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Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be

partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association

studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects.

We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and

SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA.

Our findings advance the understanding of the pharmacogenetic architecture of statin response.
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T
he 3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-
CoA) reductase inhibitors, also known as statins, are
widely prescribed and are highly effective in the manage-

ment and prevention of cardiovascular disease. Statin therapy
results in a lowering of low-density lipoprotein cholesterol (LDL-
C) levels by up to 55%1 and a 20–30% reduction of cardiovascular
events2. Despite the clinical efficacy of statins in a wide range of
patients2, interindividual variability exists with regard to LDL-C-
lowering response as well as efficacy in reducing major
cardiovascular events3. The suggestion that some of this
variability may be due, in part, to common pharmacogenetic
variation is supported by previous studies that have identified
genetic variants associated with differential LDL-C response to
statin therapy4–6.

A small number of genome-wide association studies (GWAS)
have previously identified loci associated with statin response on
a genome-wide level. A GWAS in the JUPITER trial identified
three genetic loci, ABCG2 (rs2199936), LPA (rs10455872) and
APOE (rs7412), that were associated with percentage LDL-C
reduction following rosuvastatin therapy7. In the CARDS and
ASCOT studies, single nucleotide polymorphisms (SNPs) at LPA
(rs10455872) and APOE (rs445925 and rs4420638) were
associated with LDL-C response to atorvastatin treatment8. A
combined GWAS in three statin trials identified a SNP within
CLMN (rs8014194) that is associated with the magnitude of
statin-induced reduction in plasma cholesterol9. However, two
other GWAS identified no genetic determinants of LDL-C
response to statin therapy at a genome-wide significant level6,10.

On the basis of these studies, as well as previous candidate gene
studies4,6, the only genetic variants that have been consistently
identified to be associated with variation in LDL-C response to
statin therapy, irrespective of statin formulation, are located at or
nearby APOE and LPA. To determine whether additional loci
may influence LDL-C response to statins, we formed the
Genomic Investigation of Statin Therapy (GIST) consortium
and conducted a pharmacogenetic meta-analysis using GWAS
data sets from randomized controlled trials (RCTs) and
observational studies. We identify two loci not previously
identified in GWAS, SORT1/CELSR2/PSRC1 and SLCO1B1. In
addition, we confirm the associations within the APOE and LPA
genes. These findings will extend the knowledge of the
pharmacogenetic architecture of statin response.

Results
First-stage meta-analysis. The GIST consortium includes 6 RCTs
(n¼ 8,421 statin recipients) and 10 observational studies
(n¼ 10,175 statin recipients) that participated in the first stage
(see Methods; Supplementary Tables 1 and 2; Supplementary
Notes 1 and 2). To search for genetic variants associated with
differential LDL-C response to statin therapy, each study inde-
pendently performed a GWAS among statin users, using the
difference between the natural log-transformed LDL-C levels on-
and off-treatment as the response variable (see Methods).

The first-stage meta-analysis identified three loci, including 13
SNPs, that attained genome-wide significance (Po5� 10� 8) for
association with LDL-C response to statin treatment (Fig. 1;
Table 1). The most significant association was for a SNP on
chromosome 19, at APOE (rs445925, minor allele frequency
(MAF)¼ 0.098, b¼ � 0.043, s.e.¼ 0.005, P¼ 1.58� 10� 18;
Fig. 2a), indicating that carriers of the rs445925 SNP respond to
statins with an additional 4.3% increase per allele in LDL-C
lowering effect compared with non-carriers. The second strongest
association was with a SNP at LPA on chromosome 6 (rs10455872,
MAF¼ 0.069, b¼ 0.041, s.e.¼ 0.006, P¼ 1.95� 10� 11; Fig. 2b),
indicating a 5.9% smaller LDL-C lowering per minor allele for

carriers of the SNP compared with non-carriers. Associations at
both loci have previously been described7,8. A third genome-wide
significant association was found with a SNP at RICTOR
on chromosome 5 (rs13166647, MAF¼ 0.230, b¼ � 0.253,
s.e.¼ 0.046, P¼ 4.50� 10� 8), although genotypes for this SNP
were only available in two studies within the first stage (n¼ 2,144).

Second-stage meta-analysis. We selected 246 SNPs with P
o5� 10� 4 from 158 loci for further investigation in three addi-
tional studies comprising up to 22,318 statin-treated subjects (see
Methods; Supplementary Tables 1 and 5; Supplementary Note 3).
This second stage confirmed the genome-wide significant asso-
ciations between variations within the APOE and LPA loci and
LDL-C response, as observed in the first stage (Table 1;
Supplementary Fig. 2; Supplementary Table 5). In addition,
SNPs at two new loci with P values between 6.70� 10� 7 and
2.26� 10� 6 in the first phase were shown to be significantly
associated with statin-induced LDL-C lowering after statin
treatment in the total combined meta-analysis at a genome-wide
level: SORT1/CELSR2/PSRC1 (rs646776, b¼ � 0.013, s.e.¼ 0.002,
P¼ 1.05� 10� 9 and rs12740374, b¼ � 0.013, s.e.¼ 0.002,
P¼ 1.05� 10� 9; Fig 2c) and SLCO1B1 (rs2900478, b¼ 0.016,
s.e.¼ 0.003, P¼ 1.22� 10� 9; Fig 2d), indicating an additional
1.5% increase per allele in LDL-C lowering effect for carriers of the
SORT1/CELSR2/PSRC1 SNP and a 1.6% smaller LDL-C lowering
per minor allele for carriers of the SLCO1B1 SNP.

The six next-ranked SNPs with P values just below 5� 10� 8 in
the combined meta-analysis, including the two SNPs at RICTOR
(rs13166647 and rs13172966), were selected for additional
genotyping in the Scandinavian ASCOT participants (see Meth-
ods). None of these six SNPs reached genome-wide significance
after this additional genotyping (Supplementary Table 6). There-
fore, our overall genome-wide significant findings were the SNPs at
APOE, LPA, SORT1/CELSR2/PSRC1 and SLCO1B1.

Subfraction analyses. To extend our results for the novel GWAS
finding SORT1/CELSR2/PSRC1, we performed additional asso-
ciation analyses, using measurements of cholesterol levels in four
LDL subfractions (large, medium, small and very small) from two
of the trials in GIST, CAP and PRINCE (Table 2; see Methods).
The minor allele of SORT1 rs646776 was associated with greater
statin-induced reductions in levels of all LDL subfractions, and
there was a nonsignificant trend for larger effect sizes and greater
statistical significance for lowering of small and very small LDL
(Table 2). In contrast, the APOE SNP associated with greater
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Figure 1 | Results of the GWAS meta-analysis. Manhattan plot presenting

the � log10 P values from the combined meta-analysis (n¼40,914) on

LDL-C response after statin treatment. P values were generated using linear

regression analysis.
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LDL-C response to statins (rs445925) showed a small and non-
significant association with change in very small LDL (Table 2).
For the minor allele of rs2900478 (SLCO1B1), the borderline
significant association with smaller magnitude of LDL-C reduc-
tion showed a trend for preferential association with larger versus
smaller LDL subfractions. The lack of association of rs10455872
(LPA) with changes in LDL subfractions is consistent with evi-
dence discussed below that this locus affects levels of lipopro-
tein(a) (Lp(a)) and not LDL particles. Using generalized
estimating equations, we tested the association of log change in
each of the LDL subfractions with interactions of the four SNPs.
For very small LDL, the association with the rs646776 minor
allele was significantly different from that of the other minor
alleles (P¼ 0.03 after adjustment for multiple testing).

Effects of off-treatment LDL-C. To demonstrate that our find-
ings for LDL-C response to statin treatment are unlikely to be
explained through associations with baseline LDL-C levels, we
performed a number of additional analyses (see Methods). First,
Supplementary Table 7 shows regression coefficients for baseline-
adjusted and measurement noise-corrected estimates of the direct
effect of genotype on on-treatment LDL-C at the strongest SNPs
in the GIST meta-analysis (Po1� 10� 8), which were available
in the CARDS data set. Correcting our effect size estimate further
and modelling measurement noise at baseline reduced the
apparent effect only slightly for all the markers, suggesting that
there is little effect of measurement noise. Next, within the
JUPITER trial, additional analyses were performed to determine
whether there was an interaction between LDL-C change and
statin or placebo allocation. Supplementary Table 8 shows sig-
nificant P values for interaction (all o5� 10� 2) for SNPs at the
four genome-wide significant loci in the GIST meta-analysis, also
suggesting that genetic effects on baseline LDL-C as manifested in
the placebo group contribute at most only in part to genetic
effects on LDL-C response in the statin group.

Genome-Wide Conditional Analysis. To investigate whether
there were multiple SNPs within any gene and multiple loci
associated with differential LDL-C lowering to statin therapy, we
performed a conditional analysis across the genome using the
summary statistics of the combined meta-analysis. The results of

the Genome-Wide Conditional Analysis (GWCA; see Methods;
Supplementary Table 9) showed 14 SNPs independently asso-
ciated with statin response and these explained B5% of the
variation in LDL-C response to statin treatment. Of the 14
independent SNPs, 6 were genome-wide significant in the com-
bined GWAS meta-analysis (Supplementary Table 5).

Previous findings. In Supplementary Table 10, we performed a
look-up in our GWAS meta-analysis for SNPs previously
described in the literature (NHGRI Catalogue11 of Published
GWAS and Candidate gene studies) to be associated with statin
response, besides the loci associated at a genome-wide level in the
current study. None of these SNPs was associated with statin
response in our GWAS after correcting for multiple testing.

Functional analyses. Functional characterization of the 246 SNPs
selected for the second stage was performed using a range of
bioinformatics tools (see Methods). A total of 420 expression
quantitative trait loci (eQTL) associations were identified across a
wide range of tissues (Supplementary Data 1), which comprised 67
independent gene eQTL associations. Eleven genes, including
APOE, SORT1, CELSR2 and PSRC1, showed eQTLs in liver, which
considering its primary role in mediating statin-induced LDL
reduction may be particularly relevant to statin response. Putative
gene eQTLs were combined with genes annotated to variants in
linkage disequilibrium (LD) with LDL-C response-associated
variants, resulting in a list of 185 candidate gene loci, defined by
2,681 SNPs (Supplementary Data 2 and 3). To identify statin
responsive genes among the candidate loci, gene expression data
measured in response to statin treatment in a range of cell lines
was retrieved from the Connectivity Map resource12 (see
Methods). Five genes (APOE, BRCA1, GRPEL1, ADRB2 and
ETV1) showed convincing evidence of statin responsiveness on
the basis of greater than twofold differential expression in
response to statin treatment. Eight genes showed suggestive
evidence (1.5- to 2-fold change; TOMM40, SREBP1, PSRC1, BCL3,
BCAM, ANK3, SIVA1 and RANBP9; Supplementary Data 3).

Finally, involvement in statin response was investigated at a
pathway level using GeneGo Metacore (Thomson Reuters13).
Briefly, 87 literature-reported genes linked to statin response were
combined with the 185 candidate gene loci reported here

Table 1 | Genome-wide significant associations in stage 1, stage 2 and combined meta-analysis.

Chr Position Lead SNP Gene Coding
allele

Noncoding
allele

Phase N Frequency-
coding
allele

Beta* s.e. % Extra
reductionw

P value

1 109620053 rs646776 SORT1/
CELSR2/

PSRC1

C T Stage 1 16,697 0.230 �0.015 0.003 1.5 6.70� 10� 7

Stage 2 21,902 0.216 �0.010 0.003 1.0 2.43� 10�4

Combined 38,599 �0.013 0.002 1.3 1.05� 10�9

6 160930108 rs10455872 LPA G A Stage 1 12,981 0.069 0.041 0.006 �4.1 1.95� 10� 11

Stage 2 18,075 0.087 0.059 0.005 � 5.9 7.14� 10� 35

Combined 31,056 0.052 0.004 � 5.2 7.41� 10�44

12 21260064 rs2900478 SLCO1B1 A T Stage 1 16,749 0.165 0.016 0.003 � 1.6 2.26� 10� 6

Stage 2 7,504 0.164 0.017 0.006 � 1.7 3.54� 10� 3

Combined 24,253 0.016 0.003 � 1.6 1.22� 10�9

19 50107480 rs445925 APOE A G Stage 1 13,909 0.098 �0.043 0.005 4.3 1.58� 10� 18

Stage 2 3,613 0.157 �0.088 0.011 8.8 1.41� 10� 15

Combined 17,522 �0.051 0.005 5.1 8.52� 10� 29

Chr, chromosome; SNP, single nucleotide polymorphism.
*Beta for difference between the natural log-transformed on- and off-treatment low-density lipoprotein cholesterol (LDL-C) levels adjusted for natural log-transformed off-treatment LDL-C-, age-,
sex- and study-specific covariates. The beta reflects the fraction of differential LDL-C lowering in carriers versus non-carriers of the SNP; a negative beta indicates a better statin response (stronger LDL-C
reduction), a positive beta a worse statin response. Betas and P values were generated using linear regression analysis.
wThis percentage reflects the % extra LDL-C lowering in carriers versus non-carriers of the SNP.
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(Supplementary Data 3). A conservative network of direct
interactions was constructed between query genes (Supplementary
Data 4). The network included 24 genes located in the LDL-C-
associated loci (Supplementary Fig. 4). Collectively, our functional
and pathway analysis confirms a strong biological and functional
role in statin response for several strongly associated gene loci,
including APOE/TOMM40/PVRL2 and SORT1/CELSR2/PSRC2.

Discussion
We have performed a meta-analysis of GWAS including more
than 40,000 subjects, investigating genetic variants associated

with variation in LDL-C lowering on statin treatment indepen-
dent from associations with baseline LDL-C. We identified four
loci at genome-wide significance, including the previously
identified APOE and LPA, and the novel GWAS loci SORT1/
CELSR2/PSRC1 and SLCO1B1.

Nine SNPs in the APOE gene region reached genome-wide
significance for LDL-C response. The minor allele of the lead
SNP rs445925, which is a proxy for the apoE e2 protein
variant defining SNP rs7412 (ref. 14), was associated with a larger
LDL-C-lowering response to statins compared with carriers of the
major allele. The magnitude and direction of the effect size was
similar to previously reported findings for the rs445925 variant in
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Figure 2 | Regional association plots of the genome-wide significant associations with LDL-C response after statin treatment. The plots show the

genome-wide significant associated loci in the combined meta-analysis (n¼40,914), the APOE locus (a), the LPA locus (b), the SORT1/CELSR2/PSRC1 locus

(c) and the SLCO1B1 locus (d) (generated using LocusZoom (http://genome.sph.umich.edu/wiki/LocusZoom)). The colour of the SNPs is based on the LD

with the lead SNP (shown in purple). The RefSeq genes in the region are shown in the lower panel. P values were generated using linear regression analysis.

Table 2 | Associations of the minor alleles of rs646776, rs445925, rs2900478 and rs10455872 with changes in LDL-C and LDL
subfractions in response to statin in the combined CAP and PRINCE studies.

Change* SORT1/CELSR2/PSRC1
rs646776 (MAF 0.2)

APOE
rs445925 (MAF 0.086)

SLCO1B1
rs2900478 (MAF 0.16)

LPA
rs10455872 (MAF 0.056)

Beta s.e. P value Beta s.e. P value Beta s.e. P value Beta s.e. P value

LDL-C total �0.023 0.008 0.003 �0.046 0.018 0.008 0.010 0.005 0.04 0.032 0.019 0.09
Large LDL-C �0.028 0.014 0.042 �0.075 0.029 0.009 0.02 0.008 0.01 0.036 0.031 0.23
Medium LDL-C �0.027 0.015 0.075 �0.079 0.032 0.012 0.016 0.009 0.07 0.010 0.034 0.77
Small LDL-C �0.047 0.018 0.009 �0.071 0.037 0.050 0.002 0.010 0.83 �0.024 0.039 0.54
Very small LDL-C �0.034 0.009 0.00006 �0.022 0.017 0.202 0.001 0.005 0.90 0.008 0.019 0.67

LDL-C, low-density lipoprotein cholesterol; MAF, minor allele frequency.
*Change: ln (on treatment)� ln (baseline) models adjusted for log (baseline variable), age, sex, body mass index, smoking(y/n) and study (CAP versus PRINCE). Betas and P values were assessed using
a generalized estimating equation method.
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the GWAS study performed in CARDS and ASCOT8 and of the
SNP rs7412 in JUPITER7. Since the apoE E2 protein results in
increased hepatic cholesterol synthesis, it may also predispose to
stronger inhibition of cholesterol synthesis by statin treatment8,10.

Three independent SNPs at LPA were significantly associated
with LDL-C response to statins. The minor G allele of the lead
SNP rs10455872 was associated with smaller LDL-C reduction
than the major allele. This result was similar to the previous
GWAS findings for this SNP in the JUPITER trial and the
combined ASCOT and CARDS study7,8. The rs10455872 SNP
was strongly associated with the KIV-2 copy number variant in
Lp(a), which encodes variability in apo(a) size and is responsible
for B30% of variance in Lp(a) levels8,15. Furthermore,
rs10455872 was shown to be strongly associated with plasma
Lp(a) levels16. Standard assays of LDL-C, as well as the
Friedewald formula, include cholesterol that resides in Lp(a)6,8.
Carriers of this LPA variant are characterized by higher Lp(a)
levels and a larger proportion of their measured LDL-C resides in
Lp(a) particles8,10. Since statin therapy does not reduce the
number of Lp(a) particles17, their presence attenuates the
measured LDL-C response to statins.

Two SNPs at SORT1/CELSR2/PSRC1 (rs646776 and
rs12740374) on chromosome 1p were associated with an
enhanced statin LDL-C response. A similar association was
previously observed in a large candidate gene study in HPS6;
however, we demonstrate this finding now first at a genome-wide
significance level. The minor allele of rs12740374 has been shown
to generate a binding site for the transcription factor C/EBPa18.
Transcription results in upregulation of hepatic expression of
three genes at this locus, SORT1, CELSR2 and PSRC1 (ref. 18),
which we also showed in our eQTL analysis (Supplementary
Data 1). Of these, SORT1 is most notable, in that it encodes the
multifunctional intracellular trafficking protein sortilin, which
has been shown to bind tightly to apoB19. Sortilin-induced
lowering of plasma LDL-C results from two mechanisms: reduced
secretion of apoB-containing precursors, and, perhaps of greater
importance, increased hepatic LDL uptake via binding to sortilin
at the cell surface, with subsequent internalization and lysosomal
degradation19. Notably, the minor allele of rs646776 is
preferentially associated with lower levels of small and very
small LDL (Table 2), suggesting that sortilin is of particular
importance for regulating levels of these particles18. Smaller LDL
subfractions have been shown to be relatively enriched in
particles with reduced LDL receptor binding affinity and
cellular uptake20, a property that may contribute to their
associations with increased risk for cardiovascular disease21.
This property may also underlie the diminished efficacy of statins
for reduction of these particles (Supplementary Fig. 3)22, since
statins act to reduce LDL-C levels to a large extent by increasing
LDL receptor expression as a result of upregulation of the
transcription factor SREBP2, whereas SORT1 is not regulated by
this mechanism. Hence, the greater statin-mediated reduction of
LDL-C among carriers of the rs646776 minor allele could be
attributed to relative depletion of LDL particles dependent on
sortilin for clearance and hence a residually greater proportion of
those LDL particles whose uptake is more dependent on the LDL
receptor than on sortilin.

Notably, the strong association of rs646776 with statin-induced
reductions in small and very small LDL particles contrasts to the
weaker associations of changes in these particles with rs445925,
likely the result of differing mechanisms underlying the effects of
these SNPs on statin response. As noted above, rs445925 is a
proxy for the SNP defining the apoE E2 protein variant that is
thought to predispose to heightened statin response as a result of
greater statin inhibition of cholesterol synthesis and hence
upregulation of SREBP and LDL receptor activity.

The SLCO1B1 rs2900478 minor allele was associated with a
smaller LDL-C reduction in response to statin treatment.
SLCO1B1 encodes the organic anion-transporting polypeptide
OATP1B1 and facilitates the hepatic uptake of statins23. SNP
rs2900478 is in strong LD (r2¼ 0.89) with rs4149056, which
represents the Val174Ala substitution resulting in complete loss
of function. In the HPS trial, which used simvastatin, this
candidate gene SNP was associated with a 1% lower LDL-C
reduction per allele6. Single-dose studies have shown that the
observed area under the curve of plasma level of active
simvastatin after a dose of 40 mg was 221% higher in
rs4149056 CC homozygotes compared with rs4149056 TT
homozygotes, as compared with atorvastatin 20 mg (144%
higher for CC versus TT) and rosuvastatin 40 mg (117% higher
for CC versus TT)24. This finding results from the slower hepatic
uptake of statins caused by the genetic variant, which would also
be expected to result in a reduction in the cholesterol-lowering
effect25. In a GWAS of the genetic risk factors for simvastatin-
induced myopathy, SLCO1B1 showed the strongest association25.
Homozygous carriers of the SLCO1B1 variant had a 16.9 times
higher risk for myopathy compared with non-carriers. This might
have led to a decrease in study medication adherence, and
consequently a decreased effect on LDL-C in carriers of this SNP.
In addition, previous analysis in the GoDARTS study showed that
the effect of the SLCO1B1 gene on statin efficacy was abolished
after removal of individuals who showed signs of intolerance26.

GWCA identified three independent loci in the APOE gene
region and two loci in the LPA gene region (Supplementary
Table 9). GWCA also showed several other loci with
P o5� 10� 8 that were not GWAS significant on single-SNP
analysis (HGD, RNF175, ISCA1L-HTR1A, GLIS3-SLC1A1,
LOC100128657, NKX2-3-SLC25A28 and PELI2). These findings
will require replication in independent, larger data sets. The
significant SNPs in the GWCA analysis explained B5% of the
variation in LDL-C response to statin treatment. Whether this 5%
is clinically relevant should be investigated by other studies. For
example, it would be of interest to investigate whether this
differential LDL-C lowering is also associated with differential
event reduction by statin treatment.

In the current study, we combined the results of 6 randomized
clinical trials and 10 observational studies in the first stage. This
approach resulted also in combining several types of statins, since
different statins were studied in the trials and within the
observational studies (Supplementary Table 2). This, and the
variation in statin dosage during follow-up for an individual, is a
limitation of the current study, since, for example, the impact of
the SLCO1B1 variant on statin pharmacogenetics is known to be
highly dependent on statin type and dose24,27. To overcome this
limitation, the individual study analyses were adjusted for statin
dose. Dividing the actual statin dose given by the statin-specific
dose equivalent (Supplementary Table 3) gives the statin-adjusted
equivalent based on the daily dosages required to achieve a mean
30% LDL-C reduction. Using this table, we made the different
statin dosages and types comparable within the studies. To
correct for between-study variance, we used a fixed effect meta-
analysis with inverse variance weighting. Since we observed that
the SLCO1B1 gene was genome-wide significantly associated with
LDL lowering, this highlights the thoroughness of our analytical
approach, in which the analyses were correctly adjusted for the
type and dose of statins used (Supplementary Table 3). Moreover,
a comparison of the estimates of the SNPs between the RCTs
(where there are no intra-individual differences in dosages) with
the estimates of the SNPs in the observational studies showed
large homogeneity between the estimates in the various study
designs (Supplementary Fig. 2), indicating that our adjustment
for dosage seems to be sufficient within this study.
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Another possible limitation of the current study is the influence
of the identified genetic variants on baseline LDL-C levels. In
pharmacogenetic studies investigating the LDL-C-lowering
response to statins, it is important to eliminate the effect of
association between the genetic variant and baseline LDL-C
levels, since those findings may confound the response to
treatment associations. Previous large GWAS studies have shown
strong associations between baseline LDL-C levels and genetic
variants in SORT1/CELSR2/PSRC1, APOE and LPA28. To
eliminate those possible confounding effects, our response to
treatment analyses were adjusted for baseline LDL-C levels. In
addition, additional analysis in CARDS and JUPITER suggests no
or little influence of genetic associations with baseline LDL-C on
the genetic effects on LDL-C-lowering response.

In conclusion, this study is the largest meta-analysis of GWAS
for LDL-C response to statin therapy conducted to date. Our
results demonstrate that apart from the previously identified
APOE and LPA loci, two new loci, SORT1/CELSR2/PSRC1 and
SLCO1B1, also have a modest but genome-wide significant effect
on LDL-C response. The minor alleles of the APOE rs445925 and
SORT1/CELSR2/PSRC1 rs646776 SNPs were associated with a
larger statin response, whereas the minor alleles of the LPA
rs10455872 and SLCO1B1 rs2900478 SNPs were associated with a
smaller statin response. Our findings advance the understanding
of the pharmacogenetic architecture of statin response.

Methods
Study populations. The meta-analysis was conducted in the GIST consortium,
which includes data from 8 randomized controlled statin trials (RCTs) and 11
prospective, population-based studies. The initial analysis (first stage) was per-
formed in 8,421 statin-treated subjects from 6 RCTs (ASCOT, CARDS, CAP,
PRINCE, PROSPER and TNT) and 10,175 statin-treated subjects from 10 obser-
vational studies (AGES, ARIC, BioVU, CHS, FHS, GoDARTS I, GoDARTS II,
Health ABC, HVH and MESA). Further investigation (second stage) was per-
formed in 21,975 statin-treated subjects from two randomized trials (HPS and
JUPITER) and one observational study (Rotterdam Study). Six SNPs were addi-
tionally genotyped in the Scandinavian participants of the ASCOT study. The
details of the first- and second-stage studies can be found in the Supplementary
Tables 1 and 2 and Supplementary Notes 1 and 2.

Subjects. Response to statin treatment was studied in statin-treated subjects only
and not in those treated with placebo. Subjects included in the observational stu-
dies’ analysis should be treated with statins and have LDL-C measurements before
and after start of statin treatment. Subjects of reported or suspected non-European
ancestry were excluded. All participants gave written informed consent and the
study was approved by all institutional ethics committees.

Outcome measurements. The response to statin treatment was defined as the
difference between the natural log-transformed on- and off-treatment LDL-C
levels. The beta of the corresponding regression thus reflects the fraction of dif-
ferential LDL lowering in carriers versus non-carriers of the SNP. For observational
studies, the on-treatment LDL-C levels were taken into account for all kinds of
prescribed statins, at any dosage, for any indication and for at least 4 weeks before
measurement. Characteristics of on- and off-treatment LDL-C levels and statins
used in each study are shown in Supplementary Table 2. For each individual, at
least one off-treatment LDL-C measurement and at least one on-treatment LDL-C
measurement were required. When multiple on- or off-treatment measurements
were available, the mean of the cholesterol measurements was used. Subjects with
missing on- or off-treatment measurements were excluded, with the exception of
the GoDARTS cohorts for which missing off-treatment LDL-C levels were esti-
mated using imputation methods (Supplementary Note 2). In the HPS, propor-
tional LDL-C response was defined by the changes in natural log lipid levels from
the screening visit before starting statin therapy to the randomization visit6.

Genotyping and imputation. Genotyping, quality control, data cleaning and
imputation were performed independently in each study using different genetic
platforms and software as outlined in Supplementary Table 4. In all studies, gen-
otyping was performed using Illumina, Affymetrix or Perlegen genotyping arrays,
and MACH, Impute or BIMBAM software was used for imputation.

GWAS analysis. Each study independently performed the GWAS on the differ-
ence between natural log-transformed on- and off-treatment LDL-C levels. To

control for possible associations with off-treatment LDL-C levels, analyses were
adjusted for the natural log-transformed off-treatment LDL-C level. An additive
genetic model was assumed and tested using a linear regression model. For
imputed SNPs, regression analysis was performed onto expected allele dosage.
Analyses were additionally adjusted for age-, sex- and study-specific covariates (for
example, ancestry principal components or country). Analyses in the observational
studies were, if available, additionally adjusted for the statin dose by the natural
logarithm of the dose equivalent as defined in Supplementary Table 3. This table
shows the dose equivalent per statin type; dividing the statin dosage of an indi-
vidual by the dose equivalent shown in Supplementary Table 3 will give the
adjusted statin dosage.

Quality control and meta-analysis. Centrally, within each study, SNPs with MAF
o1% or imputation quality o0.3 were excluded from the analysis. QQ-plots were
assessed for each study to identify between-study differences (Supplementary
Fig. 1). The software package METAL was used for performing the meta-analysis
(http://www.sph.umich.edu/csg/abecasis/Metal/index.html). A fixed effects, inverse
variance weighted approach was used. Using an inverse variance weighted meta-
analysis will give smaller weights to studies with large s.e.. To correct for possible
population stratification, genomic control was performed by adjusting the within-
study findings and the meta-analysis results for the genomic inflation factor.

Second stage. SNPs with P values o5� 10� 4 in the first-stage meta-analysis
were selected for further investigation in a second stage. A maximum of two SNPs
per locus were selected, based on statistical significance, except for the APOE locus,
for which all genome-wide significant associated SNPs were selected for validation.
A total of 246 SNPs, within 158 independent loci, were selected for the second
stage, which was performed in the JUPITER trial, HPS study and the Rotterdam
Study, which all had GWAS data and response to statin treatment available. For 2
of the 246 SNPs, a proxy was used in the JUPITER trial, and 31 SNPs were not
available, nor was a proxy SNP. HPS provided data on 151 directly genotyped SNPs
from GWAS and IPLEX experiments, including 48 of the requested SNPs and 103
proxy SNPs (r240.8). Analysis in HPS was not adjusted for ln baseline LDL-C
levels. In addition, the number of subjects with data varied from SNP-to-SNP and
ranges from B4,000 for variants with GWAS data to B18,000 for some candidate
genes. Results of the first and second stage were combined using fixed effects,
inverse variance weighted meta-analysis and analysed by METAL. As a third stage,
six SNPs with P values 5� 10� 8oPo5� 10� 7 in the combined meta-analysis
were selected for additional genotyping in the Scandinavian participants of the
ASCOT study. Kaspar assays were designed for four of the SNPs using the
KBioscience Primerpicker software, and oligos were provided by Intergrated DNA
technologies (http://eu.idtdna.com/site). Full Kaspar methodology is available from
LGC SNP genotyping (http://www.lgcgenomics.com/genotyping/kasp-genotyping-
reagents/). Two SNPs (rs981844 and rs13166647) were genotyped using Taqman
assays supplied by Life Technologies (http://www.lifetechnologies.com/uk/en/
home.html) using the standard Taqman protocol. Results of the additional geno-
typing were combined with results from the first and second stages using a fixed
effects, inverse variance weighted meta-analysis and analysed by METAL.

Determination of changes in LDL subfractions. LDL subclasses were analysed as
described previously29 using non-denaturing gradient gel electrophoresis of fasting
plasma samples taken at baseline and after 6 weeks of simvastatin 40 mg per day (CAP
study, n¼ 579) or 12 weeks of pravastatin 40 mg per day (PRINCE study, n¼ 1,284).
Aliquots of 3.0 ml of whole plasma were mixed 1:1 with a sampling buffer of 20%
sucrose and 0.25% bromophenol blue. Electrophoresis of samples and size calibration
standards was performed using 2–14% polyacrylamide gradients at 150 V for 3 h
following a 15-min pre-run at 75 V. Gels were stained with 0.07% Sudan black for 1 h
and stored in a 0.81% acetic acid, 4% methanol solution until they were scanned by
computer-assisted densitometry for determination of areas of LDL IVb (22.0–23.2 nm),
LDL IVa (23.3–24.1 nm), LDL IIIb (24.2–24.6 nm), LDL IIIa (24.7–25.5 nm), LDL IIb
(25.6–26.4 nm), LDL IIa (26.5–27.1 nm) and LDL I (27.2–28.5 nm). The cholesterol
concentrations of the subfractions (mg dl� 1 plasma) were determined by multiplying
percent of the total stained LDL area for each subfraction by the LDL-C for that sample.
For genetic association analyses, subfractions were grouped into large LDL (LDL Iþ IIa),
medium LDL (LDL IIb), small LDL (LDL IIIa) and very small LDL (LDL
IIIbþ IVaþ IVb) as described previously18. A generalized estimating equation method
was used to test the association of log change with the interaction of the four SNPs by
LDL subfraction.

Effect of off-treatment LDL-C. Effects of genetic variation on treatment response
as measured by on-treatment LDL-C could be mediated through effects on the off-
treatment LDL-C. To evaluate whether genetic on-treatment LDL-C likely reflects
residual effect on off-treatment LDL-C, it is necessary to adjust for the off-treat-
ment LDL-C levels and to correct the maximum likelihood estimate of the adjusted
effect of genotype on on-treatment value for the noise in off-treatment values (the
noise is both random measurement error and intra-individual variation in usual
LDL-C). This analysis was only carried out in CARDS in which multiple baseline
measurements were available. From the rules of path analysis, we calculated the
direct effect g of genotype on an on-treatment trait value as b� ad (1� r)/r, where
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b is the coefficient of regression for on-treatment trait value on genotype adjusted
for measured off-treatment value, a is the coefficient of regression of baseline LDL
on genotype, r is the intraclass correlation between replicate measurements of off-
treatment values and d is the coefficient of regression for on-treatment value on
observed off-treatment value8. For these calculations, we used r¼ 0.8 as a plausible
value for the intraclass correlation based on the within-person correlation in LDL-
C values taken over two off-treatment visits in CARDS. The interaction of
candidate SNPs with statin versus placebo allocation was assessed in the JUPITER
trial, since this study was not involved in the first-stage meta-analysis. Regression
models were applied to the combined population of statin- and placebo-treated
subjects by including extra terms encoding placebo allocation and the product of
placebo allocation with SNP minor allele dose7.

GWCA using Genome-Complex Trait Analysis. There may be multiple causal
variants in a gene and the total variation that could be explained at a locus may be
underestimated if only the most significant SNP in the region is selected. To
identify independent SNPs, we ideally can perform a conditional analysis, starting
with the top associated SNP, across the whole genome followed by a stepwise
procedure of selecting additional SNPs, one by one, according to their conditional
P values. Such a strategy would allow the discovery of more than two associated
SNPs at a locus. To identify independent SNPs across the genome-wide data, we
used an approximate conditional and joint analysis approach implemented in
Genome-Complex Trait Analysis (GCTA) software (http://www.complex-
traitgenomics.com/software/gcta/). We used summary-level statistics from the first-
and second-stage-combined meta-analysis and LD corrections between SNPs
estimated from CARDS GWAS data. SNPs on different chromosomes or more
than 10 Mb distant are assumed to be in linkage equilibrium. The model selection
process in GCTA starts with the most significant SNP in the single-SNP meta-
analysis across the whole genome with P value o5� 10� 7. In the next step, it
calculates the P values of all the remaining SNPs conditional on the top SNP that
have already been selected in the model. To avoid problems due to colinearity, if
the squared multiple correlations between a SNP to be tested and the selected
SNP(s) is larger than a cut-off value, such as 0.9, the conditional P value for that
SNP will be set to 1. Select the SNPs with minimum conditional P value that is
lower than the cut-off P value. Fit all the selected SNPs jointly in a model and drop
the SNPs with the P value that is greater than the cut-off P value. This process is
repeated until no SNPs can be added or removed from the model.

Pathway analysis and construction of a statin response network. Genes
showing evidence of association (based on direct association or LD (HapMap CEU
r240.8)) were reviewed for evidence of involvement in statin response at a pathway
level using GeneGo Metacore (Thomson Reuters (portal.genego.com)). A statin
response network was constructed in two stages. First, all genes with a literature-
reported involvement in statin response (based on Medical Subject Headings
(MeSH)) were identified using GeneGo MetaCore (Supplementary Data 3). Second,
these genes were combined with all genes in associated loci (including genes in LD)
and a network was constructed based on direct interactions only. By including direct
interactions only, we created a conservative network of direct gene interactions that
have been consistently linked to statin response in the literature.

eQTL analysis. LDL-C-associated index SNPs (246 SNPs) were used to identify
1,443 LD proxy SNPs displaying complete LD (r2¼ 1) across four HapMap builds
in European ancestry samples (CEU) using the SNAP tool (http://www.broadin-
stitute.org/mpg/snap/). The primary index SNPs and LD proxies were searched
against a collected database of expression SNP (eSNP) results, including the fol-
lowing tissues: fresh lymphocytes30, fresh leukocytes31, leukocyte samples in
individuals with Celiac disease32, whole-blood samples33–36, lymphoblastoid cell
lines (LCL) derived from asthmatic children37,38, HapMap LCL from three
populations39, a separate study on HapMap CEU LCL40, additional LCL
population samples41–43 (Mangravite et al., unpublished), CD19þ B cells44,
primary phytohaemagglutinin-stimulated T cells41, CD4þ T cells45, peripheral
blood monocytes44,46,47, CD11þ dendritic cells before and after Mycobacterium
tuberculosis infection48, omental and subcutaneous adipose33,43,49, stomach49,
endometrial carcinomas50, ERþ and ER� breast cancer tumour cells51, brain
cortex46,52,53, prefrontal cortex54,55, frontal cortex56, temporal cortex53,56, pons56,
cerebellum53,56, three additional large studies of brain regions including prefrontal
cortex, visual cortex and cerebellum, respectively57, liver49,58,59, osteoblasts60,
ileum49,61, lung62, skin43,63 and primary fibroblasts41. Micro-RNA QTLs were also
queried for LCL64 and gluteal and abdominal adipose65. The collected eSNP results
met the criteria for association with gene expression levels as defined in the original
papers. In each case where a LDL-C-associated SNP or proxy was associated with a
transcript, we further examined the strongest eSNP for that transcript within that
data set (best eSNP), and the LD between the best eSNP and GIST-selected eSNPs
to estimate the concordance of the LDL-C and expression signals.

Statin response connectivity map analysis. The Connectivity Map (Cmap) data
set is available at the Broad Institute (www.broadinstitute.org/cmap) and contains
more than 7,000 expression profiles representing 1,309 compounds used on five
different cultured human cancer cell lines (MCF7, ssMCF7, HL60, PC3 and

SKMEL5). We selected (prostate tumour-derived) PC3 cells as they showed the
most responsiveness to statins at a genome-wide level. Four statins were included
in our analysis, including pravastatin, atorvastatin, simvastatin and rosuvastatin.
PC3 Instance reference files for each statin treatment were extracted (as defined by
Lamb et al.12), that is, a treatment associated to its control pair. Transcripts were
considered to show evidence of differential expression with a fold change 42.
A fold change 41.5 was considered to be suggestive of differential expression only.

Exploration of functional impact among directly and indirectly associated
variants. Genes and variants across all LDL-C-associated loci were investigated for
evidence of functional perturbation using a range of bioinformatics tools and
databases. Variants showing LD (CEU r240.8) with associated variants were
explored for impact on coding gene function using Annovar66 and regulatory
function using a combination of HaploReg67 and Regulomedb68, which both draw
on comprehensive data from the Encyclopedia of DNA Elements (ENCODE)69

and the NIH Roadmap Epigenomics consortium70. Building on the functional
annotation, we also identified variants that were shown to mediate eQTLs. Genes in
associated loci were also used to query the NIH connectivity map for evidence of
differential expression in PC3 cell lines treated with pravastatin, simvastatin and
rosuvastatin. By combining a wide range of functional data and pathway support,
we were able to build up a view of genes with the highest level of support in statin
response.
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