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Abstract

Background: Identifying individuals at high risk of excess weight gain may help targeting prevention efforts at those at risk
of various metabolic diseases associated with weight gain. Our aim was to develop a risk score to identify these individuals
and validate it in an external population.

Methods: We used lifestyle and nutritional data from 53°758 individuals followed for a median of 5.4 years from six centers
of the European Prospective Investigation into Cancer and Nutrition (EPIC) to develop a risk score to predict substantial
weight gain (SWG) for the next 5 years (derivation sample). Assuming linear weight gain, SWG was defined as gaining =10%
of baseline weight during follow-up. Proportional hazards models were used to identify significant predictors of SWG
separately by EPIC center. Regression coefficients of predictors were pooled using random-effects meta-analysis. Pooled
coefficients were used to assign weights to each predictor. The risk score was calculated as a linear combination of the
predictors. External validity of the score was evaluated in nine other centers of the EPIC study (validation sample).

Results: Our final model included age, sex, baseline weight, level of education, baseline smoking, sports activity, alcohol use,
and intake of six food groups. The model’s discriminatory ability measured by the area under a receiver operating
characteristic curve was 0.64 (95% Cl=0.63-0.65) in the derivation sample and 0.57 (95% Cl =0.56-0.58) in the validation
sample, with variation between centers. Positive and negative predictive values for the optimal cut-off value of =200 points
were 9% and 96%, respectively.

Conclusion: The present risk score confidently excluded a large proportion of individuals from being at any appreciable risk
to develop SWG within the next 5 years. Future studies, however, may attempt to further refine the positive prediction of
the score.
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Introduction

Excess body weight is increasingly recognized as an important
public health threat worldwide. In Europe, 30-80% of adults are
overweight (Body Mass Index (BMI) =25 kg/m? and among
them up to 36% are classified as obese (BMI=30) [1,2].
Overwhelming evidence suggests that excess body weight is
associated with higher risks for numerous chronic diseases [3].
However, not only body weight status per se, but also gain in body
weight, irrespective of initial BMI, has been associated with many
metabolic abnormalities [4-6], subsequently conveying an in-
creased mortality risk [7]. A Danish study further suggests, that
weight gain up to the obese level is related to higher risks of
impaired glucose tolerance than maintaining weight at the obese
level since the beginning of adult live [8].

Given there is no level of safe weight gain, strategies for primary
prevention are urgently needed. Even though excess weight is in
principle a matter of energy balance, susceptibility to weight gain
appears to be determined by a complex interaction between
genetic, environmental, socio-economic, cultural and behavioral
factors [9]. Much emphasis has traditionally been devoted to the
identification of single risk factors that etiologically relate to weight
gain or the development of overweight/obesity; however, under-
standing the combined effects of these risk factors and/or their
marker variables is fundamental in order to identify priorities for
public health efforts. Additionally, in view of limited resources,
prevention efforts may be targeted specifically to those individuals
who are at highest risk for gaining substantial amounts of weight
and hence associated health risks, and thus — in theory — might
benefit most from prevention programs.

In recent years, prediction models to identify high-risk
individuals have been proposed for several obesity-related diseases,
including cardiovascular disease [10], type 2 diabetes [11], and
cancer [12-14]. In the present study, we therefore aimed to
develop a risk score predicting risk of substantial weight gain
(SWG) within the following 5 years among primarily non-obese
adults. Because this objective was addressed using data of the
multi-center European Prospective Investigation into Cancer and
Nutrition (EPIC), the present study additionally offered the unique
opportunity to simultaneously investigate the suitability of one
universal, trans-european prediction model for SWG.

PLOS ONE | www.plosone.org

Materials and Methods

Study population

The EPIC study is a multi-center prospective study designed
primarily to investigate the relationship between diet, lifestyle and
genetic factors and incidence of cancer [15,16]. Briefly, between
1992 and 2000, a total of 521°330 men and women, aged 25—
70 years, were recruited in 23 centers and regions in 10 European
countries: Denmark, Sweden, Norway, the United Kingdom,
France, Germany, The Netherlands, Spain, Italy and Greece. In
the majority of centers, participants were invited from the general
population. Exceptions were the French cohort (based on
members of the health insurance for teachers), the cohorts in
Utrecht (The Netherlands) and Florence (Italy), which are based
on women attending local population-based breast cancer
screening programmes, components of the Italian and Spanish
cohorts (including members of local blood donor associations), and
most of the Oxford (UK) cohort (comprising health-conscious
subjects, mainly vegetarians). In France, Norway, Utrecht, and
Naples only women were recruited. Approval for this study was
obtained from the ethical review boards of the International
Agency for Research on Cancer (IARC) and from all local
institutions where subjects had been recruited for the EPIC study:
the Florence Health Authority Ethical Committee (Italy); the
Norfolk Local Research Ethics Committee (UK); the Medical
Ethics Committee of the Netherlands Organization for Applied
Scientific Research (the Netherlands); the Ethics Committee of the
Medical Association of the State of Brandenburg (Germany); and
the Danish National Committee on Biomedical Research Ethics
(Denmark). Written informed consent was obtained from all
participants before joining EPIC study.

The prediction model was derived based on data from 6 EPIC
centers from 5 countries which participated in the Diet, Obesity
and Genes (DiOGenes) project [17], namely: the United Kingdom
(UK-Norfolk), the Netherlands [(NL-Doetinchem and NL-Am-
sterdam/Maastricht); two separate centers because of differences
in follow-up assessment of anthropometry], Italy (I'T-Florence),
Germany (GER-Potsdam), and Denmark (DK-Copenhagen/
Aarhus). Subsequently, this model was externally validated in
eight remaining EPIC centers.

From the 146 543 initial participants in the derivation sample
[17], data of 53 758 participants were finally used to guide model
development (for flow-chart of exclusions see Figure 1). Briefly,
exclusions refer to pregnancy and individuals with an extreme
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Derivation Validation
sample sample
Baseline population 146,543 521,448 (EPIC total,
including centers of
the derivation
sample)
Cause of exclusion
No follow-up data’
102,346 393,533
Common exclusion criteria in EPIC
(Pregnant?, no dietary data®, EI/EE ratio®,
no anthropometry®, outliers or unrealistic
combinations®, unrealistic annual change
in weight or waist’)
97,944 367,509
Prevalent disease at baseline® ¢ ¢
89,432 336,635
Baseline age <35 or follow-up age 265
years
60,547 257,314
Obese at baseline (BMI230) ¢ ¢
53,758 225,972
Missing in any covariate® ¢
183,701
Participant of any center included in the ¢
derivation set to have no overlap between
sets
130,446

Figure 1. Flow diagram of participants excluded from the
present study. 'No follow-up questionnaire (e.g. due to death before
follow-up body weight assessment, not yet approached for follow-up
body weight assessment, emigration or non-response to invitation).
2Pregnant at baseline or follow-up. 310% missing items on FFQ. *Ratio
of energy intake (El) to energy expenditure (EE) estimated from
predicted resting energy expenditure. *Missing data on baseline or
follow-up weight, waist or height, missing follow-up time. ®Baseline
height<130 cm, BMI<16 kg/mz, 0<waist <40 cm, waist>160 cm,
follow-up weight>700 kg. Combination of waist<60 cm and
BMI>25 kg/m?. “Annual weight change>5 kg (either direction) or
annual waist change>7 cm (either direction). 8 Baseline cancer,
diabetes or cardiovascular disease.’ In contrast to the derivation of
the model where it is important to obtain unbiased estimates of relative
risk, we think only original data should be used in the validation sample
and we therefore excluded individuals with missing values.
doi:10.1371/journal.pone.0067429.g001

ratio between energy intake and energy requirement, to partici-
pants who provided no or unrealistic information on anthropo-
metrics at either baseline or follow-up or who reported prevalent
CVD, diabetes or cancer at baseline. Additionally, to maintain the
same age range in all centers and to minimize confounding from
changes in body composition and shape occurring in older age
[18] or from undiagnosed chronic disease, the present study was
restricted to participants aged =35 years at baseline and
<65 years at time of the second weight assessment. Finally, the
present study was restricted to non-obese individuals (BMI<<30) at
baseline. After applying the same exclusions and further excluding
individuals with missing data in any candidate predictor, the final
validation sample consisted of 130 446 men and women,
stemming from nine EPIC centers not included in the derivation
sample. The centers of Norway and Varese (Italy) were excluded
from the validation sample due to missing information on physical
activity.

PLOS ONE | www.plosone.org
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Dietary and lifestyle assessment

Dietary intake was assessed at baseline by means of validated
country-specific dietary questionnaires that were designed to
capture local dietary habits and to provide high compliance
[16,19]. Participants were asked to report their average consump-
tion of each food item over the past year. Food intake (gram/day,
g/d) was calculated by multiplying the frequency of intake by
portion size. The validity and reproducibility of the dietary
questionnaires have been shown to be generally good [19,20].
Information on lifestyle factors was collected by questionnaire
and/or face-to-face interview at baseline, including questions on
highest level of education, occupational physical activity, sports
activity, consumption of alcoholic beverages, and tobacco smoking

[16].

Assessment of anthropometric measures

For each individual, two measures of body weight were
available: one at baseline and one at follow-up. In most centers,
height and weight were measured at baseline by trained personnel
according to standardized procedures [21]. Body weight was
corrected to reduce heterogeneity due to protocol differences in
clothing worn during measurement by subtracting 1.5 kg in those
individuals who were normally dressed and 1kg in those
participants who wore light clothing [21]. In the centers of France
and Norway only self-reported anthropometric values were
collected. For part of the Oxford center, linear regression models
were used to predict sex- and age-specific values from individuals
with both measured and self-reported weight (referred to as
Oxford prediction equations) [21]. At follow-up, body weight was
measured by trained staff in UK-Norfolk and NL-Doetinchem
following the same protocol as during baseline measurements,
while participants in all other centers measured their weight at
home according to guidance provided. The accuracy of these self-
reported weights was improved by using the Oxford prediction
equations.

Statistical Approaches
Definition of case status. SWG was defined as gaining
=10% of baseline weight during follow-up. This threshold was
chosen for two reasons. First, it was considered major weight gain
in relation to the time horizon of the prediction comprising
5 years. Second, it seems high enough to exclude random
variation in body weight while simultaneously allowing for some
weight gain as natural part of the aging process. Follow-up time,
1e. time between first and second weight assessment, varied
considerably between individuals in EPIC (range: 1.2-12.4 years).
To best account for these varying follow-up times and to
additionally consider the velocity of weight gain, we used methods
of survival analysis for statistical analysis. Thus, individual follow-
up times (either time to SWG or difference between first and
second weight assessment) were used in the proportional hazards
model to estimate relative risks, and the results were combined
with the baseline survivor function estimated at t=J5 years to
provide estimates of 5-year absolute risk as described in detail
below. Hence, each participant was followed for incidence of
SWG from study entry to the second assessment of body weight
(end of follow-up). Those subjects not experiencing SWG during
follow-up were censored at time of their second weight assessment
and participants experiencing SWG constituted the set of cases.
Because it was only possible to determine case status at the time of
the second weight assessment, the exact time needed to experience
SWG was unknown for the cases. We therefore estimated the time
theoretically needed for the cases to cross the threshold of =10%
baseline-based weight gain by assuming linear weight gain.
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Potential predictor variables

Selection of candidate predictors was primarily based on
observed associations with weight change in previous analyses of
EPIC and on reported or hypothesized associations in the
literature. A total of 21 characteristics were included in the
prediction model as candidate predictors. Specifically, we selected
standard socio-demographic characteristics, including age, sex,
and education, as well as lifestyle factors, namely physical activity
(occupational and sports activity), alcohol consumption [22], and
smoking status. In view of practical feasibility, selection of dietary
factors was restricted to main food items. In accordance with
previous EPIC analyses, intake of fruits and vegetables [23], meat
[24], bread as indicator of dietary fiber intake [25], complemented
by consumption of fish, vegetable oil and dairy products as
components of the Mediterranean diet [26], were selected as
potential predictors. Additionally, we included intake of butter and
margarine, chocolate, cake and cookies, and soft drinks as
candidate predictors due to their high energy density and results
on health from previous studies [27-29].

Risk prediction model building

Candidate predictors were entered into a proportional hazards
model in a stepwise forward model selection process with 0.1 as
pre-specified p-values for entering and staying in the model as
recommended by Parmer et al. [30]. Interaction terms were not
included to keep the model parsimonious and easy to use. To
account for heterogeneity between centers due to differences in
questionnaire design, follow-up procedures, and other non-
measured center effects, stepwise model selection was conducted
separately by center. Variables statistically significantly associated
with SWG in the same direction in at least two centers and not in
the opposite direction were retained as predictors for the final
model. Center-specific regression coefficients were obtained for all
retained predictor variables by fitting them into a common center-
specific model and random-effects meta-analysis was used to
calculate combined estimates. Score points (weights) for each
predictor were assigned based on the value of the corresponding
pooled B-coefficients multiplied by 100 and rounded to two
decimal places. For each individual, a risk score was computed as a
linear combination of the weighted predictors. The score was
rescaled by adding 500 to avoid negative values in descriptive
analyses. The probability of experiencing SWG within the
following 5 years was finally calculated by inserting the individual
risk score points into the survival function obtained from the
proportional hazards model. For this, the baseline survival
probability at 5 years, i.e. the probability of not developing
SWG within 5 years, was estimated separately by center using the
average value of each predictor over all individuals in the
derivation sample. These center-specific values were again pooled
using random-effects meta-analysis.

Because missing data may be associated with bias in estimates of
regression coeflicients which were used for constructing the risk
score, we used multiple imputation techniques in the derivation
population [31,32]. Briefly, in multiple imputation missing data
are replaced by several plausible values sampled from their
predictive distribution based on the observed data by creating
multiple copies of the original data set. Standard statistical
methods are being performed in each imputation data set and
the results are finally combined by appropriately accounting for
the uncertainty about missing data [32]. We used 20 imputation
cycles and selection of predictors was performed for each center
and separately by imputation data set. As described by Vergouewe
et al. [33], predictors that were significantly associated with SWG
in at least 50% of the imputed data sets in each center were
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retained as center-specific predictors from which the final set of
predictors was selected as described above.

Evaluation of the risk score’s predictive performance

The predictive performance of the risk score was evaluated by
means of discrimination and calibration in the derivation sample
(internal validation) and in the independent EPIC centers (external
validation). Discrimination was quantified by the c¢ index
developed for survival analysis which describes the model’s ability
to distinguish between persons with longer event-free survival and
those with shorter event-free survival within a given time horizon
[34,35]. The ¢ index ranges from a minimum of 0.5 (no
discriminatory accuracy) to a theoretical maximum of 1.0 (perfect
discrimination).

To define an appropriate cut-oft point for the continuous risk
score for discrimination between high-risk and low-risk individu-
als, the Youden’s index, a simple measure for which sensitivity and
specificity are maximized across a range of possible cut-off values,
was used [36,37]. It is defined as J = sensitivity + specificity —1 and
ranges from 0 to 1, with 1 implying perfect separation of diseased
and non-diseased by the continuous marker [37].

Calibration, as a measure of how reliable the predictions are,
was evaluated by using a modified version of the Hosmer-
Lemeshow-Test for survival analysis introduced by D’Agostino
and Nam [34]. For this purpose, the observed probabilities of
CRC at 5 years estimated by the Kaplan-Meier approach were
compared with the average predicted probabilities across tenths of
predicted risk which was also plotted for visualization.

Statistical analyses were performed using SAS (Statistical
Analysis System, version 9.2; SAS Institute Inc, Cary, NC).

Results

Among 53 758 men and women in the derivation population, a
total of 7°431 individuals gained =10% of baseline weight during
a median follow-up of 5.4 years, amounting to 329°685 person-
years (PY). In the validation sample, 14°622 participants
experienced SWG during a median follow-up of 3.7 years
(525°749 PY). General characteristics for each center of the
derivation sample and the total validation population are
presented in Table 1. In the derivation population, mean age
at baseline was 50.2 years. Mean follow-up time differed
considerably between centers, ranging from 3.6 years in UK-
Norfolk to 8.8 years in IT-Florence. On average, individuals
gained 3.8% of their baseline weight during follow-up, represent-
ing a mean annual proportion of baseline-based weight gain of
0.6%. This implies that individuals would need on average
16.7 years to gain 10% of their baseline weight. Due to the all-
women centers of Irance, It-Naples and NL-Utrecht, the
proportion of men was substantially lower in the validation
sample in comparison to the derivation set (21.5 vs. 41.2%). Mean
annual weight gain was higher in the validation than in the
derivation sample (521 g/y vs. 395 g/y) which may be explained
by the shorter duration of follow-up in the validation sample and
by the fact that weight fluctuations are higher over shorter periods
of time.

The pooled estimates of relative risk for the association of
included predictors with risk of SWG and corresponding score
points assigned to each predictor are presented in Table 2. The
pooled estimate of the background probability of avoiding SWG
(analogous to ‘survival’) at 5 years estimated at average values of
the predictors was 0.9331, implying that under average conditions
about 93% of the population will stay free of SWG while 7% will
experience SWG  within 5 years. For each participant, the
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Risk Score to Predict Substantial Weight Gain

Table 2. Combined estimates of relative risk for the association of retained predictors with substantial weight gain.*

Predictor B Hazard Ratio (95% CI) * Points allocated

Age (per year) —0.03498 0.97 (0.96-0.97) —3.50

Sex (female vs. male) 0.26477 1.30 (1.02-1.66) 26.48

Baseline weight (per kg) —0.01719 0.98 (0.98-0.99) -1.72

Technical school (vs. none) —0.14118 0.87 (0.81-0.93) —14.12

Secondary school (vs. none) —0.13418 0.87 (0.76-1.004) —13.42

University (vs. none) —0.25475 0.78 (0.70-0.86) —25.48

Current smoking (vs. current non-smoking) 0.39101 1.48 (1.32-1.65) 39.10

Sports (per h/week) —0.03939 0.96 (0.94-0.98) —3.94

No alcohol (vs. >0—<6g/d) 0.12682 1.14 (1.01-1.28) 12.68

Alcohol >6 to =18g/d (vs. >0-<6g/d) —0.20401 0.82 (0.74-0.90) —20.40

Alcohol >18 to =30g/d (vs. >0-<6g/d) —0.23064 0.79 (0.66-0.95) —23.06

Alcohol >30g/d (vs. >0—<6g/d) —0.21749 0.80 (0.67-0.96) —21.75

Red and processed meat (per 100g/d) 0.14967 1.16 (1.09-1.24) 14.97

Poultry (per 50g/d) 0.13675 1.15 (1.05-1.25) 13.68

Fish 100g/d) 0.16171 1.18 (0.996-1.39) 16.17

Bread (per 50g/d) —0.03779 0.96 (0.94-0.99) —3.78

Cake and biscuits (per 50g/d) —0.09724 0.91 (0.84-0.98) —9.72

Soft drinks (per 250g/d) 0.08404 1.09 (1.03-1.14) 8.40

*Predictors were identified using center-specific stepwise Cox regression in the derivation sample. Those factors being significantly (two-sided P-value <0.05) related to
substantial weight gain in =2 centers were retained for the final model. Center-specific effects for the retained predictors were pooled using random-effects meta-
analysis. These combined estimates of relative risk are presented in the table. For continuous variables, relative risks per increase of a defined portion size are presented.
For categorical variables, comparison with the reference group is shown. Substantial weight gain was defined as gaining =10% of baseline weight during the
individual’s follow-up.

doi:10.1371/journal.pone.0067429.t002

probability of SWG during the next 5 years [P(SWG,5y)] was P(SWG)5y)i:1_0.9331(5},)6’“3((1?51'*205-91)/ 100)
calculated by inserting the individual’s risk score into the following
survival function while correcting for the averages of the
participants’ risk factors:
The probability of experiencing SWG within the following
5 years for 100, 150, 200, 250, 300, 350, and 400 score points was
24, 3.9, 6.3, 10.2, 16.3, 25.4, and 38.3%, respectively. The

Table 3. Sensitivity, specificity, positive and negative predictive value for various cut-off points of the risk score in the derivation
sample.

Score Percentage of the

points population Sensitivity (%) Specificity (%) Youden's index (J) PPV (%) NPV (%)

=100 99.5 100.0 0.8 0.035 6.7 99.8

=125 96.3 99.4 4.1 0.090 6.9 99.0

=150 87.8 96.0 13.0 0.150 7.3 97.8

=175 74.2 87.9 27.0 0.199 7.9 96.9

=200 55.1 735 46.4 0.208 8.9 96.1

=225 34.2 522 67.3 0.195 10.2 95.2

=250 17.8 31.2 833 0.145 11.7 94.4

=275 74 15.2 933 0.085 139 93.9

=300 24 6.0 97.8 0.038 16.4 93.6

=325 0.5 1.7 99.6 0.013 13.6 934

PPV = positive predictive value; NPV = negative predictive value. Youden’s index was calculated according to the following formula: J = (sensitivity (%) + specificity
(%) -100)/100.

doi:10.1371/journal.pone.0067429.t003
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Figure 2. Calibration plot showing observed proportion of
cases across tenths of predicted risk in the a) derivation
sample and b) validation sample. Corresponding range of points
for tenths in the derivation sample were <145, 145-<165, 165-<181,
181-<<194, 194-<206, 206-<<218, 218-<<231, 231-<<246, 246-<267,
and =267. P for calibration =0.02. Corresponding range of points for
tenths in the validation sample <162, 162-<185, 185-<<200, 200-
<212, 212-<<223, 223-<234, 234-<246, 246-<259, 259-<280, and
=280. P for calibration =<001.
doi:10.1371/journal.pone.0067429.g002

discriminatory ability of the model measured by the ¢ index (95%
CI) was 0.64 (0.63-0.65) in the derivation sample. This means that
individuals who experienced SWG during 5 years had higher
predicted risks than persons not experiencing SWG in 64% of the
cases. The discriminatory accuracy showed some variation across
centers, with ¢ indexes (95% CI) ranging from 0.64 (0.62-0.65) in
DK-Copenhagen/Aarhus to 0.71 (0.68-0.75) in NL-Amsterdam/
Maastricht. The overall discriminatory accuracy in the validation
sample was 0.57 (0.56-0.58). Similarly to the observation for
development sample, it differed across single centers, varying

PLOS ONE | www.plosone.org
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between 0.56 (0.55-0.57) in France and 0.67 (0.64-0.71) in I'T-
Naples. In addition to between-center differences, the score
generally performed better among men than women (Table 3),
while the additional inclusion of menopausal status at recruitment
did not affect the observed discriminatory accuracy in women
across centers (data not shown).

Information on sensitivity, specificity and predictive values
according to various cut-off points of the score in the derivation
sample suggested a threshold of =200 points as the optimal cut-off
value to define high-risk individuals (Youden’s index, J=0.208)
(Table 3). This threshold captured 74% of the cases who
experienced SWG. Furthermore, 46% of the persons who did not
experience SWG had a score <200. The corresponding positive
and negative predictive values were 9% and 96%, respectively.

The estimated probability of experiencing SWG during 5 years
agreed very well with the observed proportion of incident cases
across tenths of predicted risk in the derivation sample although
there was a slight overestimation of risk in the highest and lowest
tenths of risk (Figure 2a, p=0.02). In the total validation
population, the score was also able to adequately quantify absolute
risk, though comparison of observed and predicted risk implied a
slight overestimation of risk in the lower and upper range of the
score values and a slight underestimation in the middle range of
the score (Figure 2b, p<<.001). Inspection of calibration plots for
each validation center indicated good calibration for the centers of
Greece, UK-Health Conscious, UK-General Population and NL-
Utrecht and adequate calibration in France and SWE-Malmoe
(data not shown). In GER-Heidelberg we observed a systematic
overestimation of risk, while in Spain calibration was poor, but no
clear pattern of miscalibration was found.

The use of center—specific weights led to a marked improvement
in discriminatory accuracy in the validation centers of France,
Spain, Greece and GER-Heidelberg (Table 4). When center-
specific risk scores were developed (based on center-specific
selection strategy), model performance remained essentially
unchanged in comparison to the re-estimated model for all
centers. The only exception was France for which discrimination
improved from 0.61 (0.60-0.62) to 0.65 (0.63-0.67). Calibration
generally improved or remained unchanged in the re-estimated
model across validation centers (data not shown). Exceptions were
the centers of GER-Heidelberg where risk remained continuously
overestimated and Spain showing over- and underestimations of
risk. Even in center-specific models, agreement between observed
and predicted risk did not improve for those two centers.

Discussion

In this large multi-center prospective study of middle-aged
European men and women, a risk score based on numerous easily
assessable socio-demographic, dietary and lifestyle factors was
found to exhibit moderate discriminatory accuracy and ability to
accurately predict risk of experiencing SWG during the following
5 years.

Major strengths of the present study are its prospective design,
its large sample size, the availability of information on a large
number of risk factors for weight gain, the use of multiple
imputation techniques to avoid potential bias in derivation of the
score and the validation of the risk score in several independent,
culturally diverse study populations.

Some methodological limitations need to be considered. At
follow-up, most participants provided self-measured weight.
However, we tried to correct for potential underreporting by
applying prediction equations [21]. Further, only two measure-
ments of body weight were available for each individual and
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specific models in the derivation and validation sample.

Risk Score to Predict Substantial Weight Gain

Table 4. Discriminatory ability of the overall risk score across centers compared to the re-estimated overall model and center-

Overall model

Re-estimated overall model * Center-specific prediction models

aROC (95% Cl)

aROC (95% Cl) aROC (95% ClI)

Derivation sample
Total
UK-Norfolk

0.64 (0.63-0.65)
0.66 (0.63-0.68)

NL-Doetinchem 0.65 (0.62-0.68)

NL-Amsterdam/Maastricht 0.71 (0.68-0.75)
IT-Florence 0.65 (0.62-0.68)
GER-Potsdam 0.67 (0.65-0.69)

DK-Copenhagen/Aarhus 0.64 (0.62-0.65)

Validation Sample

Total 0.57 (0.56-0.58)
France 0.56 (0.55-0.57)
IT-Naples 0.67 (0.64-0.71)
Spain 0.60 (0.59-0.62)
UK-GP 0.63 (0.60-0.66)
UK-HC 0.58 (0.57-0.59)
NL-Utrecht 0.61 (0.60-0.63)
Greece 0.60 (0.58-0.62)
GER-Heidelberg 0.66 (0.64-0.69)
SWE-Malméo 0.63 (0.62-0.65)

0.67 (0.65-0.70) 0.68 (0.66-0.70)
0.67 (0.64-0.70) 0.66 (0.63-0.69)
0.66 (0.62-0.70) 0.71 (0.67-0.74)
0.59 (0.55-0.62) 0.67 (0.64-0.70)
0.62 (0.60-0.64) 0.67 (0.65-0.69)

0.52 (0.51-0.54) 0.66 (0.64-0.67)

0.61 (0.60-0.62) 0.65 (0.63-0.67)
0.67 (0.64-0.71) 0.67 (0.63-0.70)
0.64 (0.62-0.65) 0.64 (0.63-0.66)
0.65 (0.62-0.68) 0.64 (0.61-0.67)
0.60 (0.59-0.61) 0.61 (0.60-0.62)
0.62 (0.61-0.64) 0.62 (0.60-0.64)
0.65 (0.63-0.67) 0.65 (0.63-0.67)
0.70 (0.67-0.72) 0.70 (0.68-0.73)
0.65 (0.63-0.66) 0.65 (0.63-0.66)

fIncluding only center-specific predictor variables.
doi:10.1371/journal.pone.0067429.t004

weight gain was considered linear, which is a strong assumption
about the course of weight gain. Weight gain is reversible, and it is
well known that body weight tends to fluctuate over time [38],
which may lead to repeated cycles of weight loss and recovery
[39,40] that are not reflected in a two-point-in-time measurement.
Fluctuations or non-linear weight gain in general may have
resulted in misclassification of cases and non-cases and additionally
in misspecification of the cases’ time to event, which might have
limited the performance of the obtained risk score model.
Nevertheless, recent findings from the EPIC-Potsdam study based
on 5 measurements of weight suggest that weight gain can be
reasonably well approximated by a straight line over a follow-up
period of 8 years on the population-level [41].

Directions of associations with SWG for some predictors in our
model may be difficult to explain on a causal basis. It has to be
kept in mind though that, in contrast to etiological studies trying to
explain the cause of a disease, a prediction model aims to develop
a good predictor to enable accurate predictions of the outcome
[42]. Thus, predictors in a prediction model do not necessarily
need to be well-established etiological factors with a strong
biological background. They could also be a marker of other
lifestyle factors which influence mechanisms that are implicated in
the regulation of body weight. Thus, caution may be warranted to
avoid misinterpretation of the identified predictors in terms of
driving weight gain. Regarding the positive association of baseline
smoking with SWG, for example, we explored in a sub-analysis
that this relation was driven by the strong weight-increasing effect
of smoking cessation during follow-up, while continuous smoking
was not related to a higher risk of SWG compared to non-
smoking. This finding may be kept in mind when interpreting the

PLOS ONE | www.plosone.org

*Using center-specific regression coefficients for all predictor variables included in the overall model.

results and emphasizes that weight management is warranted
among individuals who attempt to quit smoking. Nevertheless,
because future changes in smoking habits are unknown at the time
of prediction, only baseline variables were included in the
prediction model.

The discriminatory ability of the score was generally low to
modest which may be explained by lack of information on some
predictors in this analysis. Specifically, weight loss attempts [43],
weight cycling [44,45] and large short-term weight changes
[38,45] have been shown to determine future weight change.
However, to obtain this type of information, a closer contact
between participants and study personnel is required and
assessment of this information in all centers of such a large study
is challenging. Also, despite recent weight history may predict
weight change in the near future, it is currently unknown whether
this information is a strong factor to predict weight change over
longer periods, e.g. 5 years.

In the field of chronic diseases, hopes have been raised that
information on common genetic markers may be used to improve
discriminatory accuracy beyond non-invasive factors and bio-
chemical measures [11,46]. The predictive ability of genetic
factors, however, currently appears limited [11,46]. For example,
the addition of seven SNP’s to the breast cancer model developed
by Gail et al. only modestly improved discriminatory accuracy
[46]. Similarly, the additional inclusion of 20 diabetogenic SNP’s
did barely improve discrimination of incident type 2 diabetes
beyond lifestyle factors and metabolic markers in the EPIC-
Potsdam cohort [47]. In respect to obesity, the EPIC-Norfolk
study reported that 12 obesity-susceptible loci explained 0.9% of
variation in BMI, with a ¢ index of 0.57 for prediction of obesity
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[48]. Thus, despite overwhelming statistical significances and
repeated replications, the explained variance and the predictive
value of the currently identified obesity-susceptibility loci is low
[49] and a considerable improvement of the model’s accuracy due
to inclusion of genetic markers appears unlikely. Additionally, it
should be noted that very large independent relative risks are
needed for a single predictor to meaningfully improve discrimi-
nation [46].

The discriminatory ability of the present risk score was reduced
in the external validation sample, an observation that is also
commonly reported for external validation studies in the field of
chronic diseases [10,11]. Several reasons may be thought of to
explain this phenomenon. First, overfitting of the model in the
derivation sample may be responsible for the poorer performance
in the validation sample; however, given that the sample size of the
development sample was large and that the amount of optimism
decreases with larger sample size [50], this explanation appears
unlikely. Second, lower predictive accuracy in external popula-
tions may be due to differences between the derivation and
validation population, especially with regard to methods of data
collection, coding of predictors and endpoint, and the availability
of all variables used to construct the score [50]. However, given
the standardised methodology followed in EPIC, this explanation
also seems rather unlikely. To account for the fact that some
validation centers were sampled from specific groups rather than
the general population, e.g. France, IT-Naples, NL-Utrecht and
UK-Oxford, which may affect the model’s performance, we
excluded those centers in sensitivity analyses. Nevertheless, the
overall discriminatory accuracy did barely change (0.59 (0.58—
0.60)). Interestingly, apart from the overall difference in predictive
ability between derivation and validation sample, there was
considerable variation in discrimination across single cohorts of
the derivation and validation sample, respectively. Specifically,
discriminatory power ranged from 0.64 in UK-Cop./Aarhus to
0.76 in NL-AmMa in the derivation set and varied between 0.56
(France) and 0.67 in I'T-Naples in the validation set. It is further
noteworthy that a comparable predictive accuracy was exhibited
among centers of similar socio-cultural background in the
derivation and validation sample (e.g. in Denmark and Sweden,
in Potsdam and Heidelberg). This suggests the prediction of weight
gain to depend on underlying socio-cultural factors that were not
similarly represented by the predictors included in the present
model across the trans-European study populations.

The risk score adequately estimated risk in the total validation
sample, while in some of the centers calibration was poor. It has
been suggested that adjusting or re-calibration of the score to the
local circumstances in external populations may increase the
predictive performance. In the present study, re-estimation of
regression coefficients slightly improved calibration in most
validation centers except for GER-Heidelberg and Spain in which
calibration remained poor even in center-specific models. An
explanation for this finding may be the considerably shorter
follow-up time in the two centers. While our prediction model was
tailored to the time period of 5 years, average observed follow-up
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times in GER-Heidelberg and Spain were 2.1 and 3.3 years,
respectively. Unfortunately, we did not have access to more recent
data to further investigate this issue. Discriminatory ability
markedly improved in four of the nine validation centers in the
re-estimated model, whereas center-specific models did generally
not lead to further improvements in discriminatory ability. The
only exception was the center of France for which a population-
specific model yielded a ¢ index of 0.65 (0.63-0.67) compared to
0.61 (0.60-0.62) in the re-estimated model and 0.56 (0.55-0.57) in
the overall model.

Despite the observed improvements in discrimination using re-
estimation of parameters, the performance measures were
generally moderate. Although we cannot rule out the possibility
that important, maybe population-specific, predictors may not
have been assessed in this study, our findings based on a wide
range of predictors and several culturally diverse study populations
rather convey the impression that the predictability of weight gain
based on data from large population-based studies might be
limited in general.

Test characteristics of the risk score also challenge its practical
implementation into prevention programs. The optimal cut-off
value to define high-risk individuals was =200 points and implies
that preventive actions will be indicated for a substantial part of
the population (55%). Of these high-risk individuals, 9% will
indeed experience SWG within 5 years. On the other hand, 96%
of the individuals with a score <200 will indeed not develop SWG.
It is of note that the optimal cut-off point was exemplarily defined
using the Youden’s index and for its calculation, sensitivity and
specificity are considered as equally important. This however
might not hold true in practice. When implementing a risk score in
practice, designation of a cut-off value should depend on the
importance attached to false-positives and false-negatives account-
ing for misclassification costs.

In conclusion, the present risk score was able to confidently
exclude a large proportion of individuals from being at any
appreciable risk to develop SWG within the next 5 years. Future
studies, however, may attempt to further refine the positive
prediction of the score by for example considering additional
predictors both in general and on the national level.
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