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Test Overlay in an Emerging Software Product Line —
An Industrial Case Study

Emelie Engstrom and Per Runeson

Abstract

Context: In large software organizations with a product line development
approach, system test planning and scope selection is a complex task. Due to
repeated testing: across different testing levels, over time (test for regression)
as well as of different variants, the risk of redundant testing is large as well as
the risk of overlooking important tests, hidden by the huge amount of possible
tests. Aims: This study assesses the amount and type of overlaid manual test-
ing across feature, integration and system test in such context, it explores the
causes of potential redundancy and elaborates on how to provide decision sup-
port in terms of visualization for the purpose of avoiding redundancy. Method:
An in-depth case study was launched including both qualitative and quantitative
observations. Results: A high degree of test overlay is identified originating
from distributed test responsibilities, poor documentation and structure of test
cases, parallel work and insufficient delta analysis. The amount of test overlay
depends on which level of abstraction is studied. Conclusions: Avoiding re-
dundancy requires tool support, e.g. visualization of test design coverage, test
execution progress, priorities of coverage items as well as visualized priorities of
variants to support test case selection.

1. Introduction

In large software organizations with a product line development approach,
selective testing of product variants is necessary in order to keep pace with the
available time to market for new products. The number of testing combinations
in such variability-intensive contexts is extensive. Testing is repeated across
three dimensions [15]: 1) the traditional testing at different levels of abstraction
(unit, integration, system etc.), 2) regression testing as the system evolves over
time, and 3) testing over different product variants, sharing a common code
base, see Figure 1. This entails a high risk of redundancy in the testing and
also the reverse, that important aspects of the differences between the tested
versions and variants are overlooked. One of the major challenges in testing a
software product line (SPL) is the balancing of testing efforts across these three
dimensions [7].

To handle the combinatorial explosion in software product line development,
regression testing approaches are suggested to be applied not only to versions
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Figure 1: Testing in a product line context is repeated across three dimensions [15]: testing at
different levels (e.g. unit tests, integration tests and system tests), testing across versions (e.g.
the continuous software updates), testing of multiple variants (e.g. adaptations to different
hardwares). Testing at different levels covers the system from different perspectives (e.g.
expectations, different types and detail levels of requirements, design or code)

but also to variants [7]. Regression test selection strategies aim at optimizing
the testing after a change by focusing the testing on parts that may have been
affected by a change. We study the amount of test overlay (i.e. multiple tests
of the same entity) and the extent to which it is redundant (i.e. one could be
replaced by the other) in a large-scale real life software product line development
context.

An in-depth case study was launched including both qualitative and quan-
titative observations. Recent systematic literature reviews on regression testing
have indicated the lack of industrial case studies [9, 22]. Most studies are done in
the small, and hence questions of scalability and usability are left unanswered [9].
We aimed to bridge the gap between research and practice, for which a better
understanding of the real-life context is needed, and thus we launched a case
study [16].

The studied case is the testing in the case company’s development of Android
embedded devices. For the in-depth analysis, the testing of one function is
studied. The function exists in several product variants, depends on hardware
variants, evolves in different versions over time, and is adapted to continuous
upgrades of the Android platform. The development organization is complex,
involving a globally distributed development, and the market situation involves
delivery of tailored product variants to customers, based on varying market and
country specifications. From a business perspective a product line strategy is
in place. However, the technical and methodological benefits of the systematic



reuse are not yet fully exploited, hence we call it an emerging product line.

The focus in this study is on manual testing of functional and quality re-
quirements, since this is the most personnel resource demanding testing. Manual
testing is characterized by a higher degree of creativity for the tester and less
detailed documentation, although some general principles on test redundancy
are shared with automated testing. Relations between different test executions
and implicit testing goals are identified and expressed in terms of coverage items
(Covl:s), capturing different levels of abstraction as well as different purposes
of tests. For the assessment of coverage and overlay, a method for visualization
of test execution progress is proposed and illustrated.

To our knowledge, no exploratory case studies of test overlay in a variability-
intensive context have been reported earlier. However, the complexity of the
issue is well known and is discussed from many different perspectives: software
product line testing [7], testing incrementally evolving software [11], testing
of component based systems [21], testing of web based applications [2] and of
service oriented architectures [4], as well as from a configuration management
perspective [3, 19].

The article is organized as follows. Section 2 describes the design of the
case study, including the theoretical framework, the case study context and
methods used. Analysis criteria for the quantitative assessment of overlay are
introduced in Section 3 and the quantitative results are presented in section 4.
Quantitative and qualitative results are analyzed in Section 5 (Existence and
causes of redundancy) and Section 6 (Visualization). Section 7 concludes the
findings of the study.

2. Case study design

The design of this case study is outlined below in line with the guidelines by
Runeson et al. [16], and contains accordingly:

e the rationale for the study,

the objectives and research questions,

e the case study context,

e a description of the case and its units of analysis,
e the theoretical frame of reference for the study

e propositions

e concepts studied and related measures

e procedures for the case study

e methods for data collection and analysis, and

e issues related to the validity of the study.

These items are presented in the following subsections.



2.1. Rationale

This work continues our research on regression testing and software product
line testing. We have reviewed the research on regression test selection [9] and
product line testing [7], conducted a survey on industrial practices [6], and
applied regression test selection procedures in-the-small [10, 8].

Several challenges for testing a software product line have been brought up
by researchers, one of the most urgent is how to handle the huge amount of
possible tests [7]. A common proposal for how to support test planning and test
selection in such variability-intensive context, is the application of regression
testing strategies to variants of the software, as well as to versions [18].

Even though regression testing has been researched to a large extent [9, 22],
the application of research outcomes to software engineering practice is not
easily done. The gap between research and practice is large, the evidence base
is inconsistent and most techniques for regression test selection are evaluated
off-line in small scale experiments, hence questions of scalability and usability
are not researched [9]. In order to enable bridging the gap between research and
practice, a better understanding of the real-life context is needed, which is the
motivation for our choice of the case study methodology.

Our focus on test overlay is motivated by the underlying assumptions of
most regression testing techniques, i.e. it is possible to predict which test cases
are most likely to trigger failures that help detecting faults based on available
information on, for example, changes and test execution history. The regression
tests focus on changed parts and potential side effects, assuming that previous
test results are only valid for reuse if not related to these categories. This implies
that a subset of the test cases is redundant, and that testing would be more
efficient if guided by an analysis of the differences between the system under
test and the previously tested version or variant of the system.

2.2. Objective

Our objective is to investigate the phenomenon of “test overlay” in a large-
scale product line context, for the purpose of gaining a better understanding of
the potential for selective testing approaches in this context and identification
of how to guide test planning and selection based on regression testing concepts.
Three main questions are investigated:

RQ1 How much testing in a variability-intensive context is overlaid, and which
is redundant? — Testing is repeated across abstraction levels, evolution
over time (versions) and over space (variants) which could imply that
multiple testing is done on the same items. How much of the overlaid
testing is really redundant?

RQ2 When and why does overlaid testing appear? — If overlaid testing exist,
which factors are causing the overlaid testing?

RQ3 How can visualization support test scoping decisions? — We assume that
visualization is a powerful tool when handling large volumes of data, see
for example Zaidman et al. [23]. Thus it is relevant to study prerequisites
for visualization in this context.
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Figure 2: Configuration view of the product line under study.

The first research question is mostly descriptive, the second is explanatory,
while the third question comprises an improving component [16].

2.8. Context

This section presents the study context, as much as we can do for confiden-
tiality reasons. The case study is conducted at a company developing mobile
devices with embedded real-time software in a domain which is very competi-
tive both regarding quality and innovation. The development process is highly
iterative, and the same software basis is used in several product versions and
variants. The facets of the context is described below according to the frame-
work proposed by Petersen and Wohlin [13]. The terminology in the context
description is changed to align to generally accepted definitions, if needed.

2.3.1. Products and market

The products under study are mobile devices with embedded real-time soft-
ware. The products are based on the Android platform, which in itself comprises
more than 10 million lines of code. The platform is adapted and extended to
comprise more and specialized features, and to fit the specific hardware of the
device. Instances of specific combinations of hardware and software platforms
are referred to as platform configurations in Figure 2.

The product line products, developed in a software project, comprise dif-
ferent product variants (about 10), called product configurations in Figure 2.
The products are in turn customized for a number of different customers and
market segments (hundreds) which have different software requirements, and
are called release configurations. Each release is packaged in a product package,
including physical packaging, defaults settings etc. Several (a handful) projects
are ongoing in parallel and software is reused across projects as well.



The quality requirements are traditionally high in the telecom domain, es-
pecially regarding performance and reliability [1], and since the market is very
competitive and fast changing, on time delivery is crucial.

2.8.2. Organization and process

The development organization is globally distributed, applies incremental
development practices, and distributes testing tasks over different organizational
units. In more detail:

- Incremental development — The software development process is an incremen-
tal process, where each feature is developed and integrated in small iterations.
Thus there is a need for continuous regression testing during development.

- Organizational distribution — The software development is distributed over
three organizational units (core software, application software and product
composition, See I in Figure 3), where they primarily focus on platform, prod-
uct and release configurations, respectively, as defined in Figure 2. Within the
core software and application software organizations, the software is divided
into different functional areas and for each area there is a team of developers
and testers.

- Global distribution — Parts of the organizations are distributed over three
continents.

- Test levels — Testing in each of the core software and application software
organizations are conducted at (at least) three main levels of test abstraction,
which involves repeated testing of common parts. Feature testing (unit testing,
structural and functional testing) are carried out by the functional area teams
while Integration testing and system testing are carried out by dedicated test
teams. Within the third organization, at the product composition level, all
product configurations are tested with system tests and all product packages
are acceptance tested. Regression testing is conducted at all test levels and
organizational units.

- Test practices — There is no centralized strategy for neither test case design
nor test selection, only guidelines and working practices for organizational
units exist. For each new feature, several new test cases are created based
on the feature requirements. Test cases are selected based on practitioners’
experience.

2.8.3. Tools

All test case descriptions and the execution data are stored in a commercial
tool, HP’s Quality Center (QC). QC is a web based test database that sup-
ports essential aspects of test management. Test planning, test design and test
reporting is performed in the QC environment.

Test execution is done both manually and automatically, the latter using a
combination of proprietary and in-house tools. However, this study focuses only
on the manual test execution.
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Figure 3: The case covers three organizational units and four test levels (I). The scope of the
sub-case is delimited to one single function (III) which is one out of five main functions of
a feature area (II). Furthermore the sub-case comprises two organizational units and three
levels of test (I) and a share of the variability, i.e. one out of a handful parallel projects (IV);
two product variants (V) and about half of the available product configurations (VI).

2.4. Case and units of analysis

This study is a single-case study [16] in the emerging product line develop-
ment context, see Figure 3, where we define two study contexts, one of which is
a subset of the other. The larger context, the case development context, has the
three development organizations as its main unit of analysis. The sub-context
is scoped down to the sub-case function development context, which scopes one
single function, tested from different perspectives across test levels and organi-
zations.

The function selected for the sub-case context is not aimed to be representa-
tive in any means. It was chosen to include functionality which is complex and
challenging enough to span over several components and product variants, and
cause interaction with several organizational units. This is illustrated in Fig-
ure 3. The selected function is one out of five main functions of a feature, which
in turn is a bring up to the current project based on an application developed
at another site. The size of the feature is about 35.000 LOC.



The main units of analysis are the three main organizational units: Core
software, Application software and Product composition. Each organization con-
ducts testing at several testing levels (feature tests, integration tests, and system
tests) and at each test level, several test activities with differences in scope and
focus are carried out, see Figure 3. The sub-units of analysis consist of three
test activities selected to represent several test levels and organizational units.
The test activities are selected because of their frequency and costliness in com-
parison to other test activities at the same test level. Since the studied function
belongs to one of the functional areas of Application software development and
is not explicitly tested at Core software development, this organizational unit
is not part of the sub-case. The sub-case is further limited to one project and
two platform variants.

In summary, the case is a space, set up by the four dimensions:

- Part of product

- Organizational units (core software, application software and product com-
position)

- Test levels (feature test, integration test and system test), and
- Configurations (platform, product variant, release and product packages)

The feature testing is carried out by the functional area team, which consists
of 17 people, all of whom are working with both development and test and
have a common responsibility for the quality of the feature. A team of ten
testers have the responsibility of integration testing. In the product composition
organization, testing is distributed over many teams specialized on different
markets.

In the case study, testing is studied under a period of 22 weeks (from bring
up of the Android source to release of the feature to which it belongs). The
test overlay is analyzed at five different levels of abstraction of the test cases,
as explained in Section 3. All feature testing is included in the study, as well
as the major part of the integration testing (the commonality testing before
realization into 6 variants) and a minor part of the testing at product level.

2.5. Theoretical frame of references

In this work, we frame the research based on Pohl et al’s concepts of common-
ality and variability. SPL engineering offers a systematic approach for handling
variability and for parallel development of several product variants derived from
a common base. Systematic reuse in terms of testing could refer to reuse of test
artifacts e.g. test models or test cases or to reuse of test results.

In our work, we extend the testing part of the Pohl model to include three
dimensions for test variability, see Figure 1 [15]:

1. The traditional testing at different levels (unit, integration, system etc.)
2. Regression testing as the system evolves over time, and
3. Testing over the variation in the product space.



The variability across the three dimensions entail a high risk of costly redun-
dancy in the testing and also the reverse: that important aspects of the differ-
ences between the tested artifacts are overlooked. However, in the studied case,
the processes for commonality and variability are not distinctly separated from
each other as in Pohl’s conceptual model, which seems to be the case in most
real-life product line processes.

2.6. Propositions

Propositions are predictions about the world that may be deduced logically
from theory [17]. Below, we define propositions for the current study. P1 is
derived from the theory in Section 2.5 and P2 is a basic assumption about
redundant tests. P3-P8 cannot be derived from an explicit theory, but rather
from our general assumptions underpinning the study. Advised by Verner et al.
[20] we link propositions to research questions.

P1 The amount of overlaid testing is high in a product line context [RQ1]

P2 Redundant tests do not detect faults [RQ1]

P3 Distribution of test responsibilities causes overlaid testing [RQ2]

P4 Parallel development causes overlaid testing [RQ2]

P5 Insufficient delta analysis causes redundant testing [RQ2]

P6 Poor documentation and structure cause redundant testing [RQ2]

P7 Redundant testing can be avoided if test selection is supported by visual-
ization of test data. [RQ3]

P8 The visualization must be correct, understandable and relevant, in order to
fulfill its purpose [RQ3]

2.7. Concepts and measures

In this section, we define some concepts and terms which we use throughout
the paper.

Definition 1. A software product line is a “set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a common
set of core assets in a prescribed way” [5]. An emerging software product line
is one where the “prescribed way” is not well defined yet.

Definition 2. Commonality denotes the shared set of features while variability
denotes the possible specializations.

Definition 3. A coverage item (Covl) is an entity describing the scope of a
test or set of tests. All test cases are designed to cover at least one CovI. The
scope is defined in terms of part of product (e.g. feature) and test purpose (e.g.
response time). A coverage item may be defined hierarchically, i.e. a high-level
coverage item consists of several low-level coverage items.
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Figure 4: The different phases of the case study

Definition 4. A test case executes a specific version and variant of the software
system or subsystem. The delta denotes the change between two versions or the
difference between two variants.

Definition 5. Test overlay refers to a test case, which partly or fully covers
another test case. Test design overlay refers to multiple test cases covering the
same coverage item, although they may cover different coverage items at a less
abstract level. Test ezecution overlay refers to multiple executions of test cases,
covering the same coverage item.

Definition 6. Redundant tests refers to overlaid test cases where any differ-
ences between the tests do not affect the outcome of the tests. Test design
redundancy refers to multiple test cases designed to cover the same coverage
item at the lowest level of abstraction. Test execution redundancy refers to
multiple test executions, where neither differences in coverage items nor delta
between test objects affect the outcome of the test.

2.8. Data collection and analysis

The case study comprises both qualitative and quantitative observations,
and data collection and analysis is carried out in an iterative manner, suc-
cessively increasing our understanding about the case. Five different phases
describe the data collection and analysis procedure from our starting point to
the conclusions drawn, see Figure 4.
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Table 1: Interviews held in the study, with different roles in the organization: Configuration
manager = CM, Manager = M, System architect = SA, Test lead = TL, Test architect = TA.

Phase  Topic Core SW  Application  Application Product
org. SW  org.: SW org.: composi-
feature integration tion org.
testing testing
1 Test strategies and ac- TA TL TA TA
tivities
1 Variability space TA SA, TL CM, TA M, TL, TA
1 Risk for test redun- TA TL TL, TA TA
dancy
1 Configuration manage- CM M, TA
ment activities
1 Challenges in release M
management
1 Branching strategies CM M, TA
2 Overview of feature SA, TL
2 Test case design TL TL
2 Test selection TL TA TL
2 Test documentation TL TA TL

In the first phase the general context was described and explored for the
purpose of framing the case study and increasing our understanding of the gen-
eral case, product line testing at the case company. Interviews were held with
nine persons from different units of the organization: one from the core software
development organization, five from the application software development orga-
nization (of which two were from the feature team responsible for the sub-case
function) and three from the product composition organization. The intervie-
wees covered a variation of roles: three test architects, three test leaders, one
software architect, one configuration manager, and one line manager, see Ta-
ble 1. The interviews had the format of open discussions covering a number of
high level topics listed in Table 1. During the interviews notes were taken and
most interviews were recorded for later reference, but not transcribed. Process
documentation and training material were also a source of information in the
first phase.

A model describing the case context, was created and gradually improved for
each interview, eventually leading to Figures 2 and 3. This was done based on
notes from interviews, the documentation referred to in each interview, and the
responses to the model as it was presented to the interviewees. In addition to the
case description, the outcome of this phase was the scoping and final definition
of the sub-case and hypotheses regarding the documented test executions in the
sub-case. The hypotheses originate from our initial propositions as well as from
the observations in the first phase.

In the second phase the sub-case was further explored. The test management
database was manually searched for test cases and test executions related to

11



the selected case. The test documentation was analyzed with an exploratory
approach:

1. Search for test cases, testing the function

2. Identify parameters of variability in test executions

3. Classify test cases with respect to those parameters

4. Define relevant dimensions of coverage items with respect to identified
classes of test cases

5. Identify a relevant abstraction hierarchy of coverage items with respect to
identified classes of test cases

In addition, three of the interviewees were asked additional questions about the
sub-case.

The outcome of this step was the analysis criteria, used for testing the hy-
potheses from the previous phase. More details and the result of this step is
given in Section 3.

In phase three, test overlay was assessed from different perspectives and
at different abstraction levels (RQ1). This was done by applying the analysis
criteria from phase two to the test execution data. The hypotheses together
with this quantitative assessment of different types of test overlay (RQ2), see
results in Section 4, formed the basis for the qualitative analysis in Section 5.
This analysis was inspired by Miles and Huberman’s graph models [12].

In the fourth phase, proposals for visualization of test coverage and overlay
(RQ3) are derived. These proposals originate from the analysis criteria (how to
capture the actual purposes of the tests?), the test documentation (which in-
formation is available?), and our conclusions regarding overlay and redundancy
(RQ 1 and RQ2).

The proposals from phase four are partly validated in the fifth phase when
presenting our results at three different occasions for different test architects and
managers. The quantitative assessment were presented as well as our proposals
for visualization. The responses and questions from the practitioners given at
these occasions were also part of the input to the study.

2.9. Validity

This section discusses possible threats to the validity of the study, based on
Runeson et al.’s guidelines [16], and reports actions taken to reduce the threats,
where feasible.

Construct validity concerns the match or mismatch between the study con-
text and the researcher’s context and research questions. Of special interest to
construct validity is the definitions of terms and concepts in the case context,
vs. the research context. The authors of this paper have both spent considerable
time in the case study context to adopt their terminology, and then transformed
it into generally accepted terms in the research domain. Specific terms of inter-
est include:

- Cowverage, which we refer to as design and execution coverage, respectively,
which is fairly well accepted in the case, although not perfectly.

12



- Cowverage item, which here is a more general term than used in research,
where it is often related to code coverage.

- Redundancy, which is used in a general sense in the case, while we here
have a very precise definition of redundancy.

- Software product line, which in the software engineering literature is more
of a technical perspective, while in this context it is very much a market
approach.

We have continuously adjusted our understanding of the case terminology
related to the research terminology in order to be as precise as possible. Further,
the combined use of qualitative and quantitative data helps triangulating the
observations and improve the construct validity.

Reliability concerns the extent to which the research is dependent on specific
researchers. This is a threat in any study using qualitative (and quantitative!)
data. The observations are of course filtered through the perception and know-
ledge profile of the researchers. Counteractions to these threats are that two
researchers are involved in the study, and the observations are triangulated with
quantitative and qualitative data. Another threat to the reliability is that the
study design is very flexible, with several options in every step of the study.
However, the overall research goal is kept the same during the course of the
study, ensuring that the overall results of the study are reliable, although parts
of the study would most probably have be done differently with another set
of researchers. Furthermore, within the organization, they conducted a more
pragmatic study in parallel on the topic, and the results from that study is well
in line with this, strengthening the reliability of this study.

Internal validity is concerned with casual relationships among factors. In our
case, the quantitative analysis is not interpreted in isolation, and it is not even
feasible to infer statistical analysis, due to the incompleteness of the data. The
analyses about casual relationships are instead based on qualitative analysis to
generate hypotheses, which are validated using quantitative data. Feeding back
the analysis results to interviewees is another action taken to reduce internal
validity threats.

FEaxternal validity regards the ability to generalize beyond the studied case.
Each case of course has their own specifics, and in that sense there is no general
case. However, some key characteristics of the case may be general and, for
other cases with similar contexts, the results may be used as a reference. In
order to allow external comparison, we have presented the context as clearly as
possible, given the confidentiality constraints we have. On the risk side, there
are so many variation factors in the context, that we may have focused on other
than the key ones. Only replicated studies may help assessing the external
validity of our study.

13



3. Analysis criteria

Based on our initial, exploratory study phase, the criteria for the analysis of
the case are worked out. The analysis criteria include concept and terms which
are assumed to be relevant for the deeper analysis of the case, as defined in
Section 2.7.

3.1. Identification of test purposes

The basis for our analysis of overlay is the coverage items, i.e. the parts and
aspects of the system which the testing is supposed to cover, and it is crucial
for the relevance of our findings that our identification of coverage items are in
line with the testers’ purposes. We wanted to analyze test overlay at several
levels of abstraction and from different perspectives. For the purpose of finding
relevant definitions of coverage items, all test cases were classified with respect
to their purpose and focus and mapped into a hierarchical structure. This was
done in cooperation with the interviewees in the second phase of the study, see
Table 1. Following is a list of variation factors of the executed test cases:

1. Focus — Which functionality is in focus.

2. Purpose of the test — Six different types of tests were found: duration, func-
tionality, interoperability, performance, power consumption and stress tests.

3. Interaction — Except for plain tests of the case function or its variants, inter-
action with ten other important functions were tested.

4. Abstraction level — There is always a possibility to detail the testing further
and add variations to a test case.

5. Software version — New versions of the software are released for testing, ap-
proximately twice a week.

6. Hardware — Testing on two different hardware types is covered by the case.

We decided to include the first four variation factors in our definition of the
coverage item while the latter two are considered variations in the test object
and as such possible subjects for delta analysis with respect to the coverage
items.

3.2. Definition of coverage items

The four identified factors of variation can be described by two-dimensional
coverage items. One dimension represents the focus of the test, such as a specific
function, and the second represents the purpose of the test which could be, for
example, testing the interaction with other features. The two parameters, focus
and purpose, are in turn hierarchical values, see Figures 5 and 6, which enable a
pairwise coverage analysis of general and specific test requirements at different
levels of abstraction.
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level of details contains the divisions of the system in functional areas. Level 2 contains the
main functions of a functional area. The ‘sub-case function’ node at level 2 is included in the
analysis in this study.
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Figure 6: The hierarchical structure of the ‘purpose’ parameter in a coverage item. The first
level of abstraction includes the main quality attributes. At level 2 the ‘Interaction’ node is
extended with different interacting functionalities and the ‘Interoperability’ node is extended
with different brands of the two memory types and of the communicating devices. These nodes
are then extended further with details on different models. Here the root node represents the
scope of the analysis.

3.3. Definition of data points for analysis

The 192 test cases in our sub-case cover coverage items distributed over five
different levels of abstraction. This is illustrated in Table 2, where the columns
represent the different levels of the ‘purpose’ parameter and the rows represent
the levels of the ‘focus’ parameter. The numbers in the cells denote the number
of test cases, explicitly designed to cover the corresponding pair of parameter
values. The basis for our analysis (i.e. the data points) is the five different levels
covered by test cases. Note that in order to retrieve the total number of test
cases covering a pair of parameter values, the test cases designed for lower levels
are included, as well as the test cases with no further details defined. Purpose
level 1 and Focus level 3 (P1@QF3) is thus covered by 192 test cases while P2QF4
is only covered by 2 test cases, see Table 2.

The coverage item definitions used for this analysis is not a general proposal
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Table 2: Number of test cases for each coverage item, composed of a ‘focus’ and a ‘purpose’
parameter. The rows of the table represent the levels of the ‘focus’ parameter and the columns
represent the levels of the ‘purpose’ parameter.

Level Purpose Purpose Purpose
level 1 (P1) level 2 (P2) level 3 (P3) Total

wn
g
2
¢z
. 2 2
= 0
o % = g o
2 E 5 R 3 3
15} 2, R g =t e}
£ 9 & = g g
5 B =] g Q «
T E = o —
Name = A 0 — = —
™ GUI 0 0 10 2 0 0 12
2 Other application 0 0 1 0 0 1
8  Bluetooth 0 0 4 0 0 59 63
= Mem1/Mem2 0 1 16 15 4 53 89
: 8 GUI scenarios 0 0 13 2 0 0 15
3 4 other applications 0 0 8 0 0 0 8
2 Single/Multiple 0 0 4 0 0 0 4
Total 0 1 56 19 4 112 192

for structuring tests but a means to capture the testing goals within this context.

4. Quantitative data

In total we found 517 test executions of 192 different test cases, which tested
the case function, over a period of 22 weeks, see Figure 7. Given the narrow
scope of the case function under study, this is a high number of test executions
and it was far more than expected by the test managers. The failure rate is
generally low: 15 of the 517 test executions failed, with a concentration to
week 3 where 11 executions failed in the system testing. Feature testing and
integration testing run only one failing execution each. The quantitative data
is summarized in Table 3 and the data for pairwise overlay between activities is
summarized in Table 4.

4.1. Owverlay in test design

We found 192 different test cases, testing the case function. At the highest
level of coverage abstraction (Purpose level 1 and Focus level 3 — P1QF3), these
192 test cases cover 19 unique coverage items, see Figure 8. Hence, if overlay in
test design is analyzed at this level of abstraction, 90% of the test cases could
be considered overlaid since they do not cover any unique coverage items. In
Table 3 it can be seen that Feature testing covers 7 Covl:s with 18 test cases,
integration testing covers 11 Covl:s with 33 test cases and system testing covers
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Figure 7: Test executions per test level and week.

15 coverage items with 141 test cases at this level. Furthermore the design
overlay between test activities at this level is 40%.

A large share of the design overlay identified at the highest level of abstrac-
tion (P1@QF3) can be attributed to the variability of the test cases, i.e. most of
the test cases are different variants at a more detailed level of coverage analysis.
There are, for example, 112 different system test cases designed at level P3@QF3
to test the function in terms of compatibility with different models of devices
and types and sizes of memories.

Decreasing the abstraction level of the ‘purpose’ parameter to P3QF3, there
is no overlay between the two test levels: integration and system testing (see
Table 3), and no overlay within feature testing (see Table 4). There is still
design overlay within integration testing and system testing at this level, 33%
and 63%, respectively (see Table 3).

4.2. Owverlay in test execution

Overlay in test execution could origin both in overlay in the test design and
the re-execution of a test case. However the overlaid test is not redundant if it
has been affected by a change since the last execution. In this case study we
did not have information about the delta between versions, and hence we could
only measure an upper bound of redundancy.

At the highest level of abstraction (P1QF3), 517 test executions tested the
case function. 96% of these are overlaid. The share of overlaid tests remains
high even in the analysis at lower abstraction levels.

5. Existence and causes of test overlay — RQ1 and RQ2

This chapter reports the analysis related to the research questions on exis-
tence and causes of test overlay.
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Table 3: Coverage data and overlay within each test level for the coverage items. Legend: F
= Feature testing, I = Integration testing, S = System testing, Tot = Total, O = Overlay

Level Purpose level 1 (P1) Purpose level 2 (P2) Purpose level 3 (P3)
F I S Tot O F I S Tot O F I S Tot O

#Executions 91 191 235 517 12 83 180 275 0 0 172 172

é’j\ #Failed executions 1 1 13 15 0 1 13 14 0 0 13 13

—  Failure rate 1% 1% 6% 3% 0% 1% 7% 5% 0% 0% 8% 8%

2 #TC:s 18 33 141 192 3 15 117 135 0 0 112 112

% #Covered Covl:s 7 11 15 19 14 3 10 43 54 2 0 0 112 112 0

"~ Coverage 20% 31% 43% 54% 4% 1% 4% 1% 22% 1% 0% 0% 20% 20% 0%

3 Design overlay 61% 67% 89% 90% 8% 0% 33% 63% 60% 0% 0% 0% 0%

£  Execution overlay 92% 94% 94% 96% 5% 88% T6% 80% 0% 0% 35% 35%
#Executions 31 85 18 134 0 12 0 12

g #Failed executions 0 0 0 0 0 0 0 0

—  Failure rate 0% 0% 0% 0% 0% 0% 0% 0%

X H#TC:s 8 13 6 27 0 2 0 2

% #Covered Items 8 12 5 20 5 0 2 0 2 0

—  Coverage 9% 13% 5% 22% 25% 0% 0% 0% 0% 0%

2 Design overlay 0% 8% 17% 26% 71% 0% 0% 0% 0%

£  Execution overlay  74% 86% 72% 85% 0% 83% 0% 83%

Table 4: Pairwise test design overlay between test levels for each of the five coverage items.

Coverage items (P)‘Xerlaiz/getweel; /pF:iurs gnlquelcoveragse
P1@QF3 13%  44% 29% 14% 18% 20%
P1@F4 5% 13% 18% 63%  75% 20%
P2@F3 8% 0% 5% 33% 100%  98%
P2QF4 0% 0% NA NA  100% NA
P3QF3 NA 0% 0% NA NA 100%

5.1. Amount of test overlay

The context for our main case under study showed to be very variability-
intensive, as reported in Section 2.3, and we expected a large amount of the
testing to be overlaid (Proposition 1). This belief was also shared by most of
the interviewees. All but one of the nine interviewees expressed a feeling that
a lot of overlay testing was carried out and they helped us identify critical test
activities for the in-depth analysis. This led us to state two hypotheses: H1)
Among the test executions a large share is overlaid and potentially redundant
and consequently: H2) the failure rate of the testing carried out is low, since
redundant test cases are not expected to fail (Proposition 2).

Both hypotheses were to some extent confirmed by our quantitative data.
Four out of five data points show more than 80% overlay, i.e. 80% of the test
executions were re-executions of tests for coverage items covered previously in
the project. The remaining data point shows a total overlay of 35%. The data
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Figure 8: Coverage items covered by the feature testing (blue outline), integration testing
(red outline) and product testing (green outline). Numbers within parentheses is the number
of designed test cases and the numbers without is the executions.

point with less overlay represents the lowest level of compatibility tests with a
lot of variant specific test cases. Note, however, that this is just an upper limit
for the redundancy according to our criteria, defined in Section 3. No consid-
eration has been taken to the changes between versions or the delta between
product variants (two product variants were included in the analysis). The num-
bers indicate where improved change impact analysis or delta analysis could be
beneficial. The failure rate is low as well: 1% at feature testing and integration
testing and 6% at system testing. The concentration of failed executions to one
test session and four variants on the memories at analysis level P2QF3 is also
an indicator of redundancy.

5.2. Fuactors causing overlay

In the interviews, several factors increasing the test overlay, and consequently
the risk for redundant testing, were pointed out:

1. Absence of complete requirements specifications — “Requirements are not very
detailed; main requirements are features from which user stories are developed
by the feature team in cooperation with the scope owner.” (System architect
— Feature testing)

2. Redundancy in requirements — “Beside the user stories, detailed technical
specifications (Req:s) exist. This combination introduces redundancy in re-
quirements. Quality requirements are handled in another [organizational
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unit] which in turn put requirements on this [organizational unit]. Require-
ments specification is extended post hoc based on operators error reports.”
(System architect — Feature testing)

3. Legacy — The feature test suite was originally developed at another site. Due
to frequent changes in the organization, responsibilities change.

4. System testing of generic areas — “Product testing do a lot of duplicate test-
ing in all generic areas since they are supposed to work with the customer
requirements. Many of the customer requirements are the same.” (Test Ar-
chitect — Core software) “With Android a lot of the product verification gets
double since the risk in customization does no longer exist. (Test Leader —
Integration testing)

5. The use of static test suites — Integration testing repeatedly runs the same
test suite.

6. Parallel testing — “They test the platform. We test it through our application
and at the same time the whole is tested in the main branch.” (Test Leader
— Feature testing) “Unless the customer have specific customizations for an
application, they can reuse test results from application software and from
core software. (Test Architect — Core software)

These factors are in line with our initial propositions and form a basis for
our continued analysis together with the other qualitative data (process docu-
mentation and test artifacts). A chain of causes and effects which are relevant in
our sub-case was outlined, see Figure 9, and lead to some additional hypotheses
regarding our quantitative data: H3—-H6 in Table 5.

The lack of complete requirements specifications in combination with a con-
stantly changing organization is interpreted as “poor documentation and struc-
ture” (Proposition 6) and as such a cause of test design overlay in feature test-
ing. The constant evolution of organization, processes and tools affects all three
units of analysis and consequently they all have to deal with legacy, which in
turn increases the inconsistency in test documentation which may also count
as “poor documentation and structure”. Integration testing and system testing
is distributed between several teams of testers which further increases the risk
of design overlay within those two activities (Proposition 3). According to the
same proposition there is overlay between all three test activities.

Two types of delta analysis is referred to as insufficient in the interviews:
the change impact analysis in integration testing and the commonality analysis
in the system testing. Thus there is an increased risk for execution redundancy
within these two activities (Proposition 5). Since a static test suite was used
for regression testing in feature testing as well, this risk is present there too.
The parallel work lead to execution overlay (Proposition 4) only if there is an
overlay in design between the test activities.

In addition to the hypotheses in Table 5, interviewees expressed their as-
sumptions. It was explicitly said in the interviews that there is a high degree of
design overlay between feature testing and integration testing (in line with H4a)
and that the problem of test overlay was solved at system test level thanks to a
well defined process and good communication (in contrast with H4b and H4c).
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Figure 9: Graph illustrating the hypotheses derived from the qualitative analysis. Text in
bold represents our initial propositions. Letters within parentheses denote which units of
analysis the hypotheses concern. Arrows A1-13 are linked to the hypotheses in Table 5. Red
arrows indicate relations partly contradicted by the quantitative data. F = Feature testing,
I= Integration testing, S = System testing, O = Overlay.

5.8. Test of hypotheses

The analysis in this section is structured according to our initial propositions
(i.e. nodes with bold text in the graph, see Figure 9). Each hypothesis is related
to one or more chains of arrows within the graph and one arrow may relate to
more than one hypothesis.

5.8.1. Distribution of test responsibilities

The proposition that distribution of test responsibilities causes overlaid test-
ing (P3) is not unconditionally true. Even though a general overlay in test design
is confirmed by the quantitative data, see Design overlay in Table 3, there is
some variation between abstraction levels as well as between test levels. The
overlay within a test level is more frequent than the overlay between test levels
for two out of three data points, where design overlay is present. The total
design overlay at level P1QF3 is 90% of which only 8% can be attributed to
overlay between the test levels. On the other hand do these 8% represent 74%
of the reached coverage. At level P1QF4 the relationships are the reverse: 71%
of the design overlay can be attributed to overlay between test levels but only
25% of the reached coverage.
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Table 5: List of generated hypotheses linked to the arrows, A1-13, in Figure 9.

H1 Among the test executions a large share is overlaid. (A1-3)

H2  The fault detection rate of the testing carried out is low. (A1-3)

H3  There is a high degree of design overlay within each of the test levels (A7, A12, A13):
a) feature testing (A9, A1l) b) integration testing (A6, A10) and c) system testing
(A6).

H4  There is a high degree of design overlay between each pair of test levels: a) feature
testing vs. integration testing b) integration testing vs system testing and c)system
testing vs. feature testing.(A6)

H5 There is a high degree of execution overlay within each of the test levels: a) feature
testing (A5, A8) b) integration testing (A5, A8) and c) system testing (A4).

H6  If H4 holds there is a high degree of execution overlay (A3)

To test hypothesis H4, the share of test overlay between the test levels is
analyzed with respect to the reached coverage. Pairwise overlay is analyzed
for three pairs of test levels (feature testing vs. integration testing, integration
testing vs. system testing and system test vs. feature testing) and is related
to the the aggregated coverage of the two overlaid levels analyzed. We also
analyze the share of unique coverage in relation to the total coverage at each
test level, see Table 4. Pairwise overlay occurs mainly at the highest abstraction
levels i.e. the general test cases overlay between the different test levels while
the detailed test cases varies in focus between the test level. Both integration
testing and system testing have 100% unique coverage at their highest level of
abstraction (detailed interaction tests at integration testing and compatibility
tests at system testing). Feature testing does not reach to more than 63% of
unique coverage at any level.

In our sub case, organizational distribution seems to have greater impact on
overlay than geographical. Feature testing and integration testing both belong
to the application software organization, while system testing belongs to the
product composition organization. Both integration testing and system testing
are distributed globally. At level P1QF3 the share of unique coverage is low
for all three test levels (between 14% and 20%) i.e. most of the covered Covl:s
at this abstraction level is covered at another test level as well, which supports
H4 to some extent. H4b and H4c are supported, while H4a is not, which is in
contrast with the interviewees’ intuitions. The pairwise design overlay between
feature testing and integration testing is less than 15% at all abstraction levels.
The other two pairs has larger overlay at the higher abstraction level; between
29-44%.

The geographical distribution of system tests does not seem to prevent the
different teams to design non-overlaying sets of test cases. Analysis at the low-
est level of abstraction shows no overlay within system testing, contradicting
H3c but 33% overlay within integration testing, see Table 3. This weak sup-
port of H3b is partly explained by the inconsistent document structure, see
Section 5.3.2.
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5.3.2. Documentation and structure

The proposition that poor documentation and structure causes redundancy
(P6) is not unconditionally true. At the highest abstraction level of analysis
(P1@F3) H3 is confirmed: There is 61% overlaid feature test cases; 67% over-
laid integration test cases, and 89% overlaid system test cases, see Table 3.
However if decreasing the level of abstraction the data does not fully support
the hypothesis. No internally overlaid (i.e. overlay within a test level) feature
tests exist on the more detailed levels at this level. This means that H3a is not
supported. Absence of complete requirements does not necessarily cause redun-
dancy, neither does redundancy in the requirements. From the perspective of a
higher abstraction level (the manager’s or test leader’s perspective) the testing
may be unbalanced with respect to the coverage items but not much is redun-
dant since there are small variations in most of the test cases. The relevance of
this variation is however unclear.

The size of the test suites and the number of involved test managers deter-
mines the need for proper documentation. The highest degree of internal design
overlay, also at the more detailed level of analysis, exists within the integra-
tion test suite. 33% of the integration test cases are overlaid even when the
explicit variation in the test cases is considered at level P2QF3 which weakly
supports H3b, i.e. inconsistent test documentation of test cases could cause test
redundancy. However, legacy does not cause design overlay since design overlay
is not observed in the feature testing. Only executed test cases are included
in the scope of this study and among those there are no overlaid feature tests
at the detailed levels. One difference between feature testing and integration
testing may be the awareness of the inconsistency, which was expressed in the
interviews in the case of feature testing. The integration test suite is larger and
managed by testers from several teams, while the feature test suite is mainly
managed by one person. Also the lack of complete requirements specification
and redundancy in requirements seems to be manageable in the small.

5.3.3. Delta analysis

Visualization of test coverage, as exemplified in Figure 8, helps the testers
and test managers overview the intended coverage and thus assess its feasibility.
The high degree of overlaid test cases at level P1@F3 could be attributed to the
many variants of test cases for compatibility tests, which also explains the low
degree of overlay where this variation is considered in the analysis (P3QF3).
Here the data confirms the lack of delta analysis of the customer requirements
as a cause of overlay.

Hypotheses H5 and H6 regard overlaid test executions. The share of overlaid
test executions is high at all test levels and at all granularity levels, indepen-
dently of the share of design overlay. Hence we can not reject H5 and H6, stating
that insufficient delta analysis causes redundant test executions.

5.8.4. Summary
In summary, geographical distribution of testing does not cause test overlay
but organizational distribution might do. Poor requirements documentation
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does not directly cause overlaid testing but poor test documentation might do.
Insufficient delta analysis may cause a high degree of overaly within this context.

6. Visualization — RQ3

The third research question regards how to support test scoping decisions.
It is assumed that redundant testing can be avoided with good visualization
(proposition P7). The condition under which we assume this holds is that
the visualization is correct (correctness), that the receivers of the information
interpret the information correctly (understandability), and that the visualized
information is relevant with respect to the decisions it is supposed to support
(relevance) (proposition P8). Below, we elaborate on the visualization with
respect to these three conditions. Our conclusions regarding visualization in
this section are achieved with analytical reasoning based on the observed needs
for improvement with respect to RQ1 and RQ2 as well as our experience in
analyzing overlay within this context.

6.1. Correctness

In this study the documentation and visualization of test coverage, and con-
sequently the overlay analysis, was based on the identified coverage items. It
was clear from the interviews that in order for this visualization to be correct it
is should cover not only the focus of the tests but also the purpose. “We may
use the same test case but with another purpose, such overlaps we cannot avoid”
— TA-core software.

With our two-dimensional and hierarchical structure of the coverage items,
which was quite easy to visualize, we managed to capture all the documented
variations regarding both focus and purpose in the 192 test cases. Hence it
seems to be a useful model for documenting and visualizing test coverage. The
model was the result of our exploratory analysis of the test set related to the
sub case. There might of course exist non-documented intentions of test cases
as well as different implementations of a test case depending on the tester and
the situation. Such variation is impossible to visualize with a tool and could
motivate a certain degree of visible overlay.

6.2. Relevance

In the study, several possible causes of redundancy were identified, see Sec-
tion 5. These were related to insufficient delta analysis, distribution of test
responsibilities, poor documentation and structure of tests, and parallel work,
If any visualization could enable improvement of these situations, it is considered
relevant.

Two types of delta analyses need improvement (Section 5.3.3): 1) change im-
pact analysis between consecutively tested versions of the software, and 2) com-
monality analysis between the different possible variants of the software which
are to be verified. In both cases the need is to support the de-scoping of tests
by identifying overlay and possible redundancy. In the first case the task is to
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reduce the amount of test cases while in the second case the task is to reduce
the amount of variants on which the test cases should be executed.

Thus two different views could offer relevant support: one visualizing the
priorities of coverage items and one visualizing the priorities of the variants. In
both cases priorities could be calculated guided by existing regression testing
techniques [9, 22]. However, most of these techniques are very context depen-
dent, and in many cases only useful for small systems or small test cases [14].

Distribution of test responsibilities across organization raise high demands
on communication between the parties if redundancy in testing shall be avoided.
First of all, a common definition of coverage items is needed in order to clarify
the division of responsibilities. The modeling of coverage items used in this
study is one example of how to make these definitions transparent. Based on
the definition of coverage items, a test design view visualizing the test scope
of the different parties would offer support in pinpointing overlay. Some of
the test overlay identified in our study could be attributed to such gaps in
communication (Section 5.3.1), indicating a need for such support. In case
of overlay in test design scope in combination with parallel work, a view of the
aggregated test execution progress would support decisions on execution scoping
over time.

Poor documentation and structure of tests prevents a proper visualization
and could not be improved by visualization itself. On the other hand could
transparent definitions of coverage items (i.e. using the Covl model) guide and
improve the documentation. Exploratory testing is a part of the testing strategy
in our case under study and the idea of strict test documentation was met
with skepticism. However, the introduction of a clear structure and rules for
documentation does not necessarily put requirements on the level of detail, and
even in the case of exploratory testing some documentation is necessary.

6.3. Understandability

In order for a tester or manager to understand the coverage view, the amount
and type of information must be adapted to their information needs. The two-
dimensional coverage is simple to visualize with a matrix as we did in our anal-
ysis, see Figure 8, and the type and level of detail can be selected according to
the tree views presented in Figures 5 and 6. In our case study this navigation
between detail levels supported the qualitative analysis of the nature of exist-
ing overlay, as well as our communication with managers at different levels in
the organization. It helped them identify test areas with unreasonably large
amounts of tests.

6.4. Summary

In summary, the Covl model used in this study may be a useful model for
documenting and visualizing test coverage. The model supports communication
through increased transparency and enables relevant views to support test de-
sign and test planning decisions. Within this context the model was sufficient
for covering the test variability in terms of focus and purpose of tests and it
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enabled navigation between levels of details which in turn supports communica-
tion across organizational levels. Following views would be relevant to provide
for the purpose of improving test scope selection within this context: test design
coverage and test execution progress, priorities and dependencies between test
cases as well as between different test objects.

7. Conclusions

An in-depth case study was launched for the purpose of investigating test
overlay in a large-scale variability-intensive context. The testing context under
study is complex in terms of the large-scale (millions of lines of code) and vari-
ability of the system (realized in hundreds of different system configurations),
distributed and parallel development (both geographically and and organiza-
tionally), and iterative and agile development process. Testing is repeated in
three dimensions: over time (regression testing) in space (variant testing) and
over testing levels. Variability is realized at compile time and in runtime.

Conclusions drawn are based on our interpretation of both quantitative and
qualitative observations. Following is a list of contributions of this paper:

The amount of overlay was in general large (RQ1) but varied with: different
testing levels, different purposes of tests and the different abstraction levels of
the coverage analysis. Overlay is measured in terms of repeated executions of
tests with respect to coverage items (Covl:s). The Covl:s describe the focus
and purpose of the test and enables coverage analysis at different levels of ab-
straction. The study shows a high degree of both design overlay and execution
overlay at all levels of test.

Overlay seems to be caused by several factors such as (RQ2):

- Distribution of test responsibilities — Organizational distribution had greater
impact than geographical.

- Inconsistent documentation of test cases — The importance of consistency in
design and documentation of test cases seems to depend on the size of the test
suite and the number of involved test managers. In contrast to the intuition
of the practitioners, redundancy in requirements or the absence of a complete
requirement specification did not cause design overlay in the testing.

- Insufficient delta analysis — Lack of commonality analysis of the variation in
space as well as lack of regression analysis of the variation in time were the
two main causes of overlaid test executions.

Visual decision support could be provided with (RQ3):

- Visualization of test design coverage — Both focus and purpose of test should
be visualized.

- Visualization of priorities of coverage items as well as priorities of variants.
- Visualization of aggregated test execution progress.

Testing could be more effective by improving delta analyses and with a more
consistent way of documenting the work, not saying testing has to be specified
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in detail up front. Coverage items may be identified post hoc and work as a
basis for test progress visualization which in turn could improve test selection
decisions.
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