
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Adapting Grafchart for Industrial Automation

Theorin, Alfred

2013

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Theorin, A. (2013). Adapting Grafchart for Industrial Automation. [Licentiate Thesis, Department of Automatic
Control]. Department of Automatic Control, Lund Institute of Technology, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/87773a0d-d871-4b43-9fd5-598efc325c7e

Adapting Grafchart for
Industrial Automation

Adapting Grafchart for
Industrial Automation

Alfred Theorin

Department of Automatic Control

To Lisa

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--3260--SE

c○ 2013 by Alfred Theorin. All rights reserved.
Printed in Sweden.
Lund 2013

Abstract

Current trends in industrial automation are the need for customizable production,
vertical integration, more advanced sensors and actuators, and shorter time to mar-
ket. The currently used control systems and languages for control were developed
with a more static production in mind. More flexible languages and tools are needed
to get a more flexible production. The flexible graphical programming language
Grafchart, based on the IEC 61131-3 standard language Sequential Function Charts
(SFC), is considered with the focus to make it usable in an industrial context.

Modern compiler techniques are evaluated for JGrafchart, a Grafchart imple-
mentation, with focus on extensible automation language implementations. In par-
ticular implementing the High Level Version (HLV) of Grafchart as an extension
would make JGrafchart more dynamic and enable further research on HLV.

To make Grafchart possible to use at the lowest levels of automation, realtime
execution with JGrafchart is considered. For this to be possible the execution engine
must be separated from the editor. In the first step the execution engine is still an
interpreter, but an order of magnitude faster than before.

Finally Service Oriented Architecture (SOA), a highly flexible software design
methodology widely used for business processes, is brought to automation by inte-
grating support for Devices Profile for Web Services (DPWS) in JGrafchart.

v

Acknowledgements

First of all I would like to thank my supervisor Charlotta Johnsson for always being
enthusiastic about what I accomplish, and for helping me outline and proofread-
ing this thesis. I would also like to thank my co-supervisor Karl-Erik Årzén for
helping me understand the thoughts behind the previous work and the JGrafchart
implementation and for giving feedback on this thesis.

I would also like to thank the Department of Automatic Control for hiring me
and supporting me as a Ph.D. student, and for helping me grow both as a researcher
and as a person.

My thanks also go to Lisa Ollinger and Tobias Gerber for fun and interesting
collaboration.

I would also like to thank the users of JGrafchart for all the valuable discussions
and feedback regarding the tool.

I am also very grateful to the developers of all the free tools that I have used
both to do the work and to write this thesis. I am especially grateful for Eclipse,
Apache Ant, reStructuredText (Docutils) [1], and LATEX.

I would also like to thank Leif Andersson for sharing his LATEX expertise and
for helping me resolve some intricate issues.

Special thanks go to my family and friends. In particular I would like to thank
my mother, Iréne Theorin, for always believing in me. Finally my very special
thanks go to my loving wife, Lisa Theorin, for being wonderful in general and for
proofreading and giving feedback on this thesis in particular.

vii

Acronyms

AST Abstract Syntax Tree, a common way for compilers to represent ap-
plications.

DPWS Devices Profile for Web Services, a minimal set of mandatory web
service extensions targeted for resource constrained devices.

FBD Function Block Diagram, one of the graphical IEC 61131-3 standard
programming languages.

FC Function Chart, an SFC or Grafchart application.

IDE Integrated Development Environment, a software in which applica-
tions can be written, compiled, executed, and debugged.

IEC International Electrotechnical Commission, a standards organiza-
tion.

IO Inputs and Outputs, how applications interact with the external envi-
ronment.

LD Ladder Diagram, one of the graphical IEC 61131-3 standard pro-
gramming languages.

PLC Programmable Logic Controller, a control system used for industrial
automation.

ReRAGs Rewritable Reference Attribute Grammars, a declarative way to im-
plement compiler semantics.

SFC Sequential Function Charts, one of the graphical IEC 61131-3 stan-
dard programming languages.

SOA Service Oriented Architecture, a component based software design
methodology that is platform and language independent.

SOA-AT SOA in Automation Technologies, SOA used for automation.

ix

Acronyms

SLOC Source Lines Of Code, a metric for the size of software programs.

WSDL Web Services Description Language, a language to define the interface
of web services. Also used to refer to the interface of a particular web
service.

XML eXtensible Markup Language, a textual data format for structured data.

x

Contents

Abstract v
Acknowledgements vii
Acronyms ix
1. Introduction 1

1.1 Background . 1
1.2 Methodology . 3
1.3 Publications . 3
1.4 Research Projects . 4
1.5 Thesis Outline . 4

2. Graphical Programming Languages 5
2.1 Automation Characteristics . 5
2.2 Graphical Programming Languages in PLCs 7

3. Grafchart 9
3.1 Grafchart History . 9
3.2 Grafchart Syntax . 10
3.3 JGrafchart Specifics . 18
3.4 Comparative Example . 22
3.5 G2Grafchart Specifics . 26

4. Challenges 27
5. Compiler Techniques 29

5.1 Introduction . 29
5.2 Background . 29
5.3 JGrafchart Compilers . 34
5.4 Rewriting the Compilers . 36
5.5 Evaluation . 38
5.6 Conclusions . 41

6. Realtime Execution - Work in Progress 43
6.1 Introduction . 43
6.2 Background . 44

xi

Contents

6.3 Standalone Editor . 44
6.4 Explicit Interface Design . 44
6.5 Standalone Compiler . 46
6.6 Standalone Execution Engine 46
6.7 Editor/Compiler Interaction . 47
6.8 Evaluation . 49
6.9 Conclusions . 49

7. Service Oriented Architecture 51
7.1 Introduction . 51
7.2 Background . 51
7.3 DPWS in JGrafchart . 56
7.4 Evaluation . 60
7.5 Conclusions . 64

8. Summary 65
9. Future Work 67
A. Other Languages 69

A.1 Petri Nets . 69
A.2 Statecharts . 69
A.3 BPMN . 70

Bibliography 71

xii

1
Introduction

1.1 Background

Wikipedia describes automation as: "the use of machines, control systems, and in-
formation technologies to optimize productivity in the production of goods and
delivery of services." [2]. Some examples are production of cars, consumer elec-
tronics, medicine, plastics, paper, gasoline, and chemicals. They are all produced in
large factories and the production is highly automated. Producing with less man-
ual labor often means cheaper production, higher production rate, and more stable
product quality. In practice, automation is required to be competitive and stay in
business. If you are able to automate more or do it better than your competitors you
have a competitive advantage. Even small improvements can potentially generate or
save millions of dollars. To improve existing automation and increase the level of
automation is thus always a relevant topic. However, the easier tasks have already
been taken care of and subsequent improvements are thus more sophisticated.

One current trend in industrial automation is that the products are expected to be
more customizable. Take buying a new car for example. A few years back the only
options were the brand, the model, one of a few model variants, and the color. Now it
is possible to choose among all the available options and colors and get a completely
customized car. This is often cheaper than buying one of the default variants of the
product [3]. You do not have to buy the supreme variant to get the less common
option that you really want, and you can skip all the options that you do not care
about. For the manufacturer this means that a more flexible production is needed.
However, the control systems and languages used for control were developed with
a more static production in mind.

Another trend is that the field devices, the sensors and actuators, used for pro-
duction are getting more features and are becoming more intelligent. In the begin-
ning you just connected them and used them and that was really all there was to
it. Since then the demand for improved precision, performance, power usage, re-
liability, and diagnostics has grown. Today, devices might have advanced internal
controllers to optimize precision and save energy, several configuration possibilities
to optimize performance, and they usually collect data to provide statistics and diag-

1

Chapter 1. Introduction

nostics which can be used to optimize the production. For example, a device which
can signal abnormal operation can help identify faulty or poor quality products and
avoid lengthy troubleshooting. This is nothing new, many fieldbuses developed in
the 90s have support for configuration and diagnostics. However, the current devices
have more configuration and diagnostics, demand more bandwidth, and provide a
higher degree of flexibility. With the current fieldbuses, bandwidth is still a limit-
ing factor. To avoid fieldbus overload due to low priority diagnostics information
the devices can have a separate port for connecting them to an ordinary Ethernet
network where they expose themselves, for example as web servers.

IEC 62264-1 [4] classifies the tasks for production in levels, see Figure 1.1. The
communication on level 2 and below is often integrated and data can quickly be
retrieved at any time. Communication with the upper levels on the other hand is
often manual and thus data is not readily available. To integrate all levels is known
as vertical integration and is yet another trend in automation.

Level 4
Business Planning

& Logistics
Plant Production Scheduling,
Operational Management, ...

Level 3

Manufacturing

Operations Management
Dispatching Production, Detailed Production

Scheduling, Reliability Assurance, ...

Level 0

Level 5
Company Management

Level 1

Level 2

Batch
Control

Discrete
Control

Continuous
Control

Figure 1.1 Functional hierarchy of production according to IEC 62264-1.

2

1.2 Methodology

At the same time there is an increasing demand for reduced time to market, that
is, to set up and make changes to the production faster. Also environmental impact
legislation introduce new boundaries for what is allowed.

Altogether this makes automation a challenging and exciting field.

1.2 Methodology

In this thesis both process automation and robotics have been considered. Process
automation includes for example chemical plants and paper mills and robotics in-
cludes for example assembly and packaging. The starting point has been current
challenges in industrial automation. General approaches have been identified for
dealing with these challenges. The following are elaborated in this thesis:

∙ modern compiler techniques for a graphical automation language.

∙ realtime execution of the flexible automation language Grafchart.

∙ Service Oriented Architecture (SOA) for automation.

JGrafchart, an implementation of Grafchart, has been used as an evaluation plat-
form.

1.3 Publications

This thesis is based primarily on the following publications:

∙ A. Theorin, K.-E. Årzén, and C. Johnsson. “Rewriting JGrafchart with
Rewritable Reference Attribute Grammars”. In: Industrial Track of Software
Language Engineering 2012. Dresden, Germany, 2012.

∙ A. Theorin, L. Ollinger, and C. Johnsson. “Service-oriented process control
with Grafchart and the Devices Profile for Web Services”. In: Proceedings of
the 14th IFAC Symposium on Information Control Problems in Manufacturing
(INCOM’12). Ed. by T. Borangiu, A. Dolgui, I. Dumitrache, and F. G. Filip. El-
sevier Ltd, Bucharest, Romania, 2012, pp. 799–804. DOI: 10.3182/20120523-
3-RO-2023.00131.

∙ A. Theorin, L. Ollinger, and C. Johnsson. “Service-oriented process control with
Grafchart and the Devices Profile for Web Services”. In: Service Orientation in
Holonic and Multi Agent Manufacturing and Robotics. Ed. by T. Borangiu, A.
Thomas, and D. Trentesaux. Vol. 472. Studies in Computational Intelligence.
Springer Berlin Heidelberg, 2013, pp. 213–228. ISBN: 978-3-642-35851-7. DOI:
10.1007/978-3-642-35852-4_14. URL: http://dx.doi.org/10.1007/978-3-642-
35852-4_14.

3

Chapter 1. Introduction

∙ T. Gerber, A. Theorin, and C. Johnsson. “Towards a seamless integration be-
tween process modeling descriptions at business and production levels - work
in progress”. In: Proceedings of the 14th IFAC Symposium on Information Con-
trol Problems in Manufacturing (INCOM’12). Ed. by T. Borangiu, A. Dolgui, I.
Dumitrache, and F. G. Filip. Elsevier Ltd, Bucharest, Romania, 2012, pp. 1537–
1542. DOI: 10.3182/20120523-3-RO-2023.00309.

∙ T. Gerber, A. Theorin, and C. Johnsson. “Towards a seamless integration be-
tween process modeling descriptions at business and production levels: work
in progress”. English. Journal of Intelligent Manufacturing (2013), pp. 1–11.
ISSN: 0956-5515. DOI: 10.1007/s10845-013-0754-x. URL: http://dx.doi.org/10.
1007/s10845-013-0754-x.

1.4 Research Projects

The author is a member of the LCCC Linnaeus Center and the eLLIIT Excellence
Center at Lund University. Financial support from the Swedish Research Coun-
cil (VR) through the LCCC Linnaeus grant is gratefully acknowledged. The LISA
project funded by VINNOVA and the research platform SmartFactoryKL [5] and are
also acknowledged.

1.5 Thesis Outline

In Chapter 2 automation is compared to consumer applications and embedded sys-
tems and graphical programming languages are described and compared to conven-
tional programming. Chapter 3 describes the Grafchart language and implementa-
tions in detail. In Chapter 4 the challenges for automation are elaborated. In Chap-
ter 5 modern compiler techniques are evaluated for JGrafchart. Chapter 6 describes
work toward enabling realtime execution for JGrafchart. In Chapter 7 flexibility is
addressed in a broader sense by bringing SOA to automation. Finally, Chapter 8
contains a summary of the work and Chapter 9 lists related future work.

4

2
Graphical Programming
Languages

2.1 Automation Characteristics

Control logic in automation is almost exclusively implemented on computers. Like
ordinary computer programs are implemented in Java or C++, automation is imple-
mented in the languages defined in the international standard IEC 61131-3 [6] for
Programmable Logic Controllers (PLC). Practically all languages for ordinary com-
puter programs are textual. The programs are written in plain text and are compiled
to executable binaries. To troubleshoot and inspect what is going on, a debugging
environment is needed.

Implementing ordinary consumer applications for conventional computers,
smart phones, or tablets is similar to implementing automation in some aspects and
completely different in other, see Figure 2.1. For example the applications are exe-
cuted on the same or similar computer hardware and hardware architecture. Some
characteristics are shared with embedded systems. An embedded system is closer
to the hardware and is often required to execute its applications in realtime, for
example to respond to an event within a given time to behave correctly.

The life cycle for consumer applications is roughly as long as the time between
the releases and can typically be measured in months. The life cycle for an embed-
ded system is roughly the life span of the product, typically a few years. The life
cycle for automation is roughly how long the producing machine is running, which
is for as long as it is profitable to run it. For example paper machine 1 at Stora
Enso Hylte Mill was shut down after operating for 41 years due to lower market de-
mand [7]. There is a demand for spare parts during the entire lifetime of producing
machines and control system manufacturers need to make long term commitments
to attract customers. For example ABB guarantees that they will actively produce
spare parts for the previous generation for at least 10 years [8].

For consumer applications the underlying hardware does not have to be consid-
ered, abstraction layers between the application and the hardware take care about

5

Chapter 2. Graphical Programming Languages

Consumer Applications

Automation

Embedded Systems

Figure 2.1 Comparison of implementation aspects for ordinary consumer appli-
cations, embedded systems, and automation.

this. When implementing an embedded system the target hardware is known and
it is sufficient to make the software work on this particular hardware. In automa-
tion there is much more uncertainty. For example it is impossible to know if the
hardware will need to be changed in 20 years due to lack of spare parts.

Another difference is the amount of hardware used. Embedded systems are only
concerned with its particular hardware while the primary objective for automation
is to use sensors and actuators to get the machines to behave properly. This typically
involves many sensors and actuators as well as a considerable amount of hardware
configuration.

Considering the cost of errors, take for example a race condition that causes a
crash one time out of ten thousand and is otherwise harmless. For a consumer appli-
cation or an embedded system it is enough to restart the application or the device.
For a consumer application a fix can simply be rolled out with the next version.
Embedded systems are harder to update, often special equipment is required. If an
application stops in automation, so does the production. Many producing machines
take long to start up and they may consume raw material without producing sellable
products during startup. Also, many producing machines are dangerous and an error
in the program can injure the workers.

Since there is a considerable cost to start up a producing machine, shutting it
down is avoided as far as possible. Changes may be applied during maintenance
stops or, if possible, on the fly. This is one of the biggest reasons why the languages

6

2.2 Graphical Programming Languages in PLCs

used for automation differ from other fields. The debugging mode that is only used
during development in other fields is practically the only mode in automation. You
cannot set breakpoints and step through the code but you need to be able to see ev-
erything while it is running to be able to troubleshoot odd behavior without shutting
down the machine.

2.2 Graphical Programming Languages in PLCs

The IEC 61131-3 standard defines five programming languages for PLCs [6]: the
three graphical languages Ladder Diagram (LD), Function Block Diagram (FBD),
and Sequential Function Charts (SFC) and the two textual languages Structured Text
(ST) and Instruction List (IL). These languages can also be combined.

The code for the textual languages is executed line by line from the top down. On
the other hand, the code for the graphical languages consists of graphical elements
which are connected to make up the program. This can be a very convenient way to
implement applications. Specifically, it suits automation very well.

LD is a replacement for implementing relay logic with physical relays. Engi-
neers thinking in terms of relay logic draw their applications as LD diagrams, see
Figure 2.2. Instead of then wiring relays the diagrams can be executed directly in a
PLC.

A

B

C D

Figure 2.2 An LD diagram equivalent to D = (A | B) & !C.

FBD diagrams consist of function blocks whose inputs and outputs are con-
nected graphically, see Figure 2.3. This way it is easier to get an overview of the
application.

PID

MV PV

SP

FF

Temp Heat

50.0

0.0

47.3 14.1

Figure 2.3 An FBD diagram for a PID. The inputs to the PID function block are
the process value Temp (PV), a constant set point of 50.0 (SP), and no feed forward
(FF). The manipulated variable (MV) of PID is connected to the output Heat.

7

Chapter 2. Graphical Programming Languages

Finally SFC consists of steps representing states, and transitions representing
the change of state. It is used to implement sequential, parallel, and general state-
transition oriented applications. It is hard to get a non-trivial state machine right in
a textual language and once written it is practically impossible to get an overview
of the state machine. Typically it is first drawn on paper and then translated into
textual code. Going the other way, to see how things are connected the code is
drawn graphically. A textual language also forces you to name all steps, otherwise
you do not have an identifier to use when connecting them to transitions. Working
directly with a graphical representation is therefore much more convenient.

Figure 2.4 shows a comparison of a small application implemented both in SFC
and a minimal textual language. In the SFC application it is easier to follow the flow
and see how things fit together. The textual implementation is more compact but it
is much harder to get an overview of how things are connected.

Init

SFC

Start

PreFilling

S Fill = 1;

L0

Heating

N Heat;

Filling

Temp >= 7.5 L1

Full

S Fill = 0;

1

Emptying

N Empty;

!L0

Textual

Init*

PreFilling : S Fill = 1;

Heating : N Heat;

Heated

Filling

Full : S Fill = 0;

Emptying : N Empty;

Init -> PreFilling : Start

PreFilling -> (Heating, Filling) : L0

Heating -> Heated : Temp >= 7.5

Filling -> Full : L1

(Heated, Full) -> Emptying

Emptying -> Init : !L0

Heated

Figure 2.4 An application implemented in both SFC and a minimal textual lan-
guage.

Visualizing the current state of execution can be done for all these graphical
languages and makes it easier to see what is happening. In SFC the current state
can be highlighted. In LD connections can be highlighted depending on if they are
true or false. In FBD the values of function block inputs and outputs can be written
next to the connections and, as for LD, Boolean connections can be highlighted
depending on their value.

8

3
Grafchart

3.1 Grafchart History

Grafchart has been developed by the department of Automatic Control at Lund Uni-
versity since 1991 [9]. It is based on SFC which is well-accepted by the automation
community and is extended with inspiration from statecharts, high level Petri nets,
and ordinary object oriented programming languages among others. The goal is to
make it possible to write large, well structured, flexible, and maintainable applica-
tions.

Like SFC, Grafchart uses the state-transition paradigm. Applications written in
Grafchart are often referred to as function charts (FC) or step sequences. Grafchart
was initially designed to be a very capable and suitable language for batch control
[10]. Some of the features added were hierarchical structuring and reusable proce-
dures. It is also extended to facilitate convenient exception handling.

Grafchart has proven to be a very capable and suitable language also for vari-
ous other automation applications. The state-transition paradigm does not target any
specific level in Figure 1.1 and thus Grafchart should work well for implementing
sequential applications on any level. It has been used for a wide variety of applica-
tions, for example batch control, discrete control, and diagnosis and the paradigm
fits them all very well. Grafchart also has potential for formal description, valida-
tion, and analysis [10].

There are two implementations of Grafchart, see Figure 3.1. The first one is
also called Grafchart and was implemented in Gensym’s expert system G2 [11].
Here this implementation is referred to as G2Grafchart. It was hard to continue
development of G2Grafchart and it is desirable to rather have a freely available
tool built on an open platform. Hence G2Grafchart is no longer used. The second
implementation is written in Java and is called JGrafchart. It is actively developed
and publicly available for free [9].

JGrafchart is a research tool used in for example the EU/GROWTH project
CHEM for control in process industry [12], the EU FP7 project ROSETTA for
robotic assembly [13], and a master’s thesis for modeling of avionics systems [14].

9

Chapter 3. Grafchart

Grafchart Language

Implementations G2Grafchart JGrafchart

Variants
Basic

Version
High Level

Version
Basic

Version

Figure 3.1 There are two implementation of Grafchart, namely G2Grafchart and
JGrafchart. There are two variants of G2Grafchart and JGrafchart corresponds to the
Basic Version variant.

JGrafchart is also used in education, for example in laboratory exercises on sequen-
tial and batch control.

3.2 Grafchart Syntax

Grafchart will be introduced by examples to highlight the main ideas before going
into detail.

Core Features
The two main building blocks in Grafchart are steps and transitions. Steps represent
possible application states and transitions represent the change of application state.
Associated with the steps are actions specifying what to do. Associated with the
transitions are Boolean guard conditions.

A piece of a running Grafchart application is shown in Figure 3.2. Two steps are
connected by a transition and there are two variables var and cond. When the first
step is activated its S action is executed, meaning that var is set to 7. That the step
is active is indicated by a token, drawn as a black dot. When cond becomes 4 the
transition’s guard condition becomes true. Then the first step is deactivated and the
second step is activated, thus setting var to 12.

Figure 3.3 shows how to express alternative and parallel paths. At any time
only one alternative path may contain active steps. On the other hand, parallel paths
are executed in parallel and will contain active steps at the same time. To create
alternative paths a step is connected to several transitions. To create parallel paths
a Parallel Split is added to split the execution. A Parallel Join is used to merge the
execution again when the parallel paths are completed. In JGrafchart Parallel Split
and Parallel Join elements only have two connectors. Figure 3.4 shows how to get
more than two parallel paths by combining several Parallel Splits and Parallel Joins.

10

3.2 Grafchart Syntax

S var = 7;

S var = 12;

cond == 4

var: 7

S var = 7;

S var = 12;

cond == 4

var: 12

cond: 1 cond: 4

Figure 3.2 A piece of a running Grafchart application showing the main build-
ing blocks of Grafchart, steps and transitions. The left part of the figure shows one
application state and the right part shows a later application state.

b !b

c d

fe

g

Parallel Split

Parallel Join

Parallel paths

Alternative paths

Figure 3.3 A Grafchart application showing how to express alternative and paral-
lel paths.

11

Chapter 3. Grafchart

b

c d

f

e

Figure 3.4 A JGrafchart application with more than two parallel paths.

Structuring
A common nonstandard extension to SFC is the Macro Step which contains an in-
ternal FC, see Figure 3.5. It is included in Grafchart and makes it possible to split up
larger applications into understandable chunks. When a Macro Step is activated its
Enter Step is activated. The execution of a Macro Step is finished when its internal
state reaches the Exit Step.

ExitStep

EnterStep

b

c

MacroStep

Figure 3.5 A Grafchart Macro Step and its internal FC.

12

3.2 Grafchart Syntax

Often the same code is needed in more than one place. In Grafchart it is possi-
ble to create reusable Procedures to avoid redundant code. Like Macro Steps, Pro-
cedures also have an internal FC with an Enter Step and an Exit Step. In addition,
Procedures may also return values and take parameters. Procedure Steps and Pro-
cess Steps are used to call Procedures, see Figure 3.6. A Procedure Step is finished
when its procedure call reaches the Exit Step, that is, the same as for the Macro
Step. The Process Step on the other hand spawns a new procedure call each time
it is activated and does not wait for the call to finish before proceeding. Spawned
procedure calls terminate when the Exit Step is reached.

Procedure

ProcedureStep

ProcessStep

b

c

Figure 3.6 A Procedure can be thought of as a reusable Macro Step which can
be called from Procedure Steps and Process Steps. Each Procedure Step and Pro-
cess Step specify which Procedure to call when activated. When ProcedureStep

is active it will proceed when the procedure call has finished and b is true. When
ProcessStep is active it will proceed as soon as c becomes true. The spawned pro-
cedure call is unaffected by this.

Yet another way to do structuring in Grafchart is with the Workspace Object. It
also has an internal FC but no Enter or Exit Steps. It can be used to represent objects
with variables and methods, to group variables, or to structure larger applications.

Exception Handling
A common misconception is that exception handling is only a small part of the total
application. It is actually the other way around, the normal case is just one case to
handle while each fault condition is a separate case to handle [15].

Figure 3.7 shows use of the Exception Transition. If faultA or faultB becomes
true while the Macro Step is active the Macro Step will be aborted.

13

Chapter 3. Grafchart

faultA

faultB

HandleA

HandleB

Figure 3.7 Exception Transitions can be connected to Macro Steps and Procedure
Steps and are conceptually connected to all steps in the internal FC.

Function Chart Element Summary
Figure 3.8 shows the main FC elements of Grafchart. The Initial Step is activated
when the application starts and thus defines the initial state of the application. It is
otherwise the same as the ordinary Step. The Step Fusion Set is another construct
for exception handling and is used to give a step multiple views, that is, to have
one conceptual step appear as several steps. Connection Posts is a way to connect
elements without the whole graphical link visible, which can be used to make the
FC clearer.

Initial Step Step Enter Step Exit Step

Procedure Macro Step Procedure Step Process Step

Workspace Object

Step Fusion Set

Transition Parallel Split / Join Connection Post In / OutException Transition

Figure 3.8 The main FC elements of Grafchart.

14

3.2 Grafchart Syntax

Variables and Scoping
In Figure 3.2 variables were mentioned. Variables can be declared at any level, for
example at the top level or inside a Macro Step, Workspace Object, or Procedure.
Scoping in Grafchart is similar to ordinary programming languages, see Figure 3.9.

b

c

b

c

Bool

b

0 Bool

c

0

Bool

b

0

Figure 3.9 Scoping in Grafchart. The arrows indicate the variables used.

Languages
Grafchart consists of three parts which may be considered separate languages: the
FC language (graphical), the action language (textual), and the condition language
(textual). The FC language consists of the graphical elements such as steps, tran-
sitions, and variables. The action language is used for the actions of steps. The
condition language is used for the guard condition of transitions.

The action language uses prefixes to specify the action type of each statement,
that is, when it should be executed. In Figure 3.2 the S prefix was introduced. Ta-
ble 3.1 shows the complete list of prefixes.

15

Chapter 3. Grafchart

Table 3.1 A complete list of Grafchart and JGrafchart prefixes.

Prefix Description

S Action type. Executed when the step is activated.

X Action type. Executed when the step is deactivated.

P Action type. Executed periodically while the step is active.

N Action type. Associates a variable with the status of the step. The vari-
able is set to true when the step is activated and to false when the step
is deactivated.

A Action type. Executed when the step is aborted.

V Procedure call parameter. Call-by-value (JGrafchart specific)

R Procedure call parameter. Call-by-reference (JGrafchart specific)

Execution
For programming languages it is important to have deterministic execution.
Grafchart applications are like SFC applications executed periodically, one scan
cycle at a time.

When explaining the execution model of Grafchart it is useful to introduce a
few definitions first. A transition is enabled when all immediately preceding steps
are active. An enabled transition fires if its condition is true. Firing a transition in-
volves deactivating the immediately preceding steps and activating the immediately
succeeding steps. In the left part of Figure 3.2 the transition is enabled since its
only immediately preceding step is active, but it cannot fire since its condition is
false. In the right part the transition’s condition is still true but it cannot fire again
since the immediately preceding step is now inactive and thus the transition is not
enabled. For a transition following a Macro Step or Procedure Step to be enabled
the internal Exit Step must also be active. Exception Transitions have priority over
ordinary Transitions and are always enabled when the step is active.

Steps also have some additional properties, namely x, t, and s. x is true if the
step is active and false if the step is inactive. t is how many scan cycles the step has
been active since the previous activation if the step is active. For inactive steps t is
0. s works the same as t but counts seconds instead of scan cycles.

A naive execution model could include "Iterate over the transitions and fire a
transition if it is enabled and its condition is true.". The behavior of an applica-
tion might then depend on in which order the transitions are evaluated as shown in
Figure 3.10.

Avoiding this kind of behavior will guarantee that activated steps are active dur-
ing at least one scan cycle, which makes it easier to reason about an application. For

16

3.2 Grafchart Syntax

b

b

b

b

b

b

?

T1

T2

Figure 3.10 With a naive execution model, what happens when b becomes true
depends on the iteration order of the transitions. If T2 is checked before T1 the scan
cycle will end in the state to the left. If T1 is checked first it will fire and when T2 is
then checked it will also fire meaning that the scan cycle will end in the state to the
right.

17

Chapter 3. Grafchart

example for an N action the variable will always be true at least one scan cycle and
the same goes for the x step property.

Another issue is transitions for alternative paths which have conditions that may
be true at the same time. This is called a conflict and the transitions involved in a
conflict are called conflicting transitions. Conflicts are not allowed in Grafchart.
Note that there cannot be conflicts between Exception Transitions and ordinary
Transitions since Exception Transitions have priority over ordinary Transitions.

The execution model for Grafchart does the following during each scan cycle:

1. Read inputs.

2. Enabled transitions with true conditions are marked for fir-
ing.

3. Remove firing mark for conflicting transitions of lower pri-
ority.

4. Fire the transitions marked for firing.

5. Update step properties t and s.

6. Execute P actions.

7. Mark variables subject to normal actions.

8. Update marked variables.

9. Sleep until the start of the next scan cycle.

The execution model is compatible with Grafcet [10], the language which SFC
is based on, and gives sufficiently deterministic behavior. The remaining non-
determinism is for cases where the application should not depend on the execution
order anyway. An example of this is the firing order of transitions, affecting which
step’s S and X actions are executed first. Another example is which step’s P actions
are executed first.

3.3 JGrafchart Specifics

JGrafchart has many additional features such as load/save in XML format and print-
ing. Other JGrafchart specific extensions and implementation details of interest are
described here.

Data Types
There are four data types in JGrafchart: Boolean for Boolean values, Integer for
integer values, Real for float values, and String for strings. Integer values are written
like ordinary whole numbers, Real values are written using decimal notation, String
values are written as the string value enclosed by quotation marks, and Boolean
values are written 1 for true and 0 for false.

18

3.3 JGrafchart Specifics

JGrafchart uses loose typing and automatic type casting. The target data type is
determined by the context. For example in Figure 3.11 b is cast to a Boolean since
this is the data type for transition guard conditions.

b Real

b

1.0

Figure 3.11 The target data type for a transition condition is Boolean. Therefore
the value of the Real variable b will automatically be cast to a Boolean. In this case it
is the value 1.0 that is cast and the condition will therefore be true. A complete list
of how values are reinterpreted by a cast is included in the JGrafchart documentation.

Variables and IO
Variables are declared by adding Variable elements to the application. There is a
Variable element for each data type. Variables may have an initial value and may
also be constant or configured to be updated automatically at the beginning of each
scan cycle according to an expression. There is also a List element for each data
type. Both Variables and Lists are internal to the application. To interact with an
external environment Inputs and Outputs (IO) are needed.

One IO possibility in JGrafchart is the IO elements Digital In, Digital Out, Ana-
log In, and Analog Out as well as inverted variants for the Digital In/Out. At the
beginning of each scan cycle each In IO is read from the external environment. An
Out IO is written to the external environment whenever assigned. How the IO in-
teract with the external environment depends on the chosen IO implementation. A
custom IO implementation is created by implementing a set of Java interfaces. With
a custom implementation it is possible to communicate with practically any external
environment. However, it is limited to Boolean and Real values.

Another IO possibility is the Socket IO elements. JGrafchart can connect to
a TCP server and communicate Boolean, Real, Integer, and String values over a
socket using the message protocol: <identifier> ’|’ <value> ’\n’. The TCP
server is then responsible for interacting with the external environment.

Dynamic References
In most programming languages there are dynamic references which can be used to
create more general applications. In C there are pointers that can be used as dynamic
references. In Java any variable used to refer to an object is a dynamic reference. In
JGrafchart String Variables can be used as dynamic references. The String’s value is
then the name of the element which it references. To dereference a String Variable,

19

Chapter 3. Grafchart

the ^ operator is used, see Figure 3.12. The result of a dereference operation can be
any element with a name and it is used like when the element is named explicitly.

c^

Str

b

c Str

c

d Bool

d

0

b^^

... b^ ...

Figure 3.12 The String Variable b has the value c. As a dynamic reference it thus
refers to the String Variable c. Similarly the String Variable c refers to the Boolean
Variable d. The expression b^ will dereference the String Variable b and return the
String Variable c. Similarly c^ will return the Boolean Variable d. Finally b^^ is
equivalent to (b^)^ which, as previously described, is dereferenced to c^ which in
turn is dereferenced to the Boolean Variable d.

If Statement
Conditional execution and evaluation are possible to express with states and transi-
tions. After all this is what Grafchart is all about. However, for simple conditional
expression evaluations this is much overhead and makes both the expressions and
the application appear more complicated. Also, since each step is active at least one
scan cycle the evaluation of consecutive conditional expressions takes several scan
cycles.

Inline if (?:), also known as the conditional operator and ternary if, is supported
by JGrafchart. Figure 3.13 shows a small FC written without and with inline if. The
implementations behave slightly different: The left part executes the initialization in
one scan cycle and the rest in the next scan cycle. The right part executes everything
in the same scan cycle.

20

3.3 JGrafchart Specifics

!bb

S c = 42;

1
// Use c

X b = 0;

S c = b ? 42 : c;

// Use c

X b = 0;

Without Inline If With Inline If

Figure 3.13 The variable c needs to be initialized to 42 if b is true. The left part
shows how to implement this without inline if. The right part shows how it can be
implemented with inline if.

Graphical Elements
The online view of the running application is great for developers and maintenance
staff. For the operators of the producing machine on the other hand it is more intu-
itive with an interactive interface resembling the machine. In JGrafchart it is pos-
sible to create interactive operator interfaces with graphical elements. Figure 3.14
shows a JGrafchart operator interface.

Figure 3.14 An operator interface with process alarms, the executed application,
and animated tanks and piping resembling the controlled process.

21

Chapter 3. Grafchart

Basic graphical elements available are rectangles, ellipses, and lines. Custom
images and interactive buttons and plotters are also available. In fact most of the
figures in this chapter were created with JGrafchart. It is also possible to manipulate
the graphical elements from the application to create animations.

Methods and Functions
JGrafchart provides a library of built-in functions, for example mathematical func-
tions like sqrt, sin, and abs. Elements also have methods, for example getting and
setting the location and size of graphical elements can be used to create animations.
For steps the x, t, and s properties can also be accessed.

Conflicting Transitions
A common mistake is conflicting transitions. Unfortunately it is also hard to analyze
which transitions may be conflicting in an application. In JGrafchart no such anal-
ysis is implemented. The user is responsible to ensure that there are no conflicting
transitions. If there are anyway, all conflicting transitions will fire.

3.4 Comparative Example

As mentioned in Chapter 3.2 Macro Steps make larger applications understandable.
Here this is shown by comparing an application implemented in both standard SFC,
SFC with Macro Steps, and JGrafchart. Note that the example is rather small. For
larger applications Macro Steps and the additional JGrafchart features will be even
more beneficial.

The bead sequencing process in Figure 3.15 can be controlled by the SFC ap-
plication in Figure 3.16. In Figure 3.17 Macro Steps have been used to structure
the application. The inner loop has been moved into a separate Macro Step and the
alternative paths have been moved into Macro Steps to make the flow more linear.
The overall control logic is then much clearer. The internal FC of the Macro Step
ReleaseBeads is shown in Figure 3.18. The other two Macro Steps contain the
black/yellow alternative paths in the SFC application and are omitted. Note that the
error handling, the transitions concerning nAttempts, must be implemented twice
to move the inner loop into a Macro Step. The structured application is much easier
to overview, making it easier to understand and maintain it.

In Figure 3.19 and Figure 3.20 additional Grafchart and JGrafchart features have
been used. With two exits from the Macro Step, one for the normal case and one
for the exceptional case, it is possible to remove the redundant exceptional case
handling inside the Macro Step. By using dynamic references (^) and inline if (?:)
several alternative paths were removed. The resulting application has a linear flow
with a minimal number of loops. The state flow is thus as easy as possible.

22

3.4 Comparative Example

Figure 3.15 The bead sequencing and sorting process. Yellow and black beads
are sequenced into a pattern, here 3 black 3 yellow. Turned upside down the process
becomes a bead sorter, sorting the beads back into their respective compartments.

S LED = 1;

S bBlack = 0;

S LED = 0;

S bDone = 0;

1

N ResetBead;

bBlack !bBlack

ReleaseBlack

N Sol1;

ReleaseYellow

N Sol2;

ReleaseBlack.t >= SeqReleaseTime ReleaseYellow.t >= SeqReleaseTime

WaitForBead

Bead!Bead & WaitForBead.t >= SeqWaitTime

NoBead

S nAttempts = nAttempts + 1;

nAttempts >= cnMaxAttemptsnAttempts < cnMaxAttempts !(nBeadsLeft > 0 | bDone) nBeadsLeft > 0 | bDone

S nAttempts = 0;

S nBeadsLeft = nBeadsLeft - 1;

X bDone = 1;

bDone !bDone

S nAttempts = 0;

bBlack !bBlack

Black

S nBeadsLeft = NbrBlack;

Yellow

S nBeadsLeft = NbrYellow;

1 1

SwitchCompartment

S bBlack = !bBlack;

1

Figure 3.16 An SFC application for controlling the bead sequencing process.

23

Chapter 3. Grafchart

S LED = 1;

S bBlack = 0;

S bDone = 0;

S LED = 0;

X bDone = 1;

!bDonebDone

1

1

SelectCompartment

ReleaseBeads

nAttempts < cnMaxAttemptsnAttempts >= cnMaxAttempts

SwitchCompartment

S bBlack = !bBlack;

1

Figure 3.17 The application in Figure 3.16 structured with Macro Steps. The in-
ternal FC of ReleaseBeads is shown in Figure 3.18.

S nAttempts = 0;

WaitForBead

S nAttempts = nAttempts + 1;

!Bead & WaitForBead.t >= SeqWaitTime Bead

S nBeadsLeft = nBeadsLeft - 1;

S nAttempts = 0;

nBeadsLeft > 0 | bDone

NoBead

nAttempts >= cnMaxAttempts

nAttempts < cnMaxAttempts

ReleaseBead

1

N ResetBead;

1

1

nBeadsLeft == 0 & !bDone

Figure 3.18 The internal FC of the Macro Step ReleaseBeads in Figure 3.17.

24

3.4 Comparative Example

S LED = 1;

S bNextModeIsBlack = 1;

S bDone = 0;

S LED = 0;

1

X bDone = 1;

!bDonebDone

1

nAttempts >= cnMaxAttempts

1

ReleaseBeads

SelectAndSwitchCompartment

S nAttempts = 0;

S nBeadsLeft = bNextModeIsBlack ? NbrBlack : NbrYellow;

S refCompartment = bNextModeIsBlack ? "Sol1" : "Sol2";

S bNextModeIsBlack = !bNextModeIsBlack;

Figure 3.19 The application in Figure 3.17 written with additional features of
Grafchart and JGrafchart. The internal FC of ReleaseBeads is shown in Fig-
ure 3.20.

ReleaseBead

N refCompartment^;

ReleaseBead.t >= SeqReleaseTime

WaitForBead

X nAttempts = nAttempts + 1;

!Bead & WaitForBead.t >= SeqWaitTime Bead

S nBeadsLeft = nBeadsLeft - 1;

S nAttempts = 0;

N ResetBead;

nBeadsLeft == 0 & !bDonenBeadsLeft > 0 | bDone

1

1

Figure 3.20 The internal FC of the Macro Step ReleaseBeads in Figure 3.19.

25

Chapter 3. Grafchart

3.5 G2Grafchart Specifics

Everything so far describes the Basic Version (BV) of Grafchart which is imple-
mented in both G2Grafchart and JGrafchart. In G2Grafchart there is also a High
Level Version (HLV) which is a superset of BV. In BV there is essentially only one
token while in HLV it is possible to have several tokens and to spawn and consume
tokens dynamically. Tokens in HLV may also contain data (compare to colored Petri
nets [16]). They may also contain internal FCs, a feature called multi-dimensional
charts.

Objects in G2Grafchart may also have parameters and attributes. The following
notations are used to access token and object data in actions and conditions: inv
for token data, sup for object parameters, and self for object attributes. For more
details about G2Grafchart, see [10].

26

4
Challenges

The current trends in industrial automation mentioned in the introduction are the
need for customizable production, flexibility, vertical integration, convenient han-
dling of more advanced sensors and actuators, and reduced time to market. These
trends impose increased requirements on the automation software, including the
development tools and languages.

As shown in Chapter 3.4 Grafchart’s hierarchical structuring and exception han-
dling mean that it is possible to create better structured and more conceivable appli-
cations. Together with Grafchart’s reusability features this leads to better customiz-
ability and flexibility. This has been proven to work very well for batch control on
level 2 in Figure 1.1 [10, 15]. The current Grafchart implementation, JGrafchart,
works really well for this purpose. However, it would be even better with additional
concepts such as HLV. It would also benefit from a more flexible language imple-
mentation where concepts are easier to add and evaluate.

As Grafchart is an extension to SFC it should be possible to execute the applica-
tions in the same context. SFC is typically executed in realtime in a PLC. JGrafchart
on the other hand runs on an ordinary PC in an interpreted manner. The same Java
object instances are used both for execution and application visualization. This is
far from realtime. For core robotics applications, a scan cycle time of a few millisec-
onds is often required. Forces build up quickly and being delayed one scan cycle
can be the difference between smooth behavior and destroying something. With
the current version of JGrafchart (2.2.0) not even tiny applications can be executed
reliably at this rate.

To have flexible and reliable tools and languages for developing applications
which can execute in realtime is not enough, there is also a demand for a more
flexible architecture. Currently, interaction with similar field devices can be fun-
damentally different and thus they are not interchangeable. Custom encapsulations
can be made to decrease the dependency toward a particular field device, but it is
desired to have an architecture which provides a unified way to do this.

In Chapter 5 modern compiler techniques are evaluated for JGrafchart, building
the foundation for implementing extensions such as HLV. In Chapter 6 the first
steps toward execution in realtime are made. In these chapters the programming

27

Chapter 4. Challenges

environment for automation applications are considered. Chapter 7 tackles the more
general challenge to build the automation architecture for the whole factory in a way
that provides flexibility, vertical integration, and convenient handling of advanced
sensors and actuators. This is done by evaluating SOA for automation.

28

5
Compiler Techniques

5.1 Introduction

As mentioned in Chapter 3.5 there are two variants of G2Grafchart, namely the Ba-
sic Version (BV) and the High Level Version (HLV). JGrafchart corresponds to BV
and extending it with HLV would enable new powerful and flexible ways of writing
applications. It is also desirable to retain a pure BV and have both variants avail-
able. Since HLV is a superset of BV it is desirable to reuse the BV implementation
as base for the HLV implementation. Consequently, redundant code is avoided and
maintainability is improved. This imposes an extensibility requirement on both the
editor and the compilers.

The work presented in this chapter introduces modern compiler techniques to
an automation language with the goal to make it extensible. Thus the challenge
in Chapter 4 to create a more flexible language implementation is addressed. To
use modern compiler techniques for JGrafchart is also a natural first step toward
realtime execution. This chapter concerns the compilers for the textual languages of
Grafchart and is based on publication [17].

5.2 Background

Programming Languages
A programming language can be described by its syntax, semantics, and pragmat-
ics [18]. The syntax describes the allowed structure of the language, the semantics
describe the meaning of the syntactic elements, and the pragmatics describe what
the constructs in the language can be useful for. Take assignments for example.
The syntax describes how assignments are written, for example a valid assignment
in Grafchart is S temp = 12 * y;. The semantics describes that an assignment
means evaluating an expression and assigning the result to a variable. In this case
the expression 12 * y will be evaluated and assigned to the variable temp. The
pragmatics describe what an assignment can be useful for, in this case for setting
up a temporary variable.

29

Chapter 5. Compiler Techniques

Compilers
The task of compilers is to transform written applications into something exe-
cutable. A typical compiler works in a sequence of phases, see Figure 5.1. The
input to the compiler is the application source code. The scanner splits the source
code into a sequence of classified tokens. The parser uses these tokens to build an
abstract syntax tree (AST). The AST contains all information needed to execute the
application. Executable code can be generated from the AST or an interpreter can
execute the AST directly.

Scanner Parser
Code

Generation

x = y + 1; VAR(x)
EQ

VAR(y)
ADD

INT(1)
";"

Figure 5.1 The overview of a compiler. The scanner transforms the source code x
= y + 1 into a sequence of classified tokens. For example x is classified as the token
variable x and 1 is classified as the token integer 1. The parser uses these tokens to
build an AST representation of the application.

The scanner and parser check that the application is syntactically correct, a
prerequisite for building an AST. An AST must also be analyzed to check if the
application is semantically correct. In Figure 5.1 the application is always syntacti-
cally correct but semantically correct only if the variables x and y exist.

Rewritable Reference Attribute Grammars
Attribute grammars with synthesized and inherited attributes were introduced by
Donald Knuth [19]. The main difference between attribute grammars and tradi-
tional compiler techniques is that attribute grammars are declarative while tradi-
tional compilers are imperative. Instead of explicit AST traversal, the semantics
are specified with equations. The biggest advantage with declarative programming
is that the evaluation order is determined automatically and does not have to be
considered. The focus shifts from designing the evaluation order to just adding the
desired attributes. Rewritable Reference Attribute Grammars (ReRAGs) adds sev-
eral new concepts such as reference attributes, collection attributes, parametrized
attributes, circular attributes, and node rewrites.

Consider the toy AST with integer nodes in Figure 5.2. It consists of a Root

node with one IntNode child node and each IntNode has an integer value and zero
or more IntNode child nodes.

30

5.2 Background

IntNode(7)

IntNode(3) IntNode(2)

IntNode(8) IntNode(5) IntNode(4)

Root

Root ::= IntNode;
IntNode ::= <Value:int> IntNode*;

Figure 5.2 A toy AST of integer nodes. Each IntNode has a value and zero or
more child nodes. For example the Root node’s child node has the value 7.

Synthesized attributes are assigned locally and depend on the local subtree. In
Figure 5.3 a synthesized attribute has been added for the local sum of a subtree.

IntNode: 2

IntNode: 8 IntNode: 5 IntNode: 4

syn int IntNode.localSum() {
 int localSum = getValue();
 for (IntNode child : getIntNodes()) {
 localSum += child.localSum();
 }
 return localSum;
}

localSum: 4 localSum: 5 localSum: 8

localSum: 2 localSum: 20

IntNode: 3

localSum: 29

IntNode: 7

Root

Figure 5.3 The AST from Figure 5.2 attributed with the local subtree sum for
each IntNode. This is done by adding a synthesized attribute called localSum of
type int, which is calculated as the node’s value plus the local sums of its child
nodes.

31

Chapter 5. Compiler Techniques

Inherited attributes are assigned by an ancestor. In Figure 5.4 an inherited at-
tribute has been added for the sum of the whole tree.

IntNode(2)

IntNode(8) IntNode(5) IntNode(4)

inh int IntNode.globalSum();
eq Root.getIntNode().globalSum() = getIntNode().localSum();

localSum: 4
globalSum: 29

localSum: 5
globalSum: 29

localSum: 8
globalSum: 29

localSum: 2
globalSum: 29

localSum: 20
globalSum: 29

IntNode(3)

localSum: 29
globalSum: 29

IntNode(7)

Root

Figure 5.4 The AST from Figure 5.3 attributed with the global sum. This is done
by adding an inherited attribute called globalSum for each IntNode. Root specifies
that for all other nodes this attribute is the local sum of its child node.

Parametrized attributes are attributes which may depend on parameters. In Fig-
ure 5.5 a parametrized attribute has been added, which checks if the local sum is
greater than the supplied argument.

IntNode: 2

IntNode: 8 IntNode: 5 IntNode: 4

syn boolean IntNode.gt(int arg) = localSum() > arg;

localSum: 4
gt(7): false

localSum: 5
gt(7): false

localSum: 8
gt(7): true

localSum: 2
gt(7): false

localSum: 20
gt(7): true

IntNode: 3

localSum: 29
gt(7): true

IntNode: 7

Root

Figure 5.5 The AST from Figure 5.3 attributed with a parametrized attribute for
each IntNode, which checks if the local sum is greater than the argument, here 7.

Reference attributes are attributes which refer to other nodes in the AST. This
was not allowed for the original attribute grammars as it may cause circular eval-
uation dependencies. In Figure 5.6 a reference attribute to the root node has been
added for all nodes.

32

5.2 Background

IntNode(2)

IntNode(8) IntNode(5) IntNode(4)

syn Root Root.root() = this;
inh Root IntNode.root();
eq Root.getIntNode().root() = this;

localSum: 4
gt(7): false

localSum: 5
gt(7): false

localSum: 8
gt(7): true

localSum: 2
gt(7): false

localSum: 20
gt(7): true

IntNode(3)

localSum: 29
gt(7): true

IntNode(7)

Root
root

root

Figure 5.6 The AST from Figure 5.5 attributed with a reference attribute to the
root node for all nodes. The Root node specifies itself as its own root with a syn-
thesized attribute and as all other nodes’ root with an inherited attribute.

A collection attributes is a node local collections to which any node in the tree
can contribute. In Figure 5.7 the collection attribute greatSums which contains all
local sums greater than 7 has been added to the Root node.

IntNode: 2

IntNode: 8 IntNode: 5 IntNode: 4

coll SortedList<Integer> Root.greatSums()
 [new SortedList<Integer>()] with add;

IntNode contributes localSum()
 when gt(7)
 to Root.greatSums()
 for root();

localSum: 4
gt(7): false

localSum: 5
gt(7): false

localSum: 8
gt(7): true

localSum: 2
gt(7): false

localSum: 20
gt(7): true

IntNode: 3

localSum: 29
gt(7): true

IntNode: 7

greatSums(): 8, 20, 29

Root
root

root

Figure 5.7 The AST from Figure 5.6 attributed with a collection attribute which
contains all local sums greater than 7. It is defined for all Root nodes and the
IntNodes contribute their local sums to the collection of their root.

33

Chapter 5. Compiler Techniques

A circular attribute is an attribute which is allowed to depend on itself. Circu-
lar attributes are evaluated iteratively until the value has converged. Finally, node
rewrites are used to replace nodes in the original AST before attributes are evalu-
ated.

JastAdd
ReRAGs are implemented in the open source compiler compiler system JastAdd
[20]. It has been used to successfully implement extensible compilers for a wide va-
riety of purposes, for example the JastAdd Java Compiler (JastAddJ) that is written
as a Java 1.4 compiler with Java 1.5 [21] and Java 7 [22] extensions, the Control
Module Language with object oriented extensions [23], and the Optimica extension
to Modelica [24]. It was thus an attractive candidate for making the JGrafchart com-
pilers extensible. Other alternatives considered include Eli, Synthesizer Generator,
Silver, and Kiama.

In JastAdd, imperative compiler code can be mixed with attributes which makes
it possible to convert a traditional compiler piece by piece. The semantics specifi-
cation can also be split up in modules (aspects) based on for example functionality.

5.3 JGrafchart Compilers

As mentioned in Chapter 3.2 Grafchart consists of three languages: the FC lan-
guage, the action language, and the condition language. In JGrafchart there is a
separate compiler for each language. The AST consists of an FC AST, only con-
ceptual as it is implicitly defined by the editor, and ASTs built by the action and
condition compilers. The FC AST is attached to the root node. Below each step in
the FC AST there is an action language AST. Below each transition in the FC AST
there is a condition language AST. The action and condition ASTs depend on the
FC AST, for example variables are declared in the FC AST and used in actions and
conditions. Thus the complete AST is needed for semantics analysis.

The application in Figure 5.8 implements a controller for a batch tank that is
filled until full, then emptied until empty. This sequence is repeated, and each time
the filling is initiated the cycles counter is incremented. In the current execution
state the fourth filling has just been initiated. The AST for the application is shown
in Figure 5.9.

The compilers for the action and condition languages were previously writ-
ten with traditional compiler construction techniques and tools (JGrafchart ver-
sion 1.5.3.4). The scanners and parsers were generated with JavaCC [25]. Semantic
checks were then added by inserting handwritten code into the generated files. In-
terpreter code for execution was also added to the same files. This is a common
way to implement compilers. It is similar to ordinary programming and most devel-
opers are familiar with the techniques. It is also easier for developers without this

34

5.3 JGrafchart Compilers

Figure 5.8 A control application for a batch tank that is filled until full and then
emptied until empty.

Root

Steps Transitions Links Variables

S1 S2 T1 T2

from

to
... empty inlet cycles ...

Root

S N

Assignment

Var: cycles Add

Num: 1Var: cycles

Var: inlet

Root

Var: empty

......

Function Chart AST

Actions AST
Conditions AST

Figure 5.9 The AST for the application in Figure 5.8. The steps, transitions, and
variables are transformed into an FC AST by the FC compiler. For each step the
actions are transformed into an action AST by the action compiler. The condition of
each transition is transformed into a condition AST by the condition compiler.

35

Chapter 5. Compiler Techniques

knowledge to work on these compilers. However, it has the following drawbacks
and trying to create an extension under these circumstances would be error-prone:

∙ The semantics is written with imperative code which is inherently
hard to extend.

∙ The semantics code, the interpreter code, and the generated code
are intermixed.

∙ The functionalities are hard to overview since they are split up in
all contributing Java classes.

5.4 Rewriting the Compilers

The following strategy for rewriting the compilers was used, see Figure 5.10:

1. Separate the handwritten code from the generated code.

2. Split the handwritten code into logical modules based on
functionality.

3. Simplify the semantics analysis with ReRAGs.

Fresh

Handwritten

Modules Simplified

Old

Compiler

Interpreter

Generated

1
2

3

Figure 5.10 How the JGrafchart compilers were rewritten. First the handwritten
code was extracted, then it was split up into modules, and finally the compiler module
was simplified.

36

5.4 Rewriting the Compilers

These steps were applied to both the action and the condition language imple-
mentation in turn. For convenience the condition language was considered first as it
is roughly a subset of the action language.

Step 1: Separation
Separating generated from handwritten code was straightforward. The scanner and
parser were generated from specification into an empty directory and then com-
pared to the current code. Code only present in the current code was considered
handwritten and moved into a single large JastAdd module.

JastAdd must be told which node types are available. As a starting point a plain
list of all node types was used. Later it was rewritten to make the AST structure
explicit (like the toy AST specification in Figure 5.2).

Step 2: Split Into Modules
The modules chosen for both language implementations were Compiler, Interpreter,
and Utilities. The Compiler module handles the compilation of the AST, the In-
terpreter module handles interpreted execution, and the Utilities module contains
various helper functions.

Built-in functions and methods do not belong in either module since informa-
tion about them is required during compilation and their implementation is required
during execution. In the old implementation they were implemented separately for
the action and the condition language. Since most of them are available in both
languages it is better to only have them implemented once. Therefore they were ex-
tracted to a separate package used during both compilation and execution by both
language implementations.

Step 3: Simplification
The Compiler modules were transformed piece by piece to ReRAG equations. In
parallel, JUnit tests [26] were added to verify that nothing was broken.

The old implementation performed a one pass traversal of the entire AST and
compilation messages were sent directly to the editor during traversal. To deter-
mine if the compilation was successful a separate Boolean variable was propagated
upwards in the tree and returned by the root node.

The new implementation uses a collection attribute in the root node for the com-
pilation messages which the editor fetches. The root node determines if the com-
pilation was successful by checking if the collection attribute contains any error
messages. In fact, all the new implementation does is receiving the compilation
context and checking the collection attribute, see Figure 5.11.

Since the interpreters specify what to do, rather than what to calculate, the In-
terpreter modules were kept as imperative code.

37

Chapter 5. Compiler Techniques

public boolean Root.compile(Context c) {
 if (!isValidContext(c))
 return false;
 this.c = c;
 for (CompilationMessage msg : messages())
 if (msg.isError())
 return false;
 return true;
}

Figure 5.11 The new compile interface implementation.

5.5 Evaluation

Confirming Extensibility
In object oriented programming a useful and common feature is method overriding.
When using the hierarchical constructs of Grafchart for object orientation it would
also be useful to override variables and procedures. Currently this is not possible in
JGrafchart since there is no way to bypass the local context during lookup. The sup
notation is proposed to bypass the local context, see Figure 5.12. Adding sup as an
extension to the new implementation was straightforward. This shows that the new
implementation is indeed extensible.

b

sup.b

Bool

b

0

Bool

b

0

Figure 5.12 Variable bindings with and without sup. Without sup the local vari-
able b is found. With sup the local context is skipped and the non-local variable b is
found.

38

5.5 Evaluation

Code Size Comparison
A common metric for the size of software programs is Source Lines Of Code
(SLOC). It was chosen to show the difference in implementation size between the
old and the new implementation, see Table 5.1. Care has been taken to make the
comparison as fair as possible.

Table 5.1 SLOC comparison of the old and the new implementation. Neweq is
equivalent to New, but written equally compact as Old. In Totalexcl Built-ins are
excluded. In Total f air Separate Generated has also been excluded.

Old New Neweq
Compiler 1537 380 209
Interpreter 1389 1089 983
Built-ins 3462 3514 -
Utilities 110 134 126
AST 2 114 52
Includes 230 - -
Mixed Generated 1513 - -
Separate Generated 6628 - -
Dead 723 - -
Total 15594 5231 -
Totalexcl 12132 - 1370
Total f air 5504 - 1370
sup - 53 38

Initially, all lines were counted regardless of whether they were statements,
comments, or empty lines. Then an equivalent new implementation was created
by making it as compact as the old implementation, that is, with a similar amount
of comments and empty lines. This is denoted Neweq in Table 5.1.

Since the functionalities in the old implementation were intermixed, both with
each other and with the generated code, to determine the number of lines for each
functionality had to be done manually by reviewing each line. To make the com-
parison as fair as possible, there are separate categories for dead code and files only
containing generated code.

Import statements in the old implementation have been counted separately while
in the new implementation they have been counted with the corresponding modules.

In the old implementation the AST structure was implicitly determined by the
parser specification together with the JJTree (part of JavaCC) stack implementation.
The two lines counted as AST in the old implementation are manual AST structure
modifications to the generated code.

The new Compiler modules are 75% smaller than the old ones. Also, the new

39

Chapter 5. Compiler Techniques

implementation is not as compact as the old one. Comparing the old implementation
to the equally compact Neweq, the new implementation is 86% smaller. In addition,
the new Compiler modules have been enhanced with several new compiler checks
and additional attribution to make the interpretation easier.

The new Interpreter modules are smaller, mainly because duplicated code has
been removed. With all interpreter code gathered in one place it was easy to detect
and eliminate the redundant code. The new implementation has also been enhanced,
for example with support for multiple dereferences within an expression, like b^^

in Figure 3.12.
Previously, built-in functions and methods were implemented in both the action

and the condition compiler with anonymous classes. In the new implementation they
are only implemented once and discrepancies between the implementations have
been detected and resolved. The anonymous classes have also been converted to
public classes which require more overhead but are easier to maintain. The overhead
of the public classes is the reason why the new implementation is larger than, as
would be expected, half the size of the old implementation.

The mixed generated lines in the old implementation are roughly 20% of the
lines in the manually maintained files. With the new implementation no generated
files have to be maintained.

The most fair comparison is Total f air where the implementations are equally
compact and separate generated files and built-ins are excluded. The the new imple-
mentation is then 75% smaller than the old one.

Implementing the sup extension only required 53 lines of code, whereof 20
lines for the scanners and parsers and 33 lines for the semantics.

Performance Comparison
A drawback with attribute grammars is longer compilation time. Here it is evaluated
to check if this is an issue. The compilation code of the old and the new implemen-
tation of JGrafchart were instrumented manually. Compilation was performed 100
times in a burst and the best compilation time of these was considered. The Online
Tutorial application in JGrafchart 2.1.0 was used since it is fairly large and exercises
most features.

The compilation time was 17.3 ms for the old and 39.3 ms for the new im-
plementation. The new implementation performs more checks and has also been
rewritten to use a more extensible and maintainable, but slower name lookup. The
rewritten lookup alone added 7 ms. The rest of the new implementation thus takes
about twice as long as the old implementation.

Interpreted performance has also been analyzed since it is currently the only way
to execute JGrafchart applications. The interpreters were also profiled on the Online
Tutorial with the scan cycle time reduced to 10 ms. The execution code was instru-
mented manually and the execution time was accumulated during approximately
5.7 million scan cycles. The average execution time per scan cycle was 0.204 ms

40

5.6 Conclusions

for the new implementation and 0.212 ms for the old implementation. The execu-
tion performance is practically the same with the new and the old implementation.
Better handling of dots and references weigh up the performance loss due to larger
overhead and the new lookup. Lookup is involved since dereferencing performs
dynamic name lookup during execution.

5.6 Conclusions

To extend JGrafchart with HLV would enable new powerful and flexible ways of
writing applications. It is desirable to also keep a pure BV. Since HLV is a superset
of BV it is desirable to reuse the BV implementation as a base, meaning the BV
implementation needs to be extensible.

ReRAGs and JastAdd are used to make the JGrafchart implementation of the
action and condition languages extensible. To confirm extensibility, the sup notation
was added as an extension to the rewritten implementation of BV. The sup extension
was straightforward to add and required only a few lines of code.

In summary the pros and cons of the new implementation are:

∙ Extensibility

∙ Improved maintainability

∙ Modularized functionalities

∙ Less code

∙ Increased robustness

∙ Degraded compiler performance

∙ Developers must understand attribute grammars

Improved maintainability and increased robustness lead to less bugs and better
quality. The degraded performance is acceptable and not noticeable for the user.
On the other hand less bugs increase the tool’s reliability and added compilation
checks and improved features are also of great value. Improved compiler checks
mean that errors are found at compile time and consequently less time is needed for
debugging.

In conclusion, the new JGrafchart implementation of the textual languages
should be ready for implementing HLV as an extension.

41

6
Realtime Execution -
Work in Progress

6.1 Introduction

Currently JGrafchart is an Integrated Development Environment (IDE) with inter-
preted execution. To execute an application it must first be compiled. The compiler
checks if the application is valid and prepares it for execution by attaching additional
data. Applications are executed directly from the IDE in an interpreted manner us-
ing the same Java instances as the editor. Thus the editor is reused as a visualizer.
To implement visualization is then easier since the editor, visualizer, and interpreter
are interlinked. There are however several drawbacks which, in some industrial con-
texts, may be considered showstoppers:

∙ The execution has to be performed on hardware supporting graphics since the
applications can only be executed in the IDE.

∙ It is not possible to make changes to a running application since the execution
must be stopped to go to editing mode.

∙ The visualization is tied to the computer executing the application.

∙ Visualization can only be made on one computer.

Another approach would be to let the compiler prepare a separate representa-
tion with contain all data required for execution and to execute the applications
separately. With this approach none of the mentioned drawbacks are inherent and
the cost is explicit connections between editor, interpreter, and visualizers. Sepa-
rating the execution engine from the editor also makes it easier to enable realtime
execution, something that is hard to attain when execution is interconnected with
visual updates.

In most IDEs editor, compiler, and runtime are separate. This is a great structure
which would bring several advantages and opportunities for JGrafchart. In future

43

Chapter 6. Realtime Execution - Work in Progress

versions of JGrafchart (3.0.0 and later) the editor, compiler, and execution engine
will be separated and the editor will also be used as a visualizer. This chapter de-
scribes this work in progress, thus addressing the challenge in Chapter 4 to execute
Grafchart applications in realtime.

6.2 Background

JGrafchart has been developed with easy access to all data. It has been easy to
create both appropriate and less appropriate dependencies. The focus has been on
quickly adding new features. Many shortcuts have been taken, a strategy that pays
off well in the short run. However, accumulation of less appropriate dependencies
makes it harder and harder to add new features. For new developers it is also harder
to understand how things are connected and why. Splitting JGrafchart into smaller
self-contained parts enforces removal of several less appropriate dependencies.

Splitting the current implementation into standalone editor, compiler, and exe-
cution engine requires deep understanding of all parts of the JGrafchart implemen-
tation. This was obtained by fixing bugs, adding small features, and refactoring the
code. All existing features were retained but the focus was now instead on creating a
clear and robust structure where it is easier and less error-prone to add new features.
After rewriting the compilers for the textual languages (Chapter 5) and refactoring
the code, the earlier 85,000 lines of code (version 1.5.3.4) were reduced to 45,000
lines of code.

In Chapter 5 a more clean interface between the textual compilers and the ed-
itor was created, which was a first step toward a standalone compiler. The textual
compilers depend on the FC AST which was still interconnected with the editor.
To create a standalone compiler the FC compiler must also be separated. To enable
realtime execution, the execution related code must be standalone. This ensures that
there are no dependencies on GUI painting operations or other user interactions.

6.3 Standalone Editor

Each line of code in the whole implementation of JGrafchart was analyzed. Editor,
compiler, and execution engine code were moved to separate packages. FC com-
piler related code was put in a large JastAdd module (see Chapter 5.2). After this
operation, only the editor worked. The interconnection between the parts had been
broken and new explicit interfaces were needed to get the other parts working again.

6.4 Explicit Interface Design

To design the explicit interfaces between the parts was an iterative process. Several
designs have been discarded as trying to reconnect parts gave new insights and ideas

44

6.4 Explicit Interface Design

on how the design could be improved. Figure 6.1 shows an overview of the current
design. The new IDE contains both the editor, compiler, and an internal execution
engine. Hence the previous workflow can still be used. It will also be possible to use
an external Execution component consisting of the execution engine and the com-
piler. The new execution engine is still an interpreter but both the execution engine
and the interpreted AST are different. Another new feature is that it is possible to
use the compiler and the execution engine from a command line.

Editor

Execution
Engine

Compiler

IDE

Execution

Figure 6.1 This figure shows an overview of the current interface design between
the standalone editor, compiler, and execution engine. Most interactions reuse the
application XML (AppXML).

The application XML is used in most interfaces and is the same as when appli-
cations are saved to file. A big advantage with this is that no additional exchange
format is needed. The editor sends the application XML to the compiler and shows
compilation messages to the user. To start execution the application XML is sent to
the Execution component. The compiler is then used to build the AST, verify that
the application is valid, and prepare the execution data. The compiler is also used
during execution for the dynamic features. Visualization is driven both by the editor
and the execution engine. Operator commands are passed to the execution engine
and the execution engine sends information about visual updates to the editor.

45

Chapter 6. Realtime Execution - Work in Progress

6.5 Standalone Compiler

Previously, the FC compiler code had been added to the existing editor classes with
many interdependencies. For example the FC compiler directly manipulated the text
color of transition conditions for error highlighting. The FC AST was implicitly
given by the used graphics library and the AST structure had to be adapted to fit the
graphics library.

Most compiler code had to be rewritten due to the many dependencies to the
editor. The new compiler was written using ReRAGs to make it extensible. JUnit
tests [26] were added to verify the new implementation.

The AST structure was changed to better fit the language. This was also an iter-
ative process, the AST structure was refined as additional pieces of compiler code
were added. The new AST structure does not require as many interfaces since in
several cases inheritance could be used instead. For example the previous imple-
mentation required an interface for elements with a name since they extended dif-
ferent classes in the graphics library. Consequently there were 35 implementations
of each operation in the interface. In the new implementation a super class could be
used and thus only a single implementation of each operation was required.

A new XML parser was implemented to build the new AST from the application
XML. This was straightforward.

Some compiler checks were previously implied by editor code. For example
there were no checks for connections between elements as it was assumed that only
valid connections could exist in the editor. Such checks have been added to the new
compiler.

Some less appropriate shortcuts were found when rewriting the compiler code.
Some of these would have to be implemented in both the editor and the compiler.
Where possible, the code was instead redesigned. Several changes were also made
to the save format to simplify the compiler implementation and make it more robust.
For example the way to save connections between elements was changed. Instead
of a sometimes suffixed element identifier, both an element and a port identifier are
used. Less reasoning is then needed to find the right ports and there is no longer a
risk that a suffixed identifier is identical to another, unsuffixed, identifier.

6.6 Standalone Execution Engine

There is an initial design for how to extend the AST with the interpreter code which
is currently being implemented. So far only the basic features are operational.

The new execution engine has been profiled to get an initial estimate of its ex-
pected performance. A small application only using constructs currently available
in the new implementation is shown in Figure 6.2.

The interpreted execution was profiled by manually instrumenting the execution
code and removing the sleep between the scan cycles. The execution time was then

46

6.7 Editor/Compiler Interaction

S1

S i = i + 1;

P b = !b;

S1.s > 2

Int

i

0

S2

Bool

b

0

b !b

S3

1 1

Figure 6.2 The profiled application. Its sole purpose is to exercise the constructs
currently available in the new implementation.

accumulated over 100 million scan cycles. The average execution time per scan cy-
cle was 500 ns for the new implementation and 4,000 ns for the old implementation.
The execution code has only been slightly changed so far. The main difference is
that the graphical painting has been removed in the new implementation. Removing
the painting in the old implementation also gives an average execution time per scan
cycle of 500 ns. The expected performance is thus an order of magnitude faster.

6.7 Editor/Compiler Interaction

In graphical programming languages compilation messages cannot refer to prob-
lems by file and line numbers. A nice feature of JGrafchart is that errors are high-
lighted in the editor. For example the text color becomes red for incorrect transition
conditions.

In the previous implementation the error highlight feature was limited to a few
elements and only worked under certain conditions. Not only retaining but also
enhancing this feature was desirable. Using direct references, as done previously,
is not possible with a standalone editor and compiler. Instead unique identifiers for
the elements are included in each compilation message. Graphically connectable
elements already had unique identifiers which were used for storing the graphical
connections. The rest of the elements were extended with similar unique identifiers.

47

Chapter 6. Realtime Execution - Work in Progress

Figure 6.3 and Figure 6.4 show the error highlighting of an application in the
previous and the new implementation respectively. Compiling the application re-
sults in a warning about an uncorrected transition and an error in the actions of the
step.

#0

0

Figure 6.3 Error highlighting with the previous implementation. Warnings are not
highlighted at all and the error in the step actions is not highlighted since the actions
for the step are hidden.

0

Figure 6.4 Highlighting with the new implementation. The step with an error is
colored red and the unconnected transition is colored orange.

Note that the previous implementation changed the name of the unnamed step
to #0 to be able to refer to the unnamed step. It also gives an additional compilation
message to specify that the other compilation message is related to this step. If the
actions for the step were shown they would be colored red. The warning can only
state that there is an unconnected transitions, not which one, since transitions do not
have names.

In the new implementation no modifications are made to the application. The
step causing the error and the transition causing the warning are clearly highlighted.
Clicking on a compilation message now selects the corresponding element in the
editor. This is particularly useful for unnamed elements, like transitions, and for
elements which are currently not shown.

48

6.8 Evaluation

6.8 Evaluation

Reusing the application XML in the interactions works since it contains all informa-
tion about the application and means that fewer exchange formats are required. A
running application also contains visualization data and can receive operator com-
mands. These will be sent separately to limit the communication between visualizer
and execution engine.

With all compilers implemented using ReRAGs it is possible to add extensions,
for example for generating code that can be executed in realtime. Application refac-
toring like renaming a JGrafchart variable should also be quite easy to implement
using the new AST. Changing running applications can also be addressed when it
is possible to edit an application while a previous version of it is executing. With a
standalone execution engine, distributed applications can also be implemented more
easily.

6.9 Conclusions

Many advantages and opportunities are expected with the new structure:

∙ Improved execution performance

∙ Clear interfaces between the parts

∙ Easier to add new features

∙ Extensibility

∙ Improved maintainability

∙ Increased robustness

The performance measurements indicate that the new interpreter will be an or-
der of magnitude faster. The improved error highlighting is an example of where
clear interfaces between the parts makes it easier to add new features. The whole
JGrafchart compiler is now implemented with ReRAGs and should be ready for
adding extensions, for example HLV. With separate parts it is easier to get an
overview of each part which improves maintainability and robustness. It will be
interesting to evaluate these aspects further as the work progresses.

49

7
Service Oriented
Architecture

7.1 Introduction

As mentioned in Chapter 1, automation needs to be more flexible. A promising ap-
proach is Service Oriented Architecture (SOA) which is widely used for business
processes [27, 28]. It has also been recognized for use in automation in many re-
search projects [29, 30, 31]. An outcome of the SIRENA project [32] is an open
source Devices Profile for Web Services (DPWS) implementation targeted at em-
bedded devices [33, 34]. However, SOA is still barely used for industrial automa-
tion. This should be of no surprise as it is a fairly new technology and only mature
technologies known to work well in practice are typically considered. Presenting
successful realistic examples which provide the anticipated advantages is one step
toward convincing the automation community that SOA is worth considering.

The work presented in this chapter enables automation to be built in a service
oriented way by making it possible to use JGrafchart as a generic DPWS client. It
has been carried out in collaboration with DFKI in Kaiserslautern, Germany and
has resulted in publications [35] and [36].

7.2 Background

SOA in Automation Technologies
SOA is a component based software design methodology [37]. A component en-
capsulates a specific functionality and is called a service. Services are unassociated,
loosely coupled, and self contained. They are described with metadata in a way that
allows them to be both language and platform independent. To write applications
with SOA is known as orchestration and is done by combining many services. This
enables a high degree of reusability and flexibility. Using SOA for automation has
potential to decrease the engineering effort significantly.

51

Chapter 7. Service Oriented Architecture

The term SOA in Automation Technologies (SOA-AT) is used to distinguish
SOA used for business processes from SOA used in automation since they differ
in many ways [38]. One difference is the execution environment. SOA for business
processes is implemented on ordinary computers with practically unlimited memory
and processing power. In SOA-AT services are running on resource constrained
embedded devices with little memory and processing power. Only a minimal set of
features can then be supported. Also, in SOA-AT the timing is often important. In
automation a small time delay could be the difference between a stable (safe) and
an unstable (dangerous) system.

In SOA-AT the functionality of each field device is encapsulated as a service
and the control application is written by orchestrating these services. Control ap-
plications can be made hardware independent as similar field devices can expose
themselves as identical services. This enables reuse of control applications.

Most SOA tools are tailored for business processes. In [39] several tools were
evaluated and DPWS was the tool deemed best suited for SOA-AT. DPWS uses ex-
isting WS-* specifications and defines a minimal set of implementation constraints
to enable web services on resource constrained devices [40, 41].

DPWS
Plain web services are complicated to use since for each service the desired WS-*
extensions may or may not be supported. DPWS defines a minimal set of manda-
tory extensions which are always available. The hierarchy of DPWS is shown in
Figure 7.1. At the root is a DPWS device. Below the device are services, portTypes,
and operations which are the same as for ordinary web services.

Device

Service Service ...

PortType PortType ...

Operation Operation ...

Figure 7.1 The DPWS hierarchy. A DPWS device hosts services, services contain
portTypes, and portTypes contain operations.

52

7.2 Background

An operation corresponds to an action that a service is able to perform, for
example a motor could have the operation setTorque(t). The portType is used to
group operations, for example a motor could have the portTypes torqueControl
and rotationSpeedControl. A service encapsulates a specific functionality. In
SOA-AT this is the functionality provided by a field device, for example a motor. A
device hosts services, for example it could host a group of co-located motors.

Figure 7.2 shows an overview of the DPWS stack [42]. At the base level is the
IP protocol for the actual communication. Both IPv4 and IPv6 may be used and IP
multicast is used for discovery. On top of this either HTTP/TCP or UDP are used.
XML is used as the underlying message structure. On top of this SOAP-over-UDP
and SOAP define the message exchange protocol and Web Services Description
Language (WSDL) is used to define the messages. Finally, additional web service
extensions like WS-Discovery, WS-Addressing, WS-MetadataExchange, and WS-
Eventing are included and mandatory in DPWS.

IPv4 / IPv6 / IP multicast

UDP
TCP

HTTP

SOAP-over-UDP, SOAP, WSDL

WS-Security, WS-Policy, WS-Addressing

WS-Discovery WS-Eventing WS-MetadataExchange

XML

Figure 7.2 Overview of the DPWS stack.

WS-Discovery The WS-Discovery extension makes it possible to dynamically
find devices on the local network, see Figure 7.3. To find devices a client multi-
casts a Probe message. Devices on the local network should receive this message
and respond with a Probe Match message to the client. Devices also multicast Hello
and Bye messages when they join and leave the network. Ideally, sending a Probe
message should only be necessary when the client joins the network.

With WS-Discovery it is possible to find and connect to a device without any
prior knowledge about it. However, WS-Discovery only works on the local network
and since multicast uses UDP it is inherently not reliable. For required devices not
found with WS-Discovery the connection must be set up manually.

53

Chapter 7. Service Oriented Architecture

Network

Client 2

Device 1
Device 2

1

1 1

Probe (multicast) 1

Hello (multicast) 3

Bye (multicast) 4

Probe Match 2

2
2

Device 3 3

3

Client 1

3

4

4

4

Figure 7.3 Initially Client 1, Device 1, and Device 2 are connected to the network.
Client 2 joins and multicasts a Probe message. Device 1 and 2 receive this message
and each respond with a Probe Match message to Client 2. Now Device 3 joins the
network and multicasts a Hello message which is received by Client 1 and Client 2.
Finally Device 2 is about to leave the network and multicasts a Bye message. It is
received by Client 1 and Client 2.

WSDL Services are specified using WSDL. Each service is defined by its WSDL
description, often referred to as its WSDL. It defines all portTypes and operations
supported by the service. It also defines the message structure of all messages and
specifies which messages are used for the operations. Briefly, the WSDL contains
all information required to interact with a connected service.

WSDL specifies four types of operations, namely one-way, request-response,
solicit-response, and notification. One-way and request-response operations are in-
voked by the client by sending the corresponding message. For request-response
operations the service also returns a corresponding response message. Symmetri-
cally, notification and solicit-response operations are invoked by the service and for
solicit-response operations the client returns a response message.

WS-MetadataExchange DPWS devices must expose various metadata such as
manufacturer and model name which is useful to retrieve additional details about a
discovered device. The WS-MetadataExchange extension also requires services to
expose their WSDL.

WS-Addressing As devices and clients join and leave the network it is necessary
to be able to uniquely identify devices. The WS-Addressing extension requires that
each device has a unique identifier. It is then possible to recognize a previously used
device and be sure that it is the exact same device.

54

7.2 Background

WS-Eventing Events are often preferred over polling. The WS-Eventing exten-
sion provides support for eventing.

Summary It is possible to create generic orchestration tools by relying on
the DPWS mandatory extensions WS-Discovery, WS-Addressing, and WS-
MetadataExchange. However, no tool for this existed. JGrafchart was considered
a suitable candidate for being extended with generic DPWS support. It is based
on SFC which is widely used in industrial automation and, compared to business
process tools, has a higher chance of being accepted by the automation community.

Figure 7.4 shows a sequence diagram where WS-Discovery is used to detect
a device, that is, sending a Probe message and receiving a Probe Match response
from it. WS-Addressing metadata is then fetched to ensure that this is the correct
device. Then hosted services are listed and WS-MetadataExchange is used to fetch
the desired service’s WSDL. Then the one-way operation oneWayOp is called, fol-
lowed by a call to the request-response operation reqRespOp. Notice that the call to
oneWayOp only consists of one message while reqRespOp consists of one message
in each direction. After this a subscription is initiated and finally, when an event
happens, a notification operation named myEvent is received from the service.

Device Client Service

Probe

Probe Match

getServices()

getWSDL()

getMetadata()

oneWayOp()

reqRespOp()

subscribe

myEvent()

Setup
phase

Figure 7.4 A sequence diagram for the interaction between a generic client, a
device, and a service hosted by the device. First the device is discovered and the
service’s WSDL is fetched. Then operations in the service are called, a subscription
is started, and finally a notification is received.

55

Chapter 7. Service Oriented Architecture

7.3 DPWS in JGrafchart

As shown in Figure 7.2, DPWS communication uses XML messages and thus
DPWS requires sending strings. The already existing IO mentioned in Chapter 3.3
are Digital/Analog In/Out and Socket IO. Digital/Analog In/Out are insufficient as
they only support Boolean and float values. Socket IO on the other hand can send
and receive any strings without newline characters. Since newline characters are
considered whitespace in XML this is not a problem. The first prototype for inte-
grating DPWS in JGrafchart was implemented with Socket IO.

The Socket IO Prototype
A TCP/IP server was implemented to translate assignments to socket outputs in
JGrafchart to DPWS operation call messages, as well as DPWS response messages
to socket inputs in JGrafchart, see Figure 7.5. Each DPWS operation used requires
its own translation code in the TCP/IP server. Some special socket inputs and out-
puts as well as some extra code to detect event arrival were also required for sub-
scriptions and event notifications.

JGrafchart DPWS Device
 TCP/IP Server
DPWS Client

Translation

TCP/IP SOAP • Operation call
• Subscription

• Operation response
• Event notification

S

SocketOut

SocketIn

S TCP/IP SOAP

Figure 7.5 Overview of the Socket IO prototype.

JGrafchart only sends a message to the server if the value of the assigned socket
output is changed. Since these assignments correspond to DPWS operation calls
this means that consecutive calls with identical arguments are not made. A modi-
fied version of JGrafchart that sends a message to the server for all socket output
assignments was used.

A possible improvement to this prototype would be to implement a more generic
translation in the server, thus reducing the amount of specific code for each opera-
tion. Another improvement would be a JGrafchart helper library for subscriptions
and event notifications.

56

7.3 DPWS in JGrafchart

A major problem with the prototype is that it is hard to make calls to request-
response operations synchronous. When JGrafchart has written to the socket buffer
related to a request-response operation, it does not know that it should wait for the
update of a specific socket input before resuming execution. A request-response call
using the Socket IO prototype is shown in Figure 7.6. Calling the same operation
from several parts of the application at the same time is also complicated. There are
also the aesthetical issues that operation calls are represented by assignments and
that returned values are fetched from separate socket inputs.

S

GetStatus

S1

S GetStatus = "";

S1.s > 0.5

//...

//GetStatusResponse S

GetStatusResponse

Figure 7.6 A request-response call with the Socket IO prototype. The call is in-
voked by the assignment to GetStatus. The TCP/IP Server translates this into a
DPWS call. When the TCP/IP Server receives the response message it forwards it
to GetStatusResponse. In the application the response is assumed to be available
after 0.5 seconds. It would be possible to use extra socket IO to signal when the
response is available but it would be even more complicated.

Integrated Generic DPWS
A generic DPWS implementation has been integrated directly into JGrafchart ver-
sion 2.1.0 and later using the DPWS4J toolkit [43]. By using WS-Discovery, exist-
ing devices and device startups and shutdowns are automatically detected. By using
WS-MetadataExchange, each service’s WSDL is obtained. It is possible to browse
available devices, services, and operations in JGrafchart, see Figure 7.7. Device
metadata and WSDL documentation are also displayed.

To call DPWS operations a new IO element in JGrafchart called DPWS Object
is bound to a portType, see Figure 7.8. The unique identifiers provided by WS-
Addressing are stored to later restore the binding automatically, for example when
a saved JGrafchart application is opened or when a device joins the network.

57

Chapter 7. Service Oriented Architecture

Figure 7.7 The service explorer in JGrafchart showing details about the available
devices. The WSDL can also be saved, which is useful for example if the documen-
tation is not sufficient.

Figure 7.8 The configuration dialog for the new DPWS Object. It is bound to a
specific portType of a specific service in a specific device.

58

7.3 DPWS in JGrafchart

Calling DPWS Operations
JGrafchart supports all operation types except solicit-response. DPWS operation
calls look like ordinary method calls in JGrafchart, see Figure 7.9. Here the DPWS
Object myDPWSObj is bound to the portType SwitchPower. First a 10 minute sub-
scription is initiated. Then the one-way operation Switch is called. The application
then waits for a StatusChanged notification. Finally the request-response opera-
tion GetStatus is called and its response is stored in the variable newStatus. In
this example the new built-in functions dpwsSubscribe and dpwsHasEvent are
used for eventing. There are also new built-in functions for XML handling and var-
ious other DPWS related purposes.

S dpwsSubscribe(myDPWSObj, "PT10M");
S myDPWSObj.Switch("ON");

S newStatus = myDPWSObj.GetStatus();

dpwsHasEvent(myDPWSObj, "StatusChanged");

myDPWSObj

Figure 7.9 How to use the integrated DPWS feature in JGrafchart.

Calls to request-response operations are synchronous which means that when a
request-response operation is called, execution pauses until the response message is
received. The behavior is thus more deterministic and it is easier to reason about the
execution. It also means that the execution is delayed if it an operation takes a long
time to finish. Also, if either message is lost, the execution will freeze indefinitely.
Improving this is planned for future versions of JGrafchart.

Compiler Aspects
The WSDL contains all data needed to check if an operation call is valid. Some
DPWS operations have content while others do not. For example GetStatus in
Figure 7.9 has no content while Switch has content telling if it is a switch on or
switch off request. In JGrafchart a call has 0 or 1 parameters corresponding to no

59

Chapter 7. Service Oriented Architecture

content and content respectively and the compiler checks that a call has the correct
number of parameters. The actual content is often built dynamically and cannot be
checked at compile time. For this kind of errors runtime SOAP fault handling is
used. Applications can check for and handle these faults.

Devices might not be present while editing or compiling. The editor, compiler,
and execution engine may be on separate local networks and the devices would
then only be available to the execution engine. Devices could also be optional and
only present at certain times. In the editor, bindings can be specified both with and
without the device present. If a device is unavailable when compiling, the compiler
will just warn about not being able to perform these compilation checks.

7.4 Evaluation

SmartFactoryKL is a manufacturer-independent research platform [5] where for ex-
ample demonstrators are created for evaluating new ideas. The DPWS integration
was evaluated on a SOA demonstrator at SmartFactoryKL.

The demonstrator consists of two stations, namely the filling station and the
quality control station. At the filling station bins are filled with pills. The quality
control station checks that bins contain the correct number of pills. The demonstra-
tor uses real industrial field devices encapsulated as DPWS devices. It consists of a
conveyor belt transporting carriers with the bins to the stations. The bins have RFID
tags where various information about the product is stored, for example the number
of pills, if the bin has been filled, and the result of the quality control.

The quality control station was considered, see Figure 7.10. It consists of five
devices: a sensor detecting the arrival of carriers, a stopper for stopping the carriers,
a sensor to check if there is a bin on the carrier, an RFID device to read/write from/to
the RFID tag on the bin, and a camera to take a top view image of the contents of
the bin to count the number of pills.

The sequence for coordinating the station can be modeled as in Figure 7.10.
Based on the model a JGrafchart application for coordinating the station was im-
plemented, see Figure 7.12. As some states in the model have a straight flow they
could be implemented in the same JGrafchart step. The step named CheckBinRFID

and QC in JGrafchart correspond to model states (3)-(4) and (5)-(7) respectively. The
application gives the desired behavior and is reliable.

The new built-in XML utility functions are used to simplify the code. For exam-
ple xmlFetch is used to obtain a derived value from an XML string. The camera’s
count operation returns a sequence of value elements where each element describes
the number of pills of a specific color. The total number of pills is fetched with
xmlFetch(resp, "value", "sum") where resp is the returned string, "value"
is an XPath selecting all elements with the tag name value, and "sum" is a built-in
handler calculating the arithmetic sum of the selected elements’ texts.

60

7.4 Evaluation

Figure 7.10 The quality control station of the SOA demonstrator.

61

Chapter 7. Service Oriented Architecture

(1)
Wait for Carrier

(2)
Check for bin

(3)
Is bin checked?

(RFID)

Carrier arrived

Bin present

(4)
Is bin filled?

(RFID)

(5)
Expected pills

(RFID)

(6)
Actual pills
(Camera)

(7)
Write result

(RFID)

(8)
Release carrier

Bin NOT checked

Bin filled

Bin NOT filled

Bin already checked

No bin present

Figure 7.11 A conceptual coordination sequence for the demonstrator in Fig-
ure 7.10 where (1) is the initial state.

62

7.4 Evaluation

/sensorEvent

WaitForCarrier

S stopper.hold("");

!performQC performQC

CheckBinRFID

S readResponse = RFIDReader.read(xmlAdd("tns:varName", "Status")); // Bin filled

S readFilledResult = xmlFetch(readResponse, "status") == 0 ?

 xmlFetch(readResponse, "value") : 0;

S readResponse =

 RFIDReader.read(xmlAdd("tns:varName", "Qualitaetsstatus")); // Bin QC state

S readQCResult = xmlFetch(readResponse, "status") == 0 ?

 xmlFetch(readResponse, "value") == QCNotChecked : 0;

S performQC = readFilledResult & readQCResult;

CheckForBin

S sensorEventR = dpwsGetEvent(stopper, "sensorEvent");

S checkResponse = sensor.check("");

S isBinPresent = xmlFetch(checkResponse, "isObject");

isBinPresent!isBinPresent

QC

S readResponse = RFIDReader.read(xmlAdd("varName", "Pillenzahl"));

S readPillResult = xmlFetch(readResponse, "status") == 0 ?

 xmlFetch(readResponse, "value") : -1;

S countResponse = pillCounter.count("");

S countResult = xmlFetch(countResponse, "value", "sum");

S write = xmlAdd("tns:varName", "Qualitaetsstatus");

S QCResult = readPillResult == countResult;

S write = xmlAdd("tns:value", QCResult ? QCCorrect : QCIncorrect, write);

S writeResponse = RFIDReader.write(write);

ReleaseCarrier.s > 1

1

ReleaseCarrier

S stopper.release("");

Figure 7.12 An orchestration for the demonstrator in Figure 7.10 implemented
with the integrated generic DPWS feature of JGrafchart. The actions are shown to
give an idea of the amount of code required, they are not intended to be readable.

63

Chapter 7. Service Oriented Architecture

7.5 Conclusions

SOA is a powerful design methodology which can improve flexibility and reusabil-
ity of industrial automation systems. With SOA vertical integration comes for free
since services can expose themselves directly to any level in Figure 1.1.

It was shown that SOA works very well on a demonstrator with real industrial
field devices. The implementation turned out to be practically identical to the con-
ceptual coordination sequence. This means that it might as well have been modeled
in JGrafchart and then implemented by adding the actions and transition conditions.

As a result of this work there is now a generic tool for DPWS service orchestra-
tion. This enables anyone to try out SOA-AT and experience the advantages.

64

8
Summary

Current trends in industrial automation are the need for customizable production,
vertical integration, more advanced sensors and actuators, and shorter time to mar-
ket. The currently used control systems and languages for control were developed
with a more static production in mind. More flexible languages and tools are needed
to get a more flexible production. The flexible graphical programming language
Grafchart, based on the IEC 61131-3 standard language SFC, is considered with the
focus to make it usable in an industrial context.

Modern compiler techniques were evaluated for JGrafchart with focus on ex-
tensible automation language implementations. In particular implementing HLV as
an extension would make JGrafchart more dynamic and enable further research on
HLV.

To make Grafchart possible to use at the lowest levels of automation, realtime
execution with JGrafchart was considered. For this to be possible the execution
engine must be separated from the editor. In the first step the execution engine is
still an interpreter, but an order of magnitude faster than before.

Finally SOA, a highly flexible software design methodology widely used for
business processes, is brought to automation by integrating support for DPWS in
JGrafchart.

Table 8.1 lists the JGrafchart version history related to the work presented in
this thesis.

65

Chapter 8. Summary

Table 8.1 JGrafchart version history related to the work presented in this thesis.

Version Description

1.5.2 The previous public version.

1.5.3.4 (Not public) The initial version for this work.

2.0.0 Textual compilers implemented with ReRAGs. Additional compila-
tion checks.

2.0.1 Bug fixes.

2.1.0 DPWS feature added.

2.1.1 Bug fixes.

2.1.2 DPWS feature improved.

2.2.0 DPWS feature improved.

3.0.0 (Future) Realtime execution.

66

9
Future Work

The ongoing work in Chapter 6 show promising results. The nextcoming work is
to complete and evaluate this in detail. It would also be interesting to include the
possibility to make changes to running applications in this work.

With the JGrafchart compilers implemented using ReRAGs it is possible to cre-
ate various extensions. To implement a HLV extension is a natural the next step.
Extensions for code generation are also of interest, for example to generate SFC
code which can be executed in realtime by industrial PLCs.

Continuation of the SOA work includes linking it to the factory planning phase
to get a more seamless commissioning procedure. Part of this work is creating an
ontology relating Grafchart to languages used on other levels of Figure 1.1.

67

A
Other Languages

A.1 Petri Nets

Petri nets is a mathematical language for system modeling [16]. It consists of places
and transitions as well as directed arcs between places and transitions. The places
contain tokens which model a property of the current system state. All tokens to-
gether represent the whole system’s state and is called a marking. The initial mark-
ing corresponds to the system’s initial state.

The marking can be changed by firing transitions, one at a time. The places with
an arc leading to the transition are called the transition’s input places and the places
with an arc leading from the transition are called the transition’s output places. A
transition may fire if there is at least one token in each input place. When a transition
fires a token in each input place is consumed and a token is placed in each output
place.

With a Petri net model it is possible to analyze a system to determine if it for
example is deadlock free, live, bounded, or if a certain marking is reachable. Dead-
lock free means that it is not possible to reach a marking where no transition is
fireable. A transition is live if there from each valid marking exists a sequence of
firings which includes the transition. A Petri net is live is all of its transitions are
live. A place is bounded if there is an upper limit on the number of tokens it may
contain. A Petri net is bounded if all its places are bounded. A marking is reachable
if there exists a sequence of firings that brings the initial marking to that marking.

The properties are interesting since they have a corresponding meaning for the
modeled system. For example it can be guaranteed that a dangerous state cannot
occur if its corresponding marking is not reachable and a deadlock free Petri net
guarantees that the system will not freeze.

A.2 Statecharts

Statecharts are known by many names such as Harel statechart, state diagram, UML
state machine, and UML statechart and are used to describe the behavior of systems.

69

Appendix A. Other Languages

It is an extension to finite state machines (FSM) and consists of states and transi-
tions. Statecharts are event driven, unlike Grafchart which is executed periodically.
States may have entry and exit actions and transitions may have both guard condi-
tions and associated actions. In statecharts there is also a concept of hierarchically
nested states, that is, a state may also have an internal state.

A.3 BPMN

Business Process Model and Notation (BPMN) is a graphical language for busi-
ness process modeling based on flowcharts and similar to UML activity diagrams
[44]. Business processes are used to formalize the proceedings of various tasks, for
example the sequence of steps involved in releasing a product.

BPMN consists of flow objects, connecting objects, swim lanes, and artifacts.
The flow objects are: event, activity, and gateway. An event denotes that something
happens, an activity denotes something that should be done, and a gateway is used
for splitting and joining paths. Connecting objects are used to connect the flow ob-
jects. Swim lanes is a way to detail the flow between the participants involved in the
process. Finally, artifacts contain additional relevant information.

70

Bibliography

[1] Docutils. Docutils: Documentation Utilities. URL: http : / / docutils .
sourceforge.net/ (visited on 2013-04-03).

[2] Wikipedia. Automation. URL: http : / / en . wikipedia . org / wiki / Automation
(visited on 2013-01-25).

[3] Rucker, J.d. Car buying tips: the very best way to buy a new car. URL: http:
/ /www.streetdirectory.com/travel_guide/214317/car_buyer/car_buying_
tips_the_very_best_way_to_buy_a_new_car.html (visited on 2013-01-25).

[4] IEC. IEC 62264-1: Enterprise-Control System Integration – Part 1: Mod-
els and Terminology. Tech. rep. International Electrotechnical Commission,
2003.

[5] SmartFactoryKL. SmartFactoryKL. URL: http://smartfactory.dfki.uni-kl.de/en
(visited on 2013-03-29).

[6] IEC. IEC 61131-3: Programmable controllers – Part 3: Programming Lan-
guages. Tech. rep. International Electrotechnical Commission, 1993.

[7] Stora Enso. Stora Enso plans profitability improvement actions across all
business areas. URL: http : / / www. storaenso . com / media - centre / press -
releases/2012/10/Pages/stora- enso- plans- profitability- improvement.aspx
(visited on 2013-01-28).

[8] ABB. The product life cycle. URL: http://www.abb.se/product/ap/seitp334/
caab7ea34fea011ec1257919004976a9.aspx (visited on 2013-01-28).

[9] Department of Automatic Control, Lund University. Grafchart. URL: http:
//control.lth.se/Research/tools/grafchart.html (visited on 2013-02-07).

[10] C. Johnsson. A Graphical Language for Batch Control. PhD thesis 1051.
Department of Automatic Control, Lund Institute of Technology, Sweden,
1999.

71

Bibliography

[11] Gensym. Gensym G2. URL: http://www.gensym.com/product/G2 (visited on
2013-03-10).

[12] K.-E. Årzén, R. Olsson, and J. Åkesson. “Grafchart for procedural operator
support tasks”. In: Proceedings of the 15th IFAC World Congress, Barcelona,
Spain. 2002.

[13] A. Stolt. Robotic Assembly and Contact Force Control. Licentiate Thesis
ISRN LUTFD2/TFRT--3256--SE. Department of Automatic Control, Lund
University, Sweden, 2012.

[14] A. Benktson and S. Dahlberg. Modeling of Avionics Systems using
JGrafchart and TrueTime. Master’s Thesis ISRN LUTFD2/TFRT--5907-
-SE. Department of Automatic Control, Lund University, Sweden, 2012.

[15] R. Olsson. Batch Control and Diagnosis. PhD thesis ISRN LUTFD2/TFRT-
-1073--SE. Department of Automatic Control, Lund University, Sweden,
2005.

[16] Wikipedia. Petri net. URL: http://en.wikipedia.org/wiki/Petri_net (visited on
2013-03-18).

[17] A. Theorin, K.-E. Årzén, and C. Johnsson. “Rewriting JGrafchart with
Rewritable Reference Attribute Grammars”. In: Industrial Track of Software
Language Engineering 2012. Dresden, Germany, 2012.

[18] Robert D. Cameron. Four concepts in programming language description:
syntax, semantics, pragmatics and metalanguage. URL: http://www.cs.sfu.ca/
~cameron/Teaching/383/syn-sem-prag-meta.html (visited on 2013-03-24).

[19] D. E. Knuth. “Semantics of context-free languages”. Theory of Comput-
ing Systems 2:2 (1968), pp. 127–145. ISSN: 0025-5661. DOI: 10 . 1007 /
BF01692511. URL: http://dx.doi.org/10.1007/BF01692511.

[20] G. Hedin. “An introductory tutorial on JastAdd attribute grammars”. In:
Generative and Transformational Techniques in Software Engineering III.
Springer, 2011. ISBN: 978-3-642-18022-4.

[21] T. Ekman and G. Hedin. “The JastAdd extensible Java compiler”. SIGPLAN
Not. 42 (10 2007), pp. 1–18. ISSN: 0362-1340. DOI: http : / / doi . acm.org /
10.1145/1297105.1297029. URL: http: / /doi .acm.org/10.1145/1297105.
1297029.

[22] J. Öqvist. Implementation of Java 7 Features in an Extensible Compiler. Mas-
ter’s Thesis ISSN 1650-2884, LU-CS-EX: 2012-13. Department of Com-
puter Science, Lund University, Sweden, 2012.

[23] T. Ekman. “Design and implementation of object-oriented extensions to the
Control Module language”. In: 11th Nordic Workshop on Programming and
Software Development Tools and Techniques. 2004.

72

Bibliography

[24] J. Åkesson. “Optimica—an extension of Modelica supporting dynamic op-
timization”. In: In 6th International Modelica Conference 2008. Modelica
Association, 2008.

[25] JavaCC. Java compiler compiler (JavaCC) - the Java parser generator. URL:
http://javacc.java.net (visited on 2013-03-24).

[26] junit.org. JUnit. URL: http://junit.org (visited on 2013-04-22).

[27] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-Oriented Ar-
chitecture Best Practices. The Coad Series. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2004. ISBN: 9780131465756.

[28] N. Bieberstein, S. Bose, M. Fiammante, K. Jones, and R. Shah. Service-
Oriented Architecture Compass: Business Value, Planning, and Enterprise
Roadmap. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005. ISBN:
0131870025, 9780131870024.

[29] H. Mersch, M. Schlutter, and U. Epple. “Classifying services for the au-
tomation environment”. In: Emerging Technologies and Factory Automation
(ETFA), 2010 IEEE Conference on. 2010, pp. 1–7. DOI: 10 . 1109 / ETFA .
2010.5641170.

[30] L. M. S. De Souza, P Spiess, D. Guinard, M Köhler, S Karnouskos, and
D Savio. “SOCRADES: a web service based shop floor integration infras-
tructure”. Networks 4952 (2008). Ed. by C. Floerkemeier, M. Langheinrich,
E. Fleisch, F. Mattern, and S. E. Sarma, pp. 50–67. URL: http : / / www .
springerlink.com/index/05581001K35585K4.pdf.

[31] T. Kirkham, D. Savio, H. Smit, R. Harrison, R. Monfared, and P.
Phaithoonbuathong. “SOA middleware and automation: services, ap-
plications and architectures”. In: Industrial Informatics, 2008. INDIN
2008. 6th IEEE International Conference on. 2008, pp. 1419 –1424. DOI:
10.1109/INDIN.2008.4618326.

[32] F. Jammes, A. Mensch, and H. Smit. “Service-oriented device communica-
tions using the Devices Profile for Web Services”. In: MPAC. Ed. by S. Terzis
and D. Donsez. Vol. 115. ACM International Conference Proceeding Series.
ACM, 2005, pp. 1–8. ISBN: 1-59593-268-2.

[33] SIRENA Consortium. The ITEA SIRENA project. URL: http://www.sirena-
itea.org (visited on 2013-03-26).

[34] SOA4D. SOA4D Forge. URL: https : / / forge . soa4d . org/ (visited on
2013-03-26).

73

Bibliography

[35] A. Theorin, L. Ollinger, and C. Johnsson. “Service-oriented process control
with Grafchart and the Devices Profile for Web Services”. In: Proceedings
of the 14th IFAC Symposium on Information Control Problems in Manufac-
turing (INCOM’12). Ed. by T. Borangiu, A. Dolgui, I. Dumitrache, and F. G.
Filip. Elsevier Ltd, Bucharest, Romania, 2012, pp. 799–804. DOI: 10.3182/
20120523-3-RO-2023.00131.

[36] A. Theorin, L. Ollinger, and C. Johnsson. “Service-oriented process control
with Grafchart and the Devices Profile for Web Services”. In: Service Ori-
entation in Holonic and Multi Agent Manufacturing and Robotics. Ed. by
T. Borangiu, A. Thomas, and D. Trentesaux. Vol. 472. Studies in Compu-
tational Intelligence. Springer Berlin Heidelberg, 2013, pp. 213–228. ISBN:
978-3-642-35851-7. DOI: 10 . 1007 / 978 - 3 - 642 - 35852 - 4 _ 14. URL: http :
//dx.doi.org/10.1007/978-3-642-35852-4_14.

[37] Wikipedia. Service-oriented architecture. URL: http://en.wikipedia.org/wiki/
Service-oriented_architecture (visited on 2013-03-26).

[38] L. Ollinger, J. Schlick, and S. Hodek. “Leveraging the agility of manufactur-
ing chains by combining process-oriented production planning and service-
oriented manufacturing”. In: Proceedings of the 18th IFAC World Congress.
Elsevier Science Ltd., 2011.

[39] L. Ollinger, J. Schlick, and S. Hodek. “Konzeption und praktische Anwen-
dung serviceorientierter Architekturen in der Automatisierungstechnik”. In:
VDI-Berichte 2143. VDI Automatisierungskongress (AUTOMATION-2011),
June 28-29, Baden-Baden, Germany. VDI Verlag, 2011.

[40] OASIS. Devices Profile for Web Services Version 1.1. Tech. rep. Organization
for the Advancement of Structured Information Standards, 2009.

[41] E. Zeeb, A. Bobek, H. Bohn, and F. Golatowski. “Lessons learned from im-
plementing the Devices Profile for Web Services”. In: Digital EcoSystems
and Technologies Conference, 2007. DEST ’07. Inaugural IEEE-IES. 2007,
pp. 229–232. DOI: 10.1109/DEST.2007.371975.

[42] WS4D. Stack: WS4D-gSOAP (C/C++). URL: http : / /ws4d .e - technik .uni -
rostock.de/page/3/?s=stack (visited on 2013-03-27).

[43] SOA4D Forge. DPWS4J Core. URL: https://forge.soa4d.org/projects/dpws4j/
(visited on 2013-03-28).

[44] Wikipedia. Business Process Model and Notation. URL: http://en.wikipedia.
org/wiki/Business_Process_Model_and_Notation (visited on 2013-04-08).

74

