and reduces runtime overhead.

5.6 The Service Interaction Protocol

Once services have been discovered using the Discovery Protocol, they can
be connected and start communicating. At this level, there is a PalCom pro-
tocol called the Service Interaction Protocol. According to requirement 3 on
page 75, Communication with services, the communication between services
must, however, be open and not restricted for services that have special
demands. These demands may, e.g., be that a set of services require en-
cryption according to a certain scheme, or that data is compressed in a
special way. Therefore, the Service Interaction Protocol is not a standard
protocol in the same way as the Discovery Protocol, in the sense that all
PalCom devices have to follow it. Instead, it is the default protocol used for
communication between services, used when services do not announce in
their descriptors that they use another, custom protocol.
In the Service Interaction Protocol, communication takes place in an asyn-
chronous manner, in the form of commands sent over connections. There
is a wire format for packaging the commands with their parameter val-
ues. This format builds on the multi-part message format, defined in the
Wire Protocol (see Section 5.4.6), and on the XML format of commands
(CmdI elements, as shown in Figure 2.7). The format is constructed so that
messages for commands with textual parameter values consist entirely of
human-readable characters. For commands with binary parameter values,

95

CHAPTER 5. COMMUNICATION PROTOCOLS

c;3;m;1︸ ︷︷ ︸
Node 1

+;92;

Part 1︷ ︸︸ ︷
d;77;<CmdI . . .</CmdI>

Part 2︷ ︸︸ ︷
d;6;Normal︸ ︷︷ ︸

Node 2

Figure 5.10: A command packaged in a multi-part message.

the parameters are transmitted in binary. Figure 5.10 shows a command,
as sent out over a connection from the loudspeakers’ volume control ser-
vice, when the sound volume has been changed to Normal (see Figure 2.2).
Node 1 contains addressing information. Node 2 is the multi-part node,
which has two parts: part 1 is a data node that contains the XML descriptor
of the command, and part 2 contains the value of the single parameter. If
there had been more parameters in the command, more parts would have
followed.3

The Service Interaction Protocol also has a sub-protocol, called Remote-
Connect, whose use precedes the command communication. RemoteCon-
nect is used for connecting two services from a third device, typically from
a PalCom browser or by an executing assembly. After the services have
been connected, they can communicate. The protocol consists of two uni-
cast messages: RemoteConnect and RemoteDisconnect. The RemoteCon-
nect message asks a device to establish a connection between one of its
services and another service, and RemoteDisconnect asks it to close a pre-
viously opened connection.

5.7 Related work

The PalCom communication and discovery protocols have been designed
according to the requirements presented in Section 5.2. Protocols devel-
oped in other research projects, or for other technologies, are all designed
for more or less different requirements, and therefore we cannot compare
all aspects of the PalCom protocols with any of them. As an example,
DEAPspace [77] focuses on single-hop short-range wireless systems, where
low power consumption is crucial, while Jini [121] targets larger and more
fixed networks, where devices can be more powerful. In this section, we
will compare with solutions for different issues or subproblems that have
been used in related protocols.
PalCom is not tied to one particular network technology, but allows sup-
port for different technologies in the MAL Layer, which are abstracted
through the use of addressing with DeviceIDs and selectors, and a com-
mon message format. This abstraction is done in order to support devices

3In Figure 5.10, 92 is the length of the contents of node 2. This is the sum of the lengths of
part 1 (5 bytes + 77 bytes of XML data) and part 2 (4 bytes + the 6 bytes of the word Normal).

96

5.7. RELATED WORK

with limited capabilities in restricted environments, where messages can
be tailored for specific requirements. Several other protocols are instead
based solely on the Internet Protocol (IP), which PalCom handles in one of
the MAL Layer implementations. One example of an IP-based protocol is
UPnP [114], which has zero-configuration assignment of IP addresses, and
which uses HTTP-based protocols on top of that, with variants of HTTP
for multicast UDP, unicast UDP, and TCP. Zeroconf [99] is also based on IP,
with similar zero-configuration address assignment, and DNS-based pro-
tocols for handling naming and discovery. Web technologies are based on
HTTP and IP.
Haggle [100] is an architecture that aims to separate application logic from
the underlying networking technology, thereby making it more adaptive
and flexible—with seamless connectivity—for example in a situation with-
out a central network infrastructure. A key idea is just-in-time binding, which
means that decisions about protocols and lower-level addresses are de-
ferred as late as possible, so they can be switched when conditions change.
PalCom has routing between technologies within local networks, and tun-
nels between networks. UPnP relies on network-based multicast for dis-
covery, which means that devices cannot discover each other over a wide-
area network. This issue has been tackled for UPnP in research approaches
based on proxies and gateways [76, 116].
The rest of this comparison with other protocols will be structured accord-
ing to the two problems of

(1) discovery, how a service can be discovered and contacted, in order
to communicate with it, and

(2) service interaction, how communication with services is done.

5.7.1 Discovery

There are many existing protocols for discovery of devices and services in
pervasive computing systems. The basic purpose of such protocols is that
it should not be necessary to know the exact address of a service (such as
IP address and port). Instead, it should be possible to discover and use
the service when one connects to a network. Some discovery protocols are
developed in academia, such as DEAPspace and GSD [77, 18], some by
software vendors as part of operating systems, such as Jini, UPnP, and Ze-
roconf, and some by various consortia, such as Salutation [96], IETF and
Bluetooth SIG. Zhu et al. have compared a number of these existing discov-
ery protocols along different dimensions, and placed them in a taxonomy
[125].
Some technologies, such as Bluetooth, have discovery mechanisms that are
closely tied to the lower layers in their respective protocol stacks. For sup-

97

CHAPTER 5. COMMUNICATION PROTOCOLS

porting multiple technologies in PalCom, one option could be to delegate
to the native discovery protocols, and let the MAL Layer present the results
to upper layers. This approach has been chosen by Haggle [100] and also
by Obje [81], which abstracts each discovery protocol as an aggregate com-
ponent. In PalCom, we have chosen to design a generic PalCom Discovery
Protocol, which relies on unicast and broadcast communication from the
underlying technology. But, if necessary, the choice of using native discov-
ery protocols is still open, when building a MAL Layer implementation.
The following discussion of different discovery protocols will take PalCom
design choices as its starting point.

PalCom is device aware

The importance of devices in PalCom has been emphasized in previous
chapters, and devices are announced as stand-alone entities in the Discov-
ery Protocol. Other projects argue for announcing services only. In Jini, this
is referred to as device agnosticism, meaning that hardware and software can
be treated in a unified way by clients [31]. Zeroconf has a similar principle,
and argue that discovering the service is what matters, because it is the
service that handles the actual communication [99]. For a pervasive com-
puting system like PalCom, our stand-point is that the devices should be
visible, as a way of guiding the user. In addition, pervasive services are
localized (as opposed to, e.g., Web services), and people can be expected
to care more about which of several devices is used. This is backed by the
observation that in many application prototypes studied in PalCom, the
actual device that hosts a service plays an important role for the end user:
the GeoTagger for landscape architects, biomonitor sensors for emergency
personnel [65], enhanced incubators at the hospital, the Stone device sup-
porting pregnant women [119], etc. In some of these scenarios there are
multiple devices with identical services around, and device identity mat-
ters for the user—in particular when something goes wrong. Even in the
often-mentioned example with finding a “Print” service for printing a doc-
ument,4 the physical location of the printer (the device that provides the
service) is relevant. This is the motivation for having devices as discov-
erable elements. We should also mention that this decision is not unique.
UPnP focuses on devices, and lets services be discovered inside device de-
scriptions [114].

PalCom uses advertisements, not queries

Another point that differs between protocols is how the discovery process
is initiated. The starting point in many protocols is that the user searches

4The “Print” example is a common example in discovery protocol literature.

98

5.7. RELATED WORK

for services, by formulating some form of query. In PalCom, the scenario
is rather that the user browses for services on nearby devices. Jini is one
example of a query-based approach. In Jini, a discovery request takes the
form of asking a lookup service for an object which implements a particular
Java language type, or which has certain attribute values [121]. Attributes
for specifying queries are also used by SLP [53]. In UPnP and Bluetooth,
searches can be made for all devices, or for specific device or service types.
A potential advantage of query-based approaches is that the query, which
is quite compact, can be broadcasted, while replies with device and service
information, which are generally more bulky, can be sent in unicast to the
requesting device, and need not be processed by all devices. This keeps
the load on the network down. Still, we have not built a query mechanism
in the PalCom Discovery Protocol. The main reason for this is the prob-
lem of formulating the query. Using Java types, or attribute values, puts
us in a situation similar to the domain-specific standardization discussed
in Chapter 1. This is a risk also for systems based on semantic ontologies,
such as GSD and DReggie [18, 19]. Secondly, relying on queries means that
the connection to the physical devices in your vicinity, as advocated above,
is easily lost, because the focus is on services, not devices.

PalCom uses no central directory

One important design parameter for a discovery protocol is whether there
is a central directory or not. The discovery protocols for Jini [121] and Salu-
tation [96] make use of this: services register themselves in a central direc-
tory, and clients go to the directory for looking up services. The opposite
alternative is to let each device or service announce its presence on the net-
work directly by means of broadcasts, and for clients to go directly to the
service for interacting with it. This approach is taken, e.g., by UPnP [114].
There are also hybrid approaches. Example are VSD [60], where more pow-
erful devices can volunteer to serve as directories, when it is needed, and
One.world, which uses a dynamic election mechanism [43].
Based on requirements drawn from the PalCom prototypes, we have cho-
sen an approach without a central directory. In many cases there are only
a few devices forming an ad-hoc network, and, as pointed out in [77], it is
often not obvious what device should host the directory in such situations.
As we see it, directories are better used for limiting bandwidth usage in
large networks. This view is also supported by Shenoi et al. [97], who write
that centralized registry-based architectures are mainly for stable wired in-
frastructures.

99

CHAPTER 5. COMMUNICATION PROTOCOLS

PalCom supports transient devices

It is in the nature of pervasive computing systems, that many devices will
frequently join and leave networks. Devices will follow people, forming
ad-hoc networks with the devices currently in the vicinity. These networks
are often wireless, with varying signal strengths, which means that the pro-
tocols must be prepared to handle dropouts in the communication, and
that replies to messages cannot always be expected. For discovery pro-
tocols that target pervasive computing environments, it is important that
new devices are discovered fairly quickly, and that devices leaving a net-
work do not remain “discovered” for too long, in the caches of other de-
vices.
A related aspect to consider is how we get to know that a device is not
available any more. This is a tough problem, because when you are dead,
or have left the network range, it is too late to tell the world, and death can
come unexpectedly. This problem is called partial failures, one of the issues
that makes distributed systems more difficult to handle [31, 59]. There is
always a risk that one device goes down in an unclean way, without having
the time to inform the other devices. This could, e.g., be due to a software
crash, power loss, or physical damage. From the other devices, it can be
hard to detect this, because it may look like a device is simply slow in
response. There must be a way to handle devices that suddenly leave the
network without sending out notifications, so that the lists on all devices
can be updated.
In Jini, leasing is used to remedy some of the partial failure problems. This
is a kind of garbage collection: all services, that want to announce them-
selves, lease a place in a lookup directory for a limited time. If the service
crashes and the lease is not renewed regularly, the resource in the directory
will be removed. This keeps old resources from filling up memory on direc-
tory devices, and gives a form of self-healing to the system. But it does not
solve the problem of services that join and leave frequently. For as long as
the timeout of a certain lease, the Jini directory will provide proxies for the
service to clients. If the service crashes, lookup directories will distribute
out-dated proxies, and clients will not notice that the service does not re-
spond, until they try to communicate with it. This reflects the fact that Jini
is mainly targeted for larger, fixed networks, not ad-hoc networks.
UPnP is not designed for rapidly changing networks either, but mainly
for more static set-ups. UPnP uses periodic advertisements. In [114, p. 14],
30 minutes is given as the minimum time for the duration of an advertise-
ment. Such a long duration keeps the load on the network down, because
not so many advertisements are sent, but we argue it is much too long for
a pervasive setting.
Zeroconf [99], on the other hand, has a very drastic philosophy: there are
no periodic idle packets at all in the mDNS discovery protocol, on which

100

5.7. RELATED WORK

Zeroconf builds [21, Section 9.3]. There is no polling or heartbeat at all for
detecting partial failures. Instead, the failure or crash of one device is de-
tected next time any device tries to communicate with it, and then that
information is spread in the network. Unless anyone tries to use a device,
it can remain indefinitely in users’ lists of discovered devices. The motiva-
tion is to keep the load on the network down.
PalCom chooses a middle way, with a very compact heartbeat at the Wire
Protocol level. As devices listen in on broadcasts, each device has to broad-
cast only once per period, and it is the most eager device that controls the
period. In less critical situations, the period can be increased.
DEAPspace [77], which targets single-hop short-range wireless systems,
presents proactive service discovery, in which each member device sends out
the full list of known services, not just its own. The goal is to discover ser-
vices faster as they appear, while keeping the load on the network down.
In DEAPspace, devices cancel and reschedule broadcasts when a broadcast
is heard from another device, an idea which has some similarities with the
idea of listening in on broadcasts.

Techniques for discovery efficiency

PalCom’s way of combining compact heartbeats with unicast requests for
more detailed information, in case a device is interested in it, is somewhat
similar to the split between discovery and description in UPnP [114]: in the
discovery step, only a few essential specifics about a UPnP device or ser-
vice is distributed, and interested devices retrieve descriptions in the de-
scription step.
The second main performance measure in the PalCom Discovery Protocol
is the caching and the cache number flags. Techniques based on caching are
used in other protocols as well. Zeroconf [99] has the techniques of Known
Answer Suppression, Duplicate Question Suppression, Duplicate Answer
Suppression, and Opportunistic Caching, which are all ways for devices to
avoid network communication by utilizing their caches in different ways.
GSD [18] uses peer-to-peer caching of advertisements, and group-based
intelligent forwarding of service requests, in order to reduce the network
traffic. Chapter 10 will present quantitative measurements, for evaluation
of the scalability of the PalCom protocols and the reference implementa-
tion.

5.7.2 Service interaction

After discovery of services, the second phase is the actual communication
with a service. Not all of the protocols we have looked at have specifica-
tions at this level. E.g., the Zeroconf protocols end where the IP host and

101

CHAPTER 5. COMMUNICATION PROTOCOLS

port of a service is transmitted to the discovering party: after that, the for-
mat of the communication is completely service-type specific. Examples of
protocols that have specifications at this level are Jini, for which the com-
munication is done through method calls on a proxy object, and UPnP,
which has SOAP communication according to an XML service description.

PalCom does not rely on mobile code

PalCom does not make use of mobile code in the Service Interaction Pro-
tocol. Instead, the protocol specifies an XML format for commands, which
are packaged in PalCom message nodes and sent over connections. One
reason is that we want to allow implementations of the protocols on dif-
ferent platforms, and not tie the protocols to a specific platform, like Jini
does in practice with the dependence on the JVM. An independent imple-
mentation of the PalCom protocols has been demonstrated in the master’s
thesis [72]. Our view on mobile code is supported by [43, p. 28], where ex-
periences from the One.world project are discussed. The author writes, in
retrospect, that One.world would have been better off with a data-centric
model, such as XML Schema, rather than expressing and distributing data
schemas in the form of code. Reasons for this are that data is easier than
code to distribute and share. It is not tied to a specific execution platform,
and thus gives better interoperability. Compatibility with Internet proto-
cols is also mentioned as an important factor.

PalCom has asynchronous communication

Some protocols use service interaction mechanisms that are based on, or re-
lated to, Remote Procedure Calls (RPC). In RPC, a client executes a procedure
(method) on a service remotely. The RPC system packages the procedure
call with parameter values and sends it to the service over the network. The
method executes in the service, and a return value is sent back over the net-
work. Meanwhile, the client is blocked until the return value arrives. One
protocol that is based on RPC is Jini with RMI [102]. UPnP uses SOAP for
communication with services, which is generally used in an RPC way, and
Web Services described in WSDL also use SOAP for their communication.
One problem with RPC is that the client gets blocked during the call, and if
there are network errors, or a device disappears, the client remains blocked.
In PalCom, we have instead based the Service Interaction Protocol on asyn-
chronous communication, where commands are sent without waiting for
replies. If a service wants to send back a response to a command, the re-
sponse is sent in a separate command. This, we argue, is a model that fits
much better in unreliable networks.
A related question is who initiates the communication. With RPC, we have
a client/server model, where the client always takes the initiative. In Jini

102

5.8. SUMMARY

and UPnP, there are also eventing mechanisms, which let a client subscribe
to events from a service, and when something happens the event is sent out
to subscribers. In PalCom, we have chosen to unify this, and use the same
command mechanism for communication initiated by the service. There is
no separate eventing mechanism, but pull and push are handled the same
way. This fits with the peer-to-peer relationship between devices normally
involved in PalCom scenarios.

5.8 Summary

Adhering to the PalCom protocols is what defines a PalCom device or ser-
vice. The Wire Protocol

• abstracts from different network technologies, by defining a common
wire format and by using PalCom addresses that abstract from tech-
nology-specific addresses.

• uses an extendable, node-based message format.

• contains the Pacemaker Protocol, which

– adjusts its heartbeat frequency to the needs of the most eager
device.

– detects non-available devices within the needed time delay.

• supports connections, single-shot messages, reliable communication,
large messages and different distribution schemes (unicast, radiocast
and groupcast), as needed by PalCom services.

• gives compact support for routing between networks, in multiple
hops and between different network technologies. The use of Device-
IDs, rather than network interface addresses, supports transparent
routing and mobility of devices between networks, without affecting
service level implementations.

The Discovery Protocol

• distributes names, addresses and descriptors of devices and services,
including human-readable names and unique identifiers that are in-
dependent of the network technology used.

• supports a strict versioning scheme, with explicit version control for
services.

• distributes status information about devices and services.

103

CHAPTER 5. COMMUNICATION PROTOCOLS

• uses a caching scheme, where detection of changes supports efficient
updates of cached information.

• is partitioned in a way that lets small devices implement only a small,
reactive part of the protocol.

Further, the Discovery Protocol

• keeps PalCom device aware by announcing devices at the top level.

• uses no central directory.

• is based on advertisements, not queries.

• supports transient devices that join and leave networks frequently.

• does not rely on mobile code.

• uses asynchronous communication.

The Service Interaction Protocol

• supports command communication between PalCom services.

• contains the RemoteConnect sub-protocol, which lets pairs of ser-
vices be connected from a third device.

104

Chapter 6

The language of assemblies

An assembly sits between a set of services on devices, and can be seen as a
customizable, multi-connector wiring between them. In Chapter 4, it was
discussed how the structure of assemblies supports a separation of config-
uration, coordination and computation. This chapter will present the lan-
guage of assembly descriptors, and how those three aspects are expressed
in different parts of the assembly. Further, different representation formats
of the descriptors will be discussed, followed by a look at the tasks an as-
sembly manager performs when executing an assembly, and mechanisms
for updating and versioning of assemblies.

6.1 Configuration

The configuration aspect of an assembly concerns what devices and ser-
vices are included, and how they are connected. The parts of an assembly
descriptor that have to do with this are the lists of devices, services and
connections, flexible bindings to devices and services, and the interface of
synthesized services.
The assembly descriptor language is small: its abstract syntax fits on two
pages in Section B.2 of Appendix B. Yet, it is sufficiently powerful for many
interesting applications. In this section, we will first use the Uploader as-
sembly, which was introduced in Chapter 4, to illustrate the basic features
of the language. The task of Uploader is to send tagged images, produced
by the TaggingCamera assembly, to the photo database on the server at the
office. The assembly descriptor for Uploader is shown in Figure 6.1.

CHAPTER 6. THE LANGUAGE OF ASSEMBLIES

1 assembly Uploader 1.0 released {
2 this = ServiceID;
3 devices {
4 Handheld = DeviceID;
5 Server = DeviceID;
6 }
7 services {
8 CameraSynth = ServiceInstanceID on Handheld;
9 PhotoDB = ServiceInstanceID on Server;

10 }
11 connections {
12 CameraSynth <-> this;
13 PhotoDB <-> this;
14 }
15 script {
16 eventhandler {
17 when taggedPicture from CameraSynth {
18 send storePicture(thisevent.img)
19 to PhotoDB;
20 }
21 }
22 }
23 }

Figure 6.1: The Uploader assembly. The descriptor is shown in concrete syntax,
with keywords in bold (see Section 6.4 for information about different presentation
formats of assembly descriptors).

106

6.1. CONFIGURATION

6.1.1 Name and versioning information

The name of the assembly is given on line 1 in the Uploader assembly
descriptor (Figure 6.1). Furthermore, its human-readable version number
1.0 is shown, and its status is shown as released. This means that version
1.0 of the assembly is released, i.e., copies of it can occur elsewhere, and
if this assembly is further edited, the editing tools should automatically
update the version number. See Section 6.6 for more information about
versioning of assemblies.
On line 2, a more elaborate version number of the assembly is given, using
the syntax “this = ServiceID”. The ServiceID is structured as described
for service identifiers in Chapter 5. This way, the assembly gets a version
identifier that is guaranteed to be unique, according to the scheme for Ser-
viceIDs.

6.1.2 Devices and services

Devices and services are identified by globally unique names, as discussed
in Chapter 5. These names have an internal structure including versioning
information, and typically they are quite long, and not intended to be very
readable to a human. In the Uploader example in Figure 6.1, we simply dis-
play them as non-terminals: DeviceID and ServiceInstanceID. These
unique names are used for making it possible to reconnect an assembly to
the same devices and services as used when the assembly was constructed.
The versioning information in the names is used by tools to make safe up-
grades of an assembly when a service or a device has been upgraded.
On lines 3–6 in Uploader, the devices involved in the assembly are listed.
For each device, a local name and the DeviceID are given. The local names
(Handheld and Server) are identifiers relevant only inside the assem-
bly. The assembly author is free to use any identifier, as long as all local
names for the devices are unique within the assembly. When editing as-
semblies in an editor, the editor can suggest the local name based on the
human-readable name of a device, as currently discovered in the browser
at editing-time. The name can be changed by the author, typically for bet-
ter showing the purpose of a device in the specific assembly. The name
used for actually identifying a device is the DeviceID. The editing tool can
automatically retrieve also this name and insert it automatically into the
assembly descriptor.
On lines 7–10 the services are listed, and these names are handled in the
same way as for devices. Two different devices, e.g., two projectors, can
have (different instances of) the same service on them. To uniquely iden-
tify a service instance on a particular device, ServiceInstanceIDs are used.
The service declarations also state which devices the services execute on,

107

CHAPTER 6. THE LANGUAGE OF ASSEMBLIES

using an explicit “on LocalDeviceName” syntax. This facilitates assembly
rebinding (see Section 6.6).
There are certain static-semantic constraints on how assemblies may be
constructed, which can be checked by an editor while an assembly is being
edited. This static consistency checking boils down to common name- and
type checking rules similar to those in simple programming languages:

• That local names are unique.

• That used local names are declared.

• That device names are not used where service names are expected,
or vice versa.

When activating an assembly, the device declarations will be bound to de-
scriptions of actually discovered devices. Naturally, it may be the case that
it is not possible to discover a given device. It might be broken, turned off,
not within range, etc. The operation of the assembly may then be limited
for the moment.
Even if a device is available, it is not guaranteed that all its services are
available. Some services may be down, depending on the state of the de-
vice. It might also be the case that when an assembly is updated so that a
device declaration is changed to another device, the new device does not
have all the declared services. Tools can flag these situations as errors or
warnings, and guide the user in trying to change to another service on the
same device, or possibly to a service on another device.

6.1.3 Connections

The connections section, lines 11–14 in Uploader, lists how pairs of ser-
vices are connected to each other during execution of the assembly. The
assembly is here viewed as a service, denoted by this. More specifically,
this denotes one of possibly several implicit services, as discussed in Sec-
tion 4.2. The implicit services mark assembly-side end-points of connec-
tions between services and the assembly. Given a connection declaration
s1 <-> s2, commands can flow in both directions between s1 and s2.
In the Uploader example, all the listed services are connected to the assem-
bly (this), but it is also possible for an assembly to connect one listed ser-
vice directly to another. The RemoteSlideShow assembly, as presented in
Chapter 4, is an example of such an assembly. It is shown in Figure 6.2. Also
for this type of connection declarations, local device and service names are
used.
There are semantic constraints that can be checked only dynamically, when
activating the assembly. If the services of a connection are available, it can

108

6.1. CONFIGURATION

assembly RemoteSlideShow 1.0 released {
this = ServiceID;
devices {
Projector = DeviceID;
Laptop = DeviceID;
Phone = DeviceID;

}
services {
Control = ServiceInstanceID on Laptop;
Slides = ServiceInstanceID on Laptop;
UIDisplay = ServiceInstanceID on Phone;
Screen = ServiceInstanceID on Projector;

}
connections {
Slides <-> Screen;
Control <-> UIDisplay;

}
}

Figure 6.2: The RemoteSlideShow assembly in concrete syntax.

be checked that the connection is well formed: the service descriptions of
the involved services can be checked, making sure that the commands
or streams match, regarding names and MIME types. For the streaming
connection Slides <-> Screen in Figure 6.2, it is checked that the MIME
types of both the involved services is image/jpeg, and that they have op-
posite streaming directions. The Control <-> UIDisplay connection
is OK, because UIDisplay is a meta service that can be connected to any
control service.

6.1.4 Bindings

Bindings that specify alternative services is one way to prepare an assembly
for a situation where the set of available services varies. Alternatives are
specified as prioritized lists in the services section. When running the
assembly, it will bind to the top priority service if it is available, and if
not, to the next service on the priority list, etc. In the following example,
the assembly defines two alternative GPS services, giving the first priority
over the second:

devices {
MainGPS = DeviceID;
BackupGPS = DeviceID;
Compass = DeviceID;

109

CHAPTER 6. THE LANGUAGE OF ASSEMBLIES

Camera = DeviceID;
Handheld = DeviceID;

}
services {
Position = {
ServiceInstanceID on MainGPS priority 1,
ServiceInstanceID on BackupGPS priority 2

}
...;

}

When the assembly is running, the Position service may be rebound on
the fly: Suppose that initially both MainGPS and BackupGPS are available.
Position will then be bound to the service on MainGPS, due to priority.
If MainGPS fails or disappears while the assembly is executing, Position
will automatically be rebound to the service on BackupGPS (if still avail-
able). If the MainGPS becomes operational again, Position will again be
rebound to the service on MainGPS, and so on.
It is assumed that MainGPS and BackupGPS both have the same service
protocol for their services. This will typically be the case if the two GPSs
are two devices of the same model. However, if the two GPSs are com-
pletely different, say from two different manufacturers, they might well
have different service protocols. In that case, it is possible to create an as-
sembly which adapts one of the GPSs. It can use a synthesized service to
act as a proxy, and an event handler to translate the messages as required.
The other type of dynamic binding defines whether a service is mandatory
or optional. This is indicated by marking mandatory services using the key-
word mandatory:

services {
...
Direction = ServiceInstanceID on Compass;
mandatory Photo = ServiceInstanceID on Camera;
mandatory Storage = ServiceInstanceID on Camera;
mandatory CoordinateStuffer
= ServiceInstanceID on Handheld;

}

In this example, the assembly author has considered the Photo and Storage
services on the camera, and CoordinateStuffer on the handheld, as manda-
tory for the functionality of the assembly. The way to define a service as
optional is to leave out the mandatory keyword, such as for Direction in
the example. Leaving all services as optional means that the assembly will
work on a best-effort basis, using all services that are available.

110

6.1. CONFIGURATION

6.1.5 The interface of synthesized services

The TaggingCamera assembly, whose deployment diagram was shown in
Figure 4.5 and which was listed in Figure 4.7, provides a synthesized ser-
vice. Through the synthesized service, a user or assembly can tell the as-
sembly to take a picture, and also retrieve the latest tagged picture. The
interface of the synthesized service is declared on lines 32–35:

32 synth CameraSynth {
33 in takePicture();
34 out taggedPicture(image/jpeg img);
35 }

The synth clause declares a name, CameraSynth, and defines in-going
and out-going commands. If a command has parameters, those are also
declared. In this example, the command taggedPicture has a parame-
ter called img of the MIME type image/jpeg. The definition of how the
synthesized service works is part of the coordination aspect, which will be
discussed in the following section.
Typically, a synthesized service provides an aggregated interface to a set
of composed services, such as in the CameraSynth example. It is, however,
perfectly possible and useful to provide synthesized services for assem-
blies with only one or even zero constituent services: an assembly contain-
ing a single constituent service can be used as a wrapper or adapter of that
service. An assembly with zero constituent services is useful for building
simulated services in a development situation: the synthesized service of
the assembly can be made the same as a not yet developed real service, and
used in the development of other assemblies.
Synthesized services can be defined to participate in groupcast or radio-
cast communication, as discussed in Chapter 3. In the following example,
from the Active Surfaces puzzle game assembly which will be presented
in Chapter 9 (Figure 9.12), the keyword groupcast is used for indicating
that the service participates in a group named HappyGroup:

38 synth HappySynth groupcast HappyGroup {
39 in out challenge();
40 in out veto();
41 }

In the declaration of a groupcast service, the commands have both direc-
tions in and out, because the service receives all commands sent to the
group, and can send any command as well.
For a synthesized service using radiocast communication (defined using
the keyword radiocast), all commands are either out, for a sending ser-
vice, or in, for a receiving service.

111

CHAPTER 6. THE LANGUAGE OF ASSEMBLIES

6.2 Coordination

The coordination aspect of the assembly is where additional functionality
is added, compared to when a set of services are connected directly, as
defined by the configuration. The coordination is in the script and its event
handling clauses, where commands can be sent or forwarded to services,
and values can be saved in variables.

6.2.1 Script and event handling clauses

The optional script section of an assembly descriptor, lines 15–22 in Up-
loader (Figure 6.1 on page 106), defines the automated behavior of the as-
sembly. This is done in terms of a set of event handling clauses, in this case
only one:

17 when taggedPicture from CameraSynth {
18 send storePicture(thisevent.img)
19 to PhotoDB;
20 }

This clause states that when the assembly receives the command tagged-
Picture from the CameraSynth service, a new command storePicture
is to be sent to the PhotoDB service. The example illustrates how the pa-
rameter img of the taggedPicture command is passed on as a param-
eter of the storePicture command. The parameter is accessed through
the thisevent notation, referring to the currently received command, i.e.,
the taggedPicture command in this case. Generally, in an event handler
clauses are written as

when command from service {
actions

}

The actions can access data in the command, send new commands to other
services, and perform assignments of local variables. Event handlers are
atomic: received commands are handled in incoming order, one command
at a time. The assembly manager queues incoming commands, and lets
each event handler finish before it continues with the following command.
This atomicity means that there is no need for concurrency mechanisms,
such as mutual exclusion primitives, in the language for event handlers.
Incoming commands for which there is no event handler clause are simply
ignored.
There are some static-semantic constraints for event handlers that can be
checked by an editor, e.g. there can only be one event handler clause for
each command from each service. In principle, certain information in the

112

6.2. COORDINATION

assembly descriptor could have been inferred from the event handlers: this
includes the declaration of connections between the assembly and services,
and the declaration of the synthesized services. We have chosen not to in-
fer such information, but instead keep it explicit in the declaration sections.
This makes the separation of configuration, coordination and computation
clearer, and it allows the script to be treated like a black box by tools that
are not interested in the internal logic of the script, but only interested in
the interface of the assembly (its synthesized services) and the overall com-
munication structure (its connections). If desired, it would be easy to build
a specialized assembly editor that does not require the user to add this
information, but where the tool can automatically infer it from the script.

6.2.2 Variables

Assembly scripts can keep state in variables. An example is the Tagging-
Camera assembly, where the latest GPS coordinate and compass direction
are saved, every time they arrive. The script part of TaggingCamera, and
an example sequence of messages, was presented in Figure 4.7 and Sec-
tion 4.3. The variables section contains variable declarations, declaring
variables of the text/plain MIME type :

7 variables {
8 text/plain latestCoord;
9 text/plain latestDirection;

10 }

Two of the event handlers save parameter values in the variables:

12 when coord from Position {
13 latestCoord = thisevent.value;
14 }
15 when dir from Direction {
16 latestDirection = thisevent.value;
17 }

The values saved in the variables are used later, when an image should be
sent to CoordinateStuffer for tagging.

6.2.3 Synthesized services

Part of the definition of a synthesized service, the definition of its func-
tionality, belongs to the coordination aspect. The assembly can handle an
incoming command arriving to its synthesized service in an ordinary event

113

CHAPTER 6. THE LANGUAGE OF ASSEMBLIES

handling clause. Looking at the TaggingCamera assembly again:

28 when takePicture from CameraSynth {
29 send takePhoto() to Photo;
30 }

Here, the event handler clause takes care of a command takePicture,
that has arrived at the synthesized service. Further, the assembly can in-
voke (i.e., generate) new outgoing commands from the synthesized ser-
vice:

25 when imageTagged from CoordinateStuffer {
26 invoke taggedPicture(thisevent.img);
27 }

This creates a new command taggedPicture which is sent to all assem-
blies and/or services that are connected to the CameraSynth service. It has
been utilized here that there is only one synthesized service. If there were
more than one, the message could be invoked as follows, pointing out a
specific synthesized service:

invoke taggedPicture(thisevent.img) of CameraSynth;

6.2.4 A loopback mechanism

It might be the case that the assembly is located on the same device as some
of the included services. For obtaining good performance in this case, a
loopback mechanism is used which allows the assembly to communicate
in the same way with these services as with services on other devices, with-
out causing any commands to go out unnecessarily on the network. An
example of this is the unbound service CoordinateStuffer, which is used
by the TaggingCamera assembly, and which sends and receives potentially
heavy JPEG images. The loopback mechanism is used also if the assembly
connects two services on the same device: the network is transparent, and
commands between services will only go out on the network if the services
are on different devices.
Note that it is often the case that services on the same device are tightly
bound, share hardware and communicate with each other directly. For ex-
ample, when taking photos with a digital camera, the photos will be stored
locally on the camera. This process is a bottleneck and needs to be carried
out as efficiently as possible, to allow pictures to be taken at high speed.
Assemblies for connecting services on the same device are useful when the
services are more unrelated, i.e., when they could in principle be located
on different devices, but just happen to be located on the same device.

114

6.3. COMPUTATION

6.3 Computation

The computational aspect of a PalCom system is expressed in the services
included in an assembly. These services may be native services (tied to the
hardware on included devices), unbound services (built for being included
in assemblies), or synthesized services of other assemblies. This means that
there are no computation constructs in the language for event handlers,
which helps keeping the assembly descriptor language simple. The possi-
bility to include specially constructed unbound services enables solutions
to specific “algorithmic” problems in assemblies, such as tagging images
with coordinates.

6.4 Representations of an assembly

It is useful to discuss assemblies from several different perspectives: the
end user, the expert user, the tools manipulating the assembly, etc. There
are different representation formats of an assembly descriptor, relevant for
these perspectives:

1. An XML representation that is used for storing the assembly descrip-
tor in a file system or on a storage service, and for copying the assem-
bly descriptor from one device to another.

2. An attributed abstract syntax tree (AST) that is used internally by
tools accessing and manipulating the assembly. The XML (and also
the concrete syntax discussed below) can be generated from the AST
representation by a simple unparse operation. The AST representa-
tion can likewise easily be constructed by parsing the XML descrip-
tion. The AST contains an API in the form of attributes that makes
it easy for the tools to access its information. Examples of attributes
are links from uses to definitions of identifiers, semantic checking
operations, etc. The AST representation can also be used for keeping
run-time state while executing an assembly, as will be discussed in
the following section.

Based on the representation formats, assembly descriptors can be presented
in different ways for reading or editing. In addition to a presentation of the
raw XML data, some of the possible presentation formats are:

(a) A concrete, textual syntax that is used to show the same level of
detail as in the XML representation, but in a more concise readable
form. The concrete syntax is used in this chapter. With tool support,
it could also be used by an expert user for creating or editing assem-
blies. End users would typically prefer a more graphical syntax.

115

CHAPTER 6. THE LANGUAGE OF ASSEMBLIES

(b) Tool-specific editing representations for displaying parts of the as-
sembly information to end users, typically in a graphical or semi-
graphical way. For example, the PalCom Overview Browser displays
the connections between services as lines between boxes (see Chap-
ter 7 for a presentation of the different browsers). The PalCom De-
veloper’s Browser displays the assembly descriptor as a hierarchical
expand/collapse listing and supports drag-and-drop based editing.

6.5 Execution of assemblies

Assembly descriptors are handled by assembly managers. The assembly
manager stores descriptors, and can load an assembly from a descriptor
and start executing it. The manager’s tasks during execution are the fol-
lowing:

• Announce the assembly on the network. This is done by announc-
ing implicit services for connections declared to the assembly.1 The
announcement makes the running assembly visible on the network.
It is announced as running on the device where the assembly man-
ager runs, which means that the running assembly has a well-defined
location. In Figures 4.5 and 4.6, the implicit services are illustrated as
gray service symbols without hooks. They show the structure of the
assembly, and are announced even if the corresponding services on
other devices are currently not available. Connections to implicit ser-
vices can only be initiated by the assembly manager, not from the
outside using the RemoteConnect protocol (see Section 5.6).

• Announce any declared synthesized services.

• Using PalCom discovery, start monitoring the network for devices
and services listed in the devices and services section. As soon
as a listed connection is possible to establish, try to establish it. This
can be through a direct connection request, if the connection is to
this, or through a RemoteConnect request, if the connection is bet-
ween two external services.

• Handle dynamic bindings, with alternative, mandatory and optional
services as discussed in Section 6.1.4.

• If the assembly has a script, handle incoming commands, arriving
to the assembly over listed connections or to synthesized services.

1Implicit services are grouped under a PRDSubList showing the assembly name, with the
kind attribute specifying that the services belong to an assembly (see Section 5.5.2 for informa-
tion about PRDSubLists). Synthesized services are announced under the same PRDSubList.

116

6.6. UPDATING AND VERSIONING OF ASSEMBLIES

Execute event handlers by

– sending commands to services, over listed connections (send)
or to services connected to a synthesized service (invoke), and

– saving parameter values in variables.

Execution of assemblies involves discovery of devices and services, an-
nouncement of services, and communication with services using commands.
Therefore, an assembly manager uses the PalCom Discovery and Service
Interaction protocols, as described in Chapter 5. In other words, it relies
on an implementation of the PalCom communication architecture, up to
and including the Function Layer (see Figure 5.1). Beyond that, assemblies
do not introduce additional protocol layers for their execution: the services
generated by the assembly, called synthesized services, are discovered di-
rectly, not the assembly per se. The only assembly-specific information an-
nounced is that assembly managers use a particular value of the kind at-
tribute of the PRDSubList that groups its services. Assembly descriptors
are kept locally, and interpreted by the assembly manager during execu-
tion.
For the distribution and update of assembly descriptors, between assembly
managers on different devices, there is, however, a separate protocol, as
discussed in the following section. That protocol is defined at the PalCom
service level.

6.6 Updating and versioning of assemblies

In addition to execution of one version of an assembly, the structure of
assembly descriptors also supports strictly version-controlled updating of
assemblies. This is a key factor in making assemblies useful as a flexible
mechanism for combination of services. The versioning supports that an
assembly is made in one context, for one set of devices and services, then
adapted to another context and tested there, and then released as a new
version for the new context. The assembly does not just run in the new
context, but has to be adapted and tested before release: the bindings in
the assembly descriptor (mandatory, optional and alternative) are to specific
devices and services in specific versions, pointed out by DeviceIDs and
ServiceInstanceIDs. Thus, the user of a released assembly can trust that it
has been tested in the relevant context.
The possibility of adapting assemblies to a local situation means that it
is not necessary to write the assembly from scratch each time, but useful
assemblies can be distributed and reused by others. Assembly descriptors
are envisioned to be updated much more frequently than services, because
they are easier to change and adapt.

117

CHAPTER 6. THE LANGUAGE OF ASSEMBLIES

Assembly editors in PalCom browsers can support rebinding of device
and service declarations to currently discovered devices and services. E.g.,
this can be done in a situation similar to when Bill developed the Tag-
gingCamera assembly in the GeoTagger scenario (see Chapter 4). If he
had first created the TaggingCamera assembly for his own camera, tested
that it worked, and then brought the assembly to Mark, he could have re-
bound it to Mark’s camera through a simple drag-and-drop operation in
the browser. The effect of that operation would depend on how similar the
cameras were:

• If Mark’s camera was from the same manufacturer, it would likely
have identical services, and the browser could rebind the services au-
tomatically or semi-automatically (by suggesting to the user). After
that, the assembly could be tested directly.

• If, on the other hand, Mark’s camera was of a different make, the
adaptation would include manual rebinding of services, and prob-
ably updating of event handlers in the script, before the assembly
could be tested.

The changes made to an assembly descriptor, when a new version of an
assembly is released, are made on the first two lines of the assembly de-
scriptor (see Figures 6.1 and 6.2): on line 1, the human-readable version
number is updated and the keyword released is added, and on line 2,
the ServiceID is updated. The update of the ServiceID follows a scheme
that makes it possible to recreate partial version trees when new versions
of an assembly are obtained:

• The CreatingDeviceID and CreationNbr parts are unchanged.

• UpdatingDeviceID is set to the DeviceID of the device where the up-
date is made, on which the browser and editor runs. UpdateNbr is
selected so there is no conflict with other updates of the assembly on
that device, and so it is higher than for earlier versions created on
that device.

• PreviousDeviceID and PreviousNbr are set to the values of UpdatingDe-
viceID and UpdateNbr in the old ServiceInstanceID.

The distribution of assembly descriptors between assembly managers on
different devices may happen in different ways. Files can be copied man-
ually and installed, or downloaded from the Internet. In PalCom, we have
also worked on a more automatic, epidemic scheme. Assembly managers
have a protocol for this, defined at the PalCom service level. The assembly
managers use groupcast communication for coming in contact with each

118

6.7. RELATED WORK

other, and then ask about each other’s installed assemblies through com-
mand communication. If other versions of an installed assembly are avail-
able, an assembly manager uses the structure of the ServiceInstanceIDs for
rebuilding a partial version tree. If it ascertains another available version
to be newer, the manager requests the descriptor from the other device, in-
stalls it and informs the user. The user can choose to use the version he or
she prefers.
In relation to the distribution of assembly descriptors, it should be men-
tioned that there is nothing in the assembly descriptor that ties it to execu-
tion on a particular device. So, as discussed in Section 4.7, it is possible to
move the assembly descriptor to another device and start the same assem-
bly there. This can be useful for performance optimizations: if the assembly
can run on the same device as a service that produces large messages, those
messages need not go over the network. On the other hand, if extensive cal-
culations are needed, by means of an unbound service, it can be moved to
a more powerful computer without change.

6.7 Related work

BPEL [80] is a language for workflow specification, orchestration, of a set
of Web services. Its domain is interaction between business partners on the
Web, which is different from our domain of composition of pervasive ser-
vices. BPEL targets developers, and not end users, while PalCom targets
end users for manipulation of assembly descriptors, as discussed in Sec-
tion 4.12. Still, it is relevant to compare with BPEL, because the role of a
BPEL orchestration can be compared to the role of the assembly, as dis-
cussed in Chapter 4.
The BPEL language is considerably more complex than the language for
PalCom assemblies. There are constructs for parallel activities, with syn-
chronization between them. There are if statements for conditional exe-
cution, loops, variables with both simple and complex types, and complex
expressions. A BPEL process has an execution state, on which the next ac-
tion depends, whereas PalCom assemblies have a more state-less model,
with a number of event handlers that are all constantly enabled. The only
state in a PalCom assembly is in the values of its variables. An advantage
of PalCom’s approach is that we have non-blocking communication, which
fits with unreliable communication in the pervasive computing setting.
For some of the more complex behaviour that may be needed in an as-
sembly, we rely on the delegation to an unbound service, as exemplified
by the CoordinateStuffer in the GeoTagger scenario. The expressiveness of
the language of assemblies has sufficed in the scenarios we have worked
with in PalCom. We are, however, open for adding some more constructs
to our language, which may be variants of the ones in BPEL. Our goal is to

119

CHAPTER 6. THE LANGUAGE OF ASSEMBLIES

strike the balance of finding a simple and light-weight mechanism for ad-
hoc combinations of services, which is still sufficiently powerful. In [78],
Emma Nilsson-Nyman has applied PalCom assemblies to health care sce-
narios, and suggested language extensions for synchronization, states and
instances. See Chapter 11 for a discussion about future work on the lan-
guage of assemblies.
An approach that is closer to traditional programming languages is Ambi-
entTalk [27]. AmbientTalk is an attempt to incorporate abstractions hand-
ling the special characteristics of mobile networks into a programming lan-
guage. There is non-blocking communication, discovery, and adaptation to
varying connectivity supported directly in the language, as an alternative
to middleware support. The focus of AmbientTalk is, however, different
than PalCom’s, in that a full, object-oriented language is proposed.

6.8 Summary

Assembly descriptors, as presented in this chapter,

• support specification of configuration, coordination and computa-
tion aspects of an assembly.

• can handle configurations with fixed services, as well as dynamic
bindings for situations with where services join or leave dynamically.

• can have a script part with event handlers for coordination, which
are executed as atomic units, in response to asynchronous events.

• can define interfaces of synthesized services.

• can be executed on any device having an assembly manager, irre-
spective of the location of the services it connects to.

• can be moved to another assembly manager and execute there, with
little or no modification.

• supports controlled, versioned updating of assemblies.

120

Chapter 7

Browsers

The browser is a key tool in a PalCom system. It lets the user discover de-
vices and services, connect services to each other, and control them through
migrated user interfaces. More advanced browsers can execute assemblies,
and some also have assembly editing functionality. The style of user inter-
action in a browser may differ, depending on the target user group. In the
PalCom project, we have developed a number of different browsers, which
are part of the reference implementation.

7.1 The Handheld Browser

There is an initial, prototypical browser, referred to as the Handheld Browser.
It has been developed by the author of this thesis. Discovered devices and
services are presented in a tree view, and there is functionality for discov-
ering existing connections, for establishing new connections, and for con-
trolling services through remote user interfaces. The user interaction in the
Handheld Browser is mostly menu-based and could be considered rather
primitive, because it is designed to fit on the small screen of a handheld
computer.
Figures 7.1 through 7.3 show screenshots of the three tabs in the tab-based
GUI that make up the Handheld Browser. The Devices tab in Figure 7.1
contains a tree view of discovered devices and services. In addition to the
handheld computer where the browser runs, an MP3 player and a set of
loudspeakers have been discovered. In Figure 7.2, the Connections tab is
shown, which lists currently established connections. There is one connec-
tion between the Audio out service on the MP3 player and the Audio in
service of the loudspeakers, and one between Track selection on the loud-
speakers and UI Display on the handheld computer. Figure 7.3, finally,
shows a user interface that has been migrated from the loudspeakers and

CHAPTER 7. BROWSERS

Figure 7.1: The Devices tab of the Handheld Browser.

Figure 7.2: The Connections tab of the Handheld Browser.

Figure 7.3: The UI tab of the Handheld Browser.

122

7.2. THE PALCOM OVERVIEW BROWSER

shown in the UI tab. The user can control the loudspeakers by clicking but-
tons in the user interface.
The browser utilizes the hierarchical structure of services for making the
connection process easier and more natural. E.g., the user can choose to
connect the MP3 player device directly to the loudspeakers, using drag-
and-drop on the Devices tab, without opening up to see what services
the devices have. In this case, there will be exactly one matching service
pair, and this pair—the audio/mpeg sender of the MP3 player and the
audio/mpeg receiver of the loudspeakers—will be connected. If there had
been more than one matching pair, the user would have been asked to se-
lect the one he intended. This can be seen as a simple way of supporting
visibility at an appropriate level.
The Handheld Browser can display user interfaces for PalCom services.
When a connection to a service is established, a service description for the
service is fetched from the discovery manager on the device, which hand-
les the Discovery Protocol. A user interface is created, according to the
structure of the service description, by means of an available user inter-
face library on the device. The Handheld Browser uses Swing [106], but it
could also be, e.g., MIDP [103] or SWT [30]. The user interface is tied to
the service description. When the user performs actions in the user inter-
face, parameter values are filled in and commands are sent to the service.
When the service sends out commands, the user interface is updated ac-
cordingly. The discovery manager, and other middleware managers, will
be presented further in Chapter 8.
The current browser implementation creates buttons for in-going commands,
with text fields for parameters of type text. For out-going commands, text
parameter values are shown in labels, and image parameters (type JPEG)
are shown as images in the user interface. Groups of commands are ren-
dered as nested panels. This simple support has worked for the needs
we have had for services in PalCom scenarios, but support for more data
types, and other ways of entering input values, could naturally be useful.

7.2 The PalCom Overview Browser

A second browser is the PalCom Overview Browser [87], implemented at
the University of Aarhus. The Overview Browser visualizes discovered de-
vices, services and assemblies as hierarchical boxes in a window, showing
lines between boxes for discovered connections. This way, it gives a graph-
ical overview of a running PalCom system. Figure 7.4 shows a screenshot
of the Overview Browser in operation. With its graphical visualization, the
Overview Browser is intended for devices with larger screens, such as lap-
tops.

123

CHAPTER 7. BROWSERS

Figure 7.4: Screenshot of the PalCom Overview Browser.

7.3 The PalCom Developer’s Browser

The third browser in the reference implementation is the PalCom Devel-
oper’s Browser, developed by Sven Gestegård Robertz at Lund University.
The Developer’s Browser targets developers of PalCom assemblies, and is
built as a plug-in for the Eclipse IDE [29]. It has an integrated assembly
manager for executing assemblies, and an editor for assembly descriptors.
There is a tree view for browsing currently available devices, services and
connections, and remote views for interacting with services through mi-
grated user interfaces.
The Developer’s Browser has all the functionality of the Handheld Browser,
and moreover it handles assembly editing and execution. Figure 7.5 shows
a screenshot of the Developer’s Browser. On the left in the browser win-
dow is the Browser View, which presents a tree view of discovered devices,
services and connections. On the right is the assembly editor, where an as-
sembly descriptor is being edited.
The Developer’s Browser is an Eclipse plug-in, and can be run inside the
IDE, but it can also be run as a stand-alone application in Windows, Mac
OS X or Linux. For a user’s guide to the Developer’s Browser, see [87].

124

7.4. DOMAIN-SPECIFIC BROWSERS

Figure 7.5: The PalCom Developer’s Browser.

7.4 Domain-specific browsers

Finally, in the reference implementation there are domain-specific browsers,
such as the NICU Browser shown in Figure 7.6. The NICU Browser is an
experimental specialized browser, built at the University of Siena, Italy, for
supporting the Neonatal Intensive Care Unit (NICU) scenario in PalCom.
It is similar in functionality to the PalCom Overview Browser, but has an-
other interaction interface in order to adapt to the needs of the medical staff
in the particular setting of the NICU.

7.5 Summary

PalCom browsers are tools that can be used for discovering devices and
services, inspecting them and their connections and combining them in as-
semblies. The implemented browsers in the PalCom reference implementa-
tion can be placed at different points along the dimensions of functionality,
intended users and what devices they can run on. The Handheld Browser
is designed for a small screen, while the others make use of a larger screen,
such as that of a laptop. The Overview Browser and the Handheld Browser

125

CHAPTER 7. BROWSERS

Figure 7.6: Screenshot of the NICU browser.

are mainly intended for end users that browse for available devices, ser-
vices and assemblies, and interact with them in a straight-forward way.
The Developer’s Browser is for more technically-oriented users, that work
with assemblies at a level close to the assembly descriptor language. The
NICU browser is hand-crafted for users in the neonatal intensive care do-
main, while the other three are generic.
We recognize that the implemented browsers do not cover all interesting
points along those dimensions. It would be useful to have a browser for
small, handheld devices with more advanced functionality than the Hand-
held Browser, e.g. for managing assemblies. It would also be good to have
a way of editing assemblies in a more graphical way than with the Devel-
oper’s Browser—more like the interaction in the Overview Browser, where
new assemblies could perhaps be created by selecting a number of services
and choosing to build an assembly for them. This is part of future work.
Nevertheless, the implemented browsers have shown potential in the de-
velopment and use of PalCom application prototypes (see Chapter 9), and
they are all examples of applications built on top of the Service Framework
and the PalCom middleware, as presented in the following chapter.

126

Chapter 8

Framework and middleware

As support for the developer of services on devices, the reference imple-
mentation of the PalCom open architecture provides a framework and mid-
dleware. These handle the communication protocols and execution of as-
semblies, and have been used when building services for application pro-
totypes in a number of scenarios in PalCom. The code is available as open
source at the project web site [88]. The browsers, which are also part of
the reference implementation, have been built using the framework and
middleware.
A layered overview of the reference implementation is given in Figure 8.1.
The platform, at the bottom of the figure, is closest to the hardware on the
device. It contains the virtual machines used in PalCom, the Pal-VM and
the JVM, and a special thread library called PalcomThreads. The middleware
contains managers that handle the communication protocols presented in
Chapter 5, assembly managers, and service managers that handle execu-
tion of unbound services. The Service Framework, on top of that, is an
object-oriented framework, where services can be implemented by sub-
classing the class AbstractService. As shown at the top of the figure, con-
crete services, assemblies and browsers execute on top of the framework
and middleware. The rest of this chapter will present the different parts of
the reference implementation in more detail.

Figure 8.1: A layered view of the PalCom reference implementation.

CHAPTER 8. FRAMEWORK AND MIDDLEWARE

public static void main(String[] args) {
LoudspeakerDevice device
= new LoudspeakerDevice(new DeviceID("A002372"));

device.run();
}

Figure 8.2: Java main method of a loudspeaker device.

8.1 Service Framework

The Service Framework is provided for easing the programmer’s task of
creating new PalCom services. The framework is written in Pal-J, PalCom’s
subset of Java. Pal-J programs can be compiled to run on both the Pal-VM
and the JVM. The abstract class AbstractService handles announcement of
a service, and in a concrete subclass the programmer can define the com-
mand structure of the service, and implement handling of in-going and
out-going commands. Through a device context object the service gets ac-
cess to lower-level, device-common middleware managers on the device,
and to other services on the device.
There is support for execution of PalCom services on small devices that
offer a single thread of control at the Java level. This is the case when run-
ning on the Pal-VM: control is given to a Java main method, and when that
method terminates, the virtual machine stops. An example of such a main
method is given in Figure 8.2, where the example device is the loudspeak-
ers in the music scenario of Chapter 2. The class LoudspeakerDevice is a
subclass of the framework class AbstractDevice, as can be seen in Figure 8.3,
which shows relationships between central classes in the framework. Ab-
stractDevice has a run method that schedules middleware managers and

Figure 8.3: The central classes in the Service Framework, with example classes
from the music scenario below the dotted line.

128

8.1. SERVICE FRAMEWORK

class LoudspeakerDevice extends AbstractDevice {
LoudspeakerDevice(DeviceID deviceID) {
super("Loudspeakers", deviceID);

}

protected void initDevice() {
VolumeControlService service
= new VolumeControlService(context);

context.addService(service);
service.start();

}
}

Figure 8.4: The AbstractDevice subclass that sets up the loudspeaker device.

services in a PalcomScheduler, and runs until all services terminate. The Pal-
comScheduler is part of the PalcomThreads thread library. On the JVM, the
code of Figure 8.2 can be used in a main or run method.
The code for a slightly simplified version of the LoudspeakerDevice class
is given in Figure 8.4. In the constructor, name and addressing informa-
tion is passed to the superclass for device announcement. In the method
initDevice, which is called by AbstractDevice on start-up, a volume
control service is created, added to the device context and started.
The code for VolumeControlService, which is a subclass of AbstractSer-
vice, is given in Figure 8.5. In the constructor, the createServiceProxy
utility method is called for setting up a service proxy, which holds the com-
mand structure of the service. The service proxy provides functionality for
sending out-going commands from the service to connected services, and
for handling of in-going commands coming the other way. The commands
are the same as were shown for the loudspeakers in Figures 2.2 and 2.7:
two in-going commands for adjusting the volume and one out-going com-
mand, with one parameter, that informs about the current volume setting.
Further, the constructor creates a CommandThread thread object, that is set
to receive commands that come in to the service. That thread is scheduled
in the start method, which is called on device initialization, and where it
can be seen how the device context object is used for accessing the Palcom-
Scheduler. The implementation of the private class CommandThread is at
the bottom of the class. This is a PalcomThread, and it has a run method
like normal Java threads. In the run method, an eternal loop handles the
incoming commands. When a “Volume up” arrives, an event for adjust-
ing the volume is sent to the hardware through a call to the device’s De-
viceIO. DeviceIO is an interface that provides event-based communication
with low-level code, such as interrupt routines. Finally, the new value of

129

CHAPTER 8. FRAMEWORK AND MIDDLEWARE

class VolumeControlService extends AbstractService {
private CommandThread cmdThread;
private Command level;

VolumeControlService(DeviceContext context) {
super(context, "Volume control",

createServiceProxy());
cmdThread = new CommandThread();
getServiceProxy().addInCommandReceiver(cmdThread);

}

private static ServiceProxy createServiceProxy() {
ServiceProxy sp = new ServiceProxy("Volume control");
Command up = new Command("Volume up", Command.IN);
sp.add(up);
Command down = new Command("Volume down", Command.IN);
sp.add(down);
level = new Command("Volume", Command.OUT);
sp.add(level);
Param value = new Param("value", "text/plain");
level.add(value);
return sp;

}

public void start() {
context.getScheduler().scheduleThread(cmdThread);
super.start();

}

private class CommandThread extends PalcomThread {
public void run() {
while (true) {
CommandEvent event = (CommandEvent) waitEvent();
String id = event.getCommand().getID();
if (id.equals("Volume up")) {
context.getDeviceIO().putOutEvent(Hardware.UP);

// Send out an out-going command with new level
level.getParam("value").setData("Normal");
level.invoke();

} else if (id.equals("Volume down")) {
...

}
}

}
}

}

Figure 8.5: Code for the loudspeakers’ volume control service.

130

8.2. MIDDLEWARE

Figure 8.6: The PalCom middleware is structured as a set of managers, handling
the different layers of the communication protocols, and execution of assemblies
and unbound services.

the volume is sent out through a call of invoke on the service’s out-going
command “Volume” (using the attribute level in the class).

8.2 Middleware

The reference implementation contains middleware in the form of a num-
ber of managers, as illustrated in Figure 8.6. The managers handle different
layers of the communication architecture, execution of assemblies and un-
bound services. They are used by the Service Framework, and can also be
used directly by the service programmer where needed.

8.2.1 Communication

There are managers for the different layers in the communication architec-
ture (see Chapter 5):

• Media managers handle the Media Abstraction Layer (MAL). There
is one implementation of a media manager for each supported net-
work technology on the device, with a common API towards upper
layers. The reference implementation contains media managers for
UDP, Bluetooth and IR. Media managers handle the mapping bet-
ween technology-specific addresses and PalCom DeviceIDs, parse
the message format in the Wire Protocol, and handle the heartbeat
mechanism in the Pacemaker Protocol that is the basis of the Discov-
ery Protocol.

• A routing manager handles forwarding of messages using the ap-
propriate media manager, based on DeviceIDs. This is the function-
ality of the Routing Layer in the communication infrastructure. Dif-

131

CHAPTER 8. FRAMEWORK AND MIDDLEWARE

ferent routing manager implementations can use different strategies
for message forwarding.

• The communication manager handles internal delivery of messages,
based on selectors. To upper layers, it offers connections and single-
shot messages over unicast, radiocast and groupcast, as specified for
the Communication Layer. A connection is presented as a connection
object, in a symmetrical way to both parties. The connection object
fills in sender and receiver addresses in all messages sent, and hand-
les shut-down when one party closes the connection.

• An announcement manager handles announcement of a device and
its services and connections on the network.

• A discovery manager handles discovery of information about other
devices. Together, the announcement manager and the discovery man-
ager implement the Discovery Protocol in the Function Layer. The
Service Interaction Protocol is handled by the Service Framework,
where command communication is supported through the service
proxies.

As described in Chapter 5, the format of announced descriptors, when
transmitted over the network, is XML. For treatment of descriptors inter-
nally on a device, the JastAdd compiler-construction system is used [36].
The format of the descriptors is defined in a JastAdd grammar, from which
the tool generates an abstract syntax tree (AST). JastAdd supports AST
programming, allowing the PalCom middleware to add computations on
the AST as modular aspects. This is used, e.g., in a simple JastAdd as-
pect where the XML syntax is unparsed from the AST representation, and
where the assembly manager (see below) uses JastAdd attributes and equa-
tions, operating on the AST, for performing name lookup.
The split into one announcement manager and one discovery manager fa-
cilitates use on small, resource-constrained devices, as discussed in Sec-
tion 5.5.6. Such devices, which offer services, but do not need to discover
others, only need to have an announcement manager, but no discovery
manager.

8.2.2 Assembly manager

The assembly manager in the reference implementation can store, load and
execute assemblies defined in assembly descriptors, where the descriptors
are structured as presented in Chapter 6. The assembly manager can be
used as an integrated part of a PalCom browser, as for the PalCom Devel-
oper’s Browser, presented in Chapter 7, or it can run in a stand-alone fash-
ion on a device in the network. In order to support the stand-alone case,

132

8.3. PLATFORM

the assembly manager is implemented as a subclass of the AbstractService
class in the Service Framework. This allows a user to open a remote-control
view of the assembly manager in a browser on a more powerful device, and
to load and run assemblies on the small device via the browser.
The JastAdd tool is used for handling assembly descriptors. There is a Jast-
Add grammar for the descriptor format, according to Section B.2 in Ap-
pendix B. This grammar extends the grammar for announced descriptors
mentioned above, so for devices and services the same AST nodes are used
in the assembly descriptor grammar. Examples of JastAdd attributes that
are used for the execution of assemblies are links from uses to definitions of
identifiers, semantic checking operations, etc. The information specific to a
running assembly, such as current connections and current variable values,
is stored in a separate AST data structure, linked to the assembly descriptor
AST. This allows several instances of an assembly to run concurrently.

8.2.3 Service manager

A service manager handles unbound services, which are services that are
not tied to the device hardware, and can therefore be copied between de-
vices. The service manager in the PalCom reference implementation can
load unbound services from binary components dynamically, start them
and stop them. When a component is loaded, it starts to run as a service
on the device. Like the assembly manager, the service manager is itself im-
plemented as a service with commands for loading a service, and for start-
ing and stopping it. This is used by the assembly manager: if an assembly
requires an unbound service that is currently not running, the assembly
manager will connect to the service manager and ask it to start the ser-
vice. If the binary component is available, the service will be started and
connected to by the assembly.

8.3 Platform

Figure 8.7 shows the different parts of the PalCom platform. At the bottom,
closest to the hardware on the device, are the two virtual machines (VMs)
used in PalCom. Pal-VM is the VM for resource-constrained devices that
has been developed within the project. It supports programs written in
Java and Smalltalk, with interoperability between the languages. JVM is
the Java Virtual Machine, as specified by Sun [70]. JVM implementations
are available for a wide range of devices.
On top of the VMs, there is a layer which provides PalCom base libraries:
pal-base, which runs on the Pal-VM, is implemented in Smalltalk, and
pal-jbase, which runs on the JVM, is implemented in Java. Both have
the same interface to upper layers, and can be accessed from code written

133

CHAPTER 8. FRAMEWORK AND MIDDLEWARE

Figure 8.7: The platform provides execution of programs on two different virtual
machines, with a common thread library PalcomThreads.

in Pal-J, PalCom’s subset of Java. This has been utilized in the reference
implementation, where common Pal-J code is used for both VMs, for the
whole middleware and framework above the base libraries.
Having this kind of support for the JVM is practical, because JVMs exist
for many platforms, and on desktop computers Java’s graphical libraries
can be used when implementing services. There are not yet any graphical
libraries for the Pal-VM.

8.3.1 PalcomThreads

The main difference between Pal-J and standard Java is in the support
for concurrent execution and threads. Pal-J programs use threads defined
in the PalcomThreads library, instead of java.lang.Thread. The Pal-
comThreads are built on coroutines, which is the fundamental abstraction
for concurrency provided by the base libraries. Coroutines are supported
directly by the Pal-VM and implemented using Java threads for the JVM.
The PalcomThreads are scheduled by a PalcomScheduler, which relies on
a Unix select mechanism for timeouts and non-blocking I/O. The sched-
uler can be handled explicitly by the programmer, in contrast to normal
Java. This makes it possible to use specialized schedulers, e.g. using other
scheduling schemes.
The PalcomThreads library is modelled after SimIOProcess in the Lund
Simula system [71]. It is designed for hierarchical scheduling, where sched-
ulers can themselves be scheduled by other schedulers at any number of
levels. This mechanism can be used for separating groups of threads from
others, such as those implementing different services, and it allows sup-
port for migration of running threads between devices. The scheduling is
currently cooperative, meaning that each thread is allowed to run until it
gives up execution explicitly, but it is possible to extend it to preemptive
scheduling, where the scheduler can interrupt the execution of threads and
reschedule them. The PalcomThreads library contains classes implement-

134

8.4. SIMULATED DEVICES

Figure 8.8: Simulated devices on the desktop.

ing monitors, semaphores and event-based communication for achieving
synchronization between threads.

8.4 Simulated devices

The PalCom reference implementation contains a small framework for sim-
ulated devices. These are used as tools in a development situation, where it
is valuable to be able to simulate devices, i.e., to run their services on a
general-purpose computer rather than on the device itself.
The simulated devices are Java programs that run on a desktop machine,
with graphical representations of the hardware of a device, as shown in
Figure 8.8. Code written using the Service Framework can be run without
modification in simulated devices first, before deploying onto real devices.
That gives advantages in terms of easier debugging, and easy creation of
multiple devices for testing purposes. This has been used in the PalCom
project for simulating a number of devices, e.g., cameras, GPS devices, etc.
Simulated devices run as separate operating system processes, typically on
a laptop, and use normal networking. This allows easy debugging in the

135

CHAPTER 8. FRAMEWORK AND MIDDLEWARE

development situation, as well as more realistic simulations of scenarios, if
the simulated devices are placed on different physical laptops.
The simulated devices, and also the browsers discussed in Chapter 7, uti-
lize that the middleware and framework are compatible with the JVM, as
they use the Java Swing graphics library for GUI code [106]. Swing is avail-
able for the JVM, but currently not for the Pal-VM.

8.5 Summary

The PalCom Service Framework

• is an object-oriented framework, where the PalCom developer can
subclass AbstractService and AbstractDevice for implementing ser-
vices on a device.

• supports the developer by providing data-structures for command
communication.

• handles the interaction with device-common middleware managers
that perform routing, announcement and discovery, and that map to
different network technologies at the MAL level.

• has been used for implementing the browsers presented in Chapter 7,
and the services in the scenarios presented in the following chapter.

The PalCom reference implementation also contains a small framework for
simulated devices, and the PalcomThreads thread library, which is based
on coroutines and where the scheduler can be accessed explicitly by the
programmer.

136

Chapter 9

Implemented scenarios

The mechanisms for services and assemblies presented in the previous
chapters, and the supporting middleware and Service Framework, have
been used by partners in the PalCom project when building prototypes for
different user scenarios. The work in the project has been carried out ac-
cording to a cyclic, iterative process, where the design of the application
prototypes, and experiences from their use, has continuously influenced
the architecture, and vice versa [82]. The Traveling Architects activity was
one part of this process [24].
The iterative work process means that during the first years of the project,
the software for the prototypes was developed on top of different plat-
forms and operating systems, while during the final year the developed
reference implementation was used in all presented prototypes, with the
middleware and the Service Framework as the basis for PalCom services.
The scenarios and prototypes have been presented in papers and demon-
strated at various events, notably the project reviews in March and De-
cember 2007, the IST event in Helsinki 2006 [85], and the Tall Ships’ Race
in Aarhus 2007 [83]. This chapter will give some examples of services and
assemblies built for the prototypes.
The author of this thesis has only been involved in the development of
some of the concrete prototypes, and then mainly in development of ini-
tial, simulated devices, as discussed in Section 8.4. The work presented in
the thesis has concentrated on the design and implementation of the archi-
tecture, the protocols, and the supporting framework, while this chapter
exemplifies with prototypes that have been developed on top of it, mainly
by other project members. The purpose is to demonstrate the variety of use
supported by the PalCom architecture and its implemented framework.

CHAPTER 9. IMPLEMENTED SCENARIOS

Figure 9.1: The GeoTagger assembly.

9.1 GeoTagger

The GeoTagger scenario has been used in examples in Chapters 4 and 6.
It is one of the scenarios that have been studied by the PalCom group at
the University of Aarhus, in cooperation with landscape architects in Scot-
land. A real application was developed and used by the landscape archi-
tects, and there is also an executable demo with simulated devices, im-
plemented on top of the Service Framework. The demo is available at the
PalCom web site [84]. The structure of the first part of the demo, as shown
in Figure 9.1, is quite similar to the set-up in Chapter 4: the assembly Geo-
Tagger has the combined functionality of the TaggingCamera and Uploader
assemblies presented there. The latest coordinate from My GPS is continu-
ously saved in a variable. When the user takes a photo with My Camera, the
assembly gets a notification from the service Photo, and requests the new
photo from the service Storage. As the photo is returned from Storage, the
unbound service CoordinateStuffer is used for tagging the image with the
latest coordinate, before sending it to the photo database on My Server.
In the demo, there is also an additional assembly, which gives useful func-
tionality and which illustrates that a service can participate in more than
one assembly at the same time. That assembly, ExtendedGeoTagger, places
the taken photos at the right location on the world map in the Google Earth
application [42]. ExtendedGeoTagger runs next to GeoTagger, as shown in
Figure 9.2. The additions, compared to Figure 9.1, is ExtendedGeoTagger
and GoogleEarthService on My Laptop. The connections managed by the
existing GeoTagger assembly are drawn in gray in this figure. Extended-

138

9.2. SITETRACKER

Figure 9.2: The ExtendedGeoTagger assembly.

GeoTagger picks up new images from the service Storage, and coordinates
from Position, and sends them to GoogleEarthService, which shows the
images in Google Earth.
This way of letting one assembly add functionality to another is slightly
different from the way Uploader added functionality to TaggingCamera
in Chapter 4. While Uploader connected to TaggingCamera’s synthesized
service, ExtendedGeoTagger connects directly to some of the services used
by GeoTagger. This shows that systems of cooperating assemblies can be
organized in different ways, and that services—Storage and Position in this
example—can take part in multiple assemblies. Structuring the demo with
synthesized services would have worked equally well.

9.2 SiteTracker

The SiteTracker is another landscape architecture scenario, developed by
the group at the University of Aarhus and the landscape architects. Like
GeoTagger, the SiteTracker prototype supports the landscape architect dur-
ing visual assessment. The task is to evaluate how a planned wind mill
would look from different points in the Scottish countryside. SiteTracker
enables this evaluation out at the site, while driving in the car. Without
support, it would be very difficult to visualize how the wind mill would
look from a distance, especially when the car is moving. SiteTracker shows
a video stream of the view, on a screen inside the car, where the wind mill is

139

CHAPTER 9. IMPLEMENTED SCENARIOS

(xcar, ycar) vcar

vcamera

(xtarget, ytarget)

Figure 9.3: Overview of the SiteTracker scenario.

drawn at its planned location. That makes it much easier for the landscape
architect to make the evaluation.
The SiteTracker prototype is built as an assembly of PalCom services. It in-
cludes a camera, mounted on the roof of the car, which rotates so it always
looks in the direction of the wind mill. This is implemented as illustrated in
Figure 9.3. The current location of the car, (xcar, ycar), and the current driv-
ing direction, vcar, are given by a GPS and a compass in the car. From those,
and from the currently configured wind mill location, (xtarget, ytarget), the
viewing direction of the camera, vcamera, is computed, relative to vcar.
Figure 9.4 shows one version of the SiteTracker assembly set-up. One as-
sembly, LocationHeading, provides the location and compass heading in its
synthesized service LHSynth, which is used by the assembly VideoAssem-
bly. VideoAssembly handles the rotation of the camera, and the display of
the video stream with the wind mill visualization. Both assemblies run in
an assembly manager on a laptop in the car.
The LocationHeading assembly gets GPS coordinates and compass head-
ings from services on the GPS and Compass devices. The coordinates come
from the GPS in a format that is not suitable for use by the rest of the
system, so the unbound services GPSParser and GeoConverterService are
used for converting them to another format. Further, LocationHeading uses
an unbound service LocationHeadingService for performing one additional
computation: if a speed value from the GPS indicates that the car is moving
sufficiently fast, movement direction values from the GPS are used instead
of the compass headings—those values have higher precision. After that
computation, the location and the direction are sent to users of the synthe-
sized service (to VideoAssembly, in this case).

140

9.2. SITETRACKER

Figure 9.4: The SiteTracker assembly set-up.

VideoAssembly has connections to AxisControllerService on the camera, to
the service SiteTrackerDisplay, and to the unbound service SiteTrackerSer-
vice. It also manages a streaming connection between the service Video
on the camera and VideoIn on the laptop. AxisControllerService has com-
mands for controlling pan, tilt and zoom of the roof camera, which is an
Axis dome camera that can pan 360 degrees. SiteTrackerDisplay handles
the drawing of the wind mill on the video display window, at screen co-
ordinates provided as parameters in in-going commands. The VideoIn ser-
vice on the laptop displays the streaming video from the camera.
The behaviour of VideoAssembly is driven by the unbound service Site-
TrackerService. SiteTrackerService gets coordinates and headings from Vi-
deoAssembly continuously, and saves them in variables. Once per second,
it computes a new direction for the camera (vcamera), and screen coordi-
nates for the wind mill drawing. Those are sent to VideoAssembly, which
forwards them to AxisControllerService and SiteTrackerDisplay. The cam-
era follows the wind mill location, and the visualization gets updated.
The SiteTracker prototype has been tested with the landscape architects
out in the field, as shown in Figure 9.5. The version of SiteTracker pre-
sented here does, however, not exactly match the version presented by
the Aarhus team in 2007. That version had additional 3D visualization,
through a connection to the Topos application [1]. For practical reasons,
the video connection between the camera and the laptop was not a Pal-
Com streaming connection, but a Motion JPEG connection, as provided by

141

CHAPTER 9. IMPLEMENTED SCENARIOS

(a) Car with the SiteTracker camera
mounted on the roof.

(b) On a screen in the car, the location
of the planned wind mill is marked.

Figure 9.5: The SiteTracker out in the field.

the native implementation on the Axis camera.1 The structure with two as-
semblies, where one provides its values to the other through a synthesized
service, is also not exactly as demonstrated, but this set-up is functionally
equivalent, and has been chosen in order to show how assemblies can be
structured hierarchically.
The division in functionality between assembly descriptors and unbound
services is interesting to look at, for a complex set-up such as the Site-
Tracker. LocationHeading and VideoAssembly have one unbound service
each, that has been constructed specifically for performing SiteTracker func-
tionality. LocationHeadingService checks the speed value from the GPS,
and chooses one of two direction values based on that. With conditional ex-
ecution (if) in the assembly descriptor language, and simple conditional
expressions, that would have been possible to express directly in an event
handler, and the unbound service would not be needed. The unbound
service SiteTrackerService performs more complicated arithmetic compu-
tations, and has a periodic behaviour where events are generated every
second. For periodic behaviour in assemblies, we have experimented with
small timer services, which could probably have been used in this scenario.
In order to allow computations such as those for the screen coordinates and
the camera direction, the natural extensions of the assembly descriptor lan-
guage would be to support arithmetic expressions, and numeric types for
variables. See Chapter 11 for further discussion about potential extensions
of the assembly descriptor language.

1Providing a video stream from an Axis camera as a PalCom service has been demon-
strated in the master’s thesis project [72], but it was not available in the dome camera at the
time.

142

9.3. THE INCUBATOR

Figure 9.6: The BioAssembly in the Incubator scenario.

9.3 The Incubator

The Incubator prototype has been developed by the PalCom group at the
University of Siena, Italy, in cooperation with doctors and neonatologists at
the ’Le Scotte’ hospital in Siena. It has been presented in the paper [47]. The
prototype supports the work where prematurely born children are taken
care of in an incubator. This is a setting where many devices and instru-
ments are attached to the incubator and to the child. Traditionally, those
devices have had their own displays and alarm systems, and not really
been integrated into one system. Sometimes, the first way to notice irregu-
larities, stemming from one instrument, has been a changed behaviour of
the child and alarms on the displays of other instruments. Standard work
practice for neonatologists, if a display starts showing measurement val-
ues that are outside the normal range, has been to check the equipment at-
tached to the child, and maybe replace some instrument, in order to leave
out machine errors before the child is examined further.
The work on the Incubator prototype has consisted both of finding new de-
vices for unobtrusive measuring of biosignals on the child, and of enabling
flexible integration between the devices by letting them offer PalCom ser-
vices. The unobtrusive measuring work has resulted in a soft belt called the
BioBelt, which is placed around the infant’s chest and which has biosensors
directly integrated in the tissue. The introduction of PalCom services lets
doctors construct assemblies that combine a set of devices, for performing
alarm functionality or other tasks.
One of the Incubator assemblies is called BioAssembly. It is illustrated in
Figure 9.6. BioAssembly applies a redundancy technique for lowering the
risks associated with not knowing if it is the child or a machine that be-
haves in an irregular way. The devices involved are the BioBelt that is at-
tached to the child, a saturimeter, a display and a laptop. The saturime-

143

CHAPTER 9. IMPLEMENTED SCENARIOS

ter measures the child’s oxygen saturation (the percentage of haemoglobin
binding sites in the bloodstream that are occupied by oxygen), and also
gives a heart rate value. The laptop runs the NICU Browser, which permits
inspection of services (see Section 7.4), and it has an assembly manager
where BioAssembly runs. The BioBelt and the saturimeter both have ser-
vices for different medical measurements, but the BioAssembly only uses
the service HeartRate on both devices. BioAssembly takes help from an un-
bound service AlarmHRHR for performing its functionality. When heart
rate values arrive from one of the two instruments, they are forwarded to
AlarmHRHR. AlarmHRHR compares the two values with each other, and
with configured threshold values. If the values differ from each other by
more than 15 %, an inconsistency alarm is sent to the assembly and shown
on the display. That means one of the instruments is probably malfunction-
ing. If the values are sufficiently close, they are compared with the thresh-
old values. If a value is outside the thresholds, an alarm about the child’s
health is triggered.
The Incubator setting has very heterogeneous devices. BioAssembly demon-
strates useful functionality that is enabled by letting them offer PalCom
services, and using the assembly mechanism for combining them. Using
the assembly for the alarm handling is natural, because it is a concern
that spans across several devices and cannot be implemented in one of
them. Regarding the unbound service, its functionality is not much more
advanced than what can be expressed directly in our current assembly de-
scriptors. If a construct for conditional execution (if) was added, together
with comparison expressions for comparing numerical values, the tests
in AlarmHRHR could have been done directly in event handlers instead,
which would have simplified the assembly.

9.4 Active Surfaces

Active Surfaces is another scenario investigated in cooperation with the ’Le
Scotte’ hospital in Siena [14, 45, 46]. The PalCom group at the University
of Siena have built a prototype consisting of a set of floating tiles. The tiles
are used in a swimming pool setting, as aids for physical-functional and
cognitive rehabilitation of physically and mentally impaired children. In
exercises designed by therapists, the children assemble the tiles into mean-
ingful configurations.
Part of the background to this work is a traditional lack of integration bet-
ween physical and cognitive rehabilitation. The cognitive tasks have usu-
ally been too static, and the children have easily lost attention. On the
other hand, motor rehabilitation is very demanding at a physical level,
and is based on repetitive sequences of actions: patients often perceive
them as tiring and not engaging. Here, the Active Surfaces allow an in-

144

9.4. ACTIVE SURFACES

Figure 9.7: The tiles hardware.

tegration of these two therapeutic goals with the activity. In addition, the
exercises are performed in the water, which is interesting from the activity
perspective: water creates a safe context where impaired people can move
autonomously, relying on the added support to the body, something they
cannot do elsewhere.
Through interaction with PalCom assemblies running on the tiles, the ther-
apist can inspect and change their configurations. This way, she can adapt
the therapeutic activity in the middle of an exercise, and the visibility given
by the assemblies helps her cope with unexpected breakdown situations.

9.4.1 The prototype

The floating tiles in the Active Surfaces prototype can be connected to each
other to form a network (see Figure 9.7). Each of the tiles is a resource-
constrained embedded system that communicates using only a low-band-
width short-range infrared link. By having a simple composable physical
appearance and multi-purpose programmable hardware, the tiles support
multiple games or exercises. On each of a tile’s four sides magnets are
placed, to make the tiles “snap” together when they are in close vicinity.
On the top of the tile is a replaceable plastic cover, also held in place by
magnets. The image on the cover depends on the game. On each side of
the tiles, light emitting diodes (LEDs) provide visual feedback to the user.
There is also a special tile, called the assembler tile, which is used by the
therapist for configuration.
Inside each tile, an embedded system uses the infrared light to commu-
nicate with other tiles, and detect their presence. Two tiles can only com-
municate if they are close to each other. The main computational unit is
a UNC20 module, which is an ARM7-based embedded system running
uClinux [111] at 55 MHz, with approximately 8 MB RAM. The UNC20

145

CHAPTER 9. IMPLEMENTED SCENARIOS

(a) Two tiles are placed
correctly. The correct
sides are lit.

(b) The upper-right tile
has all neighbours cor-
rect.

(c) The complete puzzle
is solved.

Figure 9.8: The puzzle game.

module runs the Pal-VM (see Section 8.3), and it communicates with a
sideboard using a serial connection. The sideboard is responsible for con-
trolling the infrared communication and the LEDs. The bandwidth of the
infrared communication is approximately 600 bits per second.

9.4.2 Games

Several different games have been designed for the Active Surfaces. To be
appropriate for the tiles, a game should support both physical and cogni-
tive rehabilitation, while at the same time be implementable on the resource-
constrained devices. Furthermore, to be able to help a wide range of pa-
tients, the set of games should be of varying difficulty, both on the physical
and on the cognitive level. Finally, the games should be open-ended and
configurable so that they can be adapted and customized to each rehabil-
itation session. To change the current game, the therapist connects the tile
to a PDA running PalCom software. Since the PDA is not suited for a wet
environment, this should be done prior to the training activity.
One of the designed games, catch, is meant to only require simple cogni-
tive effort, but challenges the patient’s reflexes, speed, and coordination.
Here, the child holds one tile, and three or four other tiles are placed in a
row, floating on the water. When one of the tiles lights up, the child should
place his or her tile next to the lit one, as quickly as possible. Another game,
scrabble, has the requirement that the child should be able to form words
out of letters. There are letters on the tiles, and the child uses them to create
words, while the LEDs provide feedback when correct words are formed.
During the session, the therapist can change the faces of the tiles to differ-
ent letters.
The third game, puzzle, is the one for which the prototype implementation
has come furthest. It is a traditional puzzle game, in which an image is

146

9.4. ACTIVE SURFACES

Figure 9.9: A screenshot from the tiles simulator.

created by assembling the tiles in a specific pattern. The face of each tile
is part of a larger image, as can be seen in Figure 9.8. Initially, the tiles are
spread in a random pattern, after which the child starts to solve the puzzle.
As the game progresses, the child gets continuous feedback from the LEDs.
When two tiles are connected correctly, the corresponding sides light up, as
shown in Figure 9.8(a). When all of a tile’s neighbours are correct, all sides
of that tile light up (b), and finally when the puzzle is solved, the outline
of the solution starts blinking (c).
During the session, the therapist can change the faces of the tiles to make a
new puzzle. To reprogram the tiles, the special assembler tile is used. The
assembler tile has the same physical appearance as the other tiles, but it
also has a button. To make the tiles remember the new solution, they are
arranged in the solution pattern, the assembler tile is put next to one of
the tiles, and the button is pressed. After this, the tiles will remember the
new solution and can be scattered randomly again. The LED feedback can
be configured by the therapist to alter the difficulty level of the game. It is,
e.g., easier to solve the puzzle if all the outer edges of the final solution will
light up as the game is started.

9.4.3 A tiles simulator

In order to ease the development of game logic and software for the tiles,
a simulation framework has been developed by Jeppe Brønsted at Aarhus
University. This framework, as presented in the paper [14], can be used to
experiment with the tiles on a standard PC. A screenshot is shown in Fig-
ure 9.9. Having the simulator available made it possible to develop tiles
software and hardware in parallel, and high level tools that were not avail-
able for the embedded platform could be used for debugging and profiling.
Furthermore, testing involving repeated rearrangement of the tiles was

147

CHAPTER 9. IMPLEMENTED SCENARIOS

much easier using a mouse in a graphical user interface, than physically
moving the actual tiles around.
The simulator consists of a model of the swimming pool as a medium for
infrared communication, and a graphical user interface for manipulating
the physical location of the tiles. The user interface is connected with the
pool model, so that when a tile is moved in the user interface, the pool
model is updated accordingly. The software implementing the functional-
ity of the tiles in the simulator is divided into services, and implemented
using the Service Framework (see Chapter 8). This allows the services to
be combined into PalCom assemblies.
For the simulated infrared communication, a MAL Layer media manager
has been implemented. When a tile sends a message, the MAL Layer of the
tile accesses the pool model to determine which tiles the tile is connected to
(if any), and delivers the message accordingly. From an application devel-
oper’s perspective, it is transparent whether the simulation framework or
the physical hardware is used. The only part of the software on the tile that
interacts with the simulation framework is in the MAL Layer, and there-
fore system behaviour experienced on the simulator should be similar on
the embedded platform.

9.4.4 Groupcast tiles

The puzzle game, as described in Section 9.4.2, has been implemented for
the tiles simulator, including configuration of the puzzle solution using the
assembler tile. Similar functionality is also available in a later, experimental
implementation by the author of this thesis. In that implementation, named
Groupcast tiles, each tile is a simulated device (see Section 8.4), which com-
municates using UDP, instead of simulated IR communication.2 The reason
for building the Groupcast tiles implementation was to demonstrate use
of groupcast communication between PalCom assemblies in the algorithm
carried out during the puzzle game (see the following section). The mecha-
nisms for groupcasts were not available when the tiles simulator was built,
and the tiles simulator used lower-level broadcast communication directly
between services. The structure of services and assemblies on the tiles is
otherwise similar for Groupcast tiles and the tiles simulator.

9.4.5 Puzzle game logic

During the puzzle game, each tile changes between three states: unhappy,
locally happy, and globally happy. The states correspond to the types of feed-

2We have concluded that tiles communicating using UDP is relevant for this demonstra-
tion, even if messages can reach tiles that are not “physically” connected to the sending tile.
The service Connectivity on the tiles, which handles the relationships to neighbour tiles, works
in the same way as for the tiles simulator.

148

9.4. ACTIVE SURFACES

Unhappy
(start state)

Globally
happy

Locally
happy

challenge received /
broadcast veto

some side wrong/
light correct

all sides right /
broadcast challenge

and start blinking

some side wrong/
broadcast veto and

light correct

veto
received /
light all

some side wrong/
light correct

challenge
received /

start blinking

Figure 9.10: State diagram for a tile in the puzzle game.

back given by the tiles. In Figure 9.8, the top-right tile is unhappy in (a), lo-
cally happy in (b), and globally happy in (c). Three rules determine which
state a tile is in:

1. A tile is unhappy if it has less than four correct sides.3

2. It is locally happy if it has four correct sides but at least one of the
other tiles is unhappy. This means that the tile has found its place in
the puzzle, but the complete puzzle is not solved.

3. If no tile is unhappy then all tiles are globally happy. The puzzle is
solved.

As can be seen from these simple rules, the game has a notion of global
state, namely whether there is at least one unhappy tile. This information
is used by the tiles to distinguish whether the tile is locally happy or glob-
ally happy. If a tile has less than four correct sides, it does not need this
information (because of rule 1).

3We define a correct side of a tile to be a side that has a correct neighbour, or has no
neighbour and should have no neighbour according to the solution.

149

CHAPTER 9. IMPLEMENTED SCENARIOS

The state diagram in Figure 9.10 illustrates the algorithm followed by each
tile in the puzzle game: the states in the diagram are states of an individual
tile. The edges are marked with events that happen to the tile (in italic), and
with actions taken by the tile (after the slash). Events come either when the
set of neighbour tiles changes, or when a broadcast message is received.
The global state is maintained by handling two situations: The first situ-
ation occurs when an unhappy tile observes that it has four correct sides
instead of three. This event is modelled as all sides right in the diagram.
The tile then goes to the globally happy state, starts blinking its LEDs, and
broadcasts a challenge to the other tiles (by using the groupcast mecha-
nism), requiring any unhappy tiles to reply immediately (also using group-
cast). If a response veto is received, the tile stops blinking and goes to the
locally happy state. When a locally happy tile receives a challenge, it treats
it as if it was originating from the tile itself: the tile goes to the globally
happy state, and waits and sees if any veto responses come. It is assumed
that the solution of the puzzle is connected and includes all tiles, and there-
fore it cannot be the case that no tiles are unhappy in a proper subset of all
the tiles. Therefore, if there is an unhappy tile, there is an infrared commu-
nication path from that tile to the tile that initiated the challenge.
The second situation, inverse to the first one, occurs when a tile observes
that it has three correct sides instead of four (some side wrong in Figure 9.10).
The new state of the tile is now unhappy, and the LEDs of the sides that
are correctly placed should be lit. If the tile was globally happy before,
the other tiles are unaware that the tile is now unhappy, and therefore a
message is broadcasted specifying so (veto). If the tile was locally happy
before, it can assume that there is at least one unhappy tile in the graph it
is connected to, and no broadcast is needed.

9.4.6 Services and assemblies

A set of PalCom native services encapsulates the basic hardware function-
ality of the tiles, and each game is implemented as an assembly and one or
more unbound services, that can be connected to these services. Figure 9.11
shows the services and the assembly TileAssembly on a tile in the four-tile
puzzle game, and the groupcast communication between the assemblies.
The set of services and assemblies is similar on tiles 1, 2, 3 and 4.
The basic services of the tiles are a LEDs service controlling the LEDs, and
a Connectivity service detecting the presence of neighbour tiles. In the real
tiles implementation, the information about neighbours is available to the
Connectivity service by inspecting the MAL Layer. The assembler tile also
has a Button service receiving input from the button. The combination of
the assembly and the Puzzle unbound service for the game logic can be

150

9.4. ACTIVE SURFACES

Figure 9.11: TileAssembly and the unbound service Puzzle handle the puzzle
game on one tile. Tiles 2, 3 and 4 have the same set of services as Tile 1, and a
similar assembly.

replaced when switching to another game. Figure 9.12 shows the assembly
descriptor for TileAssembly:

• On lines 18–21, the command connectivityUpdate from Connec-
tivity is forwarded to the unbound service Puzzle. Puzzle implements
the state machine shown in Figure 9.10, and handles connectivity-
Updated as one of the events all sides right or some side wrong.

• When Puzzle decides to control the LEDs, it sends out the command
lightLEDs, which is handled on lines 22–24.

• The assembly has a synthesized service HappySynth, whose interface
is defined on lines 38–41. The synthesized service uses groupcast
communication, and participates in the group HappyGroup. As Tile-
Assembly runs on all four tiles, there are four members in the group.
The two commands used in the groupcast communication are chal-
lenge and veto. Those are, by the definition of groupcast commu-
nication, both out-going and in-going. The assembly can both send
and receive them.

• On lines 25–30, groupcast commands are sent out when challenge
or veto come from Puzzle, according to broadcasts shown in the
state diagram in Figure 9.10.

• The event handlers on lines 31–36 handle receival of groupcast com-
mands, by forwarding them to Puzzle.

In parallel with the four TileAssembly instances, a fifth assembly Configure-
Assembly runs on the assembler tile (see Figure 9.13). It handles configu-
ration of the correct puzzle solution, by receiving buttonPressed com-
mands from the Button service on the assembler tile, and sending save-
Configuration commands to the Puzzle unbound services on each tile.

151

CHAPTER 9. IMPLEMENTED SCENARIOS

1 assembly TileAssembly 1.0 released {
2 this = ServiceID;
3 devices {
4 Tile = DeviceID;
5 }
6 services {
7 Puzzle = ServiceInstanceID on Tile;
8 Connectivity = ServiceInstanceID on Tile;
9 LEDs = ServiceInstanceID on Tile;

10 }
11 connections {
12 Puzzle <-> this;
13 Connectivity <-> this;
14 LEDs <-> this;
15 }
16 script {
17 eventhandler {
18 when connectivityUpdate from Connectivity {
19 send connectivityUpdated(thisevent.neighbours)
20 to Puzzle;
21 }
22 when lightLEDs from Puzzle {
23 send setLEDs(thisevent.sides) to LEDs;
24 }
25 when challenge from Puzzle {
26 invoke challenge() on HappySynth;
27 }
28 when veto from Puzzle {
29 invoke veto() on HappySynth;
30 }
31 when challenge from HappySynth {
32 send challengeReceived() to Puzzle;
33 }
34 when veto from HappySynth {
35 send vetoReceived() to Puzzle;
36 }
37 }
38 synth HappySynth groupcast HappyGroup {
39 in out challenge();
40 in out veto();
41 }
42 }
43 }

Figure 9.12: The TileAssembly descriptor.

152

9.5. PALCOM ON A SUN SPOT

Figure 9.13: The assembler tile runs ConfigureAssembly. It connects to the
Puzzle services on the other tiles.

In Puzzle, a saveConfiguration command is handled by saving the
current set of neighbour tiles, as received from Connectivity, as the correct
local solution, and updating the tile state accordingly.

9.5 PalCom on a Sun SPOT

Sun SPOT (Sun Small Programmable Object Technology [104]) is a small
computer. It has wireless communication, an accelerometer, a temperature
sensor, LEDs for output, buttons for input, and I/O pins for interfacing
attached hardware. Sun SPOT software is implemented in Java, and there
is a small Java Virtual Machine, called Squawk, that runs directly on the
hardware, without an intermediate operating system. The Sun SPOT runs
CLDC, a configuration of the Java Micro Edition [105].
Due to its form factor—a Sun SPOT device fits in the palm of a hand—and
due to the wireless communication, the Sun SPOT is attractive as a plat-
form for building pervasive computing prototypes. In a project in Lund,
referred to as PalSpot, Jörgen Ellberg ported the PalCom middleware and
Service Framework to the Sun SPOT platform, and demonstrated its use in
a PalCom assembly. The CLDC libraries differ a little from the PalCom li-
braries, which are written in Pal-J (see Section 8.3). Therefore, the port was

153

CHAPTER 9. IMPLEMENTED SCENARIOS

Figure 9.14: The PalSpot assembly.

not completely straightforward, and scripts had to be made that converted
uses of certain library classes in the code.4 Further, it was a challenge to
make the software fit into the limited memory on the Sun SPOT. The third
main part of the work was to create a new media manager for Sun SPOT
radio communication in the MAL Layer (see Section 8.2.1).
The implemented assembly demonstrated use of the Sun SPOT as a nice
and intuitive remote control for an Axis dome camera. In this case, the
camera was used with the Major Incidents Overview prototype in the Tall
Ships’ Race scenario (see Section 9.7). The PalCom software on the cam-
era was the same as for the car roof camera in the SiteTracker, presented
above in Section 9.2. The remote control was implemented as a PalCom
service Movement on the Sun SPOT, that captured the device’s movements
by interfacing the accelerometer, and that sent out commands reflecting
the 3D rotational coordinates. An assembly connected the Sun SPOT to the
camera, as shown in Figure 9.14. The assembly ran on a PC, which commu-
nicated with the camera in an Ethernet IP network. Through a Sun SPOT
base station, attached to a USB port on the PC, the PC could communicate
wirelessly with the Sun SPOT. By pressing a button on the Sun SPOT and
tilting the device, the camera could be panned and tilted in a smooth way.
The PalSpot demonstration was an example of routing of PalCom com-
munication between different network technologies (Sun SPOT radio and
UDP over Ethernet, as shown in Figure 9.14). The Sun SPOT had a Sun
SPOT media manager, as implemented in the PalSpot project, and the cam-
era had a UDP media manager for IP communication. The PC, where the
assembly executed, had both those media managers, and a routing man-
ager in the Routing Layer that connected the two.

9.6 A bridge between PalCom and UPnP

In his master’s thesis project [64], Johan Kristell implemented bridging
software that made UPnP [114] devices and services available in PalCom

4With the scripts, the code in the central PalCom code base could be used for building the
Sun SPOT PalCom libraries. This means that we did not have to branch off a complete source
tree, but could continue to follow the development in the main tree.

154

9.6. A BRIDGE BETWEEN PALCOM AND UPNP

Figure 9.15: A surveillance scenario with UPnP devices. The UPnP devices have
been tagged with the UPnP logo, and the PalCom assembly and the PalCom service
storage with the PalCom logo.

networks, and vice versa. The main benefit of such a bridge is that the large
base of available UPnP devices can be utilized in PalCom assemblies, and
be combined with each other and with PalCom devices in a more flexible
and light-weight way than with UPnP only.
The bridge was demonstrated in a surveillance demo scenario, as illus-
trated in Figure 9.15. It made use of the bridging of UPnP devices to Pal-
Com. The set-up includes three devices, used for surveillance in a build-
ing. The camera is a UPnP device, adhering to the Digital Security Camera
V1.0 standard (see [113] for UPnP Device Control Protocol standard docu-
ments). The light is also a UPnP device, implementing the Lighting Con-
trols V1.0 standard. It is connected to a motion detector, that turns on the
light if someone enters the building. The third device is a PC that runs the
assembly Surveillance, the bridging software, and a PalCom storage service
that can store images.
The bridge performs UPnP discovery, generates PalCom device and ser-
vice descriptions for the surveillance camera and the light, and uses the
Service Framework for announcing them. The assembly can interact with
them as if they were PalCom devices. If someone moves in the building,
the light is turned on and the service SwitchPower on the camera sends
out a notification to the assembly. Then, the functionality of the assembly
is that it asks the service DigitalSecurityCameraStillImage on the camera
to take a picture. When the picture comes to the assembly, it is sent to the
Storage service for storage, and future inspection.
In order to realize this scenario with UPnP only, a custom UPnP control
point would have had to be implemented (control points are programs,
typically implemented in C, C++ or Java, that use UPnP services). That is
not as light-weight as the PalCom assembly, and cannot be modified as

155

CHAPTER 9. IMPLEMENTED SCENARIOS

easily, as discussed in Chapter 4. Using the bridge in the other direction,
making use of PalCom devices and services from UPnP control points, is
not immediately useful, because PalCom devices in general do not follow
any of the 16 UPnP device types.
The characteristics of the UPnP standards influenced how the bridge could
be implemented. Only the simplest device types, of which the Lighting
Control is one example, could be bridged fully automatically. For the more
complex types, the use of different conventions for different UPnP types
made type-specific adaptation code necessary in the bridge. E.g., for trans-
fer of large pieces of data, such as images, several UPnP types provide a
URL for retrieving the data out-of-band, over HTTP (all UPnP devices run
a Web server). There is, however, no established convention, for naming
or otherwise, that can be used for detecting such a URL automatically, and
presenting it as a command with an image parameter in a PalCom service
description. Another example is that lists of values are formatted in dif-
ferent ways for different UPnP types (sometimes comma-separated, some-
times in other formats). Thus, adaptation code is needed in the bridge. Still,
this is only needed to implement once for each of the relatively few UPnP
device types.

9.7 Tall Ships’ Race

The Tall Ships’ Race demonstration, as introduced in Section 1.5.3, is the
biggest and most complex demonstration of PalCom technology made dur-
ing the project [83]. During four days in July 2007, the Major Incidents
Overview prototype, developed by the PalCom team at the University
of Aarhus, provided overview and supported communication for police,
fire brigade and hospital staff in the Aarhus harbour area, where The Tall
Ships’ Race event took place. In a centrally placed command center, the
Topos application [1] showed a 3D view of the area on a large screen. In-
side the 3D model, the locations of key personnel were shown in real time,
together with photos taken by their mobile phone cameras. Vessels taking
part in the sailing competition could be followed in the model as well. Web
cameras, and a remotely controllable Axis dome camera, were placed in
strategic locations, and their video streams were displayed in the 3D view.
In the Tall Ships’ Race set-up, devices communicated using 3G, directional
Wi-Fi, Wi-Fi, Ethernet, and RS-232. Some of the communication was done
in native formats, and converted to PalCom communication by wrapper
services. There were two assemblies, which coordinated the communica-
tion:

• Photos taken by the cameras of the mobile phones, and coordinates
from their GPSs, were retrieved over 3G, and collected by an assem-

156

9.8. SUMMARY

bly. Both types of information were sent to PalCom services for stor-
age and future reference. The assembly also sent the photos to Topos,
with attached location information, so they could be shown at the
right place in the 3D world.

• Another assembly provided GPS coordinates of the over 100 ves-
sels, obtained from the Automatic Identification System (AIS), to the
Topos application for 3D visualization.

The Axis dome camera, which streamed live video to the Topos applica-
tion, was controlled using the same AxisControllerService as for the Site-
Tracker, presented in Section 9.2.

9.8 Summary

The examples in this chapter show that the Service Framework and middle-
ware, as presented in Chapter 8,

• have been used by PalCom programmer teams for building proto-
types, that have in turn been evaluated by professionals from the
police and the fire brigade, by medical staff, and by landscape ar-
chitects.

• have been used over different network technologies, such as Ether-
net/IP, Bluetooth, IR, and short-range radio.

• have been bridged to other frameworks, such as UPnP [114].

• have been used on a resource-constrained platform, in the case of the
Sun SPOT [104].

• allow specialized implementations of MAL Layer media managers,
and routing between PalCom networks.

In all the examples, assemblies are used for combining and coordinating
services, and in most cases also for adding some functionality. This is the
case for the image tagging in GeoTagger, for the wind mill visualization
in SiteTracker, for the alarm handling in the Incubator, and for the puz-
zle game in Active Surfaces. By letting the heterogeneous devices around
the Incubator offer PalCom services, they could be integrated in a flexible
manner, using assemblies. The software on the tiles is organized as PalCom
services, which cooperate using assemblies. Unbound services are used for
handling computation aspects in several of the scenarios. In Active Sur-
faces, the game could be changed by exchanging assemblies and unbound
services. Some services, such as the AxisControllerService that controls the

157

CHAPTER 9. IMPLEMENTED SCENARIOS

dome camera, were re-used in several prototypes, by incorporating them
in different assemblies. For the SiteTracker example, a way was shown of
structuring systems of assemblies in a hierarchical way, using synthesized
services.
The split between computation, expressed in unbound services, and coor-
dination and configuration, expressed in assembly descriptors, has been
useful and powerful in the example scenario implementations. Features
that have emerged as candidates for extension of the assembly descrip-
tor language are conditional execution, arithmetic and conditional expres-
sions, and support for timers.

158

Chapter 10

Evaluation

In this chapter, we will evaluate the results of the work presented in this
thesis. The evaluation will focus on

1. the support for non-preplanned interaction and ad-hoc combinations
in the PalCom architecture,

2. the framework and the middleware, that has been implemented for
the developer of PalCom software, and

3. the scalability of the protocols and the architecture.

The evaluation will be based on experiences from use of the software, in
PalCom scenarios and in our lab environment, and on reasoning from cases
and measurements. We should mention that our work has been part of the
large PalCom project, and that this is not an evaluation of the complete
project, but of our part in it.

10.1 Ad-hoc combinations and non-preplanned
interaction

Our main evaluation method has been continuous use of the software, and
demonstration of implemented systems. Different versions of the frame-
work, middleware and browsers have been used throughout the PalCom
project, and towards the end of the project they have been demonstrated
in PalCom scenarios, as presented in Chapter 9. There have been PalCom
devices running services on a JVM or the Pal-VM, and simulated devices
running on laptops or desktop PCs, representing some hardware that was
not physically available at the time. Some devices have been wrapped by

CHAPTER 10. EVALUATION

PalCom services running on connected devices, and there has been an Axis
camera with Linux that implemented the protocols directly in C [72]. The
different browsers, as presented in Chapter 7, have been the Handheld
Browser, the PalCom Developer’s Browser, the PalCom Overview Browser
and the NICU Browser. The middleware and the framework, supporting
assemblies and construction of services, as well as the browsers, are all
now part of the open-source PalCom reference implementation, and the
main design is stable and working.
Looking at it from a certain angle, it is of course difficult to test some as-
pects of the ad-hoc combinations and non-preplanned interaction through
long-term use by people who, after some time, get quite accustomed to the
structure of services and assemblies. In such a setting, is not easy to repeat-
edly capture the moment where the opportunity emerges for combined
use of a set of services, or for interaction with a new service. We have,
however, noted on a number of occasions that the assembly mechanism
allows much more light-weight—and ad-hoc—compositions, than would
have been possible without such a mechanism. Examples of this are where
services developed by different groups have been combined in assemblies,
such as with the AxisControllerService, which was used in SiteTracker, in
the Tall Ships’ Race and in a demonstration with the Sun SPOT, and with
the ExtendedGeoTagger assembly (Section 9.1), which was constructed at
a later time and integrated with the existing, unchanged functionality of
the GeoTagger. It is thus possible to combine services that were not created
together. In the surveillance scenario with the UPnP bridge (Section 9.6), an
assembly was created for combining PalCom devices with devices whose
service interfaces were generated automatically, from existing UPnP ser-
vices.
We have noted some particularly important factors behind this. One is that
the assembly is external to the services—that it separates computation from
coordination and configuration—and another is that the Discovery Proto-
col is defined as a standard protocol, known by all PalCom devices. With-
out such a standard protocol, ad-hoc combinations would not be possible.
Other important factors are the possibility to make adaptations of service
interfaces in synthesized services, and the possibility to create hierarchies
of assemblies, as shown for the SiteTracker in Section 9.2.
We have strived to keep our designed assembly descriptor language as
simple as possible. One, perhaps slightly subtle, language feature is the
possibility to adapt command flows between services in event handlers,
by selecting a subset of parameters, and forwarding them in a differently
named command. The less complex alternative, having only the possibility
to forward unchanged commands, would effectively put us in the prob-
lematic standardization situation discussed in Section 1.2, or would re-
quire that the set of services were created together. Examples of command
changes during forwarding can be found in most of the implemented Pal-

160

10.1. AD-HOC COMB. AND NON-PREPLANNED INTERACTION

Com scenarios we have seen, including the ones in Chapter 9, and we see
this as a necessary feature of a useful assembly mechanism. Whether our
set of assembly descriptor language features is also optimal, giving a suffi-
ciently powerful mechanism, will be discussed further in Chapter 11.

10.1.1 Usability

Of crucial importance, for non-preplanned interaction and ad-hoc combi-
nations, are also the design of the language for service descriptions, and the
functionality in browsers for presenting the service descriptions to users.
Here, we have the ambition of making the services self-describing through
their rendered user interfaces, as a support for experimentation with the
services while combing them in assemblies. Another important factor is the
possibility to view the set of currently established connections in browsers,
for getting a view of the current communication situation, as supported
by the Discovery Protocol. These factors are tightly connected with issues
about the usability of available tools, in the form of browsers.
As discussed in Section 7.5, the different browsers implemented in the
project focus on different user groups, and provide different functional-
ity. The nicest overview of current connections is given by the Overview
Browser, which shows them graphically. The Developer’s Browser shows
connections in a simple list, but has functionality for editing assemblies,
and for rendering user interfaces from service descriptions. The render-
ing, which works the same way as for the Handheld Browser, gives user
interfaces that are more or less appealing, depending on the structure of
a particular service description and the size of the available screen area.
Here, we have discussed giving the service provider the possibility to pro-
vide some more layout hints than what can currently be specified for a
PalCom service. One simple and very useful related feature, that has been
incorporated in the protocols and utilized by the browsers in tool-tip texts,
is human-readable help texts, as shown in Figure 5.9. The design of a more
sophisticated scheme for layout hints is part of future work.
Another mechanism in browsers, that we have seen as potentially useful,
and perhaps necessary for large-scale use, is filtering of the set of discov-
ered devices, services and connections that are shown to the user. Our cur-
rent basic bordering mechanism is the local network, which may be too
large in many cases. One mechanism, which has been used in some ver-
sions of the Overview Browser, is to focus on the services and connections
that are included in one or a few assemblies, and hide the rest. For extend-
ing the set of discovered entities beyond the local network, we have the
PalCom tunnels, as discussed in Section 1.6.6.

161

CHAPTER 10. EVALUATION

10.1.2 Palpable challenges

The palpable challenges, as listed in Section 1.4, are related to ad-hoc com-
binations and non-preplanned interaction, and to the usability issues. They
were formulated at the beginning of the PalCom project, and we have used
them as a motivation and inspiration for our work. The challenges are very
rich, however, and finding solutions for balancing the six pairs of comple-
menting properties has not been the primary goal of the work presented
in this thesis. Nevertheless, it is interesting to see that the work done on
assemblies and browsers does indeed address all of the challenges in some
way.

Visibility and invisibility

Ubiquitous computing brings a degree of invisibility to computing sys-
tems, in that the systems blend into the environment. PalCom highlights
the need for balancing this with an appropriate degree of visibility, so that
the systems remain understandable. Visibility is supported by announcing
descriptions of services, including synthesized services of assemblies, and
by involving the user in the initial process of setting up a set of connec-
tions, that can later be turned into an assembly. Further, it is supported
by giving a view of the current communication in announced connections,
and by the device awareness, as discussed in Chapter 5. Invisibility is sup-
ported by assemblies that work automatically in the background, estab-
lishing connections and governing communication between services, and
also by the notion of synthesized services, that can hide the inner workings
of an assembly and present only an interface for use from the outside.

Construction and de-construction

For construction and de-construction, the notion of the assembly is cen-
tral in PalCom. We enable construction of assemblies by end users, while
requiring only limited pre-defined knowledge of service interfaces. De-
construction is supported by the interactive browsers, where existing as-
semblies can be taken apart and changed. This is true for hierarchies of
assemblies, constructed by means of synthesized services, and for individ-
ual assemblies that combine a set of native services.

Heterogeneity and coherence

The approach to heterogeneity lies in that assemblies can combine services
that were not created according to a pre-defined standard, and adapt to
the actual service protocols using scripted logic. There is no standardized
protocol at the domain level, and the heterogeneity is not restrained. At the

162

10.1. AD-HOC COMB. AND NON-PREPLANNED INTERACTION

same time, the common, domain-independent Wire and Discovery proto-
cols allow services to be inspected and interacted with in a coherent way. A
synthesized service can be used for providing an end user with a coherent
view of a set of services.

Change and stability

The high degree of change in pervasive computing systems is moderated in
PalCom by mechanisms for increased stability, including assemblies with
dynamic bindings that adapt to a fluctuating set of available devices. The
assembly remembers its connections and automatically connects its assem-
bled services once they become available. The support for transient devices
in the Pacemaker Protocol, presented in Chapter 5, also works for increased
stability. Regarding the support for change, the assembly can be adapted
by the user for handling changes in the environment, e.g. by rebinding a
connection from one device to another.

Scalability and understandability

Scalability is supported at the assembly level, where complex scenarios can
be handled by using synthesized services in order to build larger systems
from simpler ones. Assemblies can be scaled to compose non-local services,
for example over the Internet, through the use of tunnels. The potential
need for scoping mechanisms on the network, as discussed above, also
belongs here. Understandability is supported by the possibility to group
services as composite services in assemblies, and for grouping services in
a tree structure on a device. The structure of the assembly mechanism is
also sufficiently simple to promote understandability: an assembly can be
inspected directly in a browser.

Sense-making and negotiation, user control and deference

When it comes to the challenge of sense-making and negotiation, comple-
mented with user control and deference, we tend to focus on the latter part.
The rules for the autonomous behaviour of an assembly are defined by the
user in the assembly descriptor, and services can be explored directly by
the user before building an assembly, so problems can be identified. As
a kind of sense-making and negotiation, an assembly can automatically
replace a failing main service with a backup service using alternative ser-
vices, but still under control of the creator of the assembly.

163

CHAPTER 10. EVALUATION

10.2 PalCom for developers

The middleware and the Service Framework have been created as sup-
port for developers of PalCom software. Our principal evaluation method
for these has been to observe how programmers have worked with them,
both in our group in Lund and in other PalCom groups. Our main obser-
vation is that the middleware and framework have been used in the im-
plementation of all four browsers, and in the implementation of services
and assemblies in all PalCom scenarios presented during the final year
of the project, including the ones presented in Chapter 9. Developers in
groups outside Lund have worked in the project’s shared code repository,
and sometimes in local code bases that have linked to the middleware and
framework classes in the reference implementation.
Thus, we have some evidence that the middleware and framework is use-
ful for developers. In order to get a more precise view, we will try to sort
out how different development tasks can be performed:

• In order to implement a simple service, the normal way is to sub-
class the class AbstractService in the Service Framework. A common
practice has been to start from one of the simple example services
in the reference implementation (often a service named EchoService
that simply echoes received commands back to the sender).

• For implementing a small device, subclassing of the classes Abstract-
Device and AbstractService can be used, if the device can host a JVM
or a Pal-VM. This was done for the Sun SPOT, which has a JVM,
where the built-in sensors and actuators of the device were exposed
as PalCom services (see Section 9.5). If there is no compatible virtual
machine, it is also possible to implement support for the PalCom pro-
tocols directly in C or some other language, as was done in the project
[72], but that is a substantially more complex task.

• Adding PalCom browsing capability to a device is straightforward
for a device that supports desktop Java, where one of the available
browser applications can be installed. If the device supports Java
Swing [106], the Handheld Browser is also available in a Swing com-
ponent that can be included in the graphical user interface of another
application. Implementing a browser from scratch, on top of the Ser-
vice Framework, is also possible but a bigger task.

• An assembly can be added to any device that hosts an assembly man-
ager, as available in the reference implementation. Once the assembly
manager is running, assemblies can be uploaded to the manager re-
motely, and the device does not need to have an assembly editor of its
own, or even persistent storage. For editing assemblies, the PalCom
Developer’s Browser can be run on a laptop or a desktop computer.

164

10.3. SCALABILITY

• Finally, a task that requires deeper knowledge of the middleware is
to add a new media manager in the Media Abstraction Layer, as was
done for the tiles simulator (Section 9.4.3), and for the Sun SPOT. That
can be done by subclassing the class AbstractMediaManager, but it also
involves understanding of the PalcomThreads library (Section 8.3),
and of base libraries below the middleware.

To conclude, the more common tasks of a PalCom developer have direct
support. For the more uncommon tasks deeper knowledge is needed, but
there are examples to look at in the reference implementation.

10.3 Scalability

Our evaluation of scalability considers several aspects of the PalCom pro-
tocols and architecture:

1. networks with large numbers of devices,

2. response times in the system, which have to be sufficient for interac-
tive work, and

3. the support for PalCom on resource-constrained devices.

All of these are important to demonstrate for the architecture and the mech-
anisms proposed in the thesis.

10.3.1 Large numbers of devices

In order to show that the architecture scales up to large numbers of devices,
we have to show that the load on the network is kept down, while the
requirements of support for transient devices are kept (devices frequently
joining and leaving networks, see Chapter 5), and while the response times
in the system are sufficient for interactive work. PalCom is primarily de-
signed for systems where a human is in the loop, and not for hard real-time
requirements. The protocols target networks of limited physical range, in
the vicinity of a single person. Therefore, they do not need to scale up to,
say, thousands of devices.
For the load on the network given by a PalCom system, the heartbeat
mechanism in the Pacemaker Protocol is central. The heartbeat communi-
cation takes place regardless of any interaction between services, and thus
has to be kept compact in order for the protocols to scale. The approach
of Zeroconf [99], which has no periodic idle packets at all, is not sufficient
for the PalCom protocols, because the user has to become aware when a
device disappears.

165

CHAPTER 10. EVALUATION

There are different timing requirements for discovery of appearing and
disappearing devices in PalCom:

• When a new device enters the network, the other devices have to
become aware of it within a short time, and it has to become aware of
them.

• When a device leaves the network, the remaining devices have to
become aware that it has left within a known time, even if the device
leaves without announcement (it may crash or just leave the network
range).

The differences in timing requirements come from differences at the user
level. When a device enters a network, a user is often involved, inspect-
ing devices and services in a browser or otherwise. Therefore, discovery
has to be more or less instant. When devices disappear, on the other hand,
they are usually not in direct use. The requirement, as we have seen in the
PalCom scenarios, is instead that the time of discovery of device disap-
pearances has to be under control of the involved devices, and possible to
vary depending on the application, as with the heartbeat frequency that is
controlled by the most eager device.
From a user perspective, this can be illustrated with the situation when
a user studies the available devices in a PalCom browser. How long will
it take before a change in the number of available devices is reflected for
the user, in the worst case? There are five cases of how the situation can
change, where X is one of the devices:

1. Device X boots.

2. Device X is shut down uncleanly.

3. Device X is shut down cleanly.

4. Device X comes within reach.

5. Device X leaves the network range.

In the Discovery Protocol, there will be direct notification to all other de-
vices in cases 1 and 3. Here, the protocol will thus not inflict any extra
delay. In the other three cases, the change will be noticed at the next round
of the heartbeat procedure. The time from the change takes place until it is
actually reported depends on the time until the most eager device initiates
a new heartbeat procedure. This time is thus determined by the applica-
tions, and not by the Discovery Protocol itself. It can, e.g., be set very short
for a while by a device that is in a critical state. This can be lifted all the
way up to the end user to control. In summary, for all the five cases, the
response time requirements are met for the heartbeat mechanism.

166

10.3. SCALABILITY

Regarding the requirement of keeping the load on the network down, it
is a PalCom requirement that there is no central server (requirement 14
on page 76). When a new device becomes present (boots or comes within
reach) it needs to get information about all other available devices. In an
environment with n devices, this means at least one initial request and n−1
replies, which is what the protocol will use. Since these messages are sent
as broadcasts, it means that at the same time all other devices are brought
up to date as well (including registering the new device). For updating a
situation with n devices we require n messages. If single messages (unicast)
had been used for answering the request, n2 messages would have been
needed.
For distributing more detailed information than the presence information
distributed through the heartbeats, two basic design options for the dis-
covery protocol are broadcast and unicast messages. We have chosen to
use a unicast request-reply scheme, combined with caching, as discussed
in Chapter 5. Devices send unicast requests for descriptors they are in-
terested in, and unicast replies are sent back. These, potentially extensive,
pieces of information go only to those devices that are explicitly interested.
On a shared-medium local network, the costs of broadcast and unicasts
are the same at the very lowest level: both occupy the medium. But uni-
casts are filtered out, by hardware or by low-level network software, for all
but the intended receiver, and only processed further there. We concluded
that the potential advantage of listening in on broadcasts for the more de-
tailed information, as is done for the heartbeats, would be eliminated by
a large amount of unwanted processing of messages about services that
some devices, typically small ones, are not interested in. Therefore, the
detailed information is obtained through unicast request messages. The
HeartBeat message has been kept as compact as possible, with a special
message node, as illustrated in Figure 5.3. For very constrained environ-
ments, the broadcasting of heartbeats can be tailored further.
In this context, we should also mention that, as for the ad-hoc combinations
and non-preplanned interaction discussed in Section 10.1, our continuous
use of the software has also given us hints about the scalability. One ex-
ample is the PalCom project reviews in March and December 2007, where
many PalCom devices and services, implemented for different demonstra-
tion scenarios, executed in the same local network. On the latter occasion,
the implementation of the caching mechanism in the protocols had been
finished and stabilized, which gave a remarkable increase in the stability
of discovered devices and services in browsers.

10.3.2 Execution on resource-constrained devices

In order to evaluate the support for execution on small devices, our first
observations are that in the PalSpot project, a Sun SPOT worked as a Pal-

167

CHAPTER 10. EVALUATION

Com device, running the built-in JVM (see Section 9.5), and in the project
[72], PalCom services were implemented on an Axis network camera. Both
of those devices are fairly small and resource-constrained, and worked to-
gether with PalCom browsers and services in assemblies.
When looking at such examples of implemented scenarios, we evaluate
the architecture and protocols by evaluating our implementation of them.
This is also the philosophy behind a number of measurements that we
have made: we measured execution times, processor load and response
times for communication between PalCom services and assemblies, imple-
mented using the middleware and Service Framework. The services and
assemblies ran on Linux PCs in a 100 Mbit/s Ethernet LAN.1

We relate the measurements to times for “minimal” programs, written in
C and Java, that send similar amounts of data over the network. The mini-
mal programs do no processing of data, either at the sender or the receiver
side, while PalCom services pack and unpack commands according to the
protocols described in Chapter 5, among other things. Thus, the minimal
programs are not relevant to use as direct references for wanted perfor-
mance. Instead, we use them to relate the times of PalCom processing to
the times for “pure communication” on the hardware used.

Sending commands directly between services

The first measurement set-up was according to Figure 10.1, with two com-
puters running one PalCom service each. In this test, and in the follow-
ing tests with PalCom services, the services were implemented using the
Service Framework and executed on a JVM. The service Sender sent com-
mands to the service Receiver with different periods, i.e. with different de-
lays between consecutive commands. The UDP packets sent, containing
the commands, were approximately 244 bytes each. Figure 10.2 shows the
results for CPU load and packet counts (command counts). Period 0 was
tested by doing a yield between each command, letting other PalcomThreads
execute, but without any other waiting. With that maximum sending rate,
around 4500 commands could be transported per second. The CPU loads
are plotted in Figure 10.3. We see that periods of 1 and 2 ms gave some load
on the receiver, while for 0 ms both the sender and the receiver had 100 %
load. For a reasonable CPU load of around 20 %, the PalCom services could
transfer about 1000 commands per second.
In order to get an idea of the capacity of the network and the lower net-
working layers on the computers, we made measurements with two mini-
mal C programs, one which sent out UDP packets at maximum speed, and
one which received the packets. The results are shown in Figure 10.4, and

1AMD Athlon 64 3800+ X2 computers with 2 GHz processors and 1 Gb memory, running
Debian Linux.

168

10.3. SCALABILITY

Figure 10.1: Set-up for the test of command sending from one service to another.

CPU CPU Pkt Pkt
Period Sender Rec. sent rec. Rec. rate
(ms) (%) (%) t (s) (·103) (·103) (pkt/s)

100 0 0 100 1.00 1.00 10
10 0 0 100 10.00 10.00 100

3 0 0 99 33.00 33.00 333
2 0 2 99 50.00 49.51 500
1 0 20 99 100.00 99.16 1002
0 100 100 22 100.00 99.52 4524

Figure 10.2: Results for the command sending test.

0 2 4 6 8 10

0

20

40

60

80

100

Period (ms)

Lo
ad

(%
)

Sender
Receiver

Figure 10.3: CPU loads in the command sending test.

169

CHAPTER 10. EVALUATION

Pkt CPU CPU Pkt Pkt Rec. rate
size sender rec. sent rec. (·103

(bytes) (%) (%) (·106) (·106) t (s) pkt/s)
1500 5 2 0.50 0.50 65 7.69
1000 5 3 0.50 0.50 42 11.90

500 8 4 0.50 0.50 23 21.73
400 10 5 1.00 1.00 37 27.00
300 13 5 1.00 1.00 29 34.45
200 19 8 1.00 1.00 21 47.53
100 28 12 2.00 1.99 26 76.72

50 50 18 2.00 1.99 19 104.80
30 80 50 2.00 1.99 15 132.79
20 99 65 3.00 2.92 21 138.84
10 99 70 3.00 2.96 22 134.48

1 99 70 3.00 2.93 21 139.29

Figure 10.4: Values for packet sending test with minimal C programs.

0 200 400 600 800 1,000 1,200 1,400 1,600
0

50

100

150

244 bytes, 40000 packets/s

Packet size (bytes)

R
ec

.r
at

e
(·1

0
3

pa
ck

et
s/

s)

Figure 10.5: Packet receival rates for the C packet sending test.

170

10.3. SCALABILITY

Figure 10.6: Set-up for the assembly test.

packet receival rates for different packet sizes are plotted in Figure 10.5.
At the packet size used in the PalCom command sending test, 244 bytes,
approximately 40000 packets could be transferred per second. From this
we conclude that with the PalCom services, around 4500/40000 ≈ 11% of
the time was spent on “pure communication”, and the remaining 89% was
spent on PalCom processing. Within those 89%, we have the possibility to
optimize the processing in order to increase throughput.

Sending commands via an assembly

The next test was done for measuring the performance of a system with
a PalCom assembly. The set-up was as shown in Figure 10.6, with three
computers, where two had one service each and one executed an assem-
bly. The assembly forwarded commands from the Sender service to the
Receiver service. The Sender sent with different periods, and the 0 ms pe-
riod was handled the same way as above, using a yield. The UDP packets
had a size of approximately 244 bytes. The measurement values are shown
in Figure 10.7, with the CPU load values plotted in Figure 10.8. We see
that the assembly manager on Computer 2 gets a higher load than both
the sender and the receiver. At the period of 0 ms it reaches 100 %, and
loses the majority of the packets. Down to 1 ms, the values are similar as
for the results with only services in Figure 10.2. It was not possible to test
with a period between 0 and 1 ms, because the time resolution of waits in
the framework is 1 ms. The reason that the assembly manager has to work
harder is probably simply that it has to perform both a receive and a send
for each command. Looking at the CPU loads, we see that it is reasonable to
use the current implementation for systems where assemblies transfer up
to about 500 commands per second (20 % load on the assembly manager).

Response times

In addition to receival rate, another interesting measurement is response
times, i.e. the round-trip time from a command is sent, until a reply com-
mand comes back. This was measured using the three set-ups shown in
Figures 10.9 through 10.11. In set-up A, shown in Figure 10.9, the service
Tester, which sends out the first command and measures the response time,

171

CHAPTER 10. EVALUATION

CPU CPU CPU Pkt Pkt Pkt
Period Sender Rec. Ass. sent rec. Rec. rate lost
(ms) (%) (%) (%) t (s) (·103) (·103) (pkt/s) (%)

100 0 0 0 50 0.50 0.50 10 0
10 0 1 1 50 5.00 5.00 100 0

5 0 0 3 150 30.00 30.00 200 0
3 0 1 13 300 100.00 100.00 333 0
2 0 1 25 148 75.00 74.01 500 1.32
1 0 15 60 150 150.00 149.47 996 0.35
0 90 3 100 12 100.00 15.90 1325 84.1

Figure 10.7: Values for the assembly test.

0 2 4 6 8 10

0

20

40

60

80

100

Period (ms)

Lo
ad

(%
)

Sender
Receiver
Assembly

Figure 10.8: CPU loads for the assembly test.

172

10.3. SCALABILITY

Figure 10.9: Response times test set-up A.

Figure 10.10: Response times test set-up B.

Figure 10.11: Response times test set-up C.

and the service Echo, which replies as fast as it can, ran on the same com-
puter. In set-up B they ran on different computers (Figure 10.10), and in
set-up C an assembly on a computer in the middle forwarded both the
first command and the reply (Figure 10.11). The results are shown in Fig-
ure 10.12. The average response times were approximately 1400 µs for set-
up A, 1100 µs for set-up B, and 2800 µs for set-up C (it was thus not faster
to run both services on the same computer).
Response times for minimal C and Java programs, used in set-ups corre-
sponding to set-up B, are shown in Figures 10.13 and 10.14, and plotted
in Figure 10.15. We see that for the packet size of 244 bytes, as used with
the PalCom services, the minimal programs have a response time of about
135 µs. As pointed out above, this cannot be directly compared with the
1100 µs for set-up B with PalCom services, because the PalCom services
do processing that the minimal programs do not. Still, it serves to give an
estimate of the time used for “pure communication”. Figure 10.15 shows
that the difference between C and Java is very small, so the fact that the
PalCom services run on a JVM, and are not implemented directly in C, is
not an important factor for the performance at this level.

173

CHAPTER 10. EVALUATION

Pkt Average CPU CPU CPU
size resp. time Tester Echo Ass.

Set-up Runs (bytes) (µs) (%) (%) (%)
A 10000 224 1427 100 100 -
B 50000 224 1051 50 45 -
C 50000 224 2767 19 17 60

Figure 10.12: Values for response times test with PalCom services and assemblies.

Pkt Average CPU CPU
size resp. time tester echo

Runs (bytes) (µs) (%) (%)
100 500 218 5 3
100 244 134 8 4
200 100 88 10 7

1000 10 61 16 10
1000 1 60 16 8

Figure 10.13: Values for response times test with minimal C programs.

Pkt Average CPU CPU
size resp. time tester echo

Runs (bytes) (µs) (%) (%)
100 500 223 7 4
100 244 137 9 5
200 100 90 15 5

1000 10 65 18 12
1000 1 64 19 12

Figure 10.14: Values for response times test with minimal Java programs.

174

10.3. SCALABILITY

0 100 200 300 400 500

50

100

150

200

244 bytes

Packet size (bytes)

A
ve

ra
ge

re
sp

on
se

tim
e

(µ
s)

C
Java

Figure 10.15: Response times for minimal C and Java programs.

Average per run (µs)
Program Runs Pkt size CPU (%) User System Total
B 5.0 · 104 244 43 436 244 1551
MinJava 1.0 · 106 244 10 3 11 140

Figure 10.16: Values for measurements with the Unix time command.

Execution times

In order to get an idea of how the time for processing is spent in a PalCom
service, we measured a number of executions of set-up B with the Unix
time command, and compared with measurements for the minimal Java
program. The results, as shown in Figure 10.16, show that we got 1551 µs
total time per run for set-up B in that test, and 140 µs for the minimal Java
program. The column System shows the time used by the operating sys-
tem. The extra System time of 244 − 11 = 233 µs for set-up B, compared
to the minimal Java program, is mainly used for context switches between
threads. Those 233 µs are a substantial time, compared to the User time of
436 µs for set-up B, where the service executes at the Java level.2

In order to investigate the execution times more closely, time logging was
inserted at certain points of the Tester service and Service Framework code
that executed during the handling of a received reply, until it was deliv-
ered at the level of service code. The execution intervals between the log-
ging points were categorized according to the main activity in that inter-
val. The results for one run are shown in Figure 10.17. The total time for

2The part of the total 1551 µs that is not covered by User time or System time is spent
waiting for responses over the network.

175

CHAPTER 10. EVALUATION

Action Time (µs)
Wait 122
XML 50
JastAdd 55
Execute 54
? 31
Total 312

(a)

Wait

39%
XML

16%

JastAdd

18%

Execute

17%
?

10%

(b)

Figure 10.17: Times spent for different activities during the processing of a re-
ceived command (a), and the percentages (b).

Thread to follow JCS1 (µs) Sch (µs) JCS2 (µs) Total (µs)
mediaMgr 5 6 8 19
routingMgr 7 5 7 19
commMgr 5 6 7 18
connMgr 5 5 7 17
abstractService 6 5 6 17
tester 8 7 8 23
Total 113
Average 18.83

Figure 10.18: Execution times during context switches in the processing of a re-
ceived command.

the handling of the received reply was 312 µs. The intervals were tagged
as Wait, which means context switching between PalcomThreads, XML,
which means XML parsing, JastAdd, which means creating of a JastAdd
AST from the received command (see Section 8.2.1), and Execute, which
means “other execution”. One interval, where we could not determine the
main activity, was tagged with a question mark. We see, again, that the
waiting for context switches takes a large part of time, 39 %.
Figure 10.18 shows detailed measurements for the six context switches bet-
ween PalcomThreads that took place during the handling of a received
command in one run. The first four of the threads handle different lay-
ers in the communication stack, the thread abstractService is in the Service
Framework, and the thread tester is in the Tester program. The total time of
113 µs in this run corresponds to 122 µs for Wait in Figure 10.17. The con-
text switches between PalcomThreads are carried out as follows: each Pal-
comThread executes in a coroutine, which is supported natively on the Pal-

176

10.3. SCALABILITY

VM, and which is executed by a dedicated Java thread on the JVM (the JVM
was used in this test). In the context switch, the coroutine hands over to the
PalcomScheduler, which is a Java thread on the JVM, and which chooses
a new coroutine (Java thread) and schedules it. I.e., in each PalcomThread
context switch there are two Java thread context switches, shown as JCS1
and JCS2 in Figure 10.18, and execution by the PalcomScheduler, shown
as Sch. It can be seen that the average time for a context switch between
PalcomThreads on the JVM is 19 µs, and with six threads that adds up to
113 µs during the handling of a received command.

10.3.3 Conclusion

As a conclusion of the treatment of the measurement results, we see that in
the current reference implementation we have a maximum throughput of
about 4500 commands per second on the computers used in the tests, and
response times around 1 ms directly between services (Figure 10.12). For
reasonable CPU loads, around 20 %, we got a throughput of about 1000
commands per second. With an assembly in the middle we got response
times around 2.8 ms, and could transfer about 500 commands per second.
Hence, we see the reference implementation as reasonable to use in em-
bedded settings, with some optimizations. This view is supported by the
implementation demonstrated on the Sun SPOT. Regarding the protocols
as such, the C implementation on the Axis camera also supports this view.
The pie chart in Figure 10.17 (b) gives a clue about where the bottlenecks
are, that should be optimized first. Based on the structure of the system,
we believe that the handling of a received command is representative for
the execution in general, during such execution that involves sending and
receiving of commands. The PalcomThread context switches are expen-
sive on the JVM, largely because of the coroutine emulation solution with
dedicated Java threads, and the relatively high cost of Java thread context
switches. Here, one option would be to try to optimize the PalcomThreads
for execution on the JVM, perhaps by using more of the native Java schedul-
ing mechanisms. Another option, more directly targeted at this problem,
would be to reduce the number of PalcomThreads used in the middleware
and Service Framework—thus reducing the number of context switches—
and use more callbacks rather than event communication between threads
in the implementation. Two other large pieces of the execution are the XML
parsing, which is done by a third-party XML parser, and the JastAdd hand-
ling. Both of those could be optimized by implementing a more specialized
solution, tailored to the grammar for PalCom messages.

177

CHAPTER 10. EVALUATION

10.4 Summary

In this chapter, we first evaluated the proposed architecture from the per-
spective of ad-hoc combinations and non-preplanned interaction, as dis-
cussed in Chapter 1. The overall conclusion is that the assembly has been
very useful as a light-weight mechanism for combining services. This could
be seen in a number of usage examples from the PalCom project. Impor-
tant factors are that the assembly can adapt command flows between ser-
vices, and that the Discovery Protocol is defined as a standard, domain-
independent protocol, known by all PalCom devices.
PalCom services are self-describing, as a basis for experimentation when
constructing and adapting assemblies. The usability of available browsers
is an important factor in order to support this, and we have discussed pos-
sibilities for additional layout hints for service descriptions. In this context,
the visualization of established connections, that give a view of the current
communication situation, is also important.
Further, we evaluated the implemented Service Framework and middle-
ware from a developer perspective. Based on usage by ourselves and by
other PalCom groups, we concluded that they have supported the devel-
opment of many useful PalCom services, with the most elaborate support
for the most common tasks.
Finally, we looked at performance issues of the protocols and the imple-
mentation, and identified areas suited for optimization. For the heartbeat
mechanism in the Pacemaker Protocol, whose performance is important
because of its use of idle packets, we saw that the load on the network
is minimal, given the need for every device to supply information every
heartbeat period, and to discover new devices instantly. Only n messages
are sent per heartbeat period, in a network with n devices. The communi-
cation between services and assemblies was also measured, and we con-
cluded that performance is sufficient for use on embedded devices. On the
hardware used for testing, the current implementation has the following
practical limits, with reasonable CPU loads:

• For commands sent directly between services, throughput is about
1000 commands per second, and we get a response time of 1 ms.

• For commands sent via an assembly, we get about 500 commands per
second, and 2.8 ms response times.

178

Chapter 11

Conclusions and future
work

This thesis has presented ideas about non-preplanned interaction and ad-
hoc combinations in pervasive computing environments. The goals have
been to enable direct use of services when discovering new devices, and
to have a lightweight service composition mechanism that avoids depen-
dence on domain-specific standards. The usefulness of the ideas has been
demonstrated

• by designing the notions of service and assembly in PalCom, where
an assembly combines a set of services on devices,

• by defining domain-independent discovery and communication pro-
tocols that support services and assemblies,

• by designing a language for assembly descriptors, that is edited in
interactive browsers and executed by assembly managers,

• by implementing support for development of services, by means of a
Service Framework and middleware, and

• by evaluating the implementation through example scenarios that
have been built in the PalCom project.

The evaluation has shown the potential of assemblies as a mechanism for
ad-hoc combinations. In the scenarios, of which several were developed
in cooperation with prospective end users, assemblies were used for com-
bining and coordinating services by adapting command flows, for adding
functionality to what was given by the individual services themselves,
and for combining heterogeneous devices. Some services were re-used in

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

several assemblies, and unbound services were used for adding computa-
tional power.
Further, the evaluation showed that the implemented Service Framework
and middleware have been useful for programmers, and that the architec-
ture is useful in practice, in that it scales to large networks and small de-
vices. The latter was shown by analyzing the protocols and the reference
implementation.

11.1 Summary of the architecture

In the proposed architecture, services execute on devices. The services de-
scribe themselves in textual descriptions, where no domain-level standard-
ization or ontology is used. This makes the services self-describing, and
supports end-users in exploring and experimenting with them. There is
a generic mechanism for rendering of user interfaces in browsers, using
the service descriptions as blueprints, and browsers are also used for com-
bining services in assemblies. When constructing an assembly, the service
description is used in a dual role as a programmatic interface.
An assembly defines a particular configuration of services on devices, and
connections between them. It builds on the property that connections are
first-class. They are announced explicitly, and can be established between
two services from a third device. Further, the assembly can specify dy-
namic bindings to services, that are updated automatically during the ex-
ecution of the assembly, and script logic that governs coordination of the
services by forwarding commands.
The assembly is external to the included services, and separates configu-
ration and coordination from the computation in the services. This enables
end users in the loop, without detailed programming needed for configu-
ration and coordination. It gives loose coupling, and supports handling of
changes in service interfaces. The script can be used to mediate between
services that were not designed to work together, thus enabling ad-hoc
combinations.
Assemblies can be edited in interactive assembly editors in browsers. They
can specify new services, so called synthesized services, and can be further
aggregated by other assemblies in a hierarchical way. The assembly script
defines event handlers that react upon received commands, and forward
them or save parameter values in variables. An event handler is atomic,
and the whole behaviour of the assembly is non-blocking. This fits with
the behaviour of services, which communicate asynchronously in a peer-
to-peer fashion. Where involved computations are needed, unbound ser-
vices can be incorporated for specific computations. This helps keeping
the script language simple, and computation separated from configuration
and coordination.

180

11.2. FUTURE WORK

The architecture defines protocols that let PalCom devices discover each
other and communicate. The protocols support communication across dif-
ferent networking technologies, by defining a common wire format, ab-
stractions from concrete network addresses, and routing between tech-
nologies. The use of DeviceIDs, that address devices and not their individ-
ual network interfaces, makes it possible to support routing and mobility
in the Routing Layer, without affecting the Service Layer. Distant PalCom
networks can be connected by the use of tunnels. There is support for con-
nections with different distribution schemes (one-to-one, one-to-many and
many-to-many), for reliable communication, and for sending of large mes-
sages.
The Discovery Protocol is defined as a standard protocol, known by all
PalCom devices, which is a prerequisite for ad-hoc combinations. It dis-
tributes name, addressing and versioning information, and descriptions of
devices, services and connections in a lightweight XML format. Each de-
vice and service has a unique identifier, which contains versioning infor-
mation. This is a cornerstone of the strict versioning scheme, which sup-
ports controlled updates of services and assemblies.
At the centre of the Discovery Protocol is a heartbeat mechanism, known
as the Pacemaker Protocol, which puts minimal load on the network, given
our requirements of support for transient devices, and given that there is
no central directory. The heartbeats are combined with caching at upper
levels, for keeping the load on the network down. These two techniques are
the base of our claim that PalCom support can be implemented on small
devices. Above the Discovery Protocol, there is also a default protocol for
Service Interaction, defining how commands are packaged and sent over
connections.

11.2 Future work

Our planned and ongoing continued work on the architecture and the im-
plementation concerns many different aspects. Optimizations of the frame-
work code focuses on thread handling and on the parsing of messages, as
indicated by the measurements in Section 10.3.2. We plan to implement
additional browsers, where editing of assemblies can be done in a more
graphical way than with the PalCom Developer’s Browser, and browsers
for handheld devices that are more powerful than the Handheld Browser.
Related to the usability issues, we also plan to design a language for lay-
out descriptions, coupled to the service descriptions, that gives hints for
the rendering of user interfaces in browsers.
We plan to utilize the support for versioning in the protocols, as presented
in Chapter 5, for developing more elaborate support for updates of services
and assemblies at the service manager, assembly manager and browser lev-

181

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

els. In particular, this regards support for epidemic updates of assemblies,
that spread between users when they come in contact with each other. In
the protocols used between service managers and assembly managers, we
intend to make further use of radiocast and groupcast communication, as
explored for the Active Surfaces prototype in the Groupcast tiles experi-
ment (Section 9.4.4). Potentially, this will decrease the bandwidth usage,
and also make the interaction more flexible.
For the discovery and communication protocols, we see the most inter-
esting issues in the areas of filtering mechanisms for discovered devices
and services, based on other scoping principles than the edges of the local
network, and refined support for discovery in aggregated networks, con-
nected by tunnels. In such networks, central directories may be useful for
keeping the amount of broadcasted traffic down.
At the level of service descriptions, ideas have emerged for letting the ser-
vices describe more about their behaviour, e.g. how different commands
are related. Some pairs of commands may form request-reply pairs, where
one in-going command leads to another out-going command, some out-
going commands may be sent out spontaneously, etc. If the services could
specify such relations in their descriptions, that would be helpful for hu-
mans that use the services or combine them in assemblies, and possibly
also for tools that perform automated analyses of systems, based on de-
scriptions of services and assemblies.

11.2.1 The assembly descriptor language

A central issue in our continued work is the development of the assembly
descriptor language. Finding out what constructs it should support, and
how sophisticated they should be, is crucial in order to support ad-hoc
combinations at the right level. This depends on what kinds of scenarios
and functionality we will target. Features that have emerged in the PalCom
scenarios, as candidates for extension of the assembly descriptor language,
are algorithmic constructs such as conditional execution, arithmetic and
conditional expressions, and support for timers. A higher degree of sophis-
tication gives more power, but may make it more difficult for end users to
work with assemblies. In connection to this, there is the balance of what
can and should be delegated to unbound services. We want to continue to
be able to express the necessary coordination in the assembly descriptor.
Assemblies are transparent to the PalCom system as a whole, in the sense
that services being part of an assembly may still be discovered and used
by other services and assemblies. There may be situations, however, where
services are constructed specifically to be part of a assembly. This is often
the case, e.g., for unbound services. It is future work to put mechanisms in
place in the language, which let the assembly delimit access and discovery
of the participating services. In this way, assemblies can provide scoping

182

11.2. FUTURE WORK

and encapsulation, further supporting a scalable programming model. A
useful feature would also be to allow dynamic sets of devices and services
in assemblies, where the number of participants is not known at assembly
design time. One approach to this is proposed for PalCom assemblies by
Brønsted et al. [15]. That paper also presents a mechanism for decentral-
ized execution of assemblies, where different parts of an assembly descrip-
tor are handled by assembly managers on different devices. That is a more
automated process than the hierarchies of assemblies with synthesized ser-
vices that we have presented here, and aims at reducing the network traffic
by avoiding a central device where all commands pass. A similar solution
has been implemented for Web Services by Chafle et al. [17].
In the current assembly descriptor language, the interface between services
and assemblies consists solely of asynchronous commands. In some cases
this gives increased complexity, when event handlers have to be added for
handling replies from unbound services that belong to request-reply se-
quences. An interesting issue to look at would be to investigate support
for some synchronous interaction with unbound services on the same de-
vice, where the communication does not go over the network.
Another interesting area of exploration would be to add execution state to
assemblies, as used, e.g., in the BPEL language [80]. That could make the
event flow clearer, and would let the assembly react to commands in dif-
ferent ways depending on its state. If that is added, the assembly must not
risk to end up in a blocked state, because of missed commands or similar.
This is connected to added support for error handling, and to the use of
timeouts when waiting for received commands. One option in this direc-
tion would be to adopt parts of the Statecharts language [49], which has
support for substates.

183

Appendix A

Message node types

The PalCom Wire Protocol defines a message format based on nodes, as
described in Chapter 5. This appendix briefly presents the different types
of nodes, which can be header nodes and data nodes. Each message has
one or more header nodes and an optional data node:

• Message ::= HeaderNode+ [DataNode]

The fundamental layout of a message node is as follows, with three parts
separated by semicolons:

• MessageNode ::= <F>;<L>;<data>

– <F> is a one-byte format identifier.
– <L> is the length of <data> (using ASCII characters).
– <data> is the contents of the node, which depends on the <F>.

A.1 Data nodes

There are two types of data nodes, for single messages and multi-part mes-
sages. These have format bytes ’d’ and ’+’ (as shown in bold below):

• DataNode ::= SingleMsg | MultiPart

• SingleMsg ::= d;<L>;<data>

– <data> is <L> bytes of application data.

• MultiPart ::= +;<L>;<data>

– <data> is a sequence of bytes, containing zero or more mes-
sages, concatenated directly after each other.

APPENDIX A. MESSAGE NODE TYPES

A.2 Header nodes

Each message contains one or more header nodes. They can be of the fol-
lowing types:

• HeartBeat ::= h;<L>;<CacheNbr>;<DeviceStatus>

A heartbeat in the Pacemaker Protocol (Section 5.4.3).

– <CacheNbr> is the device cache number.

– <DeviceStatus> is the device status (Section 5.5.3).

• HeartBeatAck ::= H;<L>;<CacheNbr>;<DeviceStatus>

A reply to a HeartBeat. Contains the same fields as HeartBeat.

• HBInfoRequest ::= i;0;

A unicast request for obtaining the DeviceID of a device (Section 5.4.3).

• HBInfoReply ::= I;<L>;<DeviceID>;<DiscoverySel>

A reply to an HBInfoRequest.

– <DeviceID> is the DeviceID.

– <DiscoverySel> is the selector used by the device for sending
and receiving Discovery Protocol messages.

• HeartAttack ::= X;0;

Broadcasted when a device is about to make an orderly shut-down
(Section 5.4.3).

• FormatVersion ::= v;<L>;<WPVersion>;<DPVersion>

Protocol version information sent together with an HBInfoReply dur-
ing discovery. If the receiving device does not support the given pro-
tocol versions, it will not communicate further with that device.

– <WPVersion> is the Wire Protocol version (currently “W2”).

– <DPVersion> is the Discovery Protocol version (currently “D2”).

• RoutingS ::= s;<L>;<ShortID>

Node added to routed messages by PalCom routers, pointing out the
sender of the message (Section 5.4.4).

– <ShortID> is the ShortID assigned to the sender.

• RoutingR ::= r;<L>;<ShortID>

Node added to routed messages by PalCom routers, pointing out the
receiver of the message (Section 5.4.4). <ShortID> as for RoutingS.

186

A.2. HEADER NODES

• Connection ::= c;<L>;<f>;...

Node used in messages sent over connections (Section 5.4.5). There
are different variants, depending on the <f> tag (shown in bold):

– Open ::= c;<L>;o;<SelR>;<SelS>

A request for opening a unicast connection.

∗ <SelR> is the selector where the receiving device listens for
connection requests.

∗ <SelS> is the selector to be used by the sending device for
this connection.

– OpenReply ::= c;<L>;p;<SelS>;<SelN>

A reply to an Open.

∗ <SelS> is the selector used by the requester (same as <SelS>
for the corresponding Open).

∗ <SelN> is a newly allocated selector to be used by the send-
ing device for this connection.

– Close ::= c;<L>;c;<SelR>

A request that the connection should be closed.

∗ <SelR> is the selector associated with the connection on the
sending device.

– Unicast ::= c;<L>;m;<SelN>

Used in a message over a unicast connection. The message con-
tains a data node with message data.

∗ <SelN> is the selector identifying the receiver.

– Radiocast ::= c;<L>;b;<SelS>

Used in a radiocasted message. The message contains a data
node.

∗ <SelS> is the used selector on the sending device.

– ReOpen ::= c;<L>;r;<SelR>

Used in a response to a Unicast, informing that the connection
associated with <SelR> is no longer available.

• Reliable ::= R;<L>;<Seq>

Node used in a message sent over a reliable connection (Section 5.4.7).

– <Seq> is a sequence number.

• AckMessage ::= A;<L>;<Seq>

An acknowledgment that message number <Seq> has been received
over a reliable connection (Section 5.4.7).

187

APPENDIX A. MESSAGE NODE TYPES

• ResendMessage ::= B;<L>;<Seq>

A request to resend message number <Seq> over a reliable connec-
tion (Section 5.4.7).

• Chopped ::= -;<L>;<MessageID>;<Part>;<Parts>

Node used in a message that is part of a larger message (Section 5.4.7).

– <MessageID> identifies the large message.

– <Part> is the index of this part.

– <Parts> is the total number of parts.

• SingleShot ::= S;<L>;<SelR>;<SelS>

Node used in a single-shot message (not sent over a connection).

– <SelR> is the selector on the receiving device.

– <SelS> is the selector on the sending device.

• LocalGroupMessage ::= P;<L>;<GroupID>

Node used in a groupcast message, for groupcast connections that
are local to one network (Section 5.4.5).

– <GroupID> is the GroupID.

• GroupMessage ::= G;<L>;<GroupID>

Node used in a groupcast message, for groupcast connections that
work across routers (Section 5.4.5).

– <GroupID> is the GroupID.

• GroupJoin ::= g;<L>;<GroupID>

Used for joining a groupcast group, for groupcast connections that
work across routers (Section 5.4.5).

• GroupLeave ::= q;<L>;<GroupID>

Used for leaving a groupcast group that has been joined using a
GroupJoin.

188

Appendix B

Descriptor grammars

This appendix contains grammars for the descriptors presented in Chap-
ters 5 and 6. They are abstract grammars, as used by the JastAdd tool [36].
JastAdd is used in the PalCom reference implementation, and the gram-
mars describe ASTs that are built at run-time. There are factory methods
that parse XML and build the ASTs, and a JastAdd modular aspect that
unparses the ASTs to XML. For the assembly descriptors, there is also an
unparser to the concrete syntax used in this thesis.

B.1 Devices, services and connections

The following is the grammar for descriptors of devices, services and con-
nections, and for request and reply messages in the Discovery Protocol:

/*** Device and service descriptors (Section 5.5.2) *******/
PRDDevice ::=
[DeviceID] <Name:String> <DeviceVersion:String>
<DeviceStatus:byte> DiscoverySelector:Selector
RemoteConnectSelector:Selector;

PRDServiceList ::=
ParentLocalSID:LocalSID PRDServiceListItem*;

abstract PRDServiceListItem ::= <Name:String>;

PRDService: PRDServiceListItem ::=
LocalSID <Distribution:byte> <HasDesc:boolean>
<RemoteConnect:boolean> <Protocol:String>
<Reliable:boolean> <VersionName:String>
<ServiceHelpText:String> [GroupID] [Topic];

APPENDIX B. DESCRIPTOR GRAMMARS

PRDSubList: PRDServiceListItem ::=
ListLocalSID:LocalSID <Kind:byte>;

/*** Connection descriptors (Section 5.5.2) ***************/
PRDConnectionList ::= [DeviceID] PRDConnection*;

abstract PRDConnection ::= ;
PRDUnicastConnection: PRDConnection ::=
LocalSID1:LocalSID LocalSID2:LocalSID;

PRDRadiocastConnection: PRDConnection ::=
SenderLocalSID:LocalSID ListenerLocalSID:LocalSID;

PRDGroupcastConnection: PRDConnection ::=
LocalSID <GroupID:String>;

PRDBroadcastConnection: PRDConnection ::=
LocalSID <Topic:String>;

/*** Service descriptions (Section 5.5.2) *****************/
ServiceDescription: GroupInfo ::= LocalSID ControlInfo*;
abstract ControlInfo ::= <ID:String> <Help:String>;
GroupInfo: ControlInfo ::= ControlInfo*;
CommandInfo: ControlInfo ::=
<Direction:String> <Name:String> ParamInfo*;

ParamInfo: ControlInfo ::=
<Type:String> <Name:String> <DataRef:int>;

StreamInfo: ControlInfo ::=
<Direction:String> <StreamType:String>;

/*** Service proxies (Section 8.1) ************************/
ServiceProxy: Group ::= ;
abstract ControlItem ::= ;
Group: ControlItem ::= Info:GroupInfo ControlItem*;
Command: ControlItem ::= Info:CommandInfo Param*;
Param: ControlItem ::= Info:ParamInfo;
Stream: ControlItem ::= Info:StreamInfo;

/*** Wire Protocol addressing (Section 5.4) ***************/
DeviceID ::= <String>;
Selector ::= <String>;
GroupID ::= <String>;
Topic ::= <String>;

/*** Service addressing (Section 5.5.1) *******************/
abstract AddressPart ::= DeviceID <ServicePartID:String>;
LocalSID: AddressPart ::=;
VersionPart: AddressPart ::=;
abstract PRDVersion ::=
CreatingVersionPart:VersionPart
UpdatingVersionPart:VersionPart
PreviousVersionPart:VersionPart

190

B.1. DEVICES, SERVICES AND CONNECTIONS

MergedFromVersionPart:VersionPart;
ServiceID: PRDVersion ::= ;
AssemblyID: PRDVersion ::= <LogicalVersion:String>;
ServiceInstanceID ::=
[DeviceID] ServiceID:ServiceID <InstanceNumber:String>;

/*** Discovery Protocol messages (Section 5.5.2) **********/
abstract Request ::= ;
abstract Reply ::= ;

PRDDeviceRequest: Request ::= ;
PRDDeviceReply: Reply ::=
<ServiceCache:String> <ConnectionCache:String>
<AssemblyCache:String> <SelectorCache:String>
<ServiceStatusCache:String> PRDDevice;

PRDServiceListRequest: Request ::= ParentLocalSID:LocalSID;
PRDServiceListReply: Reply ::=
<CacheNo:String> PRDServiceList;

PRDServiceRequest: Request ::= LocalSID;

ServiceInstanceIDRequest: Request ::= LocalSID;
ServiceInstanceIDReply: Reply ::=
LocalSID ServiceInstanceID;

LocalServiceIDRequest: Request ::= ServiceInstanceID;
LocalServiceIDReply: Reply ::= ServiceInstanceID LocalSID;

SelectorRequest: Request ::= LocalSID;
SelectorReply: Reply ::= LocalSID Selector;

ServiceDescriptionRequest: Request ::= LocalSID;
ServiceDescriptionReply: Reply ::= ServiceDescription;

ServiceStatusRequest: Request ::= LocalSID;
ServiceStatusReply: Reply ::=
LocalSID <ServiceStatus:byte> <StatusHelpText:String>;

PRDConnectionListRequest: Request ::=;
PRDConnectionListReply: Reply ::= PRDConnectionList;

191

APPENDIX B. DESCRIPTOR GRAMMARS

B.2 Assemblies

The language of assembly descriptors was presented in Chapter 6. Its gram-
mar builds on the grammar for device and service descriptors (Section B.1):

/*** Multiple versions of one assembly ********************/
PRDAssemblyD ::=
<Format:String> <Name:String> BaseVersion:VersionPart
PRDAssemblyVer*;

/*** One version of an assembly ***************************/
PRDAssemblyVer ::=
<Format:String> <Name:String> Version:AssemblyID
<Released:boolean>
Devices:DeviceDeclList
Services:ServiceDeclList
Connections:ConnectionDeclList
[EventHandlerScript]
SynthesizedServices:SynthesizedServiceList;

/*** Device declarations **********************************/
DeviceDeclList ::= DeviceDecl*;
DeviceDecl ::= NameID:Identifier DeviceAddress;
UnboundDeviceAddress: DeviceAddress ::= ;

/*** Service declarations *********************************/
ServiceDeclList ::= ServiceDecl*;
ServiceDecl ::=
LocalName:Identifier Decl:AbstractServiceDecl;

abstract AbstractServiceDecl ::= ;
SingleServiceDecl: AbstractServiceDecl ::=
ServiceName:Identifier DeviceUse ServiceID
<InstanceString:String>;

AltServiceDeclList: AbstractServiceDecl ::=
ServiceDecl:AltServiceDecl*;

AltServiceDecl: SingleServiceDecl ::= <Prio:String>;

abstract ServiceExp;
ServiceUse: ServiceExp ::= Identifier;
ThisService: ServiceExp;
SynthesizedServiceUse: ServiceExp ::= Identifier;

/*** Connection declarations ******************************/
ConnectionDeclList ::= ConnectionDecl*;
ConnectionDecl ::= Provider:ServiceExp Customer:ServiceExp;

/*** Event handlers ***************************************/
EventHandlerScript ::=
Variables:VariableList EventHandlers:EventHandlerList;

192

B.2. ASSEMBLIES

VariableList ::= VariableDecl*;
VariableDecl ::= VariableType Identifier;
abstract VariableType;
MimeType: VariableType ::= <TypeName:String>;

EventHandlerList ::= EventHandlerClause*;
EventHandlerClause ::=
<CommandName:String> ServiceExp [CommandInfo] Action*;

abstract Action ::= ;
AssignAction: Action ::= VariableUse ParamUse;
abstract ActionWithParams: Action ::=
<Command:String> ParamValue:Use*;

SendMessageAction: ActionWithParams ::= ServiceExp;
InvokeAction: ActionWithParams ::=
SynthesizedServiceUse <AddressingType:String>
[ServiceInstanceID] [AddressUse];

SelfTestAction: ActionWithParams ::= ;

/*** Declarations of synthesized services *****************/
SynthesizedServiceList ::= SynthesizedService*;
SynthesizedService ::=
<Distribution:byte> [GroupID] [Topic] ServiceDescription
<RemoteConnect:boolean>;

/*** Basic grammar elements *******************************/
Identifier ::= <ID:String>;
DeviceUse ::= Identifier;

abstract Use ::= ;
VariableUse: Use ::= <Name:String>;
ParamUse: Use ::= <Name:String>;
ConstantUse: Use ::= Identifier;
MissingUse: Use;
AddressUse: Use ::= <Name:String>;

193

Bibliography

[1] 43D ApS. Topos. http://www.43d.dk/topos.php .

[2] E. Aarts, R. Harwig, and M. Schuurmans. Ambient Intelligence. In
B. Denning, editor, The Invisible Future, pages 235–250. McGraw-Hill,
2001.

[3] Gregory D. Abowd, Elizabeth D. Mynatt, and Tom Rodden. The Hu-
man Experience. IEEE Pervasive Computing, 1(1):48–57, 2002.

[4] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal,
Stephen M. Williams, and Jonathan E. Shuster. UIML: an appliance-
independent XML user interface language. Comput. Netw., 31(11-
16):1695–1708, 1999.

[5] Jonathan Aldrich, Vibha Sazawal, Craig Chambers, and David
Notkin. Language Support for Connector Abstractions. In L. Car-
delli, editor, ECOOP 2003, pages 74–102, 2003.

[6] OSGi Alliance. OSGi Service Platform Core Specification, 2005. Re-
lease 4, Version 4.1.

[7] Rafael Ballagas, Meredith Ringel, Maureen Stone, and Jan Borchers.
iStuff: A Physical User Interface Toolkit for Ubiquitous Computing
Environments. In Proceedings of the ACM CHI 2003 Conference on
Human Factors in Computing Systems, pages 537–544, Ft. Lauderdale,
Florida, USA, April 2003.

[8] John J. Barton, Tim Kindberg, Hui Dai, Nissanka B. Priyantha, and
Fahd Al-Bin-Ali. Sensor-enhanced Mobile Web Clients: an XForms
Approach. In Proceedings of ACM-WWW 2003, pages 80–89, Bu-
dapest, Hungary, May 2003.

[9] Michael Beigl and Hans Gellersen. Smart-Its: An Embedded Plat-
form for Smart Objects. In Smart Objects Conference, SOC2003, May
2003.

http://www.43d.dk/topos.php

BIBLIOGRAPHY

[10] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284(5):34–44, May 2001.

[11] Bluetooth.com. Specification Documents.
http://bluetooth.com/Bluetooth/Technology/
Building/Specifications/ Accessed August 27, 2008.

[12] Bluetooth.com. The Official Bluetooth R© Wireless Info Site.
http://www.bluetooth.com/ Accessed October 16, 2008.

[13] Jeppe Brønsted, Klaus Marius Hansen, and Mads Ingstrup. A Sur-
vey of Service Composition Mechanisms in Ubiquitous Computing.
In UbiComp 2007 Workshop Proceedings, pages 87–92, 2007. Second
Workshop on Requirements and Solutions for Pervasive Software In-
frastructures (RSPSI).

[14] Jeppe Brønsted, Erik Grönvall, and David Fors. Palpability Sup-
port Demonstrated. In Embedded and Ubiquitous Computing, vol-
ume 4808/2007 of Lecture Notes in Computer Science, pages 294–308.
Springer Berlin/Heidelberg, 2007.

[15] Jeppe Brønsted and Klaus Marius Hansen. Handling membership
dynamicity in service composition for ubiquitous computing. In In-
ternational Conference on Mobile Ubiquitous Computing, Systems, Ser-
vices and Technologies, UBICOMM’08, 2008. To appear.

[16] N. Carreiro and D. Gelernter. Linda in context. Communications of the
ACM, 32(4), 1989.

[17] Girish Chafle, Sunil Chandra, Vijay Mann, and Mangala Gowri
Nanda. Decentralized orchestration of composite web services. In
Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, ed-
itors, WWW (Alternate Track Papers & Posters), pages 134–143. ACM,
2004.

[18] Dipanjan Chakraborty, Anupam Joshi, Tim Finin, and Yelena
Yesha. GSD: A Novel Group-based Service Discovery Protocol for
MANETs. In 4th IEEE Conference on Mobile and Wireless Communica-
tions Networks (MWCN), Stockholm. Sweden, September 2002. IEEE.

[19] Dipanjan Chakraborty, Filip Perich, Sasikanth Avancha, and Anu-
pam Joshi. DReggie: Semantic Service Discovery for M-Commerce
Applications. In Workshop on Reliable and Secure Applications in Mo-
bile Environment, In Conjunction with 20th Symposium on Reliable Dis-
tributed Systems (SRDS), 2001.

[20] S. Cheshire and M. Krochmal. DNS-Based Service Discov-
ery. Technical report, Apple Computer, Inc., August 2006. In-
ternet-Draft (work in progress), http://files.dns-sd.org/
draft-cheshire-dnsext-dns-sd-04.txt.

196

http://bluetooth.com/Bluetooth/Technology/Building/Specifications/
http://bluetooth.com/Bluetooth/Technology/Building/Specifications/
http://www.bluetooth.com/
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd-04.txt
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd-04.txt

BIBLIOGRAPHY

[21] S. Cheshire and M. Krochmal. Multicast DNS. Technical report, Ap-
ple Computer, Inc., August 2006. Internet-Draft (work in progress),
http://files.multicastdns.org/
draft-cheshire-dnsext-multicastdns-06.txt.

[22] Erik Christensen et al. Web Services Description Language (WSDL) 1.1.
W3C, March 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[23] CORDIS. ISTweb. http://cordis.europa.eu/ist/ Accessed
October 16, 2008.

[24] Aino Vonge Corry, Klaus Marius Hansen, and David Svensson. Trav-
eling Architects – A New Way of Herding Cats. In Quality of Software
Architectures, volume 4214/2006 of Lecture Notes in Computer Science,
pages 111–126. Springer Berlin/Heidelberg, 2006.

[25] Nigel Davies and Hans-Werner Gellersen. Beyond Prototypes: Chal-
lenges in Deploying Ubiquitous Systems. IEEE Pervasive Computing,
1(1):26–35, 2002.

[26] Mike Dean et al. OWL Web Ontology Language Reference. W3C, Febru-
ary 2004.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

[27] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt,
and Wolfgang De Meuter. Ambient-Oriented Programming in Ambi-
entTalk. In 20th European Conference on Object-Oriented Programming,
pages 230–254, 2006.

[28] Dns-sd.org. DNS SRV (RFC 2782) Service Types. http://www.
dns-sd.org/ServiceTypes.html. Accessed August 27, 2008.

[29] Eclipse.org. Eclipse.org home. http://www.eclipse.org/.

[30] Eclipse.org. SWT: The Standard Widget Toolkit.
http://www.eclipse.org/swt/ Accessed October 16, 2008.

[31] W. Keith Edwards. Core Jini. Prentice Hall, 1999.

[32] W. Keith Edwards, Mark W. Newman, Jana Sedivy, and Trevor
Smith. Challenge: Recombinant Computing and the Speakeasy App-
roach. In Proceedings of ACM MOBICOM’02, September 2002.

[33] W. Keith Edwards, Mark W. Newman, and Jana Z. Sedivy. The Case
for Recombinant Computing. Technical report, Xerox Palo Alto Re-
search Center, April 2001.

197

http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns-06.txt
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns-06.txt
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://cordis.europa.eu/ist/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.dns-sd.org/ServiceTypes.html
http://www.dns-sd.org/ServiceTypes.html
http://www.eclipse.org/
http://www.eclipse.org/swt/

BIBLIOGRAPHY

[34] W. Keith Edwards, Mark W. Newman, Jana Z. Sedivy, and Trevor F.
Smith. Supporting serendipitous integration in mobile computing
environments. Int. J. Hum.-Comput. Stud., 60(5–6):666–700, 2004.

[35] Torbjörn Eklund and David Svensson. Mui: Controlling Equipment
via Migrating User Interfaces. Master’s thesis, Lund University, Jan-
uary 2003.

[36] Torbjörn Ekman and Görel Hedin. The JastAdd system — modular
extensible compiler construction. Sci. Comput. Program., 69(1-3):14–
26, 2007.

[37] Deborah Estrin, David Culler, Kris Pister, and Gaurav Sukhatme.
Connecting the Physical World with Pervasive Networks. IEEE Per-
vasive Computing, 1(1):59–69, 2002.

[38] Thomas Forsström and David Raimosson. External ad-hoc commu-
nication for PalCom. Master’s thesis, Department of Computer Sci-
ence, Lund University, 2007. LU-CS-EX: 2007-11.

[39] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

[40] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste.
Project Aura: Toward Distraction-Free Pervasive Computing. IEEE
Pervasive Computing, 1(2):22–31, 2002.

[41] Jesse James Garrett. Ajax: A New Approach to Web Applications.
Technical report, Adaptive Path, February 2005.

[42] Google. Google Earth. http://earth.google.com/.

[43] Robert Grimm. One.world: Experiences with a Pervasive Comput-
ing Architecture. IEEE Pervasive Computing, 3(3):22–30, 2004.

[44] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven
Swanson, Thomas Anderson, Brian Bershad, Gaetano Borriello,
Steven Gribble, and David Wetherall. System support for pervasive
applications. ACM Trans. Comput. Syst., 22(4):421–486, 2004.

[45] Erik Grönvall, Patrizia Marti, Alessandro Pollini, and Alessia Rullo.
Active surfaces: a novel concept for end-user composition. In
NordiCHI ’06: Proceedings of the 4th Nordic conference on Human-
computer interaction, pages 96–104. ACM Press, 2006.

[46] Erik Grönvall, Alessandro Pollini, Alessia Rullo, and David Svens-
son. Designing game logics for dynamic Active Surfaces. MUIA
2006: third international workshop on mobile and ubiquitous infor-
mation access. Espoo, Finland, September 2006.

198

http://earth.google.com/

BIBLIOGRAPHY

[47] Erik Grönvall, Luca Piccini, Alessandro Pollini, Alessia Rullo, and
Giuseppe Andreoni. Assemblies of Heterogeneous Technologies
at the Neonatal Intensive Care Unit. In Ambient Intelligence, vol-
ume 4794/2007 of Lecture Notes in Computer Science, pages 340–357.
Springer Berlin/Heidelberg, 2007.

[48] Martin Gudgin et al. SOAP Version 1.2 Part 1: Messaging Frame-
work (Second Edition), April 2007. http://www.w3.org/TR/2007/
REC-soap12-part1-20070427/.

[49] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programmming, 8(3):231–274, 1987.

[50] Stephan Hartwig, Jan-Peter Strömann, and Peter Resch. Wireless Mi-
croservers. IEEE Pervasive Computing, 1(2):58–66, 2002.

[51] Todd D. Hodes and Randy H. Katz. A document-based framework
for internet application control. In USITS’99: Proceedings of the 2nd
conference on USENIX Symposium on Internet Technologies and Systems,
pages 6–6, Berkeley, CA, USA, 1999. USENIX Association.

[52] Internet Engineering Task Force. Multipurpose Internet Mail Exten-
sions (MIME) Part One: Format of Internet Message Bodies, 1996.
http://www.ietf.org/rfc/rfc2045.txt.

[53] Internet Engineering Task Force. Service Location Protocol, Version 2,
1999. http://www.ietf.org/rfc/rfc2608.txt.

[54] Valerie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Francoise Sail-
han, Rafik Chibout, Nicole Levy, and Angel Talamona. Developing
Ambient Intelligence Systems: A Solution based on Web Services.
Automated Software Engineering, 12(1):101–137, January 2005.

[55] Masaki Ito et al. Smart Furniture: Improvising Ubiquitous Hot-spot
Environment. In Proceedings of the 23rd International Conference on
Distributed Computing Systems Workshops (ICDCSW’03), pages 248–
253. IEEE, May 2003.

[56] Jini.org. Jini Specifications. http://www.jini.org/w/index.
php?title=Category:Jini_Specifications&oldid=2240.
Accessed August 27, 2008. Permanent link.

[57] Brad Johanson, Armando Fox, and Terry Winograd. The Interac-
tive Workspaces Project: Experiences with Ubiquitous Computing
Rooms. IEEE Pervasive Computing, 1(2):67–74, 2002.

[58] Nickolas Kavantzas et al. Web Services Choreography Description Lan-
guage Version 1.0. W3C, November 2005. http://www.w3.org/
TR/2005/CR-ws-cdl-10-20051109/.

199

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2608.txt
http://www.jini.org/w/index.php?title=Category:Jini_Specifications&oldid=2240
http://www.jini.org/w/index.php?title=Category:Jini_Specifications&oldid=2240
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

BIBLIOGRAPHY

[59] Samuel C. Kendall, Jim Waldo, Ann Wollrath, and Geoff Wyant. A
Note on Distributed Computing. Technical Report TR-94-29, Sun Mi-
crosystems, November 1994.

[60] M.J. Kim, M. Kumar, and B.A. Shirazi. Service discovery using vol-
unteer nodes in heterogeneous pervasive computing environments.
Pervasive and Mobile Computing, 2(3):313–343, 2006.

[61] T. Kindberg et al. People, Places, Things: Web Presence for the Real
World. In Proc. 3rd IEEE Workshop Mobile Computing Systems and App-
lications (WMCSA 00), pages 19–28, 2000.

[62] Tim Kindberg and Armando Fox. System Software for Ubiquitous
Computing. IEEE Pervasive Computing, 1(1):70–81, 2002.

[63] Jeff Kramer and Jeff Magee. The Evolving Philosophers Problem:
Dynamic Change Management. IEEE Trans. Softw. Eng., 16(11):1293–
1306, 1990.

[64] Johan Kristell. Interoperability between PalCom and external proto-
cols. Master’s thesis, Department of Computer Science, Lund Uni-
versity, 2008. LU-CS-EX: 2008-18.

[65] Margit Kristensen, Morten Kyng, and Esben Toftdahl Nielsen. IT
support for healthcare professionals acting in major incidents. In
Proceedings of SHI2005, 3rd Scandinavian conference on Health Informat-
ics, Aalborg University, August 2005.

[66] Mohan Kumar, Behrooz A. Shirazi, Sajal K. Das, Byung Y. Sung, and
David Levine. PICO: A Middleware Framework for Pervasive Com-
puting. IEEE Pervasive Computing, 2(3):72–79, 2003.

[67] Jon Lathem, Karthik Gomadam, and Amit P. Sheth. SA-REST and
(S)mashups : Adding Semantics to RESTful Services. Semantic Com-
puting, 2007. ICSC 2007. International Conference on, pages 469–476,
Sept. 2007.

[68] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier
(UUID) URN Namespace. RFC 4122 (Proposed Standard), July 2005.

[69] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. SIGPLAN Not., 21(11):214–223,
1986.

[70] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Prentice Hall PTR, 2nd edition, April 1999.

[71] Boris Magnusson. Using the simioprocess library on Unix Systems.
Lund Software House AB, August 1997.

200

BIBLIOGRAPHY

[72] Boel Mattsson and Brice Jaglin. Implementing the PalCom protocol
in an Axis network camera. Master’s thesis, Department of Com-
puter Science, Lund University, 2007. LU-CS-EX: 2007-02.

[73] Nenad Medvidovic and Richard N. Taylor. A classification and com-
parison framework for software architecture description languages.
IEEE Transactions on Software Engineering, 26:70–93, 2000.

[74] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. To-
wards a taxonomy of software connectors. In ICSE ’00: Proceedings
of the 22nd international conference on Software engineering, pages 178–
187, New York, NY, USA, 2000. ACM.

[75] Alan Messer et al. InterPlay: a middleware for seamless device inte-
gration and task orchestration in a networked home. In Proceedings
of PerCom’06, the Fourth Annual IEEE International Conference on Per-
vasive Computing and Communications, 2006.

[76] S. Motegi, K. Tasaka, A. Idoue, and H. Horiuchi. Proposal on Wide
Area DLNA Communication System. Consumer Communications and
Networking Conference, 2008. CCNC 2008. 5th IEEE, pages 233–237,
Jan. 2008.

[77] M. Nidd. Service Discovery in DEAPspace. IEEE Personal Comm.,
pages 39–45, August 2001.

[78] Emma Nilsson-Nyman. Software Integration in Health Care. Mas-
ter’s thesis, Department of Computer Science, Lund University, 2007.

[79] OASIS. UDDI Version 3.0.2. UDDI Spec Technical Committee Draft,
Dated 20041019.

[80] OASIS. Web Services Business Process Execution Language Version 2.0,
April 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html.

[81] Obje Interoperability Framework, 2003. http://www.parc.com/
research/projects/obje/Obje_Whitepaper.pdf.

[82] PalCom Project. Cyclic development. http://www.ist-palcom.
org/approach/cyclic-development/.

[83] PalCom Project. Tall Ships’ Race Aarhus.
http://www.ist-palcom.org/activities/
tall-ships-race-aarhus/.

[84] PalCom Project. Try It!
http://www.ist-palcom.org/try-it/.

201

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.parc.com/research/projects/obje/Obje_Whitepaper.pdf
http://www.parc.com/research/projects/obje/Obje_Whitepaper.pdf
http://www.ist-palcom.org/approach/cyclic-development/
http://www.ist-palcom.org/approach/cyclic-development/
http://www.ist-palcom.org/activities/tall-ships-race-aarhus/
http://www.ist-palcom.org/activities/tall-ships-race-aarhus/
http://www.ist-palcom.org/try-it/

BIBLIOGRAPHY

[85] PalCom Project. PalCom External Report 53: Deliverable 38
(2.14.2): Dissemination. Technical report, PalCom Project IST-
002057, November 2006. http://www.ist-palcom.org/
publications/deliverables/Deliverable-38-[2.14.2]
-dissemination.pdf.

[86] PalCom Project. PalCom External Report 69: Deliverable 54
(2.2.3): Open Architecture. Technical report, PalCom Project
IST-002057, December 2007. http://www.ist-palcom.org/
publications/deliverables/Deliverable-54-[2.2.3]
-open-architecture.pdf.

[87] PalCom Project. PalCom External Report 70: Developer’s Com-
panion. Technical report, PalCom Project IST-002057, April
2008. http://svn.ist-palcom.org/svn/palcom/trunk/
doc/tex/companion.pdf Accessed October 16, 2008.

[88] PalCom web site. Palpable Computing—a new perspective on Am-
bient Computing. http://www.ist-palcom.org/.

[89] C. Peltz. Web services orchestration and choreography. Computer,
36(10):46–52, Oct. 2003.

[90] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and
Terry Winograd. ICrafter: A Service Framework for Ubiquitous
Computing Environments. In UbiComp ’01: Proceedings of the 3rd in-
ternational conference on Ubiquitous Computing, pages 56–75, London,
UK, 2001. Springer-Verlag.

[91] Shankar R. Ponnekanti and Armando Fox. Application-service inter-
operation without standardized service interfaces. In Proceedings of
PerCom 2003, the First IEEE International Conference on Pervasive Com-
puting and Communications, pages 30–37, 2003.

[92] Peter Rigole, Chris Vandervelpen, Kris Luyten, Yves Vandewoude,
Karin Coninx, and Yolande Berbers. A Component-Based Infras-
tructure for Pervasive User Interaction. In International Workshop on
Software Techniques for Embedded and Pervasive Systems STEPS’2005,
Munich, Germany, May 2005.

[93] Tom Rodden, Andy Crabtree, Terry Hemmings, Boriana Koleva, Jan
Humble, Karl-Petter Åkesson, and Pär Hansson. Between the dazzle
of a new building and its eventual corpse: assembling the ubiqui-
tous home. In DIS ’04: Proceedings of the 5th conference on Designing
interactive systems, pages 71–80, New York, NY, USA, 2004. ACM.

[94] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ran-
ganathan, Roy H. Campbell, and Klara Nahrstedt. A Middleware

202

http://www.ist-palcom.org/publications/deliverables/Deliverable-38-[2.14.2]-dissemination.pdf
http://www.ist-palcom.org/publications/deliverables/Deliverable-38-[2.14.2]-dissemination.pdf
http://www.ist-palcom.org/publications/deliverables/Deliverable-38-[2.14.2]-dissemination.pdf
http://www.ist-palcom.org/publications/deliverables/Deliverable-54-[2.2.3]-open-architecture.pdf
http://www.ist-palcom.org/publications/deliverables/Deliverable-54-[2.2.3]-open-architecture.pdf
http://www.ist-palcom.org/publications/deliverables/Deliverable-54-[2.2.3]-open-architecture.pdf
http://svn.ist-palcom.org/svn/palcom/trunk/doc/tex/companion.pdf
http://svn.ist-palcom.org/svn/palcom/trunk/doc/tex/companion.pdf
http://www.ist-palcom.org/

BIBLIOGRAPHY

Infrastructure for Active Spaces. IEEE Pervasive Computing, 1(4):74–
83, 2002.

[95] Marwan Sabbouh, Jeff Higginson, Salim Semy, and Danny Gagne.
Web mashup scripting language. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 1305–1306, New
York, NY, USA, 2007. ACM.

[96] Salutation Consortium. Salutation Architecture Specification, 1999.

[97] A. Shenoi, Y. Yesha, Y. Yesha, and A Joshi. A framework for specifi-
cation and performance evaluation of service discovery protocols in
mobile ad-hoc networks. Ad-hoc Networks, 4(1):1–23, 2006.

[98] Thad E. Starner. Wearable Computers: No Longer Science Fiction.
IEEE Pervasive Computing, 1(1):86–88, January–March 2002.

[99] Daniel Steinberg and Stuart Cheshire. Zero Configuration Networking:
The Definitive Guide. O’Reilly Media, Inc., 2005.

[100] Jing Su, James Scott, Pan Hui, Jon Crowcroft, Eyal de Lara,
Christophe Diot, Ashvin Goel, Meng How Lim, and Eben Upton.
Haggle: Seamless Networking for Mobile Applications. In UbiComp
2007: Ubiquitous Computing, volume 4717/2007 of Lecture Notes in
Computer Science, pages 391–408. Springer Berlin/Heidelberg, 2007.

[101] Kevin J. Sullivan and David Notkin. Reconciling environment inte-
gration and software evolution. ACM Trans. Softw. Eng. Methodol.,
1(3):229–268, 1992.

[102] Sun. Java Remote Method Invocation (Java RMI).
http://java.sun.com/products/jdk/rmi/.

[103] Sun. Mobile Information Device Profile. http://java.sun.com/
products/midp/ Accessed October 16, 2008.

[104] Sun. SunSpotWorld - Home of Project Sun SPOT. http://www.
sunspotworld.com/ Accessed October 16, 2008.

[105] Sun. The Java ME Platform. http://java.sun.com/javame/
Accessed October 16, 2008.

[106] Sun. The Swing Tutorial. http://java.sun.com/docs/books/
tutorial/uiswing/index.html Accessed October 16, 2008.

[107] Sun. Java Remote Method Invocation Specification, 2003.

[108] David Svensson, Görel Hedin, and Boris Magnusson. Pervasive app-
lications through scripted assemblies of services. Pervasive Services,
IEEE International Conference on, pages 301–307, July 2007.

203

http://java.sun.com/products/jdk/rmi/
http://java.sun.com/products/midp/
http://java.sun.com/products/midp/
http://www.sunspotworld.com/
http://www.sunspotworld.com/
http://java.sun.com/javame/
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html

BIBLIOGRAPHY

[109] David Svensson and Boris Magnusson. An Architecture for Migrat-
ing User Interfaces. In NWPER’2004, 11th Nordic Workshop on Pro-
gramming and Software Development Tools and Techniques, pages 31–44,
Turku, Finland, August 2004.

[110] David Svensson, Boris Magnusson, and Görel Hedin. Composing
ad-hoc applications on ad-hoc networks using MUI. In Proceedings
of Net.ObjectDays 2005, 6th Annual International Conference on Object-
Oriented and Internet-based Technologies, Concepts, and Applications for
a Networked World, pages 153–164, Erfurt, Germany, September 2005.

[111] uClinux. uClinux – Embedded Linux Microcontroller Project.
http://www.uclinux.org/ Accessed October 16, 2008.

[112] David Ungar and Randall B. Smith. Self: The power of simplicity.
SIGPLAN Not., 22(12):227–242, 1987.

[113] UPnPTM Forum. UPnPTM Standards. http://www.upnp.org/
standardizeddcps/ Accessed August 27, 2008.

[114] UPnPTM Forum. UPnPTM Device Architecture 1.0. Technical report,
http://www.upnp.org/, December 2003. Version 1.0.1.

[115] Mathieu Vallée, Fano Ramparany, and Laurent Vercouter. Flexible
Composition of Smart Device Services. In Advances in Pervasive Com-
puting, Adjunct Proceedings of Pervasive 2006, May 2006.

[116] N. Venkitaraman. Wide-Area Media Sharing with UPnP/DLNA.
Consumer Communications and Networking Conference, 2008. CCNC
2008. 5th IEEE, pages 294–298, Jan. 2008.

[117] Bill Venners. The ServiceUI API Specification, Version 1.1a, 2005.
http://www.artima.com/jini/serviceui/Spec.html.

[118] Vinnova.se. VINNOVA - Swedish Agency for Innovation Systems.
http://www.vinnova.se.

[119] Aino Vonge Corry, Tony Gjerlufsen, and Jesper Wolff Olsen. The
Stone: Digital support for (un)common issues during pregnancy. In
Proceedings of SHI2005, 3rd Scandinavian conference on Health Informat-
ics, Aalborg University, August 2005.

[120] W3C. Web Services Architecture. http://www.w3.org/TR/
2004/NOTE-ws-arch-20040211/, February 2004.

[121] Jim Waldo. The Jini Architecture for Network-Centric Computing.
Communications of the ACM, pages 76–82, July 1999.

204

http://www.uclinux.org/
http://www.upnp.org/standardizeddcps/
http://www.upnp.org/standardizeddcps/
http://www.upnp.org/
http://www.artima.com/jini/serviceui/Spec.html
http://www.vinnova.se
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

BIBLIOGRAPHY

[122] M. Weiser, R. Gold, and J. S. Brown. The origins of ubiquitous com-
puting research at PARC in the late 1980s. IBM Syst. J., 38(4):693–696,
1999.

[123] Mark Weiser. The Computer for the 21st Century. Scientific American,
265(3):66–75, February 1991.

[124] Michel Wermelinger, José Luiz Fiadeiro, Luís Andrade, Georgios
Koutsoukos, and João Gouveia. Separation of Core Concerns: Com-
putation, Coordination, and Configuration. In Workshop on Advanced
Separation of Concerns, OOPSLA’01, 2001.

[125] Feng Zhu and Matt W. Mutka. Service Discovery in Pervasive
Computing Environments. IEEE Pervasive Computing, 4(4):81–90,
October–December 2005.

205

	Introduction
	Non-preplanned interaction and ad-hoc combinations
	Traditional approaches: standardization
	Method of work
	PalCom and palpable computing
	Broad competencies in the project
	Explorative work
	Traveling Architects

	Scenarios
	GeoTagger
	Active Surfaces
	Tall Ships' Race

	Architecture and implementation
	Devices
	Services
	Discovery
	Connections
	Browsers
	Tunnels
	Assemblies
	Versioning
	Communication protocols
	Middleware and framework
	Hardware platforms
	An open source implementation

	Scalability and security
	Previous work
	Ubiquitous computing architectures
	Interoperability in ubiquitous computing
	Technical issues

	Contributions
	Thesis outline
	Publications

	Devices and services
	Scenarios
	A music scenario
	A slide show scenario

	Devices
	Three kinds of services
	Trees of services
	Naming and versioning
	Service descriptions
	Asynchronous, peer-to-peer communication
	User interfaces
	User in the loop
	Rendering of user interfaces

	Related work
	Jini
	UPnP
	Zeroconf
	OSGi
	Web technologies

	Summary

	Connections
	Connecting two services from a third device
	Properties of connections
	Multiple networking technologies
	Tunnels
	Related work
	Summary

	Assemblies
	Scenarios
	The anatomy of an assembly
	Assembly descriptors
	Bindings
	Synthesized services
	Unbound services
	Assembly managers
	Configuration, coordination and computation
	The assembly is external to the services
	Connecting services directly to each other
	End-user work patterns
	Programming at different levels
	Related work
	Summary

	Communication protocols
	A layered model: overview
	Requirements
	The PalCom protocols
	The Wire Protocol
	DeviceIDs
	Selectors
	Heartbeats
	Routing between networking technologies
	Connections
	Message formats
	Large messages and reliable delivery

	The Discovery Protocol
	Service naming
	Descriptors
	Status information
	Versioning
	Caching
	Small devices

	The Service Interaction Protocol
	Related work
	Discovery
	Service interaction

	Summary

	The language of assemblies
	Configuration
	Name and versioning information
	Devices and services
	Connections
	Bindings
	The interface of synthesized services

	Coordination
	Script and event handling clauses
	Variables
	Synthesized services
	A loopback mechanism

	Computation
	Representations of an assembly
	Execution of assemblies
	Updating and versioning of assemblies
	Related work
	Summary

	Browsers
	The Handheld Browser
	The PalCom Overview Browser
	The PalCom Developer's Browser
	Domain-specific browsers
	Summary

	Framework and middleware
	Service Framework
	Middleware
	Communication
	Assembly manager
	Service manager

	Platform
	PalcomThreads

	Simulated devices
	Summary

	Implemented scenarios
	GeoTagger
	SiteTracker
	The Incubator
	Active Surfaces
	The prototype
	Games
	A tiles simulator
	Groupcast tiles
	Puzzle game logic
	Services and assemblies

	PalCom on a Sun SPOT
	A bridge between PalCom and UPnP
	Tall Ships' Race
	Summary

	Evaluation
	Ad-hoc combinations and non-preplanned interaction
	Usability
	Palpable challenges

	PalCom for developers
	Scalability
	Large numbers of devices
	Execution on resource-constrained devices
	Conclusion

	Summary

	Conclusions and future work
	Summary of the architecture
	Future work
	The assembly descriptor language

	Message node types
	Data nodes
	Header nodes

	Descriptor grammars
	Devices, services and connections
	Assemblies

	Bibliography

