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Abstract

T he aim of this dissertation is to show some cryptanalytical results on a
selection of stream ciphers. We have grouped theory and results into
three main parts.

The first part focuses on the FCSR-based constructions X-FCSR and F-FCSR-
H v3. For the X-FCSR family of stream ciphers we perform a severe state
recovery attack. This attack works for both X-FCSR-128 and X-FCSR-256.

We then develop a generalized birthday algorithm for finding linear rela-
tions in FCSRs. This algorithm applies to the most recent and general FCSR
architecture, the ring FCSR, so it can be used for analyzing the FCSR of any
FCSR-based design. We apply the algorithm to produce an efficient distin-
guisher for F-FCSR-H v3, which was previously unbroken.

The second part of the dissertation covers topics related to the HC family
of stream ciphers. First, a very general treatment of sampling methods is
presented. Surprisingly, perhaps, a positive result is given. We prove that
an efficient sampling method based on sampling vector weights is optimal in
a given context. This sampling technique is employed to produce the best
known distinguisher for HC-128.

We go on to show a few theoretical results on functions that use word
rotation and xor. These results are applied to a modified variant of HC-128,
and this application shows how the theory could be used in a cryptanalytical
scenario. It also shows the important role of the addition operator in HC-128,
without which the cipher would be much less secure.

In the third part of the dissertation we analyze stream ciphers, and block
ciphers to a lesser extent, using algebraic methods. We develop a simple
and intuitive greedy algorithm for automatic security testing of cryptographic
primitives. This is done in a black box fashion, without using any information



on the internal structure of the primitives. Despite this, it is shown how struc-
tural information is revealed very clearly under certain circumstances. The
main features here are some nice results for the well-known stream ciphers
Trivium, Grain-128 and Grain v1.
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Scope

T his dissertation is scoped in two ways; context and notation. Depend-
ing on the preferences of the reader, this approach may cause anything
from pain and anxiety to joyous euphoria, so let us explain this. The

ultimate purpose of doing this is simplification, both for the reader and the
author.

We have divided the main material in this dissertation into three parts. The
reader will not, as is customary in many other dissertations, find any intro-
ductory section with all the collected background material neatly compiled
into a single chapter. Instead, we have aimed for scope.

The background material that is relevant for one specific chapter is placed
in the beginning of that chapter. Plain and simple. We feel that this is a very
natural approach that ties the contextually relevant material together for easy
access.

The notation in this dissertation is also scoped. That is, we do not aspire
to maintain a global notation that is valid throughout the body of this work.
When you start reading a new chapter, variables and other notation from ear-
lier chapters are purged and may be redefined in this or the coming chapters.

We suggest that you not only accept this notational scoping concept because
you have to, which you do, but instead take the opportunity to also grow fond
of it. This approach solves several problems.

It is, if not nearly impossible, at least difficult or cumbersome to maintain
a perfectly coherent global notation scheme in a body the size of a book such
as the one you are now holding in your hands.

We find notational deviance more annoying when a global scheme is im-
plicitly or explicitly employed. Permitting reuse for common variable names,
indices and such, eases the author burden, and can make the text much more
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readable. The reader—you—will not need to resort to using all letters in the
Greek alphabet or learning new and creative ways of indexing variables. Vari-
able names will be more readable and less obscure.

However, some notation, the one given in Table 0.1, is guaranteed to be
used in a uniform way through the dissertation, simply because it is global by
choice or by nature.

Table 0.1: Global notation.

⊕ xor.
‖ Context dependent. Concatenation operator or

parameter separator for the divergence measure D.
‖ · ‖1 1-Norm, Hamming weight.

D Divergence measure, Definition 2.4.
H Entropy measure, Definition 2.1.

log Logarithm base 2.
LSB Least Significant Bit.
MSB Most Significant Bit.

N The natural numbers.
ϕ Euler totient function.

wH Hamming weight.
Z The integers.

Z+ The positive integers.
Z/2Z The ring of integers modulo 2.
Z/nZ The ring of integers modulo n.

(Z/nZ)∗ The group of invertible elements in Z/nZ.
Z2 The ring of 2-adic integers, Definition 3.4.
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Introduction

Cryptography
κρυπτός γράφειν

T he word cryptography is derived from the greek words κρυπτός (kryp-
tos) and γράφειν (graphein), meaning hidden and writing, respectively.
In this context, hiding refers to concealing the content or the meaning

of the message, not hiding the existence1 of the message itself.
It is, of course, impossible to say when, how or why cryptography was first

utilized, but it is conceivable that the need for hidden writing was spawned
not long after writing itself was. We know that the Romans utilized a simple
and, for its time, probably efficient substitution cipher, but the oldest doc-
umented findings of scrambled writing go as far back in time as to ancient
Egypt in 1900 B.C. [WikiHis].

The field of cryptography has gone through a remarkable evolution since
then. Unfortunately, we cannot cover this development in any detail, so we
will fast-forward to modern times. We do not feel too bad about leaving the
reader in a historical void, as some of this emptiness is brilliantly bridged by
Simon Singh’s »The Code Book« [Sin00].

1The art and science of hiding the existence of a message is called steganography,
from the greek work στεγανός (steganos), meaning covered.

1



2 Introduction

1.1 KERCKHOFFS’S PRINCIPLE

To us, modern times start in 1883 when Auguste Kerckhoffs publishes »La
Cryptographie Militaire« in Journal des Sciences Militaires [Ker83]. In this pa-
per, Kerckhoffs presents a set of rules that should be followed when designing
new cryptographic systems. The most important one of these—Kerckhoffs’s
principle—states the following.

Kerckhoffs’s principle: Il faut qu’il n’exige pas le secret, et qu’il
puisse sans inconvénient tomber entre
les mains de l’ennemi.

Freely translated into English, it states that the security of a cryptosystem
must not rely on keeping its design secret, as the cryptosystem can be stolen
and analyzed (reverse-engineered) by the enemy. Instead, the security must
lie in that the value of a key is kept secret.

The modern cryptographic society has adopted Kerckhoffs’s principle as
sound practice. The principle is very natural in modern terms, but it may well
have been regarded with a fair amount of skepticism in the not-so-modern
times. In the late 1800’s, keeping a system secure meant keeping everything
about it secret. With that mindset it may be quite difficult to realize that one
can actually benefit from the openness that Kerckhoffs’s analysis of military
cryptosystems suggested.

The process of scrambling a readable plaintext is called encryption, and this
process produces an unreadable ciphertext. The reverse decryption process re-
covers the plaintext from the ciphertext. An encryption algorithm is a step-
by-step instruction that describes how to perform the actual scrambling, and
an encryption algorithm typically takes a secret key as a parameter. The se-
cret key determines exactly how the scrambling is performed. Note that the
scrambling process must be reversible, in order for decryption to be possible,
see Figure 1.1.

According to Kerckhoffs’s principle, everything that there is to know about
a well-designed encryption algorithm can very well be publicly announced,
but the key that is used as a parameter for encryption must be kept secret.

Why is this principle so important? First of all, it simplifies the crypto-
system. Instead of keeping every part of a cryptographic communication
system secret, we can design the system with openness in mind so that only
a relatively small secret key needs to be handled with care.

Secondly, analysis and public scrutiny of an encryption algorithm may re-
veal potential security flaws in the design. If an algorithm is openly available
for analysis and no serious flaws are found despite serious efforts, then this
raises our confidence in the security level of the algorithm.
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plaintext ciphertextencryption

decryption

key

Figure 1.1: An encryption/decryption device.

Consider the opposing approach for a moment. A small group of experts
have designed an encryption algorithm that they claim to be secure. The
design is kept secret, so nobody can analyze the algorithm. Anyone who
wants to use the encryption algorithm must trust the assertion of the expert
group. Would you trust such a system to be secure? History tells us that you
shouldn’t. Even expert designers are human beings, and making mistakes
is a human trait. A small group of experts can easily overlook some very
important aspect of the design. After all, the designers must prevent all types
of exploits on their design, while an attacker need only find one of potentially
many weaknesses.

Thirdly, the arguably most important aspect of Kerckhoffs’s principle is the
effect that the encouragement of public cryptanalysis has. On a grander scale,
continuous promotion of cryptanalysis drives and pushes the development
of cryptographic designs so that we can expect to obtain better and better
algorithms as the field of cryptology evolves.

Cryptology is the scientific study of cryptography and cryptanalysis. Cryp-
tography is often taken to mean the art of encrypting and decrypting mes-
sages, which covers design of algorithms and protocols, and everything that
relates to understanding construction and usage of cryptographic functions
(or primitives). Cryptanalysis relates to breaking and understanding a cryp-
tographic system and its underlying parts.

Something of a struggle has quite naturally developed between cryptogra-
phers and cryptanalysts, with each end trying to outsmart the other. Research
in cryptology was, perhaps, particularly fueled by the invention and employ-
ment of the Enigma machine during World War II. It is not clear to which
extent the cryptanalytical efforts targeted at the Enigma machine decided the
outcome of the war, but most historians seem to agree that it did play a sig-
nificant part.
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1.2 ASYMMETRIC ENCRYPTION

Before the mid 70’s, all encryption was symmetric. That is, the encryption
algorithms used to encrypt and decrypt messages before that time all used
a secret key as a parameter, and the same secret key was used at both ends
of the communication. The key is used by the algorithm to determine the
exact nature of the encryption process, and the sender and the receiver have
to agree on a common secret key that is to be used at both ends.

In 1976, Diffie and Hellman [DH76] constructed a different kind of crypto-
system, one in which every participant has two keys, a public one used for
encryption and a private one used for decryption—a key pair.

Consider the following problem. You and a friend are sitting and talking
in a room full of people that quite rudely are listening in on your conversa-
tion, hearing every word you are saying. How can your friend pass a secret
message to you without revealing it to any of the eavesdroppers?

You cannot use symmetric cryptography to solve this problem, because you
would need to agree on which key to use. The eavesdroppers would learn
which key you chose, so they can easily decrypt your communication. If we
cannot use symmetric encryption, what can we use?

If you have never heard of asymmetric or public key cryptography before,
it is very hard to solve this problem. As you have probably understood, asym-
metric cryptography does solve the problem, and it does so in the following
way. You first need to generate a public/private key pair. The public and pri-
vate keys are mathematically linked so that encryption using the public key
can only be decrypted using the private key.

You store the private key securely and reveal it to nobody. Your public key,
however, can be publicly broadcast to anyone and everyone, friend and foe
alike.

Your friend can now use your public key to encrypt a secret message, and
only you can decrypt it using your private key. In fact, anyone can now send
you a secret message by encrypting it with your public key. And if you want
to send a message back to you friend, she needs to get a public/private key
pair of her own so that you can use his public key.

Communication on the Internet resembles having a conversation in a room
full of eavesdroppers. Using public key cryptography, a secure communica-
tion channel can be arranged despite the hostile environment.

1.3 WHAT IS SECURITY?

Early use of cryptography may quite often seem to have been of military
nature, but the applications of today are naturally centered around computers
and the Internet. We want our applications to be secure, but what does it mean
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to be secure, what do we mean by security in this context?

Figure 1.2: Security according to xkcd [xkcd].

It is impossible to give one clear cut definition of security. The notion of
security is context dependent, but allow us to give a few examples.

1.3.1 UNCONDITIONAL SECURITY

A cryptosystem is unconditionally secure if an adversary with infinite com-
puting power cannot break it. The term unconditional security is often re-
garded as synonymous to information-theoretical security, which, as the name
suggests, is an information theoretical construct dating back to Shannon. A
special case of it is called perfect security, which states that the ciphertext
must not reveal any information about the plaintext, unless you have the key,
of course.

1.3.2 PROVABLE SECURITY

In some situations it is possible to prove that a cryptosystem has certain de-
sirable properties. This is called provable security. A number of different
assumptions may be made for these proofs, but a proven property is the com-
mon factor.

For example, the security of some cryptosystems can be coupled with a dif-
ficult mathematical problem, so that breaking the cryptosystem relates to solv-
ing the difficult mathematical problem. The asymmetric encryption scheme
RSA is one example of a cryptosystem that is provably secure, and in this case
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it is provably secure with respect to a problem that is related to the difficulty
of factoring large integers (see Section 2.1.3).

In other cases it may be possible to prove that a protocol is secure under
the assumption that an underlying cryptographic primitive behaves perfectly.
The random oracle model captures this concept of replacing a practical but
imperfect primitive with a mathematically perfect version of it. The practical-
ity of the resulting proof may be the question of some debate.

1.3.3 EMPIRICAL SECURITY

For a symmetric cipher with an n-bit key k, an attack is compared to the
average number of keys that must be inspected when mounting an exhaustive
key search, which is 2n−1. A primitive is said to provide n bits of security if
there exist no methods that are more efficient than an exhaustive key search.
Of course, this nonexistence is usually impossible to prove, so one is often
faced with the option of accepting a long term cipher as secure if no significant
cryptanalytical advances have been made for some time.

Designers often incorporate an iterated procedure that can provide a se-
curity margin. For example, in stream ciphers it is common to define an
initialization round, which parametrizes the entire cipher. Attacks can then
be carried out on a reduced version of the cipher that is initialized using only
a smaller number of initial rounds. We will see more of reduced-round prim-
itives in Chapter 5.

1.4 STREAM CIPHERS

This dissertation will for the most part consider stream ciphers, so let us
explain what these are.

There is a symmetric cryptosystem called the one-time pad (OTP), which
was proven unbreakable2 by Claude Shannon [Sha49] in 1949 using informa-
tion theoretical arguments. Given a plaintext message p and a secret random
key string z of the same length, the ciphertext c is given by

c = p⊕ z,

where ⊕ denotes bitwise xor. Here, we think of all plaintext, ciphertext and
key entities as strings of bits—strings of zeros and ones. The bitwise xor
operation is a very simple addition operation between two bits as shown in
Table 1.1.

2Although proven unbreakable, it was broken in the movie Swordfish from 2001. For
this feat we honor script writer Skip Woods with a cryptographic epic fail award.
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Table 1.1: Binary addition table.

⊕ 0 1

0 0 1
1 1 0

The receiver uses the same secret random key string z to recover the plain-
text by calculating

c⊕ z = p.

Why is it not used all the time if it is unbreakable? Because it requires the
key length to be as large as the message itself. The problem of transferring
a secret l-bit message to a given recipient is transformed into transferring an
l-bit secret key, which is not much easier.

Stream ciphers provide a solution to this problem by mimicking the OTP.
A stream cipher takes a secret n-bit key as input and generates a very long
random-looking keystream sequence z. The keystream is then used as in the
OTP to mask and unmask the message.

Stream ciphers have a fixed key length, typically in the range of 80–256 bits.
However, since using the same key twice will output the same keystream, one
must be careful with the usage. It is therefore common for a stream cipher to
take a second parameter, an initialization value (IV). The secret key can then
be reused if one chooses new randomly chosen IVs for every new encryp-
tion task, and these IVs do not need to be secret. The keystream generator
paradigm is illustrated in Figure 1.3.

Stream ciphers are stream oriented, which means that they treat plaintext
and ciphertext like a continuous stream of characters. For many applications,
this approach is not only reasonable, but also desirable as it allows for very
fast and efficient processing of large amounts of data in a very short time.

Also, stream ciphers are the main concern in this dissertation, but we will
briefly acknowledge the existence of other cryptographic primitives in Sec-
tion 2.1.

1.5 A CHALLENGING GAME OF STRUCTURE

Cryptanalysis often amounts to finding and exploiting structural relation-
ships. Ciphers are designed to behave in a random-like fashion, so even if
the structure is there, it is usually not a simple task to identify and analyze it.

Cryptanalysts search for any irregularity (bias) that they can find, and if
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keystream
generator

keystream

plaintext

ciphertext

key IV

0 0 1 0 1 1 0 1 1 0

1 0 0 1 1 0 1 1 0 01 1 0 1 0 0 1 0 0 1

1 0 1 1 0 1 1 0 1 0

Figure 1.3: A keystream generator mimics the OTP.

the irregularity is significant enough, it may be possible to exploit it for an
attack. In practice, most of the investigative time is spent staring at a design
specification or possibly testing some code, but more often than not, you end
up finding nothing at all. Many initial ideas that look good at first turn to
dust in the wind. Once in a while, you do find a promising bias that turns
out to be too small to be useful. Even rarer is finding a useful bias that holds
up to produce an actual attack, but the holy grail of cryptanalysis is to find an
exploit that completely breaks an entire encryption scheme in a fundamental
way.

Imagine the moment in time when you go from having nothing and having
had nothing for some time, to discovering a serious flaw in the design—a
flaw that will break the system. Imagine the precise time instance at which
you suddenly realize that the chaos you are observing suddenly displays very
distinct and clear structural patterns, patterns that swiftly transform chaos
into order.

Some of this feeling is beautifully illustrated by the following problem,
which Prof. Daniel J. Costello Jr. challenged us with at ISIT 2012.

A prison has n inmates, which have been labeled 1 to n for our convenience.
Once a day, the warden plays the following card game with the inmates. Using
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a thoroughly shuffled deck of n cards labeled 1 through n, each inmate is, in
turn, challenged to find the card with his own number on it by turning over
at most half of the cards in the deck. If all inmates find their own card, then
they are all released. If at least one prisoner fails to find his card, then they all
stay in jail but get a new chance to play the following day.

Every inmate faces the exact same conditions; new random shuffle every
day, the same shuffle (card order) for all prisoners, and no information may
be passed along to the fellow inmates. The card selection process may be
thought of as being performed in parallel, so that all inmates walk into one
of n identically configured rooms. The prisoners may agree on a strategy that
will maximize their success probability.

At first, it may seem like there cannot be an efficient strategy for solving
this puzzle. It seems evident that the first prisoner stands a 50–50 chance to
find his card. No information about the cards can pass from one inmate to
the next, so it seems that the second inmate also has a 50–50 chance. And the
third, and fourth, and so on. If each inmate independently at random chooses
half of the cards in the deck, n inmates will achieve a success probability of(

1
2

)n
.

However, there is a better strategy, a much better one. We have already
given the reader a hint, that this is a game of structure. A second hint is that
the optimal success probability probably cannot be expressed as a nice and
tidy formula for an exact analytical expression. But the success probability is
huge, it is almost 30%!

Can you solve the riddle and find that strategy?

1.6 DISSERTATION OUTLINE

In Chapter 2, we introduce some very general and basic concepts that are
common to all parts of the dissertation. Attack concepts, some information
theory basics and hypothesis testing is described here.

The main theory and results are divided into three parts. Chapter 3 focuses
on the FCSR building block in general, and on the FCSR-based constructions
X-FCSR and F-FCSR-H v3 in particular. For the X-FCSR family of stream
ciphers we perform a severe state recovery attack. This attack works for the
two stream ciphers X-FCSR-128 and X-FCSR-256.

We then develop a generalized birthday algorithm for finding linear rela-
tions in FCSRs. This algorithm applies to the most recent and general FCSR
architecture, the ring FCSR, so it can be used for analyzing the FCSR of any
FCSR-based design. We apply the algorithm to produce an efficient distin-
guisher for F-FCSR-H v3, which was previously unbroken.

Chapter 4 covers topics related to the HC family of stream ciphers. First,
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a very general treatment of sampling methods is presented. Surprisingly,
perhaps, a positive result is given. We prove that an efficient sampling method
based on sampling vector weights is optimal in a given context. This sampling
technique is employed to produce the best known distinguisher for HC-128.

We go on to show a few theoretical results on functions that use word
rotation and xor. These results are applied to a modified variant of HC-128,
and this application shows how the theory could be used in a cryptanalytical
scenario. It also shows the important role of the addition operator in HC-128,
without which the cipher would be much less secure.

In Chapter 5 we analyze stream ciphers, and block ciphers to a lesser extent,
using algebraic methods. We develop a simple and intuitive greedy algorithm
for automatic security testing of cryptographic primitives. This is done in a
black box fashion, without using any information on the internal structure of
the primitives. Despite this, it is shown how structural information is revealed
very clearly under certain circumstances. The main features here are very
good results for the three well known stream ciphers Trivium, Grain-128 and
Grain v1.



2
Technical Introduction

I n this section we very briefly go through some basic concepts in cryp-
tography and cryptanalysis. In Section 2.1 we categorize different crypto-
graphic primitives. We explain what attacks are in Section 2.2 and attempt

to provide something of an attack taxonomy, explaining which assumptions
that one commonly makes for an attacker that is to break a given crypto-
system. Information theory basics is covered in Section 2.3 and, finally, in
Section 2.4 we learn how to compare probability distributions by using the
optimal hypothesis test.

2.1 CRYPTOGRAPHIC PRIMITIVES

We have already been acquainted with a few different classes of cryptographic
primitives, but here is a very short rundown for future reference. It is not
intended to be complete in any way, so we refer to »Handbook of Applied
Cryptography« [MOV97] for further details.

2.1.1 UNKEYED PRIMITIVES

Unkeyed primitives are primitives that do not require a key. Cryptographic
hash functions belong in this category. A hash function is a mapping that
takes an arbitrary length string as input and produces a fixed length output.
A reasonable hash function should strive to be preimage resistant, second
preimage resistant, and collision resistant.

11
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2.1.2 SYMMETRIC PRIMITIVES

Symmetric ciphers use the same secret key at both ends. There are three main
classes of symmetric primitives; block ciphers, stream ciphers and message
authentication codes (MACs). Block and stream ciphers are used for encryp-
tion/decryption, while MACs are used for integrity checks—to verify that a
message has not been altered, accidentally or intentionally, during transport.

Block ciphers divide the plaintext into blocks of a fixed size and encrypt one
block at a time. Padding is employed to handle plaintexts with lengths, and
several different methods of chaining the blocks exist, but these technicalities
are beyond the scope of this rudimentary summary. For a block cipher, the
ciphertext must be available when decrypting.

Stream ciphers are stream oriented and do not need to divide the plaintext
into fixed-size blocks, deal with padding or other such preprocessing duties.
For some applications, these properties give significant performance advan-
tages over block ciphers.

Also, stream ciphers differ from block ciphers in that the ciphertext must
not be available1 when decrypting. As stream ciphers generate keystream that
is easily added with a simple bitwise xor during encryption and decryption,
a decryption device could pregenerate very large amounts of keystream for
the purpose of achieving a fantastic encryption speed when the application
requires this.

To mention only two examples, stream ciphers are used in the background
when we are using the GSM network, or when we look at encoded cable
channels.

MACs can be thought of as keyed hash functions. If a sender sends a plain-
text message (without encryption) together with a MAC value of this message,
then the receiver can verify that the message indeed originates from the in-
tended party, and that the message has not been tampered with. Note that this
particular scheme provides authenticity and integrity, but not confidentiality.

2.1.3 ASYMMETRIC PRIMITIVES

The best known asymmetric primitive is probably RSA encryption, which is a
provably secure scheme.

As mentioned before, an asymmetric scheme is used with a pair of match-
ing keys, a public and a private one. The public key can be used to encrypt
data, and decryption can only be performed using the matching private key.
As always, it is crucial to store the private key securely so that it is not com-

1This is true for synchronous stream ciphers, for which the keystream depends only
on the key and the IV. For asynchronous stream ciphers, the future keystream also
depends on the previous keystream/ciphertexts.
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promised by an attacker.
Digital signatures are another application of asymmetric primitives. Digital

signatures can provide nonrepudiation, which is to say that a signer cannot
later deny that she has produced that signature. For example, online banking
services may use digital signatures when making transactions.

The provable security of RSA comes from assuming hardness of the so
called RSA problem, which challenges a problem solver to recover a plaintext
p from a ciphertext c = pe mod n, where she is given the public RSA key (n, e)
such that n = pq where p and q are primes, 2 < e < n, gcd(e, ϕ(n)) = 1 and
0 ≤ c < n. This tautological security statement is related but not equivalent
to the factoring problem—the problem of factoring very large integers into
prime factors, which is also assumed to be a hard problem. It is easy to
realize that the existence of an efficient factoring algorithm will break RSA
encryption and solve the RSA problem. However, the implication in the other
direction has not been proven by anyone. Whether an efficient algorithm for
breaking RSA can be translated into an efficient factoring algorithm is an open
question.

2.2 WHAT IS AN ATTACK?

We tend to be very generous with allowing the term attack to be used for most
attempts at breaking a cryptographic primitive. If any nontrivial information
is revealed in the attempted break, then we allow the term attack, even if the
attack itself is more expensive than exhaustive search.

The cost of executing an attack can be measured in terms of the resources
it requires. Several variants are common here. Time and storage are typical
examples of such requirements, but some attacks also require availability of
several plaintext/ciphertext pairs (typically for block ciphers), or availability
of a certain amount of keystream (for stream ciphers). The fewer resources an
attack requires, the better it is. Attacks may or may not be practical depending
on their resource requirements.

We list four different types of attacks below; key recovery, state recovery,
distinguishers and nonrandomness detectors. They are listed in decreasing
order of strength—a key recovery attack is generally considered better than a
state recovery attack, and so on.

2.2.1 KEY RECOVERY

A key recovery attack is a very strong type of attack, in which the attacker
reconstructs the secret key using only keystream, or possibly several pieces
of keystream generated by altering the public input variables (such as IV).
Several rule variations are common here. In some of these, the attacker may
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use several ciphertexts/plaintexts pairs, in others the IV values may be altered
to produce different ciphertexts that can be analyzed.

One type of key recovery attack is the brute-force attack. If we are given
one plaintext/ciphertext pair or some length of keystream, then we can iterate
through all the possible keys to see which key was used during encryption.
For a cipher with a k-bit key, we will find the correct key after we have tried
about 2k−1 different keys. This time complexity is usually considered a base-
line. Efforts that that take longer time than a brute-force attack are usually
not dignified with the attack epitaph, while faster ones are.

2.2.2 STATE RECOVERY

A state recovery attack is less severe than a key recovery attack, but it is still
a strong attack if it is performed faster than an exhaustive key search. Given
some amount of keystream or other public information, it is the task of the
attacker to reconstruct the internal state of the cryptographic primitive. If
such a reconstruction is possible, the succeeding keystream sequence will be
known from that point on.

2.2.3 DISTINGUISHERS

A simplified view of a distinguisher is that it is a decision mechanism that
takes a sequence of n samples as input and outputs either CIPHER or RAN-
DOM. The decision mechanism uses the n input samples, and possibly some
public input parameters, to perform a hypothesis test to determine which of
the two known probability distributions that is the most likely sample source,
the cipher distribution or the uniform one. Lemma 2.1, the Neyman-Pearson
lemma, provides the optimal hypothesis test.

However, apart from a given stretch of keystream, a distinguisher may also
alter the public input variables of the given stream cipher and generate several
related keystream sequences that can be analyzed together. In Section 5.2.5
we detail two different distinguishing models, taking advantage of this ap-
proach. The standard distinguishing model is described in Definition 5.7, and
Section 5.8 describes the multiple choice distinguishing model.

Distinguishers are practical in the sense that it is possible to use a distin-
guisher in a real-life scenario to extract nontrivial information from the cipher.
Also, distinguishers can sometimes be practical in the sense that they can be
transformed into a full or partial key recovery attack.

2.2.4 NONRANDOMNESS DETECTORS

A nonrandomness detector is, like the distinguisher, a decision mechanism
that outputs either CIPHER or RANDOM. However, the inputs of the non-
randomness detector are not limited to public inputs. It is also possible to
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use, say, parts of the secret key as input. The general idea is that a cipher
should in some sense behave randomly, specifically by outputting data that
cannot be distinguished from a uniformly random source. The purpose here
is to show nonrandomness. This will show that the cipher is not ideal, that it
contains some structural flaw.

Nonrandomness detectors form the weakest kind of cryptanalytical result,
but they operate at the edge of early weakness detection, which can be in-
valuable to an algorithmic designer. We will go into more details about this
in Definition 5.4 in Section 5.2.2.

While it is certainly reasonable to group all related-key attacks into this
category, our intention here is rather to introduce some continuity. A distin-
guisher allows modification of public input variables only, but we want to
gradually loosen these conditions into including hidden input variables (such
as the key) as well. Generalizing the distinguisher concept in this way means
that we sacrifice practicality for earlier nonrandomness detection, but this is a
reasonable tradeoff in our view.

2.3 INFORMATION THEORY BASICS

While we will be using the relative entropy measure in Definition 2.4 (below)
for the most part, there are times when we will refer to the classical defini-
tion of entropy and conditional entropy. The following definitions are taken
from [CT91].

Entropy is the information content (amount of randomness or uncertainty)
of a single random variable.

Definition 2.1 (Entropy) Let X be a discrete random variable that takes
values in X according to probability distribution PX (x) = Pr{X = x}. The
entropy H(X) of X is then given by

H(X) = − ∑
x∈X

PX(x) log PX(x).

In the following, let X and Y be discrete random variables that take values
in X and Y according to probability distributions PX (x) = Pr{X = x} and
PY (y) = Pr{Y = y}, respectively.

The information content of a pair of random variables is given by their joint
entropy, which we define as follows.

Definition 2.2 (Joint entropy) The joint entropy H(X, Y) of a pair of dis-
crete random variables (X, Y) with joint probability distribution PX,Y is given
by

H(X, Y) = − ∑
x∈X

∑
y∈Y

PX,Y(x, y) log PX,Y(x, y).
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We further define conditional entropy as follows.

Definition 2.3 (Conditional entropy) The conditional entropy H(X|Y) of a
discrete random variable X with probability distribution PX is given by

H(X|Y) = ∑
y∈Y

PY(y)H(X|Y = y)

= − ∑
y∈Y

PY(y) ∑
x∈X

PX(x|y) log PX(x|y)

= − ∑
y∈Y

∑
x∈X

PX,Y(x, y) log PX(x|y).

In loose terms, H(X|Y) means the amount of information that the random
variable X contains if one disregards the information overlap with Y.

Relative entropy captures the notion of distance between probability distri-
butions.

Definition 2.4 (Relative entropy) The relative entropy between two proba-
bility distributions P0 and P1 over the same domain X is defined as

D (P0‖P1) = ∑
x∈X

P0(x) log
P0(x)
P1(x)

. (2.1)

Relative entropy has a couple of aliases in literature; information diver-
gence, Kullback-Leibler divergence, information gain and redundancy.

Strictly speaking, the relative entropy measure does not qualify as a dis-
tance measure, since it is neither symmetric nor satisfies the triangle inequal-
ity. However, one reason for thinking of it as a distance between probability
distributions will be given in Section 2.4, where we will see how we can use
the divergence measure in practice to determine how many samples a dis-
tinguisher requires in order to correctly classify the samples that it analyzes.
After all, the job of a distinguisher is to tell two probability distributions apart,
to decide which of two probability distribution that the samples most likely
are drawn from.

In the sequel, we will sometimes say ’the divergence of P’ meaning D(P‖U),
where U denotes the corresponding uniform distribution. Also, please note
that the symbol ‖ is used for two different purposes in this dissertation. For
the divergence operator D it is used as a parameter separator, which is classi-
cal usage in this regard, but otherwise it is to be interpreted as a concatenation
operator. This ambiguity is resolved by the context.

Mutual information is the amount of information that two random vari-
ables share.
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Definition 2.5 (Mutual information) The mutual information I(X; Y) of
two discrete random variables X and Y with probability distributions PX and
PY, respectively, and joint probability distribution PX,Y is given by

I(X; Y) = ∑
x∈X

∑
y∈Y

PX,Y(x, y) log
PX,Y(x, y)

PX(x)PX(y)

= D(PX,Y‖PXPY).

Notice that it is possible to express mutual information in terms of diver-
gence.

H(X|Y) H(Y|X)I(X; Y)

H(X) H(Y)

H(X, Y)

Figure 2.1: Entropy diagram.

The relationships between H(X), H(Y), H(X|Y), H(X|Y) and H(X, Y) are
illustrated in Figure 2.1. Although we do not prove the following here, Fig-
ure 2.1 is meant to imply that

H(X) = H(X|Y) + I(X; Y),

H(Y) = I(X; Y) + H(Y|X),

H(X, Y) = H(X|Y) + I(X; Y) + H(Y|X).

2.4 HYPOTHESIS TESTING

Hypothesis testing is central in cryptanalysis. In particular, we will need to
perform hypothesis tests when we construct distinguishers. Neyman-Pearson
provides the optimal hypothesis test.

Lemma 2.1 (Neyman-Pearson) Let the random variables X1, X2, . . . , Xn be
independent and identically distributed according to mass function PX . Con-
sider the decision problem corresponding to the hypotheses PX = P0 vs.
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PX = P1. For T ≥ 0 define a region

An(T) =
{

P0(x1, x2, . . . , xn)

P1(x1, x2, . . . , xn)
> T

}
. (2.2)

Let α = Pn
0 [Ac

n(T)], where c denotes complement, and β = Pn
1 [An(T)] be the

error probabilities corresponding to the decision region An. Let Bn be any
other decision region with associated error probabilities α∗ and β∗. If α∗ ≤ α,
then β∗ ≥ β.

If all samples are independent, Equation (2.2) is equivalent to

An(T) =

{
n

∑
i=1

log
(

P0(xi)

P1(xi)

)
> log T

}
, (2.3)

and this is the form that the Neyman-Pearson test takes in most applications.
It is common to set T = 1, which indicates an unweighted comparison be-
tween the probability distributions P0 and P1.

The efficiency of a distinguisher is commonly expressed in terms of how
much keystream it requires to make a correct decision with probability sig-
nificantly larger than 1

2 , and it is in some sense here that the relative entropy
measure enters the picture.

This type of hypothesis test models independent and identically distributed
samples drawn from a probability distribution PX . We have two possible
hypotheses, the null hypothesis H0 and the alternate hypothesis H1;

H0 : PX = P0,

H1 : PX = P1.

The hypothesis test allows for two types of errors.

Type I error: Reject H0 when it is true (probability α).
Type II error: Accept H0 when H1 is true (probability β).

As no universal expressions for α and β exist, we do not know the perfor-
mance of the test in the general case. However, there are asymptotic expres-
sions for the error probabilities. The asymptotic error probabilities are linked
to the relative entropy through Stein’s lemma, which roughly2 states that β
decreases so that

lim
n→∞

log β

n
= −D(P0‖P1), (2.4)

2The full story is actually a bit more involved, requiring double limits and the like,
see [CT91].
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if we fix the error probability α. Note that the value of α does not affect the
exponential rate at which β decreases. Asymptotically we therefore have

β ≈ 2−nD(P0‖P1), (2.5)

so that we reach the point at which the error probabilities for the correspond-
ing hypothesis test start to decrease exponentially when the number of sam-
ples n approaches

n ≈ 1
D(P0‖P1)

. (2.6)

We will use Equation (2.6) as a measure of the number of samples needed
for our distinguishers in Chapter 4. This is the same measure that was used
in [SRHJ12]. In particular, the divergence measure serves the purpose of com-
paring the performances of our distinguishers to previous ones. If we use
Equation (2.6) for all cases the comparison is indeed fair.

We do emphasize, however, that a practical scenario would actually require
us to use a small multiple of the number n as the number of samples needed
by a distinguisher. The reason for this is that a practical application requires
an error probability β that, in some sense, is small. Exactly how small β should
be depends on the application, but there is a tradeoff between the error prob-
ability and the number of samples. The number n as defined in Equation (2.6)
can be seen as a baseline requirement for the number of samples that a dis-
tinguisher needs.

There are other ways of estimating the number of required samples, and
we refer to [BJV04, CT91, HJB09] for a more detailed treatment of this topic.

A practical application of Equation (2.6) is shown in Example 2.1.

Example 2.1 (A common rule of thumb) Consider the problem of distin-
guishing a probability distribution that is almost uniform. Let P be the binary
probability distribution with bias ε according to{

P(0) = 1
2 (1 + ε) ,

P(1) = 1
2 (1− ε) ,

for some small ε, and let U be the corresponding uniform distribution,{
U(0) = 1

2 ,
U(1) = 1

2 .

A common rule of thumb used by cryptanalysts is that distinguishing a prob-
ability distribution with bias ε requires about

1
ε2
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samples. Using the probability distributions P and U above together with the
divergence measure D, we will now show how one can motivate this rule of
thumb.

The Taylor approximation

ln (1 + x) ≈ x− x2

2

is valid for small values of x, so according to Definition 2.4 we have

D(P‖U) = P(0) log
P(0)
U(0)

+ P(1) log
P(1)
U(1)

=
1
2
(1 + ε) log

1
2 (1 + ε)

1
2

+
1
2
(1− ε) log

1
2 (1− ε)

1
2

≈ 1
2 ln 2

(
(1 + ε)

(
ε− ε2

2

)
− (1− ε)

(
ε +

ε2

2

))
≈ ε2

2 ln 2
≈ ε2.

Applying Equation (2.6) shows that the rule of thumb is reasonable.



3
Attacks on FCSRs and FCSR Based

Constructions

T his chapter deals with Feedback with Carry Shift Registers (FCSRs) and
may be considered to present the main results in this dissertation. This
part is derived from two articles.

The paper »An efficient state recovery attack on X-FCSR-256« [SHJ09], coau-
thored with Martin Hell and Thomas Johansson, was selected as one of the
top three papers of FSE 2009. Based on the recommendation of the FSE pro-
gram committee, it earned an invitation to Journal of Cryptology, where the
extended version of the article was published as »An Efficient State Recovery
Attack on the X-FCSR Family of Stream Ciphers« [SHJ12a] in 2012.

The second article is »A Generalized Birthday Approach for Efficiently
Finding Linear Relations in `-sequences« [WSJ13], which was coauthored with
Hui Wang and Thomas Johansson. This article has been accepted for publica-
tion in the journal Designs, Codes and Cryptography.

3.1 INTRODUCTION

A common building block in stream ciphers is the Linear Feedback Shift Reg-
ister (LFSR)1. The bit sequence produced by an LFSR has distributional prop-
erties (see [LN97, GK12]) that are very interesting for cryptographic appli-
cations. However, LFSRs are inherently linear, so additional building blocks
are needed in order to introduce nonlinearity. For this reason, Nonlinear

1We assume that the reader is familiar with LFSRs, but if this is not the case, she may
consult [WikiLFSR, LN97].

21
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Feedback Shift Registers (NFSRs) are common components in modern stream
ciphers. A special class of NFSRs are the FCSRs, which were introduced by
Klapper and Goresky in [KG94]. FCSRs are very similar to LFSRs in many
respects, and their intrinsic nonlinearity is due to the fact that FCSRs use inte-
ger addition with carries instead of the modular addition (xor) operator used
in LFSRs. This property somewhat relaxes the nonlinearity requirements on
other building blocks of cryptographic designs. The structural similarities be-
tween LFSRs and FCSRs imply that many of the good properties of LFSRs are
inherited, but unlike most other NFSRs, FCSRs have a well-studied algebraic
structure, making analysis much easier.

Two different flavors of FCSRs have been available in the past; the Fibonacci
and Galois architectures [GK02, KG97, Kla05, GK12]. A new approach for FC-
SRs, ring FCSRs (or diversified FCSRs or ring representation), was proposed
in [Arn+09], with an extended description of ring FCSRs being available in
the journal version [ABP11]. The new ring FCSR automaton and its associ-
ated theory truly do unify the previous architectures, but more interestingly, it
also generalizes the entire FCSR concept by adding flexibility. While Fibonacci
and Galois FCSRs use many-to-one and one-to-many feedbacks, respectively,
ring FCSRs allow many-to-many feedbacks, resulting in a generalized and
unified theory.

The remainder of this chapter is divided into three parts. In Section 3.2 we
briefly cover the basics of FCSR architectures, FCSR sequences and FCSR anal-
ysis. We also give a short description of the FCSR based stream ciphers that
are our primary consideration here; X-FCSR-128, X-FCSR-256 and F-FCSR-H
v3.

In Section 3.3 we go on to show how the X-FCSR family of stream ci-
phers can be severely broken with a state recovery attack. This part uses a
technique—LFSRization—that was introduced in [HJ08] for breaking the eS-
TREAM [ECRb] final portfolio cipher F-FCSR-H v2 [ABL06]. After the pub-
lication of [HJ08], the F-FCSR-H v2 stream cipher was removed from the eS-
TREAM final portfolio. We show how to exploit LFSRization together with a
few other tricks and techniques to break the X-FCSR family.

The creators of F-FCSR-H v2 soon updated the stream cipher to F-FCSR-H
v3 [Arn+09], and the new cipher is now immune to the LFSRization tech-
nique. The update was quite nontrivial as the prior Galois FCSR was replaced
with a ring FCSR. In Section 3.4, we show how to attack F-FCSR-H v3 as well,
this time with a completely different approach. It is a generalized birthday2

approach in which we aim at finding linear relations in FCSR sequences in a
very efficient way. These linear relations are then used to build a distinguisher

2It is presented as a regular birthday approach [WikiBP] for simplicity, but it will
become clear that a generalized birthday approach [Wag02] is applicable as well.
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that breaks the exhaustive search time complexity limit. The new technique
is actually very general. Even though it is applied to F-FCSR-H v3 here, the
technique can be applied to any FCSR automaton, so linearly filtered FCSRs
and FCSR combiners may be particularly interesting targets for future crypt-
analysis.

We begin with some preliminaries on FCSRs.

3.2 FCSR PRELIMINARIES

An FCSR is a device that produces a binary expansion of a rational number
p/q for some integers p and q, where q is odd. Traditionally, this device has
been available in two different configurations; Fibonacci and Galois represen-
tation, named analogously to the corresponding LFSR representations that are
very similar in structure. Both will be briefly reviewed here, along with the
more general ring FCSR configuration, which generalizes the two previous
architectures.

In FCSR based stream ciphers, p usually depends on the secret key and the
initialization vector (IV), and q is a public parameter. The choice of q induces a
number of FCSR properties of which the arguably most important property is
that it completely determines the length of the period of the binary sequence
that the FCSR outputs.

We now give a very brief overview of Fibonacci, Galois and ring FCSRs. We
then introduce some relevant background information on FCSR sequences,
and show the FCSR based stream ciphers X-FCSR-128, X-FCSR-256 and F-
FCSR-H v3 that we will analyze later on.

3.2.1 FIBONACCI FCSR ARCHITECTURE

The state of a Fibonacci FCSR of size n consists of two principal parts, the
main register m = (m0, m1, ..., mn−1), with mi ∈ {0, 1}, and a memory register
b ∈ N. Let m(t) and b(t) denote the state of the registers m and b at time t.
State updates are performed according to

mi(t + 1) = mi+1(t), for 0 ≤ i ≤ n− 2,

σ(t + 1) = b(t) +
n

∑
i=1

qimn−i(t),

mn−1(t + 1) = σ(t + 1) mod 2,

b(t + 1) = σ(t + 1) div 2.

The auxiliary values σ(·) are used for clarity only.
Each FCSR is associated with a connection integer q, and for Fibonacci
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m0m1m2m3m4m5

�

b
div 2 mod 2

qi 1 1 0 1 0 1
i 1 2 3 4 5 6

Figure 3.1: The Fibonacci FCSR with connection integer q = 85.

FCSRs this is defined as

q = qn2n + qn−12n−1 + · · ·+ q222 + q12− 1.

An example of a Fibonacci FCSR with q = 85 is given in Figure 3.1. It
should be noted that the box labeled � is a full adder that adds all inputs
into an integer-valued sum σ. The value σ mod 2 is then fed into mn−1,
while σ div 2 is stored in the memory register b. The memory register b is
a (blog (wH (q + 1))c+ 1)-bit register, where w is the weight function that re-
ports the number of ones in the binary expansion of a number (Hamming
weight).

3.2.2 GALOIS FCSR ARCHITECTURE

The state of a Galois FCSR of size n also consists of two principal parts, the
main register m = (m0, m1, ..., mn−1), as before, together with a carries register
c = (c0, c1, ..., cn−2). We additionally let c(t) denote the state of the register c
at time t.

As for Fibonacci FCSRs, define the odd connection integer as

q = qn2n + qn−12n−1 + · · ·+ q222 + q12− 1,

and let d = q+1
2 = (dn−1 . . . d0)binary according to

d = dn−12n−1 + · · ·+ d222 + d12 + d0.

The carries register contains l active cells, where l + 1 is the number of nonzero
binary digits di in d. Disregarding dn−1, which must always be one, the active
carry cells correspond to the di = 1 in the interval 0 ≤ i ≤ n− 2.

We continue to let � denote (regular) addition with carry, but in the Galois
case we will only need one memory bit per carry, so all ci’s contain single bits.
The � operator now takes three inputs in total, two external inputs and the
carry bit. For every clocking it first computes the (regular) sum σ of all three
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input bits. It then feeds σ mod 2 into the succeeding main memory cell and
stores the bit σ div 2 in the carry register. The state update mechanism can be
summarized as follows.

σi(t + 1) = mi+1(t) + ci(t) + dim0(t), for 0 ≤ i ≤ n− 2,

mi(t + 1) = σi(t + 1) mod 2, for 0 ≤ i ≤ n− 2,

ci(t + 1) = σi(t + 1) div 2, for 0 ≤ i ≤ n− 2,

mn−1(t + 1) = m0(t).

Following [ABL06], we specifically illustrate the case q = 347, which gives us
d = 174 = (10101110)binary, in Figure 3.2.

m0m1m2m3m4m5m6m7

c1c2c3c5c(t)

m(t)

di

i

0000

1
7

0
0

1
1

1
2

1
3

0
4

1
5

0
6

Figure 3.2: The Galois FCSR with connection integer q = 347.

3.2.3 RING FCSR ARCHITECTURE

Contrary to the Fibonacci and Galois representations, ring FCSRs allow full
freedom in tap placement and can be seen as a generalization of the two pre-
vious architectures. Using main and carries registers m = (m0, m1, ..., mn−1)
and c = (c0, c1, ..., cn−1) to describe the state of a ring FCSR of size n, updates
are performed according to

σ(t + 1) = Tm(t) + c(t),

m(t + 1) = σ(t + 1) mod 2,

c(t + 1) = σ(t + 1) div 2,

where T = (ti,j)0≤i,j<n is the n × n transition matrix of the corresponding
automaton graph. We have

ti,j =

{
1 if mj is used to update mi,
0 otherwise.
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Definition 3.1 (Connection integer of a ring FCSR) Let T be the transition
matrix of a ring FCSR. The connection integer q of that FCSR is then given by

q = −det(I− 2T),

where I is the identity matrix of matching size.

Note that Definition 3.1, in contrast to the corresponding one in [Arn+09],
defines q as a positive number.

As we have seen in Figures 3.1 and 3.2, there is an immediate structural in-
terpretation of the value q (via d) for Fibonacci and Galois FCSRs. This is not
obviously the case for ring FCSRs, as many different transition matrices pro-
duce the same connection integer. This means that there are many different
ring FCSR configurations that can produce the same binary output sequence.

To obtain a ring FCSR with desirable properties, T should be chosen accord-
ing to the guidelines listed in Section 5.1 in [Arn+09]. Following [ZD11], it is
also possible to construct a transition matrix with a given connection integer.

A ring FCSR with transition matrix

T =



0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0


and connection integer q = 243 is illustrated in Figure 3.3 with an equivalent
alternative view in Figure 3.4.

m0m1m2m3m4m5m6m7

c1c3c5

Figure 3.3: A ring FCSR with connection integer q = 243.
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Figure 3.4: Alternative view of a ring FCSR with connection integer
q = 243.

3.2.4 `-SEQUENCES AND THE EXPONENTIAL REPRESENTATION

The definitive reference for FCSR theory is [GK12], which we refer to for
further information if our simple and minimal introduction below should fall
short in the eyes of our reader.

The output sequence a = {at}∞
t=0 of an FCSR automaton is called an FCSR

sequence. For all FCSR architectures we let the output bits be defined by the
contents of the main register cell m0 according to

at+1 = m0(t).

Let us first say something about the periodicity of FCSR sequences.

Definition 3.2 (FCSR sequence periodicity) An FCSR sequence a = {at}∞
t=0

is strictly periodic if there exists some L > 0 such that at = at+L for all t ≥ 0.
The sequence a is eventually periodic if there exists some L > 0 and T > 0 with
at = at+L for t ≥ T. In both cases, the smallest such L is called the period. The
sequence a is periodic if it is either strictly periodic or eventually periodic.

FCSR analysis relies to a great extent on properties of 2-adic integers.

Definition 3.3 (2-adic integer) A 2-adic integer is a formal power series
over Z/2Z,

∞

∑
i=0

ai2i,

where the symbol 2 may be seen as a placeholder.
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Note that all ai ∈ Z/2Z, and that the series typically does not converge in
the usual sense. Also, it is more convenient to use the symbol 2 as a place-
holder rather than an indeterminate x, say, because of the way that operations
on 2-adic integers behave.

We define operations to take carries into account. Addition is defined as
follows. Let two 2-adic integers u and v be given. Then

u + v =
∞

∑
i=0

ui2i +
∞

∑
i=0

vi2i =
∞

∑
i=0

wi2i = w

is to be interpreted via the unique solution to the equation system{
u0 + v0 = w0 + c02,
ui + vi + ci−1 = wi + ci2, i > 0,

(3.1)

where wi, ci ∈ Z/2Z for all i ≥ 0, and the ci’s may be regarded as carries.
Multiplication is defined correspondingly via the unique solution to the

equation system {
u0v0 = w0,

∑i
k=0 uivi−k + ci−1 = wi + ci2, i > 0,

(3.2)

where wi ∈ Z/2Z and ci ∈ N for all i ≥ 0. The introduction of the two
operators motivates the following definition.

Definition 3.4 (The ring Z2 of 2-adic integers) The 2-adic integers over
Z/2Z form a ring Z2 under addition and multiplication as defined by equa-
tion systems (3.1) and (3.2).

We ask the casual reader to note the difference between Z/2Z and Z2. It
may be noted that Z ⊂ Z2, since the equality

−1 = 1 + 2 + 22 + 23 + · · ·

can be seen to hold in Z2 by adding one to both sides and propagating the
carries to cancel all the terms in the sum. Furthermore, not all elements of
Z2 are invertible, but the connection integers q that we will use are invertible
when interpreted as 2-adic integers. With the preceding definitions and ob-
servations in mind, we hope that the reader is ready to accept that there is a
correspondence between FCSR structure and 2-adic integers.

Theorem 3.1 (FCSR structure correspondence) Let a = {at}∞
t=0 denote the

output sequence of an FCSR with connection integer q. Then, a corresponds to
a rational number β = p

q ∈ Z2. Specifically, ∑∞
t=0 at2t = p

q in Z2, which means
that a can be interpreted as the 2-adic representation of β. The sequence a is
strictly periodic if and only if −q < p ≤ 0.
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The same FCSR sequence can be generated by many different FCSRs with
different connection integers, but we will abuse notation somewhat by letting
the connection integer q of an FCSR sequence refer to the smallest possible
such integer.

Sequences of maximal period are of special interest when constructing
cryptographic primitives. For LFSRs, the maximal period sequences are called
m-sequences (m for maximal). For FCSRs, they are called `-sequences (` for
long). Definition 3.6 provides the specifics, but we first need to define primi-
tive roots in Definition 3.5.

Definition 3.5 (Primitive root modulo q) Let q = pe, where p is an odd
prime and e ≥ 1. A primitive root modulo q is a number 0 < g < q such that
g generates the multiplicative group (Z/qZ)∗.

That is, if g = 2 is a primitive root modulo q = pe, then the sequence
of numbers 2, 22, 23, . . . , 2ϕ(qe) taken modulo q, where ϕ is the Euler totient
function, runs through all invertible elements of Z/qZ. We can now define
`-sequences.

Definition 3.6 (`-sequence) An `-sequence a is an FCSR sequence with
connection integer q for which q = pe (e ≥ 1), p is an odd prime and 2 is a
primitive root modulo q. The period of a is ϕ(q).

The extreme case for an FCSR is therefore when q is an odd prime, for
which the period is ϕ(q) = q− 1.

Last but not least, there is also an exponential representation of `-sequences
that is useful for FCSR analysis.

Theorem 3.2 (Exponential representation of `-sequences) Given an `-
sequence a = {at}∞

t=0 with connection integer q, there exists a unique integer
A ∈ Z/qZ, such that

at = αt mod 2, t ≥ 0,

with αt = (A2−t) mod q, where 2−1 denotes the multiplicative inverse of 2 in
Z/qZ.

We will use this tool for proving specific properties of the linear relations
that we encounter in Section 3.4.

3.2.5 X-FCSR-128 AND X-FCSR-256

The X-FCSR family of stream ciphers is specified in [ABLM07] and provides
two stream cipher instances; X-FCSR-128 and X-FCSR-256. The designs are—
as the name suggests—based on FCSRs, and they are targeted for software
applications.
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Both X-FCSR-128 and X-FCSR-256 admit a secret key of 128-bit length and
a public IV of bitlength ranging from 64 to 128 as input. The core of the X-
FCSR stream ciphers consists of two 256-bit Galois FCSRs with main registers
Y and Z which are clocked in opposite directions.

Y(t) = (yt−255, . . . , yt−2, yt−1, yt), clocked ←
Z(t) = (zt+255, . . . , zt+2, zt+1, zt), clocked →

At each discrete time instance t, Y and Z are used to form a 256-bit block X(t)
according to

X(t) = Y(t)⊕ Z(t),

where ⊕ denotes bitwise XOR, so that

X(0) = (y−255 ⊕ z255, . . . , y−2 ⊕ z2, y−1 ⊕ z1, y0 ⊕ z0),

X(1) = (y−254 ⊕ z256, . . . , y−1 ⊕ z3, y0 ⊕ z2, y1 ⊕ z1),

X(2) = (y−253 ⊕ z257, . . . , y0 ⊕ z4, y1 ⊕ z3, y2 ⊕ z2),
...

X-FCSR-128 and X-FCSR-256 are identical up to this point, but they differ in
the extraction function. Let us concentrate on X-FCSR-256 for a while. X(t) is
used as input to the extraction function. We define

W(t) = round256(X(t)) = mix256 (sr256 (sl256 (X(t)))) , (3.3)

where sl256, sr256 and mix256 mimic the general structure of the AES round
function;

sl is an S-box applied at the byte level,

sr is a row shifting function operating on bytes,

mix is a column mixing function operating on bytes.

The X-FCSR-256 round function operates on a 256-bit input, as defined in
Equation (3.3). The general idea behind the round function operations be-
comes apparent if one considers how the functions operate on the 256-bit
input when it is viewed as a 4× 8 matrix H at the byte level. Let the byte
entries of H be denoted hi,j with 0 ≤ i ≤ 3 and 0 ≤ j ≤ 7.

The first transformation layer consists of an S-box sl applied at the byte
level. The chosen S-box has a number of attractive properties that are de-
scribed in [ABLM07].

The second operation shifts the rows of H, and sr is identical to the row
shifting operation of Rijndael. That is, sr shifts (i.e., rotates) each row of H to
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the left at the byte level, shifting the first, second, third and fourth rows 0, 1,
3 and 4 bytes respectively.

The purpose of the third operation, mix, is to mix the columns of H. This
is also done at the byte level according to

mix256


h0,j
h1,j
h2,j
h3,j

 =


h3,j ⊕ h0,j ⊕ h1,j
h0,j ⊕ h1,j ⊕ h2,j
h1,j ⊕ h2,j ⊕ h3,j
h2,j ⊕ h3,j ⊕ h0,j


for every column j of H.

Note that sl, sr and mix are all both invertible and byte oriented. Finally,
the 256 bits of keystream that are output at time t are given by

out(t) = X(t)⊕W(t− 16). (3.4)

This last equation introduces a time delay of 16 time units. The first block of
keystream is produced at t = 0 and the key schedule takes care of defining
W(t) for t < 0.

X-FCSR-128 has a very similar extraction function, but it operates on a
128-bit block. If we by XL(t) and XR(t) denote the left and right parts of
X(t) according to X(t) = XL(t)‖XR(t) where ‖ denotes concatenation, form
X̃(t) = XL(t)⊕ XR(t) and similarly define

W(t) = round128

(
X̃(t)

)
= mix128

(
sr128

(
sl128

(
X̃(t)

)))
, (3.5)

and

out(t) = X̃(t)⊕W(t− 16) (3.6)

for X-FCSR-128. Now view the 128-bit block as a 4× 4 matrix at the byte level.
The row shifting function sr128 shifts the first, second, third and fourth rows
by 0, 1, 2 and 3 bytes respectively, and the corresponding mix function uses
the same matrix as above, but now with only four columns.

This description is sufficient for our purposes, but more information can be
found in [ABLM07].

3.2.6 F-FCSR-H V3

The stream cipher F-FCSR-H v3 is a completely different stream cipher. Con-
trary to the X-FCSR family of stream ciphers, F-FCSR-H v3 is designed for
hardware applications.
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Table 3.1: The set S of nontrivial connections in the transition matrix
of F-FCSR-H v3.

(1, 121) (2, 133) (4, 44) (5, 82) (9, 38) (11, 40)
(12, 54) (14, 105) (15, 42) (16, 63) (18, 80) (19, 136)
(20, 2) (21, 35) (23, 28) (25, 137) (28, 131) (31, 102)
(36, 41) (39, 138) (40, 31) (42, 126) (44, 127) (45, 77)
(46, 110) (47, 86) (48, 93) (49, 45) (51, 17) (54, 8)
(56, 7) (57, 150) (59, 25) (62, 51) (63, 129) (65, 130)
(67, 122) (73, 148) (75, 18) (77, 46) (79, 26) (80, 117)
(81, 1) (84, 72) (86, 60) (89, 15) (90, 89) (91, 73)
(93, 12) (94, 84) (102, 141) (104, 142) (107, 71) (108, 152)
(112, 92) (113, 83) (115, 23) (116, 32) (118, 50) (119, 43)
(121, 34) (124, 13) (125, 74) (127, 149) (128, 90) (129, 57)
(130, 103) (131, 134) (132, 155) (134, 98) (139, 24) (140, 61)
(141, 104) (144, 48) (145, 14) (148, 112) (150, 59) (153, 39)
(156, 22) (157, 107) (158, 30) (159, 78)

F-FCSR-H v3 uses keys and IVs that are 80 bits long. The main component
is a 160-bit ring FCSR with connection integer

q = 1741618736723237862812353996255699689552526450883

and transition matrix T = (ti,j)0≤i,j<160 with

ti,j =

{
1, (i, j) ∈ S or j ≡ i + 1 mod 160,
0, otherwise,

where S is the set of 82 pairs given in Table 3.1.
Eight linear filters F0, . . . , F7 are used. For every FCSR clocking, eight output

bits are produced, one by each filter. Each filter produces the xor of the main
memory cells whose indices are listed in Table 3.2. For example, filter F0
produces output bit

m1 ⊕m15 ⊕m28 ⊕m46 ⊕m59 ⊕m79 ⊕m93 ⊕m115 ⊕m128 ⊕m141 ⊕m158.

Note that F0 and F1 xor 11 main register cells, while F2, . . . , F7 only xor 10. The
information given here is not complete, but it is sufficient for understanding
what follows. Further details can be found in the specification [Arn+09].



3.3. An Efficient State Recovery Attack on the X-FCSR Family of Stream Ciphers 33

Table 3.2: Linear filters used in F-FCSR-H v3.

F0 1, 15, 28, 46, 59, 79, 93, 115, 128, 141, 158
F1 2, 16, 31, 47, 62, 80, 94, 116, 129, 144, 159
F2 4, 18, 36, 48, 63, 81, 102, 118, 130, 145
F3 5, 19, 39, 49, 65, 84, 104, 119, 131, 148
F4 9, 20, 40, 51, 67, 86, 107, 121, 132, 150
F5 11, 21, 42, 54, 73, 89, 108, 124, 134, 153
F6 12, 23, 44, 56, 75, 90, 112, 125, 139, 156
F7 14, 25, 45, 57, 77, 91, 113, 127, 140, 157

3.3 AN EFFICIENT STATE RECOVERY ATTACK ON THE X-FCSR FAMILY
OF STREAM CIPHERS

Consider the following problem for a stream cipher. Given the keystream that
has been output so far, how can you efficiently and accurately predict what
the future keystream is?

Solving this problem is considered a serious cryptanalytical break, as the
encryption scheme is then compromised—all encrypted messages from that
point on will now easily be decrypted.

A state recovery attack is one way of accomplishing this. The internal state
of the stream cipher fully describes its operation and output, so we need to
find a mapping from keystream to cipher states able of producing the given
keystream. We will now show how this can be done for the X-FCSR stream
cipher family.

3.3.1 BACKGROUND

Using FCSRs to generate sequences for cryptographic applications was ini-
tially proposed by Klapper and Goresky in [KG94]. Recently, several new
constructions based on the concept of FCSRs have been proposed. The class of
F-FCSRs, Filtered FCSRs, was proposed by Arnault and Berger [AB05, KG97].
These constructions were cryptanalyzed in [JM06], using a weakness in the
initialization function. Also a time/memory tradeoff attack was demonstrated
in the same paper.

Another similar construction targeting hardware environments is F-FCSR-
H, which was submitted to the eSTREAM project [ECRb]. F-FCSR-H was
later updated to F-FCSR-H v2 because of a weakness demonstrated in [JM05].
F-FCSR-H v2 was one of the four ciphers targeting hardware that were se-
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lected for the final portfolio at the end of the eSTREAM project. Inspired by
the success, Arnault, Berger, Lauradoux and Minier presented the X-FCSR
construction described in Section 3.2.5, now targeting software implementa-
tions. The main idea was to use two Galois FCSRs instead of one, and to also
include an additional nonlinear extraction function inspired by the Rijndael
round function. Adding this would allow more output bits per register up-
date and thus increase throughput significantly. According to the designers,
X-FCSR-256 runs at 6.5 cycles/byte and X-FCSR-128 runs at 8.2 cycles/byte.
As this is comparable to the fastest known stream ciphers, it makes them very
interesting in software environments.

Here, we will describe the attack in [SHJ12a]. For the security of X-FCSR-
256 and X-FCSR-128, we note that no other attacks faster than exhaustive key
search have been published.

In [HJ08, HJ11] a new property inside the Galois FCSR was explored,
namely that the update was sometimes temporarily linear for a number of
clocks. This resulted in a very efficient attack on F-FCSR-H v2 and led to its
removal from the eSTREAM portfolio.

The state recovery attack that we present here uses the observation in [HJ08,
HJ11]. The fact that two registers are used, together with the extraction func-
tion, makes it impossible to immediately use this observation to break the
ciphers. However, several additional nontrivial observations will allow a suc-
cessful cryptanalysis. The keystream is produced using state variables 16 time
instances apart. By considering consecutive output blocks, and assuming that
the update is linear, we are able to partly remove the dependency of several
state variables. A careful analysis of the extraction function then allows us to
treat parts of the state independently and brute force these parts separately,
leading to an efficient state recovery attack. It is shown that the X-FCSR-256
state can be recovered using 244.3 output keystream blocks and a computa-
tional complexity of 24.7 table lookups per output block on average. Note that
table lookup operations are much cheaper than testing a single key. The corre-
sponding figures for X-FCSR-128 are 255.2 for the number of output keystream
blocks with a computational effort of 216.3 table lookups per block.

The remainder of this section is organized as follows. In Section 3.3.2, we
describe the different parts of the attack. Each part of the attack is described
in a separate subsection and in order to simplify the description we will delib-
erately base the attack on assumptions and methods that are not optimal for
the cryptanalyst. Then, additional observations and more efficient algorithms
are discussed in Sections 3.3.3 and 3.3.4, leading to a more efficient attack. We
will use X-FCSR-256 as our basic case to show how the attack works in full
detail. In Section 3.3.5 we show how to adapt the attack to X-FCSR-128. The
attack is summarized with an algorithmic description in Section 3.3.6.

We will continue to use the notation that was introduced in Section 3.2.5. As
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described there, the X-FCSR family of stream ciphers uses two Galois FCSRs
at the core of their construction.

For the purposes of this section it is sufficient to recall the Galois FCSR
automaton as described in Section 3.2.2. For ease of reading, we repeat Fig-
ure 3.2 in Figure 3.5, where the case q = 347, which gives us d = 174 =
(10101110)binary, is illustrated (following [ABL06]). We will rehash this exam-
ple a few times to highlight some key points.

m0m1m2m3m4m5m6m7

c1c2c3c5c(t)

m(t)

d

0000

1 0111010

Figure 3.5: The Galois FCSR with connection integer q = 347.

3.3.2 ATTACK DESCRIPTION

Consider an FCSR automaton with n bits of memory in the main register and
l bits in the carries register for a total of n + l bits. If (m, c) is our state, then
many states are equivalent in the sense that starting in equivalent states will
produce the same output. As the period is at most q− 1 ≈ 2n, the number of
states equivalent to a given state is in the order of 2l .

A conceptual basis for understanding the attack is obtained by dividing it
into the four parts listed below. Each part has been attributed its own section.

• LFSRization of FCSRs

• Combining Output Blocks

• Analytical Unwinding

• Solving for the State

In Section 3.3.2.1 we describe a trick we call LFSRization of FCSRs. We
explain how the observation in [HJ08, HJ11] can be used to allow treating
FCSRs as LFSRs. There is a price to pay for introducing this simplification, of
course, but the penalty is not as severe as one may expect.

We observe that we can combine a number of consecutive output blocks
to effectively remove most of the dependency on X(t) introduced in Equa-
tion (3.4). The LFSRization process works in our favor here as it provides
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a linear relationship between FCSR variables. Output block combination is
explored in Section 3.3.2.2.

Once a suitable combination Q of output blocks is defined, state recovery
is the next step. This is done in two parts. In Section 3.3.2.3 we explain how
to work with Q analytically to transform its constituent parts into something
that will get us closer to the state representation. As it turns out, we can do
quite a bit here. Finally, we find that the state can be divided into several
almost independent parts that can be treated separately. This is described in
Section 3.3.2.4.

3.3.2.1 LFSRIZATION OF FCSRS

As mentioned above, an observation in [HJ08, HJ11] provides a way of justify-
ing the validity in treating FCSRs as LFSRs, and does so at a very reasonable
cost. We call this process LFSRization of FCSRs, or simply LFSRization3 when
there is no confusion as to what is being treated as an LFSR. There are two
parts to the process, a flush phase and a linearity phase.

The observation is simply that a zero feedback bit in the Galois implemen-
tation of an FCSR, see Figure 3.5, causes the contents of the carry registers
to change in a very predictable way. Adopting a statistical view and assum-
ing independent events is helpful here. Assuming a zero feedback bit, carry
registers containing zeros will not change, they will remain zero. The carry
registers containing ones are a different matter, though. A one bit will change
to a zero bit with probability 1

2 . In essence this means that one single zero
feedback bit will cut the number of ones in the carry registers roughly in half.

The natural continuation of this observation is that a sufficient amount of
consecutive zero feedback bits will eventually flush the carry registers so that
they contain only zeros. On average, roughly half of the carry registers contain
ones to start with, so an FCSR with N active carry registers requires roughly
log N

2 + 1 zero feedback bits to flush the ones away with probability 1
2 . By

expected value we therefore require roughly log N
2 + 2 zero feedback bits to

flush a register completely. For the X-FCSR family we have N = 210, indicat-
ing that we need no more than nine zero feedback bits to flush a register.

After the flush phase, a register is ready to act as an LFSR. In order to take
advantage of this state we need to maintain a linearity phase in which we
keep having zero feedback bits fed for a sufficiently long duration of time.
As we will see from upcoming arguments, we will in principle require the
linearity property for two separate sets of five consecutive zero feedback bits,

3The term LFSRization can be seen as a gross understatement, as the resulting behav-
ior is that of a simple shift of the main memory cells without any influence from a
feedback function.
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with the two sets being sixteen time units apart. We will need the FCSRs to
act as LFSRs during this time, so our base requirement consists of two smaller
LFSRizations. One LFSRization event requires roughly 9 + 5 bits for flush
and linearity phase, respectively, for an event probability of about 2−(9+5), so
two LFSRization events in the same register happen once in about 22(9+5) =
228 clockings. The probability of two smaller LFSRizations occurring in both
registers Y and Z simultaneously is therefore about 2−4(9+5) = 2−56. In other
words, our particular LFSRization condition appears once in about 256 output
blocks.

A real-life deviation from this theoretical flush reasoning was observed
in [HJ08, HJ11]. We cannot flush the carry register entirely as the last ac-
tive carry bit will tend to one instead of zero. As further noted in [HJ08,
HJ11], flushing all but the last carry bit does not cause a problem in practice.
Consider the maximally linearized FCSR in Figure 3.6, the state transitions
of which are detailed in Table 3.3. It produces a maximal number of zero
feedback bits for an FCSR of its size.

00111111

1000c(t)

m(t)

d

0000

1 0111010

Figure 3.6: Maximally linearized FCSR outputting zero feedback bits.

In simulations and analytical work we must compensate for this effect,
of course, but the theoretical reasoning to follow remains valid as we allow
ourselves to treat FCSRs as simple LFSRs. The interested reader is referred
to [HJ08, HJ11] for details on this part.

Furthermore, assumptions of independence are not entirely realistic. Al-
though the theoretical reasoning above is included mainly for reasons of com-
pleteness, simulations show that we are not far from the truth, effectively
providing some degree of validation for the theory. Our simulations show
that the expected number of output blocks that we need to observe before the
LFSRization effect appears twice is about 228.0 for the Y register and 226.0 for
the Z register, for a total of about 254.0 observed output blocks before LFSR-
ization takes place in X-FCSR in the basic setting made explicit below.

Our requirements for the basic attack are summarized as follows. At some
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Table 3.3: Consecutive states of the maximally linearized FCSR in
Figure 3.6.

t state output bit
0 1 101 1010110 0 -
1 0 101 1010110 0 0
2 0 001 1010110 0 0
3 0 000 1010110 0 0
4 0 000 0010110 0 0
5 0 000 0000110 0 0
6 0 000 0000010 0 0
7 0 000 0000001 0 0
8 0 000 0000000 1 0
9 1 000 0000000 0 1

specific time instance we require the carry registers of Y and Z to be com-
pletely flushed except for the last bit. Here we also require the tails of the
main registers to end with 11100 as in Figure 3.6 to guarantee at least five
consecutive zero feedback bits for the five upcoming time instances. Sixteen
time instances later we require this set-up to appear once again. In each flush-
set, the five upcoming zero feedback bits ensure that the main registers remain
linear.

In Table 3.4 we explicitly list the requirements for the Y register, with the
requirements for the Z register defined correspondingly.

The X-FCSR family members output a block of keystream at each clock-
ing, 128 and 256 bits for X-FCSR-128 and X-FCSR-256, respectively. Let the
expected number of such output blocks (or FCSR clockings) for an attack to
come through be denoted COSTkeystream. To be fair and accurate we will use
the simulation values, which puts us at

COSTkeystream < 254.0

for the basic attack scenario with requirements R1–R4 detailed in Table 3.4.
Later, in Sections 3.3.4.1 and 3.3.4.2, we will minimize keystream by relaxing

requirements R2 and R4 to only three consecutive zero feedback bits, and
in Section 3.3.4.3 we use a symmetry observation for a reduced keystream
complexity of

COSTkeystream < 244.3.
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Table 3.4: Requirements for the Y register.

R1 At time t − 16, the carry registers of Y are completely
flushed except for the last bit.

R2 At least 5 consecutive zero feedback bits are output start-
ing from time t− 16.

R3 At time t, the carry registers of Y are completely flushed
except for the last bit.

R4 At least 5 consecutive zero feedback bits are output start-
ing from time t.

3.3.2.2 COMBINING OUTPUT BLOCKS

The principal reason for combining consecutive output blocks is to obtain a
set of data that is easier to analyze and work with, ultimately leading to a less
complicated way to reconstruct the cipher state. Remember that we now treat
the two FCSRs as LFSRs with the properties given in Table 3.4.

The main observation is that the modest and regular clocking of the two
main registers provides the following equality:

X(t)⊕ [X(t + 1)� 1]⊕ [X(t + 1)� 1]⊕ X(t + 2) = (?, 0, 0, . . . , 0, ?) (3.7)

The shifting operations � and � on the left hand side denote shifting of
the corresponding 256-bit block left and right, respectively. From this point
onward we discard bits that fall over the edge of the 256 bit blocks, and we do
so without loss of generality or other such severe penalties. The right hand
side is then the zero vector4, with the possible exception of the first and last
bits which are undetermined (and denoted ?). Define

OUT(t) = out(t)⊕ [out(t + 1)� 1]⊕ [out(t + 1)� 1]⊕ out(t + 2) (3.8)

in the corresponding way. Recalling from Equation (3.4) that

out(t) = X(t)⊕W(t− 16),

4Recall that we ignore the effects of the last carry bit being one instead of zero, as
explained in Section 3.3.2.1. The arguments below are valid as long as adjustments
are made accordingly.
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we have

OUT(t) =

X(t)⊕ [X(t + 1)� 1]⊕ [X(t + 1)� 1]⊕ X(t + 2) ⊕
W(t− 16)⊕ [W(t− 15)� 1]⊕ [W(t− 15)� 1]⊕W(t− 14)

=

(?, 0, 0, . . . , 0, ?) ⊕
W(t− 16)⊕ [W(t− 15)� 1]⊕ [W(t− 15)� 1]⊕W(t− 14)

≈
W(t− 16)⊕ [W(t− 15)� 1]⊕ [W(t− 15)� 1]⊕W(t− 14), (3.9)

where ≈ denotes bitwise equality except for the peripheral bits. This expres-
sion allows us to relate keystream bits to bits inside the generator that are just
a few time instances apart. This will turn out to be very useful when recover-
ing the state of the FCSRs. In order to further unwind Equation (3.9) we need
to take a closer look at the constituent parts of W, namely the round function
operations sl, sr and mix.

3.3.2.3 ANALYTICAL UNWINDING

Reviewing the round function operations from Section 3.2.5, recall that all
of the operations are invertible and byte oriented. We can also see that the
operations mix, sr and their inverses are linear over ⊕, such that

mix(A⊕ B) = mix(A)⊕mix(B),

sr(A⊕ B) = sr(A)⊕ sr(B).

Obviously, sl does not harbor the linear property. So, in order to un-
wind Equation (3.9) as much as possible, we would now ideally like to apply
mix−1 and sr−1 in that order. Let us begin with focusing on the mix operation.

The linearity of mix over ⊕ is the first ingredient we need as it allows us to
apply mix−1 to each of the W terms separately. The shifting does, however,
cause us some problems since

mix−1 (W(t)� 1) 6= mix−1 (W(t))� 1.

Therefore mix−1 cannot be applied directly in this way, but realizing that
mix−1 is a byte-oriented operation, it is clear that the equality holds if one
restricts comparison to every bit position except the first and last bit of every
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byte. This is easy to realize if one considers the origin and destination byte
of the six middlemost bits as mix−1 is applied. One single bit shift does not
affect the destination byte of these bits. Furthermore, a peripheral bit that is
shifted out of its byte position is mapped to another peripheral bit position.
We therefore have

mix−1 (OUT(t)) ∼= sr (sl (X(t− 16)))⊕
[ sr (sl (X(t− 15)))� 1 ] ⊕
[ sr (sl (X(t− 15)))� 1 ] ⊕

sr (sl (X(t− 14))) ,

where ∼= denotes equality with respect to the six middlemost bits of each byte.
The same arguments apply to sr−1, so we define

Q(t) = sr−1
(

mix−1 (OUT(t))
)

(3.10)

to obtain

Q(t) ∼= sl (X(t− 16))⊕
[ sl (X(t− 15))� 1 ] ⊕
[ sl (X(t− 15))� 1 ] ⊕

sl (X(t− 14)) .

Loosely put, we can essentially bypass the effects of the mix and sr operations
by ignoring the peripheral bits of each byte.

We have combined consecutive keystream blocks out(t) into Q in hope of
Q being easier to analyze than out(t). As our expression for Q involves only
X and sl, let’s see how and at what cost we can brute-force Q and solve for Y
and Z.

3.3.2.4 SOLVING FOR THE STATE

In this section we outline the state recovery step. We proceed in a divide-and-
conquer fashion by dividing the state into several almost independent parts
and treat each part separately by solving a related equation system.

State solving can most easily be understood by focusing on one specific byte
position in Q(t). Given the, say, seventh byte in Q(t), how can we uniquely
reconstruct the corresponding parts of Y and Z? Let us first figure out which
bits one needs from Y(t− 16) and Z(t− 16) in order to be able to calculate
the given byte in Q(t). Note that this step is possible only because of the
LFSRization described in Section 3.3.2.1.
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Consider the first part of Equation (3.10): sl (X(t− 16)). Since sl is an S-
box that operates on bytes, we need to know the full corresponding byte from
X(t − 16). Those eight bits are derived from eight bits in each of Y and Z,
totaling 16 bits, as shown in the left column of Figure 3.7.

Y(t− 16)

Z(t− 16)

Y(t− 16)

Z(t− 16)

Y(t− 16)

Z(t− 16)

Y(t− 15)

Z(t− 15)

Y(t− 15)

Z(t− 15)

Y(t− 14)

Z(t− 14)

X(t− 16) X(t− 15) X(t− 14)

Q(t)

Figure 3.7: Bit usage for one byte in Q(t).

The next parts of Equation (3.10) involves sl(X(t− 15)). The same reason-
ing applies here. We need to know the full corresponding byte of X(t− 15)
in order to be able to calculate this S-box value. But, since the main registers
act like LFSRs, most of the bits we need from Y and Z for X(t − 15) have
already been employed for X(t − 16) previously. Since the two main regis-
ters are clocked only one step at each time instance, only two more bits are
needed, one from Y and one from Z. This is illustrated by the middle column
of Figure 3.7. We count 18 bits in Y and Z so far.

In the same vein, two more bits are needed from Y and Z to calculate
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sl(X(t− 14)), illustrated in the remaining part of Figure 3.7. This brings the
total up to 20 bits. All in all, for one byte position in Q(t) we have total bit
usage as shown in Figure 3.8.

Y(t− 16)

Z(t− 16)

Q(t)

Figure 3.8: Bit usage in Q(t).

So, 10 bits in Y(t− 16) and 10 bits in Z(t− 16) is what we require to be able
to calculate one specific byte position in Q(t). By restricting our attention to
the six middlemost bits of each byte in Q we accomplish two objectives; we
effectively reduce the number of unknown bits we are dealing with in Y and
Z, and we simplify the expression for calculating the byte in Q by safely
reducing the effects of the shifting operation. Specifically, shifting one bit left
or right does not bring neighboring bytes into play.

Focusing on one single byte position gives us six equations, one for each of
the six middlemost bits, and 20 unsolved variables, one for each bit position in
Y and Z. This amounts to an underdetermined system, but we can easily add
more equations by having a look at the same byte position in Q(t+ 1). The six
middle bits of that byte give us six new equations at the cost of introducing
a few new variables. To see how many, we must perform the analysis for
Q(t + 1) corresponding to Figure 3.7. The total bit usage for one byte position
in Q(t + 1) in terms of bits in Y(t− 16) and Z(t− 16) is given in Figure 3.9.

From this we see that the six new equations have the downside of intro-
ducing two new variables. In total we therefore have 12 equations and 22
variables after including Q(t + 1), and 18 equations and 24 variables after in-
cluding Q(t + 2). The corresponding bit usage for our three consecutive Q’s
in terms of bits in Y(t− 16) and Z(t− 16) is illustrated in Figure 3.10.

When solving one byte position in Q we essentially recover 24 bits. If we
scan Q from left to right, solving the corresponding system for each byte,
we can reuse quite many of these bits. Instead of solving for 24, we need
only solve for 16 as the remaining 8 have already been determined. Thus, we
actually have an overdetermined system with 18 equations and 16 variables.
This is illustrated in Figure 3.11.
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Y(t− 16)

Z(t− 16)

Q(t + 1)

Figure 3.9: Bit usage in Q(t + 1).

Y(t− 16)

Z(t− 16)

Q(i)

Figure 3.10: Total bit usage for Q(i), t ≤ i ≤ t + 2.

Reusing bits in this way works fine for all byte positions except the first one.
For the first byte position we don’t have any prior solution to lean back on,
so at first glance it seems that this system is larger and thus more expensive
to solve. In Section 3.3.3 we will explain what the first and last byte position
systems look like in more detail, and we will see how to use the LFSRization
assumption to reduce the system complexity in these cases.

As it turns out, the middle byte position systems are largest in terms of
unsolved bits, which will dominate the worst-case cost of the equation solving
part. Let COSTsolver denote the required number of variable assignments that
must be tested for an attack to come through. Employing bit reuse, the worst-
case cost for the solving part becomes

COSTsolver < 32× 216 = 221.

This concludes the principles of the basic attack, in which we have assumed
availability of four separate sets of five consecutive zero feedback bits as de-
scribed in Section 3.3.2.1. The only thing that remains is to calculate the solv-
ing complexity more rigorously. Using precomputed lookup tables and con-
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Y(t− 16)

Z(t− 16)

Q(t)

Figure 3.11: Reusing bits when solving for Q(t).

sidering the expected-case complexity, we can significantly lower the cost for
equation solving. This is what we will do in the following sections.

3.3.3 THE ANATOMY OF EQUATION SOLVING

In our attack scenario we wait for the first opportunity in which our keystream
fulfills the requirements given in Table 3.4. For every block of keystream that
is output, we try to solve for the state. Most times we fail, but our solver
will find a solution when the requirements R1–R4 have been met for registers
Y and Z. Therefore, the average cost is more interesting from a practical
perspective, so this is what we will compute next.

In Section 3.3.3.1 we warm up by finding the cost when precomputation
is disallowed. In Section 3.3.3.2 we analyze the precomputation case, which
concludes the basic attack on X-FCSR-256. We start by taking a closer look at
the equation systems at different byte positions.

3.3.3.1 EQUATION SOLVING

Restating Equation (3.11), one may view the equation solving game as solving
for the state at time t− 16 given output at time t.

OUT(t) =

X(t)⊕ [X(t + 1)� 1]⊕ [X(t + 1)� 1]⊕ X(t + 2) ⊕
W(t− 16)⊕ [W(t− 15)� 1]⊕ [W(t− 15)� 1]⊕W(t− 14)

=

(?, 0, 0, . . . , 0, ?) ⊕
W(t− 16)⊕ [W(t− 15)� 1]⊕ [W(t− 15)� 1]⊕W(t− 14).

(3.11)
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When solving for the state without precomputation, what we do in practice
is to run through all unknown bits in Y(t − 16) and Z(t − 16) to see if we
can find a configuration that produces the expected output. We do this byte
by byte from left to right in the Y and Z registers for efficiency. Three byte
position cases need to be considered; first, middle and last. The simplest case,
the middle byte position case, is depicted in Figure 3.12.

Y(t− 16)

Z(t− 16)

←−

−→

Figure 3.12: Equation system at middle byte positions.

We saw this system in Figure 3.11 before. The grayed bits are the ones we
can reuse from solving the equation system from the preceding byte position,
leaving 16 bits unsolved. Feedback bits do not affect the equation systems at
middle byte positions.

The equation system for the first byte position is shown in Figure 3.13.

Y(t− 16)

Z(t− 16)

←−

−→

0000

00111

Figure 3.13: Equation system at first byte position.

As before, we have 24 variables and 18 equations. One difference is that 4
of the variables are new, having just entered the Z register. Another difference
is that we cannot reuse variables from a prior solution. On the other hand we
can use requirement R2. The last 5 bits of Y are known (00111), and the 4 bits
entering Z are all zero.

Thus, for the first byte position system, 9 of the 24 bits are predetermined,
leaving 15 bits unsolved.

The equation system at the last byte position mirrors that of the first, except
that the bits from the previous byte position system are also given.
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Y(t− 16)

Z(t− 16)

←−

−→

0000

11100

Figure 3.14: Equation system at last byte position.

Thus, for the last byte position system, 17 of the 24 bits are predetermined,
leaving only 7 bits unsolved (Figure 3.14).

The amortized cost for attempting to solve for the entire state is then given
by considering the relative frequencies of solving attempts per byte position.
We process the byte positions from left to right in the natural way.

Using verification of Equation (3.11) as unit, the expected5 cost for recovering
the state is given by

COSTsolver = 215 +
1
8

(
216 +

216

4
+

216

42 + · · ·+ 216

429 +
27

430

)
< 215.5.

The factor 1
8 is derived from the fact that we have 15 variables and 18 equations

for the first byte position system. For the middle byte position systems we
have 16 variables and 18 equations, producing the factor 1

4 above.

3.3.3.2 EQUATION SOLVING WITH PRECOMPUTATION

The amortized cost for attempting to solve for the entire state using precom-
putation is, similarly, given by considering the relative frequencies of lookups
per byte position. Instead of solving an equation system at each step, we look
up the answer in a table. Letting COSTsolver denote the average number of
required table lookups for a keystream block to be fully analyzed, we have

COSTsolver = 1 +
1
8

(
1 +

1
4
+

1
42 + · · ·+ 1

430

)
< 20.3.

Total computational complexity, i.e., the total number of table lookups, is
given by

COST = COSTkeystream × COSTsolver.

5It is also possible to reduce the size of the first equation system even further by
using the zero feedback bits from the flush phase. That approach does produce
a significant saving to, for example, COSTsolver < 28 for eight flush-bits. As the
number of bits needed to flush the carry register is unknown, this assumption may
be false, leading to more keystream before the state can be recovered.
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To see how the corresponding tables are constructed, once again consider
Equation (3.10). We have 24 Y and Z variables that are combined into 18 Q
values. As a conceptual starting point, make an auxiliary table A containing
the corresponding Q values for all 224 variable configurations. That is, table
A has 224 entries, each containing an 18-bit value.

The equation system for the first byte position has only 15 of the 24 Y and
Z variables undetermined. Filtering out the corresponding 215 entries from
table A and making a reverse lookup hash table will do the trick. The hash
table will be indexed on, at most, 215 18-bit Q values, and the entries will be
the corresponding variable assignment (15 bits) for Y and Z.

For the middle byte position systems we correspondingly populate a hash
table indexed on the 18-bit Q values and the eight known and reused variables.
This table will contain 224 entries, as we will use all of table A. Each entry
will state the corresponding variable assignment (16 bits) for Y and Z.

Although it seems to be possible to use the table for the first byte position
system for the last byte position by mirroring, this opportunity is destroyed
by our upcoming minimizations of keystream requirements. Therefore, for
the last byte position systems we construct a hash table indexed on the 18-bit
Q values and the eight known and reused variables. This table will contain 215

entries, where each entry represents the corresponding variable assignment (7
bits) for Y and Z.

In total, no more than 225 table entries are needed, and each table entry
fits well within a 32-bit word. The above numbers are possible to obtain in
practice by employing, for example, cuckoo hashing (see [PR04]), which offers
practical O(1) lookups and amortized O(1) insertions with O(n) storage (all
constants small).

This concludes the basic attack on X-FCSR-256 for which we have

COSTkeystream < 254.0

and
COSTsolver < 20.3

with 225 precomputational storage. These numbers assume 5 feedback bits as
described by the requirements stated in Table 3.4.

In the next section, our aim is to reduce the amount of required keystream.

3.3.4 REDUCING KEYSTREAM

We go on to reduce the keystream requirements by increasing the amount of
equation solving. This is done in two steps. In Section 3.3.4.1 we see how the
zero vector compensation from Equation (3.9) can be modified to allow for a
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state recovery that is faster in terms of keystream complexity. The correspond-
ing effort is then applied to the equation solving part, which will reduce the
required keystream even further. This is examined in Section 3.3.4.2.

3.3.4.1 ZERO VECTOR COMPENSATION

We will now take a closer look at requirements R3 and R4 from Table 3.4.
Referring to Equation (3.11) once more, one can see that the purpose of R3
and R4 is to make way for the X’s to cancel out properly according to Equa-
tion (3.7). Requirement R4 for the Y register dictates the behavior at one end
of the vector, and that of the Z register controls the other.

If we relax R4 from at least five consecutive zero feedback bits to precisely
four, that fifth one feedback bit prohibits the X’s from canceling out entirely.
We can cope with this anomaly by compensating for such a non-null aggregate
of the X’s in Equation (3.11). The important issue is that we are in control of
the resulting changes. As noted in Section 3.3.2.1, at least five consecutive zero
feedback bits forces the tails of the main registers to contain the bit sequence
. . . 11100 as in Figure 3.6. To handle the case with precisely four consecutive
zero feedback bits, one must compute the corresponding zero vector6 for the
five-bit tail . . . 01100 and compensate accordingly. Solving for the state in the
case with precisely four consecutive zero feedback bits amounts to solving a
very similar equation system for the first and last byte position.

It is the tail of the Y register that determines the left end of the zero vector.
The tail of the Z register determines the right end. It seems at first that we
need to quadruple the computation to solve for all four variants. Taking the
relative frequencies into account, the last byte position system is very cheap
to solve. In fact, it comes almost for free. The modified cost for the case when
we relax R4 to at least four consecutive zero feedback bits is

COSTsolver = 2
(

1 +
1
8

(
1 +

1
4
+

1
42 + · · ·+ 1

429 +
2

430

))
< 21.3.

To support our new solver we also need two new tables. These are of the same
size as the previous ones for the first and last byte positions. The total space
requirement therefore remains unchanged (at most 225 table entries), since the
storage requirement for the middle byte position systems dominates.

We take the procedure one step further and relax R4 to only three con-
secutive zero feedback bits. This time we run into a complication. The bad
news is that we get a one feedback bit for the last of the five output blocks.
This triggers an additional summation at all carry cell positions, effectively

6The term zero vector may seem a little out of place as the vector is not all-zeros, but
we appeal to the readers’ idealizingly Platoesque nature.
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pushing several ones into the carry vector. The problem with this is that the
LFSRization effect is ruined, so we cannot hope to push the process even fur-
ther to relax R4 to only two consecutive zero feedback bits. For the three-case,
however, we can still calculate a zero vector compensation and proceed as
above.

Another positive note is that we do not need to consider both tail cases
when we consider three consecutive feedback bits. We have covered the four-
or-more case above with five-bit tails, and it remains to treat the precisely-
three case. The tails of the registers must contain the bit sequence . . . 00100
or . . . 10100, when compared to Figure 3.6. Both tail sequences lead to the
exact same zero vector compensation, so we only need to consider the 4-bit
tail . . . 0100. In terms of equation solving, this means that we have one less
known variable for the first and last byte position systems. But the storage
requirements are, as before, dominated by the middle byte position systems,
so we may disregard the sizes of the first and last byte position systems. We
cannot, however, disregard the equation system differences at the different
middle byte positions, the differences imposed by the last feedback bit setting
the many carries. The sizes of the systems remain the same, but we now have
30 different middle byte position systems, which increases memory usage for
precomputation by a factor 25.

To summarize, we can recover the state also when R4 is relaxed to three
or more consecutive zero feedback bits. The three different tails and the pos-
sibility of the one feedback bit setting the many carries together generate six
different equation systems for the first and last byte position. For the middle
bytes there are four different systems. It is possible to recover the entire state
with an expected

COSTsolver < 6
(

1 +
1
8

(
1 +

1
4
+

1
42 + · · ·+ 1

429 +
6

430

))
< 22.9

table lookups into a precomputational storage of at most 230 table entries.
The interested reader is referred to [HJ08, HJ11], in which a similar situation
is discussed.

Table lookups for the first byte position are most expensive as they occur
most frequently. We may optimize the solver by merging all first byte position
system tables. The cost of recovering the entire state is then reduced to

COSTsolver < 1 +
6
8

(
1 +

1
4
+

1
42 + · · ·+ 1

429 +
6

430

)
< 21.1

without increasing the storage requirements.
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3.3.4.2 A SECOND REQUIREMENT RELAXATION

Having relaxed requirement R4 to three consecutive zero feedback bits, we
now turn the attention to requirement R2. Can we use the corresponding
technique to relax R2 to at least three consecutive zero feedback bits? This
question is answered in the affirmative, and the corresponding cost of recov-
ering the entire state is then

COSTsolver < 1 +
62

8

(
1 +

1
4
+

1
42 + · · ·+ 1

429 +
62

430

)
< 22.9,

when both R2 and R4 are simultaneously relaxed. As before, the possible Z
register tails at the last byte position are solved for at virtually no cost. The
formula above indicates that we can treat the possible endings in each register
as a separate system and create a separate table for each. For the middle byte
positions there are, as before, four different systems. The size of the systems
at middle byte positions dominates the storage requirements. We double our
previous storage estimate to at most 231 table entries.

3.3.4.3 FEEDBACK ONES—A SYMMETRY CASE

It is also possible to shorten the keystream requirement further by considering
the symmetry case of several consecutive one feedback bits. Analogously to
Figure 3.6, a maximally linear FCSR outputting consecutive ones for feedback
bits is given in Figure 3.15.

11000000

0111c(t)

m(t)

d

0000

1 0111010

Figure 3.15: Maximally linearized FCSR outputting consecutive ones
for feedback bits.

In the original case with zero feedbacks, we wait for the carries to be flushed
in order for the FCSR to act linearly. In the conjugate case with one feedbacks,
the same linear behavior appears when we have accumulated ones in the
carries. Reviewing the entire methodology for the zero feedback case, one
can see that the corresponding arguments and techniques hold when we are
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Table 3.5: Costs for the X-FCSR-256 attack.

Keystream Solver Storage

Basic attack without tables 254.0 215.5 −
Basic attack with tables 254.0 20.3 225

Reduced keystream attack
according to Sections 3.3.4.1–3.3.4.3

244.3 24.7 233

facing one feedback bits as well. The only practical difference is that we alter
the constants in the equation systems we are solving.

Instead of requiring simultaneous LFSRization with zero feedbacks in both
Y and Z registers, we can relax our requirement to simultaneous LFSRization
with zero or one feedbacks in each of Y and Z. Thus, by quadrupling the pre-
computational storage requirements and increasing the computational effort,
we may reduce the amount of required keystream to one quarter using this
additional observation.

To summarize again, with requirements R2 and R4 relaxed to at least three
zero feedback bits and exploiting the symmetry ones case, we obtain

COSTkeystream < 244.3

with

COSTsolver < 1 +
4 · 62

8

(
1 +

1
4
+

1
42 + · · ·+ 1

429 +
4 · 62

430

)
< 24.7

using precomputational storage of size 233.
This is our best result, both for minimizing the keystream requirement of

the attack and for minimizing the total number of table lookups for recovering
the state. The various costs are shown in Table 3.5.

3.3.5 X-FCSR-128

The LFSRization process is identical for both variants of X-FCSR, as is the an-
alytical unwinding, leaving only the equation solving parts to be considered.
In Equation (3.5) we can see that the 256-bit entity X(t) is “folded” to produce
a 128-bit result for X-FCSR-128. In effect, more state bits are condensed into
one byte position of Q as analyzed in Section 3.3.2.4. This affects cost in a
negative way, actually making the attack more expensive for X-FCSR-128. We
are forced to solve larger equation systems to recover the state, so we need
more Qs to increase the number of equations. The equation system for the
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first byte position is illustrated in Figure 3.16 for the case when six Qs are
used.

Y(t− 16)

Z(t− 16)

←−

−→

←−

−→

0000000

00111111

Figure 3.16: Equation system at first byte position (6 Qs).

This system is the largest with its 45 unknown variables. As before, the time
complexity of state recovery is largely determined by the size of the middle
byte position system. Regardless of how many Qs we use, this system has 32
unknown variables as depicted in Figure 3.17.

Y(t− 16)

Z(t− 16)

←−

−→

←−

−→

Figure 3.17: Equation system at middle byte positions (6 Qs).

Note that the six Qs induce 36 equations, leaving the first byte position
system underdetermined by a factor 29, and the middle byte position systems
overdetermined by a factor 16. The corresponding third byte position system
is not illustrated, but it has 17 unsolved variables. Solving for the state without
precomputation (compare to Equation (3.3.3.1)) therefore costs

COSTsolver = 245 + 29
(

232 +
232

16
+

232

162 + · · ·+ 232

1613 +
217

1614

)
< 245.1,

where the factors 29 and 1
16 are derived from the over- and underdetermined-

ness of the respective systems.
The time complexity of recovering the state using six Qs with precomputa-

tion is given by

COSTsolver = 1 + 29
(

1 +
1

16
+

1
162 + · · ·+ 1

1613 +
1

1614

)
< 29.1
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Table 3.6: Costs for the X-FCSR-128 attack.

Keystream Solver Storage

Basic attack without tables 264.0 245.1 −
Basic attack with tables 264.0 29.1 260

Reduced keystream attack
according to Sections 3.3.4.1–3.3.4.3

255.2 216.3 267

in the basic setting with no relaxation of requirements R2 and R4. The pre-
computational storage is now 260, again dominated by the middle byte posi-
tion system.

We minimize COSTkeystream by using six Qs. With requirements R2 and R4
relaxed to at least three zero feedback bits, and exploiting the symmetry ones
case, we obtain

COSTkeystream < 255.2

with

COSTsolver = 1 + 4 · 62 · 29
(

1 +
1

16
+

1
162 + · · ·+ 1

1613 +
4 · 62

1614

)
< 216.3,

using precomputational storage of size 267. The corresponding cost table for
X-FCSR-128 is given in Table 3.6.

3.3.6 SUMMING UP THE ATTACK

The results have been verified with simulations. Specifically, for X-FCSR-
256 we have successfully recovered the entire state for all variations on the
requirement set {R1,R2,R3,R4} discussed above.

The total cost for state recovery in terms of table lookups is given by

COST = COSTkeystream × COSTsolver.

To summarize, we have COST < 244.3+4.7 = 249.0 for X-FCSR-256 using at
most 233 table entries of precomputational storage. This attack variant min-
imizes both keystream and total complexity. The corresponding cost for X-
FCSR-128 is COST < 255.2+16.3 = 271.5 using at most 267 storage.

Judging by the authors’ performance figures in the specification, one X-
FCSR initialization corresponds to outputting about 13.1 = 23.7 or 20.9 = 24.4

output blocks for X-FCSR-256 and X-FCSR-128, respectively. That is, if we
count the cost in terms of initializations we have

COSTinitializations = COSTkeystream × 2α,
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Algorithm 1 – X-FCSR Precomputation

Output: Lookup table sets T1, . . . , Tn, one for each byte position i =
1, 2, . . . , n of Q(·).
for (i = 0; i < n; i++) {

Ti = ∅; /* initialize lookup table set Ti */
for (all possible requirement variations of Y and Z) {

/* requirement variations as in Sections 3.3.3.2 and 3.3.4 */
/* tables within a table set may be merged for efficient lookup */
Ti = Ti

⋃{table for this requirement variation};
}

}
return T1, . . . , Tn;

with α = −3.7 for X-FCSR-256 and α = −4.4 for X-FCSR-128. We therefore
have COSTinitializations = 245.3 and COSTinitializations = 267.1 for X-FCSR-256
and X-FCSR-128, respectively.

A high-level description of the algorithm may be specified as follows. Recall
Q(t) from Equation (3.10). The online part of the attack begins by calculating
k consecutive such Q(i), t − k + 1 ≤ i ≤ t, collectively denoted Q(·) below.
For X-FCSR-256 and X-FCSR-128 we have k = 3 and 6, respectively. Q(·) is
then analyzed byte by byte from left to right. A lookup table set T1 is queried
for plausible state configurations corresponding to the first byte position of
Q(·). If solutions exist, we go on and query table set T2 for matching state
configurations corresponding to the second byte position of Q(·), and so on.
Two neighboring state configurations are said to be matching if they have
identical variable assignments for their common variables.

The algorithm is easily described in terms of depth-first search, if one views
the plausible state configurations as vertices in a tree in which two vertices are
adjacent if and only if they represent matching solutions at neighboring byte
positions. Q(·) corresponds to a forest, the solution space, in which each
solution to the first byte position system generates a separate tree. A path of
length n− 1 in this tree represents a permissible configuration for the entire
state.
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Algorithm 2 – X-FCSR State Recovery at Time t

Input: Keystream bits for computing Q(·), see Equation (3.10).
Output: Recovered state or phrase "No solution".

/* offline */
Use Algorithm 1 to compute lookup tables T1, . . . , Tn;
/* online */
Compute Q(·) according to Equation (3.10);
while (performing depth-first search into solution space of Q(·)) {

if (vertex at depth n is reached) {
/* found matching state variable assignments

* for all byte positions */
return recovered state;

}
}
return "No solution";

3.4 A GENERALIZED BIRTHDAY APPROACH FOR EFFICIENTLY FINDING
LINEAR RELATIONS IN `-SEQUENCES

We now shift our focus to the hardware oriented design F-FCSR-H v3. In
this section we show how to exploit a particular set of linear relations in ring
FCSR sequences. We show what biases can be expected, and we also present
a generalized birthday algorithm for actually realizing these relations. As all
prerequisites of a distinguishing attack are present, we explicitly show a new
such attack on F-FCSR-H v3 with an online time complexity of only 237.2. The
offline time complexity (for finding a linear relation) is 256.2. This is the first
successful attack on F-FCSR-H v3, the first attack to breach the exhaustive
search complexity limit of 280 (initializations). As mentioned before, this at-
tack is completely different from that of F-FCSR-H v2, and despite our focus
on F-FCSR-H v3, the presented algorithm is very general and can be applied
to any FCSR automaton, making this technique potentially very useful for the
future cryptanalysis of linearly filtered FCSRs and FCSR combiners in partic-
ular.

In Section 3.2.4 we covered the basics of FCSR analysis, `-sequences and
their exponential representation. The remainder of this section is organized
as follows. In Section 3.4.1 we recall some known linearity properties of `-
sequences, which we expand upon in Section 3.4.2. In Section 3.4.3 we show
our generalized birthday algorithm, and Section 3.4.4 shows some simulation
results that verify our theory. We discuss applications in Section 3.4.5, where
we detail the attack on F-FCSR-H v3.
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3.4.1 LINEAR PROPERTIES OF `-SEQUENCES

We now define a particular set of linear relations.

Definition 3.7 ((i+ j)-relations Rq) Let a connection integer q and distinct
positive integers u1, . . . , ui and v1, . . . , vj be given. The linear relation

2−u1 + · · ·+ 2−ui ≡ 2−v1 + · · ·+ 2−vj mod q

is called an (i+ j)-relation and is denoted Rq(u1, . . . , ui; v1, . . . , vj).

We now take some definitions and results on `-sequences from Tian and
Qi [TQ09] that we either state directly or expand upon. Define the r-tuple set

Ωr(q) = {(i1, . . . , ir) |i1, . . . , ir ∈ Z/qZ\{0}, i1 + · · ·+ ir 6≡ 0 mod q} .

The available keystream is always finite in practice, so from now on we con-
sider finite `-sequences only. A linear property of `-sequences can now be
described as follows.

Theorem 3.3 ((3+1)-relation bias) Let a = {at}s+e+k−1
t=s+d be an `-sequence

with connection integer q, and let a (3+1)-relation Rq(w, x, y; z), where d =
min(w, x, y, z), e = max(w, x, y, z), s ≥ 0 and αt = (A2−t) mod q as in Theo-
rem 3.2 be given. If the triplet sequence{(

αt+w, αt+x, αt+y
)}s+k−1

t=s

cannot be distinguished from a triplet sequence drawn uniformly at random
from Ω3(q), then the k events

at+w ⊕ at+x ⊕ at+y ⊕ at+z = 0, 0 ≤ t < k,

can be seen as k independent Bernoulli trials with success probability 1
3 .

In short, Theorem 3.3 shows that (3+1)-relations have bias 1
3 , and Theo-

rem 3.3 can easily be generalized to (m+1)-relations. Specifically, the bias is
zero when m is even. That is, relations of odd weight do not exhibit a bias that
we can detect. Furthermore, the bias is nonzero when m is odd, decreasing as
m grows. These nonzero biases stem from properties of modular addition.

Although [TQ09] considers Galois and Fibonacci FCSRs, the proof of The-
orem 3.3 only assumes `-sequences, so the result immediately carries over to
ring FCSRs.

It should also be noted that Theorem 3.3 above is stated as in [TQ09]. The
condition on the triplet sequence over Ω3(q) is of particular interest. This con-
dition surely does not hold for a known value q since αt+1 = (αt2−1) mod q.
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However, the situation is not as bad as it appears. Loosely put, it is sufficient if
the corresponding at = LSB(αt) behave randomly in a statistical sense. While
a sequence {αt} is fully determined after the first term has been observed, the
corresponding binary sequence {at} is much more well-behaved, even for a
known q. The requirement stated for Theorem 3.3 is stronger than it needs to
be — it is possible to relax the requirement somewhat.

As Theorem 3.3 is stated it appears that one would need to find a suitable
triplet sequence as described above in order to realize an attack, but this is
not necessary in practice. In [TQ09], simulations were used to verify that the
triplet condition is reasonable for practical applications.

The possibility to use (3+1)-relations for cryptanalytic attacks was iden-
tified in [TQ09], but the briefly outlined algorithm has a complexity that ex-
ceeds 280, which is the exhaustive search complexity for F-FCSR-H v3. Also,
the estimated data complexity of the resulting distinguisher is underestimated
by a factor of about 32, which is pointed out in Section 3.4.5.

3.4.2 THE BIAS OF (2+2)-RELATIONS AND XORED `-SEQUENCES

Armed with the bias for (3+ 1)-relations, we are now encouraged to find
corresponding results for (2+2)-relations. A motivational factor here is that
balanced equations, with two terms on either side in this case, are suitable for
birthday attack approaches.

It turns out that transforming Theorem 3.3 from (3+1)-relations to (2+2)-
relations is not all that hard. All we need is two simple lemmas.

Lemma 3.4 If 2 is a primitive root modulo q, then 2
ϕ(q)

2 ≡ −1 mod q. We

thus have 2i+ ϕ(q)
2 ≡ −2i mod q.

The following lemma is a direct consequence of Proposition 1 in [GK97].

Lemma 3.5 Using the notation in Theorem 3.2, we have at = a
t+ ϕ(q)

2
⊕ 1 and

αt = q− α
t+ ϕ(q)

2
.

Using Lemma 3.5, we can now relate a triplet sequence to a (2+2)-relation.

Theorem 3.6 ((2+ 2)-relations have bias 1
3 ) Let a = {at}s+e+k−1

t=s+d be an
`-sequence with connection integer q, and let a (2+2)-relation Rq(w, x; y, z)
where d = min(w, x, y, z), e = max(w, x, y, z), s ≥ 0 and αt = (A2−t) mod q
as in Theorem 3.2 be given. If the triplet sequence{(

αt+w, αt+x, q− αt+y
)}s+k−1

t=s

cannot be distinguished from a triplet sequence drawn uniformly at random
from Ω3(q), then the k events

at+w ⊕ at+x ⊕ at+y ⊕ at+z = 0, 0 ≤ t < k, (3.12)
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can be seen as k independent Bernoulli trials, each with a success probability

of 2
3 = 1

2

(
1 + 1

3

)
.

Proof. Given 2w + 2x ≡ 2y + 2z mod q, we have 2w + 2x − 2y ≡ 2z mod q.
Using Lemma 3.4, since 2 is a primitive root modulo q, we have 2w + 2x +

2y+ ϕ(q)
2 ≡ 2z mod q. Thus Rq(w, x, y + ϕ(q)

2 ; z) is a (3+1)-relation. If we use
Lemma 3.5, we can write the triplet sequence given above as{(

αt+w, αt+x, α
t+y+ ϕ(q)

2

)}s+k−1

t=s
.

From Theorem 3.3 we know that the k events

at+w ⊕ at+x ⊕ a
t+y+ ϕ(q)

2
⊕ at+z = 1, 0 ≤ t < k, (3.13)

can be seen as k independent Bernoulli trials with success probability 2
3 . Us-

ing Lemma 3.5, if we replace a
t+y+ ϕ(q)

2
in Equation (3.13) by at+y ⊕ 1, then

Equation (3.12) can be obtained. �

The point of Theorem 3.6 is that the bias of (2+2)-relations is 1
3 , which

is very large in this context. Theorem 3.6 can also easily be generalized to
(n+n)-relations.

For the sake of our upcoming F-FCSR-H v3 analysis, we also consider what
happens when several `-sequences are combined by bitwise xor. Theorem 3.7
provides some answers.

Theorem 3.7 (Bias of xored `-sequences) Let a (2+2)-relationRq(w, x; y, z)
be given, and let ai = {ai

t}s+e+k−1
t=s+d , 1 ≤ i ≤ m, be m independent `-sequences

with connection integer q where d = min(w, x, y, z) and e = max(w, x, y, z),
with αi

t defined correspondingly for each i. If the m triplet sequences{(
αi

t+w, αi
t+x, q− αi

t+y

)}s+k−1

t=s
, 1 ≤ i ≤ m,

cannot be distinguished from uniformly random triplet sequences over Ω3(q),
then the k events

m⊕
i=1

ai
t+w ⊕ ai

t+x ⊕ ai
t+y ⊕ ai

t+z = 0, s ≤ t < s + k,

can be seen as k independent Bernoulli trials with a total success probability

of 1
2

(
1 +

(
1
3

)m)
.
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Proof. The independence of the m `-sequences motivates using the piling-up
lemma, see [Mat94]. �

Theorem 3.7 considers the expected value of the bias, but for practical appli-
cations we need to know what level of accuracy we may expect. Theorem 3.8
gives us a practical error-bounding formula for the bias of several xored `-
sequences.

Theorem 3.8 (Bounding formula for bias of xored `-sequences) Using
the notation from Theorem 3.7, let b = {bt}s+e+k−1

t=s+d be the bitwise xor of the
sequences ai, 1 ≤ i ≤ m. For Rq(w, x; y, z), the bias of sequence b is defined as

ε
q
b =

1
k

k−1

∑
t=0

(−1)bt+w⊕bt+x⊕bt+y⊕bt+z . (3.14)

Then, ε
q
b satisfies

Pr
[

ε
q
b ≥

(
1
3

)m
− 4.6802√

k

]
≈ 0.9999. (3.15)

Proof. According to Theorem 3.7, the k events

bi
t+w ⊕ bi

t+x ⊕ bi
t+y ⊕ bi

t+z = 0

for 0 ≤ t < k can be seen as independent Bernoulli trials with success prob-

ability p = 1
2

(
1 +

(
1
3

)m)
. If X1, X2, . . . , Xk are random variables associated

with these Bernoulli trials, we have

Pr [Xt = 1] = p and Pr [Xt = 0] = 1− p,

with E(Xt) = µ = p and Var(Xt) = σ2 = p(1 − p) for each 0 ≤ t < k.
Defining Yj = ∑

j
i=1 Xi, the Central Limit Theorem states that the probability

distribution of

Wk =
Yk
k − µ

σ√
k

=
Yk
k − p√
p(1−p)

k

goes to N(0, 1) in the limit as k→ ∞, see [HT93].
The value k can be regarded as sufficiently large when k(1− p) ≥ 5 and

kp ≥ 5. According to the normal distribution table, we have

Pr [Wk ≥ −4.6802] ≈ 0.9999,

that is

Pr

[
Yk
k
≥ p− 4.6802×

√
p(1− p)√

k

]
≈ 0.9999.
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When m is large enough, say m = 10,
√

p(1− p) ≈ 1
2 , so

Pr
[

Yk
k
≥ p− 2.3401√

k

]
≈ 0.9999.

Noting that ε
q
b = 2Yk

k − 1, we finally deduce

Pr
[

ε
q
b ≥

(
1
3

)m
− 4.6802√

k

]
≈ 0.9999. �

Simulations indicating that Theorem 3.8 holds for practical applications can
be found in Section 3.4.4.

3.4.3 A GENERALIZED BIRTHDAY ALGORITHM

We now know the bias of (2+2)-relations, but we still need to be able to actu-
ally find them. In this section we introduce a generalized birthday algorithm
that efficiently solves the problem. Our algorithm will find a (2+2)-relation
Rq(w, x; y, z) with width max(w, x, y, z)−min(w, x, y, z) < N. The value N is
tunable, chosen so that the running time of the algorithm is minimized while
the success probability is sufficiently high. We need a definition for reduction
purposes.

Definition 3.8 (k-small) Given an integer q and a real number k, the integer
n-tuple (i1, . . . , in) is k-small if 2−i1 + · · ·+ 2−in mod q < q

k .

The k-small 1- and 2-tuples will be referred to as k-small numbers and
pairs, respectively. Neither q nor k should be assumed to be small (in the
usual sense) in the general case.

We first generate all k-small numbers in a specific interval, storing them
in a table T1. Note that each such number is smaller than q

k . We then form
all possible (unordered) pairs (w, x) , 0 ≤ w, x < N, of these k-small num-
bers, storing them in a hash table T2 (cuckoo hashing with O(1) insertion and
lookups is appropriate, see [PR04]) that stores value pairs keyed on their sum
modulo q. We keep adding such pairs to T2 until we find a collision. That is,
we look for a set {(w, x) , (y, z)} satisfying

2−w + 2−x ≡ 2−y + 2−z mod q.

Algorithm 3 specifies the details7.

7From a notational point of view, the reader may think of both T1 and T2 as hash
tables, where, e.g., T1 [k] = v means insertion of value v keyed on k. While T1 can be
implemented as linear storage (an array), in practice T2 needs to be implemented as
a hash table. This should become clear in Section 3.4.3.1
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Algorithm 3 – Generalized Birthday Approach to Finding a
(2+2)-relation

Input: Integers N and q, real number k.
Output: Rq(w, x; y, z) or the phrase "No (2+2)-relation was found".

create empty tables T1 and T2;
B = an integer in the interval [0, q) chosen uniformly at random;
/* insert all k-small numbers in [B, B + N) into T1 */
for (i = B; i < B + N; i++) {

if (i is k-small) {
T1[i] = 2−i mod q;

}
}
/* insert pairs of k-small numbers into T2 and look for a collision */
for (all pairs (a, b) of keys a, b from T1) {

s = T1[a] + T1[b];
if (key s is in T2) {

(x, y) = T2[s]; /* get pair (x, y) from T2 */
m = min(a, b, x, y); /* normalize relation */
return Rq(a−m, b−m; x−m, y−m);

}
T2[s] = (a, b); /* insert pair (a, b) into T2 */

}
return "No (2+2)-relation was found";
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Because of the reduction, tables T1 and T2 will contain approximately N
k

and (
N
k
2 ) entries, respectively. The time complexity of Algorithm 3 is N + (

N
k
2 ),

since this is the time it takes to build tables T1 and T2. We expect to find a
collision after about (N

k
2

)
≈
√

2qα

k

insertions into T2, where we use α = 9.22 to set the collision probability to at
least 99% (see [WikiBP]). Minimizing the time complexity we get the condi-
tions  N = (

N
k
2 ),

(
N
k
2 ) =

√
2qα

k ,
⇐⇒

{
N = 2k2,
N4 = 8k3αq,

which for F-FCSR-H v3 (using log2 q < 160.26) gives us k =
( αq

2
)1/5 and

N = 266.0 for a total time complexity of 2N = 267.0.
A few observations may and should be made at this point. First of all,

Algorithm 3 is trivially generalized to (n+n)-relations, n ≥ 2, and the corre-
sponding minimization conditions are given by N = (

N
k
n ),

(
N
k
n ) =

√
nqα

k ,
⇐⇒

{
Nn−1 = n!kn,
N2n = n(n!)2k2n−1αq.

For n = 3 for F-FCSR-H v3 we get k =
( αq

2
)1/4 and N = 262.3 for a total time

complexity of 2N = 263.3. The bias in this case is 2
15 .

Also, for n ≥ 4, we can reduce the time complexity further by applying ad-
ditional smallness reductions in the lower layers according to the generalized
birthday approach [Wag02]. In general, the time complexity decreases as n
grows.

Secondly, we have tuned the parameters to make it sufficiently probable for
us to find one linear relation. When we have reached the point of finding the
first relation, it quickly becomes quite cheap to find many more collisions by
increasing N slightly. This turns the algorithm into a cornucopia of (n+n)-
relations. One possible usage for this is for a fast correlation attack. This
would work very well in distinguishing situations where it is cheap to find
many different relations compared to the amount of keystream needed for the
distinguisher. One particular observation is important in this case. If we have

2−u1 + · · ·+ 2−un ≡ 2−v1 + · · ·+ 2−vn mod q

for some numbers u1, . . . , un and v1, . . . , vn, then we also have

2−u1+i + · · ·+ 2−un+i ≡ 2−v1+i + · · ·+ 2−vn+i mod q
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for all i. This shows that we need to take dependency into account when we
search for multiple linear relations. However, since we employ k-smallness,
this effect will only be valid for a limited number of i in our case. Furthermore,
the above observation could also be used for normalizing the parameters in
an (n+n)-relation, as we do in Algorithm 3.

This normalization is performed at the end, just before the (2+2)-relation
is output. Performing it any sooner would ruin the generalized birthday ap-
proach, as we then would be required to find a collision between different sets
of pairs, ultimately degrading the complexity. Some further comments on
dependency can be found in Section 3.4.3.2.

Third, the offline complexity measure used here involves mostly table in-
sertions and lookups. A better comparison to exhaustive key search would
compare these complexities to those of initializations. For F-FCSR-H v3, one
initialization involves 48 FCSR updates. This should be compared to the op-
erations in Algorithm 3, one modular exponentiation (that can be translated
into a shift and a conditional subtraction) and insertion into tables T1 and T2.
Since these operations do not need to be too complicated, we conclude that
our offline complexity measure constitutes a conservative measure compared
to initializations.

The online complexity measure, xoring 2n bits, is much cheaper than 48
FCSR updates (for n of reasonable size).

Fourth, the purpose of the randomly selected value B is to prevent algo-
rithm designers from choosing some suitable q that will extend the running
time of Algorithm 3. By choosing the starting point B at random, the expected
time complexity does not depend on q.

And last but not least, Algorithm 3 is specified with a fixed N for clarity.
In practice one can simply keep extending T1 and T2 until sufficiently many
collisions have been found.

3.4.3.1 IMPROVEMENT BY MODULAR INTERVAL SUMMATION

We now describe an improvement that makes it even cheaper to find (2+
2)-relations, a technique that is also generalizable to (n+n)-relations. The
general idea here is to improve Algorithm 3 by employing a more efficient
utilization of the numbers that we generate for storage in table T1. In the
original setting described above, all numbers that are not k-small are simply
discarded, and this is a waste of resources.

In the second part of Algorithm 3 we form all possible pairs of k-small
numbers from table T1 and store all such pairs in table T2. Note that these
pairs are k

2 -small. The improvement is made possible by the fact that we do
not necessarily need to sum two k-small numbers to make k

2 -small pairs. The
previously discarded numbers can be used to this end in the following way.
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Instead of using one table T1 we now use k tables T1,0, . . . , T1,k−1 for the
first step to store all numbers 2−i mod q, B ≤ i < B + N. Divide the interval
[0, q) into k equally wide subintervals

[
jq
k , (j+1)q

k

)
, 0 ≤ j < k. Then, a number

2−i mod q is put in table T1,j if it is in the j
th

subinterval.
As before, we use all entries in table T1,0 to form all possible k

2 -small pairs
and store these in table T2. But we can also form k

2 -small pairs by pairing any
two number from tables T1,1 and T1,k−1, and any two numbers from tables T1,2
and T1,k−2, and so on, as shown in Figure 3.18. In this way we can increase
the number of pairs we can generate by a factor of about k.

T1,0

0

T1,1

q
k

T1,2

2q
k

T1,3

3q
k

T1,k−3

(k−3)q
k

T1,k−2

(k−2)q
k

T1,k−1

(k−1)q
k

4q
k

q

·

·

·

·

·

·

Figure 3.18: Interval subdivision and pairing of tables T1,0, . . . , T1,k−1.

Revising the previous complexity analysis, tables T1,0, . . . , T1,k−1 now con-
tain about N

k elements each for a total of N numbers and a total build time of
N insertions.

T2 will contain about (
N
k
2 ) +

k−1
2

(
N
k

)2
≈ N2

2k entries. The time complexity of

the revised Algorithm 3, the time taken to build tables T1 and T2, is N + N2

2k .
We now expect to find a collision after about

N2

2k
≈
√

2qα

k
(3.16)

insertions into T2, where we continue to use α = 9.22 as before. Minimizing
the time complexity, we get the revised conditions{

N = N2

2k ,
N2

2k =
√

2qα
k ,

⇐⇒
{

N = 2k,

k =
( qα

2
) 1

3 ,

which gives us k = 254.2 and N = 255.2 for a total time complexity of 2N =
256.2 for finding a (2+2)-relation for the FCSR used in F-FCSR-H v3.
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Table 3.7: Time complexities for finding an (n+ n)-relation for F-
FCSR-H v3.

relation type k N time

(2 + 2) 254.2 255.2 256.2

(3 + 3) 281.3 242.0 243.0

(4 + 4) 297.5 234.1 235.1

Table 3.8: F-FCSR-H v3 distinguisher complexities.

relation type offline online

(2 + 2) 256.2 237.2

(3 + 3) 243.0 263.6

(4 + 4) 235.1 289.7

It is possible to double the number of pairs by using, say, T1,0 and T1,1, and
T1,0 and T1,k−1 together, and so on. Half of the pairs will be k

2 -small in these
cases. However, there is a small additional cost involved and we did not find
that these additional pairs affect the time complexity in a positive way.

Generalizing this to (n+n)-relations, we need to use the entries in tables
T1,0, . . . , T1,k−1 to form k

n -small n-tuples. This can be done by first choosing
entries from any n− 1 tables T1,0, . . . , T1,k−1, and then choosing the last table
so that the sum ends up in

[
0, nq

k
)

(modular interval summation). The new
conditions become N = kn−1

n!

(
N
k

)n
,

kn−1

n!

(
N
k

)n
=
√

nqα
k ,

⇐⇒


N = (n!k)

1
n−1 ,

k =

(
(nqα)n−1

(n!)2

) 1
n+1

.

For F-FCSR-H v3, the corresponding complexities are given in Table 3.7.
In Table 3.8 we also summarize the off- and online complexities for the

F-FCSR-H v3 distinguishers for various relation types developed this far.

3.4.3.2 DEPENDENCY BETWEEN LINEAR RELATIONS

Consider once more the linear dependency condition of linear relations that
was noted in Section 3.4.3.
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Definition 3.9 (Linearly dependent relations) The two linear relations
Rq(w, x; y, z) and Rq(w′, x′; y′, z′) are linearly dependent if and only if

w− w′ = x− x′ = y− y′ = z− z′.

In Algorithm 3, table T2 is used to store k-small pairs (w, x), and pairs are
continuously added to this table until a collision is found. When two pairs
(w, x) and (y, z) finally do collide, when their sums are equal, we have ob-
tained a linear relation Rq(w, x; y, z). For a relation Rq(w, x; y, z) we have 0 ≤
w, x, y, z < N, so any pair of linear relations Rq(w, x; y, z) and Rq(w′, x′; y′, z′)
are linearly dependent with a probability of about 1

N3 . Thus, if we use Algo-
rithm 3 to produce a set of L linear relations, by expected value we should
find that about L2

2N3 of these linear relations are redundant. For the values of
N that we consider in our applications, it is hard to see how this dependency
could come into play, even for a fast correlation attack where one would need
to produce many relations.

However, in order to ensure that this dependency does not deplete the
search space of Algorithm 3, we also consider the search procedure itself. Ta-
ble T2 contains about N2

2k pairs, so the number of quadruples (pairs of pairs)

that we test is about (
N2
2k
2 ) ≈ N4

8k2 . The linear dependency condition in Defi-
nition 3.9 applies to quadruples as well, in the sense that testing a quadru-
ple that is linearly dependent on a previously tested quadruple is redundant
work (search space redundancy). Therefore, among N4

8k2 quadruples we will
find that at most ( N4

8k2

2

)
1

N3 ≈
N5

27k4

of them are linearly dependent, so that the fraction of linearly dependent
quadruples is no more than N

16k2 . For the values of N and k that we encounter
in our applications (see Table 3.7), we can again and finally conclude that the
dependency issue is a nonissue.

3.4.4 SIMULATIONS

We have run a set of simulations for verifying the validity of Theorem 3.8.
The guidelines in [Arn+09] were followed for random generation of F-FCSRs
for these simulations. For each test, a new ring FCSRs of size n and a linear
filter with m input bits was used. Algorithm 3 and the modular interval
summation technique presented in Section 3.4.3.1 were employed to exhibit
a (2+ 2)-relation. We randomly selected 100 keystream subsequences b of
sufficient length and calculated their bias according to Equation (3.14).

To verify Theorem 3.8, we ran 10000 tests with parameters 20 ≤ n ≤ 30
and 2 ≤ m ≤ 4. We found Equation (3.15) to hold for all subsequences b in
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Table 3.9: The set S of nontrivial connections in the transition matrix
of a 40-bit F-FCSR.

(0, 6) (1, 29) (2, 4) (3, 15) (5, 20) (7, 21) (9, 37)

(10, 19) (12, 36) (13, 34) (15, 7) (17, 26) (18, 17) (20, 13)

(21, 18) (23, 39) (25, 31) (26, 10) (34, 11) (35, 12) (36, 30)

all tests. The results of these tests can also be seen as an indication that the
triplet sequence condition over Ω3(q) in Theorems 3.6 and 3.7 is reasonable.

We also ran 100 tests for bigger F-FCSRs, n = 40 and m = 4, with the same
result. Example 3.1 shows one of the F-FCSR ciphers in detail.

Example 3.1 A filtered FCSR cipher (an F-FCSR) based on a 40-bit ring
FCSR with connection integer q = 1111855758899 and transition matrix T =
(ti,j)0≤i,j<40 with

ti,j =

{
1, (i, j) ∈ S or j ≡ i + 1 mod 40,
0, otherwise ,

where S is the set of pairs given in Table 3.9. The linear filter xors the values
of the four main register cells mi with i ∈ {0, 5, 9, 17}. The (2+2)-relation
Rq(0, 22802; 2166, 27778) with bias 1

3 was found. Initializing the main memory
and carry registers with random bits, we randomly chose 100 subsequences
of length 200000 for bias calculation.

We also performed several negative tests using the trials above, but ran-
domly altered one or more of the parameters in the (2+2)-relation obtained
from Algorithm 3. As expected, in this case, only a subset of the selected
keystream subsequences satisfied Equation (3.15).

Beyond this, we also performed simulations to verify our complexity esti-
mation of Algorithm 3 with modular interval summation. More than 10000
experiments with prime parameters 235 ≤ q ≤ 240 were conducted, and the
results suggest that the average value of N is in fact somewhat lower than the
estimation.

3.4.5 APPLICATIONS TO RING FCSRS, F-FCSRS, FCSR COMBINERS AND
F-FCSR-H V3

Algorithm 3 is applicable to all ring FCSRs, so the underlying FCSRs of all
linearly filtered FCSRs and FCSR combiners may be targeted. We now focus
specifically on distinguishing attacks on F-FCSR-H v3.
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From Theorem 3.8 we have

Pr
[

ε
q
b ≥

(
1
3

)m
− 4.680√

k

]
≈ 0.9999.

Using the common rule of thumb (see [HJB09]) that approximately (ε
q
b)
−2

samples are needed to distinguish a given sequence from a uniform distribu-
tion, we obtain the condition

k ≥
((

1
3

)m
− 4.680√

k

)−2

,

implying that
k ≥ 32.26× 32m,

where k denotes the required number of keystream bits for a distinguisher
with an accuracy level of 99.99%. In [TQ09] it is claimed that the required
length of keystream for the (3+3)-relation case is simply 32m, which is not
entirely accurate since that disregards the factor of 32.26. However, the size of
this factor depends on the accuracy level of the distinguisher.

Getting back to F-FCSR-H v3, making use of the six smaller subfilters only
(out of eight), we can apply the above formula with m = 10 to get

k ≥ 8
6
× 32.26× 32m = 237.2.

As stated before, the offline time complexity is 256.2. This is the time re-
quired for finding the (2+2)-relation. As for keystream requirements, we
need four separate chunks of 237.2 keystream bits each for a total of 239.2 key-
stream bits to perform the attack in time 237.2. However, these four chunks
can be quite far apart due to the width

max(w, x, y, z)−min(w, x, y, z)

of the (2+2)-relation Rq(w, x; y, z). Thus, we can perform the attack in time
237.2, but we still need to observe 256.2 keystream bits. The keystream re-
quirement is therefore 256.2 bits, while we can manage with only 239.2 bits of
storage.

The relation width can be made smaller by using higher-order (n+ n)-
relations, but the bias quickly diminishes as n gets large. Also, the fact that we
are employing a generalized birthday attack contributes to this width. One
would expect to find shorter relations using a standard birthday attack, but
the width is then improved only at the expense of an increased time complex-
ity.

The F-FCSR-H v3 distinguisher is made explicit in Algorithm 4, where the
last if-clause may use any efficient statistical decision mechanism, for example
the Neyman-Pearson lemma in [CT91].
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Algorithm 4 – F-FCSR-H v3 Distinguisher

Input: Keystream bits zt for t ≥ 0.
Output: The classification CIPHER or RANDOM.
/* offline */
Use Algorithm 3 to find a (2+2)-relation Rq(w, x; y, z);
/* online */
c = 0; /* relation counter */
for (i = 0; i < 237.2; i++) {

if (i mod 8 ≥ 2) {/* if small subfilter was used */
if (zi+w ⊕ zi+x ⊕ zi+y ⊕ zi+z = 0) {

c++;
}

}
}
if (c significantly deviates from 1

2 ×
6
8 × 237.2) {

return CIPHER;
}
return RANDOM;

3.5 CONCLUDING REMARKS

From what we have seen in Section 3.3, it is clear that the design of the X-
FCSR stream cipher family is not sufficiently secure. Depending on one’s
inclination, it is possible to attribute this insufficiency to the modest clocking
of the two FCSRs, the size or number of FCSRs, how they are combined, the
complexity of the round function or some other issue. All of these factors
are parts of the whole, but the key insight, however, is that it is important
not to rely on the nonlinear property of FCSRs too heavily. The LFSRization
process shows that it is relatively cheap to linearize Galois FCSRs, the cost
being roughly logarithmic in the size of active carry registers.

The attack presented here is not directly applicable to the newer ring FCSRs
presented in [Arn+09]. The desired LFSRization effect is much less likely
to appear in ring FCSRs since these allow multiple simultaneous feedbacks.
After the publication of [SHJ09], new ring FCSR versions of the F-FCSR family
and X-FCSR-128 were presented in [Arn+09] and [BMP09], respectively.

In Section 3.4 we presented a generalized birthday algorithm that can be
used to find a specific set of linear relations in ring FCSRs. The algorithm was
applied to produce different distinguishing attacks on F-FCSR-H v3. The one
we advocate uses a (2+2)-relation and has off- and online time complexities
256.2 and 237.2, respectively. These are the first successful attacks on F-FCSR-H
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v3, breaking the exhaustive search complexity bound. While this application
was very specific, the presented algorithm itself is very general as it is ap-
plicable to all ring FCSRs. In particular, it can be applied to the underlying
FCSRs of all linearly filtered FCSRs and FCSR combiners.

Future research in this direction may, for example, involve correlation at-
tacks for key recovery.





4
Optimal Sampling and the

Stream Cipher HC-128

T his chapter is derived from three articles. The first one, »An Optimal
Sampling Technique for Distinguishing Random S-boxes« [SH12], was
coauthored with Martin Hell and presented at ISIT in 2012. The sec-

ond paper, »Improved Distinguishers for HC-128« [SRHJ12], was coauthored
with Sushmita Ruj, Martin Hell and Thomas Johansson, and was published in
the journal Designs, Codes and Cryptography in 2012 (online in 2011). And
finally, the paper »Analysis of Xorrotation with Application to an HC-128 Vari-
ant« [SHJ12b] was coauthored with Martin Hell and Thomas Johansson, and
was presented at ACISP in 2012.

4.1 INTRODUCTION

HC-128 [Wu08] is a stream cipher selected for the eSTREAM [ECRb] final
portfolio [ECRa], and is thus considered to be one of the most promising
stream ciphers today. Being in the Profile 1 category it is suitable for fast
encryption in software. In fact, in most reported results, HC-128 is the fastest
stream cipher in the eSTREAM final portfolio. As one example, on a Pentium
M processor, the speed of HC-128 reaches 3.05 cycles/byte [Wu08]. This alone
makes HC-128 a very interesting target for cryptanalysis.

HC-128 was proposed in 2006 and there have been very few cryptanalytic
results on the cipher. There are still no attacks (not relying on side-channel
information) that are more efficient than exhaustive key search. Here, it is
worth to note that Wu presented a distinguisher for HC-128 in the design
paper. We will show how this distinguisher works in detail in Section 4.2.3,

73
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but it uses the least significant bit of several consecutive 32-bit keystream
words.

Maitra et al. [Mai+10] showed that Wu’s distinguisher can be generalized
to work for any one bit of the complete 32-bit word. However, the bias of the
other bits is smaller than that of the least significant bit. Thus, they present
several new distinguishers, all of which are weaker than Wu’s original distin-
guisher.

Dunkelman [Dun] observed that keystream bits would leak information
of the secret state. However, this observation has not yet been exploited in
designing a distinguisher, and it was argued by Wu [Wu] that it cannot be
used for cryptanalysis at all.

The initialization step was analyzed by Liu and Qui in [LQ09]. They
showed that the key can be recovered if the internal state of the cipher is
known.

As we will see in Section 4.2.1, two tables play a central role in HC-128.
In [PMR10], Paul et al. showed that it was possible to construct one of these
tables with knowledge of the other table together with 2048 keystream words.
The time complexity for this reconstruction is 242. While not saying much
about the security of HC-128, this result gives more insight into the algorithm
itself, possibly providing a foundation for future attacks.

Although HC-128 is targeted at software environments, differential fault
analysis of HC-128 was performed in [KY10]. It was shown that by injecting
faults into the state, without control over the location or value of the fault, it
is possible to recover the internal state.

The most efficient nongeneric attack to date is the distinguishing attack
given in [SRHJ12]. We will build up to describing this distinguisher in Sec-
tion 4.4 with a much improved analytical motivation compared to the original
paper. Our distinguisher is based on the one Wu presented in the design
paper. Wu used the least significant bit of the 32-bit keystream words to con-
struct his distinguisher. According to our revised analysis, it has a keystream
complexity of 2169.5 32-bit words. This value is much higher than what Wu
claims in [Wu08], but in Section 4.3 we prove that our revised figure is the
efficiency level that can be analytically motivated. For comparison, using the
same measure, our distinguisher in Section 4.4 will be shown to have both
a computational and keystream complexity of 2152.6 32-bit words, and sub-
sequent results should be compared to these figures. The speed-up in our
distinguisher actually comes from a more efficient sampling technique, and
the discrepancy in the complexity figures is caused by sample dependencies.

Various methods of constructing samples from the outputs have been used
in the literature. However, it has been unclear exactly how these methods
differ and which method is optimal. In Section 4.3 we analyze four different
sampling techniques. We prove that two of these sampling techniques—of
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which Wu used one—are suboptimal as they utilize dependent samples. We
further show one sampling technique that is optimal in terms of error prob-
abilities in the resulting distinguisher. However, this sampling technique is
quite impractical as it requires very large storage. We further show a fourth
sampling technique that is much more practical, and we prove that it is equiv-
alent to the optimal one. This is the sampling technique used in Section 4.4.
We also show an improved algorithm for calculating the associated probabil-
ity distributions that are required for using the optimal sampling technique.
Our new algorithm saves about 80-85% in time and uses memory optimally
in the sense that memory usage is in the order of the amount of memory
required for storing the resulting probability distribution.

The analysis in Section 4.3 is inspired by HC-128, but the results are truly
general. HC-128 is table-driven, and the tables are initialized and periodically
reinitialized with (pseudo-)random entries. The tables may be regarded as
random S-boxes that are rerandomized occasionally, and these can appear in
cryptanalytical situations when observations, e.g., linear sums of keystream
bits in stream ciphers, can be derived from outputs of a large table. A random
S-box is an a-to-1-bit mapping in our analysis, and this mapping can be seen
as a table containing n = 2a single bit entries, where the values of the bits are
determined independently and uniformly at random by flipping a fair coin n
times.

The optimal sampling technique can be applied to any cryptographic prim-
itive that leaks a sufficiently biased probability distribution of the described
sort.

One may note that we have restricted our S-box definition to an a-to-b-bit
mapping with b = 1 instead of the more general case b ≥ 1. Our results can
be applied to the latter case as well, for example by considering only one of
the output bits of the S-box. However, some additional work is required to
obtain an optimal sampling technique for the general S-box setting.

It may also be noted that S-boxes quite often are referred to as Boolean func-
tions in the literature. We will not be exploring this connection here, but we
will get back to defining Boolean functions and some of their simple proper-
ties in Section 5.2.1 for the purpose of algebraic interpretation in Chapter 5.

In Section 4.5, we take a small step toward a different kind of analytical
analysis. Consider the Xorrotation1 function family

gw,r1,...,rm(x) = x⊕ (x≪ r1)⊕ · · · ⊕ (x≪ rm)

of functions for which x is a w-bit word, ⊕ denotes xor and ≪ denotes left
rotation (cyclic shift) with respect to the word length w. For the rotation

1Named analogously to their Xorshift cousin defined and analyzed in [Mar03, PL05].
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amounts ri we have 0 < ri < w. These bit mixing functions are often used in
cryptographic primitives to provide intraword diffusion.

While primitives that rely on modular addition (A), rotation (R) and xor (X)
are commonly labeled ARX, gw,r1,...,rm is RX. Pure AX and RX systems have
been shown to be weak (see [KN10, PP05]), but we will show how our theory
can be used in practice by applying it to a more complex system that includes
RX operations and S-boxes. This system is composed of a partly linearized
variant of HC-128 for which modular additions have been replaced by xor.
We call this variant HC-128⊕ and define it in Section 4.2.2.

The Xorrotation function family has been studied by Thomsen [TK09] and
Rivest [Riv11]. Thomsen showed that the mapping is invertible for all choices
of distinct ri with 0 ≤ ri < w, and all word lengths w = 2k where k ≥ 2 is an
integer and m is even. Rivest gave a different and more general proof, a proof
that in some sense reveals the true nature of the invertibility of the mapping.
Many questions remain open, however. For example, some insight into the
cases w 6= 2k and even m, separately and together, would be desirable.

While the main focus of Thomsen and Rivest was on invertibility, we are
more interested in the probability distributions that gw,r1,...,rm induce. That is,
given an x chosen uniformly at random, what can we say about gw,r1,...,rm(x)
for different values of w and ri, and how much do the resulting probability
distributions differ from the uniform one? To answer this question we will
need some more information about the function than an assessment of its
invertibility.

From a cryptanalytic perspective, again, a primitive that exposes a heavily
biased probability distribution is prone to distinguishing attacks. We present
a general treatment of bit mixing using xor and word rotations. A number of
theoretical results on related probability distributions are deduced, and these
results can be used for cryptanalysis. After introducing probabilistic proba-
bility distributions in Section 4.6, we show how to apply the theory, together
with some additional new observations, to produce a new distinguisher for
HC-128⊕. This is described in Section 4.7. While the keystream complexity
of this distinguisher is far from practical (290.9), we still feel that this part
presents a significant contribution. These are the first results for HC-128⊕,
and our hope is that the new ideas presented here can lead to even better
analyses and attacks, perhaps reducing the keystream or total complexity of
the untweaked HC-128 to a complexity below 2128.

Background information on HC-128, HC-128⊕ and Wu’s original distin-
guisher can be found in Section 4.2. The chapter is concluded in Section 4.8.
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4.2 BACKGROUND

We will now briefly describe HC-128 and the variant HC-128⊕, which we
will analyze later on in Section 4.7. As our analysis is independent of the
initialization procedure, it will not be detailed here. The reader is referred to
the specification for that part. Our focus now is on keystream generation and
the original distinguisher that Wu presented in [Wu08].

4.2.1 BRIEF DESCRIPTION OF HC-128

In this section we give a very brief description of the original HC-128 key-
stream generation process. HC-128 is defined in [Wu08], from which we
adopt and adapt the notation. HC-128 specifies both a key and IV size of
128 bits. Up to 264 bits of keystream can be generated with each key/IV pair.
Letting x and y be 32-bit integers, we have

+: x + y means (x + y) mod 232,

�: x� y means (x− y) mod 512,

⊕: xor,

‖: concatenation,

�: left shift, x � n means x shifted left n bits (zero-padded),

�: right shift, x � n means x shifted right n bits (zero-padded),

≪: left rotation, x≪ n means x rotated left n bits,

≫: right rotation, x≫ n means x rotated right n bits.

Two tables, denoted P and Q, make up the internal state of HC-128. Each
table contains 512 entries, where each entry is a 32-bit word. The keystream
is denoted by s and the 32-bit keystream word generated at the ith step is
denoted si; s = s0‖s1‖s2‖ . . . . The following six functions are used in HC-128:

f1(x) = (x≫ 7)⊕ (x≫ 18)⊕ (x � 3),

f2(x) = (x≫ 17)⊕ (x≫ 19)⊕ (x � 10),

g1(x, y, z) = ((x≫ 10)⊕ (z≫ 23)) + (y≫ 8),

g2(x, y, z) = ((x≪ 10)⊕ (z≪ 23)) + (y≪ 8),

h1(x) = Q[x0] + Q[256 + x2],

h2(x) = P[x0] + P[256 + x2],

where x = x3‖x2‖x1‖x0 is a 32-bit word and the xi’s represent a byte each, x0
being the least significant byte of the word and x3 being the most significant
byte. The functions f1 and f2 are only used in the initialization of the cipher.
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Algorithm 5 – HC-128 Keystream Generation

Input: initialized tables P and Q, each containing 512 32-bit words.
Output: 32-bit keystream words si for i = 0, 1, . . .

i = 0;
repeat (until enough keystream bits are generated) {

j = i mod 512;
if ((i mod 1024) < 512) {

P [j] += g1(P [j� 3] , P [j� 10] , P [j� 511]);
si = h1(P [j� 12])⊕ P [j];

} else {
Q [j] += g2(Q [j� 3] , Q [j� 10] , Q [j� 511]);
si = h2(Q [j� 12])⊕Q [j];

}
i += 1;

}

Keystream generation proceeds as follows. One table entry is updated and
one 32-bit keystream word is generated at each step. One full update of an
entire table P or Q takes place during a session consisting of 512 consecutive
steps. First, table P is updated and table Q is used to provide update val-
ues. The roles of tables P and Q are reversed every session. The keystream
generation algorithm of HC-128 is given in Algorithm 5.

We will find it convenient to express P[i] as Pi, P[i� j] as Pi−j, and we will
write Pk

i−j for Pi−j ≫ k.

4.2.2 AN HC-128 VARIANT: HC-128⊕

Let HC-128⊕ denote the HC-128 variant obtained by replacing + with ⊕ in
three principal places; in the g and h functions listed in Section 4.2.1, and in
the table cell update function in Algorithm 5. This is the HC-128 variant that
we will analyze in Section 4.7.

4.2.3 ORIGINAL DISTINGUISHING ATTACK BY WU

In the HC-128 design paper, a distinguishing attack was given based on the
least significant bit of the keystream words si. Table P is updated at the ith

step, if (i mod 1024) < 512. The update function is given by

P[i mod 512] += g1(P[i� 3], P[i� 10], P[i� 511]).
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Also, si = h1(P[i � 12]) ⊕ P[i mod 512]. For 10 ≤ (i mod 1024) < 511, this
feedback function can be alternatively written as

si ⊕ h1(zi) =(si−1024 ⊕ h′1(zi−1024))+ (4.1)

g1(si−3 ⊕ h1(zi−3), si−10 ⊕ h1(zi−10), si−1023 ⊕ h′1(zi−1023)).

Here, h1(x) and h′1(x) indicate two different functions because they refer to
different S-boxes; zj denotes the P[j� 12] at the jth step.

As shown in [Wu08], for the least significant bit, this equation reduces to

[si]
0 ⊕ [si−3]

10 ⊕ [si−10]
8 ⊕ [si−1023]

23 ⊕ [si−1024]
0 =

[h1(zi)]
0 ⊕ [h1(zi−3)]

10 ⊕ [h1(zi−10)]
8 ⊕ [h′1(zi−1023)]

23 ⊕ [h′1(zi−1024)]
0,

where [a]i represents the ith least significant bit of a. Looking at two different
time instances i and j where 1024× γ + 10 ≤ i, j < 1024× γ + 511 we can
write

[si]
0 ⊕ [si−3]

10 ⊕ [si−10]
8 ⊕ [si−1023]

23 ⊕ [si−1024]
0 = (4.2)

[sj]
0 ⊕ [sj−3]

10 ⊕ [sj−10]
8 ⊕ [sj−1023]

23 ⊕ [sj−1024]
0,

which holds if and only if

[h1(zi)]
0⊕[h1(zi−3)]

10⊕[h1(zi−10)]
8⊕[h′1(zi−1023)]

23⊕[h′1(zi−1024)]
0 = (4.3)

[h1(zj)]
0⊕[h1(zj−3)]

10⊕[h1(zj−10)]
8⊕[h′1(zj−1023)]

23⊕[h′1(zj−1024)]
0.

We call the expressions in Equation (4.3) ti and tj, respectively, so that

ti =[h1(zi)]
0 ⊕ [h1(zi−3)]

10⊕ (4.4)

[h1(zi−10)]
8 ⊕ [h′1(zi−1023)]

23 ⊕ [h′1(zi−1024)]
0.

Equation (4.3) can be approximated as

R(a1) = R(a2), (4.5)

where R denotes a random secret 80-to-1-bit S-box, a1 and a2 are two 80-bit
random inputs,

a1 = zi‖zi−3‖zi−10‖zi−1023‖zi−1024,

a2 = zj‖zj−3‖zj−10‖zj−1023‖zj−1024,

where z indicates the concatenation of the least significant byte and the second
most significant byte of z, i.e., z = x0‖x2. Theorem 4.1 from [Wu08], shows
the bias of Equation (4.5).
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Theorem 4.1 (Random S-box bias) Let R be an m-to-n-bit S-box and all
those n-bit elements are randomly generated, where m ≥ n. Let a1 and a2 be
two m-bit random inputs to R. Then R(a1) = R(a2) with probability 2−m +
2−n − 2−m−n.

Thus, Equation (4.5) holds with probability 1
2 + ε = 1

2 + 2−81. Approximat-
ing the number of samples needed in a distinguisher by 4ε−2, Wu concludes
that 2164 such equations are needed. Since it is possible to obtain (501

2 ) ≈ 217

pairs for each 512-word keystream chunk, the number of keystream words

needed are concluded to be 2156, a factor of (501
2 )

501 ≈ 28 less. This is however
not correct. Wu runs into what seems to be two problems here—both spelled
dependency.

The first problem is that the all pairs sampling (APS) technique that Wu
uses, forming the 217 samples from a 512-word keystream chunk, produces
dependent samples. The hypothesis test used requires independent samples,
so this approach is clearly a mismatch.

The second problem is that the dependency issue is actually even worse for
Wu. As we will see in Theorem 4.2 in Section 4.3.2, it is not even possible to
take more than one single sample from a 512-word keystream chunk. This
induces a penalty factor of 29, so it seems more fair to conclude that Wu’s
distinguisher has a keystream complexity of 2173 words (32-bit). At least, this
is the keystream complexity we obtain if we impose the condition of analyt-
ical correctness on Wu’s proposed distinguisher. So, while Wu claims that
it is possible to lower the keystream complexity of his original distinguisher
from about 2164 to 2156 keystream words using APS, he should rather have
concluded that the total keystream complexity of the distinguisher is about
2173.

In a nutshell, two dependent samples carry less information than two in-
dependent ones. The consequence of using dependent samples is that the
efficiency of the distinguisher is downgraded.

A number of interesting questions can be identified at this point. How effi-
cient is Wu’s APS technique? That is, if we erroneously but deliberately feed
the standard hypothesis test with dependent samples and compensate for the
relative inefficiency of the samples by taking more of them, how many sam-
ples does his distinguisher require? Wu assumes perfect efficiency, providing
neither analytical justification nor simulation results. Also, using Wu’s tech-
nique for combining keystream, Theorem 4.2 forces us to use only two out of
512 keystream words to construct one sample. But throwing the rest of them
away seems like a waste of resources, so how can the keystream words be
used more efficiently? What other reasonable sampling techniques are there?
Is there an optimal sampling technique, and how good is it? As we will see,
these questions can and will be answered in Section 4.3.
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We will use the relative entropy measure for comparing probability dis-
tributions and building distinguishers, so we now give the corresponding
complexity figure using this metric also for Wu’s distinguisher. This allows
us to make a fair comparison between our results and Wu’s attack. With
p = 1

2 + 2−81 as before, we conclude that Wu’s distinguisher requires 2160.5

samples. According to the arguments given above, including the penalty fac-
tor of 29, this corresponds to a keystream complexity of 2169.5 32-bit words.
For comparison, our best HC-128 distinguisher (in Section 4.4) will be shown
to have both a computational and keystream complexity of 2152.6.

To see where we stand on the sampling issue, we now take a dive into
analysis of various sampling techniques.

4.3 AN OPTIMAL SAMPLING TECHNIQUE FOR DISTINGUISHING
RANDOM S-BOXES

At first glance it may appear that we have geared this section toward HC-128,
but the results presented here are actually much more general than that. Our
sampling technique analysis is potentially applicable to any cryptographic
primitive that is table-driven or whose keystream is derived from S-box out-
puts. Let us introduce the general setting.

You are given an S-box with n random-valued entries, and these entries are
unknown to you. At every time instance, one S-box entry is selected uniformly
at random and the value contained in this entry is displayed. That is, you get
to see the value, not its actual location within the S-box. This construction can
be viewed as a very simple toy stream cipher—stream cipher T—that outputs
one of its S-box entries at every clocking.

It is now our job to distinguish the given sequence of outputs from a truly
random sequence of symbols, i.e., we are to build an efficient distinguisher.
Also, to make the task a little more challenging, the S-box in stream cipher T
is rerandomized after ` clockings, putting a time pressure on us. A set of `
such S-box observations will be referred to as a chunk, and the observations
themselves are denoted s1, . . . , s`. An illustration of the stream cipher T is
provided in Figure 4.1.

One may note that the given problem has a simple solution if the S-box
entries are very large in comparison to n. Assume that stream cipher T, like
HC-128, has tables with 512 = 29 elements, each of which are 32-bit words.
The comparison in size here is between 29 and 232. We could then build a
distinguisher based on the fact that repetitions of any 32-bit word are very
common for stream cipher T, while they are very scarce in the random case.
The easy version of the problem has an easy solution, so we go for the hardest
version instead.
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...
s` s3 s2 s1... ...

S-box size n

chunk (` observations)

Figure 4.1: The toy stream cipher T.

Now assume that every S-box entry contains one single bit, so that the
observations si denote single bits, and a chunk is an ordered sequence of `
single-bit observations. To summarize, we consider a log n-to-1-bit random
S-box that allows ` observations before it is rerandomized. The S-box may be
regarded as a table with n entries of one bit each.

Also, our distinguisher may need more than one chunk to make a reason-
able classification decision, so the number of `-bit chunks it uses is denoted k,
for a total of k` observations.

Two outputs from an S-box of size n are equal with probability (at least) 1
n ,

since the same entry may have been used twice. This simple observation can
be used to construct a distinguisher for random S-boxes, also for the harder
single-bit case.

As stated in Theorem 4.1, the xor sum of a pair of output bits is biased, and
this bias stems from the fact that the same S-box entry may have been probed
for both outputs. More specifically, for i 6= j,

Pr(si = sj) =
1
2

n− 1
n

+
1
n
=

1
2
(1 +

1
n
) =

1
2
+

1
2n

, (4.6)

and the bias in Equation (4.6) can be used to construct a distinguisher.
The main problem we study now is exactly how to construct this distin-

guisher when the number of S-box observations is more than two. That is,
how should a cryptanalyst use the observations to construct an optimal dis-
tinguisher?

The empirical probability distribution as defined by the sampling is de-
noted P∗. The corresponding (theoretical) probability distribution of the S-
box is denoted P1, while its uniform distribution is denoted P2. The optimal
hypothesis test is given by the Neyman-Pearson lemma, see Lemma 2.1. If we
want the error probabilities in Neyman-Pearson to be equal, we set T = 1. In
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other words, we decide P∗ = P1 if

P1(x1, . . . , xt)

P2(x1, . . . , xt)
> 1⇐⇒

indep.

t

∑
i=1

log
P1(xi)

P2(xi)
> 0, (4.7)

and P∗ = P2 otherwise. The equivalence in Equation (4.7) is valid when the
samples x1, . . . , xt are independent.

In our case, the samples xi will be constructed from the observations sj.
Note that the Neyman-Pearson lemma, which gives the optimal distinguisher,
requires that the samples xi are independent. By sampling technique we mean
how to use the observations to build the samples used in the distinguisher.

If the samples are very easy to construct from the observations, we can say
that the online computational complexity of the attack is given by the number
of terms t in Equation (4.7). The offline complexity is the time needed to
compute P1.

We will consider the following four sampling techniques:

• All Pairs Sampling (APS) Take observation pairs (si, sj), 1 ≤ i < j ≤ `
as samples. Let P1 be the distribution corresponding to Equation (4.6),
i.e., Pr(si = sj) =

1
2 (1+

1
n ) and Pr(si 6= sj) =

1
2 (1−

1
n ). P2 is the uniform

distribution, Pr(si = sj) = Pr(si 6= sj) =
1
2 .

• Linear Pairs Sampling (LPS) Take observation pairs (si, si+1), 1 ≤ i < `
as samples and let P1 and P2 be as for APS above.

• Vector Sampling (VS) Take vectors (s1, s2, . . . , s`) as samples and per-
form the hypothesis test with the corresponding vector probability dis-
tributions as P1 and P2.

• Weight Sampling (WS) Take vector weights ‖ (s1, s2, . . . , s`) ‖1 = ∑`
i=1 si

as samples and perform the hypothesis test with the corresponding vec-
tor weight probability distributions as P1 and P2.

It is clear that Vector Sampling (VS) is optimal since it preserves all infor-
mation in the samples. The drawbacks are that the distribution is very large
in storage (2`), and that it is demanding to compute. As we have previously
seen, APS is precisely the sampling technique employed in Wu’s original HC-
128 distinguisher. It uses the easily computed bias in Equation (4.6) and pro-
duces many samples. For ` observations, (`2) samples are produced. Due
to the dependency between samples, LPS was suggested in [SRHJ12], and
WS was also applied as an improvement. However, it was an open question
whether it was possible to improve over WS as it appears that not all sample
information is retained in the vector weight samples.
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In Sections 4.3.1 and 4.3.2 we prove that APS and LPS are faulty. In Sec-
tions 4.3.3 and 4.3.4 we give algorithms for computing the required distribu-
tions for VS and WS, respectively. We also prove that VS and WS are equiv-
alent in terms of the performance of the resulting distinguisher. Section 4.3.5
explicitly compares APS, LPS and WS.

4.3.1 ALL PAIRS SAMPLING (APS)

The Neyman-Pearson lemma assumes that all samples are independent and
identically distributed. In APS sampling, all possible bit pairs in an `-bit
chunk are taken as samples, producing in total k(`2) samples. It is very easy to
prove that these samples are not independent. Consider a chunk with ` = 3,
where we take the samples (s1, s2), (s1, s3) and (s2, s3). If we know the first
two samples, then we also know the last sample. The last sample does not
contain any new information. Stating this information theoretically, we have

H(S2 ⊕ S3|S1 ⊕ S2, S1 ⊕ S3) = 0,

where H is the entropy function from Definition 2.1, ⊕ denotes xor and S1, S2
and S3 are random variables corresponding to the three observations. This
argument is easily extended to the general case with arbitrary `, which also
serves as a direct motivation for defining and using LPS sampling.

Even though the samples are dependent, APS is very easy to apply. Com-
puting and storing probability distribution P1 requires negligible memory and
can be trivially done by hand, see Equation (4.6). However, the large number
of samples gives an online computational complexity of k(`2) = O(k`2).

4.3.2 LINEAR PAIRS SAMPLING (LPS)

In LPS sampling we take (s1, s2) as the first sample and then only take one
new sample for each new observation. This procedure produces `− 1 samples
per chunk for a total of k(`− 1) samples. In order to show that this sampling
technique also gives dependent samples, for P1 we calculate and compare
Pr(s3 = s2|s2 = s1) and Pr(s3 = s2|s2 6= s1) to see that the probability of pair
equality in one sample depends on the pair equality of the previous one.

We regard the S-box as a table with n entries. The first time we read a
specific entry in the table, we say that we “open” the entry. First consider
Pr(s3 = s2|s2 6= s1). Given that s2 6= s1, we must have opened precisely
two entries in the table, one 0 and one 1. We can now have s3 = s2 in two
different ways, by reading s3 from either an “old” entry (same as s2) or a
“new” previously unopened one. Thus, we have

Pr(s3 = s2|s2 6= s1) = 1 · 1
n
+

1
2
· n− 2

n
=

1
2

.
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Calculating Pr(s3 = s2|s2 = s1) divides into two cases.

Case A: s1 and s2 were read from the same entry.

Case B: s1 and s2 were read from different entries.

The probability of case A is p = 1
n , while that of case B is q = n−1

2n . Given case
A, the probability that s3 = s2 is

a =
1
n
+

n− 1
2n

=
n + 1

2n
.

Given case B, the probability that s3 = s2 is

b =
2
n
+

n− 2
2n

=
n + 2

2n
.

In total we get

Pr(s3 = s2|s2 = s1) =
p

p + q
· a + q

p + q
· b =

1
2
(1 +

2
n + 1

) >
1
2

,

from which we conclude that

Pr(s3 = s2|s2 6= s1) 6= Pr(s3 = s2|s2 = s1).

This proves that LPS is also erroneous in assuming independence between
samples.

One may further note that the same probabilities are valid for any other
overlapping pair, i.e., for Pr(sk = sj|sj 6= si) and Pr(sk = sj|sj = si) for all
distinct indices i, j and k.

This dependency may seem natural since the two samples are overlapping
in one of the observations. Collecting samples in a nonoverlapping fashion
according to (s1, s2), (s3, s4), (s5, s6), and so on, may at first glance seem better.
However, by performing similar calculations we can also prove that

Pr(s4 = s3|s2 6= s1) 6= Pr(s4 = s3|s2 = s1).

The corresponding calculations show that

Pr(s4 = s3|s2 6= s1) =
1
2

(
1 +

n− 2
n2

)
and

Pr(s4 = s3|s2 = s1) =
1
2

(
1 +

n2 + 3n− 2
n2(n + 1)

)
.
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This means that the probability of pair equality in one sample depends on
the previous one in this case as well. This immediately generalizes to all
nonoverlapping pairs, i.e., the same holds for Pr(sj = si|sv 6= su) and Pr(sj =
si|sv = su) for all distinct indices i, j, u and v. Since the overlapping and
nonoverlapping cases are exhaustive, we can conclude that any two samples
will be dependent. An intuitive explanation for this is that a sample leaks
information about the entries in the S-box. This information will affect the
probability of the next sample since we may read the same entries as before.
We summarize this result in Theorem 4.2.

Theorem 4.2 (Random S-box sampling theorem) It is not possible to ex-
tract more than one independent sample from a chunk s1, . . . , s` of observa-
tions from a random S-box.

Both APS and LPS are erroneous in assuming that their samples are inde-
pendent, but that does not make the sampling techniques completely useless.
It does mean that the efficiency of APS and LPS is lower than projected, which
is an important factor to consider when employing these sampling techniques.
Assuming full efficiency by ignoring dependencies is simply wrong. An esti-
mation of the efficiencies of APS and LPS can be found in Section 4.3.5.

Computing and storing probability distribution P1 for LPS is as simple and
efficient as it is for APS. The advantage of LPS over APS is that fewer samples
are used. The computational complexity of the online phase of LPS is k(`− 1),
or O(k`), which is a significant improvement over APS if the chunks are very
large (large `).

4.3.3 VECTOR SAMPLING (VS)

In order to apply the Neyman-Pearson lemma correctly, we need to find the
probability distribution of the complete chunk. Thus, we collect all obser-
vations in one vector (s1, s2, . . . , s`). The vector probability distributions P1
and P2 both have a domain of size 2`, which determines the storage cost for
handling P1 and P2 with VS.

For P2, all vectors are equally likely, resulting in identical probability values
P2(v) = 2−` for all vectors v.

The S-box vector probability distribution P1 can be calculated according
to Algorithm 6, which is stated recursively for simplicity. We hope that this
algorithm will clearly illustrate how the probabilities are derived. The main
idea here is simply to use variables a0 and a1 to keep track of the number
of probed table entries containing zeros and ones, respectively. These utility
values will enable us to compute the associated probabilities at each stage.

The storage requirement for Algorithm 6 is precisely 2` (probability en-
tries), and since this amount of memory is necessary to store the resulting
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Algorithm 6 – Vector Distribution (vd)

Input: S-box size n, vector length `, current depth d, current proba-
bility p, probability distribution container dist of length 2`, vector v,
number of opened table entries with zeros a0, number of opened table
entries with ones a1.
Output: probability distribution dist.
Initial recursion parameters: dist zeroized,
(d, p, v, a0, a1) = (0, 1, 0, 0, 0).

if (d==`) { /* maximum depth reached */
dist[v] += p;
return;

}
if (a0 > 0) { /* old 0 reopened */

vd(dist, n, `, d + 1, p · a0
n , v‖0, a0, a1);

}
if (a1 > 0) { /* old 1 reopened */

vd(dist, n, `, d + 1, p · a1
n , v‖1, a0, a1);

}
if (a0 + a1 < n) { /* table not exhausted */

vd(dist, n, `, d + 1, p · n−(a0+a1)
2n , v‖0, a0 + 1, a1); /* new 0 */

vd(dist, n, `, d + 1, p · n−(a0+a1)
2n , v‖1, a0, a1 + 1); /* new 1 */

}
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probability distribution, no other algorithm can do better in terms of memory.
The time complexity of Algorithm 6 is also exponential in `, at most 4` = 22`,
because every call at depth d results in at most 4 calls at depth d + 1. By em-
ploying dynamic programming, see e.g., [CLRS09], it is possible to improve
this time complexity to O(n22`) at the expense of increased storage, O(n22`),
but the running time must still necessarily be exponential in `.

For large `, i.e., when many observations are generated before the S-box is
reinitialized, the vector sampling technique is infeasible since the distribution
P1 is both too large to store and too demanding to compute.

4.3.4 WEIGHT SAMPLING (WS)

Now consider WS, for which we take vector weights ‖(s1, s2, . . . , s`)‖1 =

∑`
i=1 si as samples. The corresponding vector weight probability distributions

P1 and P2 have domains of size `+ 1, which is much more manageable than
those for VS.

For WS we begin with P2. Every vector is equally likely in the ideal case,
so the resulting vector weight probability distribution is combinatorially de-
termined by

P2(w) =

(
`

w

)
2−`

for all vector weights 0 ≤ w ≤ `.
P1 can be calculated according to Algorithm 7, which is just a simple mod-

ification of Algorithm 6. Instead of passing on a (partial) vector we now pass
on the (accumulated) vector weight. The algorithm is, again, stated recur-
sively for simplicity.

The recursiveness is an impediment as ` grows, of course, and for our
application to HC-128 in Section 4.4 we will aim for ` = 501. Deriving this
probability distribution for such vector lengths is no walk in the park. We will
need to perform our computations much more efficiently, so we show how to
do this using a dynamic programming (DP) approach.

When translating Algorithm 7 into a DP variant, we use temporary storage
for all intermediate probability values that are used in order to avoid unneces-
sary recalculations. The intermediate probability values for vectors of length
`− 1 are used to deduce the corresponding probabilities for vectors of length
`. Consider the tuple (w, a0, a1), for which w indicates weight and the a’s in-
dicate how many table entries of each sort that have been opened, as before.
The intermediate storage contains one probability entry for each such tuple,
so it is necessary to be able to translate a tuple into an index in the tempo-
rary storage and vice versa. This translation is performed by the functions
getTuple and getIndex in Algorithm 8.

Counting probability entries, one may note that the memory requirement
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Algorithm 7 – Weight Distribution (wd)

Input: S-box size n, vector length `, current depth d, current probabil-
ity p, probability distribution container dist of length `+ 1, weight w,
number of opened table entries with zeros a0, number of opened table
entries with ones a1.
Output: probability distribution dist.
Initial recursion parameters: dist zeroized,
(d, p, w, a0, a1) = (0, 1, 0, 0, 0).

if (d==`) { /* maximum depth reached */
dist[w] += p;
return;

}
if (a0 > 0) { /* old 0 reopened */

wd(dist, n, `, d + 1, p · a0
n , w, a0, a1);

}
if (a1 > 0) { /* old 1 reopened */

wd(dist, n, `, d + 1, p · a1
n , w + 1, a0, a1);

}
if (a0 + a1 < n) { /* table not exhausted */

wd(dist, n, `, d + 1, p · n−(a0+a1)
2n , w, a0 + 1, a1); /* new 0 */

wd(dist, n, `, d + 1, p · n−(a0+a1)
2n , w + 1, a0, a1 + 1); /* new 1 */

}
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Algorithm 8 – Weight Distribution (DP version)

Input: S-box size n, vector length `.
Output: probability distribution dist of length `+ 1.

m = 1
2 (n + 1)2(`+ 1); /* max num prob. entries at depth n */

p = (1, 0, . . . , 0); /* length m */
q = (0, 0, . . . , 0); /* length m */
for (d = 0; d < `; d++) { /* depth d */

md = 1
2 (n + 1)2(d + 1); /* max num prob. entries at depth d */

for (e = 0; e < md; e++) { /* entry index e */
(w, a0, a1) = getTuple(d, e);
/* old 0 with probability a0

n */
q[getIndex(d + 1, (w, a0, a1))] += p[e] · a0

n ;
/* old 1 with probability a1

n */
q[getIndex(d + 1, (w + 1, a0, a1))] += p[e] · a1

n ;
if (a0 + a1 < n) { /* table not exhausted */

/* new 0 with probability n−(a0+a1)
2n */

q[getIndex(d + 1, (w, a0 + 1, a1))] += p[e] · n−(a0+a1)
2n ;

/* new 1 with probability n−(a0+a1)
2n */

q[getIndex(d + 1, (w + 1, a0, a1 + 1))] += p[e] · n−(a0+a1)
2n ;

}
}
p = q; /* copy q to p (or swap buffers) */
q = (0, 0, . . . , 0); /* clear q */

}
dist = (0, 0, . . . , 0); /* length `+ 1 */
for (e = 0; e < m; e++) {

(w, a0, a1) = getTuple(m, e);
dist[w] += p[e];

}
return dist;
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of this implementation is 2m = (n + 1)2(`+ 1). However, this memory usage
depends on how well the functions getTuple and getIndex are implemented.
Better upper bound formulas for minimal time and memory complexity are
given by

n2`2

4
and

n2`

2
,

respectively. These formulas still leave some room for improvement. Depend-
ing on the accuracy requirements of the application2, built-in floating point
types or multiple precision data types may be employed.

The DP adaptation of Algorithm 7 to Algorithm 8 is rather straightforward,
and we will soon see that it can be improved even further.

We now explicitly prove that sampling techniques VS and WS are equiva-
lent in terms of keystream complexity of the resulting distinguisher. We first
present Algorithm 9 which calculates the probability of an S-box outputting a
specific vector—the vector probability. The correctness of Algorithm 9 follows
from its relationship to Algorithm 6.

Theorem 4.3 (WS is optimal) WS is equivalent to VS in terms of the
Neyman-Pearson test (Lemma 2.1).

Proof. The proof follows if we can show that all vectors of equal weight are
equiprobable, because the probability distributions P1 and P2 for WS can then
be derived from those of VS by grouping all probabilities for vectors of equal
weight. In such a case the Neyman-Pearson test is equal for both sampling
techniques, showing that no information is lost when considering WS over
VS.

It is sufficient to show that the vector probability is invariant under pairwise
bit flips. That is, we need to show that the vector probability does not change
if a neighboring pair of bits in a vector are flipped from 10 to 01 (or from 01
to 10).

Let v = (s1, s2, . . . , s`) be a vector for which si = 0 and si+1 = 1 for some
i, and let v′ be the corresponding vector with s′i = 1 and s′i+1 = 0. Let vj
denote the vector (sj, sj+1, . . . , s`). We need to show that vp(p, v, a0, a1) =
vp(p, v′, a0, a1) (we omit some of the less interesting parameters).

All recursive calls to vp(p, v, a0, a1) and vp(p, v′, a0, a1) are identical up to
depth i, so it is enough to consider any two such calls vp(p, vi, a0, a1) and
vp(p, v′i, a0, a1) at depth i. We need to show that both these calls give rise to
the same quadruple of function calls at depth i + 2, two levels deeper.

2We found the precision of 64-bit data types insufficient for the calculations per-
formed in Section 4.4.
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Algorithm 9 – Vector Probability (vp)

Input: vector probability prob (accumulated), current probability p,
S-box size n, vector length t, vector v (s1 at LSB), number of opened
table entries with zeros a0, number of opened table entries with ones
a1.
Output: vector probability prob.
Initial recursion parameters: (prob, p, t, a0, a1) = (0, 1, `, 0, 0).

if (t == 0) { /* maximum depth reached */
prob += p;
return;

}
if (v & 1) { /* next output bit is 1 */

if (a1 > 0) { /* old 1 reopened */
vp(prob, p · a1

n , n, v� 1, t− 1, a0, a1);
}
if (a0 + a1 < n) { /* table not exhausted */

vp(prob, p · n−(a0+a1)
2n , n, v� 1, t− 1, a0, a1 + 1); /* new 1 */

}
} else { /* next output bit is 0 */

if (a0 > 0) { /* old 0 reopened */
vp(prob, p · a0

n , n, v� 1, t− 1, a0, a1);
}
if (a0 + a1 < n) { /* table not exhausted */

vp(prob, p · n−(a0+a1)
2n , n, v� 1, t− 1, a0 + 1, a1); /* new 0 */

}
}
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vp(p, vi, a0, a1) splits into

vp(p · a0

n
, vi+1, a0, a1) and

vp(p · n− a0 − a1

2n
, vi+1, a0 + 1, a1)

at level i + 1, and then into

vp(p · a0a1

n2 , vi+2, a0, a1),

vp(p · a0(n− a0 − a1)

2n2 , vi+2, a0, a1 + 1),

vp(p · (n− a0 − a1)a1

2n2 , vi+2, a0 + 1, a1) and

vp(p · (n− a0 − a1)(n− (a0 + 1)− a1)

4n2 , vi+2, a0 + 1, a1 + 1)

at level i + 2. Similarly, vp(p, v′i, a0, a1) splits into

vp(p · a1a0

n2 , v′i+2, a0, a1),

vp(p · a1(n− a0 − a1)

2n2 , v′i+2, a0 + 1, a1),

vp(p · (n− a0 − a1)a0

2n2 , v′i+2, a0, a1 + 1) and

vp(p · (n− a0 − a1)(n− a0 − (a1 + 1))
4n2 , v′i+2, a0 + 1, a1 + 1).

Here we have vi+2 = v′i+2, so the sets of calls are identical. �

A direct consequence of the proof of Theorem 4.3 is that, although VS is
highly impractical to use due to its exponential time and memory complex-
ities, WS will provide the same result as VS at a much lower cost, allowing
much larger `-values to be used in practice.

We can also use Theorem 4.3 to improve the efficiency of Algorithm 8. Since
all vectors of equal weight are equiprobable, we need only consider vectors
of type 00 . . . 011 . . . 1. The improved algorithm is to calculate the probabil-
ities for all ` + 1 such vectors by using a dynamic programming version of
Algorithm 9. Recall that the time and memory complexities of Algorithm 8
are O(n2`2) and O(n2`), respectively, so memory usage is limiting in practice.
For the new algorithm we need only O(min(n, `)) memory for storing inter-
mediate probability values and O(`) storage to hold the resulting probability
distribution P2. An additional improvement is to recognize that the distribu-
tion is symmetric in the sense that P2(i) = P2(`− i) for i = 0, . . . , b `2c, so we
only need to compute half of it.
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Table 4.1: Comparison of online and offline time and memory com-
plexities for a distinguisher using k chunks with various
sampling techniques. S-box size n, vector length `, number
of chunks k.

online offline

time memory time memory

APS O(k`2) O(1) O(1) O(1)

LPS O(k`) O(1) O(1) O(1)

VS O(k`) O(2`) O(n22`) O(n22`)

WS O(k`) O(`) O(n2`2) O(`)

While the time required is still O(n2`2), the constants are better. Our simu-
lations show that we save 80-85% in time, and the memory usage is O(`), i.e.,
it no longer depends on the size of the S-box. This is optimal since it equals
the length of the vector.

4.3.5 COMPARING SAMPLING TECHNIQUES

We have shown above that both APS and LPS are erroneous as the corre-
sponding samples are not taken independently. Disregarding this deficiency,
both techniques are very simple to apply. The distribution P1 is very easy to
compute in each case (no precomputation), and checking if si = sj is trivial.
However, a practical drawback of employing APS and LPS is that the resulting
distinguisher will be suboptimal, and we have no simple analytical rule for
how many additional samples (compared to the optimal case) that we need to
collect to ensure a decent distinguisher accuracy.

For optimality, a sampling technique like WS (or VS), that provides inde-
pendent samples and preserves the information contained in an entire chunk,
must be used. This optimality comes at the cost of a larger precomputational
complexity, i.e., for computing P1. Table 4.1 summarizes the important com-
plexities corresponding to each sampling technique. Note that we assume
that the best dynamic programming variant is used to compute the proba-
bility distributions P1 for VS and WS. The actual performance of the attack
using each of the sampling techniques has been simulated. As VS and WS
give the exact same distinguisher performance, only WS is included in the
simulations. For a fair comparison, we assume that the number of chunks is
the same for all variants, i.e., APS and LPS are allowed to use many more
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Figure 4.2: Error probability as a function of the number of chunks k.

samples than WS, but all use the same number of observations. The plots in
Figure 4.2 shows the error probabilities for APS, LPS and WS as a function of
the number of chunks k for S-box sizes n = 64 and n = 512 when the number
of observations in each chunk is ` = 20 and ` = 500.

From the simulations we can see that both LPS and APS are outperformed
by WS. It is interesting to see that APS is not very much worse when the same
number of chunks is considered. However, we stress again that APS collects
(`2) samples from a chunk, while WS collects only one. This clearly shows
the problem of assuming independent samples when they are in fact very
dependent.

Looking at Figure 4.2, it seems that the performance of APS approaches that
of WS when the S-box size n increases and when the chunk size ` decreases.
Thus, for large n and small ` their performances are practically equal, while
for small n and large `, WS clearly outperforms APS. We have simulated many
other choices of n and `, and all simulations showed the same tendency.

4.4 A VECTOR WEIGHT DISTINGUISHER FOR HC-128

We can now construct the best known distinguisher for HC-128 using the
optimal vector weight sampling technique, and we will see that it is possible
to obtain a distinguisher that requires only 2152.6 32-bit keystream words.

Now recall Equations (4.2) and (4.4) from Section 4.2.3, which we restate
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here for convenience,

ti =[si]
0 ⊕ [si−3]

10 ⊕ [si−10]
8 ⊕ [si−1023]

23 ⊕ [si−1024]
0 (4.8)

=[h1(zi)]
0 ⊕ [h1(zi−3)]

10⊕ (4.9)

[h1(zi−10)]
8 ⊕ [h′1(zi−1023)]

23 ⊕ [h′1(zi−1024)]
0.

The bit ti can be assembled from keystream bits by following the recipe given
by Equation (4.8), and according to Equation (4.9), each ti is derived from
several lookups into the same table Q (or P). Table Q (or P) contains 512
32-bit words, and lookup into Q (or P) is divided into the upper and lower
half according to function h1 (or h2). Note that h1 and h′1 denote lookup into
different tables, and note also that we only use one bit from each 32-bit lookup
value for ti so that the table bit positions differ for each application of h1. Thus,
ti is essentially derived by xoring lookups from ten different lookup tables of
size n = 256 (with binary entries). One may view ti as the result of xoring the
output of ten different 8-to-1-bit S-boxes. The conceptual composition of ti is
illustrated in Figure 4.3.

[h1(zi)]
0 ⊕ [h1(zi−3)]

10 ⊕ [h1(zi−10)]
8 ⊕ [h′1(zi−1023)]

23 ⊕ [h′1(zi−1024)]
0

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕ ⊕ ⊕ ⊕ ⊕

Figure 4.3: Conceptual anatomy of ti.

HC-128 reuses the same tables with fixed values during several consecutive
time instances, so ti and tj with i 6= j are pairwise dependent within this time
period, which lasts for 501 clockings.

The main idea now is use vector weight sampling by forming vectors con-
taining these 501 consecutive ti’s. Using the notation in Section 4.3, we have
S-box size n = 256 and vector length ` = 501 for HC-128 in this analysis.

A major obstacle remains. Each ti is not the output of an 8-to-1-bit S-box
(or table)—it is the output of 10 xored 8-to-1-bit S-boxes.

We can use Algorithm 8 (as is or the improved version) to calculate the
probability distribution for the vector weight in the case of one single S-box,
but we need to learn how to combine several of these probability distributions
with respect to the xor operator. That is, if we have two `-bit words X and Y
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Algorithm 10 – Xoring Vector Weight Probability Distributions

Input: vector length n, vector weight probability distributions p and q
(n + 1 values each).
Output: vector weight probability distribution r.

r = (0, 0, 0, . . . , 0); /* length n + 1 */
for (i = 0; i < n + 1; i++) {

for (j = 0; j < n + 1; j++) {
for (k = max(0, i + j− n); k < min(i, j) + 1; k++) {

/* vector v1 with weight i,
* vector v2 with weight j,
* k ones overlapping =⇒ v1 ⊕ v2 has weight i + j− 2k */

r[i + j− 2k] += p[i] · q[j] ·
( i

k)(
n−i
j−k)

(n
j)

;

}
}

}
return r;

with weight probability distributions PX and PY, respectively, what does the
weight probability distribution PZ = PX ⊕ PY of Z = X⊕Y look like?

Algorithm XorDistributions in Algorithm 10 shows how to combine two
probability distributions. Given two different S-boxes, potentially with differ-
ent weight probability distributions, we still know precisely what to expect
from their xored output in terms of vector weight.

The algorithm works as follows. Consider vectors v1 and v2 with weights
i and j, respectively. If k ones are overlapping, the xored vector v1 ⊕ v2 will
contain i + j− 2k ones. The algorithm sums the probabilities over all possible

tuple values (i, j, k). The hypergeometric expression
( i

k)(
n−i
j−k)

(n
j)

in the algorithm

states the probability of a k-bit overlap given two vectors of weight i and j.
Algorithm 10 defines xor between weight probability distributions, so we

can now easily and successively deduce the probability distributions for the
resulting vector weight over, in turn, 2, 4, 8 and 10 tables. The final weight
probability distribution P1 is given by

P1 =
10⊕

i=1

P
′
1,

where P
′
1 is the weight probability distribution of a single 8-to-1-bit S-box,

determined using Algorithm 8.
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Also recall the uniform weight probability distribution P2 for vectors of
length ` (regardless of S-box size) from Section 4.3.4. It is given by

P2(w) =

(
`

w

)
2−`.

Last but not least, we need to compare P1 and P2, and we do this by us-
ing the divergence measure according to Equation (2.1). For various vector
lengths ` and number of S-boxes, the required number of samples for our
distinguisher is presented in Table 4.2. As a verification, the case ` = 10 over
one S-box was also simulated to ensure correctness. The simulation results
matched the theoretical findings.

Table 4.2: Number of samples required for various vector lengths n
and number of S-boxes.

vector length `

2 10 50 100 250 501

# S-boxes

1 216.471 211.009 26.380 24.517 22.232 20.665

2 232.471 226.979 222.213 220.199 217.549 215.544

4 264.471 258.979 254.213 252.198 249.545 247.537

8 2128.471 2122.979 2118.213 2116.198 2113.545 2111.537

10 2160.471 2154.979 2150.213 2148.198 2145.545 2143.537

Using this analysis, the actual distinguishing attack on HC-128 would pro-
ceed as follows. Instantiate `+ 1 counters, one for each possible vector weight.
From all keystream words, compute the `-bit vector samples by repeatedly
applying Equation (4.8). Based on the resulting vector weight, increase the
corresponding counter. When finished counting, perform the hypothesis test
on the resulting distribution (the counter values) to see if the biased HC-128
or the uniform probability distribution yields the closest fit.

Our best result for the full HC-128 with 10 S-boxes is a requirement of
2143.6 samples for ` = 501. Each sample is derived from the least significant
bits of ` consecutive keystream words, and the total complexity is at most
2152.6 keystream words.

The reader may further note that the time units used here correspond to
very simple operations involving only xor and shifts of keystream words.
These operations are much cheaper than the initializations considered in a
brute-force search. Key initialization takes about 27300 clock cycles [Wu08],
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involving both a key expansion and 1024 table updates. For comparison, one
single key initialization corresponds to processing about 210 keystream words
using our simple operations, so the complexity of the distinguisher in terms
of initializations is no more than 2143.

4.5 ANALYSIS OF THE XORROTATION FAMILY

Operations of and observations on HC-128 have inspired our analysis of the
Xorrotation family. We find this analysis is interesting on its own, but in
Section 4.7 we will show how the theory can be used in practice by building
a distinguisher for HC-128⊕ (defined in Section 4.2.2).

Consider first the function

fw,r(x) = x⊕ (x≪ r),

where x is a w-bit variable and ≪ denotes left rotation with respect to the
word length w. For all rotation amounts r in this section we enforce the
constraint 0 < r < w. This construction is often a basic mixing component
in cryptographic primitives [ST12, Wu08, Wu04, Riv+09, DL08, Hon+06]. We
take a probability distribution approach here and provide a set of lemmas that
are practical for cryptanalysis.

For a distribution to be of use to an analyst, it needs to boast a high diver-
gence. This makes it easily distinguishable from a uniform distribution. In
this context, all divergences of magnitude 1 and above are extremely high.

In the following we assume w-bit words, and we number the bit positions
from least- to most significant bit 0 through w− 1.

Definition 4.1 (Probability distribution operator E) A mapping f : U −→
V is said to generate a probability distribution on V (uniformly) in the follow-
ing way. Starting with an empty array of size |V|, let each x ∈ U contribute
probability 2−|U| to slot f (x). Summation over all possible domain values
produces the probability distribution in question. The probability distribu-
tion generated by f is denoted E( f ).

If we generalize fw,r by defining fw,r1,...,rn according to

fw,r1,...,rn(x1, . . . , xn) = fw,r1(x1)⊕ · · · ⊕ fw,rn(xn),

then E( fw,r) and E( fw,r1,...,rn) denote the probability distributions generated
by fw,r and fw,r1,...,rn , respectively.

Definition 4.2 (r-orbit) In a w-bit word, the bit positions reachable from bit
position i as we apply r-bit rotation again and again—the orbit of bit position
i under r-bit rotation—is given by the bit set

{(i + kr) mod w | k ∈N},
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and there are gcd(w, r) distinct orbits, each of length w
gcd(w,r) .

Proposition 4.4 (Divergence of E( fw,r)) The divergence of the probability
distribution E( fw,r) is gcd(w, r).

Proof. For every given w-bit output value y = yw−1 . . . y0, the equation system

fw,r(x) = y

has 2gcd(w,r) solutions. That is, restricting the domain and range of fw,r to only
one r-orbit, that corresponding equation system has precisely two solutions,
and the restricted mapping is consequently 2-to-1. There are gcd(w, r) disjoint
r-orbits, so the entire mapping fw,r is 2gcd(w,r)-to-1.

From this it follows that the probability distribution E( fw,r) has precisely
2w−gcd(w,r) nonzero probability entries, each being equal to 2gcd(w,r)−w since x
is uniformly distributed over the domain. Using Equation (2.1) we get

D(E( fw,r)‖U) = 2w−gcd(w,r)

(
2gcd(w,r)−w log

2gcd(w,r)−w

2−w

)
= gcd(w, r). �

We state a generalized version as Theorem 4.5.

Theorem 4.5 (Divergence of E( fw,r1,...,rn)) The divergence of the probability
distribution E( fw,r1,...,rn) is gcd(w, r1, r2, . . . , rn).

Proof. We prove the case n = 2, leaving n > 2 to the ambitious reader. We
will first show that fw,rx ,ry is 2w+gcd(w,rx ,ry)-to-1. We need to show that, for any
given w-bit result z = zw−1 . . . z0, the equation system

fw,rx ,ry(x, y) = z

has exactly 2w+gcd(w,rx ,ry) solutions in x and y.
Dividing the domain and range of fw,rx ,ry into gcd(w, rx, ry)-orbits, the re-

sulting equation systems are independent. It is therefore sufficient to show
that each of these systems have exactly 2d+1 solutions, where d = w

gcd(w,rx ,ry)
.

Now let fw,rx ,ry(x, y) = z with gcd(w, rx, ry)-orbit length d and rx ≥ ry.
Writing out the corresponding equation system explicitly we have

x0 + x−r1 + y0 + y−r2 = z0,

x1 + x1−r1 + y1 + y1−r2 = z1,
...

...
...

...
...

xd−1 + xd−1−r1 + yd−1 + yd−1−r2 = zd−1,
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with indices taken modulo d. Choosing the set

V = {x0, . . . , xgcd(w,rx)−1} ∪ {y0, . . . , yd−gcd(w,rx)},

of d + 1 free variables, we obtain a unique solution to the equation system for
every given assignment to z and the variables in V. This can be seen by solving
for, in turn, xgcd(w,rx), . . . , xd−gcd(w,rx) followed by interleaving the remaining
variables according to yd−gcd(w,rx)+1, xd−gcd(w,rx)+1, . . . , yd−1, xd−1. This shows

that fw,rx ,ry is 2d+1-to-1 in every gcd(w, rx, ry)-orbit, and thus 2w+gcd(w,rx ,ry)-to-
1 with the full unrestricted domain and range.

Since the x and y’s are uniformly distributed, the probability distribu-
tion E( fw,rx ,ry) has precisely 2w−gcd(w,rx ,ry) nonzero probability entries, each
of these being equal to 2gcd(w,rx ,ry)−w. Thus, Equation (2.1) gives us

D(E( fw,rx ,ry)‖U) = 2w−gcd(w,rx ,ry)

(
2gcd(w,rx ,ry)−w log

2gcd(w,rx ,ry)−w

2−w

)
= gcd(w, rx, ry). �

For the sake of a deepened RX analysis along the lines of Thomsen [TK09]
and Rivest [Riv11], we now generalize in another direction and consider the
function

gw,r1,...,rn(x) = x⊕ (x≪ r1)⊕ · · · ⊕ (x≪ rn)

with n + 1 clauses (the first one degenerated, zero rotation). For easy refer-
ence, we restate the result of Thomsen and Rivest using our terminology and
notation.

Theorem 4.6 (Uniform E(gw,r1,...,rn)-distributions for w = 2k) Let w = 2k

for some integer k ≥ 2. Independently of the values r1, . . . , rn, the probability
distribution E(gw,r1,...,rn) is uniform if n is even.

Rivest’s proof of Theorem 4.6 is actually more general than it appears to be.
It shows how to check if a particular set of rotation values results in a per-
mutation on w-bit words. As far as categorization goes, however, we would
still like to see a complete (and preferably simple) set of rules that show what
we can expect for all values of w and n. Theorem 4.6 shows the case w = 2k

for even n but leaves the remaining (w, n)-space open. We now present a few
results that fill in some of the remaining blanks. Note that Proposition 4.4
fully categorizes the case n = 1 for all w.

Proposition 4.7 (Using all rotation amounts is a bad idea) For all w, using
all rotation values, the divergence of E(gw,1,2,...,w−1) is w− 1.
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Proof. When all rotation amounts are used, gw,r1,...,rn maps x to either 000 . . . 0
or 111 . . . 1 depending on if the weight (the number of one-bits) of x is even
or odd, respectively. The function gw,r1,...,rn is therefore 2w−1-to-1 and yields a
divergence of w− 1. �

Proposition 4.8 (Divergence of E(gw,r1,...,rn) for an even number of clauses)
For all w, the divergence of E(gw,r1,...,rn) is ≥ 1 if n is odd.

Proof. Let n be odd. We have gw,r1,...,rn(x) = gw,r1,...,rn(x), where x denotes
the binary complement of x. This shows that gw,r1,...,rn is at least 2-to-1. The
divergence of E(gw,r1,...,rn) must therefore be at least 1. �

It is interesting to note that a uniform distribution (zero divergence) is only
attainable if an odd number of clauses (even n) are used. As Proposition 4.8
indicates, cryptographic designers generally fare better using a mixing func-
tion with three clauses rather than two or four.

In order to show the next theorem we need to make a jump to a polynomial
representation of words and rotations so that we operate in GF(2)[x]/(h(x))
with h(x) = xw + 1 as follows. Let the w-bit word v = vw−1vw−2 . . . v0 be
represented by the associated polynomial

v(x) =
w−1

∑
i=0

vixi.

Left rotation by r bits then corresponds to multiplication with xr modulo h(x),
so applying gw,r1,...,rn corresponds to multiplication with

r(x) = 1 + xr1 + xr2 + · · ·+ xrn

modulo h(x). In this model, showing that r(x) is invertible amounts to show-
ing that gcd(r(x), h(x)) = 1. And an invertible r(x) implies that gw,r1,...,rn is
a permutation, which tells us that the divergence of E(gw,r1,...,rn) is zero. The
reader is referred to [Riv11] for further details.

Definition 4.3 (Perfect word length) Let n < w − 1, and let U denote
the uniform probability distribution corresponding to E(gw,r1,...,rn). The word
length w is

even-perfect if D(E(gw,r1,...,rn)‖U) = 0 for all choices of ri and even n,

odd-perfect if D(E(gw,r1,...,rn)‖U) = 1 for all choices of ri and odd n,

perfect if it is both even-perfect and odd-perfect.
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Theorem 4.6 states that the word lengths 2k, k ≥ 2, are even-perfect. But these
are not the only ones. It can also be shown that the following word lengths
below 64 are even-perfect;

3, 5, 11, 13, 19, 29, 37, 53, 59 and 61. (4.10)

We first recall Definition 3.5, which we restate here in specialized form (e = 1)
for convenience.

Definition 4.4 (Primitive root modulo p) Let p be an odd prime. A prim-
itive root modulo p is a number 0 < g < p such that g generates the multi-
plicative group (Z/pZ)∗.

As before, if g = 2 is a primitive root modulo p, then the sequence of num-
bers 2, 22, 23, . . . , 2p−1 taken modulo p runs through all invertible elements of
Z/pZ, or equivalently, runs through all numbers in the interval [1, p− 1] in
some order.

In particular, not all primes have 2 as a primitive root. The first few
primes for which 2 is a primitive root are given in (4.10) above, see Sloane’s
A001122 [Slo11].

We can now show a generalized result for even-perfect word lengths in
Theorem 4.9.

Theorem 4.9 (Even-perfect word lengths) The primes with primitive root
2 are even-perfect word lengths.

Proof. Let h(x) = xw + 1 where w is a prime with primitive root 2. We need
to show that

r(x) = 1 + xr1 + xr2 + · · ·+ xrn

is invertible in GF(2)[x]/(h(x)). Since w is a prime with primitive root 2, h(x)
factors irreducibly into (x + 1)(xw−1 + xw−2 + · · ·+ x + 1). The polynomial
r(x) cannot have a factor x + 1 since r(1) = 1 when n is even. Also, since
n < w − 1, r(x) cannot be the maximum weight polynomial. We therefore
have gcd(r(x), h(x)) = 1, showing that r(x) is invertible. �

Our simulations lend evidence toward the following conjectures, which we
state to inspire future work in this direction. We start by generalizing The-
orems 4.6 and 4.9, stating that the even-perfect word lengths we have seen
above are also odd-perfect.

Conjecture 4.10 (Perfect word lengths) The following word lengths are per-
fect:

• powers of 2 (2k, k ≥ 2), and
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• primes with primitive root 2.

One might further attempt to prove that no other word lengths can be per-
fect.

Conjecture 4.11 (Existence of optimal rotation sets) For all w and n with
n < w− 1, a set of rotation values can be found such that the divergence of
E(gw,r1,...,rn) is optimal (0 if n is even and 1 if n is odd).

A proof of Conjecture 4.11 would show that there exist irreducible poly-
nomials in GF(2)[x]/(xw + 1) for all w and even n. This is by no means a
trivial result, and a proof would constitute an advancement in group and ring
theory. If Conjecture 4.11 can be proven, it is also reasonable to try to extend
the result to GF(q)[x]/(xw + 1).

The most interesting and somewhat related result of this kind that we have
found is due to Stepanov [Ste85, Ste87] and regards the number of irreducible
polynomials of given form over GF(q)[x], showing an asymptotic formula for
when q→ ∞.

We expect the following conjecture to be much easier to prove.

Conjecture 4.12 (All-but-one is optimal) For all w, when using all rotation
values except one (n = w− 2), the divergence of E(gw,1,2,...,w−1) is optimal (0
if n is even and 1 if n is odd).

4.6 DIVERGENCE OF PROBABILISTICALLY BIASED DISTRIBUTIONS

In the analysis of HC-128⊕ in Section 4.7, we will encounter probabilistic
equalities. These are equalities that are true with some given minimum prob-
ability. We will annotate the equality sign of probabilistic equations with their
corresponding probability.

We will be using probabilistic equalities in conjunction with the divergence
measure D, so we need to determine how the former influence the latter.

Definition 4.5 (Probabilistically biased distribution) Let A be any distri-
bution of size 2w, and let U be the uniform distribution of the same size. A
distribution resulting from sampling A with probability p and U with prob-
ability 1− p is said to be probabilistically biased with parameters (p, A), or
(p, A)-biased.

Theorem 4.13 (Probabilistic divergence) The divergence of a (p, A)-biased
distribution is p2D(A‖U).

We limit our proof of Theorem 4.13 to approximation by Taylor series, but
the full result should follow directly from a more careful handling and bound-
ing of the involved error terms. However, for our purposes it is sufficient that
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the εi defined below are small enough, meaning that the Taylor series provides
a reasonable approximation.

Proof. Let A be a distribution of size 2w biased according to

A[i] = 2−w + εi,

and let U denote the uniform distribution of same size. Letting

ε2 = 2w
2w−1

∑
i=0

ε2
i ,

we can use Taylor series according to Example 2.1 to approximate D(A‖U) as

D(A‖U) ≈ ε2

2 ln 2
=

2w ∑2w−1
i=0 (A[i]− 2−w)

2 ln 2
.

Now let B be a (p, A)-biased distribution. B is biased with probabilities

B[i] = pA[i] + (1− p)U[i] = pA[i] + (1− p)2−w = 2−w + ε
′
i.

So,
ε
′
i = p(A[i]− 2−w)

and

D(B‖U) ≈ p2 2w ∑2w−1
i=0 (A[i]− 2−w)

2 ln 2
≈ p2D(A‖U). �

4.7 APPLYING XORROTATION ANALYSIS TO HC-128⊕

We now illustrate how Theorems 4.13 and 4.5 can be applied in a beautiful
way to produce a new distinguisher for HC-128⊕. In particular, this will show
that HC-128 becomes weak if its + operators are replaced with ⊕.

The reader should be particularly careful here not to be fooled into thinking
that attacking this construction is a trivial task. Despite the removal of the
nonlinearity provided by modular addition, it is still not easy to construct low
complexity distinguishers for HC-128⊕. This is because we still have to deal
with the S-boxes.

Table updates in the original HC-128 are performed according to

Pi = Pi + (P10
i−3 ⊕ P23

i−511) + P8
i−10.

During the first half session we have 256 table updates with keystream gener-
ation

si = (Qa + Qb)⊕ Pi, (4.11)
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where 0 ≤ i, a ≤ 255 and 256 ≤ b ≤ 511. Similarly, the second half session
provides 256 table updates with keystream generation

sj = (Qc + Qd)⊕ Pj, (4.12)

where 0 ≤ c ≤ 255 and 256 ≤ j, d ≤ 511. This completes one full update
of table P. The subsequent session updates table Q, and for the three first
updates we have

sk = (Pl + Pm)⊕Qk

= (Pl + Pm)⊕ (Qe + (Q10
f ⊕Q23

g ) + Q8
h), (4.13)

with 0 ≤ l, e, g ≤ 255 and 256 ≤ m, f , h ≤ 511. The P’s and Q’s in Equa-
tions (4.11), (4.12) and (4.13) denote lookups into the same tables.

Now consider the HC-128 variant for which all + operators are replaced by
⊕. Choosing any one equation triplet from Equations (4.11), (4.12) and (4.13),
we have i = l and j = m (and thus Pi = Pl and Pj = Pm) each with probability
2−8. We also have a = e, c = g or a = g, c = e with combined probability 2−15

(assume a = e, c = g without loss of generality). We similarly have b = f , d =
h or b = h, d = f with combined probability 2−15 (assume b = h, d = f ).
Using (4.11) and (4.12) linearly together with all the equations (4.13) gives
us 3× 256 equation triplets for every 512 keystream words. With probability
3×256

512 × 2−46 > 2−45.42 we therefore have

si ⊕ sj ⊕ sk
2−45.42

= (Qb ⊕Q8
b)︸ ︷︷ ︸

N1

⊕ (Qc ⊕Q23
c )︸ ︷︷ ︸

N2

⊕ (Qd ⊕Q10
d )︸ ︷︷ ︸

N3

, (4.14)

where the left-hand side consists of known keystream words only, and N1,
N2 and N3 are observations from E( f32,8), E( f32,23) and E( f32,10), respec-
tively. According to Theorem 4.5, their combined distribution E( f32,8,23,10)
has divergence gcd(32, 8, 23, 10) = 1. Equation (4.14) shows that we have a
(2−45.42, E( f32,8,23,10))-biased distribution, which according to Theorem 4.13
results in a divergence of about 2−90.9× gcd(32, 8, 23, 10) = 2−90.9. This yields
a distinguisher requiring roughly 290.9 32-bit keystream words.

If we use evaluation of the left-hand side of Equation (4.14) over all three
k-values—four xor operations on 32-bit keystream words—as time unit, we
obtain a time complexity of 289.9. In absolute terms, this measure is much
cheaper, a factor of at least 210, than the cost of an initialization. For compari-
son, if we were to consider initializations instead, the time complexity of our
distinguisher would be less than 280.

From all of the above it is very clear that the + operator plays a vital role
in HC-128.
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4.8 CONCLUDING REMARKS

Four different sampling techniques for random S-box outputs have been con-
sidered and analyzed. We have proved that it is not possible to take two inde-
pendent samples from one random S-box chunk, which implies that APS and
LPS are suboptimal as they impose a higher error probability on the result-
ing distinguisher. We have also proved that WS is equivalent to the optimal
VS, and that WS is much more practical than VS. WS is thus the preferred
sampling technique. We also presented an improved algorithm for the offline
computation of P1 for WS.

Even though APS and LPS are not optimal, they are very simple to apply.
However, it is not immediately clear how to compensate for the dependency
between the samples. For large S-boxes that are frequently rerandomized, the
APS technique is very close to optimal, meaning that the samples are in some
sense "almost" independent in this case.

Using the optimal WS technique together with nontrivial algorithms for
computing the relevant probability distributions, we constructed a distin-
guisher for the eSTREAM portfolio stream cipher HC-128. We have shown
that the distinguisher has a data complexity of at most 2152.6 keystream words,
and a time complexity that corresponds to about 2143 initializations. This is
the most efficient distinguishing result known for HC-128. It exploits more
information than any other distinguisher, and it is an open problem if it is
possible to improve this result even further.

Last but not least, we also presented some new and general theoretical
results on probability distributions related to RX-systems. We showed how
to apply the new theory to a nontrivial system that uses RX operations in
combination with S-boxes. We did this by building a new distinguisher for
HC-128⊕. The total time complexity of the new distinguisher is 289.9 very
simple operations (xor and comparison of 32-bit keystream words) and the
distinguisher requires about 290.9 32-bit keystream words, corresponding to at
most 280 initializations. This highlights the crucial part that the + operator
plays in HC-128.
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Greedy Algebraic Cryptanalysis

T his chapter is derived from the article »Greedy Distinguishers and
Nonrandomness Detectors« [Sta10b], which was written solely by our-
selves and presented at INDOCRYPT in 2010. A prequel to this paper

was presented at the ECRYPT II workshop Tools for Cryptanalysis in 2010 as
the conference abstract »Automated Algebraic Cryptanalysis« [Sta10a].

5.1 INTRODUCTION

The title of this chapter may get us convicted of false advertising if we do
not explain it. In the cryptographic community, it seems that the word al-
gebraic has taken the refined meaning of solving a set of equation systems.
The meaning intended here—symbolic manipulation of variables—lies closer
to the original interpretation of the word. We will not be solving equation
systems. Instead, we will be examining cipher output in terms of boolean
functions.

The output of a sensibly designed cipher should appear random to an ex-
ternal observer. Given a random-looking bit sequence, that observer should
not be able to tell if the sequence is genuinely produced by the cipher in ques-
tion or not. This simple idea is the core of cryptographic distinguishers and
nonrandomness detectors.

Recently we have seen several attempts at finding distinguishers and non-
randomness detectors and many of the best ones seem to be built using the
maximum degree monomial test (see [Saa06, EJT07]) or some derivative of it.
This test is superb for detecting nonrandomness, and it also provides a win-
dow into the internals of the cryptographic algorithm we are examining. The
maximum degree monomial test can provide statements such as The IV bits

109
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are not mixed properly, which can be invaluable to the algorithm designer.
The core of this test is a bit set, and the efficiency of the test is largely

determined by how this bit set is selected. For this selection process, it seems
that guesswork has been the most prominent ingredient. The reason for this
may be that systematic methods have seemed too complicated to find or use,
or simply that the importance of bit set selection has been underestimated. By
far, the best systematic approach we have seen so far was due to Aumasson
et al. [ADMS09]. They used a genetic algorithm to select a bit set, and this
is a very reasonable approach for unknown and complex search spaces. The
complexity of the search space depends on the algorithm we are examining,
but are they really so complex that we need to resort to such methods? In this
chapter we present a very simple deterministic and systematic approach that
outperforms all other methods we have seen so far. We call it the Greedy Bit
Set Algorithm.

Stream ciphers have an initialization phase, during which they warm up
for a number of rounds before they are deemed operational. Block ciphers are
not explicitly initialized in this way, but they do operate in rounds. For our
purposes, this can be translated into an initialization phase.

How many rounds are needed to warm up properly? This is a question that
every algorithm designer has been faced with, but we have not yet seen any
satisfactory answer to this question. We make some observations that lead
us to a definition of the nonrandomness threshold, which helps us to better
understand the nature of the problem. The Greedy Bit Set Algorithm is a tool
that can and should be used by designers to determine realistic lower bounds
on the initialization period for their algorithm.

We go on to show how the Greedy Bit Set Algorithm performs against
a wide variety of new and old stream and block ciphers, and we find new
record-breaking results for Trivium, Grain-128 and Grain v1 [DP08, HJM07,
HJMM06, HJMM08]. We reveal weaknesses in Trivium reduced to 1026 out of
1152 initialization rounds in 245 complexity, thereby significantly improving
all previous efforts. By using a cluster we are able to improve this result
even further to 1078 rounds at 254 complexity. For Trivium we also present
a new 806-round distinguisher of complexity 244. Both distinguishing and
nonrandomness records are also set for Grain-128. We show nonrandomness
in 256 (out of 256) initialization rounds, and present a 246-round distinguisher
with complexity 242. For Grain v1 we show nonrandomness for 110 (out of
160) initialization rounds for a cost of only 29.

The chapter is organized as follows. In Section 5.2 we give an overview of
the black box model attack scenario and explain the maximum degree mono-
mial test. We also briefly describe the software tools developed. In Section 5.3
we present our Greedy Bit Set Algorithm. In Section 5.4, we comment on
the importance of key weight and define the nonrandomness threshold. In
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Sections 5.5 and 5.7 we present and summarize our findings for the various
algorithms. Finally, some concluding remarks are given in Section 5.8.

As a frame of reference, this chapter takes Filiol [Fil02], Saarinen [Saa06]
and Englund et al. [EJT07] as a starting point, and the most relevant previ-
ous work is due to Aumasson et al. [Aum+09, ADMS09] (see also Knudsen
and Rijmen [KR07], Vielhaber [Vie07], Dinur and Shamir [DS09], and Fischer,
Khazaei and Meier [FKM08]).

5.2 BACKGROUND

5.2.1 BOOLEAN FUNCTIONS

This short introduction to boolean functions is largely intended to follow the
educational presentation in [Saa06], which provides additional details.

Let us begin by defining boolean functions. Although the definition is very
simple, almost trivial, it provides a very general and powerful way to view
some functions.

Definition 5.1 (Boolean function) The mapping

f : {0, 1}n −→ {0, 1}l ,

where n, l ≥ 1, is called an l-valued (or vectorial) n-ary boolean function.
A single-valued (1-valued) boolean function may simply be referred to as a
boolean function.

As an example, consider the boolean function

f (x1, x2, x3) = 1 + x1 + x2 + x1x3 + x1x2x3, (5.1)

for which x1, x2, x3 ∈ Z/2Z, written here in algebraic normal form.

Definition 5.2 (Algebraic normal form) The algebraic normal form (ANF)
of a boolean function f (x1, . . . , xn) is the representation given by

f (x1, . . . , xn) =a0+

a1x1 + a2x2 + · · ·+ anxn+

a1,2x1x2 + · · ·+ an−1,nxn−1xn+

. . .+

a1,2,...,nx1x2 · · · xn,

where the coefficients are in the boolean domain {0, 1}.
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The reader may note that no squares or higher order terms are possible in
the monomials, since x2 = x if x ∈ {0, 1}.

Every boolean function f has a unique ANF, and the ANF itself is very
convenient for analysis of statistical properties and other interpretations, but
we are not always given the ANF of a boolean function to start with. If the
function f given in Equation (5.1) were to represent a 3-to-1-bit S-box, it would
most likely have been given as a listing of all possible output values as in
Table 5.1. Such a table is called a truth table, and it completely defines the

Table 5.1: Truth table for f (x1, x2, x3) = 1 + x1 + x2 + x1x3 + x1x2x3.

x1, x2, x3 f (x1, x2, x3)

0, 0, 0 1

1, 0, 0 0

0, 1, 0 0

1, 1, 0 1

x1, x2, x3 f (x1, x2, x3)

0, 0, 1 1

1, 0, 1 1

0, 1, 1 0

1, 1, 1 1

function. The truth table of an n-ary boolean function has 2n entries, and each
output value is either 0 or 1. It is therefore clear that there are precisely 22n

distinct n-ary boolean functions.
It is possible to efficiently compute the ANF of any n-ary boolean function

from its truth table, and Algorithm 11 shows how this is done. The running
time of Algorithm 11 is n2n−1, if we count modular additions, and it uses 2n

bits of temporary memory for u and v. Note that this algorithm is practical
only for values of n of moderate size.

We will be using one very specific property of boolean functions.

Theorem 5.1 (ANF coefficients in random boolean functions) Let X be a
random variable that takes the value of the coefficient a1,2,...,n of the maximum
degree monomial (see Definition 5.2) in the ANF of a boolean function f that
is drawn uniformly at random from the universe of all 22n

such functions.
Then,

Pr (X = 1) =
1
2

.

Proof. The truth table to ANF mapping is its own inverse, so the entropy of
the truth table is preserved. A truth table with 2n entries is mapped to a
polynomial in ANF with 2n monomial coefficients. �

Theorem 5.1 provides a statistical perspective on the interpretation of prop-
erties of boolean functions, a perspective that will be very useful for us. Of
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Algorithm 11 – ANF Computation from Truth Table

Input: Truth table t of size 2n for f .
Output: ANF representation of f .

u = (0, . . . , 0); /* length 2n−1 */
v = (0, . . . , 0); /* length 2n−1 */
for (i = 0; i < n; i++) {

for (j = 0; j < 2n−1; j++) {
u[j] = t[2j];
v[j] = t[2j]⊕ t[2j + 1];

}
t = u‖v;

}
return t;

Algorithm 12 – MDM Coefficient from Truth Table

Input: Truth table t of size 2n for f .
Output: The coefficient a1,2,...,n of the MDM in the ANF of f .

b = 0; /* single bit counter */
for (i = 0; i < 2n; i++) {

b ˆ= t[i]; /* xor */
}
return b;

course, the maximum degree monomial is no special case, the theorem is
equally valid for any other coefficient a in the ANF representation of f , as
long as f is drawn uniformly at random.

We will soon see that the maximum degree monomial x1x2 · · · xn and its co-
efficient a1,2,...,n in Definition 5.2 is of special interest to us, so in Algorithm 12
we explicitly describe how we can compute a1,2,...,n from a truth table without
recovering the entire ANF polynomial. It is quite clear that the running time
of Algorithm 12 is 2n if we, again, count modular additions.

5.2.2 BLACK BOX MODEL

It is time to review our take on distinguishers and nonrandomness detectors
from Sections 2.2.3 and 2.2.4, so that we can bring in the boolean function
perspective in a constructive way.

Distinguishers may be built for block ciphers, stream ciphers, MACs, and
so on, so adopting a black-box view of the cryptographic primitive is instruc-
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tive. While we have concentrated our efforts on stream ciphers, we have also
included testing of block ciphers. However, the black box model makes us
treat all primitives in a similar way.

Consider the set-up in Figure 5.1, which divides entities into three groups;
public input parameters (left), hidden/secret input parameters (top) and out-
put (right).

Black
box

Key

?
IV -

Plaintext -
Ciphertext -

Figure 5.1: Black box view of a cipher.

A distinguisher attempts to determine if a given black box produces truly
random output or not. Since no cryptographic primitive produces truly ran-
dom output, a distinguisher can be thought of as a classifier. Given an output-
producing black box, the distinguisher answers RANDOM or CIPHER, de-
pending on its assertion. The distinguisher is said to be efficient if it signifi-
cantly outperforms guessing, where the meaning of significantly depends on
the application.

But what are the rules of the game, how can the distinguisher examine the
functionality of the black box?

Consider first the hidden input parameters. The key is regarded as a hidden
parameter, which in this context means that the distinguisher neither knows
the key nor may alter its value. The key may be thought of as residing inside
the black box, the internals of which is not available to us. The fixed key
black box scenario is analogous to the case of hardware devices containing a
hard-wired fixed key.

Now consider the public input parameters. Plaintext and IV are regarded
as public parameters, so the distinguisher may invoke the black box several
times with different plaintexts and IVs, but the key is kept fixed. Several
different outputs may be produced in this way, and the distinguisher may use
all of these outputs to influence its decision.

So, a distinguisher may modify all public input parameters, but not hidden
ones. Nonrandomness detectors, on the other hand, may modify all input
parameters, both public and hidden ones. While distinguishers are bound
by practical constraints of the physical world, such as not having access to a
hidden key, nonrandomness detectors boldly use a wider range of parameters.



5.2. Background 115

Although this flexibility may seem awkwardly artificial at first, it is actually
quite natural if one considers the purpose of a nonrandomness detector. Their
primary merit is that they can do a better job of detecting nonrandomness.
This is invaluable for the cryptographic community, as we can get earlier
indications on weaknesses in specific algorithms. Distinguishers can show
weaknesses in how IV and plaintext bits are handled, while nonrandomness
detectors, in addition, can show weaknesses in how key bits are handled.

Nonrandomness detectors are less or even not useful in a real-world fixed
key black box scenario, since they are related-key creatures by construction.
But on a grand scale, we are wise to embrace them as finer precision tools
for evaluating security aspects of cryptographic primitives. The reason: non-
randomness detectors provide a way of analysis and better understanding of
random-like functionality.

Let S denote the set of bits that serve as input parameters1 to a distinguisher
or a nonrandomness detector. Explicitly summarizing the above, we have the
following definitions.

Definition 5.3 (Distinguisher) A {RANDOM, CIPHER}-classifier whose
input parameter bit set S includes only public input parameters is called a
distinguisher.

Definition 5.4 (Nonrandomness detector) A nonrandomness detector is
a {RANDOM, CIPHER}-classifier whose input parameter bit set S is not re-
stricted. In particular, S may include both public and hidden input parameters.

Note that using a known or chosen key makes the {RANDOM, CIPHER}-
classifier a nonrandomness detector, as we are then restricting the entropy of
the key space, effectively allowing key bits in S. A related discussion can be
found in [KR07].

5.2.3 THE MDM SIGNATURE

We now aim at unifying the boolean function view from Section 5.2.1 with
the black box model from Section 5.2.2 in a constructive way. Algebraic tech-
niques in general have recently been shown to be very powerful, and the
maximum degree monomial (MDM) test stands out as a highly efficient ran-
domness test. We have used this test in the following natural setting.

Consider a black box cipher that has been modified to produce output dur-
ing its l initialization rounds. For simplicity, let us assume that the cipher is a

1In our experiments, we have not examined the effect of allowing plaintext bits in S,
but this has the potential of working very well for block ciphers. However, this is
not the case for (synchronous) stream ciphers, which are our main target here, as
the keystream is independent of the plaintext.



116 Greedy Algebraic Cryptanalysis

stream cipher that outputs one keystream bit per clocking, and that keystream
output is normally suppressed during its l initialization rounds. Although ini-
tialization and keystream generation can be very different in principle, this is
a very common situation for stream ciphers as designers tend to go for reuse
of structure in order to minimize the cipher footprint.

If we view the black box as a boolean vector function f , we are in effect
defining

f : {0, 1}m −→ {0, 1}l .

Here, we have the input parameter space B = {0, 1}m spanned by all key and
IV bits K = {0, 1}mk and V = {0, 1}mv , respectively, with m = mk + mv so that
B = K×V. Note that the definition of f also implicitly defines l single-valued
boolean functions fi, 1 ≤ i ≤ l, one for each output bit. The function f fully
describes the entire initialization procedure of the stream cipher. For every
possible input, we can compute the corresponding initialization output.

If our computational abilities were unlimited, we would be able to calculate
the l-bit block

σ = σ1‖σ2‖ . . . ‖σl

=
⊕

x∈{0,1}m

f (x), (5.2)

which is the MDM signature of the entire stream cipher. Here, σ denotes the
entire l-bit MDM signature, and the individual bits are denoted σ1, . . . , σl .

The ith signature bit σi is the coefficient of the maximum degree monomial
x1x2 · · · xm in the ANF of the single-valued boolean function fi, since the sum-
mation is precisely as in Algorithm 12. That is, the ith signature bit σi says
something about the suppressed initialization output at the ith clocking.

Theorem 5.1 tells us that an ideal cipher produces a random-looking MDM
signature. This is because each fi will be drawn uniformly at random from
the universe of all 22m

boolean functions in the ideal case.
We desperately need to take care of one particularly disturbing detail before

we continue. We have assumed unlimited computational abilities above, so
we need to modify the above notion of the MDM signature into something
that is much more practical. Instead of considering the entire input variable
bit space B = {0, 1}m at once, we can choose a rectilinear subspace S = {0, 1}n

of the bit space B, reducing the number of variables from m to n. By rectilinear
subspace we mean to say that out of the m bits that make up the basis for B,
we choose a subset of n bits and let S be the subspace generated by those n
bits. For the remaining m− n variables we choose a fixed variable assignment
A and restrict our view of the function f to the subspace S in the obvious way.
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Definition 5.5 (MDM signature σA,S) Let the l-valued boolean function

f : {0, 1}m → {0, 1}l (5.3)

represent the suppressed initialization output of a cryptographic primitive,
one bit for each of its l initialization rounds. Given a rectilinear subspace
S = {0, 1}n over n free input parameters of the entire bit space B = {0, 1}m,
and a fixed variable assignment A for the remaining m− n variables, let

fA : {0, 1}n → {0, 1}l (5.4)

denote the function obtained from f by employing the variable assignment A
in the obvious way. If the boolean function f is clear from the context, the l-bit
MDM signature over the variable assignment A and bit set S may be denoted
σA,S, or even simpler by σ if A and S are also explicitly or implicitly given.
We have

σA,S =
⊕
x∈S

fA(x). (5.5)

While S really denotes a subspace of B, we will abuse this notation in the
sequel by alternatively specifying S as a bit set, meaning the set of input bits
that span the subspace in question. For rectilinear subspaces S, this usage
does not cause any notational conflict.2

Example 5.1 (Trivium MDM signature) Trivium performs 1152 clockings
during initialization and suppresses one output bit per clocking. Comparing
to (5.3) in Definition 5.5, we therefore have

f : {0, 1}160 → {0, 1}1152,

since Trivium takes 160 input bits, 80 for the key and 80 for the IV. The MDM
signature for Trivium according to (5.5) in Definition 5.5 is an 1152-bit block.

Now choose a rectilinear subspace S = {v0, v3, . . . , v78} consisting of every
third IV bit, 27 bits in total. We let the variable assignmentA for the remaining
variables be the all-zero assignment. Comparing to (5.4) in Definition 5.5, we
have

fA : {0, 1}27 → {0, 1}1152.

The 1152-bit MDM signature for Trivium over variable assignment A and
bit set S is then

σA,S =

929 zeros︷ ︸︸ ︷
000000 . . . 000000 10010 . . .︸ ︷︷ ︸

1152 bits

,

2It is possible to generalize Definition 5.5 to non-rectilinear subspaces. We will see an
example of this in Section 5.5.1.1.
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which is computed by xoring 227 different suppressed initialization outputs,
each being represented by an 1152-bit sequence.

The extremely long sequence of leading zeros in the MDM signature in
Example 5.1 is very striking. We conclude that the sequence appears random-
like close to where the first 1-bit appears, at round 930. We say that we have
observed 929 zero rounds, and one interpretation of this is that 929 initializa-
tion rounds are not sufficient to properly mix the IV bits in S. Note that this
in itself is a nonrandomness result (chosen key), motivated by Theorem 5.1.

To be a little more explicit, the IV bits v0, v3, . . . , v78 of Trivium are not
jointly multiplied during any of the first 929 initialization rounds. This in-
terpretation is the key to drawing conclusions on the mixing abilities of the
primitive, and it gives us a glimpse into the internal workings of the cipher.

Running the MDM test is as simple as Definition 5.5 and Example 5.1 sug-
gest. Choose a bit set S and a variable assignment A, calculate the MDM
signature and count the number of zero rounds. This will immediately pro-
duce a nonrandomness result. This is true no matter how we choose S or
assign the remaining variables in A. In particular, S may contain both hidden
and public input parameters—both key and IV bits.

However, some caution is required for building a distinguisher. In this case
it is necessary but not sufficient for the bit set S to contain public input param-
eters only. It is necessary not to involve key bits in S, as the MDM signature
summation would then require related-key knowledge that is not available in
a distinguishing situation. The insufficiency part is due to performance. In
Example 5.1, where we use only IV bits in S, we would be tempted to conclude
that the performance of the corresponding distinguisher is 929 rounds—that it
can distinguish up to and including 929 rounds of Trivium initialization out-
put from a truly random sequence. Unfortunately, this conclusion is gravely
incorrect. The 929 zero round count was obtained by performing the MDM
test against a fixed key, all zeros.

To assess the efficiency of the distinguisher, its performance needs to be
sampled over random keys. This can be done by running several MDM tests
over the same bit set S. The IV bits in A may be set to any fixed value,
but the key bits must be chosen uniformly at random for each test. When
we performed 16 MDM tests over random keys, setting the IV bits in A to
zero, we got minimum, median, average and maximum zero round counts of
783, 794, 794.4 and 809, respectively. For Trivium, the MDM test works much
better for keys and IVs of low weight, so we have a perceived performance
gap that is substantial. We will say something more on the issue of key weight
in Section 5.4.

Which zero round count you should report, to some extent depends on
your view on key space. Consider the hardware analogy, in which the black
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box contains a hidden but fixed key. Since we have no idea which key our
distinguisher is facing, we need to report the minimum number of rounds if
we need the distinguisher to work for (virtually) every key.

On the other hand, the round count itself can be more important in some
cases. For example, cryptanalysts may want to report the maximum round
count for a higher impact factor. They can do so, but there is a tradeoff. The
distinguisher then only works for a fraction of the key space, but the round
count is higher. Also, algorithm designers should focus on the maximum
round count for issues such as determining a suitable duration for a cipher’s
initialization phase.

When it comes to time and storage complexities, nonrandomness results
are in some sense cheaper to come by than distinguishers. Nonrandomness
detection over a bit set S = {0, 1}n has a time complexity of 2n cipher initial-
izations and requires O(l) bits of storage.

For efficiency assessment of a distinguisher over a bit set S = {0, 1}n, eval-
uation over N randomly sampled keys has a time complexity of N2n cipher
initializations and requires O(l) bits of storage. The time required for running
this distinguisher depends on whether we count the minimum or maximum
number of zero rounds. If we count the minimum, so that the distinguisher
works for the entire key space, the running time is simply 2n initializations.
Taking the maximum number of zero rounds, the black box distinguishing
model is changed to assume availability of several black boxes, each one with
a different but fixed key. In this scenario, we need to examine around N dif-
ferent black boxes before we find one that our distinguisher works for. The
total running time for the distinguisher in this model is therefore about N2n.
Taking the maximum costs us a factor of N in time and requires the assump-
tion that several black boxes are available for analysis. Higher values for N
increase the confidence level of the zero round number estimate.

The MDM test seems to be highly efficient. In a cyptanalytical sense, it
works very well in practice for some of the cryptographic algorithms. Also,
the MDM test successively xors all intermediate output sequences to produce
the final MDM signature, so it only requires a negligible amount of storage.
Furthermore, one does not need to know anything at all about the internals
of the algorithm that is being tested. The algorithm will quite politely but
candidly reveal how susceptible any black box algorithm is to the MDM test.

5.2.4 RELATING TO HIGHER ORDER DIFFERENTIALS

There is a very natural correspondence between the MDM signature and
higher order differentials, which were introduced by Lai [Lai94] and Knud-
sen [Knu95]. But before we say something about higher order differentials, let
us very briefly introduce ordinary lowest-order differentials.
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Differential cryptanalysis is a cryptanalytical technique that Biham and
Shamir [BS91] introduced to the research community in the late 1980s. The
technique was initially applied to block ciphers, but more recently it has been
applied to stream ciphers and hash functions as well. The fundamental idea
of differential cryptanalysis is to study the relationship between input and
output differences, for which a chosen plaintext scenario is a natural setting.

Assume that a b-bit block cipher E is given. For two different plaintext
blocks p and p′, the input difference is p⊕ p′ = ∆p. The difference between
the two resulting ciphertexts c = E(p) and c′ = E(p′) is ∆c = c⊕ c′, so that
we have

∆c = E(p)⊕ E(p⊕ ∆p). (5.6)

The pair
(
∆p, ∆c

)
is called a differential. For a carefully selected differen-

tial
(
∆p, ∆c

)
, the probability that Equation (5.6) holds for a randomly chosen

plaintext p should be considerably higher than 1
2b . Obviously, this property

immediately implies a distinguisher, but key recovery methods are also pos-
sible.

While differential cryptanalysis considers the sum of two values, higher or-
der differentials generalize this concept by addressing larger sums. Recently,
Knellwolf and Meier [KM12] pointed out that ANF tests on boolean functions3

can often be translated into high order differentials. This is particularly true
for the MDM test.

Definition 5.6 (An nth order derivative of a boolean function) Let f :
{0, 1}m −→ {0, 1} be a single-valued boolean function, and let S = {0, 1}n be
a linear subspace of B = {0, 1}m with dim S = n. The nth order derivative of
f with respect to S is

∆S f (y) =
⊕
x∈S

f (y⊕ x). (5.7)

In order to comply with our notation in Section 5.2.3, Definition 5.6 is ex-
pressed as if S is a rectilinear subspace of B, but this condition is not necessary.
The subspace S may be any linear subspace of B.

Recall the l-valued boolean function fA in (5.4) from Definition 5.5, and
let fi,A, 1 ≤ i ≤ l, denote the corresponding single-valued boolean function.
Comparing Equation (5.7) to Equation (5.5), it is clear that the ith MDM sig-
nature bit σi,A,S is given by

σi,A,S =
⊕
x∈S

fi,A(x)

= ∆S fi,A(0).

3For more details on monomial distribution tests, d-monomial test, the derived func-
tions approach for key recovery, cube attacks and cube testers, see [KM12].
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If we extend the ∆S notation so that the summation in Equation (5.7) is
also valid for l-valued boolean functions f , then we can write the entire MDM
signature as

σA,S =
⊕
x∈S

fA(x)

=
⊕
x∈S

f1,A(x)‖
⊕
x∈S

f2,A(x)‖ . . . ‖
⊕
x∈S

fl,A(x)

= ∆S f1,A(0)‖∆S f2,A(0)‖ . . . ‖∆S fl,A(0)

= ∆S fA(0).

5.2.5 TWO PRACTICAL DISTINGUISHING MODELS

For future reference, relating to the discussion in Section 5.2.3, we explicitly
define the following two distinguishing models.

Definition 5.7 (Standard distinguishing model) In the standard distin-
guishing model, the attacker has access to only one output-producing black
box, and she may only modify the public input parameters of the black box. A
distinguisher in this model must be able to correctly {RANDOM, CIPHER}-
classify the output of any given black box with high probability.

Definition 5.8 (Multiple choice distinguishing model) In the multiple
choice distinguishing model, the attacker has access to any number N of
output-producing black boxes, all of which produce either truly random or
cipher output. The N black boxes are each chosen uniformly at random from
the universe of all such black boxes. The attacker may only modify the public
input parameters of each black box. A distinguisher in this model must be
able to correctly {RANDOM, CIPHER}-classify the output of any such given
set of N black boxes with high probability. The value N is chosen by the
distinguisher.

The complexity of a distinguisher in the standard distinguishing model
must be stated so that it can distinguish any given black box with high prob-
ability. In the multiple choice distinguishing model, the corresponding com-
plexity may involve the parameter N, as we have seen in Section 5.2.3.

The standard distinguishing model should be familiar to most readers. It is
a practical model, in the sense that the described scenario appears in real-life
situations, and that the attacker may extract some nontrivial information from
the black box.

The multiple choice distinguishing model is also practical in the very same
sense, since the only additional requirement—availability of several black
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boxes—is, obviously, also realistic. Furthermore, note that although each
black box has a different key, there is no related-key ingredient in Defini-
tion 5.8. This is ensured by the condition that the N black boxes must each be
chosen uniformly at random from the universe of all black boxes. The condi-
tion preserves practicality, effectively providing the perfect environment for a
key space restricted distinguisher.

Of course, a distinguisher ceases to be practical once its total complexity
reaches beyond the limit of our computational abilities, but this is a non-issue
in our context.

5.2.6 BLACK BOX FRAMEWORK

As part of performing the research presented in this chapter, we put together
a specialized cryptographic library that permits output of initialization data.
The library was written in C and supports bitsliced implementations and
threading to make good use of multiple cores. This is something that the
MDM test benefits from since it is embarrassingly parallelizable. A unified
interface makes it simple to author generic tests that can be used for all sup-
ported algorithms, and LATEX-graphs of the results can be generated. This
framework is an excellent tool for testing future generators. Interested re-
searchers may find both ready-to-use executables and source code at [Sta10c].
The stream ciphers analyzed in this chapter are listed in Table 5.2.

Table 5.2: Stream ciphers subjected to GreedyBitSet.

Edon80 [GMK08] Grain v1 [HJM07]

Grain-128 [HJMM06] HC-128 [Wu08]

HC-256 [Wu04] MICKEY v2 [BD08]

Rabbit [Boe+03] Salsa20/12 [Ber08]

Sosemanuk [Ber+08] Trivium [DP08]

Our primary target is stream ciphers, but we also apply the MDM test to
block ciphers as a proof of concept. For block ciphers, we encrypt the plaintext
block consisting of all zeros, and output all suppressed intermediate blocks.
This gives us a reduced round output for the block ciphers. We use the zero
round count measure for both stream and block ciphers. The block ciphers
analyzed in this chapter are listed in Table 5.3.

5.2.7 VARIATIONS

Variations on the suggested MDM theme are, of course, abundant.
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Table 5.3: Block ciphers subjected to GreedyBitSet.

AES-128 [CN01] AES-256 [CN01]

Camellia [NC00] CLEFIA [Shi+07]

DES [CN99] HIGHT [Hon+06]

PRESENT [Bog+07] RC5 [Riv95]

RC6 [RRSY98] SEED [Lee+05]

SMS4 [DL08] TEA [WNa]

XTEA [WNb]

First of all, the suppressed output bits that we analyze can be defined in
many different ways. For stream ciphers, we have simply taken the sup-
pressed keystream as output, as explained in Section 5.2.6. However, depend-
ing on the internals of the cipher, higher biases may be attained if some non-
trivial combination of keystream is analyzed instead. This approach requires
abandonment of the black box view in favor of using additional information
on the internal cipher structure.

Also, it is not necessary to aim at the keystream at all. It is also possible
to examine the randomness of some part of the state by defining the output
accordingly. This approach may provide insight on biases inside the state
itself, which can be crucial in a cryptanalytical situation.

Furthermore, we have used MDM signature bit constantness (equal to zero)
to define the very simple but natural zero round count measure, motivated
by Theorem 5.1. We look for a consecutive string of zeros in the beginning
of the MDM signature, but this measure ignores what happens after the first
nonzero bit appears. In our simulations we have seen that the MDM signature
will at times continue to be very sparse well after the first nonzero bit appears.
This suggests that other bias tests are much more appropriate than the very
strict and absolute zero round count. Other tests may be defined to detect
weaker biases at much later rounds.

As stated in Section 5.2.6, when we apply the MDM test to block ciphers,
we encrypt the plaintext block consisting of all zeros. All suppressed inter-
mediate blocks are output to produce a reduced round output. However, us-
ing the zero round count measure in this context, quite frankly, makes much
less sense than it does for stream ciphers. Consider the MDM signature part
corresponding to two consecutive output blocks—two MDM blocks. As we
consider only a consecutive initial string of zeros in the MDM signature, this
translates to the quite harsh condition that the first MDM block must be en-
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tirely canceled out before we have a look at the succeeding one. Repeating
the idea presented above, the succeeding block may well be very sparse. In
the block cipher scenario it would make more sense to try for depth rather
than breadth. That is, it would make more sense to look at successive outputs
of one specific bit position in the block, ignoring surrounding bits in favor of
reaching as many rounds as possible.

As an alternative one may consider the block weight, aiming for a signif-
icant deviation from the random half-weight case. Unfortunately, there is a
problem with this approach. Usually we do not have so many rounds to play
with, so the statistical test quickly becomes meaningless for very short bit
strings or, as in this case, when we generate too few samples for our statistical
test. Of course, one could generate more samples by performing the tests sev-
eral times using randomly chosen4 IVs, or some similar strategy. It would be
interesting to see how efficient we can make the tests for block ciphers, using
these ideas and others.

For block ciphers, it would also make sense to include plaintext bits as
part of the public parameters. The resulting distinguisher would in this case
require several related plaintexts, which is a reasonable modification of the
attack model.

One may also consider replacing the maximum degree monomial test with
any other reasonable test of the ANF. For example, a more efficient test may
be devised by counting the number of n − 1 or n − 2 degree monomials, or
by considering any other more or less involved statistical property of boolean
functions. Ultimately, the properties of the cipher decide which ANF tests, if
any, that are efficient for proving nonrandom behavior.

Last but not least, we almost always perform the MDM signature summa-
tion in Definition 5.5 over a rectilinear subspace S. But nothing prevents us
from first utilizing a linear transformation of the basis, so that we perform
the original summation over a tilted cube instead. The generalized case pro-
vides additional degrees of freedom as the resulting search space is expanded
quite drastically by this approach. The bit flipping test that we define in Sec-
tion 5.5.1.1 can be viewed as a very simple application of this idea, but much
more complex tests can be constructed.

5.3 THE GREEDY BIT SET ALGORITHM

The trick to obtaining good results with the MDM test is to find an efficient
bit set S for summation, a bit set that produces many zero rounds. The well
known greedy heuristic provides a very simple but highly successful algo-

4Randomly chosen over a subspace of the IV space that does not include bits used in
the ANF test.
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Algorithm 13 – GreedyBitSet

Input: Key k, IV v, permissible bit space P, desired bit set size n.
Output: Bit set S of size n.
S = ∅;
for (i = 0; i < n; i++) {

S = AddBestBit(k, v, P, S);
}
return S;

Algorithm 14 – AddBestBit

Input: Key k, IV v, permissible bit space P, bit set S of size n.
Output: Bit set of size n + 1.

b = none; /* best bit so far */
max = −1; /* best zero round count so far */
for (all e ∈ P\S) {

z = numZeroRounds(σAS∪{e},k,v ,S∪{e});
if (z > max) {

max = z;
b = e;

}
}
return S ∪ {b};

rithm that in some cases outperforms all methods we have seen so far. The
algorithm is made explicit in Algorithm 13, and the subroutine AddBestBit is
specified as Algorithm 14.

Note that the temporary variable S is used to successively build the bit set
bit by bit, and that k and v are fixed input parameters. The values of the
key and IV bits in k and v are used in the obvious way to form the variable
assignment AS,k,v for the variables that lie outside S.

The bit space parameter P determines if key and/or IV bits may be used
to build the resulting bit set. That is, P can be either K, V or B = K × V,
depending on if we want to build a bit set with only key bits, only IV bits or
both, respectively.

Further note that Algorithm 13 illustrates the straightforward greedy add
best bit strategy for building the resulting bit set S. GreedyBitSet can, by
avoiding unnecessary recalculations, easily be implemented to sport a run-



126 Greedy Algebraic Cryptanalysis

ning time of precisely5

1 + ∑
0≤i<n

(m− i)2i < m2n

initializations6 for building a bit set of size n, where m is the size of the
permissible bit space P.

As a generalization, one may allow other bit set building strategies, or a
non-empty starting bit set. In this somewhat generalized form we denote an
instance of the algorithm

GreedyBitSet(primitive, strategy, starting bit set, bit space, key, IV).

For example, running the Greedy Bit Set Algorithm with the add best bit
strategy (Add1) on Trivium starting with an empty bit set, allowing only IV
bits in the bit set (P = V), using the all ones key and setting all remaining IV
bits to zero may be denoted

GreedyBitSet(Trivium, Add1, ∅, V, 1, 0).

Instead of starting with an empty bit set one may begin by computing a small
optimal bit set and go from there. For most of our results below we have used
optimal bit sets of sizes typically around five or six.

An alternative bit set building strategy is denoted AddN, which operates by
successively adding the N bits that together produce the highest zero round
count when added to the existing bit set. These bit sets should heuristically
be better than the ones produced using the Add1 strategy as local optima
are more likely to be avoided. The performances of the Add1 and Add2
strategies for Grain-128 are compared in Figure 5.2, where the red and black
curve represent the Add1 and Add2 strategies, respectively. GreedyBitSet
with AddN strategy can be implemented with a running time of precisely7

1 + ∑
0≤i<k

(
m− iN

N

)
2i < mN2k

initializations for building a bit set of size kN.
We have standardized the graphs for uniform comparison between differ-

ent algorithms. Given a bit set, the portion of leading zero rounds in the
initialization rounds is denoted bit set efficiency.

For an ideal cipher, a bit set of size n produced by the Greedy Bit Set
Algorithm will admit around log (m− n) zero rounds.

5There are m choices for the first bit, m− 1 choices for the second bit, and so on.
6Counting initializations for stream ciphers, and encryptions for block ciphers.
7There are (m

N) choices for the first bit, (m−N
N ) choices for the second bit, and so on.
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Figure 5.2: Add1 (red) vs. Add2 strategy (black) for Grain-128.

5.4 THE NONRANDOMNESS THRESHOLD

For some ciphers we have found that the result of the MDM test depends
heavily on the weight of the key. A typical example of this is Trivium, for
which the test seems to work best for the all zeros key and worst for the all
ones key. Figure 5.3 shows the efficiency of the bit sets produced by Algo-
rithm 13 for Trivium, starting with an empty set, using an all zero IV, for
these two keys.
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Figure 5.3: Key weight comparison for Trivium. The all zeros key
(black) works better than the all ones key (red).

For Trivium it seems that the all zeros and all ones keys are extreme cases.
All other keys we have tried end up producing a curve that lies between these
two, and a curve produced by averaging over several randomly chosen keys
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certainly falls between as well.
Consider an algorithm analyst that needs to determine a reasonable number

for how many initialization rounds that are needed for balancing initialization
time and security in Trivium. Using the graphs in Figure 5.3, the analyst can
see that 1000 rounds will just barely withstand signs of improper mixing in
this setting. At 972 rounds we start finding keys that allow us to prove that the
bit mixing is inadequate. As we keep reducing the number of rounds, more
and more keys show the same vulnerability. At 790 rounds, more or less
all keys simultaneously chant inadequate mixing in four-part harmony. The
algorithm designer should, of course, in this case decide on an initialization
round count well above 972. How much more is debatable.

Recall that we use a bit set S = {0, 1}n, which is a subset of the entire bit
space B = {0, 1}m. The highest round count value 972 obtained above should
really be viewed as a lower bound of a theoretical threshold for bit sets of
size n—the nonrandomness n-threshold. That is the nature of the limit we
are exploring here, a threshold for the existence of proof of inadequate bit
mixing. Testing a specific bit set of size n over a single key and IV, at the
cost of 2n initializations, provides a lower bound for this threshold. The true
threshold value is conceptually obtained by repeating the MDM test several
times taking the maximum over all possible keys, IVs and bit sets of size n
for a total complexity of (m

n)2
m−n such trials, or equivalently, (m

n)2
m cipher

initializations.

Definition 5.9 (Nonrandomness n-threshold) The maximum number of
zero rounds attainable from an MDM signature according to

max
S≤B, dim(S)=n

k∈K, v∈V

numZeroRounds
(

σAk,v,S ,S

)

is called the nonrandomness n-threshold. Here, B, K and V are the bit set
space, key space and IV space, respectively, and S is iterated over all (rectilin-
ear) subspaces of size n of B.

5.5 RESULTS

The algorithms are grouped according to susceptibility to the MDM test be-
low, where particularly interesting algorithms are given room for elaboration.
An algorithm is given a susceptibility rating high, significant, moderate or
low according to its tendency to submit to the MDM test as the bit set size
gets larger.

A direct comparison of our results to the previous and new best ones can
be found in Tables 5.9 and 5.10 in Section 5.7.
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5.5.1 HIGH SUSCEPTIBILITY

5.5.1.1 TEA AND THE BIT FLIP TEST

TEA is the top candidate. Starting with an empty bit set, we reach a full
100% zero round count after only two key bits have been added. It is the key
bits that are the weak link, and this is a previously known deficiency in TEA
(see [KSW97]).

The picture becomes quite different when one considers IV bit mixing. Al-
lowing IV bits only results in a susceptibility that seems to be inherently low,
as can be seen in Figure 5.4.
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Figure 5.4: IV bit sets for TEA show decreasing efficiency.

It seems that the shortcomings in key bit mixing have been properly dealt
with for XTEA, as the Greedy Bit Set Algorithm cannot show anything beyond
a low susceptibility level for any bit type.

There is a lesson to be learned from the TEA flaw. It is revealed by simulta-
neously flipping two key bits, in which case the output does not change. We
can devise an automated test for these simple symmetry faults. A Bit Flip Test
can be defined by xoring the two output sequences produced before and after
flipping all bits in a given bit set. Trying all bit sets of small size will catch
design flaws such as the one in TEA. The Bit Flip Test is, in fact, an MDM
test for a bit set of size 1 with a prior change of basis. Instead of summing
over a perfect cube, we sum over a tilted cube that is the result of a linear
transformation of the basis, as hinted in Section 5.2.7.

Two such two-bit configurations are known for TEA, and we have verified
that no other ones exist. We have also verified by exhaustive search that
none of the other algorithms we are considering here show any such bit flip
weaknesses for small bit set sizes (five or so).
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Table 5.4: The bit set of size 40 used to prove nonrandomness in the
full Grain-128. IV bits only, bit order preserved, starting
optimal 6-set {v34, v59, v63, v64, v67, v69} at top left.

34 59 63 64 67 69 55 61 25 85 35 58 2 73 30

38 5 6 10 44 24 50 3 77 91 95 12 13 41 72

19 29 15 79 7 37 21 45 8 71

The Bit Flip Test should really be part of every algorithm designer’s toolbox.
This test, and many others, should be used routinely to check for design errors
or unexpected behavior.

5.5.1.2 GRAIN-128

For Grain-128, IV bits have a tendency to be more efficient than key bits and,
as with Trivium, low weight keys work better than high weight keys. Running
GreedyBitSet on the all zeros key with the Add2 strategy up to bit set size
40, IV bits only, we produced a nonrandomness detector for the full Grain-
128 with its 256 initialization rounds. The successive development from the
optimal 6-bit set to a bit set size of 40 is shown in Figure 5.5, and the (zero
indexed) bit set is shown in Table 5.4. The order in which the bits have been
added to the bit set has been preserved, and the first six bit indices form the
optimal 6-set. The remaining IV bits were set to zero.
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Figure 5.5: Insufficient IV bit mixing in the full 256-round Grain-128.

We now turn our attention from nonrandomness detectors to distinguish-
ers. The best previous distinguishing result on Grain-128 were due to Knell-
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wolf et al. [KMNP10] and Aumasson et al. [Aum+09]. In [KMNP10], they
distinguish Grain-128 up to 215 rounds in the standard distinguishing model
and recover parts of the key up to 213 rounds. In [Aum+09], taking the max-
imum number of rounds over 64 random key trials, they found a 237-round
distinguisher for a bit set of size 40. To use our terminology, we have inter-
preted this as a multiple choice distinguisher as per Definition 5.8.

For our distinguishers, we ignore the two last bits of the bit set in Table 5.4,
because they do not contribute positively to the zero round count. The result-
ing bit set of size 38 turns out to provide a 246-round distinguisher, measured
by taking the maximum zero round count observed over 16 random key trials
for a (practical) complexity of 242 initializations. As explained in Section 5.2.5,
this is a distinguisher in the multiple choice model.

The minimum number of zero rounds was 228, so the same bit set also
produces a 228-round distinguisher in the standard distinguishing model ac-
cording to Definition 5.7. This is a distinguisher with a (practical) complexity
of 238 initializations.

To summarize the case for Grain-128, we have found one nonrandomness
detector showing that 256 (out of 256) rounds are insufficient for mixing the
IV bits. This detector uses a bit set of size 40 and has a complexity of 240.

We also found a 246-round multiple choice model distinguisher with com-
plexity 242. This distinguisher uses a bit set of size 38. Finally, we found a
228-round distinguisher with a complexity of 238 initializations, in the stan-
dard distinguishing model.

A first key recovery result on Grain-128 was published after [Sta10b]. It is
due to Dinur and Shamir [DS11], who show a full key recovery for Grain-128
reduced to 250 rounds with complexity of about 2100 (bit operations). The
key recovery can also be adapted to the full 256 round Grain-128, but key
recovery succeeds only for a fraction 2−10 of the key space in this case, which
has complexity 2113.

This attack was improved upon by Dinur et al. in [Din+11], where they
claim a single-key attack that recovers the entire key of the full Grain-128
without, as before, restricting the key space. The time complexity of this
attack is about 290 initializations for 7.5% of the keys, but no complexity is
specified for the remaining key space.

Also, if key recovery attacks in the related-key model are considered, then
Lee et al. [LJSH08] provide full key recovery, which in their preferred version
needs four keys and 226.6 chosen IVs, and has a time complexity correspond-
ing to about 227 initializations.
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5.5.1.3 TRIVIUM

There are several interesting observations to be made for Trivium, apart from
the importance of key weight that we have already established in Section 5.4.

When employing GreedyBitSet to produce a greedy bit set, it is natural to
aim at building a practical distinguisher. We therefore consider the case P = V
first, and Figure 5.6 shows the effects of the bit set development procedure
when we allow only IV bits in the bit set.
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Figure 5.6: GreedyBitSet(Trivium, Add1, Opt7, V, 0, 0)

Building the bit set works magnificently up to size 27, but something seems
to happen at that point. The bit set efficiency rapidly decreases as we keep
expanding the bit set further. To see if this course of events is a mere co-
incidence, let us compare with the case P = K, which we have depicted in
Figure 5.7.

The result is disappointing in that the bit set efficiency seems to reach some
kind of optimum here as well. However, since the behavior is the same for
both cases P = V and P = K, the effect that we see is more likely to be caused
by structural properties (it is).

We extend the analysis to the case P = K × V, allowing both key and IV
bits in the bit set. A typical run on GreedyBitSet is shown in Figure 5.8.

For P = K × V, we do not get the same performance drop at bit set size
27 that we saw for both P = K and P = V. Apart from a small dent in the
curve at bit set size 27, there is virtually no performance drop at all. The bit
set keeps getting better and better as it grows in size.

First of all, from the results above, let us conclude that key and IV bits
are equally effective for Trivium. This conclusion comes as no surprise if
one considers the initialization procedure. The key and IV are copied into
one register each, but the initialization procedure makes no discernible dis-
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Figure 5.7: GreedyBitSet(Trivium, Add1, Opt6, K, 0, 0)
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Figure 5.8: GreedyBitSet(Trivium, Add1, Opt5, K×V, 0, 0)

tinction between key and IV bits, they are handled the same way. However,
limiting the bit set to either key bits or IV bits seems to set a performance
limit. Allowing both kinds of bits in our bit set will take us much further.

Why is this not a contradiction, and what is the magic behind the bit set of
size 27?

When we examine the bit sets more carefully, it is evident that using ev-
ery third bit for our bit set turns out to be the most efficient choice. This is
due to the threefold structure of Trivium, and this is not a new observation
(see [MB07]). It does not seem to matter much which third we choose, but
once we have started to build up our set we do best if we stick to that implicit
third. Trivium keys and IVs are 80 bits long, so we run out of bit space when
we have reached a bit set size of 27 bits.
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Do not underestimate the importance of these observations, because they
reveal a fundamental insight. Using a black box scenario, we do not explic-
itly exploit the internal structure of the underlying primitive in our analysis.
However, despite this, black box testing is fully capable of delivering struc-
tural information relating to the given cipher. In the examples we have seen,
GreedyBitSet picks up on and exploits the internal structure of Trivium and
delivers it in the shape of an efficient bit set.

The best nonrandomness detector (P = K × V) that we have found using
GreedyBitSet takes us 1026 out of 1152 rounds. This was for the zero key,
which we noted before was heavily biased. The greedy strategy was to start
from the optimal 5-set and to use the Add2-strategy up to bit set size 29, via
the Add1-strategy up to bit set size 37, to finally just guessing the last few bits
for a total bit set size of 45. The resulting bit set is listed in Table 5.5.

Table 5.5: Bit set used for the 1026-round Trivium nonrandomness
detector (zero indexed).

Key bits 1 4 7 10 12 16 19 22 25 31 34 37

40 43 46 49 52 55 58 61 64 70 73 76

IV bits 1 4 7 10 16 19 25 28 31 34 37 40

43 46 49 52 55 58 64 67 70

The every-third-structure mentioned above is evident in this bit set, and
the natural follow-up question is how many zero rounds the full 54-bit set
with 27 key and 27 IV bits would take us. We were able to find the answer to
this question, but since the task of xoring 254 initializations is rather computa-
tionally intensive, it cost us more than one million core hours of computation
on a cluster to get there. In the end, we showed that we get 1078 out of 1152
zero rounds, which covers a whopping 93.5% of the entire initialization phase.
This result was obtained for the (canonical) bit set listed in Table 5.6 This is
our best nonrandomness result for Trivium, and to the best of our knowledge,
this nonrandomness result is still world-leading.

Considering the bit set performance drops we saw in Figures 5.6 and 5.7,
it is reasonable to assume that we will see the same effect once we try to
go beyond this supposedly near-optimal 54-bit set. The subspace consisting
of every third bit is then exhausted, and adding any other bit will ruin the
pattern in the same way as before.

If we think about the process in terms of boolean function monomials, using
a neighboring bit bridges the distance between other bits, because they may
then be multiplied together at an earlier round.



5.5. Results 135

Table 5.6: Bit set used for the 1078-round Trivium nonrandomness
detector (zero indexed).

Key bits 0 3 6 9 12 15 18 21 24

27 30 33 36 39 42 45 48 51

54 57 60 63 66 69 72 75 78

IV bits 0 3 6 9 12 15 18 21 24

27 30 33 36 39 42 45 48 51

54 57 60 63 66 69 72 75 78

We also present practical 803 and 806-round distinguishers for Trivium. As
noted before, one can use the internal structure of Trivium by using every
third IV bit for the bit set. Unfortunately, we run out of bits after 27 of them
have been added. We can, however, skip exploiting the threefold structure
and, instead, just use the fact that multiplication is always performed between
neighboring state variables. Using every second IV bit for the bit set, starting at
k0, will avoid fast initial term growth and take us 803 rounds over randomly
selected keys. This was the minimum number of rounds obtained over 16
trials, so this is a distinguisher in the standard distinguishing model, and the
resulting time complexity is therefore 240 initializations. Taking the maximum
number of zero rounds over 16 trials produces an 806-round distinguisher in
the multiple choice model, and the time complexity of this distinguisher is 244

initializations.
A noteworthy recent result is due to Knellwolf et al. [KMNP12]. They

construct a practical distinguisher with a time complexity of about 225 for
a weak subclass of 226 keys for Trivium reduced to 961 out of 1152 rounds.
This can be translated into a multiple choice distinguisher with a total time
complexity of about 280−26+25 = 279 initializations, which borders the brute-
force time complexity.

5.5.2 SIGNIFICANT SUSCEPTIBILITY

Grain v1 seems to be highly susceptible if one considers the successive effi-
ciencies of the small optimal IV bit sets that are obtained for the all-ones key,
setting the remaining IV values to ones. These bit sets are optimal in terms of
nonrandomness counting zero rounds, see Figure 5.9.

The slope of the curve looks promisingly steep, and we have reached a bit
set efficiency of 65% (104 out of 160 zero rounds) after only eight iterations.
We also started a search for the optimal IV bit set of size 9, which gave us a bit



136 Greedy Algebraic Cryptanalysis

bit set efficiency

bit set size
16 32 48 64

25%

50%

75%

100%

bit set size

# zero rounds

1 2 3 4 5 6 7 8

20

40

60

80

104

Figure 5.9: Optimal IV bit sets for Grain v1.

set producing 110 out of 160 zero rounds. This last bit set is not necessarily
optimal, as the search did not cover the entire search space, but in terms of a
nonrandomness result it sets a new record for Grain v1.

The eight optimal IV bit sets of sizes 1 through 8 are explicitly listed in
Table 5.7, together with the good bit set of size 9. Here we also list the per-
formances of each bit set in terms of the corresponding zero round count
for nonrandomness (NR), a standard model distinguisher (SD) and a multi-
ple choice distinguisher (MD). The SD and MD efficiencies were evaluated
by taking the minimum and maximum zero round counts over 210 randomly
chosen keys, setting remaining IV bits to ones. Thus, for an IV bit set of size
n, the time complexities of the corresponding SD and MD are 2n and 2n+10,
respectively.

The natural next step is now to see if we can increase the zero round count
of the optimal 8-bit set by expanding it using GreedyBitSet. However, the re-
sult of this greedy search is much less impressive than one might have wished
for, see Figure 5.10.

Grain v1 is susceptible, as one can see from the direction of the curve in Fig-
ure 5.10, but the level of susceptibility seems to be limited as the extrapolated
greedy curve will not hit the roof for any bit set of relevant size. Furthermore,
there is a large drop in the first iteration of the greedy algorithm. We have
seen this decline for other primitives as well, but the drop is usually not as
dramatic as it is here. The greedy approach does not seem to work very well
at first. It picks up the pace during the following rounds to show a positive
slope, but it fails to recover from the initial recession.

One interpretation of this is that the search landscape defined by the MDM
test is not very smooth for Grain v1—the zero round count values can vary
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Table 5.7: Good and optimal IV bit sets for Grain v1. The bit sets of
size 1 to 8 are optimal, while that of size 9 may not be.

size bit set (zero indexed) NR MD SD

1 12 28 28 9

2 0 5 70 64 34

3 9 14 50 76 75 46

4 9 19 34 57 86 79 56

5 8 37 49 56 57 90 80 56

6 5 7 27 29 43 45 96 72 53

7 12 17 18 46 47 53 59 101 82 63

8 4 16 20 22 37 43 44 60 104 82 67

9 11 18 21 22 28 45 55 56 60 110 88 68

considerably. The greedy approach is to perform a local search in the im-
mediate neighborhood of the current best solution, and the optimal bit sets
are local optima that are exceptionally good. It is possible that the optimal
set of any size is extremely efficient compared to a randomly chosen bit set
of that size. This suggests that there may be other ways of defining a close
neighborhood for a search that is more efficient than the greedy approach,
or perhaps employing non-rectilinear MDM summation in some way will be
more efficient.

The plot in Figure 5.9 can be viewed in light of the nonrandomness n-
threshold. The curve matches the best attainable bit set efficiency that can be
obtained for each IV bit set size, which corresponds to restricting the maxi-
mum in Definition 5.9 to be taken over subspaces S of the permissible bit set
subspace P = V, using the all-ones key and IV according to

max
S≤P, dim(S)=n

numZeroRounds
(

σA1,1,S ,S

)
.

Of course, this curve sets an upper bound on the zero round count perfor-
mance of any existing search algorithm, given the key and IV restrictions. The
very same curve can also be seen as a lower bound for the true nonrandom-
ness n-threshold, as lifting the restrictions in key and IV space may lead to
increased zero round counts.

Our best nonrandomness result for Grain v1 is 104 zero rounds with the
IV bit set of size 8 shown in Table 5.7, setting all key bits and the remaining
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Figure 5.10: GreedyBitSet(Grain v1, Add1, Opt8, V, 1, 1)

IV bits to ones. As we have seen, this bit set produces a standard model
distinguisher and a multiple choice distinguisher for 67 and 82 zero rounds,
respectively.

Our best distinguisher is a 90-round greedy multiple choice distinguisher
that was derived from a greedy IV bit set of size 35 by taking the maximum
zero round count over 16 random keys for a complexity of 239. The IV bit set
is given in Table 5.8.

Table 5.8: Greedy IV bit set of size 35 used by 90-round multiple
choice distinguisher for Grain v1.

1 22 26 37 45 47 55 12 16 4 28 29

36 0 39 31 34 10 11 7 32 9 50 13

25 59 5 3 57 53 51 42 33 38 8

The best distinguisher for Grain v1 is a 104-round distinguisher due to
Knellwolf, Meier and Naya-Plasencia [KMNP10]. A side-effect of this distin-
guisher is that some key material is also recovered.

As for Grain-128, if we consider key recovery attacks for Grain v1 in the
related-key model, Lee et al. [LJSH08] provide full key recovery using four
keys and 222.6 IVs in time corresponding to about 222.9 initializations.

5.5.3 MODERATE OR LOW SUSCEPTIBILITY

AES, DES, CLEFIA and HIGHT all start at and stay within a bit set efficiency
in the range 25-50%. These algorithms show only very slight or no sign of
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Figure 5.11: GreedyBitSet(Grain v1, Add1, S, V, 1, 1), where S is the
IV bit set of size 9 given in Table 5.7.

budging as the bit set size increases.
The remaining ciphers have a bit set efficiency below 25%. Edon80 deviates

from the norm by having a somewhat erratic curve, but it seems to stay within
the 0-25% efficiency range. Sosemanuk does show a tendency to be affected
by the MDM test, but all other algorithms seem to be more or less inherently
non-susceptible.

It is interesting to see that the bit set efficiency for IV bits in RC5, and for IV
bits in RC6 and key bits in XTEA to a lesser extent, show a decreasing tendency
as the search progresses and bit set sizes increase. The curve for RC5 IV bits
can be seen in Figure 5.12.
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Figure 5.12: IV bit sets for RC5 show decreasing efficiency.
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HC-128 and HC-256 set a record of sorts at the low end by showing no
significant susceptibility while producing an extremely large amount of initial
data.

The yet unmentioned and remaining algorithms; Camellia, MICKEY v2,
PRESENT, Rabbit, Salsa20/12, SEED and SMS4, all seem to be inherently non-
susceptible.

5.6 ON THE EXISTENCE OF WEAK BITS

Let us elaborate on the concept of weak bits, see [ADMS09, FKM08]. Weak
bits are such that they significantly increase the efficiency (the number of zero
rounds) of a bit set if they are added to it. The first question one might ask is:
Do weak bits exist at all? The Greedy Bit Set Algorithm answers this question
and reveals some deeper insight into the concept of weakness. Our algorithm
successively builds larger bit sets by repeatedly adding the weakest remaining
single bit (Add1 strategy). For Trivium, bits at every third bit position eagerly
reappear among the top ranked bits again and again as the bit set size steadily
increases. The bits at other (off-third) positions do not show up as top ranked
at all. This zero round distribution regularity is clear evidence that Trivium
has weak bits. Other algorithms show no sign of weak bits. This does not
prove their non-existence in any way, but we surmise that any bit selection
strategy for a truly perfect algorithm should not perform much better than
random choice. For Grain-128, there are signs of bit weakness, but they are
much less conclusive than for Trivium.

The existence of weak bits is algorithm dependent. Also, when we use
GreedyBitSet we successively expand a bit set with the currently weakest bit.
This means that the existence of weak bits does not only depend on the choice
of test, but also on the current state of the test. As for drawing conclusions on
the existence of globally weak bits, defining how to measure bit weakness is
only the first step into a rather non-trivial enterprise.

One consequence of this is that one cannot prove any general performance
guarantees for GreedyBitSet stating that we will obtain a sufficiently efficient
bit set with some supposedly high probability. As we have seen, for Trivium
we do, for RC5 we do not.

Also, more intelligent analysis of the zero round distribution over the re-
maining bit space could lead to better practical assessment measures for bit
weakness that could be used to improve The Greedy Bit Set Algorithm.
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5.7 RESULTS SUMMARY

We have shown how to find efficient bit sets in a systematic and determin-
istic way by using the Greedy Bit Set Algorithm. The record-breaking dis-
tinguishers and nonrandomness detectors derived from using the Greedy Bit
Set Algorithm show that this algorithm has the capacity to outperform all
other bit set selection schemes we have seen so far. Tables 5.9 and 5.10 com-
pare the previous best results to the current ones for Trivium and Grain-128,
respectively.

Table 5.9: Trivium record comparison. SD = standard distinguishing
model, MD = multiple choice distinguishing model, NR =
nonrandomness.

Type Rounds Time Authors Rounds Time Authors

SD - - - 803 240 [Sta10b]

MD 806 244 [Sta10b] 961 279 [KMNP12]

NR 885 227 [ADMS09] 1078 254 [Sta10b]

Table 5.10: Grain-128 record comparison. SD = standard distinguish-
ing model, MD = multiple choice distinguishing model,
NR = nonrandomness, * = with full key recovery.

Type Rounds Time Authors Rounds Time Authors

SD 215 225 [KMNP10] 228 238 [Sta10b]

MD 246 242 [Sta10b] 256 294 [Din+11]∗

NR - - - 256 240 [Sta10b]

We presented a nonrandomness detector showing that Grain-128 with full
256-round initialization does not behave sufficiently random. This detector
uses an IV bit set of size 40 and has a complexity of 240. We also presented a
246-round distinguisher over random keys with complexity 242.

For Trivium we found a greedy 1026-round nonrandomness detector with
complexity 245. Using a cluster, we went on to find a nonrandomness detector
for 1078 out of 1152 rounds with 254 complexity. We also presented a 806-
round distinguisher with 244 complexity.

For Grain v1 we showed nonrandomness up to 110 rounds with complexity
29, and a 90-round distinguisher with complexity 239.
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5.8 CONCLUDING REMARKS

With the exception of TEA, all block ciphers we have tested seem reasonably
resistant to the maximum degree monomial test. Due to differences in how
zero rounds are measured in stream and block ciphers, one should, however,
not immediately draw the conclusion that block ciphers are safer than stream
ciphers.

The Greedy Bit Set Algorithm can be examined with more elaborate strat-
egy variants, bit selection schemes, randomness tests, cryptographic algo-
rithms, allowing plaintext bits in the bit set, and so on. The most urgent
and constructive goal, however, would be to explain why the MDM test fails
miserably for some algorithms. What minimal set of properties is guaranteed
to render the MDM test useless?

Automated cryptanalysis can be performed on many, if not most, crypto-
graphic primitives. A toolbox of various tests, MDM-based and others, should
be at the disposal of every algorithm designer. At the very least, as we have
seen here, such a toolbox can be used to reveal unexpected design weaknesses
and to give better estimations on the required number of initialization rounds.
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ACISP Australasian Conference
on Information Security
and Privacy.

AES Advanced Encryption
Standard.

ANF Algebraic normal form,
see Definition 5.2.

APS All pairs sampling, see
Section 4.3.1.

ARX A system that uses three
operations; addition, xor
and rotations.

AX A system that uses two
operations; addition and
xor.

DES Data Encryption
Standard.

FCSR Feedback with carry shift
register.

FSE Fast Software Encryption,
an IACR conference.

GSM Global System for Mobile
Communications, Groupe
Spécial Mobile.

IACR International Association
for Cryptologic Research.

IEEE Institute of Electrical and
Electronics Engineers.

ISIT International Symposium
on Information Theory, an
IEEE conference.

IV Initialization vector.

LFSR Linear feedback shift
register.

LPS Linear pairs sampling, see
Section 4.3.2.

LSB Least significant bit.

MAC Message authentication
code.

MDM Maximum degree
monomial, see
Section 5.2.1.

143



144 Greedy Algebraic Cryptanalysis

MSB Most significant bit.

NFSR Nonlinear feedback shift
register.

OTP One-time pad.

RSA A public-key
cryptosystem invented by
Rivest, Shamir and
Adleman.

RX A system that uses two
operations; rotations and
xor.

VS Vector sampling, see
Section 4.3.3.

WS Weight sampling, see
Section 4.3.4.

xor Exclusive or, a binary
operation, see Table 1.1.
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