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RF Spatial Modulation Using Antenna Arrays
Yijun Zhou, Member, IEEE, Michael Yan-Wah Chia, Senior Member, IEEE, Xianming Qing, Member, IEEE, and

Jiren Yuan

Abstract—A new method of spatial linear modulation is pre-
sented for the RF signal modulation. The constant envelope and
phase modulated signals are transmitted to an antenna array
and then combined in space; the linear modulation is realized
at the same time. The concentric antenna pairs are applied to
eliminate the mismatch of phase delay among the modulated
signals from different antenna pairs. The measurement results of
an RF signal around 2.45 GHz modulated by a 3.84 Mbps QPSK
signal are presented. The proposed spatial modulator is able to
simplify RF transmitter design and achieve highly efficient power
transmission.

Index Terms—Antenna array, linear amplification with non-
linear components (LINC), modulation, outphasing, spatial power
combining, wireless.

I. INTRODUCTION

A NTENNA array has beenwidely applied in beamforming,
beam steering, beam-nulling, smart antenna, multiple

input multiple output (MIMO) and spatial power combining.
Comparing the utilization of an antenna array with that of a
single antenna, the former can not only change the beam shape
and direction dynamically, but also increase effective isotropic
radiated power (EIRP) and signal-to-noise ratio (SNR) for an
RF transceiver [1], [2]. Spatial power combiner with antenna
array combines power in free-space without loss which occurs
in the traditional power combiner, therefore its efficiency is
100% [3]. Spatial power combining is often applied at mil-
limeter-wave frequency due to lack of high power RF devices
at this frequency range [3], [4]. Especially with the continually
down scaling of CMOS process, spatial power combining pro-
vides an effective solution for high power transmission with the
low break-down voltage nanometer CMOS circuit, and realizes
an antenna-on-chip design [3], [5]. Besides power combining,
the spatial modulation with antenna array becomes more inter-
esting in recent years [5]–[10]. Spatial modulation combines
RF signals with different phases in free-space, and realizes
power combination and RF signal modulation at the same time.
Therefore, it can greatly simplify the RF transmitter design and
realize the highly efficient power transmission. The previous
researches on the spatial modulation were more focused on
the directional modulation and secret communication [5]–[10].
This paper presents a novel spatial modulation method which
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leads to general applications. The proposed method can reduce
the complexity and power consumption of an RF transmitter.
A spatial modulator prototype operating around 2.45 GHz

and modulated with a 3.84 Mbps QPSK signal is implemented.
The distortion analysis and measurement results are provided.
This paper is organized as follows. In Section II, the principle
for spatial modulation and the architecture of the antenna array
are introduced. In Section III, the measurement results are
presented and discussed. Finally, the conclusion is given in
Section IV.

II. PRINCIPLE FOR SPATIAL MODULATION

A. Vector Signal Combination

The idea of using outphasing amplifier to generate linear
modulation signal was originated from Chireix in the 1930s,
and was expanded by Donald C. Cox in the 1970s [11],
[12], using an acronym of LINC, Linear Amplification with
Nonlinear Components. The architecture and principle of the
outphasing amplifier are illustrated in Fig. 1(a) and (b). Linear
signal S(t) is combined with two respective constant envelope
signals and

(1)

(2)

(3)

where and
.

Since and are constant envelope signals, they
can be amplified by highly efficient nonlinear amplifiers. The
constant envelope signals and occupy a larger
bandwidth than the original signal S(t) [15]. The linearity of
the combined output is determined by the gain and
phase match performance of the two amplification channels.
Any mismatch between the two amplification channels will
cause distortion in the combined signal. To ease the stringent
match requirement, the alternating and outphasing modulator
(AOM) was developed [13]. Architecture of AOM is shown in
Fig. 2. Compared with the architecture of LINC, outphasing
signals and are alternated between the two am-
plification channels, thus two new constant envelope signals

and are generated and amplified to get and
[13]

(4)

(5)

0018-926X © 2013 IEEE
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Fig. 1. (a) Outphasing amplifier architecture. (b) Signals in the outphasing am-
plifier.

Fig. 2. Architecture of AOM.

where G is the gain of the amplifier, and sw(t) is a square wave
signal with amplitude , angle frequency [13]

(6)

(7)

In Figs. 1 and 2, the constant envelope signals are amplified
with nonlinear high efficiency amplifiers and combined with
a passive combiner [13]–[15]. Therefore, the efficiencies of
LINC and AOM depend on not only the amplifier efficiency,
but also the combiner efficiency. The efficiencies of LINC [15]
and AOM can be expressed as

(8)

where is the efficiency of LINC or AOM, and
are the efficiencies of amplifier and combiner respectively. Both
isolated and nonisolated combiners can realize power combina-
tion [14]–[17]. TheWilkinson combiner is usually applied as the
isolated combiner since it has the advantage of high isolation.
According to Fig. 1(b), the linear signal generation is realized by

Fig. 3. Signals in the multi-level LINC amplifier.

varying . The in-phase signal components are added in the
output and the out-of-phase signal components are dissipated in
the isolation load of the isolated combiner. The combiner effi-
ciency can be expressed as [15]

(9)

and the average efficiency of LINC is [15]

(10)

where the p is the probability distribution function (PDF) of
the signal at . In order to increase the average efficiency of
LINC, the multi-level LINC is developed and shown in Fig. 3
[19]. With multiple constant envelop signals, the PDF of (t)
in large value is reduced, thus the average efficiency can be in-
creased. The Chireix combiner is a kind of nonisolated com-
biner, which has higher average efficiency compared with the
isolation combiner, but the interaction between the amplifiers
degrades the linearity of the combined signal [14], [15].
Besides the passive combiner, the spatial power combining

has been widely used for RF signals addition in space [3], [4].
Compared to the passive combiner, the spatial power combiner
features the advantages of lower loss and less interaction be-
tween the amplifiers. It is especially suitable for multi-source
combination at millimeter-wave frequency [3], [4]. However, in
the conventional spatial power combiner for linear signal trans-
mission, the linear modulation signal is fed to each antenna, and
these signals are combined in space. For the linear signal trans-
mission, power back-off is required for each antenna to achieve
linearity [10]. Since the efficiency of the power back-off linear
amplifier is low, the efficiency of the conventional spatial power
combining architecture is limited. Besides power combination,
the spatial directional modulation has been studied as well in
recent years [5]–[10]. Fig. 4 depicts the principle of the spa-
tial directional modulation. A constant envelope RF signal is
modulated by the phase modulators, and the phase modulated
RF signals are combined in space to realize the linear modula-
tion [7]–[10]. With vector signal addition, the spatial directional
modulation realizes power combination and linear modulation
at the same time, and the high efficiency switch mode power
amplifier can be used in each antenna. Therefore, the efficiency
of spatial modulation is greatly improved compared to the tra-
ditional spatial power combiner.
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Fig. 4. Architecture of the spatial directional modulation.

Fig. 5. One implementation of the proposed spatial modulator.

According to the previous researches, there are rigorous
requirement of gain and phase match to meet for generating
a linear modulation signal based on vector addition [10],
[13]–[15], [17]. Thus, the spatial directional modulation can
combine vector signals correctly at the specific direction, while
at other directions, the combined signals are useless. This
feature is well suitable for secret communication, but certainly
does not work for general application as the adjacent channel
interference is increased due to different phase delay. The
motivation for this work is to explore the usage of spatial vector
addition with constant envelop signal, realize linear modulation
and reduce adjacent channel interference within a wider radial
angle.

B. Proposed Spatial Modulator

One of the proposed spatial modulation architectures is
shown in Fig. 5. It consists of two concentric antenna pairs,
which are connected to the LINC or AOM signals. The ampli-
fied LINC or AOM signals are combined in the space instead
of the passive combiner to realize the linear modulation. An
example of the two concentric antenna pairs is described in
Fig. 6. The four isotropic antenna elements are symmetrically
positioned in the - plane along a circle with a diameter of 2
. The normalized field of the isotropic antenna element can be
written as [18]

(11)

Fig. 6. Concentric antenna pairs.

where is the distance from the th element to the receiving
point, and is the excitation coefficient of th element. When

,

(12)

Assuming that for amplitude variation, and ,
(11) can be expressed as [18]

(13)

The combined fields of isotropic element 1 and 2, and element
3 and 4 are

(14)

(15)

From (14) and (15), each concentric antenna pair equalizes
with an isotropic element in the centre of the circle. Thus,
combined and have the same phase
delay but different array factors. The combined array factor
depends on , and when , the two concentric antenna
pairs are identical. The difference of array factors between

and is reduced with the decrease
of .

C. Distortion Analysis

In (14) and (15), the combined
and have different array factors

and
respectively. Since the linearity of LINC and the mixed
components level of AOM are determined by the match up of
the phase and the gain between the transmission channels, it is
important to keep the gain and phase match in the transmission
direction. The two antenna pairs have the same phase delay,
thus the phase is matched. But the different array factor
between the two antenna pairs contributes to the distortion of
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the combined signal. The linearity of LINC and the mixed
components level of AOM with gain and phase mismatch in
the transmission channels are analyzed below. In Fig. 1, LINC
architecture, assuming there is a gain mismatch between
the two amplifier branches, the combined signal is

(16)

Assuming there is phase mismatch between the two am-
plifier branches, when , the combined signal is

(17)

In Fig. 2, AOM architecture, assuming there are gain mis-
match and phase mismatch between the two amplifier
branches, and according to (4)

(18)

Combined with in (5) and the output is [13]

(19)

where

(20)

(21)

(22)

(23)

In summary, the distortion signals of LINC and AOM due
to gain mismatch and phase mismatch are described
in (16), (17) and (19) respectively. In order to investigate the
distortion effects of and , two special cases are studied
below. When and have same percentage variations re-
lated to the gain of the amplifier and the period of the RF signal
respectively.
Case 1) The gain mismatch between both channels is 10 per-

cent of the channel gain, i.e., % , and
the time skew between them is zero, i.e., .

Case 2) The gains of both channels are equal each other, i.e.,
, and the time skew between them is 10%

of a period of the RF signal, i.e., % .

Fig. 7. Measured results of the combined output of LINC architecture.

Fig. 8. Measured results of the combined output of AOM architecture.

In the LINC amplifier, according to (16), the amplitude
of the distortion signal, , is in Case 1,
and according to (17), the amplitude of the distortion signal,

, is in Case 2 respectively. Thus, the
phase mismatch causes more serious distortion compared with
the gain mismatch when the same percentage variation hap-
pened in the amplitude and phase. In addition, the distortion
caused by the phase mismatch is frequency dependent. When
the RF frequency increases, the period of the RF signal is
shorter, and the distortion contributed by the same amount of
the delay mismatch will increase. In contrast, as shown in (16),
the distortion level due to the mismatch of the gain does not
relate to frequency of the RF signal.
In the AOM architecture, the combined signal with distortion

is described in (19). The combined signal consists of S(t) and
the mixed components of and , and the amplitude of the
mixed components is . From (21), when there is
only gain mismatch in the two antenna pairs, i.e., for case
1,

(24)
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Fig. 9. Antenna array and measurement setup. (a) Antenna array. (b) Measure-
ment setup.

and when there is only phase mismatch in the two antenna
pairs, i.e., for case 2, , and

(25)

Compared (24) with (16), and (25) with (17), and
have the similar effect in either AOM or LINC architecture,
causes more severe distortions, and the experiment results vali-
date above analysis. Figs. 7 and 8 show the measurement results
of LINC and AOM architecture with Case 1, Case 2 and the ref-
erence signal, i.e., when and . In the measure-
ment, an arbitrary waveform generator (AWG) generates two
RF signals which are modulated with a 3.84 Mbps QPSK signal
through LINC and AOM modulation respectively. The ampli-
tude and time skew are tuned to simulate the variation of
and , and the two output signals are combined with a com-
mercial power combiner [22].
From Figs. 7 and 8, it shows that AOM has better linearity

compared to LINC as the distortion only affects the mixed com-
ponents level. These results agree with (16), (17) and (19) as
stated earlier. However, the AOM architecture is more compli-
cated, and themixed components should be further reduced with
a filter combined with the antenna, or with a band pass function
antenna [20], [21]. The LINC architecture is simpler. With the
multilevel modulation, the adjacent channel interference can be
reduced and the average efficiency of outphasing amplifier can
be improved [19]. From (16), (17), (24) and (25), the distortion
level of LINC or the mixed components level of AOM is related

Fig. 10. Radiation patterns of each concentric antenna pair in (a) -plane.
(b) -plane.

to . Therefore, the multilevel modulation can not only im-
prove the average efficiency, but also reduce the distortion of
the outphasing amplifier or the mixed components amplitude of
AOM.
In the proposed architecture, the concentric antenna pairs are

capable to keep the same phase delay among different pairs of
antenna arrays to minimize distortion of the outphasing modula-
tion or the level of mixed components of AOM. Furthermore, ar-
chitecture of the concentric antenna array with multilevel modu-
lation reduces the distortion of LINC or the level of mixed com-
ponents of AOM due to the phase and the gain mismatch. Con-
sequently, both efficiency and linearity are improved.

III. MEASUREMENT RESULTS

The radiation performance of the antenna array is measured
in a full anechoic chamber, and the setup is shown in Fig. 9(a)
and (b). An antenna array with two concentric antenna pairs is
designed with FR4. As shown in Fig. 9(a), the distance between
each patch antenna is . Since the input outphasing signal
of each concentric antenna pair is the differential signal, the
patch antenna elements in the concentric antenna pair are op-
posite positioned. The patch antenna element operates around
2.45 GHz.
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Fig. 11. -plane and , the measured spectrum
of 2.448 GHzQPSKmodulation signal when applying (a) single level LINC and
AOM signals. (b) 4 and 8 levels AOM signals.

The antenna pairs are connected to an arbitrary waveform
generator that generates the differential RF signals. A horn
antenna with a low noise amplifier (LNA) is connected with
a spectrum analyzer to measure the received power. The ra-
diation patterns in -and -planes of each concentric an-
tenna pair are measured respectively. The results are shown in
Fig. 10(a) and (b), respectively. The difference between each
antenna pair represents the gain mismatch of the combined
signal.
A 2.448 GHz RF signal modulated with a 3.84 Mbps QPSK

signal is employed for the spatial linear modulation measure-
ment. The single level, 4 and 8 levels of LINC and AOM signals
are generated respectively with the arbitrary waveform gener-
ator. The measurement results in -and -planes with single
level and multilevel of LINC and AOM signals are presented.
Figs. 11–13 show the measured results of the 1, 4, and 8 levels
of the LINC and AOM signals in -plane and
with , 30 , 60 respectively. The same measure-
ment results in -plane and
are illustrated in Fig. 14. In addition, the error vector magni-
tude (EVM) of the spatial modulator in -and -planes with
different angles is also measured with a vector signal analyzer

Fig. 12. -plane and , the measured spec-
trum of 2.448 GHz QPSK modulation signal when applying 1, 4, and 8 levels.
(a) LINC signals. (b) AOM signals.

(VSA). The measured results are summarized in Table I. The
WCDMA EVM specification is 17.5%, and the measured re-
sults are well below it.
From the above measurement, the correct reception angle is

increased and the adjacent channel interference is reduced com-
pared with the spatial directional modulator [5]–[10], and the
distortion of LINC and the mixed components of AOM can be
reduced with multilevel modulation. With the help of notch fil-
ters or other specially designed band pass function antenna, the
mixed components of the AOM architecture can be reduced fur-
ther [20], [21].

IV. CONCLUSION

A novel method for RF spatial modulation and amplification
has been presented, which simplifies the design of the RF trans-
mitter for high power efficiency. Constant envelope single level
or multi-level signals have been applied for the spatial modula-
tion. It has been shown that the multi-level signals can be used
to reduce the distortion of the outphasing modulation, and the
level of the mixed components of AOM modulation. The con-
figuration of concentric antenna pairs has exhibited the capa-
bility for eliminating the phase delay difference of the modu-
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Fig. 13. -plane and , the measured spec-
trum of 2.448 GHz QPSK modulation signal when applying 1, 4, and 8 levels.
(a) LINC signals. (b) AOM signals.

TABLE I
SUMMARY OF THE EVM PERFORMANCE

lated signals from different antenna pairs, and thus minimized
the distortion introduced by the mismatch of the phase delay.
The proposed method is suitable for antenna-on-chip (AoC),
antenna-in-package (AiP) or active integrated antenna (AIA)
designs.

Fig. 14. -plane and , the measured spec-
trum of 2.448 GHz QPSK modulation signal when applying 1, 4, and 8 levels.
(a) LINC signals. (b) AOM signals.
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