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Harmful somatic amino acid substitutions
affect key pathways in cancers
Abhishek Niroula and Mauno Vihinen*

Abstract

Background: Cancer is characterized by the accumulation of large numbers of genetic variations and alterations of
multiple biological phenomena. Cancer genomics has largely focused on the identification of such genetic
alterations and the genes containing them, known as ‘cancer genes’. However, the non-functional somatic
variations out-number functional variations and remain as a major challenge. Recurrent somatic variations are
thought to be cancer drivers but they are present in only a small fraction of patients.

Methods: We performed an extensive analysis of amino acid substitutions (AASs) from 6,861 cancer samples (whole
genome or exome sequences) classified into 30 cancer types and performed pathway enrichment analysis. We also
studied the overlap between the cancers based on proteins containing harmful AASs and pathways affected by
them.

Results: We found that only a fraction of AASs (39.88 %) are harmful even in known cancer genes. In addition, we
found that proteins containing harmful AASs in cancers are often centrally located in protein interaction networks.
Based on the proteins containing harmful AASs, we identified significantly affected pathways in 28 cancer types
and indicate that proteins containing harmful AASs can affect pathways despite the frequency of AASs in them. Our
cross-cancer overlap analysis showed that it would be more beneficial to identify affected pathways in cancers
rather than individual genes and variations.

Conclusion: Pathways affected by harmful AASs reveal key processes involved in cancer development. Our
approach filters out the putative benign AASs thus reducing the list of cancer variations allowing reliable
identification of affected pathways. The pathways identified in individual cancer and overlap between cancer types
open avenues for further experimental research and for developing targeted therapies and interventions.

Keywords: Cancer genomes, Somatic mutations, Cancer pathways, Cancer relationship

Background
Cancer is characterized by the accumulation of large
numbers of genetic variations and alterations of multiple
biological phenomena [1, 2]. These alterations contribute
directly or indirectly to increased ratio of cell birth to
cell death [3]. During recent years, cancer genomics has
largely focused on the identification of such genetic al-
terations and the genes containing them, known as ‘can-
cer genes’. Variations that confer growth advantage and
are positively selected during cancer development are
known as drivers and other variations carried along dur-
ing cancer progression are called for passengers [4].

Recurrent somatic variations are thought to be drivers
but they are present in only a small fraction of patients.
On the other hand, previous studies showed that less
frequent variations can have similar effects as recurrent
variations [5, 6].
Large amounts of cancer genomic data are available by

joint efforts of various genomic projects. These include
the Cancer Genome Project (CGP) (https://www.sanger.-
ac.uk/research/projects/cancergenome/), The Cancer
Genome Atlas (TCGA) (http://cancergenome.nih.gov/)
and International Cancer Genome Consortium (ICGC)
[7]. Massive datasets provide unprecedented possibilities
for data analysis. Various approaches have already been
taken to understand the mechanisms of tumorigenesis
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[8]. However, the vast majority of non-functional som-
atic variations remain the major challenge [9].
Here, we exploited the impacts of somatic amino acid

substitutions (AASs) to prioritize relevant variations in
cancers and identified pathways affected by them. We
utilized PON-P2 [10], a machine learning-based tool to
identify harmful AASs. It classifies the AASs into three
categories: pathogenic, neutral and unknown. Those
AASs that are predicted with confidence level 0.95 are
classified either as pathogenic or neutral and the
remaining as unknown. Here, all AASs that were classi-
fied as pathogenic by PON-P2 were considered to be
likely harmful. As cancer is a multigenic disease, single
variants cannot be called pathogenic and therefore, we
name them as ‘harmful’. PON-P2 does not predict
mechanisms of AASs, instead it identifies deviations
from normal amino acids in the sequence positions. This
means that harmful AASs can be of either loss or gain
of function type.
In our analysis, we found that only a small fraction of

AASs are harmful even in known cancer proteins. Pro-
teins containing harmful AASs in cancer are often cen-
trally located in protein interaction networks and they
affect key pathways. Even proteins with low AAS fre-
quency can affect key cancer pathways. We performed
cross-cancer comparison based on prioritized proteins
and affected pathways. Our analysis showed that cancers
have higher similarities at pathway level than at protein
level. Hence, it would be more beneficial to identify af-
fected pathways in cancers than individual genes/pro-
teins and variations.

Results
We obtained 5,023,574 somatic variations in 7,042 cancer
samples in 30 cancer types [11]. We mapped the variations
to human reference sequence and identified 824,336 single
nucleotide variations (SNVs) leading to AASs in altogether
6,861 samples (Fig. 1). The numbers of variations leading
to synonymous alterations (308,896) and introducing stop
codons in mRNA (63,866) are much smaller compared to
the number of AASs. The ratio of non-synonymous to
synonymous mRNA variations varies among cancer types.
It ranges from 1.8 in melanoma to 6.7 in lung small cell
cancer while the overall ratio is 2.7. Even minor genetic
changes can provide advantage for cancer cells. However,
as practically all cancers contain harmful AASs, it is highly
relevant to study proteins containing them and their bio-
logical processes. We utilized PON-P2 (http://structure.-
bmc.lu.se/PON-P2/) [10], a highly reliable tool, for
identification of harmful AASs. Here, all AASs classified
as pathogenic by PON-P2 are considered to be harmful.
In total, 14.24 % of AASs were predicted as harmful in
91.88 % of the samples. AASs are common in cancers ex-
cept in pilocytic astrocytoma and liver cancer, which

contained AASs in only 32.67 % and 55.68 % of samples,
respectively (Additional file 1: Table S1). The frequen-
cies of AASs vary between and within the cancer classes
(Additional file 2: Figure S1). Several factors including
the age of patient at the time of sequencing, exposure to
mutagens, microsatellite instability, etc. contribute to
the frequency of variations.

Proportions of harmful variations are higher in cancer
genes
Cancer Gene Census (CGC) [12] catalogues 138
genes in which somatic variations leading to AASs
are causally implicated in cancer. Only 56.46 % of
the samples contained AASs in proteins translated
from altogether 130 CGC genes (Additional file 1:
Table S1) and 36.51 % of the samples contained
harmful variations in totally 118 CGC genes (Fig. 1).
The proportion of harmful variations is higher in
CGC genes (39.88 %) compared to the whole dataset
(14.24 %). In total, 4.76 % of the harmful variations
were present in CGC genes.
Catalogue of Somatic Mutations in Cancer (COSMIC)

[13] release 68 contains 1,646,844 (1,293,087 unique)
somatic variations. Using PON-P2, 14.71 % of the
unique variations leading to AASs were predicted to be

All variations
(7,042/-)

5,023,574

Variations in
protein coding genes

(7,039/19,193)
2,625,881

AASs
(6,861/18,422)

824,001

Harmful
(6,304/9,543)

117,318

CGC
(3,874/130)

14,007

Harmful in CGC
(2,505/118)

5,586

Fig. 1 Variations in cancer. Venn diagram illustrates the numbers of
samples, genes and variations at different levels during data
filtration. The figures in the brackets are numbers of samples and
numbers of genes, respectively. The values outside brackets are
numbers of variations
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harmful in 9,140 genes in 43.89 % of the samples (available
at http://structure.bmc.lu.se/PON-P2/cancer30.html/). In
total, 96.55 % of the samples contain 15,176 AASs in the
translated protein sequences of 124 CGC genes, 40.98 % of
them are predicted as harmful (Additional file 1: Table S2).
These results confirm that variations in the cancer genes
are more often harmful than variations on average, how-
ever, the far majority of the variations are benign or have
only minor effect even in the cancer genes. We analyzed
the most frequent variants present in more than 25 sam-
ples in COSMIC, altogether 327 AASs in 61 proteins.
These frequent AASs show high predicted probability of
harmfulness (mean = 0.76 and median = 0.83) (Additional
file 3: Figure. S2a). There are large numbers of less fre-
quent AASs with similar probabilities of harmfulness.
Thus, frequent variations are often harmful, but less fre-
quent variations can be equally harmful.

Evaluation of PON-P2 on cancer variant datasets
The performance of PON-P2 has been extensively val-
idated and compared to different tools [10]. To assess
the performance of PON-P2 for cancer variants, we
used three somatic variation datasets. We collected
the pathogenic somatic variations from ClinVar [14],
Database of Curated Mutations (DoCM) (http://doc-
m.genome.wustl.edu/) and TP53 mutation database
[15]. In total, there were 1,058 AASs in 82 proteins.
The distribution of the probability of harmfulness is
similar for all three datasets and the probabilities are
concentrated near 1 (Additional file 3: Figure S2b). In
total, 733 (69.3 %) AASs were predicted as harmful, 4
as benign and the remaining 321 were unclassified. To
estimate the false positive rate of PON-P2, we took
the AASs that were annotated as not showing signifi-
cant difference in protein activity from the TP53 mu-
tation database. Among 454 AASs, only 87 were
predicted as harmful thus showing a low false positive
rate (19.2 %). However, this number may be an over-
estimate as there are results only for one single pro-
tein and there is a possibility of random effects. True
test would require a much larger dataset for AASs in
several proteins. In the PON-P2 benchmark test data
for 1,605 benign AASs the corresponding false positive
rate is only 8.97 %. As the distributions of predicted
probabilities were similar for the cancer datasets, we
investigated the overlap between them. There is very
little overlap between them, however the individual
datasets overlap to some extent with the frequent
AASs in COSMIC (Additional file 3: Figure S2c-d).

Landscape of somatic AASs
The landscape for variations leading to harmful AASs
was compared to that for the entire dataset. All possible
base substitutions are represented by six classes of

substitutions, C > T, C > A, C > G, T > C, T > A and T >
G. C > T substitution is the most prevalent base alter-
ation in most cancers and even more prominent among
harmful substitutions leading to amino acid alterations
(Additional file 2: Figure. S1). There are differences be-
tween cancer types: C > A substitution is common in the
three types of lung cancer and neuroblastoma while C > G
substitutions are enriched in the cancers of bladder and
cervix. The landscape was investigated also based on the
base substitutions and their immediate 5’ and 3’ nucleo-
tides. The majority of the variations are C > T substitu-
tions in CpG and TpC dinucleotides. In some of the
cancers, C > G and C > A substitutions are enriched in
TpC sites (Additional file 4: Figure S3). Among the harm-
ful variations, the C >G substitutions are less frequent in
most of the cancers. C > A substitutions remain prevalent
in the three types of lung cancer and T > C substitutions
in the liver cancer (Additional file 4: Figure S4).
We studied the patterns of AASs in each cancer type.

Arginine is the most frequently substituted residue in
both datasets (AASs and harmful AASs) while the sub-
stitutions from alanine and glutamate are less frequent
among harmful AASs (Additional file 5: Figures S5 and
S6). The most common harmful substitutions are R > H,
R >W, R > C and E > K. The high frequency of arginine
may be explained by its six codons, four of which have
CpG dinucleotide, a well-known mutation hotspot [16].
On the other hand, glutamic acid is coded by only two
codons and neither of them contains CpG. There are
cancer type specific differences in the AAS distribution.
For example in the lung cancers G > V substitutions are
prevalent and in liver and thyroid cancers Y > C substitu-
tions are prevalent (Additional file 5: Figure S6).
We studied also the distribution of AASs in protein

domains. The p53 DNA binding domain has the high-
est AAS frequency in multiple cancers (Fig. 2a and
Additional file 1: Table S3). Zinc finger domains have
the second highest frequency among AASs and harm-
ful AASs. We compared the protein domains with the
most frequent AASs and harmful AASs in each cancer.
We selected top 20 domains containing the highest AAS
frequencies in each cancer. In total, 93 and 147 domains
were selected for all AASs and harmful AASs, respectively
(Fig. 2a, Additional file 6: Figure S7a). Among them, 70
domains overlap between the two sets. We compared
also the frequency of AASs in domains in all the can-
cers together. The p53 DNA binding domain contained
the highest frequency of harmful AASs in altogether 24
cancer types (Fig. 2b). In the data for all AASs, some
domains contain AASs in more than 24 cancer types,
however with a low frequency (Additional file 6: Figure.
S7b). Epidermal growth factor receptor (EGFR) illus-
trates the distribution of AASs in protein domains.
There are 233 AASs (202 unique) in 21 cancer types.
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73.3 % (148) of the unique AASs were predicted as
harmful altogether in 18 cancer types. The AASs are
scattered along the protein chain with slight enrich-
ment in the kinase domain (Additional file 7: Figure.
S8) while the harmful AASs are concentrated in the
kinase domain. 56.6 % (86) of the harmful AASs appear
in the kinase domain that represents one-fourth of the
entire protein sequence. The harmful AASs appear fre-
quently in secondary structural elements and likely
affect the protein fold (Additional file 7: Figure. S8c).
Overall, the benign AASs are located mainly on surface
loops or in the termini of the α- and β-structures.

Prioritizing most relevant proteins
Next we identified proteins containing the highest num-
bers of harmful AASs in each cancer. As tumor cells
multiply rapidly, the number of random variations also
increases rapidly however many proteins containing

harmful AASs may not have any implications in cancer.
Therefore, we eliminated proteins that did not contain
harmful AASs in at least two samples in each cancer
type. Then we selected proteins that contained harmful
AASs in the largest numbers of samples. In addition,
proteins containing at least one harmful AAS in at least
2 % of the samples in a cancer type were selected. The
latter step was introduced to include proteins with fre-
quent harmful AASs even when the number of affected
samples was less than the threshold. The number of se-
lected proteins varied from 2 to 251 depending on can-
cer type (Additional file 1: Table S4). Several of the
genes corresponding to the selected proteins are from
CGC but there are numerous novel candidate genes
(Additional file 8: Figure. S9).
Since some of the selected proteins have very long se-

quences (TTN, SYNE1, RYR2, RYR3 etc.), we normal-
ized the frequencies of harmful AASs by the lengths of
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the reference protein sequences. Proteins with higher nor-
malized frequencies of harmful AASs (Additional file 1:
Table S4) are likely implicated in cancer. Further studies
could be prioritized based on the frequencies of the varia-
tions causing harmful AASs in these selected proteins.

Gene Ontology and pathway enrichment
About half of the cancers have only a small number of
selected proteins (<20) (Additional file 1: Table S4). In
these cancers, genes corresponding to proteins contain-
ing at least one harmful AAS were further analyzed. For
the other cancer types, we used the genes corresponding
to selected proteins and performed Gene Ontology (GO)
and pathway enrichment analysis in each cancer type.
GO terms associated with biological processes like cell
differentiation, cell death, cell cycle and more specific
terms are significantly enriched in many cancer types
(Additional file 1: Table S5). Significantly affected path-
ways include cell cycle, apoptosis, signaling by NOTCH,
PI3K, mTOR, MAPK, Wnt, EGFR, PDGF, and others
(Fig. 3, Additional file 1: Table S6 and Additional file 9:
Figures S10-S37). Examples in head and neck cancer
(HNC) and acute lymphocytic leukemia (ALL) are dis-
cussed to highlight the observations.

Head and neck cancer (HNC)
In HNC, we selected 56 proteins that contain at least
one harmful AAS totaling 62.11 % of the samples. The
corresponding genes for 10 of these proteins (TP53,
EP300, EGFR, CREBBP, NFE2L2, FBXW7, NOTCH1,
PIK3CA, RAC1 and STAG2) are catalogued in CGC. In
addition, FAT1, SYNE1 and TP63 have been reported as
significantly affected genes in HNC [17]. Our study re-
vealed 43 additional candidate genes (Additional file 1:
Table S4). Enrichment analysis of GO terms pinpointed
biological processes including cell differentiation and
multicellular organization (False Discovery Rate (FDR) <
0.001) (Additional file 1: Table S5). In the functional
interaction network extracted from ReactomeFI, the se-
lected proteins are highly connected (Fig. 4a). In a net-
work, the degree of a node is the number of direct links
of the node in the network. The nodes for selected pro-
teins have higher average degree (95.2) compared to the
nodes representing other proteins containing harmful
AASs (49.0) and the overall degree of the nodes in the
complete network (32.0). The proteins frequently con-
taining harmful AASs are thus centrally located in the
functional interaction networks. The selected proteins
are distributed in several functional modules (Fig. 4a).
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Fig. 4 Networks of proteins and pathways affected in HNC. a The selected proteins and their first neighbors in Reactome functional interaction
network are highly connected. The nodes were clustered into modules (indicated by colors) using ReactomeFI plugin in cytoscape. b Statistically
significantly enriched pathways (Reactome pathway database) affected in HNC. Nodes represent pathways and edges represent common proteins
having roles in the connected pathways. The edge line thickness represents the number of common proteins in the two pathways. Only the selected
proteins in HNC are included. c Pre-NOTCH expression and processing pathway from Reactome pathway database. This is the most frequently affected
pathway in HNC samples
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Pathway enrichment analysis of the modules shows dis-
tinct pathways enriched in the modules. Pathways in-
volved in transcription and its regulation are enriched in
module 0. Cell surface interaction and muscle contrac-
tion pathways are enriched in module 1. Signaling path-
ways are enriched in modules 2, 3 and 4. NOTCH
signaling, DNA replication and DNA replication are
enriched in modules 5 and 7. Pathways of cell division
are enriched in module 6. Hence, several pathways are
affected by the prioritized proteins in HNC.
We identified the significantly enriched pathways

(FDR <0.05) (Additional file 1: Table S6). To unveil
overlap between pathways, we generated a network of
significant pathways (Fig. 4b). Factors involved in
megakaryocyte development and platelet production
have the highest degree i.e. proteins involved in this
pathway are shared with many other pathways.
NOTCH signaling pathway is the most frequently af-
fected pathway in HNC. It includes NOTCH1-
NOTCH4 signaling and pre-NOTCH expression and
processing pathways. These pathways are affected in
altogether 78 samples (20.53 % of all the HNC sam-
ples) with harmful AASs in at least one of the proteins
corresponding to the 5 genes (EP300, CREBBP,
FBXW7, TP53, and NOTCH1) all of which are in the
CGC. When we consider also variations that lead to
substitution by stop codon, insertions and deletions in
these 5 genes, the number of affected samples in-
creases to 160 (42.1 %). These additional variation
types are very likely harmful due to large alterations to
genes and coded proteins. Other proteins involved in
the pathway are the products of NOTCH2, NOTCH3,
SEL1L and ATP2A2, all of which contain variations
leading to harmful AASs in more than one sample
(Fig. 4c). These proteins contained harmful AASs in
11 additional samples. Similar results are obtained in
other cancer types where cancer related central path-
ways are affected by proteins with harmful AASs at
different frequencies (Additional file 9: Figures S10-S37).
Thus, harmful AASs in a cancer type impair proteins
involved in different functions within certain pathway.
Previously, idiosyncratic variations were found to have
similar effects as recurrent variations [5, 6]. Hence, it
is essential to investigate also variations occurring at
low frequency and explore the pathways affected by
them.
NOTCH signaling pathway (Fig. 4c) is highly con-

served in most multicellular organisms and regulates cell
differentiation, proliferation, and cell-fate determination.
It has been reported to be affected in various cancers in-
cluding HNC [17–19] and is emerging as a new thera-
peutic target. Another significantly enriched pathway is
SCF-KIT pathway, which is affected in several cancer
types including HNC. The pathway contains stem cell

factor (SCF) and its receptor KIT. SCF homodimer binds
to KIT activating the tyrosine kinase domain. Then, KIT
stimulation activates several signaling pathways includ-
ing RAF/MAP kinase, AKT and JAK/STAT pathways.

Acute lymphocytic leukemia (ALL)
In ALL, only 2 proteins (encoded by PHF6 and NOTCH1)
were selected, therefore we included all genes contain-
ing one or more variations leading to harmful AASs.
GO enrichment analysis indicates that biological pro-
cesses including cell differentiation, cell proliferation,
and developmental processes are significantly enriched
(FDR < 0.01) (Additional file 1: Table S5). Similar to
HNC, proteins containing harmful AASs in more than
one sample have higher connectivity with an average
degree of 196.6 compared to other proteins containing
harmful AASs (110.7) and the overall degree of the
nodes in the functional interaction network (32.0)
(Additional file 10: Figure S38). Pathway enrichment
analysis identified significant pathways (FDR <0.05)
(Additional file 10: Figure S39). There are 53 proteins
with harmful AASs involved in significantly enriched
pathways, 16 of which have their corresponding genes
in CGC. In the network of pathways, immune system and
signaling pathways are highly connected (Additional file 10:
Figure S39). Factors involved in megakaryocyte develop-
ment are affected in 13 samples (13.3 %) containing harm-
ful AASs in proteins corresponding to GATA2, GATA3,
DOCK2, MYB, CREBBP, TP53 and EP300 genes. Includ-
ing the insertions, deletions and nonsense substitutions,
these 7 proteins contain AASs in 23 samples (23.5 %). Pre-
NOTCH expression and processing is also affected in 13
samples. Other significantly affected pathways include tran-
scription regulation of white adipocytes and SCF-KIT sig-
naling pathway.

Cancer network
Large scale genomic studies have revealed the heteroge-
neous nature of cancers. Variation patterns are diverse
even in tumors originating from the same tissue or
organ [11, 20] while similar patterns of genomic alter-
ations are observed in cancers from different tissues of
origin [21]. We evaluated the similarities between cancer
types based on the affected pathways. We generated a
network for cancers which have more than 20 selected
proteins and another network for the remaining cancers
(Fig. 5). The nodes are highly connected to each other in
both networks indicating that cancers share several
pathways that contain harmful AASs even when they
share fewer proteins. Variations can affect pathways at
any step and therefore pathways are more relevant for
cancer than individual genes and proteins. In Mendelian
diseases, several examples are known of related diseases
originating due to variations in proteins in the same
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signaling or metabolic pathways [22, 23]. Also in can-
cers, it may not be that relevant which protein in a path-
way is affected since they all would impair the function
of the system and contribute to cancer.

Discussion
We analyzed somatic AASs in 6,861 cancer samples
(whole genome or exome sequences) classified into 30
cancer types. Several methods including MutSigCV [20],
MuSic [24], InVEx [25], Oncodrive [26, 27] and HotNet2
[28] have been developed to analyze the cancer genomes
and identify cancer variants, genes, networks and path-
ways. Although some highly relevant cancer genes have
been identified based on the assumption that genes with
higher variation frequency than the background muta-
tion rate are putative drivers, large numbers of tumors
do not have any variations in these genes. Several varia-
tions leading to AASs in well-known driver genes do not
have functional impact, for example in TP53 [6]. Thus,
the numbers of tumors with harmful variations in driver
genes is even lower than previously presented (Tables S1
and S2). Here, we took a novel approach to identify
harmful somatic AASs and to reveal pathways affected by
them. Due to lack of benchmark datasets, it is not possible
to compare the performance of PON-P2 to the methods
based on substitution frequencies. We evaluated the ap-
plicability of PON-P2 on three cancer variation datasets.
The validated cancer variants obtained high predicted
probabilities of harmfulness (Additional file 3: Figure. S2).
PON-P2 reliably identified 69.3 % of AASs as harmful and

0.4 % as benign. The remaining AASs were predicted as
unknown.
Our study revealed that many variations in known

cancer genes are highly likely benign although the num-
bers of harmful variations in these proteins are higher
than on average in proteins (Additional file 1: Tables S1
and S2). The relevance of harmfulness of AASs in cancer
is further evidenced by our analysis of AASs in COS-
MIC. Frequent somatic AASs are highly likely harmful
with high predicted probabilities (Additional file 3:
Figure S2). The distribution of the probabilities of
harmfulness for frequent AASs in COSMIC is very
similar to those for the three additional somatic vari-
ation datasets. Also, large numbers of less frequent
AASs are harmful many of which may have been intro-
duced by random chance. The harmful AASs appear in
proteins that have higher degree of connectivity in the
functional interaction networks. The proteins that contain
harmful AASs frequently are even more connected which
is similar to cancer proteins in a previous study [29]
(Fig. 4a and Additional file 10: Figure S38). Pathway en-
richment analysis revealed proteins with varying numbers
of harmful AASs involved in key cancer-related path-
ways (Additional file 9: Figures S10-S37) confirming
that cancer is an outcome of large numbers of accumu-
lated harmful effects in a number of proteins and path-
ways. In addition, although cancer types have common
affected pathways (Fig. 5), there are different pathways
specific for individual cancer types (Additional file 1:
Table S6 and Additional file 9: Figures S10-S37). Only a
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Fig. 5 Cancer network. Nodes represent cancer types and edges indicate shared significantly enriched pathways between them. Node size
represents the number of significant pathways affected in the cancer type and node color represents the number of proteins. Edge line width
represents the number of common pathways between the cancers and edge color represents the number of common proteins between the
cancers. GB, Glioblastoma; GLG, Glioma low grade; HN, Head and neck; KC, Kidney chromophobe; KCC, Kidney clear cell; KP, Kidney papillary; LA,
Lung adeno; LS, Lung squamous; LSC, Lung small cell; NB, Neuroblastoma
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fraction of AASs in any protein are highly deleterious.
Recent analysis of predicted harmful AASs in the kin-
ase domain of Bruton tyrosine kinase revealed that
67 % of the single nucleotide change caused AASs are
harmful [30]. This number is higher than in most previ-
ous studies due to the importance of the kinase domain
([30] and the references therein).
To detect proteins most relevant in cancers, we priori-

tized approximately the top 5 % proteins in each cancer
type based on the number of samples containing harm-
ful AASs in them. Some of the prioritized proteins have
been previously implicated in cancers while others are
novel candidate proteins (Additional file 8: Figure S9).
The numbers of the affected proteins vary cancer-wise.
The possible reasons are i) there are other types of (gen-
etic) aberrations responsible for cancer development,
and/or ii) the cancers may have subtypes such as in breast
cancer. As there are large numbers of proteins containing
AASs, reliable methods are needed to prioritize the most
relevant affected proteins. By doing this with PON-P2, we
identified pathways relevant for cancers. We limited
our analysis to harmful AASs that were reliably pre-
dicted by PON-P2. AASs that were predicted as un-
known may contain harmful variations, however they
are excluded as the predictions are not reliable for
them. Other types of variations were not analyzed as
there are not highly reliable predictors for them. Inclu-
sion of other types of genetic variations would further
increase the numbers of samples containing harmful
variations. Therefore, the presented results and path-
ways represent the lower boundary of harmful varia-
tions. Examples of HNC and ALL revealed relevant
candidate genes and key pathways that are involved also
in many other cancer types (Additional file 9: Figures
S10-S37 and Additional file 1: Table S6). This clearly
shows that analysis of cancer genomes in pathway con-
text provides more and richer information than in
gene/protein context. Hence, our results suggest that
studies of cancer variations should be performed at
pathway level based on the effects of variations and
would further be supported by additional multi-
platform data for example gene expression, copy num-
ber variations, miRNA expression, methylation, etc.
Our findings provide novel targets for experimental
cancer research for understanding processes involved in
cancers and for identifying novel targets for therapies.

Conclusion
In this study, we exploited the impacts of AASs to filter
the putative functionally benign variations in cancer ge-
nomes. We identified the likely harmful AASs in can-
cers. Only a small fraction of the AASs are harmful even
in well-known cancer proteins. Analyzing the most fre-
quent AASs in the COSMIC database and three other

somatic variation datasets, we found that the recurrent
AASs are highly likely harmful. However, not all AASs
in proteins containing recurrent variations are harmful.
We identified the pathways affected by harmful AASs in
28 cancer types. Even proteins with low AAS frequency
can affect key pathways relevant for cancer. Therefore, it
is essential to identify pathways in cancers instead of
proteins/genes. This is further evidenced by the high
similarities between cancer types at pathway level rather
than at protein level.

Methods
Somatic variation data
We retrieved somatic variation data from 7,042 cancer
samples (whole genome or exome sequences) classified
into 30 cancer types from ftp://ftp.sanger.ac.uk/pub/can-
cer/AlexandrovEtAl/. Variations marked as filtered and
used for signature analysis [11] were retrieved. We
mapped the variations to human reference sequence
(Ensembl release 69) (http://ensembl.org/) and obtained
the AASs in proteins encoding the longest transcripts
for each gene.
We also obtained the complete somatic variation data

in the Catalogue of Somatic Mutations in Cancer (COS-
MIC) release 68. We mapped the variations to the hu-
man reference sequence (Ensembl release 69) and
obtained the AASs in proteins encoding the longest
transcript for each gene.
Three datasets were used for assessing the perform-

ance of PON-P2 for cancer variants. We obtained som-
atic variations leading to AASs from ClinVar database
[14]. We obtained 65 AASs for which the clinical sig-
nificance was annotated as pathogenic. 387 disease re-
lated AASs were from the Database of Curated
Mutations (DoCM) (http://docm.genome.wustl.edu/).
The variations in the database are individually curated
for clinical and/or functional evidence and all of them
are associated with cancer. We obtained 634 AASs that
lead to loss of protein activity and 454 AASs that do
not show significant loss in protein activity from cu-
rated TP53 database (tumours only) [15]. The AASs
leading to inactive protein are considered to be harmful
and those that do not change the protein activity as be-
nign. All these datasets are freely available in VariBench
database (http://structure.bmc.lu.se/VariBench/can-
cer.php) [31].

Harmful amino acid substitutions
We identified harmful AASs using PON-P2 (http://
structure.bmc.lu.se/PON-P2), a machine learning-based
tool [10]. PON-P2 estimates the probability of harmful-
ness by using 200 predictors. The probability of harmful-
ness ranges from 0 (likely benign) to 1 (likely harmful).
It classifies the confident predictions into harmful and
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neutral categories with high accuracy. The remaining
AASs are called unclassified variants. AASs predicted as
harmful were used for the analysis. Predictions for all
the AASs analysed in this study including the COSMIC
dataset are freely available at http://structure.bmc.lu.se/
PON-P2/cancer30.html/.

Cancer Gene Census
Cancer Gene Census (CGC) lists genes which are caus-
ally implicated in cancer [12]. CGC (downloaded Febru-
ary 2014) contained 522 genes in which somatic and/or
germline variations are implicated in cancer. Genes that
were not reported to have somatic variations leading to
AASs were eliminated.

Lego plots
Lego plots were generated for nucleotide substitutions
and AASs in each cancer type using ROOT data analysis
framework [32]. For each cancer, two plots were gener-
ated, one for all the SNVs leading to AASs and another
for SNVs leading to harmful AASs. All possible substitu-
tions are represented by six classes of substitutions, C >
T, C > A, C > G, T > C, T > A and T > G (represented by
the pyrimidines at the reference nucleotides) and the im-
mediate 5’ and 3’ nucleotides were also considered. The
variations in splice sites were excluded for nucleotide
substitutions. For AASs, lego plots were plotted for all
AASs that are possible by single nucleotide substitutions.

Protein domains
Annotations for domains were downloaded from
InterPro BioMart (http://www.ebi.ac.uk/interpro/bio-
mart/martview/). All the domains were mapped to ref-
erence amino acid sequences and AASs in the regions
of each domain were identified. To balance the num-
ber of AASs and lengths of domains, we normalized
the total number of AASs in the region of a domain by
the cumulative length of the amino acids in the do-
mains. The cumulative length of the domain is the
sum of the lengths of domains containing AASs. Do-
mains that contained more than one AAS were in-
cluded to the analysis. Protein structures of
extracellular domain and DNA binding domain in
EGFR protein were obtained from protein data bank
(PDB) and visualized using UCSF Chimera
visualization tool [33].

Prioritization of proteins containing harmful AASs
The proteins were prioritized based on the numbers of
samples containing harmful AASs in the proteins.
Firstly, all harmful AASs in each protein were identified.
For each protein, the number of samples containing at
least one harmful AAS was counted. Proteins that did
not contain harmful AASs in at least two samples were

eliminated. The remaining proteins were sorted based
on the number of samples. To select approximately top
5 % of the sorted proteins, we set a threshold at 95th
percentile for the number of samples in which each pro-
tein was affected. Proteins containing harmful AASs in
higher number of samples than the threshold were prior-
itized. To include the recurrent harmful AASs, we also
selected those proteins that have at least one AAS in
more than 2 % of the samples. This was done only when
there were more than 100 samples containing harmful
AASs.

Functional interaction network
Pathway-based protein functional interaction network
for proteins coding for human genes was obtained by
using the ReactomeFI [34] plugin in cytoscape [35]. The
latest version (2013) of the functional interaction net-
work was used where there were 10,706 nodes and
171,449 edges. To reduce the computation time, we re-
duced the size of the network by removing all nodes ex-
cept for selected proteins, proteins with harmful AASs
and their first neighbours in the cancer type.
Degree of a node is the number of edges by which it is

connected to other nodes. We computed the average de-
gree of nodes by using the following equation

Dn ¼ 2� En þ Eother

n
;

where, n is the number of nodes, Dn is the average de-
gree of n nodes, En is the number of edges connecting
any two nodes among n nodes and Eother is the number
of edges that connect n nodes to other nodes in the net-
work. As the edges connecting two of the n nodes con-
tribute to the degree of both nodes, we multiplied the
number of such edges by 2. The overall average degree
was computed for the network extracted from Reacto-
meFI before eliminating any nodes. For overall network,
Eother is 0 as it is computed for all the nodes in the
network.
The proteins in the network were clustered into differ-

ent modules using the clustering function in the Reacto-
meFI plugin. Among many significantly enriched
pathways, one or two previously reported cancer related
pathways were selected for each cancer type. The se-
lected proteins and other proteins containing harmful
AASs in the specific cancer types that are involved in
the pathways were highlighted manually.

Enrichment analysis of GO terms and pathways
The Gene Ontology (GO) terms associated with proteins
coding for all human genes (GRCh37) were extracted
using Ensembl BioMart. GO term enrichment analysis
was performed by using the topGO [36] bioconductor
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package in R. Based on the numbers of selected proteins,
the cancers were categorized into two groups. Cancers
in which the numbers of selected proteins are below 20
were grouped together. Enrichment analysis of GO
terms was performed for all the genes containing at least
one harmful variation and GO terms were considered
significant at FDR < 0.01. Genes corresponding to se-
lected proteins were used for the remaining cancer types
and the GO terms were considered significant if FDR <
0.001. Pathway enrichment analysis was performed by
using ReactomeFI plugin in cytoscape. Significantly
enriched pathways (FDR < 0.05) were selected.

Availability of supporting data
All supporting data are included as additional files or kept
in publicly available repositories. The somatic variation
data used in this article is publicly available at ftp://ftp.san-
ger.ac.uk/pub/cancer/AlexandrovEtAl/. The validated can-
cer variation datasets used in this article are freely
available in the VariBench database (http://structure.-
bmc.lu.se/VariBench/cancer.php). Predictions for all AASs
supporting the results of this article are freely available at
http://structure.bmc.lu.se/PON-P2/cancer30.html/.

Additional files

Additional file 1: This file contains Tables S1 to S9. Microsoft Excel
Workbook containing 6 worksheets. Table S1: Variations in each cancer.
The numbers of AASs are based on the mapping with the reference
sequence (Ensembl release 69) and harmful AASs were predicted by
PON-P2. The variations are mapped to proteins translated from longest
transcript of CGC genes in COSMIC v68. Table S2: Variations in COSMIC
database. Numbers of samples, genes/proteins and variations in COSMIC
database. Table S3: Frequency of harmful AASs in domains. Top 20 domains
containing the most number of harmful AASs in each cancer class are
shown. The frequency of harmful AASs is normalized by the cumulative
length of the amino acid sequence in the domain regions. Table S4: Genes
corresponding to selected proteins in each cancer. The frequencies of
harmful AASs and the numbers of samples containing harmful AASs in the
selected proteins are included. Table S5: Top GO terms significantly
enriched in each cancer. FDR threshold 0.01 was used for cancers in which
all the proteins containing harmful AASs were used and FDR threshold
0.001 was used for other cancer types. Table S6: Significantly enriched
pathways in each cancer. The pathways enriched with FDR lower than 0.5
were considered significant. The pathways are taken from Reactome
pathway database. (PDF 268 kb)

Additional file 2: This file contains supplementary Figure S1.
Frequency of variations leading to AASs in each sample. Each dot
represents the numbers of AASs (or harmful AASs) in each sample. The
horizontal red bars indicate the median number of AASs (or harmful
AASs) for each cancer type. n is the number of samples containing AASs
(or harmful AASs) in each cancer type. The colored bars show the
distribution of nucleotide substitutions in each sample. All the nucleotide
substitutions are represented by pyrimidines at reference nucleotides.
(PDF 692 kb)

Additional file 3: This file contains supplementary Figure S2.
Distribution of predicted probabilities of harmfulness for cancer variants.
a) Density plot of predicted probabilities of harmfulness for all AASs and
most frequent AASs in COSMIC database. AASs present in more than 25
samples in COSMIC were referred as most frequent. The predicted
probability ranges from 0–1 but the plots are extrapolated by default to

3 times the bandwidth from the extreme values. b) Density plot of
predicted probabilities of harmfulness for somatic variation datasets
obtained from ClinVar, DoCM and TP53 database. c) Venn diagram of
overlap between somatic variations obtained from ClinVar, DoCM and
TP53 database. d) Venn diagrams of overlap between frequent variations
in COSMIC with somatic variations obtained from ClinVar, DoCM and
TP53 database. (PDF 240 kb)

Additional file 4: This file contains supplementary Figures S3 and
S4. Lego plots of base substitutions leading to AASs and harmful AASs in
cancers. Figure S3: Lego plots of base substitutions leading to AASs in
cancers. Figure S4: Lego plots of base substitutions leading to harmful
AASs in cancers. The frequency is based on the variation and immediate
5’ and 3’ bases to the substituted nucleotide. The variations containing
either 5’ or 3’ nucleotide in intronic region are excluded. The base
substitutions are represented by six types of substitutions with pyrimidines
at reference nucleotides. The color represents the frequency of each
tri-nucleotide from the lowest (blue) to the highest (red). (PDF 728 kb)

Additional file 5: This file contains supplementary Figures S5 and
S6. Lego plots of AASs and harmful AASs caused by single nucleotide
substitutions in cancers. Figure S5: Lego plots of AASs caused by single
nucleotide substitutions in cancers. Figure S6: Lego plots of AASs caused
by single nucleotide substitutions in cancers. The color represents the
frequency of each tri-nucleotide from the lowest (blue) to the highest
(red). The most frequent AAS (s) are marked. (PDF 1140 kb)

Additional file 6: This file contains supplementary Figure S7.
Distribution of AASs in protein domains. a, Frequency of AASs in protein
domains. 20 domains containing the highest frequency of AASs in each
cancer are plotted. b, Average frequency of AASs in protein domains in
all cancers together. InterPro domains containing at least 2 AASs in at
least one of the cancer types are included. (PDF 117 kb)

Additional file 7: This file contains supplementary Figure S8.
Distribution of AASs in EGFR protein. a, Distribution of AASs along EGFR
protein sequence in different cancer types. The X-axis represents the
positions of the amino acids in the protein sequence. b, 3-dimensional
protein structure of extracellular domain in EGFR (pdbid: 3QWQ). c,
3-dimensional protein structure of kinase domain in EGFR (pdbid: 3POZ).
Positions of harmful AASs are highlighted in red, positions of benign
AASs in blue and positions where both harmful and benign AASs are
present in yellow. (PDF 215 kb)

Additional file 8: This file contains supplementary Figure S9.
Numbers of genes containing SNVs leading to AASs in cancers. Numbers
of genes corresponding to selected proteins, genes with at least one SNV
leading to harmful AASs and genes with SNVs leading to AASs are
shown, respectively, from left to right for each cancer type. The grey bar
represents genes catalogued in CGC (genes in which SNVs leading to
AASs have been implicated in cancer) and the white bar represents all
other genes. (PDF 17 kb)

Additional file 9: Contains supplementary Figures S10 to S37.
Pathway-based functional interaction network of proteins containing
harmful AASs in 28 cancer types. Proteins involved in selected significantly
enriched pathways are marked with colored backgrounds. The proteins
were clustered into different modules by using ReactomeFI plugin in
cytoscape. Figure S10: Acute lymphocytic leukemia (ALL). Figure S11:
Acute myeloid leukemia (AML). Figure S12: Bladder cancer. Figure S13:
Breast cancer. Figure S14: Cervix cancer. Figure S15: Chronic lymphocytic
leukemia (CLL). Figure S16: Colorectum cancer. Figure S17: Esophageal
cancer. Figure S18: Glioblastoma. Figure S19: Glioma low grade. Figure
S20: Head and neck cancer (HNC). Figure S21: Kidney chromophobe can-
cer. Figure S22: Kidney clear cell cancer. Figure S23: Kidney papillary can-
cer. Figure S24: Liver cancer. Figure S25: Lung adeno cancer.
Figure S26: Lung small cell cancer. Figure S27: Lung squamous cancer.
Figure S28: Lymphoma B-cell. Figure S29: Melanoma cancer. Figure S30:
Myeloma cancer. Figure S31: Neuroblastoma. Figure S32: Ovary cancer.
Figure S33: Pancreas cancer. Figure S34: Prostate cancer.
Figure S35: Stomach cancer. Figure S36: Thyroid cancer. Figure S37:
Uterus cancer. (PDF 3125 kb)

Additional file 10: Contains supplementary figures S38 and S39.
Pathway-based functional interaction network and significantly enriched
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pathways in ALL. Figure S38: Pathway-based functional interaction network
in ALL. The proteins containing harmful AASs and proteins that are first
neighbor of proteins containing more than one harmful AASs are included
in the network. The network was clustered by using ReactomeFI plugin in
cytoscape. The node colors represent clusters. Figure S39: Network of
significantly enriched pathways in ALL. The nodes represent pathways and
the edges represent overlapping proteins between the pathways and
containing harmful AASs in ALL. The edge thickness represents the number
of overlapping proteins. (PDF 813 kb)
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