
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Are You Biting Off More Than You Can Chew? A Case Study on Causes and Effects of
Overscoping in Large-Scale Software Engineering

Bjarnason, Elizabeth; Wnuk, Krzysztof; Regnell, Björn

Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2012.04.006

2012

Link to publication

Citation for published version (APA):
Bjarnason, E., Wnuk, K., & Regnell, B. (2012). Are You Biting Off More Than You Can Chew? A Case Study on
Causes and Effects of Overscoping in Large-Scale Software Engineering. Information and Software Technology,
54(10), 1107-1124. https://doi.org/10.1016/j.infsof.2012.04.006

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.infsof.2012.04.006
https://portal.research.lu.se/en/publications/7582dc6a-e186-460c-9d44-a876d52f05f6
https://doi.org/10.1016/j.infsof.2012.04.006


Information and Software Technology xxx (2012) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Are you biting off more than you can chew? A case study on causes and effects
of overscoping in large-scale software engineering

Elizabeth Bjarnason ⇑, Krzysztof Wnuk, Björn Regnell
Department of Computer Science, Lund University, Lund, Sweden

a r t i c l e i n f o
Article history:
Received 31 January 2011
Received in revised form 27 April 2012
Accepted 29 April 2012
Available online xxxx

Keywords:
Requirements scoping
Empirical study
Software release planning
Case study
Agile requirements engineering
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2012.04.006

⇑ Corresponding author. Tel.: +46 46 222 00 00.
E-mail addresses: Elizabeth.Bjarnason@cs.lth.se (

nuk@cs.lth.se (K. Wnuk), Bjorn.Regnell@cs.lth.se (B. R

Please cite this article in press as: E. Bjarnason et
scale software engineering, Inform. Softw. Tech
a b s t r a c t

Context: Scope management is a core part of software release management and often a key factor in
releasing successful software products to the market. In a market-driven case, when only a few require-
ments are known a priori, the risk of overscoping may increase.
Objective: This paper reports on findings from a case study aimed at understanding overscoping in large-
scale, market-driven software development projects, and how agile requirements engineering practices
may affect this situation.
Method: Based on a hypothesis of which factors that may be involved in an overscoping situation, semi-
structured interviews were performed with nine practitioners at a large, market-driven software com-
pany. The results from the interviews were validated by six (other) practitioners at the case company
via a questionnaire.
Results: The results provide a detailed picture of overscoping as a phenomenon including a number of
causes, root causes and effects, and indicate that overscoping is mainly caused by operating in a fast-
moving market-driven domain and how this ever-changing inflow of requirements is managed. Weak
awareness of overall goals, in combination with low development involvement in early phases, may con-
tribute to ‘biting off’ more than a project can ‘chew’. Furthermore, overscoping may lead to a number of
potentially serious and expensive consequences, including quality issues, delays and failure to meet cus-
tomer expectations. Finally, the study indicates that overscoping occurs also when applying agile
requirements engineering practices, though the overload is more manageable and perceived to result
in less wasted effort when applying a continuous scope prioritization, in combination with gradual
requirements detailing and a close cooperation within cross-functional teams.
Conclusion: The results provide an increased understanding of scoping as a complex and continuous
activity, including an analysis of the causes, effects, and a discussion on possible impact of agile require-
ments engineering practices to the issue of overscoping. The results presented in this paper can be used
to identify potential factors to address in order to achieve a more realistic project scope.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Maximizing the business value for a product and a set of avail-
able resources may sound like a simple task of selecting features
according to the highest return of investment. However, in mar-
ket-driven requirements engineering (MDRE) [38,59] software
product managers face the challenge of managing continuously
shifting market needs [1] with a large number of new and changing
requirements [28] caused both by a capricious market situation
[19] and by evolving technologies. In this situation, selecting which
requirements to include into the next release of a software product
(also called scoping [66] or project scoping [56]) is a complex and
continuous task of assessing and re-assessing how these scoping
ll rights reserved.

E. Bjarnason), Krzysztof.W-
egnell).

al., Are you biting off more tha
nol. (2012), http://dx.doi.org/10
changes impact the common code base of the software product
line [54] on which those products are built [71]. This domain scop-
ing is considered part of the product line scoping [66], which de-
rives value from the opportunities to reuse functionality of the
product line. These factors, combined with increased market com-
petition and unpredictable market response to new products, force
decision makers to continuously face the task of making and re-
evaluating decisions in an ever evolving world [5].

Defining the scope of a product to fit a required schedule is a
known risk in project management [13] and in our previous work
[71] we found that the project scope at a large software company
changed significantly throughout the entire project life cycle. These
changes were partly due to overscoping, i.e. setting a scope that re-
quires more resources than are available. Several researchers have
focused on scope creep where the scope is increased by the devel-
opers, and highlighted this as a serious project risk [16,17,31].
Others have investigated scoping as a part of release planning
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006
mailto:Elizabeth.Bjarnason@cs.lth.se
mailto:Krzysztof.Wnuk@cs.lth.se
mailto:Krzysztof.Wnuk@cs.lth.se
mailto:Bjorn.Regnell@cs.lth.se
http://dx.doi.org/10.1016/j.infsof.2012.04.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2012.04.006


2 E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx
[66,68,71]. However, no study has yet attempted to investigate the
causes and effects of overscoping even though requirements engi-
neering (RE) decision making is an acknowledged challenge
[2,5,50]. In this study, we have investigated this phenomenon of
overscoping a project, or biting off more that you can chew, in par-
ticular in a market-driven and very-large scale RE (VLSRE) context
[58].

Agile development processes claim to address several of the
challenges involved in scoping frequently changing requirements.
For example, in eXtreme programming (XP) [7] and Scrum [67]
the balance between scope and available resources is managed
by extreme prioritization and constant (re)planning of the scope
in combination with time boxing of the individual development
iterations. However, agile requirements engineering (RE) practices
have also been found to pose new challenges, e.g., in achieving con-
sensus on priorities among multiple stakeholders and in creating
accurate project plans (cost and timeline) for an entire project [57].

The main goal of the case study reported on in this paper was to
increase the understanding of factors involved in overscoping and
thereby highlight this risk and take a step towards addressing and
avoiding overscoping of projects. To achieve this, the study was de-
signed to answer the following questions: (RQ1) what causes over-
scoping? (RQ2) what are the resulting effects of overscoping? and
(RQ3) how may agile RE practices impact the causes and effects of
overscoping? The case study has been conducted at a large market-
driven software development company that has started to shift to-
wards a more agile way of working. The study includes interviews
with nine practitioners working with requirements engineering,
software development and product testing. The interview results
were then validated via a questionnaire with another six practitio-
ners from the case company. The contribution of the presented
work includes eight main causes of overscoping complemented
by a number of root causes, and nine main effects of overscoping.
In addition, the results indicate that three of the agile RE practices
adopted by the case company may impact some of these causes
and root causes and, thus, may also reduce the effects of
overscoping.

Partial results from this study have previously been published
as workshop publications in [11] where overscoping was prelimi-
narily investigated and in [10] where preliminary results on the
benefits and side effects of agile RE practices were published. For
this article, the results are extended with (1) additional causes,
root causes and effects of overscoping; (2) additional empirical re-
sults on overscoping from 6 (other) practitioners; and (3) details on
the impact of agile RE practices specifically on overscoping. These
extensions were achieved by further analysis of the full interview
material and further validation of the results through a
questionnaire.

The remainder of this paper is structured as follows: Section 2
describes related work. Section 3 describes the case company,
while the research method is outlined in Section 4. The results
are reported in Section 5 for the interviews and in Section 6 for
the validation questionnaire. In Section 7, the results are inter-
preted and related to other work, and limitations and validity
threats are discussed. Finally, Section 8 contains conclusions and
further work.
2. Related work

Unrealistic schedules and budgets are among the top ten risks
in software engineering [13] and some reasons for overloading
projects with scope have been suggested. For example, DeMarco
and Lister mentioned that a failure among stakeholders to concur
on project goals [20] (also one of the challenges of agile RE [57])
can result in an excessive scope burden on a project. Project
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
overload may also result from sales staff agreeing to deliver unre-
alistically large features without considering scheduling implica-
tions [29]. Furthermore, scope that is extended beyond the
formal requirements by the developers, i.e. scope creep, is stated
by Iaconou and Dexter [31] as a factors leading to project failures.
Scope creep is also mentioned as having a big impact on risk and
risk management in enterprise data warehouse projects [43]. In
addition, it is listed as one of five core risks during the require-
ments phase, and is a direct consequence of how requirements
are gathered [20]. On the other hand, Gemmer argues that people’s
perceptions of risk and their subsequent behaviour is overlooked
within risk management and that an increased awareness of causes
and effects of risks may lead to an improved discussion and man-
agement of these risks [26]. Some methods and tools to mitigate
and manage risks related to scoping have been presented [17].
For example, Carter et al. [16] suggested combining evolutionary
prototyping and risk-mitigation strategy to mitigate the negative
effects of scope creep. However, the full issue of overscoping is
not explicitly named as a risk in the related work, nor empirically
investigated for their causes and consequences.

Requirements engineering (RE) is a decision intense part of the
software engineering process [5], which can support and increase
the probability of success in the development process [4]. How-
ever, the efficiency and effectiveness of RE decision making has
cognitive limitations [5], due to being a knowledge intensive activ-
ity. Furthermore, research into the field of RE decision making is
still in its infancy [2,50]. A major challenge in this research (accord-
ing to Alenljung and Persson) lies in understanding the nature of
RE decision making and identifying its obstacles [2] and several
authors [2,4,5,50] mention the need to: (1) identify decision prob-
lems in the RE process; (2) perform empirical studies of RE decision
making; and (3) examine how non-technical issues affect or influ-
ence decision making. Communication gaps are an example of such
non-technical issues which have been reported to negatively affect
the decision making and contribute to defining an unrealistic scope
[12].

There are two characteristics of MDRE [59] which further aggra-
vates RE decision making, namely a lack of actual customers with
which to negotiate requirements [37,55] and a continuous inflow
of requirements from multiple channels [28,38]. As a result, rather
than negotiate with specific customers, the demands and require-
ments of an anonymous consumer market have to be ‘invented’
[55] through market research. Moreover, the success of the final
product is primarily validated by the market with the uncertainty
[59] of how well the ‘invented’ requirements compare to the mar-
ket needs. Commonly, market research continuously issues more
requirements [59] than can be handled with available resources.
A state of congestion then occurs in the MDRE process [38] and
the set of requirements to implement in the next project has to
be selected using prioritization techniques based on market pre-
dictions and effort estimates [15,33,37].

Scope management is considered as one of the core functions of
software release planning and a key activity for achieving eco-
nomic benefits in product line development [66]. Accurate release
planning is vital for launching products within the optimal market
window. And, this is a critical success factor for products in the
MDRE domain [64]. Missing this window might cause both losses
in sales and, additional cost for prolonged development and de-
layed promotion campaigns. However, making reliable release
plans based on uncertain estimates [38] and frequently with fea-
tures with dependencies to other features [14] is a challenge in it-
self. In addition, a rapidly changing market situation may force a
project to consider new market requirements at a late project
stage. Release planning is then a compromise where already com-
mitted features may need to be sacrificed at the expense of wasted
effort [71] of work already performed. The area of release planning
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx 3
is well researched and Svahnberg et al. reported on 24 strategic re-
lease planning models presented in academic papers intended for
market-driven software development [68]. Furthermore, Wohlin
and Aurum investigated what is important when deciding to in-
clude a software requirement in a project or release [73]. Despite
this, the understanding of the challenges related to scope manage-
ment and their causes and effects is still low.

Scoping in agile development projects mainly involves three of
the agile RE practices identified by Ramesh et al., namely extreme
prioritization, constant planning and iterative RE [57]. High-level
requirements are prioritized and the features with the highest
market value are developed first. This approach ensures that if
the project is delayed launch may still be possible since the most
business-critical requirements will already be developed. Ramesh
et al. identified a number of benefits for companies applying these
agile RE practices, but also challenges and varying impact on pro-
ject risks. The identified benefits include an ability to adapt to
changing prioritization of requirements, as well as, a clearer under-
standing of what the customers want, thus reducing the need for
major changes [57]. On the other hand, agile RE practices were
found to include challenges in (1) correctly estimating and sched-
uling for the full project scope (which continuously changes), (2) a
tendency to omit quality requirements and architectural issues
(with the risk of serious and costly problems over time), and (3)
constant reprioritization of the requirements (with subsequent
instability and waste) [57].
3. The case company

The case company has around 5000 employees and develops
embedded systems for a global market using a product line ap-
proach [54]. The projects in focus for this case study are technology
investments into an evolving common code base of a product line
(a.k.a. platform) on which multiple products are based. There are
several consecutive releases of this platform where each release
is the basis for one or more products. The products mainly reuse
the platform’s functionality and qualities, and contain very little
product-specific software. A major platform release has a lead time
of approximately 2 years from start to launch, and is focused on
functionality growth and quality enhancements for a product port-
folio. For such projects typically around 60–80 new features are
added, for which approximately 700–1000 system requirements
are produced. These requirements are then implemented by 20–
25 different development teams with, in total, around 40–80
developers per team assigned to different projects. The require-
ments legacy database amounts to a very complex and large set
of requirements, at various abstraction levels, in the order of mag-
nitude of 20,000 entities. This makes it an example of the VLSRE
(very-large scale RE) context [58]. Both the flow of new require-
ments (added to and removed from the scope of platform projects)
and the scoping decisions associated with this flow may change
frequently and rapidly. This exposes the project management to
a series of unplanned, and often difficult, decisions where previous
commitments have to be changed or cancelled.
3.1. Organisational set-up

Several organizational units within the company are involved in
the development. For this case study, the relevant units are: the
requirements unit that manages the scope and the requirements;
the software unit that develops the software for the platform; and
the product unit that develops products based on the platform re-
leases. In addition, there is a usability design unit responsible for
designing the user interface. Within each unit there are several
groups of specialists divided by technical area. These specialists
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
are responsible for the work in various stages of the development
process. For this study, the most essential groups are the require-
ments teams (RTs) (part of the requirements unit) that, for a specific
technical area, define the scope, and elicit and specify system
requirements, and the development teams (DTs) (part of the soft-
ware unit) that design, develop and maintain software for the (pre-
viously) defined requirements. Each RT has a team leader who
manages the team. Another role belonging to the requirements
unit is the requirements architect who is responsible for managing
the overall scope, which includes coordinating the RTs. In the
DTs there are several roles, namely

� Development team leader who leads and plans the team’s work
for the implementation and maintenance phases;
� Development team requirements coordinator who leads the

team’s work during the requirements management and design
phase, and coordinates the requirements with the RTs;
� Developer who designs, develops and maintains the software;
� Tester who verifies the software.

The software unit also has a project management team consist-
ing of (among others): quality managers who set the target quality
levels and follow up on these, and software project managers who
monitor and coordinate the DTs and interact with the require-
ments architects. For the product development unit in this study,
we focus on the system testing task from the viewpoint of the func-
tionality and quality of the platform produced by the software unit.
3.2. Phase-based process

The company used a stage-gate model. There were milestones
(MS) for controlling and monitoring the project progress. In partic-
ular, there were four milestones for the requirements management
and design (MS1–MS4) and three milestones for the implementa-
tion and maintenance (MS5–MS7). For each of these milestones,
the project scope was updated and baselined. The milestone crite-
ria were as follows:

� MS1: At the beginning of each project, RT roadmap documents
were extracted to formulate a set of features for an upcoming
platform project. A feature in this case is a concept of grouping
requirements that constitute a new functional enhancement to
the platform. At this stage, features contained a description suffi-
cient for enabling estimation of its market value and implemen-
tation effort, both of which were obtained using a cost-value
approach [37]. These values were the basis for initial scoping
inclusion for each technical area when the features were
reviewed, prioritized and approved. The initial scope was decided
and baselined per RT, guided by a project directive and based on
initial resource estimates given by the primary receiving (main)
DT. The scope was then maintained in a document called feature
list that was updated each week after a meeting of the change
control board (CCB). The role of the CCB was to decide upon add-
ing or removing features according to changes that occur.
� MS2: The features were refined to requirements and specified

by the RTs, and assigned to their main DTs, responsible for
designing and implementing the feature. The requirements
were reviewed with the main DTs and were then approved.
Other (secondary) DTs that were also affected by the features
were identified. The DTs make an effort estimate per feature
for both main and secondary DT.
� MS3: The DTs had refined the system requirements and started

designing the system. The set of secondary DTs were refined
along with the effort estimates, and the scope was updated
and baselined.
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


4 E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx
� MS4: The requirements refinement work and the system design
were finished, and implementation plans were produced. The
final scope was decided and agreed with the development
resources, i.e. the software unit.
� MS5: All requirements had been developed and delivered to the

platform.
� MS6: The software in the platform had been stabilized and pre-

pared for customer testing.
� MS7: Customer-reported issues had been handled and the soft-

ware updated. The software was ready to be released.

According to the company’s process guidelines, the majority of
the scoping work should have been done by MS2. The require-
ments were expressed using a domain-specific, natural language,
and contained many special terms that required contextual knowl-
edge to be understood. In the early phases, requirements contained
a customer-oriented description while later being refined to de-
tailed implementation requirements.

3.3. Agile development process

In order to meet the challenges of managing high requirements
volatility, the case company was introducing a new development
process at the time of this study. The size and complexity of the soft-
ware development, including the usage of product lines, remained
the same irrespective of the process used. The new process has been
influenced by ideas and principles from the agile development pro-
cesses eXtreme programming (XP) [7] and Scrum [67]. The phase-
based process was replaced by a continuous development model
with a toll-gate structure for the software releases of the software
product line (to allow for coordination with hardware and product
projects, see P1 below). The responsibility for requirements
management was transferred from the (previous) requirements
unit, partly into the business unit and partly into the software unit.
The following agile RE practices were being introduced:

� One continuous scope and release-planning flow (P1). The scope
for all software releases is continuously planned and managed
via one priority-based list (comparable to a product backlog).
The business unit gathers and prioritizes features from a busi-
ness perspective. All new high-level requirements are continu-
ously placed into this list and prioritized by the business
unit. The software unit estimates the effort and potential deliv-
ery date for each feature based on priority and available
software resource capacity. Development is planned and
executed according to priority order. Planning and resource
allocation is handled via one overall plan which contains all
the resources of the software unit. The scope of the platform
releases are synchronized with the product releases by gradual
commitment to different parts of the scope. Critical scope is
requested to be committed for specific product releases, while
non-critical features are assigned to product releases when they
are implemented and ready to be integrated into the platform.
� Cross-functional development teams (P2) that include a customer

representative assigned by the business unit (comparable to the
agile practice of customer proxy) have the full responsibility for
defining detailed requirements, implementing and testing a
feature (from the common priority-based list). Each new feature
is developed by one cross-functional team specifically
composed for that feature. The different software engineering
disciplines and phases (e.g. requirements, design and test) are
performed in an integrated fashion and within the same team.
The team has the mandate to decide on changes within the
value, effort and time frames assigned for the feature.
� Gradual and iterative detailing of requirements (P3). The require-
ments are first defined at the high level (as features in the pri-
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
ority-based list) and then iteratively refined in the development
teams into more detailed requirements as the design and imple-
mentation work progresses.
� Integrated requirements engineering (P4). The requirements engi-

neering tasks are integrated with the other development activ-
ities. The requirements are detailed, agreed and documented
during design and development within the same cross-func-
tional development team through close interaction between
the customer representative and other team members, e.g.
designers, developers and testers.
� User stories and acceptance criteria (P5) are used to formally doc-

ument the requirements agreed for development. User stories
define user goals and the acceptance criteria define detailed
requirements to fulfill for a user story to be accepted as fully
implemented. The acceptance criteria are to be covered by test
cases.

This study mainly focuses on the situation prior to introducing
the new agile way of working, i.e. for projects working as described
in Section 3.2. The agile RE practices covered in this paper were de-
fined in the company’s internal development process at the time of
the study. Practices P1 and P2 were being used in the projects,
while P3 was partly implemented, and P4 and P5 were in the pro-
cess of being implemented. Thus, it was not possible to investigate
the full impact of the new agile RE practices at the time of this
study. Nevertheless, the study investigates how these (new) prac-
tices are believed to affect the overscoping situation, i.e. which
causes and root causes may be impacted by the agile RE practices
and, thus, lead to reducing overscoping and its effects.
4. Research method

The study was initiated due to a larger transition taking place
within the case company and with the aim of understanding the
differences between the scoping processes of the phase-based pro-
cess and the new agile development process. Our previous research
into scoping [71] served as the basis for identifying research ques-
tions aimed at seeking a deeper understanding of overscoping as a
phenomenon. In order to obtain detailed insight, an explanatory
approach [60] was taken and the study design was based on the
specific company context and the authors’ pre-understanding.
(These investigations can then be broadened in future studies.)
Existing knowledge from literature was taken into account in inter-
pretation and validation of the results.

A single-company explanatory case study [60] was performed
using mainly a qualitative research approach complemented by a
quantitative method for some of the data gathering. Qualitative re-
search is suitable for investigating a complex phenomenon (such
as overscoping) in a real-life context where it exists [48] (such as
our case company). In this study, practitioners’ perceptions of
overscoping were studied through interviews where the verbalized
thoughts of individuals with a range of different roles at the case
company were captured [48,60]. An overview of the research
method is shown in Fig. 1.

The case study was performed in three phases, see Fig. 1. In the
first phase, the industrial experience of one of the authors was
used to formulate a hypothesis concerning possible (assumed)
causes of overscoping and (assumed) effects which may result
from overscoping. This hypothesis was used as a starting point in
creating the interview instrument [69] for the interviews, which
took place in the second phase of the study. In the third phase,
the interview results were presented to (another) six practitioners
from the same company and validated by using a questionnaire
(see Section 6 for more details and [69] for the validation question-
naire). This was done to reduce the risk of inappropriate (false) cer-
tainty of the correctness of the results [60].
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


Pre-study and
hypothesis formulation

Interview study
Validation 

questionnaire

Work experience at case company 9 practitioners with roles and 
experiences throughout life cycle

6 (other) practitioners

• 5 assumed causes (Section 4.1.1) 
• 5 agile RE practices (Section 3.3, [10])
• interview instrument ([69])

PHASE 1 PHASE 2 PHASE 3

INPUT

• 6 main causes (Section 5.1, [11]) 
• root causes (Section 5.2, [11])
• 6 effects (Section 5.3, [11]) 
• 3 agile RE practices (Section 5.4) 

+ 2 main causes,  root 
causes (Section 6.1)
+ 3 effects (Section 6.2)
+ 3 practices (Section 6.3)

OUTPUT

CASE STUDY

RESEARCH QUESTIONS on OVERSCOPING

RQ1: What causes overscoping?
RQ2: What are the effects?

For phase-based process

RQ3: How may agile RE practices 
impact the causes & effects?

For agile development process

Previous research

Phase-based context

causes effects
Agile context

causes’ effects’

case company context

Fig. 1. Overview of research method for case study.

E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx 5
4.1. Phase one: pre-study and hypothesis generation

The purpose of the first phase of the study was to formulate a
hypothesis on overscoping and prepare for the interviews. The
experience of one of the authors (who has worked at the case com-
pany, with experience in several areas including coding, design,
requirements engineering and process development) was used to
identify possible (assumed) causes and effect of overscoping. In
addition to these assumptions for the phase-based way of working,
this author also identified the agile RE practices being introduced
at the case company. These practices were assumed to impact
one or more of the issues believed to cause overscoping in the
phase-based process. If these assumptions were correct, applying
the new practices should then result in reducing (or eliminating)
the effects connected to those causes, and thus reduce (or elimi-
nate) overscoping. In order to avoid selecting a set of assumptions
biased by only one person, a series of brainstorming sessions
around the hypothesis were conducted within the group of
researchers involved in this study (i.e. the authors). The resulting
(updated) hypothesis was then used as the main input in creating
an interview study instrument (accessible online [69]).

4.1.1. Formulated hypothesis
The hypothesis formulated for this study is that overscoping is

caused by a number of factors, and that by addressing one or more
of these factors, e.g. through agile RE practices, the phenomenon of
overscoping may be alleviated, or even eliminated. The following
five factors were identified as assumed causes for overscoping in
phase one:

� continuous requirements inflow via multiple channels (C1) was
assumed to cause overscoping by the many inflows increasing
the difficulty of defining a realistic scope for multiple parallel pro-
jects. Requirements continuously arrive from the market, as well
as, from internal stakeholders. This inflow was managed by
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
batching those requests into one or two projects per year. It was
a challenge to manage the execution of multiple parallel projects,
while handling requests for new features and requirements, as
well as, requests for changes to the agreed project scope.
� no overview of software resource availability (C2) was assumed to

cause overscoping due to the challenge of balancing the size of
the total scope for several (parallel) development projects
against the (same) set of development resources. The resource
allocation for the software development unit was handled at
the DT level, i.e. there was no total overview of the load and
available capacity of all the development resources of the
software unit.
� low DT involvement in early phases (C3) was assumed to contrib-

ute to defining unrealistic and unclear requirements in the early
phases, that are later deemed too costly or even impossible to
implement, thus causing overscoping. The development teams
were not very involved in the early project phases (MS1–MS4)
with providing cost estimates and feedback during require-
ments writing.
� requirements not agreed with DT (C4) was assumed to cause

overscoping due to not ensuring that the suggested scope was
feasible and understandable. The requirements specification
was not always agreed with the development teams at the
handover point (MS2). Even if there was a formal review by
DTs, we assumed that there was a low level of commitment
from DTs. Furthermore, this low level of agreement was
assumed to lead to low DT motivation to fulfil the requirements
defined by the RTs.
� detailed requirements specification is produced upfront (C5) by the

requirements teams by MS2 before the design starts was
assumed to cause overscoping by limiting the room for negoti-
ating requirements that could enable a more efficient design
and realistic development plan. Furthermore, time and cost
overhead for managing such changes was also assumed to con-
tribute to overscoping.
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


6 E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx
4.2. Phase two: an interview study at the case company

In phase two, semi-structured interviews with a high degree of
open discussion between the interviewer and the interviewee were
held. The hypothesis provided a framework that helped to discuss,
explore and enrich the understanding of this complex phenome-
non. To avoid imposing this hypothesis on the interviewees, the
discussion both on overscoping in general and on the detailed
causes and effect was always started with an open ended question.
In addition, the interviewees were asked to talk freely about the
roles and phases she had experience from at the beginning of the
interviews. In order to separate between the situation with the
phase-based process and with the new agile RE practices, the im-
pact of the new practices was discussed specifically in a (separate)
section at the end of the interviews.

Our aim was to cover the whole process from requirements def-
inition through development (design, implementation and testing)
to the resulting end product (quality assurance, product projects),
mainly for the phase-based process. This was achieved by selecting
people with experience from all the relevant organizational units
(see Section 3) to be interviewed and thereby catch a range of dif-
ferent perspectives on the phenomenon of overscoping. Nine peo-
ple in total were selected to be interviewed. Two of the
interviewees with identical roles requested to have their inter-
views together. The roles, organizational belongings, and relevant
experience of the interviewed persons within the case company
for the phase-based process can be found in Table 1. We have used
a coding for the interviewees that also includes their organiza-
tional belonging. For example, interviewees belonging to the
requirements unit are tagged with a letter R, belonging to product
unit with a letter P and belonging to software unit with a letter S.

The interviews were scheduled for 90 min each with the possi-
bility to reduce time or prolong it. All interviews were recorded
and transcribed, and the transcripts sent back to the interviewees
for validation. For each interview, the transcript was 7–10 pages
long and contained in average 3900 words. Transcription speed
varied from 3 to 7 times of recorded interview time. The coding
and analysis was done in MS Excel. The underlying section struc-
ture of interview instrument, i.e. causes, effects and agile RE prac-
tices, were numbered and used to categorize the views of the
interviewees. For each interview, the transcribed chunks of text
were placed within the relevant sections and, if so needed, copied
to multiple sections. Relationships between different categories, as
well as, the level of agreement on causes, effects and agile RE prac-
tices were noted in specific columns. The viewpoints of the two
practitioners interviewed together (interviewees Ra and Rb) were
separated into different columns in order to allow reporting their
individual responses.
Table 1
Interviewees roles (for phase-based process), organizational belonging and length of
experience for each role within the company (see Section 3.1).

Code Organizational
unit

Role (s) within company Years within
role

Ra Requirements RT leader 5
Rb Requirements RT leader 2
Rc Requirements Requirements architect 3
Pd Product System test manager 7
Se Software Tester 3
Sf Software Software project manager 2

DT leader 2
Developer 2

Sg Software Quality manager 3
Sh Software DT requirements coordinator 1

Developer 2
DT leader 1

Si Software DT requirements coordinator 7

Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
4.3. Phase three: validation of results via questionnaire

To further strengthen the validity of the results from the inter-
views a set of six (additional) practitioners at the case company
was selected in phase three, see Table 2. To ensure that these six
practitioners understood the results correctly and in a uniform
way, the interview results were presented to them. During the
meeting the participants could ask for clarifications and comment
on the results, especially when they disagreed or had other differ-
ent or additional viewpoints. In order to gather their views on the
results in a uniform and non-public way, the participants were
asked to fill out a questionnaire (available online at [69]) stating
to which degree they agreed to the results and if additional rele-
vant items had been missed. Due to limited availability of the par-
ticipants a total of three such sessions were held. Each session was
scheduled for 90 min with the possibility to extend or decrease the
time as needed. The results from the questionnaire can be found in
Section6.
5. Interview results

The causes and effects of overscoping derived from the inter-
views performed in phase two of the study (see Fig. 1) are outlined
in Fig. 2 and described in the following sections. Section 5.1 covers
the main causes for overscoping, while the root causes are reported
in Section 5.2 and the effects in Section 5.3. The findings from the
interviews concerning how the agile RE practices may address
overscoping are described in Section 5.4. The outcome of the vali-
dation questionnaire (phase 3) on these results is reported in
Section 6.

5.1. Causes of overscoping (RQ1)

The viewpoint of each interviewee concerning the causes of
overscoping was categorized and matched against the hypothesis
regarding the assumed causes of overscoping (C1–C5, see Sec-
tion 4.1.1). In addition, five of the eight interviewees were found
to describe a sixth main cause for overscoping, namely C6 unclear
vision of overall goal. A lack of (clearly communicated) strategy and
overall goals and business directions for software development led
to unclarities concerning the intended direction of both software
roadmaps and product strategies, as well as, unclear business pri-
ority of project scope. The interviewees described how this cause
(C6) led to scope being proposed primarily from a technology as-
pect, rather than from a business perspective, and without an
(agreed) unified priority. Instead, most of the scope of a project
was claimed to be critical and non-negotiable.

The interviewee results around the main causes of overscoping
are shown in Table 3. The opinions of the interviewees have been
classified in the following way:

� Experienced: the cause (both its occurrence and its impact on
overscoping) is experienced and was mentioned without
prompting.
� Agreed: either the cause (occurrence and impact) was not

directly mentioned, but derived or agreed after direct question,
or when interviewee has no direct experience, but had observed
it or heard about it from others.
� Partly agreed: partly Experienced or partly Agreed.
� Disagreed: does not agree to the cause, either its occurrence, or

that it caused overscoping.
� Not mentioned: even though within expected experience for

role.
� NA: not within the expected experience for the role (according

to the process).
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


Table 2
Questionnaire respondents: roles and organizational belonging (for phase-based
process), and length of experience within company (see Section 3.1 for descriptions of
organizational units and roles).

Organizational
unit

Role(s) Years within
company

Software Software project manager, DT leader 4
Software Tester 7
Software DT requirements coordinator, DT leader 5
Requirements Requirements architect 5
Requirements RT leader 13
Product System test manager 15

E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx 7
All interviewees had Experienced or Agreed to overscoping as a
challenge, and a majority had Experienced or Agreed to causes 1–
3. No interviewees Disagreed to any of the causes, though causes
4 and 5 both had less than a majority of Experienced or Agreed
interviewees. Causes 4–5 were Not mentioned by all, while cause
6, which was derived from 5 of the interviewees, was Not men-
tioned by the others.

The entries marked NA (Not Applicable) indicate that the inter-
viewee in her role was not expected to have experience of that
cause. The system test manager (Pd) and the quality assurance
manager (Sg) were classified as NA for C2, C3 and C4 since they
merely observed the requirements flow from their management-
level positions and were not directly involved in the early phases
of the projects. In addition, Sg was also classified as NA for C5
due to lack of contact with the SRS. Furthermore, the software tes-
ter (Se), who had no insight into project planning, was categorized
as NA for the causes C1 and C2.

For all assumed causes there were some counts of Partly agreed,
namely:

� continuous requirements inflow via multiple channels (C1). The
quality manager (Sg) mentioned the continuous inflow of
requirement changes after setting the scope as causing
Fig. 2. Overview of all found causes (C), root causes (RC) and effects (E) of overscoping. Ite
Section 4.2) noted within brackets.

Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
overscoping, but no root causes prior to this milestone, and is
therefore classified as ‘Partly agreed’.
� no overview of software resource availability (C2). One of the DT

requirements coordinators (Si) is noted as ‘Partly agreed’ to this
cause, due to believing that a better overview of available
resources would not alleviate the overscoping to any greater
extent. In contrast, another interviewee (Sf) saw this as a strong
cause for overscoping; ‘There was no control of what people
were working with. There were different DT leaders who just
sent out [tasks]’.
� low DT involvement in early phases (C3). Both DT requirements

coordinators (Sh, Si) were categorized as ‘Partly agree’ since
the involvement from the rest of the DT including producing
cost estimates was low, even though they personally had expe-
rienced good cooperation with the RT leaders during MS1–MS2.
This lack of involvement was seen by the DT tester (Se) as lead-
ing to an unrealistically large scope being specified, ‘The full
view of requirements would be improved by including input
from more roles, and a more realistic scope could be identified
earlier on.’
� requirements not agreed with DT (C4). The DT requirements coor-

dinators (Sh, Si) believed that the requirements were under-
stood and agreed with the DT at MS2, though the DT did not
commit to implementing them at that point. One of them (Sh)
mentioned that the system requirements specification was pri-
marily agreed with the DT requirements coordinators and not
with developers and testers in the DT.
� detailed requirements specification produced upfront (C5). One of

the RT leaders (Rb) had an agile way of working and did not pro-
duce a detailed requirements specification upfront, but instead
regularly and directly interacted with the DT. This increased
insight into the DT enabled a more flexible discussion around
scope and detailed requirements, led to overscoping being
experienced as a more manageable challenge by Rb. The other
RT leader (Ra, interviewed together with Rb) did not mention
ms derived from questionnaire noted with + and dashed lines. Interviewee code (see

n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


8 E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx
C5 as causing overscoping, but agreed to Rb’s conclusions and
was noted as ‘Partly agreed’. Ra had the opposite experience,
i.e. of producing and relying on a requirements specification,
and then not staying in touch with the DT during the later
phases of development (after MS2) who then developed soft-
ware that was usually different from what was specified in
the SRS. One of the DT interviewees (Sf) believed that the
(wasted) effort of producing and agreeing to detailed require-
ments upfront (for features that were later descoped) increased
the overscoping since it hindered those resources from working
on viable features. Another interviewee (Sh) said: ‘At this point
[MS2] we [DT] approved a lot of things, because we liked what
they [RT] wrote here and we really wanted that functionality
then we [DT] started to over commit.’

5.2. Root cause analysis (RQ1)

To provide a deeper understanding the interviewees were asked
to describe what may be triggering overscoping, i.e. the root causes
of overscoping. These root causes have been grouped according to
the main cause (C1–C6, outlined in Sections 4.1 and 5.1) that they
affect. A full picture of the cause-effects relationships for overscop-
ing identified through this study is depicted in Fig. 2. The results
around root causes from both the interviews and from the ques-
tionnaire are also summarized in Table 4.

� root causes of C1 (continuous requirements inflow via multiple
channels). A number of requirement sources besides the regular
requirement flow (defined by the RTs) were mentioned as con-
tributing to the continuous inflow. These include: requirements
produced by defining many different product variants in the
product line (RC1a); and, many late new market requirements
and changes incurred by the long project lead times (RC1b)
compared to rate of requirements change. Furthermore, com-
munication gaps (RC1c) were mentioned as causing additional
requirements inflow through-out the project life cycle. These
consist of communication gaps between the requirements unit
and the software unit (RC1ci) which resulted in the software
unit preferring to work according to their own software-inter-
nal roadmap containing a large amount of requirements not
agreed with the requirements unit. Communication gaps
between technical areas, both for RTs and for DTs, (RC1cii) led
to indirect requirements between DTs being discovered after
the initial scope selection at MS2, which greatly increased the
amount of implementation required. The impact of these indi-
rect requirements was especially large for DTs responsible for
service-layer functionality like display frameworks and com-
munication protocols. Furthermore, communication gaps
between usability design and the RTs (RC1ciii) resulted in addi-
tional functional requirements appearing in usability design
specification, sometimes in conflict with RT requirements.
And, finally, due to lack of communication between the soft-
ware quality managers and the requirements unit (RC1civ),
requirements on quality aspects were not defined and priori-
tized together with the RT requirements, but managed sepa-
rately in a later phase.
� root causes of C2 (no overview of software resource availability).

The lack of overview of available software development
resources was believed to be a consequence of communication
gaps within the software unit and between the DTs (RC2a). The
organizational structures and the high scope pressure were
seen to result in each DT focusing on their own areas rather
than striving for cooperation and good communication with
other DTs. One interviewee described that enabling DTs to coor-
dinate their plans had the effect of improving the scoping situ-
ation by increasing the delivery rate and efficiency, ‘We tried to
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
solve the overscoping by enabling the DTs to co-plan and deli-
ver incrementally. This resulted in more deliveries and
increased efficiency.’ (Sf)
� root causes of C3 (Low DT involvement in early phases). Several

interviewees described that software resources were rarely
available in early project phases (RC3a) due to development
and maintenance work for previous projects. Rc said: ‘by MS2,
but it was hard to get [DT] resources. That probably was the
problem.’ In addition, weak and incorrect cost estimations
(RC3b) were mentioned as leading to including too much into
the project scope. In contrast, low development capacity of
the software unit (RC3c) caused by bad architecture was
believed by the two RT leaders to be the main reason for over-
scoping. Furthermore, gaps in the communication (RC3d)
between the requirements unit and the software unit were
mentioned as causing low DT involvement. For example, inter-
viewees mentioned that early DT involvement was often post-
poned due to a lack of understanding within the software unit
for the importance of this work. However, the opposite was also
mentioned, namely that the DTs received requirements infor-
mation too late (RC3di) which then resulted in extending the
project scope without realistic plans. Similarly, the cost esti-
mates for both development and testing were not always
respected (RC3dii). In contrast, close cooperation between the
RTs and the DTs were experienced (by Rc) to lead to an early
uncovering of problems, thereby enabling definition of more
stable requirements that were then successfully implemented.
� root causes of C4 (requirements not agreed with DTs). Low DT

involvement in the early phases (C3, RC4a) was seen as leading
to weak agreement and commitment to the requirements, by all
three interviewees with experience from planning DT work (Se,
Sh, Si). The interviewees connected the level of requirements
agreement with the level of communication around require-
ments (RC4b), i.e. RTs and DTs that communicated well also
tended to have a mutual understanding and agreement of the
requirements. Due to variations in communication between
teams, the view on C4 varied between interviewees (see Sec-
tion 5.1). Even so, one interviewee (Sh) who had experienced
good cooperation with the RT mentioned that the different
organizational belongings (RC4bi) caused timing issues due to
different priorities for different units. In addition, communica-
tion gaps between RTs and DTs (RC4bii) including no contact
between testers and RT leaders were caused by physical and
organizational distances and resulted in weak DT agreement
on the requirements. Weak communication on requirements
and design between developers and testers (RC4biii) was also
mentioned (by Se) as causing weak requirements agreement.
� root causes of C5 (detailed requirements specification produced

upfront). The phase-based process defined that a requirements
specification should be produced by MS2, therefore no further
root causes have been identified for this cause.
� root causes of C6 (unclear vision of overall goal). The RT leaders

(Ra and Rb) described that the lack of clear business strategy
(RC6a) and vision that could guide them in defining a roadmap
resulted in proposing a project scope from a pure technology
standpoint (RC6b). A weak and un-unified business priority
(RC6c) of the proposed scope (almost everything was ‘critical’)
was described (by Si) as pushing the DTs to commit to unreal-
istic project plans. In addition, Rc mentioned that the lack of
unified priority hindered the project management from effec-
tively addressing the overscoping. Furthermore, several com-
munication gaps (RC6d) were seen to contribute to this cause.
Weak communication both between RTs (RC6di) and between
DTs (RC6dii) were described by Rc as resulting in weak scope
coordination between functional areas, as well as, conflicts
and lack of clarity concerning the overall goal. Finally, both RT
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


Table 3
For each identified main causes of overscoping, the number of interviewees per response category (see Section 5.1) and organizational unit (Reqs, etc, see Section 3.1).

Overscoping
as a challenge

C1 Continuous
req inflow

C2 No overview
of softw
resources

C3 Low DT
involvm
in early phases

C4 Reqs not
agreed
with DTs

C5 Detailed reqs
specification
produced upfront

C6 Unclear
vision of
overall goal

Reqs Softw Product Reqs Softw Product Reqs Softw Product Reqs Softw Product Reqs Softw Product Reqs Softw Product Reqs Softw Product

Experienced 2 5 1 1 3 1 1 2 3 1 1 1 2 3 2
Agreed 1 2 2 1 1 1 1
Partly agreed 1 1 2 2 1
Disagreed
Not mentioned 2 1 2 3 1
NA 1 2 1 1 1 1 1 1

E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx 9
leaders described that communication gaps and low common
understanding between the requirements unit and the software
unit (RC6diii) of the overall goal resulted in the project scope
being decided to a large extent by the DTs, and not (as the pro-
cess stated) by the RTs.

5.3. Effects of overscoping (RQ2)

The interviews uncovered the following six main effects of over-
scoping (marked as E1 to E6, see Fig. 2):

� many requirement changes after the project scope is set (E1). All
interviewees had experienced that overscoping caused require-
ment changes to take place after the project scope was set (at
MS2). As the projects proceeded and the overload was uncov-
ered large amounts of features were removed from scope (des-
coped). The phenomena was so common that the phrases
‘overscoping’ and ‘descoping’ have become part of company
vocabulary. This descoping of already started features was a
waste (E1a) of both RT and DT effort and led to frustration
and decreased motivation (E1b) to work with new require-
ments. As interviewee Sh said: ’There are many things that
you as a tester or developer have spent time on that never
resulted in anything. And that isn’t very fun. There is a lot of
overtime that has been wasted.’ However, the many require-
ment changes were experienced by Pd as having only minor
impact on the system testing. They merely adjusted the test
plans, and rarely wasted any effort due to this effect.
� quality issues (E2). All interviewed practitioners involved after

MS4 (when development started, Rc, Pd, Se, Sf, Sg, Sh) men-
tioned that software quality was negatively affected by over-
scoping both due to the high workload and due to the many
requirement changes. The software quality manager Sg
expressed, ‘If you get too much scope, you get quality problems
later on and you haven’t got the energy to deal with them.’ Sim-
ilarly, interviewee Pd said: ‘When you have a lot going on at the
same time, everything isn’t finished at the same time and you
get a product with lower quality.’ Furthermore, the lack of
respect for development costs (C3dii) in the earlier phases
was mentioned by the software tester (Se) to contribute to
insufficient testing and subsequent quality issues.
� delays (E3). The overscoping and subsequent overloading of the

DTs was described by several practitioners as resulting in
delayed deliveries being the norm rather than the exception.
In addition, overscoped DTs were often forced to commit to cus-
tomer-critical requests and changes which in turn resulted in
even more delays and quality issues (E2). One DT interviewee
(Sf) stated that ‘our team was always loaded to 100% at MS4,
which was too much since there were always customer
requests later on that we had to handle. That meant that we
were forced to deliver functionality with lower quality or late.’
The same situation was described by the quality manager (Sg)
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
who said: ‘Even if we decided on a scope for MS4, there were
extremely many changes underway, so we were never ready
by MS5, as we had said, but were delayed.’
� customer expectations are not always met (E4). Overscoping was

mentioned by a few interviewees as resulting in sometimes fail-
ing to meet customer expectations. For example, customers
sometimes file change requests for features that had previously
been removed due to overscoping. In addition, overscoping
caused by requiring a large number of products (RC1a) with dif-
ferent display sizes and formats was experienced by intervie-
wee Sf as resulting in releasing products with faulty software,
e.g. misplaced icons.
� communication gaps (E5). Overscoping and overloading an orga-

nization was described as leading to several communication
gaps; between the requirements and software units; within
the software unit itself, between DTs (Sg, Si) and between DTs
and software project managers (Sf); and between the software
and the product unit. For example, the many descoped features
(E1) and wasted effort (E1a) resulted in distrust between the
requirements unit and the software unit, so much so that the
software unit defined their own internal roadmap without coor-
dinating this with the requirements unit. Furthermore, invalid
error reports filed by the system testers based on an unreliable
SRS (caused by E1–E6) caused an increase both in work load and
in frustration at the software unit and, consequently friction
and widened communication gaps between these units.
� challenge to keep the SRS updated (E6): The situation caused by

overscoping, with a high workload and many late requirement
changes (E1), increased the challenge of keeping the SRS
updated. The practitioners mentioned that in an overscoping
situation the task of updating the SRS was given low priority
(partly caused by E1b). Furthermore, the amount of required
updates both for changed and descoped requirements was
increased (Ra, Rb, Pd, Sg, Si) by producing the requirements
upfront (C5) with a low level of DT agreement (C4). The RT lead-
ers (Ra, Rb) had also experienced that many requirement-
related changes were made during development without
informing the RTs (or the system testers), many of which might
have been a result of insufficient DT involvement in the early
phases (C3).

5.4. Impact of agile RE practices (RQ3)

The general opinion of the interviewees on the situation after
introducing the agile RE practices (see Section 3.3) is that even
though some overscoping is still experienced, it is a more manage-
able challenge than with the previous phase-based process. For
example, there is less descoping and most of the features worked
on by the software unit now continue until completion (Si). Inter-
viewee Sg said: ‘We still have overscoping in all projects. But, it is
more controlled now and easier to remove things without having
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


Table 4
Summary of all identified causes and root causes of overscoping: Number of responses for interviewees (see Section 5 for details) and for Questionnaire responses per level of agreement (see Section 6 for details). Additional items from
questionnaire responses are marked with +.

Mentioned as causes/root
causes by # of interviewees
(9 in total)

Number of questionnaire responses (6 in total)

Experienced Agree Partly agree Disagree Do not know

Overscoping (as a challenge) 9 6

C1: Continuous reqs. inflow via multiple channels 8 4 2
(a) Large number of product variants 2 3 1 2
(b) Long lead times 1 4 2
(c) Communication gaps 6 3 1 1 1

(i) Between reqs & software unit 3 3 2 1
(ii) Between RT–RT and DT–DT 2 3 2 1
(iii) Between RT and usability design 1 2 1 1 2
(iv) Between RT and software quality managers 1 2 4

(+d) Customer requirements changes (many and late) 3
(+e) Product portfolio re-planning 1

C2: No overview of software resource availability 6 2 3 1
(a) Communication gaps within software unit 2 1 2 1 1 1

C3: Low development team involvement in early phases 7 1 2 2 1
(a) Lack of DT resources for pre-development work 1 2 2 2
(b) Low competence in estimating cost 2 2 1 3
(c) Low development capacity 2 1 1 2 1 1
(d) Communication gaps 3

(i). Late requirements information to DT 1 2 2 1 1
(ii). Lack of respect/understanding of development costs 2 2 3 1

(+e) Weak leadership including ineffective communication 1
(+f) Change of people during the project 1
(+g) Multi-tasking 1

C4: Requirements not agreed with development teams 5 2 2 2
(a) Low DT involvement in early phases (C3) 3 2 2 1 1
(b) Communication gaps 3 1 2 2 1

(i) Between requirements and software units 2 1 2 1 2
(ii) Between RT and DT 2 1 1 2 1 1
(iii) Between developers and testers 1 1 1 1 2 1

(+c) Unclear and ambiguous requirements 3
(+d) Low understanding of why particular scope is selected 1

C5: Detailed reqs specification produced upfront 5 1 3 1 1

C6: Unclear vision of overall goal 5 4 1 1
(a) Unclear business strategy for software development 2 3 2 1
(b) Technology focus when scope set 3 3 2 1
(c) Weak priority of scope 2 3 2 1
(d) Communication gaps 2 3 1

(i) Between RTs 1 1 3 2
(ii) Between DTs 1 2 2 2
(iii) Between requirements and software units 3 1 3 1 1

+C7 Weak process adherence 1

+C8 Overall scope and deadline dictated from management 1

10
E.Bjarnason

et
al./Inform

ation
and

Softw
are

Technology
xxx

(2012)
xxx–

xxx

Please
cite

this
article

in
press

as:E.Bjarnason
et

al.,A
re

you
biting

offm
ore

than
you

can
chew

?
A

case
study

on
causes

and
effects

ofoverscoping
in

large-
scale

softw
are

engineering,Inform
.Softw

.Technol.(2012),http://dx.doi.org/10.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx 11
done too much work.’ Many of the interviewees stated that in the-
ory the agile RE practices address overscoping, but that these prac-
tices also incur a number of new challenges. The following
practices were mentioned by the interviewees as impacting some
of the causes and/or root causes of overscoping:

� one continuous scope & release-planning flow (P1). This practice
(which was implemented at the time of the interviews) was seen
to address the root cause weak prioritization of scope (RC6c,
mentioned by Rc, Pd, Sg, Sh) and the causes continuous require-
ments inflow via multiple channels (C1, mentioned by Se, Sf)
and no overview of software resource availability (C2, mentioned
by Sf, Sg), by enforcing that all scope and development resources
are managed through a uniformly prioritised list.
� cross-functional development teams (P2). This practice (which

was implemented at the time of the interviews) was seen to
address several communication gaps, and, thus, impact causes
C1–C4 by closing the gaps (identified as root causes) between
RTs and DTs and between different functional areas. This prac-
tice was also believed to impact C5 (detailed requirements
specification produced upfront) since detailing of requirements
is now handled within the development teams together with
the customer representative. Interviewee Sf said: ’It is an advan-
tage that they [the team] sit together and can work undis-
turbed, and there is no us-and-them, but it is us. And when
they work with requirements the whole group is involved and
handshakes them.’
� gradual and iterative detailing of requirements (P3). This practice

(which was partly implemented at the time of the interviews)
was mentioned as directly impacting the cause C5 (detailed
SRS produced upfront). Furthermore, this practice was also seen
by Sf and Sg to reduce both the lead time for each high-level
requirement (RC1b) and the amount of changes after project
scope is set (E1) and, thus also reduce the amount of wasted
effort (E1a, also mentioned by Ra, Rb).

6. Validation questionnaire on interview results

Overscoping was further investigated through the validation
questionnaires [69], see Table 4. Each of the six respondents noted
her level of agreement by using the following notation:

Experienced: I have experienced this (item and connection) to be
valid.
Agree: I agree to this, but have not experienced it personally.
Partly agree: I agree to part, but not all, of this.
Disagree: I do not agree.
Do not know: I have no knowledge of this item or its impact.

6.1. Causes and root causes (RQ1)

A majority of the questionnaire respondents confirmed (i.e.
Experienced or Agreed to) all main causes as contributing to
Table 5
The total number of points reflecting the impact of each cause on oversco
of overscoping (RQ2). The columns show the number of points per resp

Total impac

C1: Continuous reqs inflow via multiple channels 275
C2: No overview of software resource availability 60
C3: Low DT involvement in early phases 80
C4: Requirements not agreed with DTs 10
C5: Detailed reqs specification produced upfront 15
C6: Unclear vision of overall goal 140
+C7: Weak process adherence 0
+C8: Overall scope and deadline dictated from top 20

Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
overscoping, except C3 (low DT involvement) for which there
was also one Disagree response. Causes C2, C3, C5 and C6 each
had one count of Disagree from respondents with experience from
the requirements unit. Two additional main causes were given by
two respondents, namely weak processes adherence (+C7) and
dictation of scope and deadlines from management (+C9). Further-
more, some additional root causes were given for C1, C3 and
C4. For C3, two alternative root causes were given, namely
turn-over of DT members as the project progressed (RC3f) and
assigning the same resources to multiple parallel projects
(RC3g). For C4 (requirements not agreed with DT) three respon-
dents stated that this was caused by unclear and ambiguous
requirements (RC4c), while one respondents suggested that DTs
often lacked insight into why certain features and requirements
were important, which is related to C6 (unclear vision of overall
goal). All responses from the validation questionnaire on causes
and root causes can be found in Table 4.

The impact of each main cause on overscoping was gauged by
asking the questionnaire respondents to distribute 100 points
over all causes according to the extent of their impact (see
Table 5) C1 got the highest score in total and all six respondents,
thereby indicating that the continuous requirements inflow was a
main cause of overscoping. The second highest total score was
given to C6 (unclear vision of overall goal), which all the partici-
pants from the software unit graded with 30–60, while the other
participants graded this with 0 or 30. Causes C4, C5, +C6 and +C7
were seen as having a minor or no impact on the overscoping
situation.

6.2. Effect of overscoping (RQ2)

In large, the questionnaire respondents had experienced or
agreed to all the effects of overscoping identified from the inter-
views. The respondent from the product unit had no view on E5
or E6, while the requirements architect partly agreed E5. In addi-
tion, the respondents mentioned the following effects of overscop-
ing: overtime (+E7); changed and sometimes cancelled product
plans (+E8); low prioritization of administrative tasks (+E9). The
full questionnaire response on effects is shown in Table 6.

In addition to stating the level of agreement to the identified ef-
fects of overscoping, the respondents were asked to grade their im-
pact. The following notation was used:

Critical: Company or customer level.
Major: Project or unit level.
Medium: Team level.
Minor: Individual level.
None: No impact.

All the effects identified from the interviews were seen as hav-
ing an impact. All effects except E5 (communication gaps) were
seen as having major or critical impact by a majority of the partic-
ipants. There were two counts of minor impact: one for E6 (keep-
ing SRS updated) and one for +E7 (overtime).
ping. Each questionnaire respondent distributed 100 points. Effects
onder (organisational belonging given in header, see Section 3.1).

t Softw Softw Softw Reqs Reqs Product

20 20 15 50 100 70
10 20 20 10

10 50 20
5 5
5 5 5

60 40 30 10

20

n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


Table 6
Number of questionnaire responses on the effects of overscoping per level of agreement (notation described in Section 6) and per impact category (notation described in
Section 6.2). Additional items derived from questionnaire marked with +.

Mentioned by
# of
interviewees
(9 in total)

Questionnaire responses (6 in total)

Agreement Impact

Experienced Agree Partly
agree

Disagree Do
not
know

Critical Major Medium Minor None

E1: Many req changes after scope is set 9 5 1 4 2
(a) Wasted effort 7 5 1 3 3
(b) Decreased motivation 5 4 2 3 2 1

E2: Quality issues 6 6 5 1
E3: Delays 4 6 5 1
E4: Customer expectations not always met 1 4 2 5 1
E5: Communication gaps 4 2 1 1 1 2 1 3
E6: Keep SRS updated 5 1 4 1 5 1
+E7: Overtime 3 1 1 1
+E8: Changed & cancelled product plans 1 1
+E9: Administrative tasks not always

performed
1 1

Table 8
Number of questionnaire responses per agreement category (described in Section 6) on the current situation at
the case company with agile RE practices, as compared to when using phase-based process.

Experienced Agree Partly agree Disagree Do not know

Overscoping is still a challenge 3 1 2
There is less overscoping now 1 1 3 1
Overscoping is more manageable now 1 3 1 1

Table 7
Number of questionnaire responses on the impact of agile RE practices on overscoping per level of agreement (notation described in Section 6).
Additional practices identified through questionnaire responses are marked with +.

Experienced Agree (in theory) Partly agree Disagree Do not know

P1: One continuous scope and release-planning flow 2 4
P2: Cross-functional development teams 3 2 1
P3: Gradual and iterative detailing of requirements 2 2 2
+P4: Company vision 1
+P5: Open source development 1
+P6: Incremental deliveries 1

12 E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx
6.3. Impact of agile RE practices (RQ3)

The questionnaire respondents mostly agreed to the three iden-
tified agile RE practices as impacting the challenge of overscoping,
either through their own experience or by believing the practice
should work in theory. Furthermore, some additional practices
were mentioned as impacting overscoping: (+P4) clearer company
vision (i.e. directly addressing C6), (+P5) open source development
(limiting C1 by restricting what the customer can reasonably ex-
pect when large parts of the software are outside of company con-
trol) and (+P6) incremental deliveries (shorter cycles facilitate
scope size control for each cycle). Table 7 contains the question-
naire responses on the impact of the agile RE practices on
overscoping.

Finally, the respondents had all experienced, agreed or partly
agreed that overscoping was still a challenge for the case company.
The new agile process and practices are seen to, at least partly, ad-
dress the situation and provided ways to better manage and con-
trol the extent of overscoping and its effects. The practitioners’
responses concerning the current situation are shown in Table 8.

7. Interpretation and discussion

The results of this study corroborate that overscoping is a com-
plex and serious risk for software project management [13,20,43]
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
both for phase-based and for agile development processes. In addi-
tion, the results show that communication issues have a major im-
pact on overscoping. This complements the work by Sangwan et al.
and Konrad et al. [41] who mentioned that weak communication
can cause project failures in large-scale development and global
software engineering [63]. Moreover, our results extend the lists
of effects of weak coordination proposed by Sangwan et al. [63]
(long delays, leave teams idle and cause quality issues) by adding
overscoping. Further research is needed to fully identify and ad-
dress the factors involved. The results are discussed and related
to other research in further detail, per research question, in Sec-
tions 7.1 (RQ1), 7.2 (RQ2) and 7.3 (RQ3). Finally, the limitations
of this study and threats to validity of the results are discussed
in Section 7.4.

7.1. Causes of overscoping (RQ1)

Our results indicate that overscoping is caused by a number of
causes and root causes. These causes mainly originate from the
nature of the MDRE context in which the company operates, but
are also due to issues concerning organizational culture and struc-
tures, and communication. This was further highlighted by inter-
viewees describing the additional cause C6 (unclear vision of
overall goal) and two questionnaire respondents mentioning addi-
tional causes connected to lack of respect for the decision- and
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx 13
development process, i.e. C7 and C8. In contrast, practitioners with
experience of good cooperation and well-communicating teams
described overscoping as a less serious and more manageable
challenge. This may explain all the Disagree questionnaire re-
sponses but one (i.e. C5).

We interpret the results around the six causes of overscoping
identified through the interviews (see Section 5.1 and Fig. 2) as
follows:

� continuous requirements inflow from multiple channels (C1). We
interpret the homogeneity of the interview and questionnaire
results (see Tables 3 and 5) to mean that a large and uncontrol-
lable inflow of requirements has the potential to cause over-
scoping when not managed and balanced against the amount
of available capacity. This cause was also been identified by
Regnell and Brinkkemper [59] and Karlsson at el. [38] as one
of the challenges of MDRE. In addition to corroborating this
challenge, our work also identifies that this continuous inflow
of requirements can cause overscoping. The importance and
seriousness of this factor are indicated by this cause scoring
the highest total impact factor in the questionnaire (see Table 5).
The extent to which this cause affects companies that operate in
the bespoke requirements engineering context [59] requires
further research.

Our study also reveals that the inflow of requirements can be
further increased by scope creep at the software management
level through a software-internal roadmap (RC1ci, see Sec-
tion 5.2). In effect, this hindered resources from being available
for managing new customer requirements. Similar results have
been reported by Konrad et al. who found that scope creep can
result in problems with meeting customer expectations [41], i.e.
effect E4 (see Section 5.3). Konrad et al. [41] propose addressing
scope creep by increased understanding and traceability of cus-
tomer requirements, and by creating an effective hierarchical
CCB structure. The impact of these methods on overscoping re-
mains to be evaluated.

� no overview of software resource availability (C2). The majority of
our responders (six of nine interviewees and five of six ques-
tionnaire respondents) had experienced or agreed to the lack
of overview of available resources being a cause of overscoping.
However, the questionnaire results suggest that the impact of
this cause is not as critical as cause C1. This result is surprising,
when considering the importance of management of the daily
workload including coordination of tasks and activities reported
by, e.g. Philips et al. [52]. The contrasting opinions of low devel-
opment capacity (RC3c, held by RT leaders) and low respect for
development costs (RCdii, held by DT roles) is interesting. This
difference can be interpreted as a low understanding of each
other’s viewpoint around cost and an indication that this view-
point is dependent on role (related to Jorgensen and Shepperd
[33]). If the development capacity really is low is a different
issue. Finally, this cause specifically includes the lack of over-
view, or awareness of the total load on the resources. To the
best of our knowledge, this issue has not been empirically
investigated. Rather software cost estimation research [33]
mainly focuses on effort estimation and on optimizing resource
assignment [45].
� low development team involvement in early phases (C3). The

results indicate that low development involvement in the
requirements phase can cause overscoping (mentioned by 6
out of 9 interviewees and 5 out of 6 questionnaire respondents
did not disagree to this). This confirms previous work that
points out the need of early development involvement in
requirements engineering, e.g. required by interdependencies
between product management and software development
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
[51]. Glinz et al. also mentioned that lack of communication
between project management and development at require-
ments hand-off may lead to unsatisfactory results [27].
Similarly, Karlsson et al. reported that communication gaps
between marketing [38] (requirements unit for our case com-
pany) and development, can result in insufficient effort esti-
mates (i.e. RC3b) and in committing to unrealistically large
features without considering the technical and scheduling
implications [38]. Our results corroborate these results in that
low involvement and weak communication in early phases
may lead to problems later on, including overscoping. These
communication issues may also exacerbate the problem of get-
ting accurate and reliable effort estimates (RC3b). Furthermore,
the fact that one questionnaire respondent expressed experi-
encing good communication and cooperation between require-
ments and development teams may also explain the one
Disagree response for this cause. On the other hand, a surprising
result from the validation questionnaire is that this cause (C3)
was seen to influence overscoping less than cause C6 (unclear
vision of overall goal) both in total (among all respondents)
and by 2 of the 3 software respondents. These results indicate
that there may be additional (uncovered) factors that influence
the impact this cause has on overscoping.

Finally, several methods have been proposed for addressing
cause C3, e.g. negotiation of implementation proposals [25],
model connectors for transforming requirements to architec-
ture [47], cooperative requirements capturing [46] and involv-
ing customers in the requirements management process [35].
Goal-oriented reasoning can also provide constructive guide-
lines for architects in their design tasks [42]. If and to which de-
gree the mentioned methods can alleviate overscoping by
impacting this cause remains a topic for further research.

� requirements not agreed with development team (C4). The results
provide empirical evidence that weak agreement on require-
ments between requirements and software units can cause
overscoping (all 6 questionnaire responders agreed to cause
C4 and five interviewees mentioned C4 as a cause of overscop-
ing). A significant root cause for this cause was found to be com-
munication gaps, mainly between the requirements-related
roles and the development and testing roles. This confirms the
viewpoint of Hall et al. [29] that most requirement problems
are actually organizational issues. In addition, this confirms
the importance of seamless integration of different processes
in collaborative work [22]. The impact of insufficient communi-
cation on software engineering has been reported as a general
issue within requirements engineering and product manage-
ment [12,25,29,35,38]. Surprisingly, C4 scored the lowest
impact among all the causes and only two questionnaire
responders (both from the software unit) rated this cause as
having any (low) impact factor on overscoping. In contrast,
cause C6 (weak vision of overall goal) was rated as having the
largest impact on overscoping.
� detailed requirements specification produced upfront (C5). Our

results indicate that too much detailed documentation pro-
duced upfront may cause overscoping (mentioned by five inter-
viewees and experienced, agreed or partly agreed to by five
questionnaire respondents, see section 5.1). This complements
other studies into documentation in software engineering pro-
jects. For example, Emam and Madhavji mentioned that in orga-
nizations which require more control the pressure to produce
much detail is also greater [23]. Lethbridge reported that, for
software engineers, there is often too much documentation
for software systems, frequently poorly written and out of date
[44]. Furthermore, Sawyer et al. [65] mention that premature
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


14 E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx
freezing of requirements may cause scope creep and communi-
cation problems (both of which are identified as root causes of
overscoping in our study) and suggest evolutionary prototyping
as a remedy. Other remedies suggested for addressing excessive
documentation include reuse of requirements specifications
[24], as well as, simply creating less documentation [3]. The
effectiveness of these methods for the risk of overscoping
remains to be investigated. The differing views on this cause
between respondents may be explained by their roles and rela-
tionship to RE. All the disagreeing questionnaire respondents
for this cause worked with requirements related roles. These
roles are more likely to consider detailed requirements specifi-
cations as positive and good, rather than an issue. However,
these roles have less insight into the later phases when develop-
ment takes place and the effects of overscoping are experienced.
Three of the respondents with experience from later develop-
ment phases had experienced C5 as causing overscoping. Fur-
thermore, Berry et al. mentioned that when time for
elicitation is short, i.e. there is a lack of upfront documentation
(or lack of C5), the requirements usually end up as an enhance-
ment or become descoped since all of the client’s requests can-
not be delivered [9]. Considering this, we conclude that both
under specifying (as in [9]) and over specifying (as in our study)
can cause overscoping and later descoping, and that it remains
to be investigated how to strike a good balance.
� unclear vision of overall goal (C6). Our study identifies that a lack

of clearly communicated goals and strategy for software devel-
opment may cause defining the project scope primarily from a
technology perspective, rather than with a business focus,
thereby contributing to overscoping. Overall this cause was
graded as having the second largest impact on overscoping,
despite one questionnaire respondent (an RT leader) disagree-
ing to this cause. Our results support the findings from related
papers [4,18,20,40,49,61] that stress the importance of selecting
requirements aligned with the overall business goals and dis-
carding others as early as possible. In addition, failure of stake-
holders to concur on project goals was found by DeMarco and
Lister to pose the biggest risk for a project [20]. A method for
early requirements triage based on management strategies
was proposed by Khurum et al. [40]. Aurum and Wohlin have
proposed a framework for aligning requirements with business
objectives [4]. Rosca et al. mention that the most demanding
characteristic of business is the likelihood of change which can-
not be fully controlled [61]. This can be managed when business
objectives are clear to the software developers, thus enabling
them to manage a system requiring modifications while meet-
ing the business objectives [18]. Finally, Karlsson et al. [38]
mentioned the lack of common goals and visions as a challenge
in achieving good cooperation, quoting their responders: ‘If
everyone has the same goal and vision, then everyone works
in the right direction.’
� weak process adherence (+C7) and scope and deadline dictated by

management (+C8). These two causes were mentioned in the
questionnaires, though none of them were seen as having any
major impact on overscoping. Karlsson et al. [38] found that
weak process adherence may be caused both by high process
complexity, as well as, lack of time for process implementation.
The latter could be a consequence of overscoping. The direction
of causal relationship between overscoping and process adher-
ence remains to be investigated.

7.2. The effects of overscoping (RQ2)

The results indicate that overscoping may lead to a number of
effects (or consequences), many of which are judged to be serious
and potentially very costly for the company. Several of the identi-
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
fied effects may be in line with held beliefs about what overloading
a project with too much work may lead to. The aim of this study is
to investigate if such beliefs can be supported by empirical evi-
dence or not, and if more surprising phenomena arise in relation
to a specific, real-world overscoping situation.

� many changes after the project scope is set (E1). The results show
that overscoping leads to a large number of scope changes
(experienced by all responders and impact graded as critical
or major by all six questionnaire responders). This confirms
evidence provided by Harker and Eason [30] that requirements
are not static and, thus, are hard to capture or classify. In
addition, requirements volatility is mentioned as one of the
challenges in MDRE by Karlsson et al. [38] and identified by
Ramesh et al. as one of the 14 assumptions underlying agile
software development [57]. Furthermore, origins of require-
ments volatility have been listed [30]. Despite this awareness,
causes for requirements volatility have not been empirically
explored. Our results highlight overscoping as one possible
cause of late requirement changes. Furthermore, our results
confirm that it is challenging to manage requirement changes.
� quality issues (E2). The results indicate this as an important

effect of overscoping (experienced and agreed for both inter-
views and questionnaires, and graded as having critical or major
impact). This confirms that the quality of requirements engi-
neering determines the software quality, as reported, e.g. by
Aurum and Wohlin [6]. In addition, our results highlight over-
scoping as a potential reason for quality issues.
� delays (E3). This study shows (with a high degree of alignment

between interviewees and questionnaire responses) that delays
can be an effect of overscoping. Within MDRE, delays in launch-
ing products can be very costly and result in loss of market
shares [38,59,64,65]. Therefore, the insight that overscoping
may have this effect is important evidence that indicates that
overscoping is a (potentially) serious risk.
� customer expectations are not always met (E4). Our results indi-

cate that overscoping can have the effect of failing to meet cus-
tomer expectations. This could be explained by an overloaded
project having no time or capacity neither to analyse or imple-
ment new requirements, nor to validate if market or customer
needs could have changed. Furthermore, Karlsson et al. reported
failure to meet customer needs as one of the risks of developing
products based on a technology focus (root cause RC6b) [38].
Another crucial part of producing software products that will
satisfy the customers, as pointed out by Aurum and Wohlin, is
working with RE throughout the project life cycle (as opposed
to upfront requirements detailing, C5) [6]. The results of this
study highlight the importance of selecting a feasible scope as
one factor to consider when attempting to better understand
and capture the customers’ needs.
� communication gaps (E5). Our results indicate that overscoping

may cause increased communication gaps. (Roughly half of
our interviewees and questionnaire respondents mentioned
and agreed to this effect.) This may be explained by the ten-
dency to deflect by blaming others when under pressure, rather
than cooperate to solve problems together. Furthermore, inter-
viewees described that the many changes resulting from over-
scoping (E1) were badly communicated to the product unit
and resulted in false error reports being filed on changed, but
not updated requirements. This in turn, caused irritation among
the development teams and further increased the communica-
tion gaps. Similarly, Karlsson et al. reported that constant inflow
of requirements (cause C1) caused decision conflicts between
marketing and development roles [38].
� challenge to keep SRS updated (E6). The majority of the respon-

dents confirmed that overscoping increases the challenge to
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx 15
keep the SRS updated. When the SRS is detailed upfront (C5),
the combination of the two (overscoping) effects E1 (many
scope changes) and E1b (decreased motivation) lead to an
increased need, but a lower motivation to update the SRS. This
complements previous work, which reports requirements vola-
tility as a common challenge for software projects [30,32,34,70]
and that the view of RE as concerning a static set of require-
ments is inappropriate [29,30]. In addition, Berry et al. report
that time and resources are never sufficient to keep the docu-
mentation updated and that scope creep occurs when program-
mers code while the documentation keeps changing [9].
Furthermore, our study highlights that the challenge of keeping
the SRS updated is increased as an effect of overscoping. Harker
and Eason proposed to address this challenge by defining a min-
imum critical specification combined with incremental deliver-
ies (i.e. +P6) and thereby gradually providing more value [30].
Further research is needed to investigate if the methods pro-
posed to address the challenge of updating the requirements
documentation could also minimize this effect for overscoping.
� overtime (+E7), changed/cancelled product plans (+E8), low

priority for administrative tasks (+E9). These effects were
mentioned in the validation questionnaires and each got one
count of critical impact. Further investigations are needed to
validate their relationship to overscoping.

7.3. How agile RE practices may impact overscoping (RQ3)

Our study identifies that three of the agile RE practices being
introduced at the case company may impact several of the causes
and root causes of overscoping. In addition, three more practices
were suggested by questionnaire respondents as addressing over-
scoping. The details of how the identified agile RE practices may
impact overscoping (mentioned root causes can be seen in Fig. 2)
are discussed below. We interpret the results as an indication that
overscoping is still a challenge for the case company, though more
manageable with the (partly implemented) agile RE practices. Fur-
ther investigations are needed to fully understand the situation in
the agile context.

� one continuous scope and release planning flow (P1) is experi-
enced by the responders to directly impact cause C2 (no over-
view of software resource availability) by enabling
transparency and insight into the full project scope and into
the current workload of the software unit. The increased visibil-
ity of the load and available resource capacity to both business
and software unit may bridge several communication gaps
identified as root cause of overscoping, i.e. RC1c, RC3d and
RC4b. This practice covers the agile RE practices of require-
ments prioritization and constant re-planning for the high-level
requirements [57]. Our results confirm the findings of Dybå and
Dingsøyr that managers of agile companies are more satisfied
with the way they plan their projects than are plan-based com-
panies [21]. Furthermore, our study also corroborates the find-
ings that agile prioritization of the scope in combination with a
stage-gate model at the feature level can avoid delaying critical
features and also provides early feedback on features [36]. How-
ever, achieving correct high-level cost and schedule estimation
has been identified as a challenge also for agile project [57],
which may be one reason why overscoping remains an issue
for the case company.
� Cross-functional development teams (P2) are indicated by our

results as improving several of the communication gaps identi-
fied by our study as important root causes to overscoping (i.e.
RC1c, RC2a, RC3d, RC4b, RC6d). This case company practice is
equivalent to the agile RE practice of preferring face-to-face
requirements communication over written documentation [8]
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
in combination with agile prioritization and constant re-plan-
ning at the detailed requirements level [57]. At this detailed
requirements level, cost and schedule estimations in an agile
fashion (by only allowing additions when simultaneously
removing something less prioritized) have been found to be
efficient [36,57] and eliminate the ‘requirements cramming’
problem [36], which is equivalent to overscoping. Other studies
have found that communication within development teams is
improved by agile practices, but that communication towards
other (dependent) teams remains a challenge [36,53]. This chal-
lenge is addressed with P2 by including competence covering
all the involved functional areas within the same team (thus,
impacting root causes RCicii, RC2a, RC4b and RC6dii). Further-
more, the agile RE practice of including a customer representa-
tive in the development teams is summarized by Dybå et al.
[21] as improving the communication been customer and engi-
neers, while filling this role can be stressful and challenging
[36,57].
� Gradual and iterative requirements detailing (P3) is seen (by our

interviewees) to decrease the total lead time for development
of a feature (root cause RC1b) by delaying the detailing of
requirements until they are actually needed for design and
development. This in turn reduces the amount of requirement
changes within the (shorter) time frame for the feature devel-
opment, which in a market with high requirements volatility
is a significant improvement. It may also reduce the communi-
cation gaps that occur due to the timing aspect of detailing
requirements before design and implementation starts, i.e. root
causes RC3d, RC4a, RC4b. The case company practice P3 is
equivalent to the agile practice of iterative RE [57].

7.4. Threats to validity and limitations

As for every study there are limitations that should be discussed
and addressed. These threats to validity and steps taken to mitigate
them are reported here based on guidelines provided by Robson for
flexible design studies [60]. Another important aspect for the qual-
ity of a flexible design research is the investigator [60], and for this
study all researchers involved have previous experience in con-
ducting empirical research, both interview studies and surveys.

7.4.1. Description validity
Misinterpretation [60] of the interviewees poses the main

threat to description validity. This threat was addressed in several
ways. The interviews were recorded and transcribed. To enhance
reliability of the transcriptions, the person taking notes during
the interviews also transcribed them. In addition, this person has
worked for the case company for several years and is well versed
in company culture and language. Also, data triangulation was ap-
plied to the transcriptions by another researcher performing an
independent transcription and coding of two randomly selected
interviews. Furthermore, the interviewees checked both the tran-
scriptions and the results of the study for errors and misinterpreta-
tions. Finally, data triangulation was applied to the interview
results by collecting additional viewpoints from six (other) practi-
tioners through a questionnaire [60].

7.4.2. Interpretation validity
For this study, the main threat to valid interpretation has been

the risk of imposing the hypothesis (formulated in phase one) onto
the interviewees. To address this threat, open interview questions
were always posed before asking specific questions based on the
hypothesis. Furthermore, spontaneous descriptions of causes
(without prompting) have been reported (as Experienced) sepa-
rately from responses to follow-up questions on specific causes
(as Agreed), see Section 5.1 and Table 3.
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


16 E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx
For phase three, the threat to valid description was addressed
by the researchers jointly designing the questionnaire and the ses-
sion held in connection to it. To ensure that all questionnaire
responders correctly and uniformly understood the interview re-
sults, the results were presented to the participants. They could
then ask for clarifications before filling out the questionnaire. The
fact that questionnaire responders were confronted with a frame-
work of results remains an open threat to interpretation validity.
On the other hand, both interviewees and questionnaire respon-
dents were explicitly encouraged to disagree and mention addi-
tional causes, effects and practices, which they also did. One of
the main limitations of the study is the limited number of respon-
dents. Although representatives from each of the covered units of
the case company were involved in both interviews and validation
questionnaire, the number of persons is relatively small and more
factors may be identified by including additional viewpoints.

7.4.3. Theory validity
The main threat to theory validity for this study is the risk of

missing additional or alternative factors. One source of this threat
is the limited set of practitioners from which data has been gath-
ered. Another potential source is the risk of observer biases limiting
the study to the researcher’s pre-knowledge of the company. This
was a risk mainly in phase one and was addressed by involving
the other researchers in discussing and reviewing the study design
and the hypothesis which shaped the interview instrument. The
fact that an additional main cause (i.e. C6) was identified as a result
of the interviews shows that this bias was successfully addressed.
However, identification of additional results in phase 3 may indi-
cate that saturation and the full exploration of the problem under
investigation is not yet reached. As the goal of this work is explor-
atory our aim is not to present or achieve a complete coverage of
the problem under investigation.

The involvement of the researcher with work experience from
the case company has played a vital role in the study. This has en-
sured that the investigated problem is authentic and that the re-
sults are derived though an interpretation of the data based on a
deep understanding of the case and its context. However, the re-
sults are limited to the case company and there is a risk that other
possible causes of overscoping experienced at other companies
were not identified. This also applies to the set of agile RE practices,
which are limited to the ones that were currently known and
partly implemented at the case company at the time of the study.

Internal generalisability was addressed by sampling interviewees
and questionnaire respondents from different parts of the com-
pany thereby selecting roles and responsibilities involved through-
out the development life cycle. Even so, it was not possible to
include representatives from sales and marketing (they were
unavailable at the time of the study). However, the requirements
team leaders provided some insight into these aspects based on
their experience from contacts with customers and with sales
and marketing roles.

Considering external generalisability, the results should be inter-
preted with the case company context in mind. External validity is
addressed by using analytical generalization which enables drawing
conclusions without statistical analysis and, under certain condi-
tions, relating them also to other cases [60,62]. Within the scope
of this paper, analytical generalization is argued by applying the
making a case strategy ([60], p. 107) by analysing related work
and reporting similarities, differences and disagreements to our
results (see Section 7). This analysis builds a supporting argument
towards external validity of our study by seeking data which is
not confirming a pre-assumed theory. In addition, follow-up
studies in other domains can be conducted to utilize the direct
demonstration strategy ([60]) to further address the threat to
external validity.
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
8. Conclusions and further work

Decision making is at the heart of requirements engineering
(RE) [5] and within market-driven requirements engineering
(MDRE) release planning is one of the most important and chal-
lenging tasks [38,39,59,65]. Decisions concerning what to develop,
and when, are inherently related to achieving customer satisfac-
tion. Even though release planning [37,39,59] is well researched,
RE decision making is acknowledged as challenging [2,5,50] and
scope creep is ranked as a serious project risk [16,17,31], other as-
pects of scope management have been less explored [72]. Further-
more, techniques for prioritizing requirements [37,39] often focus
on planning the scope of a project as a discrete activity, or one in a
series of releases [50]. Our previous work reported that scoping in
an MDRE context is a continuous activity that may last throughout
the entire project lifecycle [71]. If not successfully managed, and
more requirements are included into the project scope than can
be handled with available resources the result is overscoping, i.e.
the project ‘bites off more than it can chew’.

Our study provides a detailed picture of factors involved in
overscoping and confirms that scoping is a challenging part of
requirements engineering and one of the risks in project manage-
ment [13,20,43]. Our results indicate that overscoping is mainly
caused by the fast-moving market-driven domain in which the
case company operates, and how this inflow of requirements is
managed. In the early project phases, low involvement from the
development-near roles in combination with weak awareness of
overall goals may result in an unrealistically large project scope.
Our study indicates that overscoping can lead to a number of neg-
ative effects, including quality issues, delays and failure to meet
customer expectations. Delays and quality problems are expensive,
not just considering the cost of fixing the quality issues, but also in
loss of market shares and brand value [59]. Furthermore, we found
indications that a situation of overscoping may cause even more
overscoping, i.e. an organization may end up in a vicious cycle
when overscoping ties up development resources which are then
not available for participating in early project phases. Furthermore,
overscoping leads to increased communication gaps, which in turn
are root causes of overscoping.

Companies, such as our case company, that develop embedded
software for a business domain with a high market pressure need
an organizational set-up and process suited to efficiently managing
frequent changes in a cost effective way. Development projects
need to respond quickly to changes, while at the same time han-
dling the complexity of developing software in a large-scale set-
ting. Agile processes are claimed to be better adapted to
managing change than phase-based ones. As one interviewee sta-
ted: ‘The waterfall approach is good from a preparation perspec-
tive, if you can then stick to what is planned. But, since we live
in a world that changes a lot it doesn’t work after all.’ Our study
indicates, that despite introducing agile RE practices, overscoping
is still an issue for the case company, although more manageable.
We conclude that the improvements may be explained by the agile
RE practices of continuous prioritization of the project scope, in
combination with performing cost and schedule estimation, and
gradual requirements detailing, in close collaboration within
cross-functional teams, thereby closing a number of communica-
tion gaps. However, agile RE practices also pose challenges [57],
e.g. communication between teams [36,53], difficulty in cost esti-
mation [57]. This, in combination with a fast-moving, market-dri-
ven domain may explain why overscoping remains a challenge also
with the agile development process.

The causes and effects unveiled through this study (summa-
rized in Fig. 2) can be used as a basis for identifying potential issues
to address in order to avoid or alleviate an overscoping situation.
For example, the root cause of low competence in cost estimations
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1016/j.infsof.2012.04.006


E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx 17
may be addressed by introducing techniques for improving cost
estimation, which should lead to more realistic plans. Finally, sup-
ported by our findings of potentially serious effects of overscoping,
we conclude that this phenomenon can be a major risk of require-
ments engineering and project management, complementary to
the risk of scope creep mentioned by De Marco and Lister [20].

Future work includes evaluating the agile RE practices when
they are fully implemented; how do they affect overscoping and
what additional challenges do they pose over time? Furthermore,
it would be interesting to investigate how aspects such as organi-
zational set-up, software development model (agile or waterfall)
and application of different software engineering methods affect
decision making. In addition, extending the results from this study
to include other companies and also other perspectives, such as
marketing and sales, may strengthen the generalisability of our
findings.
Acknowledgements

We would like to thank all anonymous interviewees and ques-
tionnaire respondents for their invaluable contribution to this
project. We would also like to thank Dr. Dietmar Pfahl for review-
ing an early version of this paper. The project is partly funded by
the Swedish Foundation for Strategic Research and VINNOVA
(The Swedish Governmental Agency for Innovation Systems) with-
in the EASE and UPITER Projects.
References

[1] M. Abramovici, O.C. Sieg, Status and Development Trends of Product Lifecycle
Management Systems, Ruhr-University Bochum, Germany, 2002.

[2] B. Alenljung, A. Persson, Portraying the practice of decision-making in
requirements engineering: a case of large scale bespoke development, Req.
Eng. 13 (2008) 257–279.

[3] A. Aurum, E. Martin, Managing both individual and collective participation in
software requirements elicitation process, in: 14th International Symposium
on Computer and Information Sciences (ISCIS’99), Kusadasi, Turkey, 1999, pp.
124–131.

[4] A. Aurum, C. Wohlin, Aligning Requirements with Business Objectives: a
Framework for Requirements Engineering Decisions, Workshop on
Requirements Engineering Decision Support, REDECS’05, 29 August–
September 2, 2005, Paris, France.

[5] A. Aurum, C. Wohlin, The fundamental nature of requirements engineering
activities as a decision-making process, Inf. Softw. Technol. 45 (2003) 945–954.

[6] A. Aurum, C. Wohlin, Requirements engineering: setting the context, in: A.
Aurum, C. Wohlin (Eds.), Managing and Engineering Software Requirements,
Springer-Verlag, Germany, 2005, pp. 1–15.

[7] K. Beck, Extreme Programming Explained, Addison-Wesley, 1999.
[8] K. Beck et al., The Agile Manifesto. <http://agilemanifesto.org/> (accessed June

2011).
[9] D.M. Berry, K. Czarnecki, M. Antkiewicz, M. AbdElRazik, Requirements

determination is unstoppable: an experience report, in: Proceedings of the
18th International IEEE Requirements Engineering Conference, IEEE Computer
Society, 2010, p. 311.

[10] E. Bjarnason, K. Wnuk, B. Regnell, A case study on benefits and side-effects of
agile practices in large-scale requirements engineering, in: Proceedings of the
1st Workshop on Agile Requirements Engineering (AREW ‘11), ACM, New
York, NY, USA, 2011.

[11] E. Bjarnason, K. Wnuk, B. Regnell. Overscoping: reasons and consequences – a
case study in decision making in software product management, in:
Proceedings of the 4th International Workshop on Software Product
Management, IEEE Computer Society, September 2010, pp. 30–39.

[12] E. Bjarnason, K. Wnuk, B. Regnell, Requirements are slipping through the gaps
– a case study on causes & effects of communication gaps in large-scale
software development, in: 19th IEEE International Requirements Engineering
Conference, IEEE Computer Society, 2011, pp. 37–46.

[13] B. Boehm, Tutorial: Software Risk Management, IEEE Computer Society Press,
1989.

[14] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, J. Natt och Dag, An industrial
survey of requirements interdependencies in software product release
planning, in: Proceedings of the Fifth IEEE International Symposium on
Requirements Engineering, IEEE Computer Society, August 2001, Toronto,
Canada, pp. 84–91.

[15] P. Carlshamre, A Usability Perspective on Requirements Engineering – From
Methodology to Product Development, Ph.D. Thesis, Linköping University,
Sweden, 2002.
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
[16] R.A. Carter, A.I. Anton, A. Dagnino, L. Williams, Evolving Beyond requirements
creep: a risk-based evolutionary prototyping model, in: Proceedings of the
Fifth IEEE International Symposium on Requirements Engineering, Toronto,
Canada, August 2001, IEEE Computer Society Press, pp. 84–101.

[17] N. Crockford, An Introduction to Risk Management, second ed., Woodhead-
Faulkner, Cambridge, UK, 1980, p. 18.

[18] M.A. Cusumano, R.W. Selby, Microsoft Secrets, Simon and Schuster, New York,
1995.

[19] J.M. DeBaud, K. Schmid, A systematic approach to derive the scope of software
product lines, in: Proceedings of the 21st International Conference on Software
Engineering, ACM, Los Angeles, USA, 1999, pp. 34–43.

[20] T. DeMarco, T. Lister, Risk Management during Requirements, IEEE Software 20
(2003) 99–101.

[21] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a
systematic review, Inf. Softw. Technol. 50 (2008) 833–859.

[22] C. Ebert, J. De Man, E-R&D – effectively managing process diversity, Ann. Softw.
Eng. 14 (2002) 73–91.

[23] K. El Emam, N.H. Madhavji, A field study of requirements engineering practices
in information systems development, in: Proceedings of the Second IEEE
International Symposium on Requirements Engineering, IEEE Computer
Society, Washington, DC, USA, 1995, pp. 68–80.

[24] S.R. Faulk, Product-line requirements specification (PRS): an approach and
case study, in: Proceedings of the Fifth IEEE International Symposium on
Requirements Engineering, IEEE Computer Society, Washington, DC, USA,
2001, pp. 48–55.

[25] S. Fricker, T. Gorschek, P. Myllyperkiö, Handshaking between software projects
and stakeholders using implementation proposals, in: Proceedings of the
International Working Conference on Requirements Engineering: Foundation
for Software Quality, Trondheim, Norway, 2007, vol. 4542 of Lecture Notes in
Computer Science, Springer, Berlin/Heidelberg, 2007, pp. 144–159.

[26] A. Gemmer, Risk management moving beyond process, Computer 30 (1997)
33–43. doi:http://dx.doi.org/10.1109/2.589908 http://dx.doi.org/10.1109/
2.589908.

[27] M. Glinz, S. Berner, S. Joos, Object-oriented modeling with ADORA, Inform.
Syst. 27 (2002) 425–444.

[28] T. Gorschek, C. Wohlin, Requirements abstraction model, Req. Eng. 11 (2005)
79–101.

[29] T. Hall, S. Beecham, A. Rainer, Requirements problems in twelve software
companies: an empirical analysis, IEEE Software 149 (2002) 153–160.

[30] S.D.P. Harker, K.D. Eason, The change and evolution of requirements as
challenge to the practice of software engineering, in: Proceedings of the IEEE
International Symposium on Requirements Engineering, San Diego, CA, USA,
1993, pp. 266–292.

[31] C.L. Iacovou, A.S. Dexter, Turning around runaway information technology
projects, IEEE Eng. Manage. Rev. 3 (2004) 97–112.

[32] C. Hood, S. Wiedemann, S. Fichtinger, U. Pautz, Change management interface,
in: Requirements Management – The Interface between Requirements
Development and All Other Systems Engineering Processes, Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 175–191.

[33] M. Jorgensen, M. Shepperd, A systematic review of software development cost
estimation studies, IEEE Trans. Softw. Eng. 33 (2007) 33–53.

[34] P. Jönsson, M. Lindvall, Impact analysis, in: A. Aurum, C. Wohlin (Eds.),
Managing and Engineering Software Requirements, Springer-Verlag, Germany,
2005, pp. 117–142.

[35] J. Kabbedijk, S. Brinkkemper, S. Jansen, S.B. van der Veldt, Customer
involvement in requirements management: lessons from mass market
software development, in: Proceedings of the 17th IEEE International
Requirements Engineering Conference, Atlanta, GA, USA, September 2009,
pp. 281–286.

[36] D. Karlström, P. Runeson, Combining agile methods with stage-gate project
management, IEEE Soft. 22 (2005) 43–49.

[37] J. Karlsson, K. Ryan, A cost-value approach for prioritizing requirements, IEEE
Software 14 (1997) 67–74.

[38] L. Karlsson, Å.G. Dahlstedt, J. Natt Och Dag, B. Regnell, A. Persson,
Requirements engineering challenges in market-driven software
development – an interview study with practitioners, Inf. Softw. Technol. 49
(2007) 588–604.

[39] L. Karlsson, T. Thelin, B. Regnell, P. Berander, C. Wohlin, Pair-wise comparisons
versus planning game partitioning–experiments on requirements
prioritisation techniques, Empirical Softw. Eng. 12 (2007) 3–33.

[40] M. Khurum, K. Aslam, T. Gorschek, A method for early requirements triage and
selection utilizing product strategies, in: Proceedings of the 14th Asia–Pacific
Software Engineering Conference, IEEE Computer Society, Washington, DC,
USA, 2007, pp. 97–104.

[41] S. Konrad, M. Gall, Requirements engineering in the development of large-
scale systems, in: Proceedings of the 16th IEEE International Requirements
Engineering Conference, IEEE Computer Society, Washington, DC, USA, 2008,
pp. 217–222.

[42] A. Van Lamsweerde, From system goals to software architecture, in: M.
Bernardo, P. Inverardi (Eds.), Formal Methods for Software Architectures,
Springer, 2003.

[43] I. Legodi, M.L. Barry, The current challenges and status of risk management in
enterprise data warehouse projects in South Africa, in: Proceedings of PICMET
‘10, 18–22 July 2010, pp. 1–5.

[44] T.C. Lethbridge, J. Singer, A. Forward, How software engineers use
documentation: the state of the practice, IEEE Software 20 (2003) 35–39.
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://www.agilemanifesto.org/
http://dx.doi.org/10.1109/2.589908
http://www.dx.doi.org/10.1109/2.589908
http://www.dx.doi.org/10.1109/2.589908
http://dx.doi.org/10.1016/j.infsof.2012.04.006


18 E. Bjarnason et al. / Information and Software Technology xxx (2012) xxx–xxx
[45] Z. Lixin, A Project human resource allocation method based on software
architecture and social network, in: Proceedings of the 4th International
Conference on Wireless Communications, Networking and Mobile Computing,
October 2008, pp. 1–6.

[46] L. Macaulay, Requirements capture as a cooperative activity, in: Proceedings of
the First IEEE Symposium on Requirements Engineering, USA, 1993, pp. 174–
181.

[47] N. Medvidovic, P. Grünbacher, A. Egyed, B. Boehm, Bridging models across the
software lifecycle, J. Syst. Softw. 68 (2003) 199–215.

[48] M.D. Myers, D. Avison, Qualitative Research in Information Systems, Sage
Publications, USA, 2002.

[49] L. Neumann-Alkier, Think globally, act locally – does it follow the rule in
multinational corporations? in: Proceedings of the Fifth European Conference
on Information Systems, 1997, pp. 541–552.

[50] A. Ngo-The, G. Ruhe, Decision support in requirements engineering, in: A.
Aurum, C. Wohlin (Eds.), Managing and Engineering Software Requirements,
Springer-Verlag, Germany, 2005, pp. 267–286.

[51] B. Nuseibeh, Weaving together requirements and architectures, Computer 34
(2001) 115–117.

[52] J.J. Phillips, T.W. Bothell, G.L. Snead, The Project Management Scorecard:
Measuring the Success of Project Management Solutions, Elsevier, USA, 2002.

[53] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, J. Still, The impact of agile
practices on communication in software development, Empirical Softw. Eng.
13 (2008) 303–337.

[54] C. Pohl, G. Böckle, F.J. van der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques, Springer-Verlag, New York, USA,
2005.

[55] C. Potts, Invented requirements and imagined customers: requirements
engineering for off-the-shelf software, in: Proceedings of the Second IEEE
International Symposium on Requirements Engineering, IEEE Computer
Society Press, March 1995, pp. 128–131, doi: http://dx.doi.org/10.1109/
ISRE.1995.512553.

[56] Project Management Institute, A Guide to the Project Management Body of
Knowledge (PMBOK Guide), 2000 Ed., Project Scope Management. Project
Management Institute, Four Campus Boulevard, Newtown Square, PA 19073–
3299, USA, 2000 (Chapter 5).

[57] B. Ramesh, L. Cao, R. Baskerville, Agile requirements engineering practices and
challenges: an empirical study, Inform. Syst. J. 20 (2007) 449–480.

[58] B. Regnell, R. Berntsson-Svensson, K. Wnuk, Can we beat the complexity of
very large-scale requirements engineering?, in: B. Paech, C. Rolland (Eds.),
Proceedings of the 14th International conference on Requirements
Engineering: Foundation for Software Quality (REFSQ ‘08), vol. 5025 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 123–128.
Please cite this article in press as: E. Bjarnason et al., Are you biting off more tha
scale software engineering, Inform. Softw. Technol. (2012), http://dx.doi.org/10
[59] B. Regnell, S. Brinkkemper, Market-driven requirements engineering for
software products, in: A. Aurum, C. Wohlin (Eds.), Managing and Engineering
Software Requirements, Springer-Verlag, Germany, 2005, pp. 287–308.

[60] C. Robson, Real World Research, Blackwell Publishing, 2002.
[61] D. Rosca, S. GreenSpan, M. Feblowitz, C. Wild, A decision making methodology

in support of the business rules lifecycle, in: Proceedings of the Third IEEE
International Symposium on Requirements Engineering, Annapolis, MD, USA,
January 1997, pp. 236–246.

[62] P. Runeson, A. Rainer, M. Höst, B. Regnell, Case Study Research in Software
Engineering: Guidelines and Examples, Wiley, 2012.

[63] R. Sangwan, M. Bass, N. Mullick, D.J. Paulish, J. Kazmeier, Global Software
Development Handbook, Auerbacj Publications, Boston, MA, USA, 2006.

[64] P. Sawyer, Packaged software: challenges for RE, in: Proceedings of the 6th
International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ’2000), Stockholm, June 2000.

[65] P. Sawyer, I. Sommerville, G. Kotonya, Improving market-driven re processes,
in: Proceedings of the International Conference on Product-Focused Software
Process Improvement, Oulu, Finland, June 1999, pp. 222–236.

[66] K. Schmid, A comprehensive product line scoping approach and its validation,
in: Proceedings of the 24th International Conference on Software Engineering,
IEEE Computer Society, Orlando, USA, May 19–25 2002, pp. 593–603.

[67] K. Schwaber, M. Beedle, Agile Software Development with SCRUM, Prentice
Hall, 2002.

[68] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. Bin Saleem, M.U. Shafique, A
systematic review on strategic release planning models, Inf. Softw. Technol. 52
(2010) 237–248.

[69] Case Study Material (interview instrument, questionnaire, etc) for the Before
aNd After (BNA) study. <http://serg.cs.lth.se/research/experiment_packages/
bna/>.

[70] K.E. Wiegers, Software Requirements, second ed., Microsoft Press, Redmond,
2003.

[71] K. Wnuk, B. Regnell, L. Karlsson, What happened to our features? visualization
and understanding of scope change dynamics in a large-scale industrial
setting, in: Proceedings of the 17th IEEE International Requirements
Engineering Conference, IEEE Computer Society Press, September 2009,
Atlanta, GA, USA, pp. 89–98, doi: http://dx.doi.org/10.1109/RE.2009.32.

[72] I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, L. Bijlsma,
Towards a reference framework for software product management,
requirements engineering, in: 14th IEEE Internal Conference, September
2006, pp. 319–322.

[73] C. Wohlin, A. Aurum. What is important when deciding to include a software
requirement in a project or release?, in: 4th Symposium on Empirical,
Software Engineering, 17–18 November 2005, doi: http://dx.doi.org/10.1109/
ISESE.2005.1541833.
n you can chew? A case study on causes and effects of overscoping in large-
.1016/j.infsof.2012.04.006

http://dx.doi.org/10.1109/ISRE.1995.512553
http://dx.doi.org/10.1109/ISRE.1995.512553
http://www.serg.cs.lth.se/research/experiment_packages/bna/
http://www.serg.cs.lth.se/research/experiment_packages/bna/
http://dx.doi.org/10.1109/RE.2009.32
http://dx.doi.org/10.1109/ISESE.2005.1541833
http://dx.doi.org/10.1109/ISESE.2005.1541833
http://dx.doi.org/10.1016/j.infsof.2012.04.006

	Are you biting off more than you can chew? A case study on causes and effects of overscoping in large-scale software engineering
	1 Introduction
	2 Related work
	3 The case company
	3.1 Organisational set-up
	3.2 Phase-based process
	3.3 Agile development process

	4 Research method
	4.1 Phase one: pre-study and hypothesis generation
	4.1.1 Formulated hypothesis

	4.2 Phase two: an interview study at the case company
	4.3 Phase three: validation of results via questionnaire

	5 Interview results
	5.1 Causes of overscoping (RQ1)
	5.2 Root cause analysis (RQ1)
	5.3 Effects of overscoping (RQ2)
	5.4 Impact of agile RE practices (RQ3)

	6 Validation questionnaire on interview results
	6.1 Causes and root causes (RQ1)
	6.2 Effect of overscoping (RQ2)
	6.3 Impact of agile RE practices (RQ3)

	7 Interpretation and discussion
	7.1 Causes of overscoping (RQ1)
	7.2 The effects of overscoping (RQ2)
	7.3 How agile RE practices may impact overscoping (RQ3)
	7.4 Threats to validity and limitations
	7.4.1 Description validity
	7.4.2 Interpretation validity
	7.4.3 Theory validity


	8 Conclusions and further work
	Acknowledgements
	References




