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Abstract This review encompasses the most important
advances in liver functions and hepatotoxicity and analyzes

Patricio Godoy, Nicola J. Hewitt and Jan G. Hengstler have
contributed equally to the planning, implementation and final editing
of this manuscript. The authors above are listed in alphabetical order,
with the exception of first, second and last authors.

Electronic supplementary material The online version of this
article (doi:10.1007/s00204-013-1078-5) contains supplementary
material, which is available to authorized users.

P. Godoy - R. Stober - A. Widera - J. G. Hengstler
Leibniz Research Centre for Working Environment and Human
Factors (IFADO), 44139 Dortmund, Germany

N. J. Hewitt (<)
SWS, Wingertstrasse 25, 64390 Erzhausen, Germany
e-mail: nickyhewittltd @yahoo.co.uk

U. Albrecht - J. G. Bode - D. Haussinger - V. Keitel - C. Kordes
Clinic for Gastroenterology, Hepatology and Infectious
Diseases, Heinrich-Heine-University, Moorenstrasse 5,

40225 Diisseldorf, Germany

e-mail: claus.kordes@med.uni-duesseldorf.de

which mechanisms can be studied in vitro. In a complex
architecture of nested, zonated lobules, the liver consists of
approximately 80 % hepatocytes and 20 % non-parenchymal
cells, the latter being involved in a secondary phase that may
dramatically aggravate the initial damage. Hepatotoxicity, as
well as hepatic metabolism, is controlled by a set of nuclear
receptors (including PXR, CAR, HNF-4a, FXR, LXR, SHP,
VDR and PPAR) and signaling pathways. When isolating
liver cells, some pathways are activated, e.g., the RAS/MEK/
ERK pathway, whereas others are silenced (e.g. HNF-4a),
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resulting in up- and downregulation of hundreds of genes. An
understanding of these changes is crucial for a correct inter-
pretation of in vitro data. The possibilities and limitations of
the most useful liver in vitro systems are summarized,
including three-dimensional culture techniques, co-cultures
with non-parenchymal cells, hepatospheres, precision cut
liver slices and the isolated perfused liver. Also discussed is
how closely hepatoma, stem cell and iPS cell-derived hepa-
tocyte-like-cells resemble real hepatocytes. Finally, a sum-
mary is given of the state of the art of liver in vitro and
mathematical modeling systems that are currently used in the
pharmaceutical industry with an emphasis on drug metabo-
lism, prediction of clearance, drug interaction, transporter
studies and hepatotoxicity. One key message is that despite
our enthusiasm for in vitro systems, we must never lose sight
of the in vivo situation. Although hepatocytes have been
isolated for decades, the hunt for relevant alternative systems
has only just begun.

Keywords Non-parenchymal cells - Mechanisms of
gene regulation - DILI - 3D Models - Cryopreservation -
Clearance - Mathematical modeling

Contents
1 INtrOdUCHION. ..ccvieeiiieiie ettt 1319

J. Bolleyn - J. Fraczek - V. Rogiers - T. Vanhaecke - M. Vinken
Department of Toxicology, Centre for Pharmaceutical Research,
Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel,

1090 Brussels, Belgium

C. Borner - K. S. Ferreira
Institute of Molecular Medicine and Cell Research,
University of Freiburg, Freiburg, Germany

J. Bottger - R. Gebhardt - M. Matz-Soja
Institute of Biochemistry, Faculty of Medicine,
University of Leipzig, 04103 Leipzig, Germany

A. Braeuning - M. Schwarz

Department of Toxicology, Institute of Experimental and
Clinical Pharmacology and Toxicology, Wilhelmstr. 56,
72074 Tiibingen, Germany

R. A. Budinsky - J. Craig Rowlands
Toxicology and Environmental Research and Consulting,
The Dow Chemical Company, Midland, MI, USA

B. Burkhardt - A. K. Nussler
BG Trauma Center, Siegfried Weller Institut, Eberhard Karls
University Tiibingen, 72076 Tiibingen, Germany

N. R. Cameron

Department of Chemistry, Durham University,
Durham DHI1 3LE, UK

@ Springer

2 Structure and cellular components of the liver.................. 1321
2.1 Cell composition and organization

2.2 Zonal heterogeneity of hepatocytes ..........cccccvceeeenen. 1325

2.2.1  Key methods for investigating metabolic

ZONALION ...cviiiieiciiciieic e 1325

2.2.2  Factors determining metabolic zonation ... 1327

2.3 Non-parenchymal cells and their role in hepatotoxicity 1327

2.3.1  Liver sinusoidal endothelial cells............... 1329

2.3.2  Kupffer cells. ..., 1330

2.3.3  Macrophages... .. 1331

2.3.4  Neutrophils ............ .. 1332

2.3.5 Natural killer cells. .. 1332

2.3.6  Stellate cells......ooevevirinininiciiciiiiciee 1333

2.3.7  Biliary epithelial cells........cccccoeeeinnennnn. 1334

3 Regulatory genes and signaling pathways in the liver...... 1335

3.1 MICTORNAS ..ottt 1335

3.2 NUucClear reCeptors .......coceververeuiririsierieeereeeeeee e 1335

3.2.1  Pregnane-X receptor (PXR)......ccccceerncnene 1336

3.2.2  Constitutive androstane receptor (CAR)... 1337
3.2.3  Hepatocyte nuclear factor 400 (HNF-4ar)... 1337

3.24  The Farnesoid X receptor (FXR) .............. 1338
3.2.5 Liver X receptor (LXR)..ccccooeeviriencnicnen. 1339
3.2.6  Small heterodimer partner (SHP). .. 1340
3.2.7  Vitamin D receptor (VDR) ......cccecvvvrnenee. 1340
3.2.8  Peroxisome proliferator-activated

receptor (PPAR) .....ccoevieniiiiiiiice 1341

3.3 Signaling pathways involved in drug-metabolizing
enzyme 1egUlAtioN. .........cceviiierienieieireieieeeecsene 1342

3.3.1  Observations in hepatoma cells link

B-catenin signaling to hepatic drug

metabolisSm........coevieveiiinireiciceeecee 1342
3.3.2  B-Catenin signaling regulates drug

metabolism in normal murine liver tissue... 1343
3.3.3  Signaling gradients in liver—a role for

non-parenchymal cells?................cocee. 1344

3.3.4  Effects in vitro and molecular mechanisms 1345

G. Camussi - V. Fonsato
Department of Medical Sciences, University of Torino,
10126 Turin, Italy

C.-S. Cho - Y.-J. Choi - B. Singh

Department of Agricultural Biotechnology

and Research Institute for Agriculture and Life Sciences,
Seoul National University, Seoul 151-921, Korea

U. Dahmen

Experimental Transplantation Surgery, Department of General
Visceral, and Vascular Surgery, Friedrich-Schiller-University
Jena, 07745 Jena, Germany

G. Damm - M. Glanemann
Department of General-, Visceral- and Transplantation Surgery,
Charité University Medicine Berlin, 13353 Berlin, Germany

O. Dirsch
Institute of Pathology, Friedrich-Schiller-University Jena,
07745 Jena, Germany

M. T. Donato - M. J. Gémez-Lechén
Unidad de Hepatologia Experimental,
IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain

M. T. Donato - M. J. Gémez-Lechén
CIBERehd, Fondo de Investigaciones Sanitarias,
Barcelona, Spain



Arch Toxicol (2013) 87:1315-1530 1317
4 Hepatic drug and bile acid metabolism and transport....... hepatocyte function 1368
4.1 Uptake of xenobiotics and endogenous substances... 56 3D liver models ... 1370
4.1.1  OATPs and OATs in the liver.................. 5'7 Hydrogel 3D scaffolds ''''''''''''''''''''''''''''''''''' 1371
SIS GO 571 3D scaffold CUltures .........ooooooocrn 1373
1. TUCOSE oo 572 Scaffold parameters and hepatocellular
4.1.4  Bile salts ..cccooeeiiniiiiceeeee behavior 1376
4.2 Efflux of xenobiotics and endogenous substances.... 573 Hepatosp.};.f;;‘;; '''''''''''''''''''''''''''''''' 1378
4.2.1  Efflux of. x;noblotlcs and drugs ......c......... 5.8 3D co-cultures of hepatocytes with
4.2.2  Phospholipids and cholesterol.................... non-parenchymal cells 1382
i;i BTilrUbin ........................................ 5.9 Microfluidic in vitro systems—advances and
2. Bile sa! ts...l..... ....................................... status for a physiologically relevant sinusoid-like
4.3 Transporter expression in hepatocyte models ........... liver cell culture device 1386
4.3.1 Primar){ cultured hepatocytes.........c.... 5.10 Bio-artificial liVers........ccccceeiviveinieirirciecieecen 1391
s L ,4'3'_2 O?inqld C;:ltures lld 6 Cryopreservation of hepatocytes and recent developments 1395
Iglv.er n v1tr<; models In pharmacology, toxicology an 6.1 Further improvement of cryopreservation techniques 1396
asiC TeSEArCh..vvvvvvvvvvrvvvrnrre L 6.1.1 General considerations for successful
5.1 The isolated perfused rat liver .........c.coccevecerininennne cryopreservation 1396
.11 The perfusion apparatus—general 6.1.2  Storage of 2D and 3D cultures.................. 1397
C cons1d§rat10ns """ o 6.1.3  Cryoprotectants and supplements . . 1397
5.2 Applications of liver perfusion ........c..ccccceeeverenennene 6.14 The freezing apparatus. 1308
5.2.1  Determination of metabolic flux rates....... 6.15 Post-thaw methods 1398
5.3 Precision-cut ILve'r shc?s ............................................. 6.2 Effect of cryopreservation on transporter function... 1398
3.1 ir/lc ‘11).?“0“ 0 PCLS e 7 Hepatocyte dedifferentiation ............cccceeveiviviinieneinennene. 1399
ggg D1a ility olt) I;CLSPCLS """" 7.1 Characteristics of hepatocyte dedifferentiation ......... 1400
e rug metabo ‘ST“ mn e 7.1.1  Hepatocyte “dedifferentiation” is a
5.3.4 Drug Fransport in .P.CLS ...... s consequence of overactive RAS/MEK/ERK
5.3.5 Drug-induced toxicity and liver disease signaling 1400
A e husmg }E:CLS ................................................. 7.12  Cultured hepatocytes exist in a
34 Isolate R e “proliferation primed state” ...................... 1401
5.4.1 Shlpp}ng of isolated he?patocytes ............... 7.13  Hepatocyte differentiation and
542 Functionality and quality control of human dedifferentiation as reversible results of
hf&patocytes R B~ R signaling network aCtVIties ..........rr.. 1401
5.4.3  Pitfalls and limitations in the isolation of 7.14  Epigenetic and posttranscriptional
| prlnfriry human hepztocytes h """""""""" mechanisms as novel anti-dedifferentiation
3.5 Co-cultures o 1°p atocytes and macrophages ........... strategies for primary hepatocytes in culture 1402
5.5.1 Isolatlor} of macrophages and models....... 7.15  Epigenetics and its mechanisms in the
5.5.2 Interaction between hepatocytes and regulation of gene expression 1402
macrophages during the acute phase 7.1.6  Inhibition of HDAC and/or DNMT
response a’nd sepn’c liver injury ......co...... activity in the hepatic in vitro systems as
3-33  Intercellular feedback loops of anti-dedifferentiation strategy? .................. 1404

hepatocytes and macrophages in the
regulation of liver regeneration and

M. T. Donato
Departamento de Bioquimica y Biologia Molecular, Facultad de
Medicina, Universidad de Valencia, Valencia, Spain

S. Dooley - C. Meyer

Department of Medicine II, Section Molecular Hepatology,
Medical Faculty Mannheim, Heidelberg University, Mannheim,
Germany

D. Drasdo - S. Hoehme
Interdisciplinary Center for Bioinformatics (IZBI),
University of Leipzig, 04107 Leipzig, Germany

D. Drasdo

INRIA (French National Institute for Research in Computer
Science and Control), Domaine de Voluceau-Rocquencourt,
B.P. 105, 78153 Le Chesnay Cedex, France

D. Drasdo
UPMC University of Paris 06, CNRS UMR 7598, Laboratoire
Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France

7.1.7  miRNAs and their regulation by HDAC
inhibition in primary hepatocyte

R. Eakins - A. Gibson - C. E. P. Goldring - B. Kevin Park -

D. J. Naisbitt - C. Rowe

Department of Molecular and Clinical Pharmacology, Centre for
Drug Safety Science, Institute of Translational Medicine,
University of Liverpool, Liverpool, UK

K. S. Ferreira

GRK 1104 From Cells to Organs, Molecular Mechanisms of
Organogenesis, Faculty of Biology, University of Freiburg,
Freiburg, Germany

G. M. M. Groothuis

Department of Pharmacy, Pharmacokinetics Toxicology and
Targeting, University of Groningen, A. Deusinglaan 1,
9713 AV Groningen, The Netherlands

L. Gustavsson

Department of Laboratory Medicine (Malmo),
Center for Molecular Pathology, Lund University,
Jan Waldenstroms gata 59, 205 02 Malmo, Sweden

@ Springer



1318 Arch Toxicol (2013) 87:1315-1530
cultures/hepatoma cell lines.............c...... 1404 understanding AhR-mediated liver tumor
8 Alternative models to primary human hepatocytes ........... 1405 mode of action and the human relevance..... 1423
8.1 Cell lines isolated from human hepatomas ............... 1406 10.1.2  Human sensitivity to dioXins........c............ 1425
8.1.1  Advantages and drawbacks of cell lines... 1406 10.1.3 Relative potency of dioXins..........cccceeueee. 1425
8.1.2  Strategies to develop metabolically competent 10.1.4 Replicating observations reported in human
hepatic cell lines by gene engineering.......... 1406 epidemiology studies: Improving Regulatory
8.1.3  Metabolically competent hepatic cell Values For PCDD/Fs ................ .. 1426
lines for drug hepatotoxicity testing.......... 1408 10.2 PPARa pathway and hepatocarcinogenesis............... 1426
8.2 iPS cells for modeling diseases and ADMET ............... 1411 10.3 Hepatocyte in vitro systems to study apoptosis
8.2.1  Limitations and challenges of using N the TIVeT..coiiiiiiiiicicic e 1429
iPS-derived hepatocytes for studying human 10.3.1 FasL-induced apoptosis signaling
Liver diSEases .......cccoveererenrenieieieenienrenes 1412 differs between isolated, collagen-plated
8.3 Embryonic stem cell-derived hepatocytes................. 1412 and in vivo liver residing hepatocytes ...... 1431
8.3.1  Foetal liver cellS.......cccccocerinenieininincnnnee 1413 10.3.2  Apoptosis in hepatocytes by a systems
8.3.2  Human adult liver stem cells..................... 1413 biology approach......c..ccceeceeiininiicncnnicnnn. 1433
8.3.3  Hepatocyte proliferation induced by gene 10.3.3 Modeling the TNFa-induced apoptosis
ELANSTET . 1414 pathway in hepatocytes combining
9 Use of in vitro systems for predicting metabolism and FasL/TNFo and TNFo/ActD ..................... 1434
drug INtEraACtiONS ....cveeveeieriieiieiieiceiteteet et 1415 10.3.4 Conclusions and future challenges in
9.1 Prediction of hepatic drug clearance 1415 apopLosis research ...........ccoeevveeivenenenne 1434
9.1.1  Overview of prediction methodology status. 1415 10.4 Hepatocellular lipid accumulation and non-alcoholic
9.1.2  In vitro—in vivo extrapolation: a work in fatty liver diSease........cceveveruerueieiiininenicreeecneane 1434
PIOZTESS ettt et 1415 10.5 Idiosyncratic DILI ......cocoooiiviiieneniiniiicnceiciceene 1436
9.1.3  Current expectations in prediction from 10.5.1 Mechanisms of DILI .. 1437
hepatocytes .......coevvererienenieneeierceene 1417 10.5.2 Metabolism-mediated iDILIL....................... 1438
9.1.4  Future development of the hepatocyte 10.5.3 Immune-mediated iDILI ...........cccoceeeninne 1441
model for prediction of clearance................. 1418 10.5.4 Polymorphic MHC associations ................ 1442
9.2 Drug—drug interactions: prediction of enzyme 10.5.5 Intracellular signaling networks
induction, inhibition, transporter and enzyme controlling DILI ......ccccoovevenieniniininicnens 1445
interplay, active uptake, and clearance...................... 1418 10.5.6 Modes of drug-induced hepatocyte cell
9.2.1 DDIs involving drug-metabolizing enzymes 1419 death and the signaling involved............... 1445
9.2.2  DDIs involving drug transporters.............. 1420 10.6 Hepatotoxicity models...........ccccevieveiiniiiicinncne. 1446
9.2.3  Impact of enzyme and transporter 10.6.1 Toxicogenomics, a rapidly evolving
inhibition on the overall subdiscipline of toxicology ........cccecerennee 1446
pharmacokinetics ..........oceeevveveenenenenene. 1420 10.6.2  iDILI biomarkers.........ccccovevieiccinininennns 1451
10 Use of in vitro systems for predicting liver toxicity ......... 1422 10.6.3 Immune-mediated iDILI models ............... 1451
10.1 Studying the role of the aryl hydrocarbon 10.6.4 Role of NPCs in immune-mediated DILI..... 1452
receptor and dioxin toxicity in primary hepatocytes 1422 10.6.5 Use of primary cells versus transformed

10.1.1 Primary hepatocytes as models for

C. Guyot - G. A. Kullak-Ublick - J. Mwinyi - B. Stieger
Department of Clinical Pharmacology and Toxicology,
University Hospital, 8091 Zurich, Switzerland

D. Hallifax - J. B. Houston

Centre for Applied Pharmacokinetic Research (CAPKR),
School of Pharmacy and Pharmaceutical Sciences, University
of Manchester, Oxford Road, Manchester M13 9PT, UK

S. Hammad

Department of Forensic Medicine and Veterinary Toxicology,
Faculty of Veterinary Medicine, South Valley University,
Qena, Egypt

A. Hayward - S. A. Przyborski
Biological and Biomedical Sciences, Durham University,
Durham DH13LE, UK

C. Hellerbrand
Department of Medicine I, University Hospital Regensburg,
93053 Regensburg, Germany

P. Hewitt
Merck KGaA, 64283 Darmstadt, Germany

@ Springer

H.-G. Holzhiitter

Institut fiir Biochemie Abteilung Mathematische
Systembiochemie, Universititsmedizin Berlin (Charité),
Charitéplatz 1, 10117 Berlin, Germany

J. Hrach
FORIM GMBH, 68165 Mannheim, Germany

K. Ito

Research Institute of Pharmaceutical Sciences, Musashino
University, 1-1-20 Shinmachi, Nishitokyo-shi,

Tokyo 202-8585, Japan

H. Jaeschke - A. Ramachandran

Department of Pharmacology, Toxicology and Therapeutics,
University of Kansas Medical Center, Kansas City,

KS 66160, USA

J. M. Kelm - S. Messner
InSphero AG, 8952 Schlieren, Switzerland

J. Luebke-Wheeler
Liver and Stem Cell Technologies, Madison,
WI 53711, USA



Arch Toxicol (2013) 87:1315-1530

1319

cells for hepatotoxicity testing................... 1454
10.6.6 Tools for high-throughput assays used in
chemical screening.........c.ccoceeeeeveencncnnenne. 1455
10.6.7 High-throughput screening and prediction
models for DILI and the use of image
ANALYSIS weevieiiiieieeeeeee e 1455
10.6.8 Use of tissue imaging, image analysis and
mathematical modeling to model in vitro
and in vivo liver architecture..................... 1458
10.6.9 Use of mathematical modeling to liver
metabolic pathways and cellular behavior.. 1463
11 Final conClUSIONS .....cc.ccveuiiiriiniiiicicictnieceeeceee e 1466
Appendix 1: Hepatocyte isolation protocols ............cc.ccereuene. 1466
Isolation of human hepatocytes ...........cocccvevivinenicnicciniencnenene 1466
Preparation of media and equipment............c.cccecereruennnee. 1467
1467
EqQUIPMENt ....c.oviiiiiiiiiiiieieceecceeeeee e 1467
Isolation Procedure ...........ccvivirieririeenineneneeceeeeceeane 1468
Cell yield and purification .........c..cecevevieneriicnennicncniennen. 1470
Seeding and culture of primary human hepatocytes............. 1470
Shipping method.........cccooveiiiiiiiiieeeeee 1471
Isolation of primary rat and mouse hepatocytes............c..c...... 1471
Preparation of buffers, media and equipment.................... 1471
General buffers..........c.cccooeveivicnnnne. 1471
Buffers for perfusion..........cccceceveiinenieieniicneee 1472
EqQUIPMENt ....c.ooveiiiiiiiiiniiieicieecnceeteeee e 1472
ANIMALS ..o 1472
Setup of the perfusion apparatus .............ccceceevviiiinenenne 1473
General procedure for mouse and rat liver .. 1473
Isolation ProCedure ...........ccvirerieriiieeninineneeeeeeee e 1473
Hepatocyte purification with Percoll®......oveeveeeeeeen. 1475
Appendix 2: Primary human hepatocyte collagen sandwich
and monolayer protocols 1475
Equipment...........c..c..... 1475
Reagents and media 1475
Cell suspension preparation ............c.cccceeceeeveereercennenennen 1476
Collagen Sandwich preparation procedure... 1476
Collagen monolayer protocol.........c.ccceeerereneiecinenenennne 1477
Appendix 3: Model-guided experimental strategy—equation
Of Cell MOtION ....viiiiiiiiciiciceee e 1477
Metropolis algorithm... 1478
REfEICNCES....c.veiiiiiicec e 1478

A. Lutz - I. Merfort - K. Schmich
Department of Pharmaceutical Biology and Biotechnology,
University of Freiburg, Freiburg, Germany

D. J. Maltman - S. A. Przyborski
Reinnervate Limited, NETPark Incubator, Thomas Wright Way,
Sedgefield TS21 3FD, UK

P. Olinga

Division of Pharmaceutical Technology and Biopharmacy,
Department of Pharmacy, University of Groningen, 9713 AV
Groningen, The Netherlands

C. Schelcher

Department of Surgery, Liver Regeneration, Core Facility,
Human in Vitro Models of the Liver, Ludwig Maximilians
University of Munich, Munich, Germany

Y. Sugiyama

Sugiyama Laboratory, RIKEN Innovation Center, RIKEN,
Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho,
Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan

1 Introduction

In 2007, a review on the “current understanding of the
regulation of metabolic enzymes and transporter proteins,
and pharmaceutical practice for the use of hepatocytes in
metabolism, enzyme induction, transporter, clearance, and
hepatotoxicity studies” was published (Hewitt et al. 2007).
This review was the result of a symposium dedicated to the
characterization and use of hepatocytes (organized by the
“Medicon Valley Hepatocyte User Forum™) and written by
presenters at the meeting. Since this time, there have been a
number of advances in the understanding of hepatocyte
functions, cell signaling, and mechanisms in liver toxicity,
as well as culture techniques such as 3D cultures and co-
culture with non-parenchymal cells (NPCs). More recently,
great advances have also been made in the generation of
hepatocyte alternative models from iPS cells, embryonic
stem cells, etc. This prompted a number of original authors
to collaborate with other experts in the fields of hepato-
cytes, NPCs, toxicology and drug metabolism to compile
an update of research since 2007—there have been many
developments, reflected quite magnificently in the size of
this tome! Most sections include a list of key questions and
“take home messages” so that the reader can select topics
accordingly. The result is a comprehensive overview of
“all that is hepatic,” from the structure of the liver to cell
isolation tips (including a supplementary section with
detailed protocols for the isolation and culture of human
and rodent hepatocytes) and to mechanisms involved in
hepatocyte differentiation and function, metabolism, dis-
ease and drug-related liver injury.
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Fig. 1 a Cellular composition and architecture of the liver. Hepatocytes
have two basolateral sides that face the sinusoidal blood vessels. The
apical side consists of invaginations of the plasma membrane of adjacent
hepatocytes. These invaginations form the strongly interconnected bile
canaliculi. Tight junctions separate the apical compartments from the
basolateral compartment. Adapted from Sasse et al. (1992). b Immuno-
histochemical analysis of cell components of normal human liver tissue:
1 hepatocytes (Hepar, x400); 2 biliary epithelial cells (CK7, x400); 3
endothelial cells (CD31, x100); 4 vascular endothelial cells (CD34,
x100); 5 endothelial cells in lymphatic vessels (D2-40, x100); 6
perineural cells of a nerve (S100, x 100); 7 stellate cells (S100, x600); 8
laminin deposition in the vicinity of bile ducts (+) and vessels (—),
indicating smooth muscle cells as well as a stellate sell (*) in a sinusoid
(x400). All primary antibodies from DAKO®. Detection system:
EnVision Flex high pH (Link)

2 Structure and cellular components of the liver

Key questions

e Considering recent developments in 3D cultures, what
are the important structural features of the liver which
need mimicking?

e How are non-parenchymal cells (NPCs) characterized
morphologically and which transporter functions do
they have?

e What are the roles of NPCs in hepatotoxicity?

Take home messages

e The structure of the liver is complex and composed for
60 % of parenchymal cells i.e. hepatocytes and 40 % of
non-parenchymal cells and are arranged in different
zones of the lobules.

e NPCs comprise 40 % of hepatic cells, e.g. stellate cells,
sinusoidal endothelial cells, Kupffer cells (functioning
as in situ macrophages), biliary epithelial cells and
immune cells, such as lymphocytes and leukocytes.

e Upon an initial damage to hepatocytes, a secondary
response occurs that involves several types of NPC or
immune cells and may dramatically aggravate the
initial damage, suggesting hepatotoxicity may not be
sufficiently predicted in vitro using only one cell type,
i.e. the hepatocyte. Therefore, NPCs should not be
ignored when considering functions of the liver and the
mechanisms of liver toxicity.

2.1 Cell composition and organization

The cellular composition of the liver is summarized in
Fig. 1a, b and Table S1 (see ESM). The liver lobule is the
histologically well-defined structural unit of the liver

long axis (1 mm)

O lebule
O acinus

triad

Fig. 2 Organization of the liver lobule and acinus. Based on the local
blood composition, the acinus is roughly divided into three zones, /
periportal, 2 transitional and 3 perivenous. The periportal zone is
close to the portal triad vasculature and supplied by highly
oxygenated blood (O, partial pressure 60-70 mmHg). The perivenous
zone is proximal to the central vein and receives poorly oxygenated
blood (O, partial pressure 25-35 mmHg). If no specific zonal
mechanisms are active (such as pericentral metabolic activation of
many hepatotoxic compounds, because many CYP enzymes are
preferentially expressed in the center of the liver lobules), toxicity
becomes visible at first in the periportal region, as this is the first zone
to filter blood (Allen and Bhatia 2003). Adapted from Bacon et al.
(2006)

(Fig. 2). A lobule has a hexagonal shape, a diameter of
approximately 1 mm and the thickness is about 2 mm. In
adults, the lobule consists of hepatocyte plates (aka cords),
which radiate from a central vein in the center of the hexa-
gon. Adjacent hepatocytes are joined by tight junctions. The
tight junctions delimit the bile canaliculi with a diameter of
about 1 um. The hepatocytes in a plate are exposed on both
sides to capillaries (sinusoids). The human liver contains
about one million lobules. At each vertex of the hexagonal,
lobule is a portal triad. A portal triad comprises an artery, a
vein and a bile duct bundled by connective tissue. Liver
metabolism, oxygenation and extracellular matrix (ECM)
distribution are best understood by assuming that the portal
triad is the center of symmetry instead of the central vein.
Then, the hepatic acinus becomes the smallest liver func-
tional unit and is defined as the population of hepatocytes
supplied by one portal triad, i.e. a microcirculatory func-
tional unit. The acinus extends over a roughly elliptical
region comprising the hepatocytes from two adjacent lob-
ules. The short axis of the ellipse is the line connecting two
portal triads, the long axis connects two central veins
(Fig. 2). The length of the long axis is approximately 1 mm.
In the acinus area, the hepatocytes are exposed to a spatial
biochemical gradient that influences metabolism and gene
expression. The gradient is established by the changes in
plasma composition and oxygenation occurring downstream
to the blood flow in the space between the periportal and the
perivenous areas (Jungermann and Kietzmann 1996, 1997;
Kietzmann and Jungermann 1997). The blood from the
portal vein supplies 80 % of the liver’s blood and contains
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Table 1 Cellular phenotype changes induced by ECM stiffness

Liver-specific stiffness —

Cell type

Phenotypic response to stiffness

Hepatocytes

Stellate cells

Portal fibroblasts
Sinusoidal endothelial cells Normal fenestration
Kupffer cells Response unknown

Biliary epithelial cells Response unknown

Differentiated and growth arrested
Adipocyte like, quiescent, fibrolytic

Minimal proliferation and minimal fibrogenesis

Dedifferentiated and proliferative
Myofibroblastic, fibrogenic and proliferative
Myofibroblastic, fibrogenic and proliferative
Altered fenestration (?)

Adapted from Wells (2008b)

nutrients that are absorbed from the digestive tract. From the
periportal to the perivenous zone, the oxygen concentration
drops from about 13 % v/v (equivalent to partial pressure of
60-65 mmHg and to a free concentration of 84-91 pmol/l,
periportal) to 9 % v/v (mixed periportal) and finally to 4 %
v/v (equivalent to a partial pressure of 30-35 mmHgandto a
free concentration of 42-49 pmol/l, perivenous) (Allen and
Bhatia 2003; Kietzmann et al. 2006). The oxygen gradient in
the acinus regulates the spatial expression of genes encoding
carbohydrate-metabolizing enzymes, including pyruvate
carboxykinase 1 (mostly expressed in the periportal region),
glucokinase and liver pyruvate kinase (both mostly expres-
sed in the perivenous region), through oxygen-responsive
transcription factors, such as NRE and HIFs (Kietzmann
et al. 2006). This is the so-called metabolic zonation of the
liver.

Compared to other organs, the liver is not particularly
rich in ECM. Nevertheless, the ECM plays an important
role in maintaining the differentiated phenotype of hepa-
tocytes and NPCs (Martinez-Hernandez and Amenta 1993;
Schuppan et al. 2001). Significant ECM alterations are
observed in liver cirrhosis and fibrosis (Schuppan et al.
2001; Wells 2008a). The phenotypic changes induced by
increasing the ECM stiffness are summarized in Table 1.
As expected, isolated hepatocytes de-differentiate when
cultured on hard 2D substrates that increase the ECM
stiffness to favor a proliferative rather than differentiated
cellular phenotype (Wells 2008a, b). The ECM composi-
tion roughly follows a gradient in the region comprised
between the periportal and the perivenous areas (Table S2;
see ESM). Basement membrane proteins (consisting of
laminin, collagen type IV and perlecan) are mostly con-
centrated around the portal blood vessels and the larger
venes. Here, the ECM composition is similar to that of
other epithelial organs. By contrast, the basement mem-
brane is absent in the parenchyma. The ECM in the
parenchyma is located in the space of Dissé between the
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hepatocyte plates and the sinusoids (Fig. 3). Fibronectin
and collagen I dominate in the parenchyma, with smaller
amounts of collagen type IIl. The effect of the matrix
components is striking in hepatic progenitor cells. Collagen
I favors the differentiation of hepatic stem cells, while
laminin maintains stemness (McClelland et al. 2008).
Hepatocytes take up substances destined for the bile,
e.g. bile salts, via the basolateral membrane and secrete or
excrete them across the canalicular membrane into the
canaliculi, where they enter the biliary tree (Hofmann
2009). This functional polarity requires a strict partition of
protein and lipid components in the different plasma
membrane domains (Evans 1980; Coleman 1987; Wang
and Boyer 2004). As a consequence, transport functions
and transport proteins are expressed in a highly polar
manner in hepatocytes (Meier 1988) (Fig. 4). To yield a
domain-specific polar distribution of membrane proteins in
the hepatocyte plasma membrane, the distribution of newly
synthesized membrane proteins requires sorting processes.
Hepatocyte basolateral proteins, as well as many of the
canalicular proteins, after their biosynthesis in the endo-
plasmic reticulum, are targeted directly from the trans-
Golgi network to the basolateral membrane, where cana-
licular proteins are subsequently endocytosed and trans-
ported to the apical domain by transcytosis (Bartles et al.
1987; Schell et al. 1992). This is different in columnar
epithelial cells, where sorting occurs at the level of the
trans-Golgi (Hubbard et al. 1989). By contrast, newly
synthesized canalicular ABC transporters are directly tar-
geted to the canalicular membrane (Sai et al. 1999; Kipp
and Arias 2002). For Ntcp, the basolateral uptake trans-
porter for conjugated bile salts, sorting to the basolateral
membrane relies on (a) cytoplasmic sorting signal(s), as
site-directed mutagenesis of Ntcp identified two tyrosine
residues located in the cytoplasmic tail of Ntcp to be cru-
cial for basolateral sorting of Ntcp (Sun et al. 2001).
Studies investigating sorting of apical proteins identified a
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Fig. 3 Distribution of
extracellular matrix (ECM) in
the liver acinus. A basement
membrane is localized in the
periportal and perivenous
regions. Fibronectin is the main
ECM component of the liver
parenchyma, and it is localized
in the space of Dissé. Adapted
from Rodés (2007)
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multiplicity of signals and mechanisms (Delacour and
Jacob 2006; Weisz and Rodriguez-Boulan 1992), which are
cell-type-specific. Interestingly, in hepatocyte cell lines,
lipid rafts were shown to be involved in the transcytosis
and direct apical trafficking of canalicular proteins (Nyasae
et al. 2003; Slimane et al. 2003).

All the different functions of the liver are tightly linked
to the complex assembly of highly specialized cell types
organized in the sinusoidal unit embedding hepatocytes
into a structural-functional organization, with the different

NPCs of the liver, such as sinusoidal endothelial cells,
hepatic stellate cells and liver macrophages (also termed as
Kupffer cells). Hepatocytes are the major parenchymal
cells carrying out most of the metabolic functions and
account for the majority of the total liver cell population.
The majority of circulating plasma proteins such as albu-
min, transporters, protease inhibitors, blood coagulation
factors and modulators of immune complexes and inflam-
mation is expressed by hepatocytes. They control the
homeostasis of molecules such as glucose/glycogen,
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triglycerides, cholesterol, bile acids, and vitamins A and D
and metabolize amino acids, metals and endogenous
compounds such as heme and bilirubin. Ammonia detoxi-
cation and pH regulation need urea synthesis, that is per-
formed by hepatocytes, so ammonia metabolism is often
used as a functional marker of hepatic phenotype (Lip-
pincott 1993; Saunders 1996; Michalopoulos 2007; Tanaka
et al. 2011). Classic columnar epithelial cells are “leaning”
with their basal membrane on the ECM and are facing with
their apical or brush border membrane the external space.
They are in addition connected to neighboring cells at their
lateral membrane by tight junctions and desmosomes. In
contrast, hepatocytes bear a unique topology: their apical
domain (canalicular plasma membrane) is forming a
tubular system by the connection of two adjacent hepato-
cytes by tight junctions. These tubuli form an anastomosing
network, are called canaliculi and represent the smallest
branches of the biliary tree (Jansen 2000). The basolateral
domain of hepatocytes is formed by the sinusoidal and
lateral plasma membrane. At the sinusoidal side, hepato-
cytes are directly in contact with blood plasma since the
sinusoidal capillaries are fenestrated and surrounded by a
discontinuous basal lamina. At the lateral membrane,
hepatocytes are in contact with neighboring hepatocytes
via desmosomes and gap junctions. This unique architec-
ture allows the basolateral plasma membrane to mediate an
intense solute exchange with blood plasma. Bile salts are
mild detergents (Hofmann and Small 1967), and therefore,
the canalicular membrane needs special biophysical prop-
erties and/or protective mechanisms to prevent it from
being solubilized by the high concentrations of bile salts
present in the canaliculus. Lipid composition of hepatocyte
plasma membrane is specific for each domain. The rat
canalicular liver plasma membrane contains about two
times more cholesterol and total phospholipids and has
about a two times higher sphingomyelin content than the
basolateral rat liver plasma membrane (Meier et al. 1984).
This enrichment of the canalicular plasma membrane in
cholesterol and sphingomyelin is crucial for keeping its
membrane integrity. For example, in vitro experiments
showed that an increase in cholesterol content in
phospholipid liposomes reduces bile salt induced mem-
brane solubilization (Zhou et al. 2009). In addition, mem-
brane microdomains or lipid rafts contain sphingomyelin
and cholesterol in tightly packed, liquid-ordered state
(Rajendran and Simons 2005). Indeed, recent studies
demonstrated the presence of detergent and bile salt
inducible microdomains in the canalicular membrane
(Ismair et al. 2009; Guyot and Stieger 2011).

The non-parenchymal areas of the liver are mainly
formed by endothelial cells (19 % of the total liver cell
mass) (Kmiec 2001). The liver endothelial cells lining the
sinusoids are uniquely specialized. They line the sinusoids
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and have large pores (fenestrae) with a diameter between
0.1 pm and 0.3 pm that allow a free flow of molecules
(toxicants, nutrients, hormones, proteins and further plasma
soluble components) from the plasma to the hepatocytes
(Fig. 2). Since, in contrast to other organs, the liver
endothelial cell sinusoids lack a basal lamina; the liver has
no continuous barrier between epithelial cell surface and
the plasma. The remaining major cell types populating the
liver are stellate cells (6 %) (Kmiec 2001) and Kupffer
cells (15 %). Liver sinusoidal endothelial cells (LSCEs) are
not simply barrier cells that restrict access of blood-borne
compounds to the parenchyma, they are functionally spe-
cialized cells that have complex roles and display some
similarities to lymphatic endothelial cells, underscoring the
view that the liver also displays features of a lymphatic
organ. This includes not only receptor-mediated clearance
of endotoxins, bacteria and other compounds, but also the
regulation of inflammation, leukocyte recruitment and host
immune responses to pathogens. Apart from being equip-
ped with scavenger receptors that facilitate efficient uptake
of potential antigens, sinusoidal endothelial cells also have
the unique ability to function as antigen-presenting cells for
T cells, which is considered to play a role for generating
immunological tolerance (Limmer and Knolle 2001).
Hepatic stellate cells in turn reside within the perisinusoi-
dal space of Dissé that is lined by parenchymal cells and
sinusoidal endothelial cells. Under physiological condi-
tions, these cells are characterized as vitamin A-storing
cells, displaying neuronal and neuroendocrine markers but
also a variety of markers that characterize stem cells
(Kordes et al. 2007; Kordes et al. 2008, 2009). Their rec-
ognition as the cellular source of myofibroblasts charac-
terizing hepatic fibrosis has launched an era of astonishing
progress in understanding the mechanistic basis of hepatic
fibrosis progression and regression during chronic inflam-
matory diseases of the liver (Reeves and Friedman 2002;
Atzori et al. 2009). This rather simple view of hepatic
stellate cells as the major source of proliferative, contrac-
tile and fibrogenic cells has meanwhile been replaced by a
remarkably broad spectrum of functions including stem
cell-like features not only in liver injury, but also in
regeneration (Kordes et al. 2009), intermediary metabolism
and immunoregulation (Crispe 2009; Atzori et al. 2009).
Liver macrophages are present in the microvessels of the
sinusoids and under homeostatic conditions represent about
15 % of total liver cell population. The fact that the liver
harbors almost 80-90 % of all tissue macrophages in the
body (Bouwens et al. 1986), located in a strategic position
for screening of pathogens, which enter the liver via the
portal venous blood underscores the important role of the
liver for systemic acute phase response and innate immu-
nity. Apart from having vital homeostatic functions as a
kind of “janitorial” cell responsible for the removal of
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cellular debris and clearance of exogenous material, mac-
rophages are central to innate immunity with key functions
in host defense against invading pathogens. Macrophages
have a remarkable plasticity, enabling them to efficiently
respond to environmental signals and modify their pheno-
type. They rapidly recognize potential danger from exog-
enous and endogenous sources and undergo activation,
enabling them to launch biochemical attack and to involve
hepatocytes and the other NPCs of the liver into the
inflammatory process by releasing a variety of mediators
including cytokines, chemokines, eicosanoids, proteolytic
enzymes, reactive oxygen species (ROS) and nitric oxide;
as they induce the expression of adhesion molecules and
secrete chemotactic signals, liver macrophages are also
involved in recruiting and retaining non-resident cellular
players to the liver such as neutrophils, natural killer cells,
and may further enlarge their own population by recruiting
monocytes from circulation that subsequently differentiate
into macrophages (Kolios et al. 2006). Thereby macro-
phages are not only important constituents of innate
immunity but also relevant for regulation of liver regen-
eration and are critical regulators of hepatocyte function.
Hence, they are considered to be the major source of
mediators that control acute phase protein production in
hepatocytes but also influence the metabolic and detoxi-
fying capacity of hepatocytes. An in-depth understanding
of the intercellular communication between hepatocytes
and macrophages and the integration of macrophage-
derived signals into hepatocyte function therefore is of high
clinical and scientific relevance. A more detailed descrip-
tion of NPCs and their role in drug-induced liver injury
(DILI) is reviewed in section “Non-parenchymal cells and
their role in hepatotoxicity,” and in vitro models using
macrophages are detailed in section “Co-cultures of
hepatocytes and macrophages.”

2.2 Zonal heterogeneity of hepatocytes

Liver metabolism comprises an immense spectrum of
interrelated anabolic and catabolic functions which are
performed simultaneously without affecting each other or
leading to futile cycles and other forms of wasting energy.
In order to cope with this challenge, liver parenchyma
shows a considerable heterogeneity and functional plas-
ticity, known as “metabolic zonation” (Jungermann and
Katz 1982; Gebhardt 1992). Different metabolic pathways
are carried out in different zones and sometimes even
single cell of the liver lobules, the smallest structural and
functional units that can be discerned in liver sections.
They appear mainly as hexagonal entities, but may also
comprise pentagons as well as heptagons that are clearly
defined by vascular elements (for comprehensive review of
lobule structures in murine liver see Lamers et al. (1989).

At their periphery, three adjacent lobules are grouped
around a triangular structure of dense connective tissue, the
Glisson trias, which contains the blood supply for conical
sectors of all three adjacent lobules. Each Glisson trias
contains two afferent vessels (the portal venule and the
hepatic arteriole) as well as the bile ductule. In the center of
the lobules, one efferent vessel, the hepatic venule or so-
called central vein, is located that drains the blood from the
lobule, i.e. from at least three different portal venules.
According to their localization along the porto-central axis,
hepatocytes are grouped into three different zones, the zone
1 (periportal), zone 2 (midzonal) and zone 3 (pericentral).
This distinction is only semantic and does not reflect the
real localization of any (marker) protein.

2.2.1 Key methods for investigating metabolic zonation

In the past, parenchymal heterogeneity has been exten-
sively characterized with respect to the major metabolic
pathways, namely carbohydrate, lipid, amino acid and drug
metabolism. The most frequently used techniques for
investigating the microdiversity of hepatocytes in liver
parenchyma were immunocytochemistry or immunofluo-
rescence and in situ hybridization which all provided a
comprehensive overview about the exact lobular expres-
sion and localization of many enzymes of these metabolic
pathways (reviewed by Meijer et al. 1990; Gebhardt 1992;
Jungermann and Kietzmann 1996). For example, studies
suggest that gluconeogenesis is present in all hepatocytes,
but predominates in the periportal zone (Fig. 5). By con-
trast, glycolysis is most active in part of the pericentral
zone, but generally shows a relatively low activity in
hepatocytes. This distribution is dynamic and varies with
feeding conditions. The zonation of other major metabolic
pathways is schematically illustrated in Fig. 5. The
immunochemical approach was also used for localizing
hepatocytes involved in the synthesis of major serum
proteins usually revealing shallow gradients in protein
expression (Racine et al. 1995).

Studies on the functional consequences of this hetero-
geneity required other techniques. For example, strongly
zonated hepatic ammonia metabolism was studied using
isolated perfused livers performed in the antegrade (portal
to central) and retrograde (central to portal) direction. This
method also revealed other functions, such as intercellular
glutamine cycling (Hiussinger 1983) and bile salt transport
(Groothuis et al. 1982). This technique was improved by
including separate perfusion of both afferent vessels
instead of only the portal vein (Comar et al. 2010) and
provided new insight into to the influence of arterial blood
in the regulation of ammonia elimination. A distinct and
more versatile approach was the isolation of hepatocytes
from different locations of the liver lobules. Various
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Fig. 5 Lobular zonation of different metabolic pathways. The length
and thickness of the colored fields represents the localization and
activity gradients of individual metabolic pathways along the porto-
central axis

techniques were applied to achieve this goal. For instance,
hepatocytes from different lobular zones were isolated
according to their different size and density by centrifugal
elutriation (Wilton et al. 1993; Botham et al. 1998; Romero
et al. 1999). The most suitable separation technique leading
to consistent results, the so-called digitonin—collagenase
perfusion method developed independently by Quistorff
(1985) and Lindros and Penttild (1985), allows isolation of
two distinct subpopulations of hepatocytes, one enriched in
periportal and the other one enriched in pericentral cells.
The major drawback of this ingenious isolation procedure
is that only one of these subpopulations of hepatocytes can
be obtained from a given liver. A general and reliable
protocol of this technique was published by Gebhardt
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(1998). When the subpopulations are isolated from differ-
ent livers (from either mice or rats), the periportal fraction
amounted to 60-70 % of the hepatocytes and the pericen-
tral to 30-40 %. Because of the inter-individual differences
between the mice, the high yield for both subpopulations
achieved with this technique is obtained at the expense of
low comparability of the subpopulations. Therefore,
another technique aiming at isolating periportal and peri-
central hepatocytes from one and the same liver was
developed (Tordjmann et al. 1997). However; the method
is more demanding, it results in a lower cell yield, and has
been successful only in rats so far. More recently, laser
microdissection has proven an elegant technique for iso-
lating cellular material from few hepatocytes located any-
where in the parenchyma including RNA samples from
pericentral glutamine synthetase (GS)-expressing hepato-
cytes [Gebhardt, unpublished observation], but this tech-
nique does not allow the isolation of viable cells. The
enrichment of periportal and pericentral hepatocytes in the
isolated subpopulations is usually estimated by measuring
the activities of several highly zonated enzymes such as
glutamine synthetase, alanine aminotransferase and pyru-
vate kinase (Gebhardt and Mecke 1983; Burger et al.
1989). Since E-cadherin in the liver is present only in the
periportal zone (~50 % of hepatocytes) (Ueberham et al.
2010), it can be used as a suitable marker for revealing the
enrichment of periportal cells by immunocytochemical
staining.

The extensive use of the digitonin—collagenase perfu-
sion technique has provided a detailed picture of metabolic
zonation. In particular, a microarray study based on the
comparison of periportal and pericentral hepatocytes con-
siderably improved our knowledge of zonation (Bracuning
et al. 2006). Thus, this study provided for the first time a
many-facetted picture of the subtle differences in zonation
of enzymes involved in xenobiotic metabolism. While most
enzymes show pericentral dominance, a small number of
these enzymes exhibit preferentially periportal expression.
Another remarkable paper shows a very detailed zonal
distribution of enzymes involved in heme synthesis
(Braeuning and Schwarz 2010a). Further contributions
concern the refinement of knowledge on zonation of amino
acid metabolism (Braeuning et al. 2006) and iron metab-
olism (Troadec et al. 2008). Despite these advances in
understanding metabolic zonation, it is important to note
that separation of merely two subpopulations is not suffi-
cient to elucidate all different aspects of hepatocyte het-
erogeneity. For instance, a recent proteomic study in
adenomatous polyposis coli KO mice provided evidence
that induced GS-expressing hepatocytes are characterized
by an unexpectedly low amount of glycolytic enzymes and
a downregulation of many components of mitochondrial
oxidative phosphorylation (Vasilj et al. 2012). It is likely,
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though not yet proven, that the normal GS-expressing
hepatocytes residing close to the central vein in up to three
cell layers, exhibit the same features (Fig. 5).

2.2.2 Factors determining metabolic zonation

Since its discovery, parenchymal heterogeneity has raised
the question of how it is determined by regulatory factors.
Alhough they play an important role in the determination
of local cell function, hormones and metabolic signals were
found not to act as primary cues of metabolic zonation
(Gebhardt and Gaunitz 1997; Jungermann and Kietzmann
2000). After several decades of intensive but slow-moving
investigations, it became apparent that Wnt/B-catenin sig-
naling is a master regulator of liver zonation (Loeppen
et al. 2002; Benhamouche et al. 2006). Knockout studies of
B-catenin, on the one hand, resulting in interruption of the
pathway, and of APC, on the other hand, resulting in its
over-activation revealed that Wnt/B-catenin signaling acts
in a gradient-like manner with increasing activity from the
periportal to the pericentral zone (reviewed in Gebhardt
and Hovhannisyan 2010). Even though the origin of this
gradient and other details of Wnt pathway function remain
unknown, the mystery of liver zonation seems essentially
solved. For the first time, it was shown that a morphogen
may determine the function of a differentiated cell
according to its spatial location within a specific tissue,
termed “post-differentiation patterning” (Gebhardt and
Hovhannisyan 2010).

In addition to Wnt/B-catenin signaling, it was speculated
that Ha-ras-dependent signaling participates in determining
zonal differences in gene expression (Hailfinger et al.
2006). However, this assumption is based mainly on
comparisons of mRNA and protein expression patterns of
periportal and pericentral hepatocytes with those of liver
tumors containing different types of mutations in signaling
pathways and, thus, is not completely convincing (Geb-
hardt and Ueberham 2006), since tumor signaling usually
shows multiple deviations from the normal counterpart.
Nonetheless, there is independent evidence that other
morphogens cooperate with Wnt/B-catenin signaling in
specifying liver zonation and that epidermal growth hor-
mone (EGF)-induced Ha-ras-dependent signaling may be
one of these (Braeuning et al. 2007a). Up until now,
however, it remains to be elucidated how other morpho-
gens aid in specifying the zonal heterogeneity of
hepatocytes.

2.3 Non-parenchymal cells and their role
in hepatotoxicity

The major cell type of the liver is the hepatocyte, a
parenchymal cell, which makes up to 80 % of the entire

liver mass and performs the majority of the liver functions
(Kmiec 2001; Lippincott 1993; Saunders 1996; Micha-
lopoulos 2007; Tanaka et al. 2011). The other 20 % of the
liver mass are comprised of NPCs such as stellate cells of
the connective tissue, endothelial cells of the sinusoids,
Kupffer cells functioning as in situ macrophages and
immune cells, such as lymphocytes (T cells, B cells, nat-
ural killer (NK) and especially NKt cells) and leukocytes
(neutrophils, monocytes and dendritic cells) (Taub 2004;
Tacke et al. 2009). Most of the current activities in
developing in vitro test system for hepatotoxicity focus on
the parenchymal cell, the hepatocyte itself. Great efforts
are made to establish conditions to maintain in vivo
activities of primary hepatocytes. Moreover, large research
programs have been initiated to differentiate human
hepatocyte-like cells from stem or precursor cells (Fletcher
et al. 2008; Agarwal et al. 2008; Cai et al. 2007). However,
recent studies have provided evidence that, upon an initial
damage to hepatocytes, a secondary response occurs that
involves several types of NPC or immune cells and may
dramatically aggravate the initial damage (Liu et al. 2004,
2006a; Ochi et al. 2004), The main cell types involved in
hepatotoxin-induced liver damage are shown in Table 2. It
is thus questionable whether hepatotoxicity can be suffi-
ciently predicted in vitro by analyzing only one cell type,
i.e. the parenchymal cell. For example, many hepatotoxic
compounds, e.g. methapyrilene, thioacetamide, piperonyl-
butoxide (Ellinger-Ziegelbauer et al. 2008), do not, or only
at extremely high concentrations, kill hepatocytes in vitro,
which might be explained by the lack of a “second hit,”
perhaps inflammatory cells, absent in in vitro systems that
use hepatocytes alone. Although there is a wealth of
information on the functional properties of NPCs in dif-
ferent pathological context, their precise contribution to
hepatotoxicity has only recently been investigated. These
seminal studies have generated great interest in the scien-
tific community and in some cases also have raised
important questions that challenge the validity of the
experimental approaches. Evidently, a definite role for each
NPC cannot be drawn based on a single methodology.
Nevertheless, these studies have succeeded in setting up the
stage for more refined investigations. It is critical to
understand the communication between NPC cell types and
hepatocytes and how this contributes to hepatotoxicity.
These hepatocyte—-NPC interactions would gain even fur-
ther relevance if their degree depends on physicochemical
properties of the compounds. Relatively little is known in
this field (Rubbia-Brandt et al. 2004; DeLeve 1996; Wang
et al. 2000); however, one example demonstrating a com-
pound-specific effect is vinyl chloride. Like many other
compounds, it is metabolically activated in hepatocytes and
is hepatotoxic. However, a long-term effect of vinyl chlo-
ride is not only hepatocellular cancer but it also causes a
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Table 2 Main cell types - - -
. . S Healthy liver Injured liver
involved in hepatotoxin-induced
liver damage CYP enzymes,
- . o Release of DAMPs
Hepatocyte (1] Antioxidants (e.g. GSH) cri ‘!:/}'
- / - (e.g. apoptotic DNA)
Low MHC-I expression
DAMPs detection (TLR9)
Secretion of chemokines
(Mcp-1, RANTES and
Cxcl1/Gro-1)
HSC =% - Storage of vitamin-A
Increased expression of
aSMA, collagen-I, TGFB
High NKG2D ligand
(activator of NK cells)
DAMPs detection (via TLR9)
Enlarged fenestrae
(haemorrhage),
Fenestrae,
Scavenger function,
LSEC — [ Secretion of IL-1
High PECAM-1, low
ICAM-1
Low PECA-1, high ICAM-1
Enhanced tethering of
leukocytes

very rare tumor of the liver, hemangiosarcoma, which
arises from LSECs (Cohen et al. 2009). This “communi-
cation” between hepatocytes and LSECs is very specific
for vinyl chloride and not observed for many other geno-
toxic compounds activated by hepatocytes (Cohen et al.
2009).

In the following section, the characteristics and trans-
porter function of a number of NPCs and their contribution to
hepatotoxicity with a particular focus on acetaminophen are
reviewed. Acetaminophen-induced liver damage is perhaps
the best understood model of drug-induced liver injury.
Hence, it is not surprising that most studies on the role of
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NPCs in hepatotoxicity are based on acetaminophen intox-
ication. Acetaminophen induces direct cell death with fea-
tures of apoptosis and necrosis (Cover et al. 2005). It is well
established that necrotic cells release strong pro-inflamma-
tory molecules such as DNA and high mobility group box
protein-1 (HMGBP1) (Jaeschke et al. 2012b). Thus, it is very
likely that this early necrotic cells trigger an inflammatory
response (Kono and Rock 2008). Another indication for the
involvement of NPCs in acetaminophen toxicity is the
finding that precision-cut liver slices, that contain all the liver
cell types, are more sensitive than isolated hepatocytes for
acetaminophen cell death (Hadi et al. 2013). The role of
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Table 2 continued

Largest fraction of liver DAMPs detection ( TLR9)

A

resident leukocytes

(CD11b""-F4/80"e") Secretion of TNFa, IL-1, IL-6

Secretion of IFNYy
Low

Ly-49 expression @
Increased Fas-L expression
(inhibitory receptor)

Kupffer cell PN
NK cell @
Neutrophil

Increased tethering to LSEC

(via Mac-1/ICAM-1)

! Release of hypochlorous acid,
CD11b"®", Ly-6G+

chloramines and proteases

Increased local ROS

production

Infiltrating /‘

(2
Macrophage ©

Alternatively activated
macrophages

(Ym1, Fizz1, Arg-1 positive)

CD11b"®"-F4/80"" @ Secretion of TNFa, IL-1, IL1RA,

W
TGFB, IL-10

Pro-apoptotic against

neutrophils

NPCs in immune-mediated hepatotoxicity is described in
detail in section “Immune-mediated iDILI.”

2.3.1 Liver sinusoidal endothelial cells

Liver sinusoidal endothelial cells (LSECs) are specialized
endothelial cells characterized by fenestrations and the lack
of a basement membrane (Wisse et al. 1996; Iwakiri and
Groszmann 2007). This vascular endothelium provides
more than just a physical barrier for blood circulation. It
actively participates in inflammatory reactions by several
mechanisms, including (1) detection of pathogen-associated
molecular patterns (PAMPs, e.g. lipopolysaccharide, li-
poteichoic acid (LTA), N-acetyl muramyl peptide (NAM))
or damage-associated molecular patterns (DAMPs, e.g.

DNA), (2) secretion of cytokines and chemokines to recruit
and activate leukocytes and (3) expressing adhesion mole-
cules that favor the attachment and extravasation of leu-
kocytes to the site of injury (Pober and Sessa 2007). LSECs
have unique properties. They possess a strong scavenging
capacity, which mediates the uptake of several waste
macromolecules such as hyaluronic acid, collagen a-chains
and modified low-density lipoproteins (LDL) (Li et al.
2011; McCourt et al. 1999; Malovic et al. 2007).

As described above, LSECs contain numerous fenestrae
(Elvevold et al. 2008) that allow passage of proteins and
large macromolecules (e.g. lipoproteins). In acute liver
damage, LSEC suffer structural alterations that can pro-
mote inflammation. Electron microscopy revealed that
within 2 h of acetaminophen intoxication in mice, LSECs
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exhibited many gaps throughout the cytoplasm that were
formed by destruction and/or coalescence of fenestrae
(McCuskey et al. 2005; Ito et al. 2003a). This effect was
observed both in isolated LSECs and LSECs in liver tissue.
Moreover, the gaps formed through LSECs permitted the
passage of erythrocytes to the space of Dissé, indicative of
hemorrhage and collapse of the sinusoidal wall (McCuskey
et al. 2005).

LSECs express Toll-like receptors (TLRs) that detect
bacteria or self-damage debris and trigger signal transduction
pathways that promote inflammation (Wu et al. 2009). Upon
acute intoxication, damaged hepatocytes release intracellular
molecules which can activate TLRs in LSECs, including heat
shock proteins (Hsp) and fragmented DNA rich in cytidine-
phosphate-guanosine (CpG-DNA) (Jaeschke et al. 2012a, b).
LSECs express TLR9, and can efficiently recognize CpG-
DNA in vitro and in vivo, as demonstrated by the uptake of
FITC-labeled CpG-DNA either added to culture medium or
injected intravenously in vivo (Martin-Armas et al. 2006). In
addition to TLR9, LSECs express the adaptor molecule,
MyDS88, which mediates signal transduction pathways from
activated TLR. Indeed, uptake of CpG-DNA into LSECs led
to activation of the NF-kappaB signaling pathway, as indi-
cated by nuclear localization of phosphorylated NF-kappaB
(Martin-Armas et al. 2006). Furthermore, culture of LSECs in
the presence of CpG-DNA enhanced the secretion of inter-
leukin (IL)-1B (20 % over control) and IL-6 (40 % over
control) into the medium (Martin-Armas et al. 2006). LSECs
express adhesion molecules that are important for leukocyte
attachment and further extravasation to the site of injury,
namely intercellular adhesion molecule-1 (ICAM-1). Under
conditions of liver damage by CCly, the expression of [CAM-
1 increases with a peak 24 h after injection (Neubauer et al.
2000). This may have important consequences in terms of
tissue damage, since engagement of ICAM-1 by its receptor
Mac-1 in neutrophils causes their degranulation and exten-
sive oxidative stress (Jaeschke 2003; Shappell et al. 1990).

Recently, a study based on 3D tissue reconstruction and
mathematical modeling has demonstrated that LSECs play a
key role in the establishment of functional tissue structure
(Hoehme et al. 2010). After cell division, hepatocytes orient
themselves in the direction of the closest sinusoid, a process
named “hepatocyte-sinusoid alignment” (HSA), which is
essential for the restoration of liver microarchitecture. The
importance of LSECs for liver regeneration is also illustrated
by the fact that many hepatotoxic compounds that require
metabolic activation by cytochrome P450 enzymes (CYPs)
(e.g. acetaminophen and CCly) kill almost all hepatocytes in
the center of the liver lobules, because the relevant CYPs are
mostly expressed in this pericentral region. While most
hepatocytes are killed, a substantial fraction of LSECs sur-
vive and seem to be sufficient to serve as “guide rails” for
regenerating hepatocytes that migrate from the outer
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surviving hepatocyte fraction into the inner dead cell mass
(Hoehme et al. 2010). Besides their role in establishing
functional liver microarchitecture, LSECs also coordinate
hepatocyte proliferation during liver regeneration (Ding et al.
2010). Using a zoo of knockout mice, it has been demon-
strated that LSEC-derived factors, particularly HGF and
Wnt2, play a critical role in regenerative LSEC-hepatocyte
communication.

2.3.2 Kupffer cells

Kupffer cells represent resting tissue macrophages which
upon liver damage synthesize and secrete the pro-inflam-
matory cytokines tumor necrosis factor o (TNFo) and IL-1
(Roberts et al. 2007). Both cytokines can potentially cause
hepatocyte killing by activation of signal transduction path-
ways that lead to apoptosis, such as p38, INK and generation
of ROS (Wajant et al. 2003). In addition, TNFo from Kupffer
cells was reported to activate LSECs leading to deposition of
fibrin in liver tissue which may cause ischemia and hypoxia
(Roberts et al. 2007). Furthermore, Kupffer cell-secreted
cytokines may attract and activate immune cells which in
certain cases can exacerbate the initial damage (Roberts et al.
2007). Hence, they can potentially have a damaging role in
acetaminophen toxicity. In early studies, their contribution to
hepatotoxicity was assessed by treating acetaminophen-
intoxicated mice with gadolinium chloride (GdCls), a com-
pound that inhibits phagocytic activity and generation of ROS
in macrophages (Lee et al. 2004), and depletes macrophages
in the periportal zone of the liver (Hardonk et al. 1992). Mice
and rats injected with GdCl; showed reduced liver damage
after acetaminophen intoxication (Michael et al. 1999), sup-
porting the concept of a harmful role of Kupffer cells in
acetaminophen-induced hepatotoxicity (Michael et al. 1999;
Laskinetal. 1995). However, recent reports suggest that these
results are questionable. In these studies, Kupffer cell
depletion was achieved by clodronate liposomes injection, a
technique that efficiently depletes all resident macrophages
from liver and spleen (van Rooijen 1989; van Rooijen and
Sanders 1997). As expected, Kupffer cell depletion abrogated
both TNFa and IL-1f induction (Ju et al. 2002; Campion et al.
2008), which would be expected to reduce the extent of
acetaminophen toxicity. However, contrary to the GdCls
reports, clodronate Kupffer cell depletion enhanced hepato-
toxicity induced by acetaminophen (Ju et al. 2002; Campion
et al. 2008). The mechanism for the protective effect of Ku-
pffer cells was explained in part by a Kupffer cell-dependent
induction of hepatic transporters, particularly Mrp4, which
may be interpreted as a defense against exposure to toxic
compounds (Campion et al. 2008). An alternative (or com-
plementary) mechanism for the protective role of Kupffer
cells might depend on the expression of the anti-inflammatory
cytokine, IL-10. Indeed, IL-10 is strongly induced 72 h after
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acetaminophen intoxication, and this was completely abro-
gated by depletion of Kupffer cells (Ju et al. 2002; Campion
et al. 2008). Of note, IL-10 was shown to protect against
acetaminophen toxicity by downregulation of iNOS and
peroxynitrite formation (Bourdi et al. 2002). The rather sur-
prising fact that enhanced toxicity occurred in spite of
downregulation of TNFo can be explained by studies show-
ing that TNFa per se is not strongly hepatotoxic, as demon-
strated by the observed low degree of liver damage in mice
injected with TNFa (Beraza et al. 2007). Subsequent studies
using GdCl; found very little or no protection at all to acet-
aminophen-induced hepatotoxicity (Ito et al. 2003b; Knight
and Jaeschke 2004; Ju et al. 2002). Thus, it seems that Kupffer
cells are responsible for hepatoprotective responses mediated
in part by induction of export pumps in hepatocytes and by
secretion of anti-inflammatory cytokines.

2.3.3 Macrophages

The role of infiltrating macrophages in liver toxicity is con-
troversial, largely due to the heterogeneity and plasticity of
macrophages and difficulties in establishing effective mark-
ers to identify and study different populations of macro-
phages in the liver. As for Kupffer cells, it has been described
that macrophages can contribute to acetaminophen-induced
hepatotoxicity by producing pro-inflammatory cytokines
such as TNFa and IL-1B (Goldin et al. 1996). However,
macrophages can also secrete IL-10-, TGF-B- and IL-18-
binding proteins, which are anti-inflammatory cytokines
(Gordon 2003). In addition, in recent years, enormous pro-
gress has been achieved in the identification of different
macrophage subtypes by flow cytometry, a technique that
allows quantitative detection of surface antigens that reflect
different macrophage populations (Geissmann et al. 2003,
2010). A current phenotypic definition of macrophages is
based on their pro- or anti-inflammatory properties, which
depends on the cytokine cocktail they secrete: M1 or classi-
cally activated macrophages are induced by lipopolysac-
charide and Thl cytokines (e.g. IFNy, IL-1); M2 or
alternatively activated macrophages are induced by apoptotic
bodies or Th2 cytokines (e.g. IL-4, IL-10 and IL-13) (Gordon
2003; Geissmann et al. 2003, 2010). M1 macrophages release
TNFa, IL-8, RANTES and IL-1f that promote the inflam-
matory process, whereas M2 macrophages secrete IL-1ra,
TGF-B, IL-10 and PGE,, cytokines that repress inflammation
and contribute to the regeneration process (Geissmann et al.
2003; Fadok et al. 1998). An elegant study by Holt et al.
(2008) identified two different macrophage populations in
rodent liver that reflected resident macrophages (Kupffer
cells) and infiltrating macrophages (IM) based on flow
cytometric analysis with two widely used markers for these
cells, that is CD11b and F4/80 (Holt et al. 2008). Resident
macrophages were CD11blow-F4/80high while infiltrating

macrophages were CD11bhigh-F4/80low. Under control
conditions, the majority of liver non-parenchymal cells were
Kupffer cells (75 %), while the IM population was almost
absent. However, upon acetaminophen intoxication, there
was a strong and transient increase in IM that peaked at 48 h
after intoxication (35 % of total liver non-parenchymal cells),
while Kupffer cells followed an opposite trend, with a tran-
sient decrease that peaked also at 48 h (16 % of total liver
non-parenchymal cells) (Holt et al. 2008). PCR analysis
indicated that IM expressed markers that are characteristic of
M2-alternatively activated macrophages (e.g. Yml, Fizz1,
Arg-1). These markers were not expressed in isolated Kupffer
cells. Furthermore, IM expressed CCR2, a receptor for the
macrophage-specific chemokine Mcp-1. In agreement with a
role of the Mcp-1/CCR2 axis in recruitment of circulating
monocytes, the IM population was completely absent in
acetaminophen-treated CCR2 knockout mice. The role of IM
in acetaminophen hepatotoxicity was determined by specif-
ically depleting circulating monocytes, the precursors of
infiltrating macrophages, by bone marrow irradiation 3 days
prior to acetaminophen intoxication (Holt et al. 2008). This
procedure only depleted the IM population (CD11bhigh-F4/
80low) without affecting the KC population (CD11blow-F4/
80high). Ablation of IM had a similar effect as depletion of
Kupffer cells, which is a delayed recovery after acetamino-
phen intoxication (Holt et al. 2008). The mechanism by which
IM promote the wound healing process during hepatotoxicity
might depend on the secretion of cytokines that repress
inflammation and contribute to the regeneration (IL-l1ra,
TGF-B, IL-10) (Geissmann et al. 2003; Fadok et al. 1998), but
also in their ability to promote apoptosis of neutrophils.
Indeed, IM from acetaminophen-treated mice induced
apoptosis of mouse neutrophils in direct co-cultures (Holt
et al. 2008). This effect depended on direct contact between
the two cells, since IM-induced neutrophil apoptosis was
almost completely abrogated when these cells were in trans-
well culture dishes (Holt et al. 2008). In conclusion, the role
of IM seems to be in promoting the regenerative response that
follows acute liver damage, by secreting anti-inflammatory
cytokines and by killing and eliminating infiltrating neutro-
phils at the site of injury.

Macrophages phagocytic activity as well as cytokine
production can be modulated by bile acids (Calmus et al.
1992; Funaoka et al. 1999; Minter et al. 2005; Scott-Con-
ner and Grogan 1994; Sung and Go 1999; Graf and Bode
2012). The influence of bile acids on the immune response
has been reviewed recently (Fiorucci et al. 2010; Graf and
Bode 2012). FXR, PXR and VDR as well as the TGRS are
expressed in peripheral blood mononuclear cells, macro-
phages and Kupffer cells (Fiorucci et al. 2010; Graf and
Bode 2012; Kawamata et al. 2003; Keitel et al. 2008b;
Schote et al. 2007). Treatment of isolated human mono-
nuclear cells with the FXR agonist obeticholic acid (INT-
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747) decreased TNFa secretion and prevented differentia-
tion of CD144 monocytes into dendritic cells (Gadaleta
et al. 2011). Because PXR activation suppresses NF-kap-
paB transcriptional activity in hepatocytes, a similar
mechanism may apply to Kupffer cells (Hu and Li 2010;
Zhou et al. 2006; Fiorucci et al. 2010). TGRS mRNA and
protein expression has been detected in CD14+ monocytes
of the peripheral blood as well as in macrophages of lung,
liver (Kupffer cells) and intestine (Wang et al. 2011; Keitel
et al. 2008a, b; Kawamata et al. 2003). Stimulation of
TGRS in Kupffer cells by bile acids or specific agonists
suppressed  the lipopolysaccharide-induced = mRNA
expression of inflammatory cytokines such as IL-1,
TNFo, IL-6 and monocyte chemoattractant protein-1
(MCP-1) (Pols et al. 2011; Wang et al. 2011; Keitel et al.
2008a, b). TGRS activation reduced the phosphorylation of
IxBa, thereby preventing nuclear translocation of p65 and
inhibiting NF-kappaB transcriptional activity (Pols et al.
2011). Thus, bile acids suppress NF-kappaB target gene
expression through activation of both NRs and TGRS. The
differential expression of nuclear and membrane-bound
bile acid receptors in parenchymal cells and liver NPCs
enables a cell-type and bile-acid-specific bile acid signaling
in this organ.

2.3.4 Neutrophils

Neutrophils, the most abundant leukocytes in the blood, are
professional phagocytes which are quickly recruited to
sites of inflammation (e.g. bacterial infection) (Mantovani
et al. 2011), where they release proteolytic enzymes stored
in their granules and generate ROS (Mantovani et al.
2011). The signals triggering their recruitment are also
present in sterile inflammation such as tissue injury by
chemicals or trauma (McDonald et al. 2010; Rock et al.
2011). It is well established that acetaminophen toxicity
induces a strong recruitment of neutrophils into the liver
(Liu et al. 2004, 2006a; Williams et al. 2010; Cover et al.
2006). Yet, the role of these leukocytes in this context is
highly controversial (Liu et al. 2004; Jaeschke et al.
2012b). Independent studies demonstrated that depletion of
neutrophils in mice with antibodies directed against the
epitope, Gr-1, dramatically decreased acetaminophen-
induced liver damage (Liu et al. 2006a; Ishida et al. 2006).
The increase in serum ALT was less than 50 % after
neutrophil depletion (Liu et al. 2006a). Also the dead cell
area in the lobules center was decreased by more than
50 %. Moreover, also survival of the mice was improved
(Liu et al. 2006a). A proposed explanation for the role of
neutrophils is the release of cytotoxic hypochlorous acid
and chloramines from their granules. These cells can also
release serine proteases that contribute to hepatocyte kill-
ing (Ramaiah and Jaeschke 2007). However, increasing
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evidence reveals highly controversial aspects of the neu-
tropenia-inducing antibody approach, indicating that it
induces a protective pre-conditioning in the liver. Kupffer
cells actively removing antibody-tagged neutrophils
become activated (Bautista et al. 1994; Jaeschke and Liu
2007). This also causes a stress response in hepatocytes
inducing the expression of protective genes like metallo-
thionein, heme oxygenase and others (Jaeschke and Liu
2007). Consistent with this, application of the neutropenia-
inducing antibodies after acetaminophen injection but
before the onset of injury was not protective (Cover et al.
2006). Furthermore, neutrophils recruited into the liver
after acetaminophen intoxication are not activated, as
indicated by their low ROS production upon phorbol ester
(PMA) stimulation (Williams et al. 2010). Finally, mice
deficient in ICAM-1 (Cover et al. 2006), CD18 (Williams
et al. 2010) and NADPH oxidase (James et al. 2003) are
not protected against acetaminophen toxicity. Altogether,
in spite of initial reports on neutrophil-mediated acetami-
nophen hepatotoxicity, cumulative evidence strongly
argues against this hypothesis. Nevertheless, it is important
to consider that under certain conditions, neutrophils may
induce an inflammation response that rather aggravates
than repairs the injured tissue (Jungermann and Kietzmann
2000). Neutrophil-mediated toxicity has been extensively
documented in ischemia/reperfusion, endotoxic shock and
cholestasis-induced liver damage (Jaeschke 2003; Jaeschke
and Hasegawa 2006; Jaeschke and Bajt 2006). Hence, it is
puzzling why neutrophils recruited to acetaminophen-
damaged livers are rather inactive, in spite of being in a
pro-inflammatory milieu of TNFa and IL-1B secreted by
Kupffer cells. Further studies are needed to establish the
contribution of neutrophils in drug-induced hepatotoxicity.

2.3.5 Natural killer cells

Natural Killer (NK) cells are large granular lymphocytes
representing a fundamental component of the innate
immune system (Notas et al. 2009). As the name implies,
these leukocytes are efficient cell killers by virtue of their
granule content which includes perforin and serine prote-
ases (granzymes) (Notas et al. 2009). In addition, these
cells express pro-apoptotic ligands such as FasL. and TNF-
related apoptosis-inducing ligand (TRAIL) (Notas et al.
2009). Furthermore, NK cells contribute to inflammation
by releasing cytokines such as IFNy (Notas et al. 2009).
Target cell recognition is mediated by a complex balance
between activating and inhibitory signals. Normal healthy
cells are protected from NK cell killing for example by
major histocompatibility complex (MHC) class I mole-
cules, which engage inhibitory receptors (Ly-49 family) in
NK cells (Raulet and Vance 2006). Conversely, cells
expressing ligands for Kkilling stimulatory/activating
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receptors such as the NKG2D are targeted for cytolysis
(Raulet and Vance 2006). Hepatocytes may be particularly
prone to damaging effects by NK cells for two reasons: (1)
the hepatocytes express relatively low levels of MHC class
I molecules which inhibit NK cells (Ochi et al. 2004) and
(2) the liver contains a specific subpopulation of NK cells
lacking Ly-49 inhibitory receptors which recognize MHC
class I (Ochi et al. 2004).

NK cells have been shown to mediate liver damage in a
number of diseases, including primary biliary cirrhosis
(Chuang et al. 2008), infection with pseudomona aerugin-
osa or staphylococcal-induced hepatotoxicity (Notas et al.
2009). However, relatively little is known about how NK
cells contribute to chemically induced liver toxicity. A first
report described an increased number of NK cells and
activation (increased FasL and IFN expression) in the liver
of acetaminophen overdosed mice (Liu et al. 2004). By
applying a depletion strategy for NK (and NK-T) cells with
an anti NK1.1 antibody, it was shown that NK cell removal
protected mice from acetaminophen hepatotoxicity, as
assessed by reduced serum transaminase and necrotic area
compared to isotype antibody-treated mice (Liu et al.
2004). In addition, the report concluded that many of the
pro-inflammatory cytokines induced upon intoxication
came from NK cells (Liu et al. 2004). In support of this
study, NK cells from the liver but not from spleen were
able to cause killing of cultured hepatocytes in vitro (Liu
et al. 2004), and NK cells activation by polycytidylic acid—
enhanced hepatocyte Kkilling in vitro (Liu et al. 2004).
Furthermore, several cytokines that are secreted in
response to liver damage such as IFNy, TNFa, IL-2, IL-4
and IL-6 contribute to NK cell activation (Notas et al.
2009). Interestingly, NK and NK-T cells are a major source
of interferon gamma (IFNy) which has been shown to
cause apoptosis of hepatocytes (Kano et al. 1997; McCul-
lough et al. 2007). However, the significance of this report
has been challenged by a recent study by Masson et al.
which demonstrated that dimethyl sulfoxide (DMSO,
which was used as vehicle for the first study) and not
acetaminophen, triggers activation and recruitment of NK
cells in liver (Masson et al. 2008). Furthermore, using the
same anti NK1.1 antibody for NK cell depletion, Masson
et al. found a protective effect only on mice injected with
acetaminophen dissolved in DMSO, but no protection on
saline acetaminophen solutions (Masson et al. 2008). This
study indicates that NK cells may play a role in acetami-
nophen toxicity only if they are activated a priori, in this
case by DMSO (Masson et al. 2008).

NK cells seem to have different consequences in chronic
liver toxicity compared to the aforementioned acute liver
damage. This may be due to the fact that in chronic liver
disease another cell type, the activated stellate cell, plays a
central role (Bataller and Brenner 2005). Several studies

have shown that under conditions of chronic liver damage,
NK cells attack stellate cells (Krizhanovsky et al. 2008;
Radaeva et al. 2006). This effect is mediated by the
NKG2D ligand, which activates NK cells. The NKG2D
ligand was absent in quiescent stellate cells (in control
livers), whereas high levels were expressed in activated
stellate cells after induction of fibrosis by feeding of mice
with  3,5-diethoxycarbonyl-1-4-dihydrocollidine (DCC)
(Radaeva et al. 2006).

In conclusion, further investigations are needed to
clearly establish the role of NK cells in acetaminophen-
and xenobiotic-induced hepatotoxicity.

2.3.6 Stellate cells

Hepatic stellate cells (HSCs) reside within the space of
Dissé in the liver which is formed between the parenchyma
(hepatocytes) and sinusoidal endothelial cells (Bataller and
Brenner 2005). Under normal conditions, these cells con-
stitute a major storage site for retinoid (vitamin A) in the
body (Bataller and Brenner 2005). Upon liver injury, HSCs
undergo an activation process by which they lose vitamin
A and acquire a myofibroblast-like phenotype, with
increased synthesis of collagen I, a-smooth muscle actin
and secretion of pro-fibrogenic factors like CTGF and
TGF-B. Their role in pathology is mostly addressed in
conditions of chronic liver damage, where their main
function is the deposition of ECM, which limits the pro-
gression of injury and favors tissue regeneration (Bataller
and Brenner 2005; Radaeva et al. 2006).

Increasing evidence suggests that HSCs can also con-
tribute to inflammation occurring during acute liver dam-
age, by detecting molecules released by dead hepatocytes.
In response, HSCs secrete cytokines and chemokines that
modulate the inflammatory response. HSCs cells express
several TLRs including TLRY9, which interacts with
DAMPs such as CpG-DNA (Chen and Nunez 2010).
In vitro, stimulating HSC with either DNA from apoptotic
hepatocytes or by synthetic DNA rich in cytidinepho-
sphate-guanosine (CpG) induces HSC activation (e.g.
increased collagen 1 and TGF-B production, increased
alpha smooth muscle actin expression) (Watanabe et al.
2007). Under conditions of acute liver damage by acet-
aminophen, dead hepatocytes release DNA to the extra-
cellular space (Imaeda et al. 2009) which is detected by
HSC via TLRY (Gabele et al. 2008; Watanabe et al. 2007).
Therefore, it is likely that HSCs become activated by cell
debris from apoptotic/necrotic hepatocytes.

During acute liver injury, microvasculature rupture
leads to tissue hemorrhage that induces activation of the
coagulation cascade, which includes the proteolytic acti-
vation of thrombin. This serine protease acts as a potent
activator for HSCs and myofibroblasts (Shultz et al. 1989).
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Thrombin also induces synthesis and secretion of Mcp-1 in
HSCs, a potent chemoattractant for macrophages (Marra
et al. 1995). HSCs can also actively recruit macrophages by
secretion of the CC chemokine CCL5-RANTES (Regu-
lated on Activation, Normal T-Cells Expressed and
Secreted) (Schwabe et al. 2003). Expression and secretion
of RANTES can be efficiently induced in isolated HSCs by
stimulation with TNFo or IL-1p via NF-kappaB and JNK
signaling pathways (Schwabe et al. 2003). Furthermore,
incubation of murine HSCs with lipopolysaccharide, LTA
or NAM triggers expression of TGF-f, IL-6 and macro-
phage chemoattractant protein-1 (Mcp-1) at mRNA and
protein level (Brun et al. 2005). Activated HSCs can also
actively recruit neutrophils. In response to culture-depen-
dent activation in vitro or by stimulation with TNFa or IL-
1, rat HSCs secrete Cxcll/Grol, a potent chemokine for
neutrophils (Maher et al. 1998). The chemotactic capacity
of conditioned media from activated HSCs was determined
by the Boyden chamber technique with neutrophils as
target cells. Conditioned media from HSCs at day 7 in
culture, a time when HSCs have achieved culture-depen-
dent activation, could strongly induce neutrophil migration
(e.g. 20 vs. 150 neutrophils per 10x high-power field in
control versus conditioned media, respectively). The role
of Cxcll as chemoattractant in this conditioned medium
was validated with the addition of an anti-Cxcll antibody,
which strongly reduced the chemoattractant power of the
conditioned media from 150 to 50 neutrophils per 10x
high-power field. This effect was not observed by the
addition of a control IgG (Maher et al. 1998). Thus, acti-
vated HSCs can promote the recruitment of leukocytes into
injured liver.

Recent studies suggest that hepatic stellate cells have
characteristics of stem cells (Kordes et al. 2007) and were
recently identified as liver-resident mesenchymal stem
cells (MSC) (Kordes et al. 2013). As known for MSC of the
bone marrow, HSC can support hematopoiesis and differ-
entiate into adipocytes and osteocytes (Castilho-Fernandes
et al. 2011; Kordes et al. 2013). HSC maintain their
undifferentiated state in the space of Dissé, which exhibits
features of stem cell niches (Sawitza et al. 2009; Kordes
and Héussinger 2013). Moreover, stellate cells were shown
to be involved in the regeneration of liver tissue (Kordes
et al. 2012). Cell differentiation experiments with isolated
HSC, fate-mapping studies using the stellate cell marker
glial fibrillary acidic protein and transplantation experi-
ments with pancreatic stellate cells demonstrated that
stellate cells can generate hepatobiliary cell lineages to
reconstitute liver mass (Kordes et al. 2007; Yang et al.
2008; Kordes et al. 2013). Although quiescent hepatic
stellate cells express the CD95 death receptor, addition of
CD95 ligand does not induce HSC apoptosis, but instead
triggers HSC proliferation (Reinehr et al. 2008). This is due
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to an inactivating tyrosine nitration of CD95 and a c-Src-
dependent shedding of epidermal growth factor. Thus, HSC
are obviously involved in important physiological pro-
cesses that ensure liver function.

The expression of the nuclear bile acid receptors FXR,
PXR and VDR has been detected in rodent and human
HSCs (Fickert et al. 2009; Fiorucci et al. 2004). Treatment
of bile duct ligated rats with a FXR agonist successfully
attenuated liver fibrosis (Fiorucci et al. 2004). However,
murine and human HSCs only showed very weak FXR
mRNA expression, and FXR protein levels were unde-
tectable in these cells independent of activation (Fickert
et al. 2009). The mRNA expression of PXR in isolated
human HSCs was also significantly lower compared to
isolated human hepatocytes (Fickert et al. 2009). By con-
trast, VDR expression levels were significantly higher in
human HSCs compared to human hepatocytes (Fickert
et al. 2009). Activation of VDR in rats with thioacetamide-
induced liver fibrosis significantly reduced fibrosis scores
(Abramovitch et al. 2011). Furthermore, genetic variants of
the VDR have been linked to fibrosis progression in
patients with HCV infection (Baur et al. 2012). The
membrane-bound bile acid receptor, TGRS, has not been
detected in quiescent hepatic stellate cells (Keitel et al.
2008b).

2.3.7 Biliary epithelial cells

Biliary epithelial cells (i.e. cholangiocytes) line the tubular
conduits which constitute the biliary tract. These cells are
often targets in a number of human cholestatic liver dis-
eases and therefore are important NPCs to study. Bile acids
have been shown to regulate diverse cholangiocyte func-
tions (Xia et al. 2006). Cholangiocytes express the nuclear
bile acid receptors FXR and VDR (D’ Aldebert et al. 2009;
Gascon-Barre et al. 2003), and their activation leads to an
increased expression of the antimicrobial peptide, cath-
elicidin, in biliary epithelial cells (D’ Aldebert et al. 2009).
Further studies are needed to elucidate the role of FXR and
VDR in biliary epithelial cells. TGRS has also been
detected in cholangiocytes (Keitel et al. 2009, 2010; Keitel
and Hiussinger 2011, 2012; Héussinger et al. 2012) and is
coupled to a stimulatory G-protein. TGRS is responsive to
bile acids, with taurolithocholate (ECsq = 0.29 uM) and
taurodeoxycholate (ECsg = 0.79 uM) being the most
potent agonists (Kawamata et al. 2003; Maruyama et al.
2002; Sato et al. 2008). In cholangiocytes, TGRS is located
in the primary cilium and apical plasma membrane (Keitel
et al. 2010; Keitel and Hiussinger 2011, 2012). Stimulation
of TGRS in biliary epithelial activates the cAMP-regulated
chloride channel, CFTR, resulting in increased chloride
secretion (Keitel et al. 2009). A rise in cyclic AMP (cAMP)
may also trigger the insertion of CFTR and ASBT from an
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intracellular vesicular pool into the apical membrane thus
facilitating transport activity (Alpini et al. 2005; Cheng
et al. 1991; Howard et al. 2000). TGR5 may therefore
function as a bile acid sensor coupling biliary bile acid
constitution to cholangiocyte bile acid absorption and
chloride secretion (Keitel and Héussinger 2011, 2012;
Haussinger 2012). Furthermore, activation of TGRS may
trigger anti-apoptotic and proliferative effects in biliary
epithelial cells (Keitel and Hiussinger 2011, 2012; Héus-
singer 2012). For a recent overview on TGRS expression
and function in liver refer to Keitel and Haussinger (2012).

3 Regulatory genes and signaling pathways in the liver
3.1 MicroRNAs

MicroRNAs (miRNAs), short non-coding RNA molecules
of 19-25 nucleotides in length, were recently identified to
play a key role in the regulation of gene expression. Found
in all animal and plant cells, as well as in viral genomes,
miRNAs act as inhibitors of protein translation by binding
to a short six-nucleotide region within the 3’-untranslated
region (3’-UTR) of their target mRNAs (Bartel 2004;
Bartel and Chen 2004). More than 1,000 miRNA molecules
have been described in humans (http://microrna.sanger.ac.
uk/). Present estimates suggest that about 50 % of human
mRNAs appear to be miRNA targets. This makes the
miRNA genes one of the most abundant classes of regu-
latory genes in mammals (Lewis et al. 2005; Shomron and
Levy 2009). MicroRNAs are transcribed in the nucleus by
RNA polymerase II and subsequently processed by multi-
ple maturation steps, which include the initial cleavage of
the transcribed primary miRNA (pri-miRNA) by the RNase
IIT enzyme Drosha in interplay with its binding partner,
DGCRS, the export to the cytoplasm and the consecutive
cleavage by the endoribonuclease Dicer. These transfor-
mation steps lead to the formation of the mature double-
stranded miRNA molecule. Finally, the two strands of the
miRNA duplex are separated by an RNA helicase. One
strand is preferentially assembled into the RNA silencing
complex (RISC) to mediate the repression of translation or
the degradation of the target mRNA molecule (Lund et al.
2004). MicroRNAs are expressed in a cell- or tissue-spe-
cific manner and have been demonstrated to play a role in
the regulation of cell differentiation and cell replication
(see section “Epigenetics and its mechanisms in the regu-
lation of gene expression”). As a consequence, an aberrant
expression of miRNAs has been repeatedly shown to be
associated with the development of different cancer forms.
The tissue-specific expression of miRNA molecules is
especially well exemplified by the miRNA molecule miR-
122. It could be demonstrated that miR-122 is most

abundantly expressed in the liver, accounting for approxi-
mately 70 % of all hepatic miRNA (Chang et al. 2004;
Orom et al. 2008). Two studies could show that miR-122
appears to suppress 100-200 genes in liver tissue as
demonstrated in mice (Esau et al. 2006; Elmen et al.
2008a). The knockdown of miR-122 results in a decrease in
hepatic cholesterol biosynthesis (Krutzfeldt et al. 2005;
Esau et al. 2006; Elmen et al. 2008a). First attempts to use
miR-122 as a therapeutic drug target have been already
made by developing antagomirs against miR-122 and to
test them as a putative treatment option for hepatitis C
(Lanford et al. 2010) or for diseases associated with an
aberrant cholesterol homeostasis (Elmen et al. 2008a, b).
Given the central role that miRNAs play in regulating gene
expression, it is not surprising that the translation of many
proteins important for drug transport, drug metabolism and
pharmacodynamic action appears to be regulated by miR-
NAs as in silico, as predicted by Rukov et al. (2011). In
recent studies, research groups focused especially on the
investigation of how miRNA molecules influence the
translation of important NRs. As reviewed below, it
appears that the most important xenosensors are targeted
by miRNA molecules.

3.2 Nuclear receptors

First recognized as important xenosensors that ligand
dependently modulate especially the expression of
enzymes involved in the metabolism of xenobiotics, e.g.
the CYP family, it has become more obvious that nuclear
hormone receptors rather act as master regulators of a
metabolizing network coordinating both an adequate drug
transformation and the metabolism of endogenous com-
pounds such as cholesterol and lipids. This is not only
reflected in the fact that NRs target genes involved in both
drug and bile acid transport and metabolism but also by the
fact that NRs appear to be sensitive to drugs as well as bile
acids, leading to a tight interplay between the application
of therapeutics and physiological functions such as bile
acid homeostasis (Pascussi et al. 2004). Forty-nine mem-
bers of the NR family are currently known. The protein
family has several characteristics in common. NRs are
characterized by six functional regions (A-F), which show
various degrees of sequence conservation. The transacti-
vation domain AF-1 is found within the N-terminal local-
ized A/B domain. While the DNA-binding domain (DBD),
composed of two zink finger domains, is localized within the
highly conserved C region, the ligand-binding domain (LBD)
is found within the E region. The two remaining regions, D
and F, display a linker peptide between the DBD and the LBD
and a C-terminal extension region of the LBD, respectively.
Typically, the LBD is able to bind agonistic or antagonistic
acting ligands, such as hormones, vitamins, or toxins, leading
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to the homo- or heterodimerization of NRs. If not already
constitutively expressed in the cell nucleus, the NR dimer
travels from the cytoplasm into the nucleus, binds to its
specific consensus sequence in target gene promoters and
modulates gene expression. NR-binding sites are typically
composed of a pair of 5-6 base-pair-long DNA sequences
(two half-sites) which are often separated by a spacer of 1-6
bases of length (Bain et al. 2007; Urquhart et al. 2007). The
actual functional impact of NRs on gene expression is not
only triggered by ligand binding to the receptors but also
exerted through an interaction of the NRs with co-regulatory
proteins, leading to a consecutive modification of chromatin
structure. Depending on their effect on NR action, co-regu-
lators are classified as co-activators or repressors. While co-
activators, e.g. enzymes such as acetyltransferases or meth-
yltransferases, lead to chromatin relaxation and a consecutive
facilitation of a further transcription factor recruitment, co-
repressors lead to the recruitment of histone deacetylases
(HDAC:S) that support chromatin condensation and suppres-
sion of gene expression (Pascussi et al. 2008).

3.2.1 Pregnane-X receptor (PXR)

The pregnane-X receptor (PXR, gene symbol NRII2) is
characterized by a wide ligand spectrum, including struc-
turally unrelated xenobiotics, steroids, drugs and bile acids.
PXR is especially highly expressed in human liver and
intestine, and is also found in human breast tissue. Although
originally detected as a xenosensor for different drugs, e.g.
rifampicin or hyperforin/St. Johns wort, it appears that PXR is
also involved in the coordinate expression of transport pro-
teins and of metabolizing enzymes responsible for bile acid
homeostasis (Staudinger et al. 2001; Wang et al. 2012a). The
involvement of PXR in bile acid homeostasis is also reflected
by the fact that the secondary bile acid lithocholic acid
appears to be a strong agonist of PXR. Typically, PXR shares
many target gene promoters of proteins involved in phase I-
III metabolism with constitutive androstane receptor (CAR).
This includes, among others, genes encoding members of the
CYP3A and CYP2B family, the phase II enzymes sulfo-
transferase 2A1 (SULT2A1), UDP glucuronosyltransferase
1A1 and 1A6 (UGT1A1, UGT1A6) and the hepatic efflux
transporter MRP2 (Kakizaki et al. 2012). CYP3A plays arole
in bile acid detoxification since it catalyzes side-chain
hydroxylations of bile acid intermediates so that they can be
excreted in bile and urine (Goodwin et al. 2002). Unlike CAR,
which appears to be primarily found in the cytosol and con-
stitutively expressed in humans, PXR is especially found in
the nucleus, bound to several co-repressors. Ligand activation
leads to the release of these co-repressors, to a recruitment of
co-activators and a consecutive promotion of transcription
(Wang et al. 2012b). PXR has been shown in vitro to have the
potential to prevent the cell from bile acid overload by
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reducing the interaction of peroxisome proliferative activated
receptor gamma coactivator (PGC-1a) with hepatocyte
nuclear factor-4o0 (HNF-4a, (gene symbol NR2AT)), thus,
being able to inhibit the transcription of CYP7A1, one of the
key enzymes in bile acid synthesis (Staudinger et al. 2001;
Chiang 2003; Staudinger et al. 2003). Furthermore, PXR
appears to be itself a transcriptional target of bile acid-acti-
vated FXR (Jung et al. 2006).

Bile acid elimination from hepatocytes is supported by
PXR through its ability to upregulate the expression of
MRP2, confirmed in different experiments that induced
MRP2 with rifampin in enterocytes (Fromm et al. 2000),
HepG2 cells (Schrenk et al. 2001) and hepatocytes (Jigorel
etal. 2006). Furthermore, FXR, PXR and the CAR are able to
stimulate Mrp2 expression in rodents via shared binding sites
(Kast et al. 2002). As demonstrated in rodents, the expression
of the hepatic uptake transporter OATP-C (SLC21A6) also
appears to be upregulated by PXR (Staudinger et al. 2003;
Wagner et al. 2005). Treatment with the PXR ligand, rifam-
picin, or the CAR ligand, phenobarbital, has been shown to
ameliorate pruritus in cholestasis patients, to lower the
cholestatic liver enzyme alkaline phosphatase as well as the
concentration of bile acids in serum (Stiehl et al. 1972; Ghent
and Carruthers 1988; Cancado et al. 1998). Comprehensive
studies investigating the interplay between PXR and miRNA
molecules are still needed, although it has been shown using
different cell lines, including HepG2 cells, (Takagi et al.
2008), that the gene encoding PXR is targeted and suppressed
by the miRNA molecule miR-148a, leading to the attenuation
of the PXR-dependent induction of CYP3A4 gene expres-
sion. This observation could add to our understanding of the
as yet not fully explained phenomenon that CYP3A4 shows
such a high inter-individual variability in its expression.

Besides their role in bile acid metabolism, both PXR and
FXR promote anti-inflammatory effects in hepatocytes
(Wang et al. 2009; Zhou et al. 2006). FXR knockout mice
suffer from increased liver inflammation and spontaneously
develop hepatic tumors (Kim et al. 2007a; Yang and Seto
2007). Stimulation of FXR in isolated hepatocytes and
HepG2 hepatoma cells significantly suppressed NF-kappaB
transcriptional activity (Wang et al. 2008a). Hepatocytes
from PXR knockout mice express higher levels of inflam-
matory cytokines such as IL-1B and TNF-a compared to
wild-type mice (Hu and Li 2010; Zhou et al. 2006). Fur-
thermore, activation of PXR in isolated hepatocytes lowered
the expression of inflammatory cytokines (Hu and Li 2010;
Zhou et al. 2006). It has been recently demonstrated the
SUMOylation of PXR is essential for the repression of NF-
kappaB target genes (Hu and Li 2010; Zhou et al. 2006).
Interestingly, activation of NF-kappaB reduced transcrip-
tional activity of FXR and PXR (Kim et al. 2003a; Wang et al.
2008a; Zhou et al. 2006), which may represent a feedback
loop and underlie the downregulation of FXR and PXR target
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genes in liver during the acute phase response (Keitel and
Héussinger 2012). The molecular mechanism for this effect
may be the association of NF-kappaB-p65 with the retinoid X
receptor (RXR), thereby preventing DNA binding by RXR
(Zhou et al. 2006). Since RXR serves as a heterodimerization
partner for several NRs (including FXR and PXR), this
mechanism may apply for various NRs (Zhou et al. 2006;
Wan et al. 2000).

3.2.2 Constitutive androstane receptor (CAR)

The constitutive androstane receptor (CAR, gene symbol
NRI1I3) is closely related to PXR with regard to sequence
similarity and function. Like PXR, CAR is highly expressed in
liver (Zhou et al. 2007) and intestine (Burk et al. 2005) but has
also been detected in kidney and the adrenal glands (Lamba
et al. 2004), testis, brain and lymphocytes (Lamba et al. 2004;
Siest et al. 2008). CAR typically forms heterodimers with RXR
before binding to its response elements within the 5’-regulatory
regions of its target genes (Suino et al. 2004). Typical CAR
ligands include androstane metabolites and xenobiotics,
including drugs such as phenobarbital, clotrimazole, carbam-
azepine, efavirenz and nevirapine (Faucette et al. 2007) or the
synthetic ligand TCBPOP. The androstane metabolites cause
CAR-dependent target gene repression via the activation of
repressive acting cofactors (Forman et al. 1998). CAR tends to
actin strong cross talk with PXR due to its property to share the
same binding sites with PXR. Thus, like PXR, CAR influences
the expression of a broad spectrum of transporters and enzymes
involved in drug and in bile acid transport and metabolism.
Important targets include members of the xenobiotic-metab-
olizing phase I CYP enzymes (CYP1Al and CYP1A2
(Yoshinari et al. 2010), CYP3A4 (Goodwin et al. 2002),
CYP2B6 (Sueyoshi et al. 1999), CYP2C9 and CYP2CI9
(Gerbal-Chaloin et al. 2002) and CYP2A6 (Itoh et al. 2006))
and enzymes involved in phase II drug metabolism such as the
glucoronidating enzymes UGT1A1, UGT1A6 (Sugatani et al.
2001) and the sulfotransferase SULT2A1 as well as the
transport proteins MDR1, MRP2 and OATP-C (Geick et al.
2001; Kast et al. 2002; Burk et al. 2005). As a regulator of
SULT2A1 gene transcription, CAR appears to play an
important role in bile acid detoxification. This is well reflected
in the observation that mice appear to be resistant to the sec-
ondary bile salt, lithocholic acid, due to increased sulfation of
this acid (Saini et al. 2004). Together with PXR, FXR/SHP,
Liver X Receptor (LXR), HNF-4a and FTF/LRH-1, CAR
regulates bile acid homeostasis by targeting the rate-limiting
enzyme of bile acid synthesis CYP7A1 (Pascussi et al. 2007).

Comprehensive studies are still needed to investigate the
interplay between CAR and a microRNA-dependent reg-
ulation of genes involved in drug and bile acid metabolism.
Future studies have to show to what extent the action of
CAR is influenced by small RNA molecules.

3.2.3 Hepatocyte nuclear factor 4o, (HNF-4a)

HNF-4a belongs to the NR2A gene subfamily of NRs and is
highly conserved between species. HNF-4a appears to be the
most abundant transcription factor in the liver (Drewes et al.
1996). In addition to its strong hepatic expression, HNF-4a
has also been found to be expressed in kidney, pancreas and
the intestine in humans (Wirsing et al. 2011). Nine isoforms
of HNF-4a have been detected in mammalian liver. The
NR2A subfamily members, HNF-4or and HNF-4+, appear to
be highly expressed in mammalians and are regulated by two
different promoters within the HNF-4a-expressing gene.
While the synthesis of the adult protein forms HNF-4o 1-6 is
controlled by the promoter P1 in the liver, the expression of
the embryonic isoforms HNF-4a 7-9 is under the control of
the second promoter P2 in pancreatic cells. HNF-4o has been
shown to be involved in fatty acid oxidation, lipoprotein
metabolism, glucose metabolism, amino acid metabolism,
blood coagulation and genome replication (Chiang 2009).
Being expressed predominantly in the nucleus, HNF-4a
belongs to the class IT orphan NR family, which was shown to
be constantly active. HNF-4o acts as a homodimer and
preferably binds to a direct repeat 1 (DR1) element composed
of two AGGTCA-like binding sites (Jiang et al. 1995).
Several studies have demonstrated that HNF-4a plays an
important role in both bile acid and drug metabolism.
HNF-4a is an important transactivator of the bile acid-
synthesizing genes, CYP7Al, CYPSBI and CYP27Al,
demonstrated in both rodents and humans. All three genes
carry functional binding sites for HNF-4o in their pro-
moters. The interplay between FXR and SHP is able to
inhibit HNF-4a activity and, thus, to inhibit the expression
of the mentioned three key enzymes involved in bile acid
synthesis (Stroup et al. 1997; Chiang et al. 2000; Goodwin
et al. 2000; Zhang and Chiang 2001; Chen and Chiang
2003). An important additional mechanism involves the
interplay between PXR and HNF-4a in the regulation of
bile acid homeostasis. It has been demonstrated that ligand-
activated PXR is able to inhibit the transactivating effect of
HNF-4a on the CYP7A1 promoter by directly interacting
with the important HNF-4o co-activator PGC-1o (Bhalla
et al. 2004; Li and Chiang 2005). Inhibitory effects on
HNF-4a action have been also observed for CAR, which is
able to directly compete with HNF-4a for DR1-binding
sites and co-activator recruitment as demonstrated on the
HNF-4a target promoters of CYP7A1 and CYP8B1 (Miao
et al. 2006). Besides its modulating effects on the expres-
sion of enzymes important for bile acid synthesis, HNF-4a
has been shown to regulate the expression of genes that
encode transporters and enzymes involved in drug metab-
olism. HNF-4o directly enhances the expression of
CYP2C9 and CYP2C19 (Chen et al. 1994; Kawashima
et al. 2006). Furthermore, HNF-4a also appears to regulate
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the basal expression of other CYP family members, such as
CYP3A4, CYP3AS5, CYP2D6, CYP2A6 and CYP2B6 as
demonstrated by several research groups (Corchero et al.
2001; Kamiya et al. 2003; Tirona et al. 2003).

HNF-4a0 mRNA is targeted and markedly decreased by
the miRNA molecules miR-24 and miR-34a via two
binding elements located in the 3’-untranslated region
(UTR) and in the coding region, respectively (Takagi et al.
2010). The protein expression of HNF-4o is markedly
decreased upon over-expression of miR-24 and miR-34a in
HepG2 cells. The expression of CYP7Al and CYPSBI,
both important bile acid-synthesizing enzymes, is also
significantly downregulated by miRNA molecules via
miRNA-induced downregulation of HNF-40. miR-34 and
miR-449 are able to target the 3’-UTR of HNF-40o mRNA
and, by it, to repress luciferase activity in vitro in HepG2
cells and to repress HNF-4a protein expression, which
consecutively modulates the expression of the HNF-4a
downstream target PXR (Ramamoorthy et al. 2012).

3.2.4 The Farnesoid X receptor (FXR)

FXR (gene symbol NRIH4) is an important member of the
nuclear hormone receptor family and is highly expressed in
the liver, intestine, kidney, the adrenal gland, adipose tissue
and heart (Houten et al. 2007; Noh et al. 2011). FXR acts
as a ligand-activated transcription factor by binding to
specific DNA motifs in the promoter regions of its target
genes. FXR either binds as a heterodimer together with
RXR or, in rare cases, as a monomer to its consensus
sequences, followed by a further recruitment of FXR-
associated transactivators (Forman et al. 1995; Seol et al.
1995). In hepatocytes, FXR is an important regulator of
bile acid synthesis, detoxification and transport (for recent
reviews including overviews of FXR target genes see
(Calkin and Tontonoz 2012; Modica et al. 2010; Lefebvre
et al. 2009; Keitel et al. 2008a; Thomas et al. 2008; Kal-
aany and Mangelsdorf 2006). Bile acids can bind and
activate nuclear bile acid receptors, including FXR (Kala-
any and Mangelsdorf 2006; Lefebvre et al. 2009; Maki-
shima et al. 1999; Parks et al. 1999; Teng and Piquette-
Miller 2008), PXR (Staudinger et al. 2001; Xie et al. 2001)
and the vitamin D receptor (VDR, NR11I1) (Gascon-Barre
et al. 2003; Han and Chiang 2009; Makishima et al. 2002).
Thus, bile acids are able to increase their cellular excretion
by stimulating FXR activation of the ABCB11 gene pro-
moter, leading to an elevated expression of BSEP and
consequently, to higher bile acid efflux out of the hepato-
cyte. The expression profile of the different bile acid
receptors determines which signaling pathways are acti-
vated by bile acids in the respective liver cells. Genes
encoding enzymes essential for gluconeogenesis and gly-
cogen synthesis are also transcriptionally regulated by FXR
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(reviewed in Calkin and Tontonoz 2012; Kalaany and
Mangelsdorf 2006; Keitel et al. 2008a; Modica et al. 2010).
Furthermore, FXR modulates triglyceride de novo synthe-
sis as well as clearance thus controlling triglyceride
homeostasis (Lambert et al. 2003; Sinal et al. 2000; Wa-
tanabe et al. 2004; for reviews refer to Calkin and Tonto-
noz 2012; Kalaany and Mangelsdorf 2006; Keitel et al.
2008a; Modica et al. 2010). Besides its central role in bile
acid transport and metabolism, FXR acts as an important
transcriptional regulator of genes involved in glucose, lipid
homeostasis and carcinogenesis (Makishima et al. 1999;
Parks et al. 1999; Kim et al. 2007a; Yang and Seto 2007).
FXR appears to act as a cell protecting biosensor for
intestinal and hepatic cells against bile acid overload by (1)
increasing the expression of transport proteins that support
the elimination of bile acids from the cell (BSEP, MRP2)
and bile acid detoxification (Maglich et al. 2002; Synold
et al. 2001; Xie et al. 2001; Wagner et al. 2005); (2)
decreasing the expression of transport proteins responsible
for the uptake of bile acids into the cell NTCP, OATP1BI,
apical Na*-dependent bile acid transporter (ASBT)) and
(3) inhibiting the de novo synthesis of bile acids from
cholesterol (CYP27A1, CYPS8B1, CYP7A1) (Kast et al.
2002; Plass et al. 2002; Bhalla et al. 2004; Han and Chiang
2009). Accordingly, PXR knockout mice show increased
liver damage following lithocholic acid treatment (Stau-
dinger et al. 2001; Xie et al. 2001). The combined acti-
vation of FXR, PXR and VDR under cholestatic conditions
results in repression of bile acid synthesis and increases
bile acid detoxification and excretion and may therefore
protect hepatocytes from bile acid toxicity (Guo et al.
2003; Han and Chiang 2009; Maglich et al. 2002; Stau-
dinger et al. 2001; Xie et al. 2001; Wang et al. 2002). The
importance of FXR and PXR for efficient hepatoprotection
is further underscored by the finding that FXR activation
upregulates PXR expression (Wang et al. 2002; Jung et al.
2006). Primary bile acids, such as chenodeoxycholic acid
and its conjugated derivatives, and secondary bile acids,
such as deoxycholic and lithocholic acid, have been shown
to act as direct ligands for FXR and, thus, to modulate the
transcriptional impact of FXR on its target genes. The
primary bile acid chenodeoxycholic acid and its conjugates
constitute the most potent FXR ligands with an ECs, of
approximately 5-10 uM, while the secondary bile acids
deoxycholic acid and lithocholic acid also activate FXR,
however, less efficient than chenodeoxycholic acid
(Makishima et al. 1999; Parks et al. 1999; Wang et al.
1999a). Both PXR and VDR are responsive to the sec-
ondary bile acid lithocholic acid (Goodwin et al. 2003;
Makishima et al. 2002; Staudinger et al. 2001).
Interestingly, FXR unfolds diverging effects on the
expression of different OATP family members. While the
OATP1B3 encoding gene SLCOIB3 has been shown to be
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transactivated by FXR (Jung et al. 2002), FXR appears to have
divergent effects on the expression of the SLCO1B1 gene (Jung
and Kullak-Ublick 2003). FXR can unfold a repressive effect
on gene transcription via a co-repressor SHP-dependent
pathway. SHP is able to interfere with HNF-4q, leading to the
inhibition of HNF-4a-dependent transactivation of HNF-1a, a
strong inducer of SLCO1BI transcription. This pathway could
explain the decrease in OATP1B1 expression found in liver
biopsies of patients with cholestatic liver disease (Zollner et al.
2001). However, in vitro studies show that the SLCO1BI gene
can also be activated by FXR (Meyer zu Schwabedissen et al.
2011). The hepatic bile acid uptake transporter NTCP is also
regulated in a FXR/SHP pathway-dependent manner. Bile
acids, as well as the over-expression of SHP, strongly inhibit
glucocorticoid receptor—mediated activation of the NTCP
gene promoter (Eloranta et al. 2006). FXR and SHP also
interplay to regulate genes involved in the de novo synthesis of
bile acids. Bile acids are able to suppress their own synthesis by
acting as ligands of FXR, which consecutively induces the
expression of SHP, leading to a SHP-dependent inhibition of
transcription factors that are able to upregulate the expression
of the CYP7A1, CYP27A1 and CYP8BI. In the case of
CYP7A1 and CYP8B1, SHP inhibits the transcription factors
LRH-1 and a-fetoprotein transcription factor (FTF). In the case
of CYP27A1, SHP targets and inhibits the action of HNF-4a
(Goodwin et al. 2000; del Castillo-Olivares et al. 2004; Chen
and Chiang 2003).

Direct targets of FXR also include OSTo/OSTf, as well as
the phase II metabolizing enzyme UGT2B4, which is able to
transform bile acids into their hydrophilic glucuronide
derivatives (Barbier et al. 2003; Landrier et al. 2006). An
interesting link between bile acid homeostasis and drug
metabolism is evident from the fact that FXR appears to
transactivate the major drug-metabolizing enzyme, CYP3A4,
which is also involved in the detoxification of bile acids. The
FXR-dependent transactivation of CYP3A4 is triggered by
two response elements within the distal 5'-flanking region of
CYP3A4. The regulatory elements were identified within a
sequence area previously shown to mediate drug-response
via PXR and CAR and to contain a binding site for HNF-4a
(Gnerre et al. 2004).

FXR is increasingly being recognized as a putative target
of microRNAs that regulate its expression. Recently Zhong
et al. (2012) investigated the impact of a changed miRNA
expression profile on biliary tract cancer (BTC). On the basis
of previous observations that FXR is able to act as a tumor
suppressive element in hepatocellular carcinoma and breast
cancer, the group investigated to which extent FXR expres-
sion is influenced by aberrantly expressed miRNA molecules.
They could demonstrate that miR-421 appears to be signifi-
cantly upregulated in BTC, whereby the measured miR-421
amounts correlated inversely with the FXR amounts detected
in BTC probes. It was shown that miR-421 is able to directly

target FXR mRNA leading to a significant loss in FXR
expression. Another example for the synergistic impact of
FXR and microRNA molecules on the regulation of gene
expression was shown by Lee et al. (2012). They showed that
FXR is able to repress the synthesis of miR-199a-3p, a
miRNA molecule that targets and downregulates the tran-
scription factor, and liver kinase B1 (LKB1). This pathway
appears to be significantly downregulated by low FXR levels,
which consecutively leads to low LKB1 levels as observed in
patients suffering from severe liver fibrosis. Furthermore, Lee
et al. (2010) demonstrated that FXR is able to SHP and p53
dependently repress the synthesis of the small RNA molecule
miR-34a, an effect that leads to the upregulation of Sirtuin 1
(SIRT1) expression. SIRT1, an NAD-dependent acting
deacetylase, has been shown to be critically involved in
diverse cellular processes responsible for the development of
metabolic diseases, cancer and aging.

3.2.5 Liver X receptor (LXR)

LXRa and LXRP (gene names NR1H3 and NRIH?) are best
known as oxysterol receptors. They belong, along with FXR
and PXR, to the master regulators of lipid and cholesterol
metabolism. Like several other NRs, LXR acts on target
promoters by forming heterodimers with RXR. The hetero-
dimer binds to its specific LXR response elements, a DR4
direct repeat element composed of two half-sites 5'-AG-
GTCA-3’ (Jakobsson et al. 2012). While LXRp is ubiqui-
tously expressed in different tissues, LXRa is especially
found in tissues with high metabolic activity. Both LXRs
have been found to preferably bind oxidized cholesterol
metabolites such as 22(R)-hydroxycholesterol, 24(S),
25-epoxycholesterol or 27-hydroxycholesterol as endoge-
nous ligands, which are able to agonize or antagonize LXR
action (Peet et al. 1998a). Both LXR molecules have been
recognized to be key regulators of different metabolic path-
ways including carbohydrate and energy metabolism, but
LXRa also appears to be involved in cholesterol metabolism
and lipogenesis (Peet et al. 1998b; Brunham et al. 2006; Naik
etal. 2006). In rodents, LXRo is able to induce the expression
of CYP7A1 (Chiangetal. 2001). Furthermore, LXR regulates
the expression of cholesterol and lipid transporting proteins,
such as ABCG5 and ABCGS in the intestine or ABCGI,
ABCALI and apolipoproteins E and C in macrophages (Yu
et al. 2002; Zelcer and Tontonoz 2006). Recently, Meyer zu
Schwabedissen et al. (2010) demonstrated that the hepatic
uptake transporter, OATP1B1, is under a dual transcriptional
control through LXRo and FXR. Both NRs appear to be able
to induce OATP1BI1 expression ligand dependently as dem-
onstrated in hepatoma cell lines and human hepatocytes.
LXRo appears to be regulated by microRNA molecules.
The 3’-untranslated region of LXRa is targeted by miR-
613, leading to a significant repression of LXRa expression
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(Ou et al. 2011). Interestingly, the miR-613-dependent
regulation of LXRa is incorporated in a negative feedback
loop of LXRo gene expression. LXRa itself is able to
indirectly induce the expression of miR-613 via a sterol
regulatory element-binding protein (SREBP-1c)-dependent
pathway, as demonstrated in HepG2, Huh7 cells and
human hepatocytes (Ou et al. 2011). Antagonistic effects of
LXR-dependent and miRNA-dependent regulation of pro-
tein expression have been observed for genes involved in
cholesterol homeostasis. miR-33 is encoded by a DNA
sequence that is located within the SREBP-2 gene and,
thus, appears to be co-transcribed with SREBP-2 (Marquart
et al. 2010). While SREBP-2 leads to an increased clear-
ance of circulating LDL cholesterol by promoting the
transcription of LDL receptor, miR-33 directly targets the
3’-UTR of the LXR-target genes expressing ABCAI and
ABCG] leading to a suppression of LXR-dependent cho-
lesterol efflux (Marquart et al. 2010).

3.2.6 Small heterodimer partner (SHP)

SHP (gene symbol NROB2) is a member of the NR
family and belongs together with FXR to the group of
master regulators involved in the regulation of bile acid
homeostasis. SHP is highly expressed in the liver but has
also been detected in brain, adrenal glands, gallbladder,
kidney, ovary, testis, the gastrointestinal tract and heart
(Lee et al. 1998; Nishizawa et al. 2002; Sanyal et al.
2002). In addition to its role in bile acid metabolism and
transport, SHP regulates the expression of genes involved
in lipid metabolism, gluconeogenesis and apoptosis
(Zhang et al. 2011a). Unlike other NRs, SHP lacks the
conventional DNA-binding domain. Therefore, SHP acts
indirectly as a transcriptional repressor of its target genes
via binding to a variety of other members of the NR
family, thus inhibiting the binding of co-activators to
these NR proteins. Important examples of SHP partners
in this context include estrogen receptors (ERs), RXR,
LRH-1, HNF-4, LXRs, glucocorticoid receptors (GRs),
PXR and PPAR-a and -y (Johansson et al. 1999, 2000;
Goodwin et al. 2000; Lee et al. 2000; Gobinet et al.
2001; Kassam et al. 2001; Borgius et al. 2002; Brendel
et al. 2002; Nishizawa et al. 2002; Ourlin et al. 2003;
Shimamoto et al. 2004; Yamagata et al. 2004). Based on
this principle of action, SHP has been shown to influence
the expression of CYP7A1, CYP8B1 and CYP7BI, as
well as important enteral and hepatic transporters
involved in bile acid homeostasis, such as ASBT, BSEP,
MDR2, MDR3 and NTCP. Interestingly, the NROB2 gene
promoter itself appears to be a target of transcription
factors that are known to play a key role in the regula-
tion of bile acid homeostasis. This includes FXR, LRH-1,
HNF-4a, LXRa, PPARY and AP1 (reviewed in Zhang
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et al. 2011a). A further indirect link between drug
metabolism and bile acid homeostasis is evident from the
observation that the NROB2 gene promoter has been
demonstrated in vitro to be regulated by PXR in a
ligand-dependent manner using rifampicin (Ourlin et al.
2003).

SHP not only acts as an important co-repressor for NR
target genes, but is also involved in the regulation of miRNA
expression by modulating different transcription factor—
dependent pathways. The miRNA molecules, miR-433 and
miR-127, appear to be SHP dependently repressed (Song and
Wang 2008); likewise, miRNA-206 expression is also influ-
enced by SHP via a regulatory cascade that involves the
transcription factors, Ying Yang 1 (YY1) and estrogen-rela-
ted receptor gamma (ERRY) (Song and Wang 2009). An
interesting implication of the interplay of SHP and miRNA
molecules was described by Xiao et al. (2012) who showed
that the small RNA molecule, miR-134, known to be aber-
rantly highly expressed in prostate cancer (Mitchell et al.
2008), is able to target SHP 3’-UTR and to downregulate its
expression. This is in line with the observation that miR-134
is upregulated in different prostate cancer cell lines, while
SHP expression appeared to be concomitantly downregu-
lated, leading to the transcriptional activation of the androgen
receptor (Xiao etal. 2012). SHP and LRH-1 regulate miRNA-
200c synthesis, a miRNA molecule shown to be aberrantly
expressed in different tumor types, including pancreatic
adenocarcinoma, colon cancer, ovarian cancer and renal cell
carcinoma, and have been shown to promote tumor invasion
and metastasis (Korpal et al. 2008; Ceppi et al. 2010; Zhang
et al. 2011b).

3.2.7 Vitamin D receptor (VDR)

The vitamin D receptor (VDR, NR111) is a key regulator of
calcium homeostasis. Its natural ligand is the hormone
calcitriol (1, 25(OH)2D3). VDR is expressed in numerous
organs, including the intestine (Han and Chiang 2009).
After ligand binding, VDR heterodimerizes with RXR and
binds to its response elements (vitamin D response ele-
ments, VDREs) within its target gene promoters. Recently,
VDR has been shown to have a much wider spectrum of
regulatory functions than initially expected. In addition to
its ability to influence cell proliferation, cell differentiation
and immune-associated functions, VDR has been shown to
be able to regulate the expression of genes involved in drug
metabolism and bile acid synthesis and detoxification
(Campbell and Adorini 2006). VDR regulates the tran-
scription of CYP3A4, CYP2B6 and CYP2C9 (Thummel
et al. 2001; Drocourt et al. 2002), as well as the expression
of the phase II detoxifying enzyme, SULT2A1 (Echchg-
adda et al. 2004), demonstrated using co-transfected
intestinal and hepatic cell lines. In Caco-2 cells, VDR is
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able to ligand dependently activate the intestinal trans-
porters, MRP1, MRP2 and MRP4 (Fan et al. 2009).
Interestingly, these VDR-dependent transactivations are
mainly triggered by a binding of VDR/RXR to CAR/PXR
response elements in the respective gene promoters. VDR
is also able to induce Mdrl in both Fxr (4+/4) and Fxr
(—/—) mice, leading to an increased renal and brain efflux
of digoxin in mice in vivo (Chow et al. 2011). VDR is also
transactivated by the highly hydrophobic and toxic sec-
ondary bile acid, lithocholic acid (Makishima et al. 2002).
This mechanism leads to induction of CYP3A4 and MRP3
in the colon, as well as to the inhibition of bile acid syn-
thesis in the liver via the suppression of CYP7A1 expres-
sion. The suppressive effect on CYP7Al appears to be
unfolded via a MEK1/ERK1/2-dependent signaling path-
way, which is induced by VDR bound to the cellular
membrane. Lithocholic acid appears to induce the trans-
location of VDR from the cytosol to both the nucleus and
the cellular membrane, which consecutively leads to the
heterodimerization of VDR with RXRa, the recruitment of
co-repressors and the final inhibition of CYP7AI gene
transcription (Han and Chiang 2009). The expression of
OATP1A2 is ligand dependently transactivated by VDR in
caco-2 cells, suggesting that a pharmacological adminis-
tration of vitamin D3 may modulate the intestinal absorp-
tion of substrates transported by OATP1A2 (Eloranta et al.
2006). VDR polymorphisms have been investigated with
regard to their potential to modulate the susceptibility for
primary biliary cirrhosis. Several studies found a putative
association between VDR genetic variants and an elevated
risk for the development of this disease (Tanaka et al.
2009; Halmos et al. 2000; Vogel et al. 2002; Fan et al.
2005), shedding further light on a potential role of VDR in
the pathogenesis of cholestatic diseases.

Mohri et al. (2009) identified a miR-125b-binding ele-
ment within the 3’-untranslated region of human VDR
mRNA and could demonstrate that this small RNA mole-
cule is able to significantly decrease VDR expression. This
mechanism consecutively leads to a suppression of CYP24
expression, one of the important enzymes involved in
vitamin D3 degradation (Mohri et al. 2009). It was also
demonstrated that VDR levels are inversely proportional to
the levels of miRNA-125b in different melanoma cell lines,
indirectly pointing to a regulatory impact of miRNA-125b
on VDR expression (Essa et al. 2010).

3.2.8 Peroxisome proliferator-activated receptor (PPAR)

Peroxisome proliferator-activated receptors (PPARs) belong
to the NR family of ligand-activated transcription factors

(TFs), which regulate various physiological functions
involved in development, metabolism and homeostasis.

The PPARs act as regulators of hepatic lipid metabolism
and adipogenesis (Rakhshandehroo et al. 2010; Pyper et al.
2010; Siersbaek et al. 2010). Three PPAR isotypes have been
identified to date: o, B and y—all of which are products of
different genes and show differential tissue expression.
PPARa, which is expressed highly in hepatocytes, cardio-
myocytes, enterocytes and proximal tubule cells in the kidney
(Braissant et al. 1996), is primarily involved in regulation of
genes involved in fatty acid oxidation, ketogenesis, gluco-
neogenesis, cholesterol catabolism and lipoprotein metabo-
lism (Lefebvre et al. 2006; Mandard et al. 2004), as well as
anti-inflammatory genes (Michalik and Wahli 2008; Zand-
bergen and Plutzky 2007). In rats and mice, sustained
induction of peroxisome proliferation by PPARa can produce
liver tumors (Reddy et al. 1976, 1980). Expression of PPARa
is lower in human than in rodent liver and, as such, humans
appear to be less sensitive to peroxisome proliferator-induced
hepatocarcinogenesis (Ashby et al. 1994; Cattley et al. 1998).
In the “canonical” mode of action, PPARs directly induce
gene expression by forming heterodimers with the RXRa
receptor, which then bind to peroxisome proliferator response
elements (PPREs) on the promoters of target genes. The
consensus response element consists of a direct repeat of the
hexameric sequence AGGTCA separated by one less con-
served spacer nucleotide (van der Meer et al. 2010). Fluo-
rescence microscopy has revealed that: (1) in the mouse
hepatoma cell line, Hepa-1, PPARs are primarily localized in
the nucleus both in the absence and presence of ligand (Ak-
iyama et al. 2002); (2) in the COS-7 and MCF-7 cell lines,
PPARs readily form heterodimers with RXR molecules even
in the absence of ligand (Feige et al. 2005). However,
immunoprecipitation studies indicate that at least a fraction of
PPARa molecules exists in mouse liver cytosol in a complex
with heat shock protein 90 (hsp90) and the hepatitis B virus
X-associated protein 2 (XAP2) (Sumanasekera et al. 2003).
The intracellular localization of PPAR« in primary human
hepatocytes with and without ligand needs to be clarified. In
the unliganded state, the PPARo-RXRa heterodimer is bound
to DNA with co-repressor molecules, notably the NR co-
repressor (NCoR)—which prevents constitutive gene
expression (Dowell et al. 1999; Viswakarma et al. 2010).
Ligand binding induces conformational changes in PPAR
protein structure that lead to dissociation of co-repressor
proteins and recruitment of coactivators including p300
(Dowell et al. 1997) and steroid receptor coactivator-1 (SRC-
1) (DiRenzo et al. 1997), allowing chromatin relaxation and
transcription of target genes. The transcriptional activity of
PPARs is also modulated by kinases and phosphatases—
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particularly, phosphorylation by the mitogen-activated pro-
tein kinases ERK and p38-MAPK, protein kinases A and C
(PKA and PKC), AMP kinase (AMPK) and glycogen syn-
thase kinase 3 (GSK-3) (Burns and Vanden Heuvel 2007).

3.3 Signaling pathways involved in drug-metabolizing
enzyme regulation

Key questions

e How are metabolic enzymes regulated in hepatocytes?

e What is the role of the Wnt/B-catenin signaling
pathway?

e Is there a zonal
regulation?

e Are there in vitro models for modeling hepatocytes
from different zones?

difference in gene expression

Take home messages

e The Wnt/B-catenin signaling pathway plays a multi-
faceted role in the regulation of hepatocyte-specific
gene expression, especially of the genes preferentially
expressed in perivenous hepatocytes, including drug-
metabolizing enzymes.

e The perivenous, B-catenin-dependent hepatocyte gene
expression profile is crucial for the metabolism of most
foreign compounds, and thus [-catenin signaling
should be regarded as a relevant parameter when
setting up in vitro systems.

e Physiological zonal differences between hepatocyte
subpopulations are often not taken into account in
in vitro approaches. Rather, cell culture systems are
often optimized toward a simultaneous high activity of
both periportal (e.g. urea synthesis) and perivenous
(e.g. CYP expression) metabolic pathways.

e Since there is no hepatocyte which physiologically
possesses both phenotypes at the same time, such
systems will never be optimal for investigation of drug
metabolism or drug toxicity testing.

e The in vitro hepatocyte differentiation protocol from
Colletti et al. (2009) seems promising since it gives rise
to cells with a periportal phenotype which switches to a
perivenous-like phenotype following activation of the
B-catenin signaling pathway.

3.3.1 Observations in hepatoma cells link f-catenin
signaling to hepatic drug metabolism

When studying pre-neoplastic liver foci in the rat, it was
noted that the expression of a number of drug-metabolizing
enzymes was altered in the pre-tumorous cell populations.
In particular, a decrease in the expression of different CYP
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isoforms was observed (Schwarz et al. 1989; Buchmann
et al. 1987). However, treatment with phenobarbital, a
tumor promoter and CAR agonist was able to induce
transiently the expression of CAR target CYPs in these
liver foci (Schwarz et al. 1989). Similarly, expression of
different drug-metabolizing enzymes, especially CYP iso-
forms, was observed in murine liver tumors from pheno-
barbital-treated animals alongside a very low expression of
these enzymes in tumors from animals which had not
received phenobarbital (Loeppen et al. 2005). In principle,
this phenomenon might be caused by the presence of
phenobarbital and its acute action on hepatoma cells;
however, comparative analyses of the promoted and non-
promoted tumors revealed that both tumor populations are
characterized by different underlying genetic alterations: in
mice injected with the initiator, N-nitroso-diethylamine, at
6 weeks of age without subsequent tumor promotion by
phenobarbital, the vast majority of resulting tumors har-
bored activating mutations in either the Ha-ras or the B-raf
proto-oncogene, leading to a constitutive activation of the
mitogen-activated protein kinase (MAPK) signaling path-
way (Jaworski et al. 2005). By contrast, tumor promotion
by phenobarbital or the phenobarbital-like polychlorinated
biphenyl, PCB153, specifically selects for the outgrowth of
liver adenomas with activating mutations in Ctnnbl (Ay-
dinlik et al. 2001; Strathmann et al. 2006), which encodes
the transcription factor B-catenin, a crucial player in the
canonical Wnt signaling pathway. Detailed information
about Wnt signaling and its functions can be found in
Barker and Clevers (2000), Huelsken and Behrens (2002),
Lustig and Behrens (2003), Polakis (2000), Willert and
Nusse (1998) (see also Fig. 6). Constitutive activation of B-
catenin signaling is frequently detected in tumors, often
caused by activating mutations in Ctnnbl, which lead to a
loss of one or more of the N-terminal phosphorylation sites,
or by inactivating mutations in Apc, a gene encoding a
crucial component of the cytosolic B-catenin destruction
complex.

Both mouse hepatoma types (Ha-ras-/B-raf-mutated or
Ctnnbl-mutated, respectively) exhibit strikingly different,
often complementary gene and protein expression profiles
which appear, at least to a major part, to be regulated at the
level of transcriptional control by the respective constitu-
tively active oncogenic pathway (Stahl et al. 2005; Ja-
worski et al. 2007; Strathmann et al. 2007; Rignall et al.
2009). Among the genes with differential expression
between the two tumor populations are a number of drug-
metabolizing enzymes from phase I and phase II, especially
CYP enzymes from families 1 and 2, as well as a consid-
erable number of GSTs, which are expressed at high levels
in Ctnnb1-, but not in Ha-ras- or B-raf-mutated hepatomas.
Moreover, AhR, CAR and PXR are over-expressed in
tumors with activating Ctnnbl mutations. Tables S3, S4
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Fig. 6 Wnt/B-catenin signaling
and its role in drug metabolism.
In the absence of agonistic Wnt
signals, cytosolic B-catenin is
phosphorylated by a cytosolic
multi-protein complex and
subsequently degraded in the
proteasome. Wnt binding to
FZD receptors impairs -
catenin degradation. As a
consequence, the protein
accumulates and translocates to
the nucleus. Nuclear -catenin
interacts with TCF transcription
factors and induces target gene
transcription, e.g. nuclear
receptors and certain drug-
metabolizing enzymes.
Cooperative interplay of -
catenin and nuclear receptors
also contributes to the induction
of drug-metabolizing enzymes,
especially from the CYP and
GST families

and S5 (see ESM) contain an overview of nuclear receptors
and drug metabolism-related genes associated with f-
catenin signaling.

A clarification whether the high expression of drug-
metabolizing enzymes was due to the presence of the
Ctnnbl mutation or simply caused by the presence of
phenobarbital comes from the comparably low number of
tumors with activating Ctnnbl mutations present in livers
of mice from the non-phenobarbital groups of the tumor
initiation/promotion experiments. These tumors exhibit the
characteristic gene expression profile connected to B-cate-
nin activation, including the expression of CYPs and GSTs,
even in the absence of phenobarbital treatment. In addition,
samples from an experiment where tumor-promoting
chronic treatment of mice with phenobarbital had been
stopped 2 weeks prior to killing (Bursch et al. 2005)
demonstrate that the drug-metabolizing phenotype of the
tumors is stable after withdrawal of the promoter. Thus,
activating Ctnnbl mutations leading to a constitutive
activation of the Wnt/B-catenin signaling pathway induce a
characteristic gene expression profile which includes high
expression of enzymes from both phase I (CYP) and phase
II (GST), as well as of NRs involved in the regulation of
drug-metabolizing enzymes (AhR, CAR, PXR). This gene
expression pattern is observed independently from the
presence of exogenous substances such as phenobarbital.
High expression of a number of CYP enzymes in CTNNB1-
mutated human hepatoblastoma samples indicates that
comparable mechanisms of [-catenin-dependent CYP
expression might be active in human and rodent liver cells
(Schmidt et al. 2011).

m ligand

binding

cooperation
with nuclear
receptors

!

3.3.2 p-Catenin signaling regulates drug metabolism
in normal murine liver tissue

The above mentioned observations in tumors (i.e. an
induction of drug metabolism by mutational activation of
B-catenin) gave rise to the hypothesis that, in normal
healthy liver, physiological activation of the Wnt/B-catenin
pathway in perivenous hepatocytes might induce the
expression of enzymes related to drug metabolism (Hail-
finger et al. 2006). In vivo observations underlined the
relevance of B-catenin signaling for gene expression in
perivenous hepatocytes: the physiological, preferentially
perivenous expression of most drug-metabolizing enzymes
correlates with perivenous activity of the P-catenin sig-
naling pathway (Benhamouche et al. 2006; Sekine et al.
2006; Moriyama et al. 2007). Considerable information
about the role of B-catenin in the regulation of drug
metabolism has been collected by using transgenic mouse
strains: ablation of hepatic B-catenin signaling in the liver
by a conditional hepatocyte-specific knockout of Ctnnbl
causes a reduction in the expression of many, but not all,
perivenously expressed enzymes involved in drug metab-
olism (Sekine et al. 2006; Tan et al. 2006; Braeuning et al.
2009). For details about xenobiotic-metabolizing enzymes
regulated in this mouse model, please refer to Tables S4
and S5 (see ESM). Accordingly, these mice are resistant to
the cytotoxicity of acetaminophen, a drug which is con-
verted into a cytotoxic quinoneimine metabolite by
CYP2EI and CYP1A2, both of which are strongly down-
regulated in the Ctnnbl KO mouse (Sekine et al. 2006). By
contrast, expression of a transgene encoding mutant

@ Springer


http://dx.doi.org/10.1007/s00204-013-1078-5
http://dx.doi.org/10.1007/s00204-013-1078-5

1344

Arch Toxicol (2013) 87:1315-1530

activated PB-catenin in periportal hepatocytes induces the
expression of a number of perivenous drug-metabolizing
enzymes in these cells, demonstrating that activation of B-
catenin signaling alone is sufficient to induce the expres-
sion of the perivenous drug-metabolizing hepatocyte phe-
notype (Schreiber et al. 2011). In addition, the response of
Ctnnbl knockout hepatocytes toward stimulation with
xenobiotic inducers of drug metabolism is altered in two
ways in vivo: first, xenobiotic-induced levels of a number
of AhR- and CAR-regulated mRNAs encoding drug-
metabolizing enzymes from phase I and II of xenobiotic
metabolism remained lower in B-catenin-deficient livers, as
compared to their wild-type counterparts exposed to the
same dose of an AhR- or CAR-activating compound
(Braeuning et al. 2009). Second, the localization of enzyme
induction by AhR and CAR agonists is changed in these
mice. A preferentially perivenous induction of target genes
in wild-type mice is contrasted by a rather unsystematic
induction in the Ctnnbl knockout mice without a clear-cut
zonal preference and with stronger- and weaker-responding
hepatocytes distributed in a scattered pattern throughout
the entire liver lobule (Braeuning et al. 2009).

3.3.3 Signaling gradients in liver—a role for non-
parenchymal cells?

The origin of the B-catenin-activating signal in the peri-
venous areas of the liver is still not fully understood. The
fact that over-expression of the Wnt antagonist, Dkk1, in
transgenic mice is able to abolish the expression of a
number of perivenously expressed genes argues for the
existence of a physiological signal delivered to perivenous
hepatocytes by agonistic Wnt molecules (Benhamouche
et al. 2006). A Wnt signal might originate from the endo-
thelial cells of the central veins and activate the B-catenin
pathway in the surrounding hepatocytes (Hailfinger et al.
2006). This model implies a cross talk of epithelial
(hepatocytes) and mesenchymal (vascular endothelium of
the central venules) cell populations. There is no direct
proof for this hypothesis yet, but interactions between
different cell types play important roles in other processes
connected to hepatocyte-specific differentiation and gene
expression. For example, hepatocyte-like cells can be
obtained from embryonic stem cells when cultured in the
presence of non-parenchymal liver cell lines (Soto-Gut-
ierrez et al. 2007) and signals from endothelial cells also
play a crucial role in liver regeneration after partial hepa-
tectomy (Ding et al. 2010). NPCs also positively influence
hepatocyte functions in vitro when co-encapsulated in
ectopic artificial liver constructs (Chen et al. 2011). After
liver injury with CCly, a selective poison for Cyp2el-
expressing perivenous hepatocytes, expression of model
perivenous marker genes is restored in hepatocytes moving
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up from the portal side as soon as these cells resume the
contact with the endothelium (Kuo and Darnell 1991).
Expression of the model perivenous hepatocyte marker
gene and P-catenin target, glutamine synthetase, is induc-
ible in cultured hepatocytes by co-culture with the rat liver
epithelial cell line RL-ET-14 in a PB-catenin-dependent
manner (Kruithof-de Julio et al. 2005; Gebhardt et al. 1998;
Schrode et al. 1990). Whether drug-metabolizing enzymes
are also affected in this co-culture system is not known. Of
note, the induction of glutamine synthetase obtained with
the RL-ET-14 cell line, which displays features of endo-
thelial cells, was not reproducible with normal vascular
endothelial cells (Schrode et al. 1990; Gebhardt and Gau-
nitz 1997). However, in accordance with the hypothesis
that endothelial cells might be involved in the regulation of
hepatic perivenous [B-catenin activation and CYP expres-
sion, co-culture of primary mouse hepatocytes with prep-
arations of NPCs consisting mainly of endothelial cells
induces the expression of Axin2, a known direct tran-
scriptional target of B-catenin, in the hepatocytes. This
goes along with an induction of Cyplal mRNA and protein
levels (Braeuning and Schwarz 2010b).

In addition to a putative gradient of Wnt molecules,
other gradients of regulators might influence hepatic B-
catenin signaling and perivenous gene expression: a porto-
central gradient of the B-catenin-negative regulator, Apc,
was detected in murine liver which might contribute to a
periportal repression and perivenous activation of the
pathway (Benhamouche et al. 2006). The underlying effect
might be transcriptional in nature, since a slight porto-
central gradient of Apc mRNA expression was detected in
a microarray analysis of periportal and perivenous hepa-
tocyte subpopulations, which, however, failed the criteria
of statistical significance in this analysis (A. Braeuning,
unpublished data). Moreover, there is evidence that an
antagonistic interplay of signaling through [-catenin and
the Ras/MAPK cascade exists in hepatocytes and plays a
role in the regulation of hepatic zonation via Ras/MAPK-
mediated inhibition of B-catenin signaling in periportal
hepatocytes (Hailfinger et al. 2006; Braeuning et al. 2007a,
b; Zeller et al. 2012). In addition, one might also think of
Wnt/B-catenin-regulating signals delivered by the ECM:
for example, a cryptic module in cell surface collagen 18,
aberrantly expressed in human liver cancer, carries
sequence homology to the Wnt receptor Frizzled and is
thus capable of inhibiting the Wnt pathway (Quelard et al.
2008). In a recent paper, Sekine and colleagues demon-
strated that disruption of Dicerl in a transgenic mouse
model abolishes zonal gene expression of some preferen-
tially perivenously expressed genes similar to what had
been previously observed with conditional Crmnbl KO
mice (Sekine et al. 2009). This points toward an important
role of miRNAs in the regulation of zonal-specific
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expression of drug-metabolizing enzymes by B-catenin.
Irrespective of the unsolved issue which mechanisms
contribute to which extent to the physiological zonal gene
expression pattern, observations in vivo clearly show that
high expression of most pharmacologically and toxico-
logically relevant CYPs and GSTs is dependent on f-
catenin signaling.

3.3.4 Effects in vitro and molecular mechanisms

Incubation of primary mouse hepatocyte cultures with
Wnt3a leads to elevated levels of various CYPs from
families 1-3, as well as of GSTs from the GSTm family
(Hailfinger et al. 2006; Braeuning et al. 2011; Giera et al.
2010). A summary of observed effects is presented in
Tables S4 and S5 (see ESM). The degree of mRNA
induction greatly varied between different CYPs, with the
most pronounced effects observed for Cypla2, Cyp2el and
Cyp3a (Braeuning et al. 2011). In particular, the 1a2 and
2el isoforms were also consistently identified to be regu-
lated by B-catenin in vivo (Table S4; see ESM). In general,
in vitro effects of PB-catenin signaling on GST mRNA
expression were much less pronounced (Giera et al. 2010).
Similarly, the expression of enzymes involved in the syn-
thesis of the CYP prosthetic group heme was rather slightly
upregulated in cultured hepatocytes by Wnt3a in vitro
(Braeuning et al. 2010). This corresponds well to the per-
ivenous expression of these enzymes in vivo and their high
expression in murine liver tumors with activated B-catenin
(Braeuning et al. 2010). The mRNAs encoding the drug
metabolism-regulating AhR and PXR are also subject to
regulation by B-catenin in cultured hepatocytes (Hailfinger
et al. 2006; Braeuning et al. 2011; Braeuning and Buch-
mann 2009), whereas no significant effect of Wnt3a on
CAR mRNA levels has been observed in hepatocytes
in vitro (Braeuning et al. 2011). Of note, the AhR had been
previously identified as a B-catenin target gene in human
prostate cancer cells (Chesire et al. 2004).

The molecular mechanisms by which signaling through
the Wnt/B-catenin pathway influences the expression of
drug-metabolizing enzymes seem to be diverse and are
only partially understood. A schematic delineation of some
of the molecular mechanisms detailed in the following text
can be found in Fig. 6. The most simple and direct
explanation would be a transcriptional upregulation of the
influenced genes by P-catenin via B-catenin/TCF-binding
sites in the respective promoter/enhancer regions. Indeed, it
has been shown that a putative B-catenin/TCF-binding
motive within the human CYPJAI promoter plays a role in
the regulation of a CYPIAI promoter-driven reporter gene
by B-catenin in mouse hepatoma cells in vitro (Braeuning
et al. 2011). Recent ChIP-seq analyses of global TCF and

B-catenin binding to putative promoter regions in the
mouse genome performed by Sabine Colnot and co-
workers identified TCF/B-catenin-binding sites in a number
of 5'-regulatory regions of genes encoding enzymes related
to drug metabolism (S. Colnot, unpublished data). Thus,
there is no reasonable doubt that B-catenin/TCF binding to
target gene promoters is definitely involved in the regula-
tion of drug-metabolizing enzymes. However, even though
a [B-catenin-dependent induction was found in the case of
the murine GSTm3 and Alad (a B-catenin-regulated gene
encoding an enzyme involved in heme synthesis) enhancer
regions, a direct activation mechanism could not be con-
firmed (Giera et al. 2010; Braeuning and Schwarz 2010a).
Thus, alternative mechanisms play some role. The upreg-
ulation of mRNAs encoding transcription factors such as
the AhR suggests that elevated levels of these transcription
factors might mediate the higher expression of their
respective target genes. However, it is not clear whether a
rather slight activation of receptor transcription will be
sufficient to mediate a much stronger induction of their
target genes, especially in the absence of known activators
or ligands of the respective receptors. Moreover, siRNA
directed against B-catenin downregulated the mRNA
encoding the AhR-dependent CYP isoform lal in mouse
hepatoma cells without concomitant downregulation of the
AhR (Braeuning et al. 2011). Treatment with the glycogen
synthase kinase inhibitor and [-catenin activator LiCl
equally induced Cyplal mRNA levels in the rat hepatoma
cell line 5L as well as in the S5L-derived cell line
BP8+ (Braeuning et al. 2011), the latter of which does not
possess a functional native AhR gene, but expresses the
receptor from a transgene under the control of a non-p-
catenin-responsive, constitutively active promoter (Weiss
et al. 1996). Together these findings indicate that AhR
mRNA induction is not responsible for Cyplal induction
by B-catenin. As further discussed in the paper by Braeu-
ning et al. (2011), higher levels of the receptor might affect
the maximum of xenobiotic-induced expression of AhR
target genes, but, due to the observation mentioned above,
it seems rather unlikely that elevated AhR mRNA levels
are the major cause underlying alterations in Cyplal
expression in response to B-catenin activation. Instead,
there is evidence for an even more complex interplay of B-
catenin and the AhR in the regulation of Cyplal expres-
sion, in addition to direct -catenin/TCF-mediated effects
on the CYPIAI and AhR promoters: first, the presence of
activated mutant -catenin increases the ability of the AhR
to activate transcription from an artificial promoter con-
sisting of three AhR/Arnt-binding sites (and no B-catenin/
TCF-binding site) in mouse hepatoma cells (Loeppen et al.
2005; Braeuning et al. 2011). This indicates that B-catenin
affects the transactivation potential of the AhR at its
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binding sites on the DNA. A similar cooperation of both
pathways was also observed by the group of Jan Vond-
racek, who showed that an activation of the Wnt pathway
augments the expression of AhR target genes in a rat liver
progenitor cell line (Prochazkova et al. 2011). Possibly, B-
catenin acts as a co-activator of AhR-dependent tran-
scription, a mechanism which is in line with the observa-
tion that P-catenin and the AhR interact physically
(Braeuning et al. 2011). Of note, a different interaction of
both pathways has been observed in other cellular contexts,
where the ligand-activated AhR inhibits B-catenin signal-
ing by acting as an ubiquitin ligase for B-catenin in vivo in
Apc™™ mice (Kawajiri et al. 2009), and also in rat liver
progenitor cells in vitro, where persistent AhR activation
leads to a reduction in B-catenin signaling (Prochazkova
et al. 2011). A disruption of Wnt signaling by AhR-
dependent signals was also observed in zebrafish (Mathew
et al. 2009). Inhibitory effects of the activated AhR on -
catenin signaling were, however, not detected in murine
liver cells (Braeuning et al. 2011). An additional type of
cooperative cross talk between the two transcriptional
regulators, B-catenin/TCF and AhR/Arnt, takes place at the
hCYPIAI enhancer, where the inactivation of a f-catenin/
TCF-binding site reduced the inducibility of a CYPIAI
enhancer-driven luciferase reporter gene by the AhR ligand
TCDD (Braeuning et al. 2011). In an analysis of the murine
GSTm3 promoter, it was detected that transcriptional acti-
vation of a GSTm3 enhancer-driven luciferase reporter
construct by B-catenin was mediated via a binding site for
the NR RXRa (retinoid X receptor o) (Giera et al. 2010).

The rat Cyp2bl gene is also under control of B-catenin
signaling, as demonstrated by the use of a Cyp2bl pro-
moter-driven reporter system in mouse hepatoma cells
(Loeppen et al. 2005; Sekine et al. 2006; Tan et al. 2006;
Schreiber et al. 2011; Ueno and Gonzalez 1990). Of note,
CYPs from family 2B are classic targets of CAR (for
review see Tompkins and Wallace 2007), which is more or
less absent from the cell line used for these analyses (A.
Braeuning, unpublished). Co-transfection of a CAR
expression vector did not substantially improve Cyp2bi-
dependent reporter activity and had no effect on B-catenin-
mediated Cyp2bl-dependent reporter induction (Loeppen
et al. 2005), again arguing against a decisive role of the
levels of NRs in the regulation of drug-metabolizing
enzyme expression by f-catenin signaling. The rat Cyp2b1
gene was also the focus of another study, where an inhi-
bition of gene promoter activity by the MAPK signaling
pathway was detected, mediated by a distal enhancer
region (Bauer et al. 2004). Inhibitory effects of MAPK
signaling on the rat Cyp2b2 promoter were also reported by
Joannard et al. (2006). In addition, CAR translocation into
the nucleus is blocked by the MAPK ERK (Koike et al.
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2007). Given the fact that an antagonistic interplay
between signaling through the [-catenin and MAPK
pathways exists in murine hepatocytes (Hailfinger et al.
2006; Braeuning et al. 2007a, b; Braeuning 2009; Zeller
et al. 2012), the reduction in a MAPK signal inhibiting
CYP expression by P-catenin might constitute another
mechanism by which B-catenin signaling positively influ-
ences the expression of drug-metabolizing enzymes. It
should be noted that an antagonism of both signaling
pathways is not self-evident, since synergistic cross talk
mechanisms have been detected in other systems, for
example see Kim et al. (2007b) and Hu and Li (2010).

There is also accumulating evidence for a cross talk
between [-catenin and the liver-enriched transcription
factor HNF-40, as recently shown by different groups.
Stanulovic et al. (2007) reported that a deficiency of HNF-
4o induces the periportal expression of “perivenous”
genes, which are known to be under the control of the B-
catenin pathway. Using hepatocytes derived from stem
cells via an in vitro differentiation protocol, Colletti et al.
(2009) demonstrated in a recent study that a concerted
action of B-catenin and HNF4q takes place at a number of
promoter regions controlling the expression of zonally
expressed genes, among them Cyplal. The important role
of HNF-4a as a co-regulator of B-catenin-dependent genes
is further underlined by recent analyses (A. Braeuning,
unpublished). A cross talk between B-catenin and another
hepatocyte-enriched transcription factor, HNF-1a, is very
likely to occur in the regulation of the Cyp2el gene (Ueno
and Gonzalez 1990).

4 Hepatic drug and bile acid metabolism and transport

Key questions

e What are the recent developments made in the under-
standing of:

e hepatic transport proteins involved in the uptake
and efflux of drugs and bile acids?

e the coordinate expression and regulation by nuclear
receptors of hepatic transport proteins—together
with drug-metabolizing enzymes and enzymes
involved in bile acid homeostasis?

e microRNA molecules as fine tuners of drug and bile
acid transport and metabolism?

e Which transporters are present in NPCs?
e How does the culture format affect transporter
expression?
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Take home messages

e Drug metabolism, drug transport and bile acid homeo-
stasis are strongly linked:

e via a coordinate expression of the involved proteins
notably in the liver and intestine, their expression
being regulated by several NRs.

e many key transporters and enzymes are involved in
bile acid transport, synthesis and metabolism which
are also able to transport and metabolize drugs.

e microRNAs are able to modulate the expression of
both NRs and their gene targets by suppressing
mRNA translation of NRs and their corresponding
target genes, thus putatively leading to changes in
both bile acid homeostasis and the individual
efficacy of drugs.

e Care must be taken when developing hepatocyte
transporter studies because many transporters are
downregulated when cells are cultured in conventional
monolayers. Sandwich cultures and 3D cultures such as
organoids are more appropriate for transporter studies.

The cellular uptake and efflux of many drugs and
xenobiotics, as well as endogenous compounds such as
vitamins, hormones, bilirubin or bile acids, are highly
dependent on the expression and activity of membrane
transport proteins. Transport proteins in the liver and in the
gastrointestinal tract, such as members of the ATP-binding
cassette (ABC) or of the solute carrier superfamilies, have
been extensively studied and have been shown to play a
major role in the efficacy of xenobiotic and endobiotic
absorption and excretion (Teng and Piquette-Miller 2008).
It has long been assumed that inter-individual differences
in the activity of xenobiotic-metabolizing enzymes and
transporters and their associated susceptibility to drug side
effects are predominantly caused by genetic variants within
their encoding genes. However, numerous studies indicate
that it is also crucial to elucidate the regulatory mecha-
nisms coordinating the expression of proteins involved in
phase I, II and III metabolism to be able to better under-
stand the individual responses to drugs. It is estimated that
genetic variation overall accounts only for about 15-30 %
of inter-individual differences observed in drug metabo-
lism and response (Eichelbaum et al. 2006). This
assumption is especially well reflected in the case of the
drug-metabolizing enzyme, CYP3A4. CYP3A4 is one of
the major enzymes responsible for phase I metabolism of
therapeutics and is estimated to be involved in the
metabolism of at least 50 % of all drugs used in the clinic.
Despite the observation that CYP3A4 is rarely polymor-
phically expressed, the enzyme has been repeatedly dem-
onstrated to show a high inter-individual difference in gene
expression (Westlind-Johnsson et al. 2003; Wilkinson
2005). Similarly, very high inter-individual variances in

protein expression have been measured for the hepatic
uptake transporter, organic anion-transporting polypeptide
1B1 (OATPIBI1) (Ho et al. 2006b). Importantly, transport
proteins and metabolizing enzymes involved in phase I and
II metabolism and transport of drugs play in parallel a
crucial role in bile acid synthesis and circulation. Here, the
uptake and efflux of xenobiotics and endogenous com-
pounds is described.

4.1 Uptake of xenobiotics and endogenous substances
4.1.1 OATPs and OATs in the liver

Drug and xenobiotic uptake into hepatocytes is mediated
by transporters belonging to SLC families such as OATPs,
OATs and OCTs, as well as the equilibrative nucleoside
transporter (ENTs, SLC29A; CNTs, SLC28A) (Stieger and
Meier 2011). OATPs are glycoproteins involved in the
uptake of a wide range of drugs into hepatocytes. Typical
drugs transported by OATPs are relatively lipophilic
anionic drugs such as statins, antibiotics, sartans, angio-
tensin-converting enzyme inhibitors and anticancer drugs
(Hagenbuch and Gui 2008; Kalliokoski and Niemi 2009;
Kusuhara and Sugiyama 2009; Fahrmayr et al. 2010;
Giacomini et al. 2010; Konig 2011; Roth et al. 2012), as
well as a wide variety of generally amphipathic organic
compounds including conjugated and unconjugated bile
acids, bilirubin, bromosulfophthalein, neutral steroids,
peptides and organic cations (Hagenbuch and Gui 2008;
Kalliokoski and Niemi 2009; Kusuhara and Sugiyama
2009; Fahrmayr et al. 2010; Giacomini et al. 2010; Konig
2011; Roth et al. 2012). In contrast to other SLC super-
family members, such as OATs and OCTs that transport
hydrophilic anions or smaller cations, respectively, OATPs
are characterized by transporting larger amphipathic com-
pounds in a Na*t-independent manner (Roth et al. 2012).
The molecular mechanism of transport by OATPs is not yet
elucidated but seems to be based on anion exchange that
couples the uptake of organic compounds with the efflux of
intracellular anions (GSH, GS conjugates, HCO3) (Satlin
et al. 1997; Li et al. 1998a, 2000; Mahagita et al. 2007,
Leuthold et al. 2009).

OATPs have been detected in mammalian species but
not in yeast, plants or bacteria (Svoboda et al. 2011).
Eleven human OATPs have been identified so far, which
have been classified into six families according to their
amino acid identity (Hagenbuch and Meier 2004; Mikkai-
chi et al. 2004; Hagenbuch and Gui 2008). In rat hepato-
cytes, Oatplal, Oatpla4 and Oatplb2 are expressed and
mediate Na*-independent bile salt uptake. Oatplal, which
is the first member of the OATP superfamily cloned by
expression cloning from rat liver (Jacquemin et al. 1994), is
expressed at the basolateral membrane of hepatocytes
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(Bergwerk et al. 1996). Oatpla4 was the second Oatp to be
cloned (No€ et al. 1997) and is localized to the basolateral
membrane of hepatocytes (Reichel et al. 1999). The third
hepatocellular Oatp member involved in bile salt uptake is
Oatplb2 which is exclusively expressed in liver (Li et al.
2002a) in the basolateral membrane of hepatocytes (Cattori
et al. 2001) (Fig. 4). While these three Oatps have com-
parable Km values for bile salts, they do not have identical
substrate specificity (Cattori et al. 2001). Knockout mice
allow a more stringent testing of the role of individual
transporters in hepatocellular drug transport. For example,
the knock mouse model for Oatplb2 (the only member of
the Oatplb subfamily in rodents) revealed a reduced
hepatocellular uptake of intravenously administered rif-
ampicin, as evidenced by the marked reduction in the liver-
to-plasma plasma ratio for rifampicin (Chen et al. 2008;
Zaher et al. 2008). The data obtained from knockout mice
for various statins yielded conflicting results between dif-
ferent statins (Chen et al. 2008) and between the two
research groups for pravastatin, which in part may be due
to different experimental conditions (Chen et al. 2008;
Zaher et al. 2008). Recently, a knockout mouse model for
Slcla and Slclb genes was shown to display a 13-fold
increase in serum-unconjugated bile salts, while conjugated
bile salts levels remained unaffected. In this mouse model,
Ntcp levels remain unchanged, suggesting that conjugated
bile salts are taken up by Ntcp, while Oatpla/lb are
responsible of unconjugated bile salts (van de Steeg et al.
2010). Similar results were found in Oatplb2-null mice
with an increase of about 30-fold of unconjugated bile
acids levels in plasma, while taurine conjugated bile acid
levels remained normal (Csanaky et al. 2011).

In human hepatocytes, all four members of the OATP
family are involved in drug uptake. Their role in in vivo
pharmacokinetics is supported by pharmacogenetic studies
(Kalliokoski and Niemi 2009; Fahrmayr et al. 2010; Konig
2011; Niemi et al. 201 1; Stieger and Meier 2011; Sissung et al.
2012). OATP1B1 and OATP1B3 are involved in Na™-inde-
pendent bile salt uptake but OATP2B1, despite its basolateral
expression in hepatocytes, does not mediate bile salt transport
(Kullak-Ublick et al. 2001). OATP1B1 shares a high amino
acid identity with OATP1B3 and its expression is strictly
limited to the liver at the basolateral membrane of hepatocytes
(Konig et al. 2000a) (Fig. 4) an expression pattern, which is
shared by OATPIB3 (Konig et al. 2000b). OATP1B1 and
OATP1B3 mediate the transport of both conjugated and
unconjugated bile salts (Mahagita et al. 2007). OATP1B1
expression is limited to the liver (Konig et al. 2000b; Hagen-
buch and Meier 2004) where it has been shown to facilitate the
uptake of endogenous substrates including bile acids, conju-
gated and unconjugated bilirubin, thyroid hormones and leu-
cotriene C, as well as drugs such as pravastatin, rifampicin,
metotrexate, benzylpenicillin and fexofenadine (Cvetkovic
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et al. 1999; Nishizato et al. 2003; Kullak-Ublick et al. 2004;
Konig et al. 2006; van de Steeg et al. 2009). OATP1BI is
polymorphically expressed, leading to significant variability in
its transport efficacy for drugs as demonstrated for different
statins in vitro and in vivo (Mwinyi et al. 2004; Niemi et al.
2004; Chung et al. 2005; Pasanen et al. 2007; Mwinyi et al.
2008). Notably, the genetic variant OATP1B1*5 has been
shown to be significantly associated with a higher risk for
statin-induced myopathy (Link et al. 2008).

OATP1B3 is mainly expressed in the basolateral mem-
brane of hepatocytes (Konig et al. 2000a; Hsiang et al.
1999; Kullak-Ublick et al. 2001) (Fig. 4) but has also been
detected in other tissues, including the colon, placenta and
prostate (Briz et al. 2003; Ballestero et al. 2006; Hamada
et al. 2008), as well as in various human cancer tissues and
cell lines (Abe et al. 2001). OATP1B3 facilitates the uptake
of different endogenous and exogenous compounds into the
liver, e.g. bilirubin, cholecystokinin octapeptide (CCK-8),
benzylpenicillin, bosentan, digoxin, paclitaxel and enala-
pril (Ismair et al. 2001; Kullak-Ublick et al. 2001; Smith
et al. 2005). Like OATP1B1, OATP1B3 is also polymor-
phically expressed. The impact of these genetic variants on
drug safety and efficacy appears, however, to be minor as
demonstrated in in vitro and in in vivo (Smith et al. 2007,
Baker et al. 2009; Ishiguro et al. 2008).

OATPI1A?2 is located at the apical membrane of cho-
langiocytes, the blood brain barrier and the brush border
membrane of the distal nephron and, according to certain
reports, also in small intestinal enterocytes (Bronger et al.
2005; Lee et al. 2005; Glaeser et al. 2007). Like OATP1B1
and OATPIB3, OATPlA2 is able to transport both
endogenous compounds, such as bile salts, prostaglandins,
thyroid hormones, bromosulfophtalein, and exogenous
compounds, such as fexofenadine and the renin inhibitor
aliskiren (Dresser et al. 2005; Rebello et al. 2012). Unlike
the members of the OATPIB family, OATP1A2 is also
able to transport organic cations, including rocuronium, N-
methylquinine and quinidine (Hagenbuch and Meier 2004).
OATPI1A2 is polymorphically expressed, which has been
shown to influence the pharmacokinetics of drugs, such as
metotrexate in vitro (Badagnani et al. 2006). However, a
relevant impact of these SNPs on pharmacokinetics and
dynamics of OATP1A2 substrates in vivo was not con-
firmed (Eechoute et al. 2011). Another study showed that
the tyrosine kinase inhibitor, imatinib, is transported by
OATP1A2. A genetic variant within the promoter of the
SLCOIA2 gene appears to be associated with higher
clearances for imatinib in CML patients. However, a cor-
relation between a SNP-dependent change in imatinib
pharmacokinetics and the clinical response rate was not
observed (Yamakawa et al. 2011).

Organic anion transporters (OATs, SLC22A) are organic
anion exchangers. They may act generally as anion
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exchangers (although conflicting data exist for some
OATs) and mediate the transport of a huge variety of drugs,
such as angiotensin-converting enzyme inhibitors, angio-
tensin receptor Il antagonists, diuretics, antibiotics and
antivirals (Koepsell and Endou 2004; Burckhardt and
Burckhardt 2011). In the liver, OAT2 (SLC22A7) and
OAT7 (SLC22A9) are expressed in the basolateral mem-
brane of hepatocytes, where OAT2 has been demonstrated
to mediate transport of many drugs, while substrate char-
acterization of OAT7 is less advanced (Burckhardt and
Burckhardt 2011) (Fig. 4). Organic cation transporters
(OCTs, SLC22A) mediate in vitro the bidirectional trans-
port of small hydrophilic compounds. Typical drug classes
transported by OCTs are anesthetics, antiallergics, antiar-
rhythmics antidepressants, antihypertensives, nonsteroidal
anti-inflammatory drugs, antimalarials and antineoplastics
(Nies et al. 2011). OCT1 (SLC22A1) is expressed at high
level, and OCT3 (SLC22A3) is expressed at lower levels in
the basolateral membrane of hepatocytes (Koepsell et al.
2007). The role of OCT1 in hepatocellular drug uptake was
demonstrated in the Octl-null model, which showed
greater than 30-fold reduction in uptake of the antidiabetic
drug metformin compared to wild-type mice (Wang et al.
2002). In human studies, SLC22A1 was found to be a
highly polymorphic gene, with different genotypes leading
to differences in metformin pharmacokinetics and efficacy
(Shu et al. 2008; Holstein and Beil 2009). The basolateral
sodium-dependent bile acid transporter NTCP (SLC10A1)
not only transports conjugated bile acids but also, trans-
ports, to a lesser degree, experimental drugs (Stieger 2011)
and clinically used drugs, e.g. rosuvastatin (Ho et al.
2006b; Funk 2008).

4.1.2 Bilirubin

In the liver, OATP family members are responsible for
bilirubin uptake. In addition, bilitranslocase (TCDB
#2.A.65.1.1) which is expressed in the basolateral mem-
brane of human and rat hepatocytes in vivo (Terdoslavich
et al. 2012), was shown to be involved in bilirubin uptake
in HepG2 cells (Passamonti et al. 2005). In vitro charac-
terization of human OATPIB1 revealed that it has a high
affinity for conjugated and unconjugated bilirubin, while
OATPIB3 was shown to transport conjugated bilirubin
with lower affinity (Cui et al. 2001; Briz et al. 2003).
Although HepG2 and HEK?293 cells expressing OATP1B1
did not transport bilirubin by OATPIB1 (Wang et al.
2003), as mentioned above, polymorphisms of the genes
encoding OATP1B1 and OATPIB3 are associated with
increased serum levels of unconjugated and conjugated
bilirubin in humans (Zhang et al. 2007b; van der Deure
et al. 2008; Johnson et al. 2009; Sanna et al. 2009). These
findings were supported by studies using mice with

disrupted Slcla and SlcIb genes, which showed that total
bilirubin plasma content was increased by 40-fold, and
95 % of this increase was due to elevated conjugated bil-
irubin, while unconjugated bilirubin was increased by 2.5-
fold (van de Steeg et al. 2010). Moreover, a recent human
study demonstrated that the Rotor syndrome, a rare and
benign hereditary—conjugated hyperbilirubinemia, is
caused by mutations predicted to induce a complete and
simultaneous deficiency of OATPIB1 and OATPIB3,
further indicating an important role of these transporters in
hepatocellular bilirubin uptake (van de Steeg et al. 2012).

4.1.3 Glucose

Glucose is taken up in the hepatocyte via transporters from
the SLC2A family, comprising of 14 members that mostly
mediate bidirectional facilitated diffusion of their sub-
strates and GLUTI3 acting as a proton-myo-inositol
transporter (Thorens and Mueckler 2010). These trans-
porters have 12 predicted transmembrane domains with
one N-linked oligosaccharide and function as bidirectional
facilitative transporters with either symmetric or asym-
metric kinetic properties (Thorens and Mueckler 2010).
GLUT1 was the first transporter characterized, cloned from
HepG2 cells (Mueckler et al. 1985). A study using FRET
glucose nanosensors combined with siRNA experiments
showed that GLUTI is the major glucose transporter
dominating over GLUT9 for glucose influx in HepG2 cells
(Takanaga et al. 2008). Despite its major role in glucose
uptake in HepG2 cells, GLUT]1 is not expressed in healthy
hepatocytes but found in hepatocellular carcinoma in
human liver (Amann et al. 2009). GLUT2 is the main
glucose uptake system in hepatocytes and is expressed at
high levels in the basolateral membrane of hepatocytes
(Fig. 4). GLUT2 is a low-affinity, high-capacity transporter
mediating the uptake of glucose (Km ~ 17 pM), fructose
(Km ~ 76 pM), galactose (Km ~ 92 pM) and mannose
(Km ~ 125 pM), while glucosamine is a high-affinity
substrate (Km ~ 0. 8 uM) (Uldry and Thorens 2004).
Glut2 expression in basolateral membranes of rat hepato-
cytes is downregulated by insulin, whereby Glut2 forms a
complex with the insulin receptor that leads to Glut2
internalization in the presence of insulin (Eisenberg et al.
2005). GLUTO participates to a low extent to glucose influx
into HepG2 cells (Takanaga et al. 2008). In humans,
GLUTY is expressed only in the liver and kidney at high
levels (Phay et al. 2000) and is transcribed into two alter-
natively spliced variants with different tissue distribution
(So and Thorens 2010). In a genetic association study,
GLUT9 was found to be associated with serum uric acid
levels (Li et al. 2007). Heterologous expression of GLUT9
in Xenopus laevis oocytes directly demonstrated urate
transport activity of GLUT9 (Anzai et al. 2008). The
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physiological relevance of GLUT9 in urate transport was
confirmed in systemic and liver-specific Glut9 knockout
mice, both displaying a high uric acid concentration in
blood, which was attributed to a decrease in uric acid
catabolism in the liver (Preitner et al. 2009). GLUT10
mRNA has been detected in liver and was characterized in
X. laevis oocytes as a functional high-affinity glucose
transporter (the Km for 2-deoxy-p-glucose is ~0.3 pM)
(Dawson et al. 2001). mRNAs of GLUTS and GLUTII-
b variants are also expressed at low levels in liver, but their
role in glucose uptake into hepatocytes remains to be
determined (Doege et al. 2000; Wu et al. 2002).

4.1.4 Bile salts

Bile is mainly composed of bile salts, organic anions, phos-
pholipids (mainly phosphatidylcholine) and cholesterol which
are secreted across the canalicular membrane (Small 2003;
Esteller 2008). Bile acids are synthesized from cholesterol via
CYP7A1 and CYP8BI or alternatively via CYP27A1 in the
liver and are important regulators of physiological processes
such as cholesterol catabolism. After secretion from the liver
via the bile into the intestine, bile salts emulsify lipids, cho-
lesterol and lipid-soluble vitamins due to their amphipathic
nature, thus essentially supporting their absorption from the
intestine into the portal venous blood. Bile salts themselves
efficiently undergo enterohepatic circulation, whereby their
reabsorption from the intestine into the portal venous blood and
from the sinusoidal blood into the hepatocytes is highly
dependent on active transport mechanisms through the
respective plasma membrane barriers against concentration
gradients. There is a positive correlation between membrane
cholesterol content and activity of different canalicular trans-
porters. These include the ATP-binding cassette (ABC)
transporter, bile salt export pump (BSEP (ABCB11)) (Kis et al.
2009) expressed in SF9 cells, rodent Bsep in canalicular liver
plasma membrane vesicles (Paulusma et al. 2009), as well as
for ABCG2 (ABCG2) (Telbisz et al. 2007) and MRP2
(ABCC2) (Guyot and Stieger, unpublished). By contrast, the
ATP-independent sodium-taurocholate co-transporting poly-
peptide (Ntcp, SlclOal) expressed in HEK cells shows a
decreased activity when located in cholesterol-rich microdo-
mains (Molina et al. 2008).

Bile salt uptake from the blood plasma into hepatocytes
occurs by Na'-dependent and Na'-independent mecha-
nisms (Meier and Stieger 2002; Dawson et al. 2009). Both
pathways are mediated by members of the families of
Solute Carriers (SLC) (Hediger et al. 2004; Hagenbuch and
Meier 2004). The main transporter involved in Na*-
dependent uptake of conjugated bile salts is NTCP (Meier
and Stieger 2002; Hagenbuch et al. 1996; Weinman 1997)
and unconjugated bile salts by members of the OATP
family. NTCP is an electrogenic transporter mediating the
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uptake of two sodium ions, together with one bile salt
molecule (Weinman 1997). This electrogenic transport is
driven by the inside negative membrane potential and by
the sodium gradient which is maintained by Na®™/K*
ATPase (Boyer et al. 1992; Kullak-Ublick et al. 2000;
Meier and Stieger 2002) and is therefore unidirectional.
NTCP transports conjugated bile acids with a high affinity,
Km values for taurocholate transport in various experi-
mental system range between 6 and 86 uM (Stieger 2011).
In Xenopus laevis oocytes injected with total mRNA
extracted from hepatocytes, the Na*-dependent bile acid
uptake was reduced of 95 % by injection of an antisense
mRNA targeting Ntcp, suggesting Ntcp is involved in Na™-
dependent uptake of bile salts (Hagenbuch et al. 1996). It
has been estimated that approximately >80 % of conju-
gated bile acid uptake and <50 % of unconjugated bile acid
uptake take place via Na'-dependent mechanisms in
humans (Meier and Stieger 2002; Kullak-Ublick et al.
2004). Topologically most likely composed of 7 trans-
membrane domains (Mareninova et al. 2005), NTCP
appears to be exclusively expressed in the basolateral
membrane of hepatocytes in humans and rats (Ananthan-
arayanan et al. 1994; Stieger et al. 1994; Kullak-Ublick
et al. 1997) (Fig. 4). NTCP has been shown to have highest
affinity for conjugated di- and trihydroxy-bile acids (Meier
et al. 1997). Besides bile acids, human NTCP also trans-
ports other endogenous and exogenous compounds, such as
the bile acid metabolite estrone-3-sulfate (Craddock et al.
1998), bromosulfothalein (Meier et al. 1997), thyroxine
(Visser et al. 2009) or drugs covalently bound to tauro-
cholate, such as chlorambucil (Kullak-Ublick et al. 1997).
NTCP has been cloned and characterized from rat (Ha-
genbuch et al. 1991), mouse (in two alternatively spliced
variants: Ntcpl/2) (Cattori et al. 1999), rabbit (Kramer
et al. 1999) and human (Hagenbuch and Meier 1994) liver.
Experimental evidence demonstrated a seven-transmem-
brane helical domain structure and two additional helices
arranged in an extracellular loop at the plasma membrane
for rat Ntcp (Mareninova et al. 2005). While only computer
modeled data are available for human NTCP, these also
suggest a similar structure. NTCP is exclusively expressed
at the basolateral membrane of rat and human hepatocytes.

4.2 Efflux of xenobiotics and endogenous substances
4.2.1 Efflux of xenobiotics and drugs

Drugs and their metabolites are transported from the
hepatocyte back to the sinusoidal blood for renal elimina-
tion or across the canalicular membrane for secretion into
bile and fecal elimination. Efflux of xenobiotics and drugs
into blood is mediated by MRP3 and MRP4, which are
ABC transporters belonging to the multidrug resistance
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subfamily (MRP, ABCC). MRP3 and MRP4 are respon-
sible for the efflux a broad range of xenobiotics and drugs
in blood (Keppler 2011). Drug elimination into bile is
mediated by three ABC transporters: multidrug resistance
protein 1 (MDR1, ABCBI, also called p-glycoprotein),
breast cancer resistance protein (BCRP, ABCG2) and
MRP2 (ABCC2). Moreover drugs are excreted by the
transporter Multidrug And Toxin Extrusion 1 transporter
(MATE1, SLC47A1).

MDR1, BCRP and MRP2 mediate the efflux of a broad
range of substrates including a large variety of drugs and
chemotherapy agents for which they share an overlap of
substrate specificity (Nies and Keppler 2007; Polgar et al.
2008; Cascorbi 2011). MDR1 mediates the export of bulky
neutral and cationic compounds (Giacomini et al. 2010),
MRP2 is the main biliary export system for phase II drug
conjugates, also transports non-metabolized xenobiotics
(Nies et al. 2008; Ieiri et al. 2009; Marquez and van
Bambeke 2011), while BCRP was shown to transport
anticancer drugs and environmental carcinogens (Polgar
et al. 2008; Poguntke et al. 2010; Meyer zu Schwabedissen
et al. 2011) as well as sulphate conjugates of drugs and
steroid hormones (Nakanishi and Ross 2012).

MREP transporters are able to transport endogenous and
exogenous substrates across cell membranes against con-
centration gradients using ATP as energy source. There are
currently nine members of the MRP family described,
which differ in their substrate spectrum and their location
within cellular membranes. In contrast to the hepatic
transport proteins, MRP3, MRP4 and MRP6, which act as
basolateral efflux pumps transporting their substrates from
the hepatocyte back into the sinusoidal blood (Konig et al.
1999; Rius et al. 2003), MRP2 is expressed on the apical
surface membrane of several epithelial membranes includ-
ing the canalicular membrane of hepatocytes (Konig et al.
1999) (Fig. 4). Here, MRP2 is able to transport numerous
organic anionic compounds, drugs and their conjugated
metabolites. MRP2 is mainly detected in liver but is also
expressed in epithelial cells of the gall bladder (Rost et al.
2001), in the proximal tubulus system of the kidney (Schaub
et al. 1999), in the small intestine, as well as in placental
trophoblast (Evseenko et al. 2006) and in CD4+ lympho-
cytes (Janneh et al. 2007). MRP2 is especially efficient at
transporting glucuronide, sulfate and glutathione (GSH)
conjugates, a feature which connects MRP2 closely to the
activities of enzymes involved in phase I and phase II
metabolism. MRP2 has been demonstrated to transport
endogenous compounds such as GSH, leukotrienes, biliru-
bin glucuronide and conjugates of hormones such as
estradiol (Keppler 2011). Besides BSEP, MRP2 appears to
be one of the major efflux transporters of bile acids in the
liver. This is confirmed by the observation that mutant rats
exhibit a reduction in bile flow by approximately 50 %

when lacking Mrp2 (Jansen et al. 1985; Bohme et al. 1994).
Furthermore, MRP2 appears to be strongly involved in drug
transport. Several in vitro studies demonstrated that MRP2
is able to transport several antineoplastic agents, including
methotrexate, cisplatin, irinotecan, cyclophosphamide,
paclitaxel and vincristine (Chu et al. 1997; Cui et al. 1999;
Van Aubel et al. 1999; Evers et al. 2000; Huisman et al.
2005). Other important therapeutics transported by MRP2
include protease inhibitors, such as indinavir, ritonavir and
saquinavir, used in HIV therapy (Huisman et al. 2002; Su
et al. 2004). A polymorphic expression or modulated
expression patterns of MRP2 accounted for drug resistance
observed in vitro and in vivo. MRP2-related loss in therapy
efficacy has been described for metotrexate (Hulot et al.
2005), chlorambucil (Smitherman et al. 2004), doxorubicin
(Kool et al. 1997), cisplatin (Korita et al. 2010; Taniguchi
et al. 1996) and several antiepileptic drugs (Dombrowski
et al. 2001; Potschka et al. 2003a, b; Loscher and Potschka
2005). MRP2 is also regulated by numerous NRs as
reviewed in section “Nuclear receptors.”

4.2.2 Phospholipids and cholesterol

Phospholipids, mainly as phosphatidylcholine, and cho-
lesterol are secreted from the canalicular membrane into
bile by ABC transporters. This process is tightly linked
with canalicular bile salt secretion and requires the coor-
dinate action of BSEP, MDR3 and ABCG5/ABCGS (Oude
Elferink and Groen 2000; Small 2003). MDR3 (ABCB4)
(Mdr2 in rodents), is a phospholipid flippase translocating
specifically phosphatidylcholine from the inner to the outer
leaflet of the canalicular plasma membrane (Oude Elferink
and Beuers 2011) (Fig. 4). Phosphatidylcholine is released
from the outer leaflet into the canaliculus along with bile
salts (secreted by BSEP), and forms mixed phosphatidyl-
choline-bile salt micelles (Small 2003). The release of
cholesterol from the canalicular plasma membrane is
facilitated by the presence of the heterodimeric ABC-
transporter ABCGS5/ABCG8 (ABCG5/ABCGS) (Wang
et al. 2006). The exact molecular mechanism of ABCG5/
ABCGS8-mediated cholesterol release is not completely
elucidated, but ABCG5/ABCG8 may act as a flippase
projecting part of the cholesterol molecule into the outer
membrane leaflet thereby creating a configuration that
enables cholesterol to be picked up by phosphatidylcho-
line—bile salt micelles (Wittenburg and Carey 2002).

4.2.3 Bilirubin
Once unconjugated bilirubin is conjugated to glucuronic
acid by UGT1ALI in hepatocytes, bilirubin diglucuronide

(BDQG) is excreted into bile by MRP2. The functional role
of MRP2 in BDG transport became evident from the
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identification of two rat strains naturally lacking functional
Mrp2: transport deficient (TR™) rats (Jansen et al. 1985)
and Eisai hyperbilirubinemic rats (Takikawa et al. 1991).
These rats display a hereditary defect of biliary secretion of
organic anion conjugates in conjunction with a 50 %
reduction in bile flow and have mutations in their Abcc2
gene (Paulusma et al. 1996; Ito et al. 1997). The impact of
MRP2 on bilirubin glucuronide transport is particularly
well reflected in its pathogenetic connection to the Dubin—
Johnson syndrome, a hereditary autosomal recessive dis-
order characterized by functional impairment of MRP2 in
the apical membrane of hepatocytes due to genetic muta-
tions within the ABCC2 gene. Patients suffering from
Dubin—Johnson syndrome show a benign chronic-conju-
gated hyperbilirubinemia (Kartenbeck et al. 1996) and the
deposition of a dark pigment in the hepatocytes (Nies and
Keppler 2007). Lack of functional MRP2 is correlated with
an increased expression of MRP3 on the basolateral
membrane of hepatocytes (Hirohashi et al. 1998; Konig
et al. 1999). MRP3 transports bilirubin glucuronides and its
upregulation in the absence of functional canalicular MRP2
further supports its role as a basolateral salvage transporter
(Borst et al. 2007).

4.2.4 Bile salts

Bile salts are secreted from the hepatocyte into the cana-
liculus by BSEP and MRP2 (Stieger et al. 2007; Stieger
2011). BSEP, constitutes the rate-limiting step in bile salt
secretion, and therefore, BSEP is critical to maintain a low
intracellular concentration of bile salts (Stieger et al. 2007;
Stieger and Beuers 2011). Rodent Bsep shows a low
transport activity for cholate (Gerloff et al. 1998), while the
evidence for human BSEP is conflicting (Mita et al. 2006;
Noé et al. 2002). BSEP is mainly expressed in the liver
where its expression is limited to the canalicular membrane
of hepatocytes (Fig. 4). Different forms of BSEP in species
such as the rat (Gerloff et al. 1998), human and mouse
(Stieger 2011) have been cloned and characterized for
functional properties. These studies showed that BSEP is
composed of twelve transmembrane-spanning domains
(Gerloff et al. 1998). Several groups reported extrahepatic
expression of BSEP at the mRNA level (Stieger et al. 2007,
Hanafy et al. 2012) but only one study showed an extra-
hepatic protein expression, specifically in mouse kidney
(Huls et al. 2006).

Impairment of BSEP function due to inherited mutations
or drug-induced inhibition leads to severe liver disease
(Davit-Spraul et al. 2009; Stieger 2010). Non-functional
BSEP will induce an increase in bile salt concentration in
hepatocytes, which in turn leads to mitochondrial toxicity
(Krahenbuhl et al. 1994). Several genetic polymorphisms
and mutations impair the function of BSEP, leading to a
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disturbed bile salt excretion and to cholestasis in humans.
Depending on the pattern of occurring mutations, a poly-
morphic expression of BSEP can induce a wide spectrum
of cholestatic phenotypes ranging from very mild to very
aggressive forms, such as progressive familial intrahepatic
cholestasis type 2 (PFIC2) (van Mil et al. 2004; Lam and
Benet 2004; Pauli-Magnus et al. 2005; Oude Elferink et al.
2006; Takahashi et al. 2007a; Davit-Spraul et al. 2009).
PFIC2 leads to severe jaundice, hepatomegaly and pruritus,
combined with histologically detectable portal inflamma-
tion, giant cell hepatitis and high serum levels of bile acids
and liver-specific aminotransferases. Children affected by
PFIC2 in most cases require liver transplantation during the
first decade because of cirrhosis and liver failure (Bezerra
and Balistreri 2000). Milder BSEP-associated cholestasis
forms include benign recurrent intrahepatic cholestasis
(BRIC2), which is associated with repeatedly occurring
episodes of cholestasis and gall stone formation (van Mil
et al. 2004; Lam et al. 2005).

Multiple drugs are known to inhibit BSEP function
(Stieger et al. 2000; Morgan et al. 2010; Stieger 2011;
Dawson et al. 2012). This has been demonstrated in animal
models and in different cell lines for glitazones and gli-
benclamide, bosentan, cyclosporine, statins, efavirenz and
saquinavir (reviewed in Stieger 2010). While low ICs,
values for BSEP correlate with drug-induced liver prob-
lems (Morgan et al. 2010), serum concentrations of drugs
do not correlate with their tendency to cause DILI, indi-
cating the importance of additional factors, such as drug
uptake into hepatocytes (Dawson et al. 2012). In contrast to
the severe phenotypes that BSEP deficiency confers in
human, mice lacking the protein suffer only from mild
cholestasis (Wang et al. 2001). The importance of BSEP
for xenobiotics and, in this context, particularly drug
transport appears to be negligible. Only pravastatin appears
to be transported by BSEP (Hirano et al. 2005).

In addition to BSEP-mediated bile salt export into the
canaliculus, bile salt export is also possible across the
basolateral plasma membrane back into the sinusoids. This
route becomes relevant under pathophysiological condi-
tions with impaired canalicular bile salt export for pro-
tecting hepatocyte from the toxic action of bile salts.
Basolateral bile salt export involves three different bile salt
transport systems (Fig. 4). Rat and human Mrp3/
MRP3 have been demonstrated in heterologous expression
systems to mediate ATP-dependent bile salt transport
(Hirohashi et al. 2000; Zeng et al. 2000; Akita et al. 2002),
whereby the human system has a considerably higher
affinity for bile salts than the rat system. While in rats,
Mrp3 is strongly upregulated under cholestatic conditions
(Donner and Keppler 2001; Soroka et al. 2001), data from
liver biopsies from patients with cholestatic liver disease
are conflicting (Shoda et al. 2001; Zollner et al. 2001;
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Schaap et al. 2009). Human MRP4 acts as a bile salt
transporter in the presence of GSH (Rius et al. 2003) and is
upregulated under cholestatic conditions (Keitel et al.
2005; Gradhand et al. 2008; Chai et al. 2011). Conse-
quently, these two transporters may help to reduce the toxic
concentrations of bile acids in the hepatocytes under
cholestatic conditions.

4.3 Transporter expression in hepatocyte models
4.3.1 Primary cultured hepatocytes

Primary cultures of hepatocytes in different configurations
are widely used as a tool to study transport, metabolism or
toxicity of drugs, and new chemical entities and, often,
such studies also include the investigation of regulation of
the processes involved (Lake et al. 2009; Swift et al. 2010).
However, primary hepatocytes as tools for the investigation
of the role of hepatocytes in drug disposition have clear
limits, such as the high functional variability observed
between human hepatocytes from different donors, the
limited life span and the difficulties in maintaining a dif-
ferentiated phenotype over culture time in vitro resulting in
strongly reduced expression of some of the transporters
(Guguen-Guillouzo and Guillouzo 2010). Technical
improvements regarding the cell density, the composition
of the culture medium or the use of different matrices on
which to seed hepatocytes are continuously developed to
circumvent the limitations of these models. Nevertheless,
polarity, expression and maintenance of transporters and
metabolic enzymes have to be monitored carefully in order
to extrapolate data obtained from primary cell culture to
hepatic metabolism, transport or toxicity into an in vivo
setting such as patients (Sahi et al. 2010).

In primary culture, rat hepatocytes rapidly lose Ntcp
mRNA expression and taurocholate uptake capacity on
collagen-coated plates (Liang et al. 1993). There is a faster
downregulation of mRNA (a decrease to 27 % after 24 h
culture) than of Ntcp protein (a decrease to 48 % after 24 h
culture) (Rippin et al. 2001). The extent of Ntcp protein
downregulation parallels the downregulation of initial
uptake rates of Na*-dependent taurocholate, with only 5 %
of protein and slightly more transport activity remaining
after 72 h. Similar findings were observed for Oatp trans-
porters (Rippin et al. 2001) such that Oatplal mRNA and
protein levels are rapidly and dramatically reduced (to
approximately 10 % and 20 % for mRNA and protein,
respectively, after 48 h culture) with a transport activity
remaining at about 40 % at 72 h, Oatpla4 shows a com-
parable but less pronounced reduction (approximately
reduction to 20 % and 50 % for mRNA and protein
expression respectively after 48 h), while transport activity
for Oatplal and Oatpla4 at 72 h remains with about

3040 % of the initial transport activity (Rippin et al.
2001). Consequently, the function of Oatps is better pre-
served than the function of Ntcp. Protein expression of
Mrp2 and Bsep as canalicular efflux transporters is main-
tained around 50 % of initial values after 72 h of culture
(Rippin et al. 2001). The dedifferentiation of this culture
system is also illustrated by a massive upregulation of
Mrpl, which is a marker for regenerating hepatocytes, i.e.
proliferating (Roelofsen et al. 1997). The uptake of the
Oatp substrate, pravastatin, decreases with time, supporting
the findings regarding Oatp protein expression (Ishigami
et al. 1995). mRNA coding for facilitative glucose uptake
was reported to increase over 9 h in primary cultured rat
hepatocytes (Rhoads et al. 1988). The expression of mdrl
is upregulated in primary rat hepatocytes (Fardel et al.
1992), more specifically Mdrlb is very strongly upregu-
lated and Mdrla is moderately upregulated in primary
hepatocyte culture, while Mdr3 is downregulated (Lee
et al. 1993). In human hepatocytes, MDR1 expression and
extrusion of doxorubicin from primary human hepatocytes
is only moderately upregulated over time in culture (Fardel
et al. 1993), suggesting species-specific changes in MDR1
expression during culture.

This marked reduction in transport activity observed in
cultured rat hepatocytes seems to be less pronounced in
human hepatocytes. Interestingly, human hepatocytes cul-
tured on collagen-coated plates preserved 70 % of their
taurocholate uptake activity after 5 days in culture (Jemnitz
et al. 2012). In primary human hepatocytes cultured in
sandwich cultures for 5 days, protein expression of efflux
transporters, BSEP, MRP2 and BCRP, is generally main-
tained or increased compared to the liver (Takeba et al.
2011; Schaefer et al. 2012). A recent study evaluated the
uptake kinetics of OATP1B1 and OATP1B3 in plated pri-
mary human hepatocyte over time and revealed that culture
time was crucial. After 2 h in culture, OATP1B1- and
OATPI1B3-mediated uptake was observed in all donors,
while over longer culture times, an extensive decrease in
transport activity, together with an increased variability due
to increased passive uptake, was observed (Ulvestad et al.
2011). If transport experiments are performed, the inter-
individual variability of transporter expression in human
liver, as demonstrated, e.g., for canalicular ABC trans-
porters (Meier et al. 2006) or the basolateral uptake systems
OCT1 and OCT3 (Nies et al. 2009) needs to be taken into
account, as it will affect transport measurements and their
interpretation (De Bruyn et al. 2011).

Changing the culture conditions of primary hepatocytes to a
sandwich configuration between collagen layers not only leads
to the formation of an extensive canalicular network with
culture time (LeCluyse et al. 1994), but also to a partial
recurrence of Ntcp expression and transport activity over
5 days of culture time (Liu et al. 1998). This finding is also true
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of the basolateral uptake transporters, Oatlal and Oatp4, as
well as to the basolateral efflux transporters, Mrp3 and Mrp4
(Swift et al. 2010). In rat hepatocyte sandwich cultures, can-
alicular exporters are similar to classic cultures, only mildly
downregulated, such as Bsep or Mrp2, or induced, such as
Berp, or p-glycoprotein (Swift et al. 2010). It should be kept in
mind that transporter expression in the sandwich culture con-
figuration can be significantly affected by the choice of culture
medium (Turncliff et al. 2006). Determination of the bile salt
excretory index allows the measurement of canalicular secre-
tion of substances, which is a unique property of the sandwich
culture system (Swift et al. 2010). However, a rapid down-
regulation of uptake and export systems was reported in this
setup, which may be related to methodological and technical
differences (Tchaparian et al. 2011). Investigation of human
hepatocytes in sandwich culture showed comparable changes
in transporter expression for some transporters (e.g. BSEP,
MDRI1, MRP4) to those in rat hepatocytes, while the expres-
sion of other transporters is different or even the opposite (e.g.
MRP2, BCRP, MRP4) (Li et al. 2009a; Swift et al. 2010).
Hence, comparison of results obtained in rat and in human
hepatocyte sandwich cultures needs careful analysis and
should take into account transporter expression levels (Kotani
et al. 2011). Finally, absolute quantification of efflux and
uptake transporters in sandwich-cultured human hepatocytes
showed comparable transporter amounts in comparison with
human liver tissue (Schaefer et al. 2012).

4.3.2 Organoid cultures

Organoid cultures can originate from intact tissue, such as
tissue slices, or from cells cultured to form or resemble 3D
cultures. For example, human liver slices can be maintained
in culture, where the levels of many transporters change
considerably, but the transporters involved in drug and bile
acid transport such as NTCP, BSEP, several OATPs and
MRPs remained fairly constant during 24 h of culture (EIl-
ferink et al. 2011). For isolated hepatocytes, various encap-
sulation or entrapment methods are known (Meng 2010).
There have been no extensive systematic investigations on
the expression of transport proteins and/or transporter func-
tions in these types of organoid cultures. Hepatocytes
encapsulated in alginate have reported maintained uptake of
salicylate, allopurinol and prostaglandin E, for 120 days
(Koizumi et al. 2007). Entrapment of rat hepatocytes has also
been reported to maintain the expression of Ntcp, albeit at a
reduced level, forup to 5 days, while expression of Oatplal,
Octl, Oat2, Mdr1 and Mrp2 was detectable for up to 9 days
(Yin and Meng 2012). These expression data were supported
by significant inhibitor-sensitive accumulation or efflux of
typical substrates of Oatplal, Oat2, Mrp2 and Mdrl, which
compare favorably with the sandwich system after 5 days and
in gel-entrapped rat hepatocytes (Yin and Meng 2012).
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Mitaka and co-workers developed a hepatic-organoid culture
system using long-term culture of progenitor hepatocytes of
the rat the so-called small hepatocytes (Chen et al. 2007).
These progenitor cells expand in culture and form canalicular
networks that accumulate fluorescein, demonstrating cana-
licular secretion (Mitaka and Ooe 2010). After prolonged
culture, these organoids display the polar expression of
hepatocellular transporters, e.g. Ntcp and Oatplb2 are
expressed in the basolateral membrane, and Mrp2 and Bsep
are expressed in the canalicular membrane (Sidler Pfandler
et al. 2004). Immunofluorescent analysis of Mrp2 expression
revealed a 3D network of canaliculi, which were able to
secrete fluorescein and the fluorescent bile salt cholylglycyl-
fluorescein (Sidler Pfandler et al. 2004).

5 Liver in vitro models in pharmacology, toxicology
and basic research

This section describes different ex vivo and in vitro models
used in research. The models extend from the most in vivo-
like to isolated cells, followed by complex 3D models and
bioreactors. In addition, since human hepatocytes are a
valuable model but in limited supply, alternative models
which have been developed in recent years are described.

5.1 The isolated perfused rat liver

Key questions

e What information can be gained from liver perfusion
models?

e What are the crucial parameters for optimal liver
perfusion models?

e What are the applications of liver perfusion models?

Take home messages

e [solated liver perfusion is still a modern, developing
and important investigative tool.

e Further developments in this technique are required
which allow the metabolic follow-up in the subcellular
compartments in the different subacinar hepatocyte
populations and also to distinguish their effects from
those caused by the different non-parenchymal cell
populations. Modern fluorochromes may play an
increasing role here.

e Liver perfusion models are used to measure metabolic
flux rates, biliary excretion, hepatocyte heterogeneity
and effects in transgenic mouse models.
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The isolated perfused liver is a well-established exper-
imental model for studies on hepatic metabolism, trans-
hepatocellular transport, pharmacokinetics, hemodynam-
ics, intra- and intercellular communication in the liver and
transplantation research. This experimental model was
introduced by Miller et al. (1951), and several excellent
reviews have appeared since then on this topic (Sies 1978;
Gores et al. 1986; Haussinger 1987; vom Dahl and Hius-
singer 1997; Sahin and Rowland 1998; Sahin 2003; Bess-
ems et al. 2006; Zhang et al. 2012). This section will
primarily focus on rat liver perfusion.

Studies using the intact liver have the advantage that the
structural and functional organization of the liver is pre-
served with the maintenance of hepatocyte polarity,
hemodynamic responses, the interplay and communication
between different intrahepatic cell populations, and in situ
signaling properties due to intrahepatic micro-milieus, as
well as compartmentation at the cellular and subcellular
levels. This, however, makes this experimental system
more complex, but the problem of complexity can partly be
overcome by use of additional techniques such as organ
spectrophotometry, the retrograde/antegrade perfusion
technique, use of micro-electrodes, use of selective inhib-
itors, radiolabeled compounds, different fractionation
techniques of the liver tissue and analysis of liver speci-
mens obtained at different time points of perfusion for
analysis of signal transduction elements, gene expression
or protein localization. By means of these approaches,
intracellular events can be followed up directly and indi-
rectly by analyzing the composition of the perfusate before
and after a liver passage. In the following, the technique of
isolated liver perfusion with some major modifications and
applications will briefly be discussed based on own pre-
vious reviews on this topic (Haussinger et al. 1987; vom
Dahl and Héaussinger 1997).

5.1.1 The perfusion apparatus—general considerations

An example of a perfusion setup is schematically depicted
in Fig. 7. The perfusion fluid is delivered from a reservoir
by a roller pump at a constant speed (“constant flow sys-
tem”) to a silicon tube oxygenator, where the perfusion
fluid is warmed up to 37 °C and equilibrated with an
appropriate gas mixture, for example O,/CO, (95/5; v/v),
when the perfusion fluid is Krebs—Henseleit buffer. Alter-
natively, a “constant pressure system” can be used, which
keeps the perfusion pressure constant, whereas the perfu-
sion flow varies with alterations of perfusion resistance.
Appropriate additions of metabolites, hormones or drugs to
the influent perfusate can be performed by precise micro-
pumps for defined time periods. The perfusate enters the
liver via the cannulated portal vein and is drained into
effluent by a cannula fixed in the superior caval vein. The

hepatic artery usually is tied off; however, perfusion can
also be performed bivascularly, i.e. via the portal vein and
the hepatic artery (Sahin and Rowland 1998; Gardemann
et al. 1991). Under these conditions, the portal versus
hepatic arterial flow ratio should be about 4:1 (Gardemann
et al. 1991). When required, the bile duct is cannulated and
bile samples can be taken for analysis, as is the case with
the effluent perfusate samples. Besides the portal pressure,
the oxygen concentration and pH in effluent perfusate are
monitored continuously, as well as the effluent Ca®* and
K™ concentrations using ion-sensitive electrodes, which are
placed in the effluent perfusate. One lobe of the liver may
be placed in the light beam of a dual wavelength organ
photometer (Sies et al. 1974). A platinum electrode may be
placed around the portal vein and hepatic artery, and per-
ivascular hepatic nerves can be stimulated electrically with
20 V, a frequency of 20 Hz and an impulse duration of
2 ms (Hartmann et al. 1982; Hiussinger et al. 1987).
Placing the liver on a balance pan not only allows for
monitoring liver mass, whose baseline constancy is one
surrogate marker for excellent perfusion quality, but also
allows the measurement of substrate- and hormone-induced
changes in the hepatocellular water content in the absence
of alterations of perfusion pressure and flow (vom Dahl
et al. 1991). Finally, a liver lobe can be placed into a light
beam with specific wavelengths for organ photometry and
fluorescence recordings (Sies 1978; Sies et al. 1974).

The quality of a liver perfusion experiment is decisive
for its scientific validity of the experiment. Several criteria
of a good perfusion quality must be considered, and several
parameters should be monitored. The macroscopic aspect
of the liver is homogeneously light-brown without evi-
dence of swelling, the basal portal pressure should be
2-5 cm H,O at a flow rate of approximately 4 ml/min/g
liver, which should be constant throughout the experiment
in the “constant flow” system. Continuous perfusion
pressure monitoring allows not only for investigation of
vasoactive compounds, but also for the detection of micro-
embolisms, which lead to sudden, only partly transient
increases in the perfusion pressure. The K+ concentration
should remain constant throughout the experiment, unless
K" fluxes across the plasma membrane are induced by
hormones, substrates, nerve stimulation (Fig. 8) or aniso-
osmolarity (Hdussinger et al. 1987). The release of lactate
dehydrogenase into the perfusate should be less than 1 mU/
ml in the open system of perfusion; the basal oxygen
consumption should be 2.3-3.0 pmol/g/min and the pH in
effluent 7.35-7.45 throughout the experiment, which is
carried out at 37 °C. Most importantly, experimentally
induced deviations of pH, [K™], [Ca®"], oxygen uptake and
portal pressure should be reversible and reproducible
within the same perfusion experiment. This also holds for
metabolic effects and other functional parameters, such as
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Fig. 7 Setup for isolated rat
liver perfusion in the open, non-
recirculating, constant flow
system. a The liver is posted on
a balance pan, which allows for
continuous monitoring of liver
mass. Perivascular nerve
stimulation is achieved by
means of a platinum electrode
placed around the portal vein.
b Organ photometry/fluorimetry
allows to monitor redox
transitions in the NAD(P)H/
NAD(P)" system using
nicotinamide nucleotide-
specific wavelength pair
350-377 nm

glucose release, urea and glutamine synthesis, thiol release,
K* and Ca>* transients, bile flow, biliary excretion and the
response to challenges, such as hormones, and may give
additional information on the perfusion quality. The macro-
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determination of lactate dehydrogenase activity in the efflu-
ent perfusate in 5-min intervals and the reversibility and
reproducibility of metabolic effects are normally sufficient
for the assessment of good perfusion quality. Viability of the

in the hemoglobin-free non-recirculating perfusion

system is maintained usually over a period of 3 h.
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Fig. 8 Effect of electrical perivascular nerve stimulation on the K™
concentration in effluent perfusate (from Héussinger et al. 1987)

Several modes of liver perfusion can be distinguished:

Perfusion with versus without oxygen carriers
Non-recirculating versus recirculating perfusion
Constant flow versus constant pressure perfusion
Antegrade versus retrograde perfusion

Usually, the bicarbonate-buffered Krebs—Henseleit
solution (118 mM NaCl, 4.8 mM KCI, 1.2 mM KH,PO,,
1.2 mM MgSO,, 1.25mM CaCl,, 25 mM NaHCO;),
equilibrated with O,/CO, (95/5; v/v) at 37 °C to give a
final pH of 7.4, is used. When albumin is added, it should
be defatted and dialyzed and the CaCl, concentration
should be raised to 2.5 mM. Albumin should be present in
studies on lipid metabolism; however, albumin is not
required for reasons of oncotic pressure, since the liver
does not have an interstitial space like other organs. The
perfusion fluid should contain L-lactate and pyruvate at
concentrations of 2.1 and 0.3 mM, respectively, in order to
adjust the redox potential in the cytosolic compartment at
—241 mV. The addition of an energy-providing substrate is
necessary in experiments with livers from starved rats,
whereas the glycogen content of livers from fed rats is
usually sufficient for a 1-2-h perfusion experiment. In this
hemoglobin-free perfusion system, an adequate O, supply
for the liver even during stimulation of hepatic metabolism

is guaranteed when the perfusion medium is saturated with
95 % O, and the flow is approximately 3.5-4 ml/g liver/
min, a value about threefold the physiological portal blood
flow rate (i.e. 1.25 ml/g liver/min Gores et al. 1986). The
perfusion flow should not exceed 5 ml/g liver/min in order
to avoid sinusoidal endothelial cell damage. Rates of glu-
coneogenesis, ureagenesis and oxygen uptake are not
affected by the presence or absence of erythrocytes.
However, oxygen carriers like erythrocytes or fluorocar-
bons may be necessary when lower flow rates are desired
or when an exceedingly high O, consumption is expected
in the respective investigation. The disadvantage of using
erythrocytes is the introduction of another metabolically
active compartment, and some of the fluorocarbons are
hepatotoxic and are not metabolically inert. On the other
hand, oxygen carriers allow for lower, more physiological
perfusion flow rates.

The perfusion can be carried out with a single liver pas-
sage of the perfusate (non-recirculating “open” system of
perfusion) or the perfusate can be recirculated (“closed”
system). The latter system has the advantages that (1) the
total perfusion volume is low and resource-sparing and that it
(2) allows for an accumulation or enrichment of products
generated at low amounts during a single liver passage. The
closed perfusion system was, for example, successfully
employed in studies on the synthesis and degradation of
acute phase proteins by the liver. However, the major dis-
advantage of recirculating systems is that the composition of
the perfusate changes with each liver passage and metabolic
steady-state conditions are not achieved or maintained.
Furthermore, the accumulation of organic acids requires a
careful pH monitoring of the perfusate and appropriate pH
adjustments. On the other hand, the open system of perfusion
allows the constant addition of defined substrate concentra-
tions and calculation of metabolic flux rates, when metabolic
steady-state conditions are achieved. Further, when the
substrate or an effector is removed, the reversibility and
reproducibility of the observed effects can be studied in the
same experimental preparation—an important parameter for
the interpretation of experimental results.

When vasoactive compounds are added to a constant
flow system, the perfusion pressure will increase and per-
fusion pressure monitoring is recommended, because a
high perfusion pressure harbors the threat of endothelial
cell damage. Instead of constant perfusate delivery via a
roller pump, perfusion can also be carried out with a
constant perfusion pressure (“constant pressure system”);
whereby each change in the vascular resistance will alter
the amount of perfusate flowing through the liver. In order
to avoid incomplete liver perfusion, such a device requires
careful monitoring of the perfusion flow, and one has to
keep in mind that changes in metabolic flux rates may be
due to changes in substrate delivery to the liver.
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The perfusate flow direction is normally from the portal
to the hepatic vein, but can be changed also into the
opposite direction. Experiments with altering the perfusion
direction within the same liver preparation were used in
studies on functional cell heterogeneities along the liver
acinus (Haussinger 1983; Hiussinger and Stehle 1988). In
such experiments, it is important that the perfusion pressure
is similar in antegrade and retrograde perfusion directions.
This is achieved by carefully adapting and positioning of
the tube systems.

The sequential liver perfusion technique has been
employed for studies on mediator compounds, which are
formed inside the liver acinus, but are normally not
released into effluent perfusate due to inactivation by per-
ivenous scavenger cells (Haussinger and Stehle 1988). In
this setup, the perfusate leaving the first liver is re-oxy-
genated and thereafter enters a second liver, whose meta-
bolic and hemodynamic response is monitored. By
changing the perfusion direction in the first liver to the
retrograde mode, mediators formed inside the liver acinus
are not eliminated by perivenous scavenger cells and enter
the second liver, which is used as a reporter organ.

5.2 Applications of liver perfusion
5.2.1 Determination of metabolic flux rates

With a constant substrate supply via the portal vein (non-
recirculating, single pass perfusion), the concentrations of
respective products in the effluent perfusate can be mea-
sured. When the equilibrium between substrate concentra-
tion and product formation, i.e. the metabolic steady state is
reached, the flux rate through a respective pathway can be
calculated. Examples are the formation of urea from added
NH,4C1 or proteolysis inhibition by ethanol and acetalde-
hyde (Héussinger et al. 1986; Vom Dahl and Hiussinger
1998). As shown in Fig. 9, acetaldehyde (5 mmol/l) inhibits
proteolysis (measured as “H-leucine release from in vivo
pre-labeled liver proteins) by about 20 %. The effect is fully
reversible after withdrawal of acetaldehyde, indicating that
the effect is not due to an impaired viability of the perfused
liver. Not only the flux through a whole pathway including
transport steps across the plasma and mitochondrial mem-
branes, but also the flux through a single enzymatic step can
be measured by use of labeled products; for example, flux
through pyruvate dehydrogenase may be determined as
4CO, production from added 1-'*C-pyruvate. By combin-
ing these techniques with the use of inhibitors, measure-
ments of substrate disappearance and the formation of the
various products, complex quantitative metabolic flux maps
can be established with identification of sites of metabolic
flux control. Recent studies suggest that the effluent per-
fusate of isolated perfused rat liver can be used to study the
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Fig. 9 Antiproteolytic effect of acetaldehyde in the single pass
perfused rat liver. a Acetaldehyde (5 mmol/l) was infused into the
perfused liver for 30 min, and the release of [*H]leucine from pre-
labeled rats was taken as a measure of proteolysis. b The resulting
inhibition of proteolysis under steady-state conditions at different
concentrations of acetaldehyde. Data are from 2 to 4 different
experiments and are given as mean + SEM. From vom Dahl and
Haussinger (1998)

liver secretome, i.e. the proteins secreted by the various
liver cell types.

5.2.1.1 Monitoring of intracellular events Freeze-clamps
of perfused liver and metabolite extraction allow the
determination of intracellular metabolite levels or enzyme
activities. Here, correction has to be made for the extra-
cellular space and the technique will give overall tissue
levels of metabolites, but no information about the con-
centrations in specific cell types and subcellular compart-
ments. During the individual perfusion experiment, liver
lobes can be ligated and excised in a way that keeps the
portal pressure constant by adjusting the perfusate flow.
Current evidence suggests that this approach allows
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harvesting at least three sequential tissue samples without
affecting the function of the remaining tissue. This allows
studying signal transduction events by determining changes
in protein phosphorylation and their reversibility within
one liver preparation (for example see Cantore et al. 2011).
Sequentially removed liver tissue specimens can also be
used for the determination of changes in gene expression
and protein localization (toponomics) using immunohisto-
chemistry and fluorescence profiling. Such techniques have
been employed in studies on the regulation of transporter
insertion/retrieval into or from the canalicular membrane
and to link these movements to signal transduction mech-
anisms (Cantore et al. 2011).

Intracellular events can also be monitored with radio-
active compounds. This approach was used in studies on
the CO,/HCO;3;™ compartmentation in perfused rat liver
(Haussinger 1986). A noninvasive method for studying
intracellular parameters is the use of organ photometry
(Sies and Chance 1970; Sies et al. 1974; Sies 1978). With
the dual wavelength mode, light is transmitted through a
liver lobe of 2-4 mm thickness and both absorbance and
fluorescence are measured with photomultipliers and
monitored during metabolic transitions. This technique
allows the sensitive assessment of the redox state and its
transitions for nicotinamide nucleotides (using the nico-
tinamide-specific wavelength pair 350-377 nm) and vari-
ous CYPs as well as the follow-up of catalase compound 1.
Calibration of the system can be performed with dansylated
serum albumin for measurement of the extracellular com-
ponent of the penetrating light path. By means of the rel-
ative fluorescence/absorbance ratios during the metabolic
transitions, different nicotinamide nucleotide pools can be
characterized as a consequence of nicotinamide nucleotide
compartmentation by binding and spatial subcellular
compartmentation. For the determination of the redox
status of the cytosolic and mitochondrial NADH/NAD™
systems, the concentrations of the redox indicator metab-
olite couples lactate/pyruvate and B-hydroxybutyrate/acet-
oacetate in effluent perfusate can be measured (Biicher and
Sies 1976).

Monitoring the washout curves after equilibration of the
single pass perfused rat liver with *H-inulin/"*C-urea
allows to determine the intracellular water space in per-
fused rat liver (vom Dahl et al. 1991). *H-inulin will
equilibrate in the extracellular space only, whereas '*C-
urea equilibrates not only with the inulin-accessible space,
but also in the intracellular compartment. From the wash-
out curves of both labels, a virtual “urea space” and a
virtual “inulin space” can be calculated. The difference
between both spaces reflects the intracellular water space.
This technique is noninvasive and can repeatedly be
employed in one single liver preparation so that cell

hydration changes under the influence of effectors, such as
amino acids or hormones, and their reversibility can be
determined. By means of this technique, cell hydration
changes as low as 2 % can reliably be picked up. Com-
bining this technique with simultaneous liver mass, K and
perfusion pressure recordings allow conclusions about
fluctuations of intra- and extracellular spaces.

5.2.1.2 Studies on hepatocyte heterogeneity Many met-
abolic steps are heterogeneously distributed along the liver
acinus. Metabolic interactions between different subacinar
hepatocyte populations have been established in ammo-
nium, glutamine and eicosanoid metabolism (Hiussinger
1983; Groothuis et al. 1982; Héussinger and Stehle 1988).
This functional hepatocyte heterogeneity can be studied in
isolated perfused rat liver, in which the structural organi-
zation is preserved, by the retrograde—antegrade perfusion
technique (Héussinger 1983). When two metabolic path-
ways are differently localized in the acinus and share a
common substrate, under conditions of a rate-limiting
substrate supply, one of these pathways will be favored
depending upon the direction of perfusion. As for controls,
the metabolic flux differences between retro- and antegrade
perfusion must be abolished either when excess substrate is
added or when one of these competing pathways is inhib-
ited. Such competing pathways are urea and glutamine
synthesis from ammonium ions (Fig. 10), and by means of
this technique, the periportal localization of urea synthesis
and glutaminase and the perivenous localization of gluta-
mine synthetase and the existence of the intercellular glu-
tamine cycle in the structurally and metabolically intact
liver were demonstrated (Hiussinger 1983). The antegrade/
retrograde perfusion technique was also successfully
employed with regard to intra-acinar eicosanoid metabo-
lism (Héussinger and Stehle 1988). Here it was shown that
prostanoids can be formed inside the liver acinus, but do
not leave the liver due to their removal by perivenous
hepatocytes (so-called perivenous scavenger cells) (Haus-
singer and Stehle 1988; Morimoto et al. 1993). Oxygen
microelectrodes and microlightguides (Ji et al. 1980) have
been developed for the registration of oxygen tension and
fluorescence at different sublobular regions; however, these
techniques are restricted to signals obtained from the
hepatocytes located at the surface of a lobe. Perfusion
experiments after destruction of the perivenous compart-
ment of the liver acinus without impairment of the peri-
portal zone have also been used for studies on hepatocyte
heterogeneity (Héussinger and Gerok 1984).

The heterogeneity of hepatocytes in transport function
was studied for taurocholate, DBSP, ouabain and the asi-
aloglycoprotein asialoorosomucoid in antegrade and ret-
rograde perfusions, combined with autoradiographic or
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Fig. 10 Retrograde/antegrade
liver perfusion for studies on
hepatocyte heterogeneity. The
technique was first used in
studies on hepatic ammonia
metabolism (Hdussinger 1983).
Urea cycle enzymes are located
in periportal hepatocytes,
whereas glutamine synthetase is
located in a small perivenous
hepatocyte population
surrounding the terminal hepatic
venule. Under conditions of
limited ammonia supply, the
metabolic fate of ammonia is
dependent on the direction of
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fluorescence localization and computer modelling (Gro-
othuis et al. 1982, 1983; Braakman et al. 1987; van der
Sluijs et al. 1988). For taurocholate, Rhodamine B and
asialoorosomucoid, but not for DBSP or ouabain a steep
gradient was observed in the liver lobules. Moreover a
prominent difference in the biliary excretion rate of zone 1
and zone 3 hepatocytes was found for taurocholate.

5.2.1.3 Mouse liver perfusion studies Mouse liver per-
fusions are increasingly employed due to the availability of
a great variety of transgenic mouse models. Mouse liver
perfusion is in principle similar to rat liver perfusion;
however, the perfusion apparatus has to be miniaturized
and the liver perfusion is preferably performed with the
liver in situ due to the small animal size. Perfusate com-
position and flow per g liver is similar to that employed in
rat liver perfusion. Mouse liver perfusion has been
employed in studies on the heterotrimeric G-protein Gj3 on
insulin-induced autophagy in liver using different knockout
animals (Gohla et al. 2007) and on the role of the K*
channel o-subunit KCNQI, serum and glucocorticoid-
inducible kinase SGK1 for insulin-induced K* fluxes and
cell hydration changes employing livers from KCNQI-
knockout, SGK1-knockout and control mice (Boini et al.
2009a, b).

5.3 Precision-cut liver slices

Key questions

e What are the best methods for making and incubating
precision-cut liver slices (PCLs)?
e What are the applications of PCLs?
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Take home messages

e PCLS have been proven to be a unique and useful
in vitro system.

e Disadvantages of the utilization of PCLS exist but seem
resolvable.

e There are numerous opportunities for the use of PCLS
in drug metabolism, toxicological, pharmacological and
disease-related liver research.

Warburg and Krebs used slices of tumor and liver tissue
as early as the 1920s (Krebs 1933; Warburg 1923). Liver
slices were prepared manually with limited reproducibility
and viability (Stadie and Riggs 1944). After a decline in the
application of slices in favor of the use of isolated hepa-
tocytes, the development of the Krumdieck slicer in the
1980s led to a “comeback” of the technique enabling the
production of reproducible and viable slices (Krumdieck
et al. 1980). This technology induced a revival of the liver
slices. The technique of PCLS has been described in detail
in a recent publication by de Graaf et al. (2010). There are
numerous pivotal steps to obtain and culture viable liver
slices. The first is the source of the liver tissue. In animal
experiments, the source can be controlled and perfusion of
rat or mouse livers with a solution, such as an organ
preservation solution or simple buffer medium, before
harvesting is not necessary. Perfusion can deteriorate the
viability during incubation (P. Olinga, unpublished data).
In addition, blood taken by a heart puncture before har-
vesting of a rat or mouse liver is not recommended and
may also influence the viability of the PCLS in culture.
Livers of larger animals such as monkeys (Olinga et al.
1998a) or dogs (P. Olinga, unpublished data) should
preferably be perfused with ice-cold organ preservation
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solution (e.g. University of Wisconsin Organ preservation
solution (UW) (Belzer et al. 1990). Human liver tissue can
be obtained from surgical waste after partial hepatectomy
or parts of non-transplantable donor liver (Olinga et al.
1998a; Elferink et al. 2011; Vickers et al. 2011). Human
surgical waste material should be perfused with UW to
remove blood from the tissue (Olinga et al. 1998a). Non-
transplantable donor livers are already perfused in situ with
an organ preservation solution. After collecting the liver, if
slices are not prepared immediately, the liver should be
stored in an organ preservation solution (Olinga et al.
1998a). A core can be made by a biopsy punch or coring
tool before the liver tissue is transferred to a slicer (de
Graaf et al. 2010).

Most research groups that successfully prepare and use
precision-cut liver slices use the Krumdieck slicer, Vitron
slicer or Leica VT1200 S microtome (Krumdieck et al.
1980; de Graaf et al. 2010; Parrish et al. 1995; Zimmer-
mann et al. 2009). Recently, the EMS-4000 tissue slicer
was introduced, which is mainly used to prepare lung slices
(Khan et al. 2010a); however, others have performed pilot
experiments with rat liver and they have shown that viable
PCLS can be prepared (M.H. De Jager and G.M.M. Gro-
othuis, unpublished data). The slice buffer should prefer-
ably be Krebs—Henseleit buffer at pH 7.42, carbogenated
(95 % Oy, 5 % CO,) and kept at 4 °C (de Graaf et al.
2010). The slice buffer is supplemented with 25 mM glu-
cose, which seems to be essential for the viability of the
slices (Olinga et al. 1997). The optimal thickness of PCLS
is between 250 and 100 um (de Graaf et al. 2006; Olinga
et al. 1993). If necessary (human), PCLS can be stored up
to 18 h in an organ preservation solution, without losing
their metabolic capacity (Olinga et al. 1998b).

5.3.1 Incubation of PCLS

Over the years, various incubation systems have been
described for liver slices (de Graaf et al. 2007a, 2010;
Olinga et al. 1997; van Midwoud et al. 2011a). Successful
incubation systems are based on optimal penetration of
nutrients and oxygen into the PCLS. The most widely
employed systems are the multi-well-plate incubation
system (de Graaf et al. 2010; Elferink et al. 2011; Olinga
et al. 1997, 2008) and the dynamic organ culture system
(Vickers et al. 2011; Brendel et al. 1990; Klassen et al.
2008; Schaffert et al. 2010). Both systems utilize a gas
phase with high oxygen concentrations, i.e. up to 95 %
oxygen and 5 % CO,. It is essential for the multi-well-plate
incubation system that the plates are not incubated under
static conditions but should be shaken during culture,
otherwise the viability of the PCLS will deteriorate dra-
matically (de Graaf et al. 2010; Olinga et al. 1997). Long-

term culture of PCLS, i.e. incubations longer than 72 h, is
mostly performed in the dynamic organ culture system
(Vickers et al. 2011, 2004), in which the PCLS are inter-
mittently exposed to the gas and medium phase (Brendel
et al. 1990). Recently, a microfluidic system for PCLS was
developed (van Midwoud et al. 2010b). In this system,
PCLS are continuously perifused to keep the incubation
environment stable over time (van Midwoud et al. 2010b,
2011a, b, ¢, d). Until now, the maximum incubation period
of PCLS has been 96 h (Klassen et al. 2008; Vickers et al.
2004).

5.3.2 Viability of PCLS

Different methods are applied to assess the viability of the
PCLS during culture. The leakage of (liver) enzymes [e.g.
aspartate aminotransferase (AST) or lactate dehydrogenase
(LDH)], the ATP content or grading the histomorphology
of the PCLS are used in different studies (Fisher et al.
2001). It is generally recognized that histomorphological
evaluation is a very sensitive general viability marker.
Histomorphological evaluation is, however, very work
intensive and necessitates highly trained personnel that
have to interpret and grade the morphology of the PCLS.
ATP content of tissue slices appears to correlate well with
morphology (de Graaf et al. 2007a); therefore, this method
is used by many different laboratories (de Graaf et al. 2010;
Vickers et al. 2004; van de Bovenkamp et al. 2008).

5.3.3 Drug metabolism in PCLS

Previously, PCLS were mainly used for drug metabolism
and toxicity studies (Worboys et al. 1997). Distribution,
metabolism and transport of drugs were established and
validated in PCLS. Olinga et al. (1993) showed that in
human PCLS, all hepatocytes in the slice had an equal rate
of metabolism of lidocaine. Others have shown that the rate
of drug metabolism per hepatocyte present in the slice was
impaired in rat liver slices (Worboys et al. 1997). However,
de Graaf et al. (2006) showed in rat PCLS, that this
decreased drug metabolism rate per hepatocyte is due to
limited permeation into the PCLS of high clearance com-
pounds. By using slices of 100 pum thickness, this can be
circumvented and metabolic clearance of drugs is equal to
that found in freshly isolated hepatocytes.

In the pharmaceutical industry, in vitro metabolite pro-
filing is of utmost importance to correctly predict the
metabolites found in human in vivo and select the animal
species with preferably a similar metabolite profile to that
measured in human cryopreserved hepatocytes or human
PCLS (de Graaf et al. 2007a). As there are no commer-
cially available cryopreserved (human) liver slices, only
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fresh (human) liver slices can be used for metabolite pro-
filing studies. Results on cryopreservation of liver slices are
promising; however, the method is not yet commercialized
(de Graaf et al. 2007b; Kasper et al. 2011). Phase I and II
metabolism is retained in (human) liver slices and liver
slices better predicted in vivo metabolite profiles than
microsomes or cell lines (de Graaf et al. 2007b). A
microfluidic system for PCLS allows online measurement
of metabolites (van Midwoud et al. 2011a). This system
better mimics the in vivo (flow) conditions than the
dynamic organ culture or multi-well-plate incubation sys-
tem, and, together with the possibility to sequentially per-
fuse several chambers with slices from different tissues, it
has great potential in drug metabolism and toxicology
studies (van Midwoud et al. 2010a, b, 2011a, b, ¢).

The decline in the metabolic capacity during culture of
(human) hepatocytes is well known (Martin et al. 2002).
Different groups have shown that the metabolic capacity is
better preserved in (human) liver slices (Elferink et al.
2011; Olinga et al. 1997; Martin et al. 2002) compared to
(human) hepatocytes. However, others have shown that
drug metabolism in liver slices is impaired after 24 h of
culture (de Graaf et al. 2007a; Wright et al. 1996; Boess
et al. 2003). Phase I and II metabolism enzyme expression
and activity in tissue slices tend to decrease upon culturing
(de Graaf et al. 2007a), partly because of the loss of
endogenous or exogenous inductive stimuli, thus future
studies using liver slices could prevent the deterioration of
metabolic capacity in PCLS by adding natural growth
factors and hormones to the culture medium.

5.3.4 Drug transport in PCLS

In drug discovery, in addition to phase I and II drug
metabolism, phase III transporter function has gained
importance and more intensive scrutiny. PCLS have been
used to study regulation and function of these transporters
in (human) PCLS (Olinga et al. 2001, 2008; Worboys et al.
1997). In isolated and cultured hepatocytes, drug trans-
porters are strongly downregulated during culturing (Bor-
lak and Klutcka 2004). By contrast, in liver slices, the
expression of drug transporter is retained during culture
(Elferink et al. 2004, 2011; Jung et al. 2007) and is regu-
lated by lipopolysaccharide, cytokines and bile salts (El-
ferink et al. 2004; Jung et al. 2007; Khan et al. 2009a, b,
2010b, 2011). PCLS with a thickness of 250 um were
incubated with the lipophilic compound rhodamine B or
3H20 (Worboys et al. 1997; Olinga et al. 2001) and these
compounds reached all layers of the slice within 5 min,
demonstrating that compounds can reach the inner cell
layers within minutes. In addition, even a large molecule
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like modified albumin (72 kDa) is taken up by slices and
can reach the inner cell layers (Olinga et al. 2001). In
PCLS, all cell types are present in their normal physio-
logical environment (Lerche-Langrand and Toutain 2000)
and studies in PCLS accurately predict the distribution and
uptake of drug-targeting preparations into specific liver cell
types in vivo (Hagens et al. 2006; Melgert et al. 2000,
2001; Proost et al. 2006; Gonzalo et al. 2007). In addition,
these studies also revealed that, besides hepatocytes, other
liver cell types, Kupffer cells, endothelial cells and stellate
cells, are viable in PCLS.

5.3.5 Drug-induced toxicity and liver disease using PCLS

Since drug-induced toxicity often is a multicellular phe-
nomenon, PCLS seem an ideal in vitro system to investigate
toxicity of drugs. Particularly the Kupffer cells have a
central function in hepatotoxicity (Roberts et al. 2007).
When drug-induced toxicity gene expression patterns from
in vivo rat liver, rat liver slices and different isolated and
cultured cells were compared, liver slices were most com-
parable to intact rat liver (Boess et al. 2003). Microarray
analysis of toxic compounds in PCLS correctly predicted
hepatotoxicity as found in vivo and could discriminate
between different mechanisms of toxicity (Elferink et al.
2008). Toxicity studies in PCLS have been reviewed
extensively (de Graaf et al. 2007a, 2010; Olinga et al. 1997,
Vickers and Fisher 2004, 2005), and lately, an additional
number of papers have been published on PCLS in drug-
induced toxicity (Baverel et al. 2011; Lemaire et al. 2011;
Ly and Brock 2011; Schaffert et al. 2010; Vickers 2009;
Yue et al. 2009). Recently human and mouse PCLS were
used to investigate the mechanism of idiosyncratic drug-
induced liver injury (iDILI) by co-incubating PCLS with
LPS and drugs known to induce iDILI. Species differences
were observed in the patterns of cytokine production by
LPS and the synergistic effects with the iDILI drugs (Hadi
et al. 2012, 2013). Recently, PCLS have also been used in
studying liver diseases, e.g. fibrosis (Klassen et al. 2008;
van de Bovenkamp et al. 2006, 2008; Guyot et al. 2010) and
HCV infection (Lagaye et al. 2012). The mechanism of
these diseases can only be investigated in vitro in a system
that mimics the multicellular milieu of the liver in vivo.

5.4 TIsolated human hepatocytes

Key question

e What are the best practices for isolating human
hepatocytes?
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Take home messages

e Primary human liver cell isolation is a complicated
procedure which requires well-trained staff and a good
cooperation with the surgical department performing
the liver resections.

e Besides the complicated technical setup, many prob-
lems and limitations, which cannot always be taken into
account beforehand, may arise during the isolation
process.

e The most unpredictable component of the process,
which decides whether or not cell quality is satisfac-
tory, is the quality of the donor tissue itself.

The isolation of primary human hepatocytes was per-
formed for the first time more than 40 years ago (Bojar
et al. 1976; Strom et al. 1982; Guguen-Guillouzo et al.
1982; Reese and Byard 1981). The introduction of the two-
step isolation procedure using collagenase by Seglen
(1976) signified an important progress in primary liver cell
isolation. This procedure has been the basis of many iso-
lation protocols that have since been published (Dorko
et al. 1994; Strom et al. 1982, 2005; Knobeloch et al. 2012;
Gerlach et al. 1994). The continuous increase in the
demand for liver cells for various applications, such as drug
development, safety issues, discovery of new biochemical
pathways in liver diseases or for temporary liver support,
requires the need for a continuously updated detailed iso-
lation protocol. However, the isolation of human primary
liver cells requires extensive experience, the establishment
of a detailed network between surgeons and the research-
ers, who isolate the cells as well as the compliance to
ethical rules. Detailed protocols for the isolation of human,
rat and mouse hepatocytes are described in the “Appendix
1.” The present protocol for isolating human hepatocytes is
the result of the past 25 years of research, which is cur-
rently used in national and international research networks.
Here, the handling of primary liver cells after isolation is
described and as well as possible pitfalls and limitations of
hepatocytes isolated from either liver resections or tissues
rejected for liver transplantation.

5.4.1 Shipping of isolated hepatocytes

The availability of human tissue is unpredictable, and hepato-
cyte isolation is a complicated procedure that can only be
performed in special centers with experienced staff (Pless et al.
2012). When isolating more cells than are immediately needed,
primary human hepatocytes can be provided to other labora-
tories, either by shipping plated cells or by sending them in
cold-stored cell suspensions. However, this method requires
adequate storage conditions and transport strategies. In addition

to these two forms of shipping, cryopreserved primary hepa-
tocytes are also a possibility to preserve cells for longer periods.
Furthermore, cryopreservation has the advantage that the cells
can be used, whenever they are needed. Recent developments
in the methods of cryopreservation are described in section
“Further improvement of cryopreservation techniques.” Cold
storage and sending of the cells in suspension is a fast and low-
priced method of shipment. The main problem with this pro-
cedure is cellular damage due to hypothermia. Storage at 4 °C
slows down the energy metabolism of the cells and is associated
with a time-dependent linear decrease in the intracellular ATP
levels (Berendsen et al. 2011). As a result, the inhibition of
energy-dependent Ca®" pumps may lead to an increase in
cytosolic Ca2+, which, in turn, leads to damage and even
dysfunction of the cytoskeleton, e.g. aggregation of actin fila-
ments. In early stages of hypothermia (up to 24 h of cold
storage), alterations are reversible. By contrast, a longer dura-
tion of cold storage (>24 h) causes irreversible alterations in
the cytoskeleton, which are closely connected to a loss of
function and membrane integrity (Stefanovich et al. 1995). In
addition, the classical view of hypothermia describes an inhi-
bition of Na™/K"-ATPase, which leads to a pronounced cel-
lular sodium accumulation, accompanied by an accumulation
of chloride, which causes osmotic effects leading to cell
swelling and finally to cell death (Hochachka 1986). For this
reason, cold storage solutions often contain low concentrations
of Na* and CI~ ions. While this seems to be beneficial for rat
hepatocytes, a significant decrease in damage of human hepa-
tocytes could be observed in chloride-rich storage solutions
(Pless et al. 2012). Cell swelling and the formation of so-called
blebs are often observed under hypothermic conditions, and
several groups investigated stabilizing agents in order to reduce
damage and improve the integrity of cell membranes (Stef-
anovich et al. 1995; Kim and Southard 1999). Furthermore,
cold storage leads to an increase in the intracellular chelatable
iron pool in several cell types followed by the formation of ROS
(Pless et al. 2012). Oxidative stress has been ascribed a sig-
nificant role in cellular damage because it alters the functional
properties of cell membranes through lipid peroxidation (Vara
et al. 1995; Meng 2003). Therefore, recent preservation solu-
tion development has focused on a few critical topics including
the maintenance of ionic and osmotic balance, the prevention
of cell swelling and blebbing, the control of free radical for-
mation and the development of serum-free media (Ostrowska
et al. 2009). Consequently, cold storage solutions containing
antioxidants, iron chelators and/or membrane stabilizers have
been developed to protect cells from such damages (Meng
2003; Pless et al. 2012).

A classical organ storage solution, namely the Univer-
sity of Wisconsin solution (UW), is insufficient for storage
of cell suspensions in some laboratories (unpublished
data); although others have reported better success using
this solution (Sandker et al. 1993; Olinga et al. 1998a).
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Certain workgroups have developed or refined cold storage
solutions in order to optimize them for the demands of
primary human hepatocytes. The cold storage solution
from hepacult GmbH (Regensburg, Germany) has been
successfully used such that transport with a loss of
approximately 20 % of cell viability was possible up to
24 h (A. Niissler, unpublished data). A proposed method
for the shipment of hepatocytes using hepacult cold storage
solution is described in the “Appendix 1”. Another pos-
sibility which excludes hypothermic damage and the need
for an appropriate cold storage solution is the shipping of
plated cells. For this purpose, cells are seeded onto cell
culture plates/flasks. After an attachment period of at least
4 h in a humidified incubator at 37 °C, the cell culture
plates containing adhered cells can be tightly sealed with
Parafilm and sealed in an insulated box with warm packs
for shipment. The cells can survive a 12-h shipping pro-
cedure without marked changes in their viability compared
to classical shipment in suspension culture. This method is
very convenient for the recipient, but it is much more time-
consuming and costly for the cell provider. Furthermore,
the cells usually arrive after 3648 h in the collaborating
laboratory, while cell suspensions arrive only one day after
cell isolation.

5.4.2 Functionality and quality control of human
hepatocytes

Many tests are available for assessing functionality of primary
human hepatocytes. Several hepatic functions, including phase
I and phase II enzyme activities, glucose metabolism and
ammonia detoxification, are functional during culture for at
least 48 to 72 h. However, a thorough characterization of the
isolated hepatocytes is essential to ensure that functions of
interest are maintained during culture. The morphology of
hepatocytes in a 2D culture is characterized by a polygonal
shape that is comparable to epithelial cell cultures (Knobeloch
et al. 2012). The investigation of morphology in combination
with albumin secretion is frequently used as proof of hepato-
cyte functionality. However, some studies have shown that
these parameters alone do not prove the existence of other
hepatocyte-specific functions, such as glucose metabolism,
detoxification of ammonia and biotransformation (Beerheide
et al. 2002; Hengstler et al. 2005; Sharma et al. 2005;
Knobeloch et al. 2012). More details about liver cell function
and applications for predicting liver toxicity are described in
section “Use of in vitro systems for predicting liver toxicity.”

5.4.3 Pitfalls and limitations in the isolation of primary
human hepatocytes

The effect of transport between the surgical department and
the cell isolation laboratory along with the inter-individual
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donor tissue variability makes it difficult to predict the
outcome of the isolation. However, the biggest limitation is
the general scarcity of donors. Tissue quality strongly
depends on pre-treatment and the lifestyle of the donors. In
turn, this has a major influence on the quality of the iso-
lated liver cells. Diseases that lead to an accumulation of
bile in the liver tissue almost disqualify these specimens for
hepatocyte isolation because the interaction of bile salts
with the liver tissue results in highly damaged cells, which
are even further damaged during the cell isolation process.
In addition, the fixing of cannulae into blood vessels using
tissue glue is difficult when bile is distributed all over the
resected liver piece. Notably, a qualified laboratory has to
have carried out a certain number of liver cell isolations in
order to have sufficient experience to judge which resected
liver pieces are suitable for isolating hepatocytes. This
point is very important since the whole isolation process is
very costly and the isolation of liver tissue that is of bad
quality usually results in a low yield and low viability of
the hepatocytes.

Besides the limitations that are caused by donor scarcity
and tissue condition, many pitfalls have to be avoided
when trying to establish primary human hepatocyte isola-
tion. Some of these points are mentioned in the isolation
procedure described in “Appendix 1. Therefore, two other
main technical issues that influence the perfusion of liver
tissues are the collagenase digestion and the hepatocyte
function in culture. During perfusion of the liver piece, two
important steps for loosening cell-cell and cell-matrix
adhesion are performed. In the first step, the perfusion of
the liver piece with the EGTA-containing perfusion solu-
tion causes a depletion of Ca*" within the tissue. As a
consequence, the desmosomes, which are responsible for
cell—cell connections, undergo structural changes that
cause a weakening or an irreversible complete loss of cell-
cell linkages, so that the desmosomes are unable to reform
even when the tissue is perfused with a second perfusion
solution containing high concentrations of Ca®", which is
needed for the collagenase activity (Berry et al. 1997).
During step 2 of the perfusion process, cell-matrix contacts
are destroyed by the digestion of ECM proteins with
collagenase.

Collagenase is used to hydrolyze peptide bonds in
intercellular collagen. Collagenase P (Roche, Mannheim,
Germany) from Clostridium histolyticum (EC 3.424.3) was
initially developed to isolate pancreatic islet cells but is
also suitable for human liver tissue, especially when it is
mildly fibrotic. Collagenase P is a mixture of at least 12
different enzymes, of which collagenases form the biggest
group of active enzymes. Six single collagenases, which
can be divided into two classes, have been detected in the
crude mixture of Collagenase P (Johnson et al. 1996). Class
I enzymes are more stable and have a greater activity
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toward insoluble collagen, whereas class II enzymes are
characterized by the ability to attack a significantly higher
number of smaller peptides than their class I counterparts
(Kin et al. 2007). A combination of both classes of col-
lagenases is important, but in particular, the presence of
high amounts of class II collagenases represents an
advantage for the isolation of hepatocytes (Johnson et al.
1996). Other enzymes playing an important role in the
digestion of human liver tissue are clostripain, trypsin and
neutral proteases (Williams et al. 1995). There is evi-
dence that these enzymes act synergistically to degrade
collagen (Kin et al. 2007). It was postulated that a
combination of collagenase and the aforementioned
enzymes digests the ECM in a sequential manner, starting
with the initial degradation of matrix proteins by neutral
proteases. The exposed native collagen is first digested by
class I collagenases, which then enables class II colla-
genases to fragment the denatured protein. The resulting
collagen fragments can then be further degraded by the
neutral proteases (Johnson et al. 1996). Each culture of C.
histolyticum has a unique composition of proteases in the
final lyophilized product. It is therefore not surprising that
the quality of Collagenase P and the proteolytic activity
varies from batch to batch (Williams et al. 1995). Now-
adays, many collagenase preparations are available for the
isolation of liver cells. Before using a batch of collage-
nase routinely, it is necessary to test it for its ability to
digest liver tissue with minimum toxicity. A decrease in
the collagenase activity as well as an increase in the
trypsin activity can be observed different collagenase
batches used (Table S6; see ESM). Kin et al. (Kin et al.
2007) reported a decrease in collagenase activity due to
filtration through membranes with a porosity of 0.22 pm
in all the tested types. In contrast, the protease activity
remained unaffected. It is also worth mentioning that the
collagenase activity decreases throughout storage because
the collagenase classes, I and II, are very susceptible to
proteolysis. Even the smallest amount of hydration, such
as the hydration occurring during the freeze—thaw cycles
between different cell isolations, can cause a deterioration
of enzyme function. Hydration causes the activation of
proteases which are responsible for the degradation of the
high molecular weight collagenases (Johnson et al. 1996).

Low collagenase activity and high protease/trypsin
activity correlate with a decrease in isolation efficiency with
regard to cell yield and cell viability (Berry et al. 1997). In
general, but not invariably, the most rapid digestions and
the best yields of intact cells are achieved with preparations
of highly active collagenase (Berry et al. 1997). Total
proteases as well as trypsin activities should be regarded as
a double-edged sword: both accelerate tissue digestion but

might result in a decrease in cell yield and enhance cell lysis
(Kin et al. 2007). Improved cell yield and cell viability can
be achieved by adding bovine serum albumin (0.5 %) or
fetal calf serum to the second perfusion solution. This
addition leads to a gentler digestion and offers a competing
substrate (other than the liver cell membrane proteins) for
proteases (Alpini et al. 1994). Ensuring that the protease/
trypsin activities are low in proportion to collagenase
activity gives us the possibility to use collagenase batches
with a lower activity and also compensates for collagenase
losses that are due to sterile filtration and/or storage. Even
when a good batch is used, the subsequent deterioration of
enzyme activity because of the storage requires that a sig-
nificant amount of time and resources are used for batch
testing and probably batch adjustment. The variability of
the enzyme composition of collagenase preparations is
considered to be a major obstacle to a successful tissue
digestion. Therefore, several alternative sources are cur-
rently used for cell isolation. The introduction of collage-
nase blends (LiberaseTM, Roche, Mannheim, Germany) was
intended to reduce lot-to-lot and even intra-lot variability.
Meanwhile, various enzymes are available in a purified
form or as a defined mixture, which makes it possible to
create customized collagenase blends, as reported by Bho-
gal et al. (2011). However, at present, the application of
single enzymes or the Liberase™ blends is rather expen-
sive, and therefore, the use of Collagenase P is still pre-
ferred. No matter which collagenase is used, in the end, the
reconstituted enzyme solution should be sterile filtered due
to the fact that the enzymes are delivered in a non-sterile
state. Furthermore, the dissolved enzyme should be warmed
up to 37 °C in a water bath, as collagenase rapidly loses its
activity below 37 °C. Potent inhibitors of Collagenase P are
oleic and palmitic acid, which are among the main com-
ponents in fatty livers (Rennert and Melzig 2002). Steatotic
livers, which can be easily macroscopically recognized
because of their slightly yellow tissue color, often require an
extension of the duration of the second perfusion step.

Last but not least, consideration should be given to the
addition of insulin when studying the fat metabolism of
liver cells. The concentration of human insulin in hepato-
cyte culture medium has to be chosen carefully, since a
high insulin concentration promotes lipid accumulation
(Chan et al. 2002). In particular, in combination with a high
glucose concentration—which is doubled compared to the
physiologic values in Williams medium E—an elevated
insulin concentration favors lipogenesis. For example,
primary human hepatocytes cultured in the presence of
32 mU/ml insulin exhibit a significantly higher incorpora-
tion of fat droplets than cells that have been cultured in the
presence of 50 pU/ml insulin.
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5.5 Co-cultures of hepatocytes and macrophages

Key questions

e  What are the roles of hepatic macrophages?

e What in vitro models are available to
macrophages?

e How do hepatocytes and macrophages regulate liver
regeneration and hepatocyte function?

study

Take home messages

e Macrophages can be readily isolated and placed into
culture, although care must be taken not to activate
them

e In vitro models help in the understanding acute phase
response and septic liver injury

e Co-cultures have helped to understand the cross talk
between hepatocytes and macrophages and their role in
the regulation of liver regeneration and hepatocyte
function

In this section, experimental in vitro and in vivo systems
to analyze the interrelationship of macrophages and hepa-
tocytes are described in detail. In addition, selected results
using the respective experimental approaches are provided
to shed light on the interaction between macrophages and
hepatocytes during acute phase response, regeneration and
regulation of hepatocyte metabolism.

5.5.1 Isolation of macrophages and models

One important tool to analyze the role of macrophages for the
regulation of liver function and regeneration in vivo is the
depletion of macrophages using either gadolinium chloride,
carbonate iron overloading or liposome-encapsulated dichlo-
romethylene diphosphonate (also termed as liposomal clodr-
onate). Previous studies clearly indicated that macrophage
depletion by liposome-encapsulated dichloromethylene
diphosphonate is the most suitable method since it is a non-
toxic approach, and upon intracellular release of the substance,
macrophages are selectively eliminated without activation
(Van Rooijen 1989; Van Rooijen and Sanders 1994). This is in
contrast to macrophage depletion using, for example, gado-
linium chloride, which activates macrophages to secrete bio-
logically active substances and is considered to be retained in
hepatocytes, which causes subsequent toxic effects (Takeishi
et al. 1999; Rai et al. 1997). Another possibility for selective
macrophage depletion is the conditional ablation of macro-
phages expressing the diphtheria toxin receptor under the
control of a macrophage-specific promoter. This approach has
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been successfully used for ablation of CDI1b-expressing
macrophages in transgenic mice that express the diphtheria
toxin receptor under control of the CD11b promoter. In these
mice, application of diphtheria toxin resulted in an efficient
depletion of monocytes from the circulation and of macro-
phages from the ovary and the kidney. However, this approach
did not allow efficient elimination of sessile macrophages from
the liver and the lung, indicating that CD11b is not expressed
by the major part of macrophages resident in the lung or the
liver (Cailhier et al. 2005). Another more recently published
approach to render monocytes/macrophages sensitive to
diphtheria toxin is the Cre-mediated excision of a transcrip-
tional STOP cassette from the simian diphtheria toxin receptor
gene in transgenic mice expressing the Cre recombinase under
control of the lysozyme M promoter. This approach also allows
an efficient toxin-mediated ablation of macrophages from the
liver (Goren et al. 2009) and therefore appears to be more
suitable to assess the role of sessile macrophages in the liver.

Several procedures have been described on how to prepare
macrophages from liver tissue for the analysis of macro-
phage-derived communication signals and the interaction of
macrophages with hepatocytes in vitro. Most of these pro-
tocols are based on macrophage separation by a single density
gradient centrifugation after dissociation of the liver cells by
sequential collagenase/pronase-mediated digestion (Olynyk
and Clarke 1998; Van Bossuyt and Wisser 1988). Liver
macrophages are purified from other NPCs by counter-flow
centrifugal elutriation (Zahlten et al. 1978; Eyhorn et al.
1988), by the use of FACS-based cell sorting (He et al. 2009)
or by cell purification using magnetic bead—conjugated
antibodies directed toward surface antigens specific for tissue
macrophages. In all cases, macrophages are allowed to settle
for approximately 24-48 h in order to allow recovery from
isolation procedure stress-associated responses. Another
recently published method is the propagation of macrophage-
like cells by mixed primary cultures of liver cells using a
parenchymal hepatocyte-enriched fraction after detachment
of the liver cells by sequential digestion (Kitani et al. 2010).

The macrophages isolated from the liver by the different
procedures form the basis for several experimental approaches
that have been used to study the impact of liver macrophages on
hepatocyte function and vice versa. This includes the use of
supernatant transfer experiments employing conditioned
media (Keller et al. 1985a; Mackiewicz et al. 1988), direct co-
culture models of isolated liver macrophages with primary
hepatocytes (Keller et al. 1985a, b; Mackiewicz et al. 1988;
West et al. 1985, 1986) or 3D tissue models where liver mac-
rophages and hepatocytes are separated by a respective matrix
such as a collagen layer (Bader et al. 1996; Yagi et al. 1998).
Additionally, a two-chamber system separated by a membrane
with <0.4-um pore size, which allows the exchange of soluble
mediators—but not cells—migrating from one compartment
into the other, can be used to separately analyze gene
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expression and functional changes in liver macrophages and
hepatocytes during co-culture (unpublished data). Moreover,
variants of the Boyden chamber, either as systems composed of
two chambers separated by a membrane that permits cell
migration or as single-chamber assays such as the checker-
board assay (Laskin et al. 1986), in turn represent experimental
systems that allow the analysis of the impact of hepatocytes or
hepatocyte-conditioned media on chemotactic activity and cell
migration of other non-parenchymal or immune-competent
cells (Schwabe et al. 2003; Seki et al. 2009; Sawitza et al. 2009).
Furthermore, using a micropatterning technique, a co-culture
technique has been recently described that allows controlling
the relative proximity of one cell type to another (Zinchenko
et al. 2006; Zinchenko and Coger 2005). Although all these
different models are per se artificial and therefore debatable
with respect to their physiological relevance, they are useful
tools to get an impression of cellular interactions in the liver.
Nevertheless, a point which has to be considered is an appro-
priate ratio of the different cell types within the liver under
respective conditions to keep as close as possible, e.g. physi-
ological conditions, where the ratio of hepatocytes to liver
macrophages is about 6—1 (Kuiper et al. 1994).

A major drawback of experimental models employing
isolated liver macrophages is the digestion procedure
required to detach macrophages from liver tissue, since this is
associated with an enhanced generation of damage-associ-
ated molecular patterns (DAMP) originating from tissue
disintegration, which may provoke DAMP-induced activa-
tion of respective macrophages (Chen and Nunez 2010).
Moreover, cleavage products or possible contaminations (e.g.
lipopolysaccharide) of the enzyme preparations used may
also affect the activation state and the differentiation of the
isolated liver macrophage population, an aspect which most
likely is not sufficiently redressed during a respective
recovery period. This pre-activation of the generated popu-
lation of so-termed liver macrophages makes it difficult to
ascribe specific features of isolated liver macrophages to a
liver-specific phenotype or to a defined activation state elic-
ited during the preparation procedure. Therefore, it may be
also reasonable to use macrophages prepared by a procedure
that keeps activation artefacts as low as possible (e.g. usage of
bone marrow-derived macrophages), to analyze the recipro-
cal interrelationship between macrophages and hepatocytes.
Another advantage of this approach would be the fact that the
macrophage population employed is well characterized and
highly standardized.

5.5.2 Interaction between hepatocytes and macrophages
during the acute phase response and septic liver

injury

Hepatocytes are the major source of serum constituents
upregulated during an inflammatory response of the organism

toward different challenges such as infection, tissue injury or
inflammation. This response of the organism is also termed as
the acute phase response (Bode and Heinrich 2001; Gabay
and Kushner 1999). Notably, while production of the so-
called positive acute phase reactants is upregulated during a
systemic inflammatory response, the synthesis of other pro-
teins such as albumin or hepatic CYPs, also termed as neg-
ative acute phase proteins, is substantially depressed
(Powanda et al. 1972; Shedlofsky et al. 1994; Monshouwer
and Witkamp 2000; Milosevic et al. 1999). This results in a
net suppression of the overall protein synthesis of hepatocytes
during inflammation, as indicated from in vivo and in vitro
experiments (Mackiewicz et al. 1988; Keller et al. 1985c;
Gabay and Kushner 1999). Depending on the eliciting stim-
ulus, the pattern of acute phase proteins produced from
hepatocytes during the acute phase response varies consid-
erably and, among others, comprises important constituents
of the systemic innate host response toward pathogens,
including secreted pathogen recognition receptors (PRR) or
complement components, as well as protease inhibitors or
proteins involved in the iron metabolism or components of
the coagulation system (Gabay and Kushner 1999; Bode et al.
2011). Although several important factors and pathways that
control the hepatic acute phase response have been charac-
terized, the complex interplay of the different mediators and
the respective cell types that control the inflammatory
response of the hepatocyte during the systemic response
toward an invading pathogen, such as Gram-negative bacte-
ria, is far from being understood. Likewise, the regulatory
relevance of the particular acute phase reactants and their
influence on the inflammatory response is largely unclear.
Depletion experiments suggest that in the context of lipo-
polysaccharide, the major immune-stimulatory bacterial wall
component of Gram-negative bacteria, macrophages are key
regulators of the inflammatory response of the hepatocyte
in vivo since upon macrophage-ablation hepatocytes do not
respond toward a challenge with lipopolysaccharide (Seki
et al. 2007). Consistently, in vivo experiments indicate that
depletion of liver macrophages impairs the lipopoly-
saccharide-induced acute phase response in rats after partial
hepatectomy (Prins et al. 2004) and suggest that the NPC
fraction is the major source of inflammatory cytokines such as
IL-6 driving the acute phase protein production in hepato-
cytes (Billiar et al. 1992).

According to the in vivo observations, it is long known from
co-culture and supernatant transfer experiments that bacterial
products such as lipopolysaccharide mediate their overall
effects on hepatocyte protein synthesis through the induction
of the release of heat labile-soluble mediators and not via
induction of oxidative burst or the release of proteases (West
et al. 1985; Keller et al. 1985a, b, c). Consistently, lipopoly-
saccharide had no effect on the protein synthesis of isolated
hepatocytes cultured in the absence of liver macrophages,
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while the protein pattern synthesized from hepatocytes expe-
rienced dramatic changes if lipopolysaccharide was applied in
the presence of liver macrophages (West et al. 1988). This
effect of macrophages on hepatocyte protein synthesis was
largely neutralized by glucocorticoids (Keller et al. 1986) and
has been suggested to depend on L-arginine (Billiar et al. 1989).
While IL-1 was not able to mimic the modulatory effect of
lipopolysaccharide on the protein synthesis of hepatocytes co-
cultured with liver macrophages (West et al. 1988), IL-2 was
able to prime and activate liver macrophages to negatively
affect hepatocyte protein synthesis in vitro (Curran et al.
1988). Furthermore during co-culture, pre-incubation with
IL-6, but not with TNFa, prior to lipopolysaccharide was able
to enhance the impact of macrophages on hepatocyte mito-
chondrial dysfunction and depression of albumin synthesis
(Bankey et al. 1994). The latter observation suggests that IL-6
but not TNFa-induced hepatocyte products enhance liver
macrophage-signaled hepatocyte dysfunction following a
second, inflammatory insult. Further studies identified TNFa
and IL-1f as important mediators, which are responsible for
the suppressive effects of lipopolysaccharide-activated
macrophages on CYP protein expression in co-cultured
hepatocytes (Milosevic et al. 1999; Wu et al. 2006). Thereby,
conditions that permit direct cell—cell contact of hepatocytes
and macrophages augmented the depression of hepatocyte
biotransformation capacity and resulted in a substantial
enhancement of NO production, as well as TNFo and IL-6
release (Hoebe et al. 2001). This enhancing effect of hepa-
tocytes on lipopolysaccharide-induced cytokine production
by liver macrophages requires the functional lipopolysac-
charide receptors TLR4 and CD14 expressed by macro-
phages and involves lipopolysaccharide-binding protein
(LBP) as a critical hepatocyte-derived factor (Scott et al.
2005). Apart from cytokine production, co-culture with
hepatocytes also modulates lipopolysaccharide-induced
prostaglandin production from liver macrophages (Billiar
etal. 1990b; Lysz et al. 1990) and TNF dependently results in
an enhanced NO production in response to lipopolysaccha-
ride (Billiar et al. 1990a) which in turn mediates mitochon-
drial dysfunction, oxidative DNA alterations and lethal
hepatocyte injury (Kurose et al. 1996; Watanabe et al. 2001).
Notably, the toxic effect of TNFo derived from liver mac-
rophages on co-cultured hepatocytes further involves acti-
vation of Caspase 3 (Hamada et al. 1999). This hepatotoxicity
of lipopolysaccharide -activated liver macrophages is syn-
ergistically enhanced by granulocytes in a way that requires
direct cell-cell contact, cell adhesion and serine protease
activity (Sauer et al. 1996). It should be emphasized that the
lipopolysaccharide-induced depression of protein synthesis,
CYP expression and the enhanced production of inflamma-
tory cytokines such as TNFa requires an experimental setting
that permits tight and direct cell/cell interaction of macro-
phages, granulocytes and hepatocytes (Wu et al. 2006; Hoebe
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et al. 2001; Sauer et al. 1996). Conversely, co-culture of
macrophages and hepatocytes results in a suppression of
lipopolysaccharide-induced TNFa production and in an
enhanced production of IFNP and the anti-inflammatory
cytokine IL-10 if an experimental setting is chosen that
enables an intercellular exchange of mediators but does not
allow a tight cell/cell contact of macrophages and hepato-
cytes (Keitel et al. 2008a). These data suggest an inter-cel-
lular feedback loop (Fig. 11) that enables hepatocytes to
influence macrophage activation by soluble mediators or a
mediator pattern, which still have to be identified. In this
context, it is interesting to note that for example bile acids
represent such a hepatocyte-derived anti-inflammatory signal
suppressing lipopolysaccharide-induced inflammatory cyto-
kine release in macrophages (Keitel et al. 2008a).

Apart from their impact on hepatocyte protein synthesis,
acute phase protein production and cellular viability,
results from co-culture models further suggest that lipo-
polysaccharide-activated liver macrophages IL-6 depen-
dently suppress the biosynthesis of insulin-like growth
factor (IGF)1 (Priego et al. 2006; Lelbach et al. 2001) and
impede the intercellular communication of hepatocytes
during inflammation (Gonzalez et al. 2002). Moreover,
macrophage-derived prostaglandins have been demon-
strated to increase hepatic glycogenolysis by various
stimuli including endotoxin, immune complexes and ana-
phylotoxin C3a involving prostaglandin receptors coupled
to phospholipase C (Casteleijn et al. 1988).

5.5.3 Intercellular feedback loops of hepatocytes
and macrophages in the regulation of liver
regeneration and hepatocyte function

As outlined above, sufficient evidence from in vivo and
in vitro experiments indicates that activated macrophages and
macrophage-derived products are major mediators of
inflammatory hepatocyte injury, as well as altered hepatocyte
protein synthesis and depression of hepatocyte biotransfor-
mation capacity during inflammatory conditions. However,
there is also evidence indicating that under healthy condi-
tions, a controlled interaction between liver macrophages and
hepatocytes is also required for sufficient hepatocyte func-
tion. Thereby the data available suggest that the distance
between macrophages and hepatocytes and the possibility of
direct cell-cell contacts plays an important role for the impact
of activated macrophages on hepatocytes. Thus, the studies
discussed above suggest that lipopolysaccharide-activated
macrophages are particularly harmful to hepatocytes under
conditions, which enable a direct cell—cell contact (Wu et al.
2006; Hoebe et al. 2001; Sauer et al. 1996), whereas condi-
tions that do not favor a direct cell-cell contact but permit an
intercellular communication via soluble mediators rather
mediate “deescalating” and hepatoprotective effects
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Fig. 11 The influence of macrophage activation on hepatocyte
function during lipopolysaccharide (LPS)-induced inflammation
depends on the ability of direct cell-cell interaction. Co-culture
experiments suggest that the distance between macrophages and
hepatocytes and the possibility of direct cell-cell contacts plays an
important role for the impact of activated macrophages on hepato-
cytes during lipopolysaccharide-induced inflammation. Moreover, the
data suggest that hepatocyte-derived factors such as the acute phase
protein, lipopolysaccharide-binding protein (LBP), is a strong feed-
back modulator of the inter-cellular communication, since it is

(Petrasek et al. 2011). Micropatterned co-cultures that allow
the control of the relative proximity of one cell type to another
have consistently demonstrated that under defined condi-
tions, liver macrophages significantly improve hepatocyte
function (Zinchenko et al. 2006). Hence, it is well conceiv-
able that under physiological conditions, where the sinusoidal
endothelial cell layer and the space of Dissé separate liver
macrophages and hepatocytes from each other, liver macro-
phages release signals and maintain auto-regulatory feedback
loops that play an important role for optimal hepatocyte
functionality. The nature of these signals and feedback loops
is largely unknown and remains to be elucidated. In this
context, it is interesting to note that several in vivo studies
suggest that liver macrophages not only play a role for
maintenance of hepatocyte functionality but are also impor-
tant for undisturbed liver regeneration (Selzner et al. 2003;
Bode 2011; Abshagen et al. 2007, 2008; Meijer et al. 2000)
and for recovery from inflammatory liver injury and scarring
(Duffield et al. 2005; Fallowfield et al. 2007).

The regenerative process of the liver is controlled by a
variety of different growth hormones and cytokines, which,

| Switch of cytokine pattern:
IFNB & IL-10 A / TNFa W

response:
Cytochrome P450 7
Albumin synthesis W
Acute Phase Proteins 4
- ~

produced by hepatocytes in response to cytokines derived from
activated macrophages and further enhances macrophage activation.
B contrast, co-culture conditions that allow exchange of soluble
mediators but no direct cell-cell contact (as is the case under normal
conditions with macrophages and hepatocytes which are separated by
sinusoidal endothelial cells and the space of Dissé) result in a
suppression of the inflammatory macrophage response toward lipo-
polysaccharide with reduced release of TNFa and upregulation of the
production of IFNf and the anti-inflammatory cytokine IL-10

apart from growth hormones, hepatocyte growth factor
(HGF) and EGEF, also includes insulin-like growth factor
(IGF) and respective IGF-binding proteins (IGFBPs). Both
IGF-1 and the different IGFBPs are rapidly upregulated
during liver regeneration (Mohn et al. 1991) and are con-
sidered to play a role for liver regeneration (Desbois-
Mouthon et al. 2006; Leu et al. 2003). The production of
IGF-1 and of IGFBP-1 to IGFBP-4 mainly occurs in the
liver and involves hepatic NPCs, as well as hepatocytes and
is controlled by a yet incompletely understood inter-cel-
lular feedback loop (Fig. S1; see ESM). Thereby, particu-
larly liver macrophages are considered to be the major
source of IGFBP-3 (Villafuerte et al. 1994), the major
binding protein for circulating IGF forming a ternary
binding complex comprising IGF, IGFBP and the acid-
labile subunit (ALS). While IGFBP-3 is mainly synthe-
sized by liver macrophages, IGFBP-1, IGFBP-2 and IG-
FBP-4, as well as the acid-labile subunit, are mainly
produced by hepatocytes (Scharf et al. 1996). Interestingly,
the stability of liver macrophages to express IGFBP-3 is
enhanced upon co-culture with hepatocytes, and the
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expression of IGFBP-3 could be stimulated by insulin and
IGF-1, but not by growth hormones. However, the stimu-
lating effects of insulin and IGF-1 on IGFBP-3 expression
in liver macrophages essentially require the presence of
hepatocytes indicating that upon stimulation with insulin or
IGF-1, hepatocytes release a soluble mediator that controls
IGFBP-3 expression in liver macrophages (Villafuerte
et al. 1994; Scharf et al. 1996). The expression or the action
of this soluble mediator as well as the expression of ALS
appears to be negatively controlled by cAMP, since treat-
ment of co-cultures of hepatocytes and liver macrophages
with cAMP analogues impedes the formation of the
150-kDa complex through downregulation of IGFBP-3 and
ALS. Conversely, the biosynthesis of IGF-1, IGFBP-1, and
IGFBP-4 in hepatocytes is upregulated upon stimulation of
hepatocytes co-cultured with liver macrophages with
cAMP analogues, which enables an enhanced formation of
binary IGF/IGFBP complexes (Scharf et al. 2001). Another
factor which appears to be involved in the differential
control of the expression of IGF-1 and IGFBP-1,IGFBP-3
and IGFBP-4 in co-cultures of hepatocytes and macro-
phages is IL-6, since it enhances expression of IGFBP-1
and IGFBP—4 in hepatocytes as well as of IGFBP-3 in liver
macrophages while it suppresses the expression of IGF-1
(Lelbach et al. 2001).

Apart from their relevance for regulation of IGF and
IGFBP production, co-culture experiments further revealed
that the intercellular cross talk between hepatocytes and
macrophages also plays a role for other processes. Co-
culture experiments were used to demonstrate that treat-
ment with glucagon causes an auto-regulatory feedback
loop that involves the production of prostaglandins by liver
macrophages, followed by prostaglandin-mediated inhibi-
tion of the glucagon-stimulated glycogenolysis in hepato-
cytes (Hespeling et al. 1995). Moreover, the production of
cysteinyl leukotriens essentially requires cooperation
between liver macrophages and hepatocytes since upon
stimulation liver macrophages are not able to produce these
factors unless they are co-cultured with hepatocytes or
supplemented with LTC4 synthase (Fukai et al. 1996).

5.6 3D liver models

Key questions

e How can hepatocytes be cultured to better mimic the
in vivo structure and functions of the liver?

e How does a 3D environment improve liver-specific
structure and function?

e What scaffold types are available and how do they
improve hepatocyte functionality?
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Take home messages

e There is a need for technologies that enable routine 3D
hepatocyte culture for more predictive in vitro hepatic
phenotypes.

e Artificial ECM has been designed as a scaffold for
hepatocytes because the interactions of hepatocytes
with the optimum artificial ECM and cell—cell contacts
are essential in a 3D liver model to maintain hepatocyte
polarization and functionality.

e Substrates based on natural biological materials can
offer an artificial ECM that can mimic aspects of the
native environment and show encouraging results for
maintaining hepatocyte phenotype in vitro. However,
these materials are not entirely suitable for routine use
and may be more applicable to regenerative medicine
and tissue engineering.

e Developments in the production of synthetic scaffolds
now offer a range of materials that can culture
hepatocytes in 3D.

e Culturing hepatic cell lines in 3D was shown to change
the gene expression, phenotype and cell surface recep-
tor expression toward more liver-like properties. This
renders them suitable for screening hepatotoxic com-
pounds and even testing metabolic functions.

e Self-assembled and scaffold-free hepatospheres resem-
ble polarized cell structures and direct cell—cell
contacts, which lead to an improved liver-specific
functionality. Therefore, hepatospheres are ideally
suited as model to assess drugs metabolism and
toxicology.

e These technological advances will enhance our under-
standing of liver biology in health and disease through
the development of improved in vitro models. Conse-
quently, such progress should impact on the way
pharmaceutical companies extract early-stage predic-
tive data during drug discovery.

Cells in vivo are 3D in both their morphology and
organization. Dedifferentiation of hepatocytes in a 2D cell
culture (monolayer culture) is well established and goes
along with a reduction in major liver functions, including
detoxification due to downregulation of phase I and II
enzymes or production of plasma proteins such as albumin
(Bissell et al. 1987; Clayton and Darnell 1983; Godoy et al.
2009; Clayton et al. 1985; Koide et al. 1989; Tong et al.
1992). This is particularly relevant to hepatocytes, which
are polygonal in shape and are multi-polarized to present at
least two basolateral and two apical surfaces (Braiterman
and Hubbard 2009). Maintaining liver parenchymal func-
tion ex vivo is especially important as there is need for
fully functional hepatocytes (Bissell et al. 1987) to gener-
ate stable systems for toxicology screenings (Clayton and
Darnell 1983), to expand primary hepatocytes for
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transplantation into patients, (Tateno and Yoshizato 1996)
or to establish bioartificial liver devices. First steps toward
stabilization and maintenance of hepatocyte function
included supplementation of culture media with cytokines
and other chemicals. Improvement of hepatocyte stability
was achieved using, e.g. DMSO or nicotinamide (Tateno
and Yoshizato 1996; Inoue et al. 1989; Isom et al. 1985;
Baribault and Marceau 1986). Combinations of growth
factors and chemicals were also tested to optimizing cul-
ture conditions further (Kost and Michalopoulos 1991).
Another focus of research to maintain parenchymal func-
tion was put on the ECM. Matrix proteins not only allow
anchorage of hepatocytes but also induce intracellular
signaling pathways, thereby enabling sensing of the
extracellular milieu with subsequent cellular adaptation to
the environment. The complex 3D interaction involving
NPCs and the ECM is believed to be crucial in regulating
and maintaining hepatic function in vivo (Koide et al.
1989; Landry et al. 1985; Wu et al. 1999). For example,
hepatocytes express a distinct set of transporter proteins on
their sinusoidal, basolateral and apical (canalicular) mem-
brane which is lost in cultures which do not maintain cell
polarization (Berthiaume et al. 1996). Traditionally,
in vitro hepatocyte models have been far removed from the
complex 3D in vivo environment. Most hepatocyte models
in the past have been based on 2D monolayer cultures
using surfaces pre-treated with ECM proteins such as
collagen, biomatrices, proteoglycan derivates, soft collagen
and Matrigel (Rojkind et al. 1980; Spray et al. 1987;
Michalopoulos et al. 1976; Mitaka 1998). While these
models have proved invaluable in advancing basic liver
biology in both a practical and cost-effective way, they are
unable to fully replicate and maintain convincing hepato-
cyte function in vitro (Berthiaume et al. 1996). The 2D
substrate forces adherent cells like hepatocytes to alter their
cytoskeleton toward a flattened morphology. This change
in cell shape and form limits cell-cell and cell-matrix
interactions that consequently leads to reduced polariza-
tion, reduced bile canaliculi formation and a loss of
important signaling pathways necessary for normal hepa-
tocyte function. Unsurprisingly, hepatocytes from primary
sources cultured in vitro remain viable for only a few days
and rapidly deviate from their differentiated phenotype
(Gomez-Lechén et al. 1998). As the need for more pre-
dictive hepatocyte models is increasing, especially in rou-
tine drug toxicity screening, there now exists strong
demand for technologies that enable 3D hepatocyte culture.
Models which are amenable to routine use and high-
throughput adaptation are particularly desirable in the
context of industrial drug discovery. While cells in the
body are embedded and oriented in a complex 3D network,
continuously supplied with oxygen and nutrients, in vitro
cell models require certain compromises. Careful

evaluation of the model is required to explore its biological
and technical possibilities and limitations. A number of
techniques are currently employed to maintain a 3D con-
figuration of cells in vitro (Pampaloni et al. 2009; Nahmias
et al. 2007; Ijima 2010) which are also applied for hepa-
tocyte cultures. So far, the most common technology in use
is the 2D sandwich culture whereby hepatocytes are placed
between layers composed of ECM components (Dunn et al.
1991). Although not a definitive 3D organization, sandwich
systems have been shown to promote polygonal hepatocyte
morphology for extended culture periods and to maintain
their functionality better than in monolayer cultures (Dunn
et al. 1989, 1991). In this type of model, cell-matrix
adhesion from above and below reduces cytoskeletal flat-
tening and maintains cell-cell contact between adjacent
hepatocytes. Results have shown that sandwich cultures
with matrix proteins can lead to prolonged hepatocyte
viability (Dunn et al. 1991), extended CYP activity (Kern
et al. 1997) and increased cell polarization toward more
advanced bile canaliculi networks (LeCluyse et al. 1994).
Three techniques for placing cells into 3D culture are
described below, namely hydrogels, synthetic scaffolds and
hepatospheres.

5.7 Hydrogel 3D scaffolds

Spheroids can be produced by embedding hepatocytes in
non-adhesive hydrogels (Ringel et al. 2005; Koebe et al.
1994). One of the first commercially available hydrogels
onto the market was MatrigelTM (BD Biosciences), which
is based on an ECM extracted from a mouse sarcoma
(Kleinman et al. 1986). Although designed as a generic
hydrogel, Matrigel™ has been shown to prolong aspects of
hepatocyte function beyond those observed in collagen
sandwich cultures (Moghe et al. 1997). Extracel™ (gly-
cosan biosystems) is another commercial hydrogel based
on collagen (Ranucci et al. 2000) which has been shown to
prolong in vitro hepatocyte CYP activity for up to 17 days
(Prestwich et al. 2007). However, hydrogels present issues
associated with poor mass transfer of nutrients and xeno-
biotics, as well as making cell retrieval more difficult.
Algimatrix™ (Invitrogen) is a porous 3D scaffold based on
an alginate sponge (Rowley et al. 1999) which, although it
is not representative of the mammalian ECM environment,
is able to be marketed as an animal-free scaffold for
in vitro 3D cell culture and this can be considered advan-
tageous for reasons discussed later. Within Algimatrix™,
cells typically display limited interaction with the scaffold
and so aggregate into individual spherical masses that
occupy the volume of the scaffold voids. Results have
demonstrated that primary rat hepatocytes maintain a
higher level of albumin synthesis throughout their culture
period when grown on Aligmatrix™ compared to

@ Springer



1372

Arch Toxicol (2013) 87:1315-1530

collagen-coated 2D substrates (Glicklis et al. 2000).
However, growing hepatocytes as individual spheroids is
non-representative of their hepatic organization and pre-
sents technical difficulties related to controlled growth, for
example during the setup of co-cultures with non-paren-
chymal liver cells. Furthermore, the issue of limited mass
transfer, as seen with hydrogels, applies to spheroid-based
systems also and can easily lead to oxygen starvation in
central regions and areas of cell necrosis. Gels of self-
assembling peptide nanofibers are gaining much attention
as they are thought to mimic the architecture of fibrils in
the ECM (Zhang et al. 2005). Targeted peptides resembling
a specific ECM can be engineered to form inter-weaving
fibers to which cells can attach and interact in a similar
manner to in vivo. PuraMatrix™ (BD Biosciences) is a
commercially available peptide hydrogel that has been
shown to induce the differentiation of putative rat liver
progenitor cells into mature hepatocyte-like cells exhibit-
ing upregulated albumin and CYP activity (Semino et al.
2003). However, the relatively poor mechanical strength of
these scaffolds makes tissue processing problematic. Fur-
thermore, engineering-specific peptide nanofibers on a
large scale is expensive compared to simpler scaffold
systems. Two novel approaches to 3D culture, namely
hepatospheres and scaffolds, are described in detail below.

Recently, HGF/heparin-immobilized collagen scaffolds
were evaluated as an artificial ECM for hepatocyte culture
(Hou et al. 2010). Since HGF has a high affinity for hep-
arin, and binds to hepatocytes and extracellular space of the
liver through heparin-like molecules (Kato et al. 1994), the
3D HGF/heparin-immobilized collagen scaffolds exhibited
albumin synthesis up to 30 pg/well/day. The albumin
synthesis by hepatocytes was twofold higher in 3D gel
cultures compared with 2D gel cultures. It was demon-
strated that spheroid formation was easily detected in HGF/
heparin-immobilized collagen films, providing evidence
that cultured hepatocytes can maintain their liver-specific
functions Moreover, they also developed vascular endo-

collagen gel-filled polyurethane foam (PUF) scaffolds to
enhance viability of transplanted hepatocytes and to induce
angiogenesis of transplanted cells (Hou et al. 2011). The
results indicated that transplantation of fetal hepatocyte-
embedded VEGF/heparin-immobilized collagen-gel-filled
PUF scaffold exhibited a VEGF-induced pre-vascularized
cavity in the subcutaneous space of rats after 70 % partial
hepatectomy. The system appears to be a promising strat-
egy for future liver tissue engineering.

Formation of multicellular hepatocyte spheroids in the
3D culture is a promising approach for enhancing liver-
specific functions in bioartificial liver devices. Therefore, a
highly porous hydrogel, alginate/galactosylated chitosan/
heparin scaffolds as a synthetic ECM, was fabricated using
the freeze-drying technique through electrostatic interac-
tion (Seo et al. 2006a). The level of albumin secretion in
the alginate/galactosylated chitosan/heparin scaffolds was
markedly enhanced compared to that in alginate/galac-
tosylated chitosan scaffolds (shown in Fig. 12). It is likely
that the alginate/galactosylated chitosan/heparin scaffolds
provide more multicellular spheroid formation mediated by
cell-to-cell adhesion. However, the detailed mechanism of
enhanced functions by hepatocyte spheroids within the
alginate/galactosylated chitosan/heparin scaffolds is not
fully understood.

Although gelatin is frequently used as biopolymer for
creating cellular scaffolds, chemical cross-linking is nec-
essary to create stable gelatin scaffolds at physiological
temperature. Therefore, a cross-linking was carried out by
radical polymerization of methacrylated gelatin, and the
gelatin scaffolds was fabricated in the presence of hyalu-
ronic acid or chondroitin sulfate by emulsion templating
(Barbetta et al. 2008). The results indicated that the gelatin
scaffolds containing glycosaminoglycans secreted more
albumin and higher resistance to enzymatic degradation
than gelatin ones. These data reflect the longer permanency
and the higher biocompatibility of the scaffold in vivo.
Many naturally and synthetically derived hybrid hydrogels

thelial growth factor (VEGF)/heparin-immobilized  are used as ECMs for tissue engineering (Kim et al. 2011).
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Fig. 13 Scanning electron micrographs of a cross section of alginate/GC scaffolds as a function of the freezing temperature: (a) —20 °C, (b) —

70 °C and (c) liquid nitrogen

One of them, a heparin-based hydrogel as 3D scaffold for
hepatocyte culture was prepared by a Michael addition
reaction between thiolated heparin and diacrylated poly
(ethylene glycol) (Kim et al. 2010a). The heparin-based
hybrid hydrogels were non-cytotoxic to cells and, in fact,
promoted high levels of albumin and urea synthesis during
three weeks in culture. As heparin binds to growth factors,
the incorporated HGF release from heparin hydrogel
matrix occurred in a controlled manner. In addition, the
hepatocytes cultured within HGF-containing hydrogels
showed higher levels of albumin and urea synthesis than
those cultured in hydrogels alone.

5.7.1 3D scaffold cultures

Recently, hepatic tissue engineering using primary hepa-
tocytes has emerged as a promising technique to treat the
loss or malfunction of liver (Hammond et al. 2006; Ohashi
et al. 2007). The technique involves in vitro seeding of
hepatocytes into the 3D scaffolds where the cells prolif-
erate, migrate and differentiate into the hepatic tissue
(Sachlos and Czernuszka 2003). Usually, tissue engineer-
ing uses artificial ECM because it regulates many cellular
behaviors, including proliferation, survival, migration and
differentiation (Daley et al. 2008). Therefore, the design of
artificial ECM is very important in hepatocytes culture as it
brings the desired cell type in contact with an appropriate
environment and provides mechanical support as the
scaffold (Putnam and Mooney 1996). There are two kinds
of methods for producing 3D scaffolds. One is conven-
tional scaffold method that includes fiber bonding (Gillette
et al. 2011), phase separation (Ma and Zhang 1999), par-
ticulate leaching (Holy et al. 2000), melt molding (Oh et al.
2010), gas foaming (Son et al. 2011) and freeze drying
(Yang et al. 2012). Among the conventional manufacture
techniques, freeze-drying method of naturally derived
polymers have been applied for liver tissue engineering
because porosities and average pore sizes of the 3D scaf-
folds were controlled by the cooling rate of the hydrated
alginate/galactosylated chitosan (alginate/galactosylated

chitosan) scaffolds as shown in Fig. 13 (Chung et al. 2002).
However, the conventional techniques have several limi-
tations, such as being manual-based processes, inconsistent
procedures with shape limitations and the use of toxic
organic solvents and porogens. Other methods include
computational scaffold design (Hollister 2005) and solid-
free form (Kang and Cho 2012), which both overcome the
limitations of conventional manual-based manufacture
methods.

5.7.1.1 Scaffolds derived from natural materials Decell-
ularized liver-derived ECM has been used for 3D culture of
hepatocytes because it is bioresorbable, can be easily
handled, supports long-term liver function and provides 3D
organ architecture and ECM components (Bao et al. 2011).
The 3D scaffold prepared from a decellularized rat liver
lobe with layer-by-layer heparin deposition was developed
to transplant into the portal system after populating hepa-
tocytes in the scaffold as a tissue-engineered liver (Bao
et al. 2011). It was found that treatment of extended hep-
atectomized rats with a tissue-engineered liver improved
liver function and prolonged survival. In addition, hyalu-
ronic acid or heparin-conjugated hyaluronic acid hydrogel
containing acellular porcine liver ECM was prepared to
enhance survival and functions of hepatocytes (Skardal
et al. 2012). The hepatocytes cultured in hyaluronic acid or
heparin-conjugated hyaluronic acid hydrogels containing
acellular liver ECM secreted steady levels of albumin and
urea, and sustained drug metabolism due to liver-specific
ECM components in the acellular liver ECM and slow
release of growth factors from heparin-conjugated hyalu-
ronic acid.

5.7.1.2 Scaffolds derived synthetically and their fabrica-
tion methods A range of different substrates have been
considered for 3D hepatocyte culture. These can generally
be divided into substrates made from either natural or
synthetic materials. Each of these has advantages and
disadvantages (Table 3). While the use of naturally derived
substrates offers advantages in terms of biocompatibility
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Table 3 Summary of the

advantages and disadvantages Technology

Advantages

Disadvantages

for alternative types of
technology developed to
support 3D cell culture

ECM sandwiching

ECM hydrogels

Alginate sponges

Spheroid cultures

Self-assembly peptide fibers

Electrospun fibers

Solvent casting/particle

leaching scaffolds

Gas-foaming scaffolds

3D printed scaffolds

Mimics aspects of native
ECM

Simple to use
Mimics aspects of native
ECM

Good cell—cell interaction

Good cell—cell interaction

Uses animal-free
biomolecules

Auvailable in tissue culture
plates

Good cell—cell interaction

Relatively easy to create

Mimics specific
ECM peptide fibers
Reproducible

Versatile range of scaffolds
available

Inexpensive

High porosity

Range of scaffolds
available

Inexpensive

High porosity

Range of scaffolds
available

Inexpensive

High porosity

Good porosity control
Good scaffold consistency

Limited 3D organization
Degradable

Variable consistency
Mass transfer barriers
Cell retrieval issues
Degradable

Variable consistency
Isolated spheroid cultures
Co-cultures difficult
Mass transfer barriers
Degradable

Cannot create complex structures

Suffer from necrotic centers

Organized co-cultures difficult Limited by

spheroid size
Poor mechanical properties
Relatively expensive to produce
Degradable
Poor mechanical properties
Poor scaffold consistency

Poor porosity control
Poor scaffold consistency
Residual contaminants

Poor porosity control
Poor scaffold consistency

Expensive machinery
Limitations in scaffold architecture
Low porosity

and opportunities to mimic cell-matrix interactions, there
are several practical disadvantages in the context of routine
3D hepatocyte culture. Importantly, materials derived from
living tissues are often inherently variable with undefined
constituents, creating potential for significant batch-to-
batch variability with consequences for reproducibility in
experimental data. Such materials are also biodegradable,
which, although advantageous in certain tissue engineering
applications, makes routine in vitro use difficult. Natural
substrates usually require careful, often laborious prepa-
ration before use, posing barriers for high-throughput
applications and introducing further potential for variabil-
ity. Therefore, synthetic scaffolds represent potentially
attractive alternatives to naturally derived substrates as
they overcome many of the practical pitfalls associated
with naturally derived substrates, including uncontrollable
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reproducibility, instability, poor mass transfer and diffi-
culty-of-use. Furthermore, the wide range of synthetic
polymers and fabrication methods now available opens up
many opportunities for cell-specific tailored scaffolds. For
example, the specific affinity of hepatocytes toward the
galactose residue has led to a range of synthetic scaffolds
presenting galactose on the surface for improved hepato-
cyte adhesion and function (Cho et al. 2006).

Some of the early and most successful synthetic scaf-
folds to be produced were based on poly (lactic acid)
(PLA), poly (glycolic acid) (PGA) and poly (lactic-co-
glycolic acid) (PLGA) (Mikos et al. 1993). These scaffolds
have been used to support 3D hepatocyte growth for up to
2 weeks in the context of tissue engineering (Hasirci et al.
2001). From the development of these materials came a
plethora of different fabrication techniques to create



Arch Toxicol (2013) 87:1315-1530

1375

synthetic scaffolds of different morphology, reproduc-
ibility, mechanical strength and porosity (Dalton et al.
2009). Electrospinning is a technique that whips poly-
meric solutions into micro- or nano-scale fibers that are
inter-weaved. The technique is relatively cheap and
hugely versatile enabling a range of different fibrous
architectures to be produced with different fiber diame-
ters and porosities. Hepatocytes cultured on synthetic
electrospun fibers have been shown to become engulfed
by the fibrous structure and form integrated 3D hepato-
cyte spheroids with increased cell-cell contacts (Chua
et al. 2005). However, many electrospun materials exhibit
weak mechanical strength and poor control over batch-to-
batch structure, making commercialization and repro-
ducibility difficult.

Solvent casting/particle leaching is another common
approach to fabricating synthetic scaffolds for 3D cell
culture. Here a polymer—solvent solution is cast over a
mold containing porogen particles such as crystalline salts.
After solvent evaporation, the polymer—salt composite is
washed to dissolve the salt, leaving a porous structure
behind. Hepatocytes have been cultured on materials pre-
pared from this technique and then successfully trans-
planted into laboratory rats (Mooney et al. 1995),
suggesting this fabrication method as a suitable approach
for hepatocyte culture. However, particle leaching often
gives rise to variable porosity products, and can leave
residual particles in the scaffold. It is also difficult to
control void size distribution. Gas-in-liquid foam templat-
ing has also been used for synthetic scaffold fabrication for
3D cell culture (Salerno et al. 2009); however, issues with
bubble coalescence and hence variable porosities have
meant this method is less popular compared to other
approaches. Rapid prototyping with techniques such as 3D
printing is also an emerging field for scaffold fabrication,
although expensive machinery is needed for this approach
(Fedorovich et al. 2012).

With the broad range of natural and synthetic materials
available, the challenge for biotechnology companies
wishing to develop technologies for routine 3D hepatocyte
culture is therefore choosing the appropriate material, fab-
rication method and final format. Technologies based on
natural materials are not ideally suited for routine use due to
problems with consistency and stability. On the other hand,
until recently, technological advances based on synthetic
materials have faced difficulties in producing inert, highly
porous and reproducible structures that can be presented in
an easy-to-use manner. Recently, a porous synthetic scaf-
fold has been commercialized for routine cell culture of a
variety of cell types, including hepatocytes (Knight et al.
2011). Alvetex® (Reinnervate) has been developed from
cross-linked polystyrene, ensuring good stability, compati-
bility with chemicals used in tissue processing and a com-
parable chemical surface to traditional 2D plasticware. The
fabrication method also ensures a highly uniform and con-
sistent structure from batch-to-batch. Results have shown
that good control over synthesis parameters leads to a
controlled scaffold morphology of voids and interconnect-
ing windows (Carnachan et al. 2006) (Fig. 14a). Alvetex®
has been engineered into a 200-pm-thick membrane
(Fig. 14b) that offers several biological and practical
advantages. Biologically, the relatively thin cross section
combined with high porosity enables efficient mass transfer
between cultured cells and the surrounding medium. Prac-
tically, the membrane can fit conveniently into traditional
tissue culture plasticware and can therefore be supplied
ready-to-use (Bokhari et al. 2007a). The technology is
adaptable to high-throughput applications and formats such
as 96- and 384-well plates. The membrane is also strong
enough to support the weight of high cell densities and is
resistant to common tissue processing methods.

There is strong evidence that Alvetex® supports 3D
hepatocyte culture (Bokhari et al. 2007b; Schutte et al.
2011a; Burkard et al. 2012). For example, primary rat

Fig. 14 Scanning electron micrographs showing the structure of
alvetex polystyrene scaffold. a Alvetex is a highly porous (>90 %)
material comprised of interconnecting voids. Essentially, alvetex
creates “space” and introduces the third dimension to polystyrene.
Inside the scaffold, cells occupy and grow in 3D in the space created,

maintaining a more natural shape and form. b Alvetex is engineered
as a 200-um-thick membrane, ensuring that any cell is no further than
100 pm away from the source of culture medium. This distance
compares favorably with the majority of tissue types and avoids the
formation of cellular necrosis in central regions of the scaffold
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Fig. 15 Example of hepatocytes cultured for 7 days in an Alvetex
scaffold. Cells maintain a natural 3D morphology and form close
associations with adjacent cells thus creating a tissue-like structure.
This sample has been fixed, embedded, transverse sectioned and
stained with hematoxylin and eosin. Scale bar 30 pm

hepatocytes grown on Alvetex® displayed a more natural
polygonal morphology compared to the flattened 2D mor-
phology associated with collagen-coated plasticware
(Fig. 15) (Schutte et al. 2011a). In addition, cell viability
was also found to be higher after 24-h culture, with rat
primary hepatocytes on Alvetex® being >74 % viable,
compared to only 57 % viability for hepatocytes on con-
ventional 2D plasticware (Schutte et al. 2011a). Enhanced
functional responses of hepatocytes grown on Alvetex®
have also been demonstrated. The induced activity of phase
I metabolizing enzymes CYP1A2, CYP2B1 and CYP3A2
was assessed with primary rat hepatocytes and showed
much greater levels of CYP induction in cells cultured in
Alvetex® compared to 2D controls (Schutte et al. 2011a).
Similarly, levels of CYP2B6 and CYP3A4 enzyme
expression were shown to be elevated in human hepato-
cytes grown in Alvetex® compared to their counterparts in
2D conventional plasticware (Burkard et al. 2012).

5.7.2 Scaffold parameters and hepatocellular behavior

Hepatocytes are attachment-dependent cells and lose their
liver-specific functions without optimal ECMs (Kim et al.
2011). It has been demonstrated that the morphology,
attachment, growth, differentiation, and survival of hepa-
tocytes are affected by several factors such as galactose
density (Yin et al. 2003) and microdistribution of galactose
(Cho et al. 1996) in the scaffold, type of galactose (Kim
et al. 2003b), co-culture (Bhatia et al. 1999), cell source
(Chan et al. 2004) and topology of the ECM (Berthiaume
et al. 1996). Moreover, the 3D artificial ECMs induce
differentiated hepatocyte function more effectively than 2D
ECMs due to the provision of better model systems for
physiologic situation and in vivo-like configuration
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(Berthiaume et al. 1996). Here, the effects of porosity,
galactose ligand and glycosaminoglycan in 3D scaffolds on
hepatocellular behavior are reviewed.

A successful 3D scaffold should balance mechanical
property with growth factor delivery to provide a sequen-
tial transition in which the regenerated tissue undertakes
function as the scaffold degrades. This balance shows a
trade-off relationship between a denser scaffold supporting
better mechanical function and a more porous scaffold
providing better growth factor delivery (Hollister 2005).
Besides, interconnected porous networks are very impor-
tant in ensuring spatially uniform cell distribution, cell
migration, proliferation and cell survival that affect the
diffusion of physiological nutrients and gases and the
removal of metabolic wastes (Huang et al. 2007a). Control
of pore size of 3D scaffolds is critical for liver tissue
engineering as the pore size affects hepatocellular behav-
ior, yet the optimum pore size for hepatocyte function has
not been reported due to complex parameters. Despite its
complexity, it has been demonstrated that poly (lactic acid-
co-glycolic acid) (PLGA) scaffolds with about 6 pm pro-
moted 3D aggregation of hepatocytes, whereas scaffolds
with about 3 pm induced 2D hepatocyte reorganization,
and scaffolds with about 17 pum promoted both 2D and 3D
hepatocyte reorganization (Ranucci and Moghe 1999).
Similarly, collagen scaffolds with pore sizes of approxi-
mately 82 pum exhibited a high degree of spread hepato-
cytes with high albumin secretion owing to 3D intercellular
contacts (Ranucci and Moghe 1999). Hepatocytes cultured
on micro-grooved glass scaffolds with a 100 um high
channel between each scaffold provided better liver-spe-
cific functions than those in scaffolds without micro-
grooves due to protection of hepatocytes from shear stress
and maintenance of oxygen delivery (Park et al. 2003,
2008). Hepatocytes cultured on 3D alginate scaffolds with
about 100-150 pm secreted large amounts of albumin
(60 png/10° cells/day) within a week due to non-adherent
nature of alginate and 90 % hepatocyte aggregation
(Glicklis et al. 2000).

Pricer and Ashwell (1971) first reported that circulating
asialoglycoproteins (ASGPs) bind to asialoglycoprotein
receptors (ASGPR) on the hepatocytes and then degraded
confirming that hepatocytes having cell surface receptors
recognize and bind molecules with exposed galactose
through a unique ASGPR-galactose interaction (Neufeld
and Ashwell 1979). Therefore, many researchers have
incorporated galactose moieties to the artificial ECMs to
mimic the biological environment of the liver. The gal-
actose ligand has been also introduced to the surface of
ECMs as well as to the bulk state of the ECMs because
hepatocyte-ECM interaction is a surface phenomenon
(Kim et al. 2011). The galactose ligand was mostly intro-
duced to the naturally derived 3D scaffolds among artificial
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Table 4 Naturally derived polymers for liver tissue engineering (modified from Kim et al. 2011)

Polymers Type of Linkage Characters References
galactose
Alginate Lactobionic = Amide  Gelation, Easy chemical modification, Unpredictable Yang et al. (2012)
acid dissolution of hydrogel in vivo
Chitosan Lactobionic Amide  Easy chemical modification, Difficult of control in Yang et al. (2001), Park et al. (2003)
acid deacetylation and molecular weight
Collagen RGD Amide  Weak mechanical property, Fast enzymatic biodegradation, Sosnik and Sefton (2005), Wang et al.
sequence High cost (2005b), Zhao et al. (2010b)
Gelatin Lactobionic ~ Amide  Minimal inflammation, Clinically approved, Weak Hong et al. (2003)
acid mechanical properties
Hyaluronic  Lactobionic =~ Amide  Minimal foreign body reaction, No inflammation Fan et al. (2010a)
acid lactone
Xyloglucan Galactose - Biocompatible, Thermally reversible gelation Seo et al. (2005)

ECMs because they provide highly porous structures and
high pore-interconnectivity although they have weak
mechanical property and reproducibility. Some naturally
derived polymers used for liver tissue engineering are
summarized in Table 4.

Although collagen has arginine-glycine-aspartic acid
(RGD) sequence as the recognition site instead of galact-
ose, collagen gels were used in hepatocyte culture for the
application of bioartificial liver (Zhao et al. 2010b). The
results indicated that the collagen gels reconstituted a 3D
vascularized hepatic tissue in vivo although they have
weak mechanical property. To overcome the weak
mechanical property of the collagen gels, collagen/Polox-
amine (Sosnik and Sefton 2005) and collagen/chitosan
(Wang et al. 2005a) hybrids were used as artificial scaf-
folds for liver tissue engineering. The hybrid scaffolds
exhibited enhanced mechanical property of the collagen
gels with good cell adhesion and high survival of
hepatocytes.

Regarding the role of galactose as a ligand, galactosy-
lated alginate was used to encapsulate hepatocytes in the

Fig. 16 Phase-contrast
micrographs of encapsulated
hepatocytes in alginate/calcium
capsules (a) and galactosylated
alginate/calcium capsules (b)

presence of calcium ions and the function of hepatocytes
was evaluated (Yang et al. 2002). It was found that the
function of hepatocytes in galactosylated alginate micro-
capsules was enhanced compared to cells in alginate, as
shown in Fig. 16. It was suggested that the increased
function of hepatocytes was due to more spheroid forma-
tion of hepatocytes in galactosylated alginate than alginate
microcapsules. Besides, alginate microcapsules prepared
with galactose-carrying xyloglucan as an artificial ECM
showed better liver-specific functions than alginate ones
without xyloglucan due to the enhanced multicellular
spheroidal hepatocyte formation. Moreover, connexin 32
gene of hepatocyte spheroids in alginate/xyloglucan mi-
crocapsules were more rapidly expressed than in alginate
ones (Seo et al. 2005). In similar study, the galactosylated
chitosan was hybridized with alginate to make alginate/
galactosylated chitosan scaffold for liver tissue engineering
(Yang et al. 2001; Chung et al. 2002). The hybrid of ga-
lactosylated chitosan and alginate improved cell adhesion
and stability of the alginate scaffold, which retained dif-
ferentiated  hepatic  cellular  functions. Moreover,
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galactosylated gelatin prepared by reaction of lactobionic
acid with amine-incorporated gelatin was evaluated for use
in hepatocyte culture (Hong et al. 2003). The results indi-
cated that liver functions such as albumin secretion and
urea synthesis of hepatocytes cultured on galactosylated
gelatin scaffolds were higher than that of hepatocytes
cultured on collagen-coated monolayers, with longer sur-
vival times of hepatocytes because of the specific interac-
tion of galactose moieties in galactosylated gelatin with
ASGPR of hepatocytes. Further, galactosylated hyaluronic
acid prepared by reaction of hyaluronic acid and aminated
lactobionic acid was mixed with chitosan to make highly
porous galactosylated hyaluronic acid/chitosan sponge for
hepatocyte culture (Fan et al. 2010a). It was found that the
addition of galactosylated hyaluronic acid in the chitosan
sponge improved mechanical property and liver functions
compared with those in the chitosan scaffolds. These
results clearly demonstrate the role of galactose as a ligand
in the 3D scaffolds on the function of hepatocytes.

Glycosaminoglycans are negatively charged polysaccha-
rides which are found as natural components of ECMs. They
are located in liver tissue where they influence hepatocyte
proliferation and differentiation by directing or interacting with
other matrix components (Barbetta et al. 2008), and they also
bind with high affinity to various kinds of growth factors
(Deakin et al. 2009). A study has shown that, among various
glycosaminoglycans, only heparin-containing collagen gels
improved the maintenance of albumin synthesis (Lin et al.
1995). It was suggested that some specific interaction between
heparin and collagen would exist for the maintenance of
hepatocyte functions. In another study, the effect of two dif-
ferent glycosaminoglycans, heparin and chondroitin-6-sulfate,
on the metabolic activities in hepatocytes cultured on collagen
gels was assessed for the application to the bioreactors (Ka-
taropoulou et al. 2005). The results indicated that the addition
of heparin and 1,6-diaminohexane to the collagen gels
increased the formation of hydroxylation of testosterone in
hepatocytes, whereas the combination of chondroitin-6-sulfate
and 1,6-diaminohexane increased glucuronidation of kaempf-
erol by hepatocytes. Similarly, collagen/chitosan/heparin
scaffolds fabricated by gelation of collagen/chitosan with
heparin provided increased mechanical property and better
blood compatibility compared to collagen and collagen/chito-
san ones (Wang et al. 2005b). In addition, hepatocytes cultured
on the collagen/chitosan/heparin scaffolds showed high urea
and triglyceride secretion for 25 days after cell seeding.

5.7.3 Hepatospheres
Aside from hydrogel- and scaffold- based technologies,
hepatocytes are also re-aggregated by cellular self-assem-

bly to reform a 3D configuration. The fundamental concept
is that single suspended cells from cell lines or fresh tissues
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are capable of reforming 3D tissue or “spheroids” if
adhesion to a substrate is prevented (Kelm and Fussenegger
2004; Kelm et al. 2003, 2006). These spheroids show
extensive cell—cell contacts, liver-specific cell polarity and
bile canaliculi (Peshwa et al. 1996). The cell phenotype
also changes from monolayer to spheroids. For example,
the actin cytoskeleton localizes on the cortex instead of
forming stress fibers (Tzanakakis et al. 2001; Chang and
Hughes-Fulford 2009). In general, an intact actin cyto-
skeleton is required for the self-assembly and differentia-
tion of liver cell spheroids (Tzanakakis et al. 2001). In
comparison with the majority of other methods, cellular
spheroids retain most of the cell-cell and cell-ECM con-
tacts, since the cells are in close contact and they produce
their own ECM. Primary hepatocytes, as well as hepatic
cell lines, can be used to generate hepatospheres. These can
be created with various methods: (1) spontaneous self-
assembly in non-adhesive wells/dishes under static condi-
tions (Friedrich et al. 2009), (2) with agitation (rotary
culture, rocked culture, Bioreactor) (Chang and Hughes-
Fulford 2009), microcavities (Fukuda et al. 2006) or (3) in
a hanging drop (Kelm et al. 2003). In contrast to most
liquid overlay cultures, the hanging drop culture produces
hepatospheres with good size reproducibility, since only
one tissue per drop is formed with a defined cell number.
This typically yields size variations of less than 10 % of
mean, which is essential for reproducible results. Recent
developments in microfluidics have led to more advanced
concepts in which rat hepatospheres are accumulated in
micro-cavities with interconnected channels which allow
for continuous medium flow (Fukuda and Nakazawa 2011).

5.7.3.1 Cell-line-derived hepatospheres Hepatoma-
derived cell lines such as HepG2, HepaRG and Huh7 are
frequently used in early safety assessment (Table 5). The
advantages of using cell lines instead of primary cells are
obvious: unlimited growth and availability and the absence
of donor variations lead to higher reproducibility of results
(Castell et al. 2006). The disadvantage of the HepG2 and
Huh7 cell lines is that they display very limited hepatocyte
functionality in 2D culture (Castell et al. 2006). Spheroids
obtained from HepG2 cells also show a markedly different
gene expression pattern compared to monolayers. Genes
over-expressed in the HepG2 spheroids include xenobiotic
metabolism and lipid metabolism (Chang and Hughes-
Fulford 2009). A similar expression pattern was observed
in rat hepatocyte spheroids (Sakai et al. 2010). However,
the recently introduced HepaRG cell line seems to preserve
a set of hepatocyte-like functions and can therefore can be
used for in vitro metabolism studies. Although conven-
tionally used in 2D culture, all these cell lines can also be
used in 3D culture. Culturing HepG2 in 3D resulted in
hepatocyte-like morphology with expression of bile
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Table 5 Different hepatocyte sources used for the generation of hepatospheres

Cell sources  Model set up

Key characteristics

References

Primary rat
hepatocytes

Pure hepatocytes
Co-culture with
NIH3T3
Co-culture with
stellate cells
Co-culture with
endothelial cells
Co-culture with non-
parenchymal cells
Human
hepatocytes

Pure primary
hepatocytes

Pure HepG2

HepG2 co-culture
with endothelial
cells

Primary
mouse
hepatocytes

Primary hepatocytes

Primary hepatocytes
in co-culture with
NIH3t3

Primary hepatocytes

Better functionality than in 2D, liver-like morphology

Prolonged survival, enhanced albumin secretion and CYP
activity

Enhanced CYP2B1/2 expression. Invasion of stellate cell into
the core. Higher Albumin secretion.

Invasion of HUVEC cells into the hepatocyte core.

Endothelial cells surround the hepatocyte core. Kupffer cells
are distributed within hepatocyte core.

3—4 weeks culture in bioreactor possible, maintained
hepatocyte functionality (Albumin, CYP3A4, HNF4a, bile
canaliculi)

Bile canalicular network with MRP-2 expression, increased
albumin synthesis. Differential gene expression in
comparison with 2D culture

HUVECs surround the HepG2 core.

Higher expression of CYP1A2 in monolayer.

Increased albumin secretion, Ammonia elimination rates,
CYP1A2 activity.

Upregulation of albumin secretion and CYP1A2 activity

van Zijl and Mikulits (2010)
Seo et al. (2006a); Chia et al. (2005)

Abu-Absi et al. (2004); Wong et al.
(2011)

Inamori et al. (2009)

Fig. 15

Tostoes et al. (2011)

Kelm et al. (2003; 2004); Mueller et al.
(2011); Xu et al. (2003); Oshikata
et al. (2011)

Kelm et al. (2004)

Nemoto and Sakurai (1992)
Seo et al. (2006b)

Kojima et al. (2009)

in co-culture with
NPCs

canaliculi and dense cell-cell contacts (Kelm et al. 2003).
Gene expression analysis of HepG2 cells cultured in
hanging drops showed elevated transcription of CYP1Al
and HNF3A (Kelm and Fussenegger 2004). Moreover,
HepG?2 spheroids generated in rotating wall vessels showed
distinct upregulation of genes involved in metabolism
(CYPIA1, AKRICI1, EPHX1, LTB4DH) and synthesis
(albumin, GST1Al, GCLM). Higher expression of
CYPIAT1 also resulted in enhanced turnover of resorufin in
spheroids compared to HepG2 monolayers (Chang and
Fussenegger 2009). Metabolic analysis of HepG2 cells in
spheroid cultures showed higher production of glutamate,
as well as uptake of glutamine, alanine and branched-chain
amino acids. The sensitivity toward toxicity of the anti-
cancer drug, tamoxifen, was reduced in comparison with
2D culture, which was explained by the presence of the
drug transporter, MRP2. Importantly, MRP2 activity could
be demonstrated by the use of CMFDA dye, which is
actively exported by MRP2 into bile canaliculi of HepG2
spheroids (Mueller et al. 2011). In addition to MRP2 being
highly active, the efflux activity of MDRI1 is enhanced in
HepG2 spheroids (Oshikata et al. 2011). Interestingly,
spheroid culture of HepG2 resulted in expression of lipo-
polysaccharide receptor and showed lipopolysaccharide-
induced cytokine responses (Liu et al. 2011). Culturing
Huh7 cells in a rotating wall vessel resulted in cells that

were morphologically and transcriptionally distinct com-
pared to Huh7 in 2D culture. The 3D aggregates showed
expression of phase I and phase II drug metabolism genes
as well as hepatocyte-specific transcripts (HNF4a, albu-
min, TTR and oIAT). Importantly, polarized expression of
cell adhesion molecules, tight junction markers and hepa-
titis C virus (HCV) receptors were induced in 3D, the latter
permitting infection with HCV (Sainz et al. 2009). Nothing
is published so far on the behavior of HepaRG cells cul-
tured as spheroids, although unpublished experiments
using HepaRG cells show that these cells form spheroids in
hanging drop culture. The functional characteristics of this
3D HepaRG culture are currently being evaluated in the
EU-FP7 project NOTOX.

5.7.3.2 Tissue-derived hepatospheres Beside hepatic cell
lines and ex vivo cultures such as liver slices, cultures of
primary hepatocytes continue to be used extensively in
research. However, disadvantages of primary hepatocytes
are their limited availability and high inter-donor variabil-
ity. Since availability is limited, it is of importance to gain
as much data as possible from low cell numbers. In this
respect, spheroid models offer the advantage of requiring
very few cells. As previously described, rat hepatocyte
spheroids so far represent a well-characterized 3D model
derived from primary hepatocytes, and have been used
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Table 6 Morphological hepatocyte features in monolayer cultures, hepatospheres and native liver tissue

2D 2D sandwich

Hepatosphere

In vivo Reference

Flattened and Flattened cuboidal

highly spread

Cell shape

Cell polarity No distinct apical ~ Two basolateral

membrane domains on either
remains after side of apical
4 days domain
Bile production  No bile canaliculi ~ Functional bile
canaliculi
Cell—cell No gap junctions Few gap junctions
communication

Cuboidal

Basolateral and apical
membranes

Functional bile
canaliculi

Connexins expressed

Cuboidal Abu-Absi et al. (2002);

Berthiaume et al. (1996)
Abu-Absi et al. (2002);
Berthiaume et al. (1996)

Two basolateral
domains on either
side of apical
domain

Intact functional bile
canaliculi network

Abu-Absi et al. (2002);
LeCluyse et al. (1994)

Sakai et al. (2010);
Berthiaume et al.
(1996); Vinken et al.
(2009)

Many gap junctions

Oxygen supply Good Good Dependent on spheroid Very high Curcio et al. (2007)
diameter
Vascularization  No Short-term increase in  Feasible Highly vascularized Jindal et al. (2009);

albumin secretion

Effects on cell survival

Inamori et al. (2009)

and functionality to
be investigated

since the 1980s. Their metabolic capacities, functions and
morphology are well described and will be discussed later.
However, little is known about the characteristics of human
hepatocytes in 3D culture (Li et al. 1992; Tostoes et al.
2012; Tong et al. 1994). For example, spheroids produced
in a bioreactor were viable for up to 4 weeks, showed phase
I and phase II metabolic enzyme gene expression and
activity and staining with typical hepatocyte markers
cytokeratin 18, CYP3A4 and HNF4a (Tostoes et al. 2012).
As with rat hepatocyte spheroids, a bile canalicular network
is established and can be visualized using a fluorescent dye
(Tostoes et al. 2011). Primary hepatocyte spheroids from
species frequently used in safety assessment, such as
monkey, dog and mice, are only poorly characterized. An
overview on established hepatocyte spheroid models is
provided in Table 6. Hepatospheres from porcine liver are
mainly studied as extracorporal liver support after liver
failure (Nyberg et al. 2005). Since porcine spheroids are
usually not used for toxicology research, Table 6 shows
information on hepatospheres from other species.

5.7.3.3 The cellular environment of hepatospheres In
contrast to other epithelial tissues which have two base-
ment membranes and a considerable amount of ECM
placed between endothelial and epithelial cells, liver tissue
contains only small amounts of ECM. This is composed
mainly of fibronectin, some collagen type I and minor
quantities of types III, IV, V and VI (Martinez-Hernandez
and Amenta 1993). During liver regeneration, laminin is
synthesized predominantly by stellate cells. At the time the
regeneration process in finalized, the synthesis of laminin
stops. The interaction between ECM and hepatocytes is
critical for normal homeostasis (Martinez-Hernandez and
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Amenta 1993). Evidence for this was reported by Abu-Absi
et al. (2002) who analyzed the effect of dexamethasone on
the ECM in primary rat hepatocyte spheroids. On a tran-
scriptional level fibronectin, collagen I and collagen III
were detected in hepatospheres after day 1 and day 14. The
addition of dexamethasone resulted in slightly elevated
levels after day 1. However, after 14 days in culture, they
could not detect a significant difference in the expression
levels of the ECM components (Abu-Absi et al. 2002).
Sustained cellular contacts are the key for maintaining
differentiation and functionality of hepatocytes. In the
spheroid model, cellular contacts are re-established during
cellular self-assembly. This process is thought to involve
three steps: (1) single cell rapidly aggregate, a process
mostly dependent on an initial ECM-integrin interaction;
(2) E-cadherin expression is upregulated; and (3) the cells
form tight interactions with each other via homophilic
cadherin—cadherin binding (Lin and Chang 2008). In the
assembled hepatosphere, all three types of cell junctions
are present, namely (a) anchoring junctions (AlJ),
(b) occluding junctions (OJ) and (c) communicating junc-
tions (CJ) (Peshwa et al. 1996; Vinken et al. 2006a).
Anchoring junctions consist of adherens junctions and
desmosomes, which share similar structures. The presence
of anchoring junctions was shown to be beneficial for
hepatocyte functionality, such as albumin secretion,
ammonia detoxification, glycogenolysis and bile secretion
(reviewed in Vinken et al. 2006a). Together with the gap
junctions, the anchoring junctions were shown to be
essential for drug-induced gene expression of CYP3A4 and
CYP2B6 (Hamilton et al. 2001). In hepatospheres, the
presence of E-cadherin as part of anchoring junction was
verified by immunofluorescence (Takei et al. 2005; Brophy
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et al. 2009). Gap junctions are communication junctions
between two cells. They are formed by the interaction of
two hemichannels of adjacent cells. The hemichannels
consist of connexins, which are named after their molecular
weight (e.g. Cx26, Cx32 and Cx43). Two cells can directly
exchange small metabolites, such the second messenger
cyclic adenosine monophosphate (cAMP), inositol tri-
phosphate (IP3) and ions (e.g. Ca*") via gap junctions. Gap
junctions occupy as much as 3 % of the hepatocyte
membrane and are mainly composed of Cx26 (approxi-
mately 5 %) and Cx32 (approximately 90 %) (Vinken et al.
2006a). The extent of cell-cell contacts is directly related
to the usefulness of an in vitro model system from evalu-
ation of hepatotoxic effects. Xenobiotics often induce
hepatic dysfunctionality by targeting cellular junctions. It
was demonstrated that downregulation of cell junction
components resulted in acute hepatic injury and can be
caused, for example, by alcohol, carbon tetrachloride and
thioacetamide (Vinken et al. 2006a, 2009). Long-term
exposure to hepatotoxic chemicals was shown to inhibit
cell junctions and to cause chronic liver disease, fibrosis,
cirrhosis and hepatitis. 2D cultures of hepatocytes reflect
the expression pattern of E-cadherin and Cx32 close to
in vivo values, but only for a limited time period after
establishment of a confluent hepatocyte monolayer, which
is typically between day 1 and day 3 after seeding of
hepatocytes. A high degree of confluence of the monolayer
is the key to establish cell-cell contacts between hepato-
cytes, and this is often difficult to achieve reproducibly
between experiments. By contrast, the cell density in a
hepatosphere is always the same, with equal amounts of
cell—cell contacts between hepatocytes. Hepatosphere cell—
cell contacts are sustained for a longer time period than in
2D culture (Sakai et al. 2010), which is undoubtedly the
explanation for extended functionality of the hepatocytes in
this model. Since many xenobiotics target cellular junc-
tions, it is necessary to choose a model system which
shows in vivo-like expression patterns of cellular junctions
for prolonged time periods.

A sufficient supply with oxygen is crucial for a func-
tional 3D in vitro model of the liver. Due to their high
metabolic activity, hepatocytes have a high oxygen turnover
which can be up to tenfold greater than other types of non-
proliferative cells (Cho et al. 2007). The higher the oxygen
uptake rate of the hepatocyte, the higher the liver-specific
albumin and urea production (Cho et al. 2007). Similar
observations have been seen even earlier using liver tissue
sections which were exposed to different oxygen partial
pressures. The higher the partial pressure, the better cells in
deeper regions of the liver slices survived (MacDougall and
Mccabe 1967). Therefore, it is particularly important to
control the spheroid diameter not only to prevent necrosis
due to oxygen depletion but also to sustain high hepatocyte

functionality within the whole model (Funatsu et al. 2001).
Modeling of the oxygen profile of mouse hepatocyte
spheroid under standard conditions results in a diameter of
about 200 um until a critical O, concentration is achieved
in the core of the hepatosphere (Curcio et al. 2007).
Increasing the oxygen concentration up to 160 mmHg in the
medium e.g. by using a rotating wall system, increases the
maximum theoretically to 450 pum in diameter until a crit-
ical oxygen concentration is reached in the core. However,
increasing the oxygen concentration leads also to an
increase in ROS (Lillegard et al. 2011).

Self-assembly of hepatocytes into spheroids results in a
structure similar to that of native liver tissue. Hepatocytes
in spheroids have cuboidal shapes and abundant cytoplas-
mic organelles. The surface of spheroids from rat hepato-
cytes was shown to be smooth and permeated by numerous
pore-like openings (Abu-Absi et al. 2002; Peshwa et al.
1996). These pores have been demonstrated to be the
entrances to microvilli-lined channels which are similar to
canaliculi. The hepatocytes show polarization with an
apical site for transport of bile acids and a basolateral site
for trafficking for metabolites. The polarity was shown by
apical HA4 and basolateral HA321 staining. The network
of channels was visualized by FITC-dextran (Abu-Absi
et al. 2002). Moreover, exposure to the pseudo bile acid
FITC-glycocholate led to directed secretion into bile can-
aliculi, demonstrating the functional polarity.

5.7.3.4 Hepatocyte functionality Rat hepatocyte spher-
oids generated on nanopillar sheets showed higher
expression of MRP2, albumin and CYP3A3 gene expres-
sion as compared to monolayer culture (Takahashi et al.
2010; Sakai et al. 2010). Another report thoroughly
investigated the difference in gene expression between rat
hepatocytes in monolayer or spheroid culture (Sakai et al.
2010). The result showed that genes encoding cell adhesion
molecules (integrin 3, cadherin 1, Cx32), transcription
factors (HNF40, CCAAT/enhancer binding protein f),
protein and metabolic enzymes (albumin, glucose-6-phos-
phate, tryptophan 2,3-dioxygenase, arginase 1 and
CYP7A1) and transporters (OATPs, MDR2, BSEP) are
more highly expressed in spheroid than in monolayer cul-
tures. Monolayers quickly lost their expression of these
proteins, whereas spheroids were able to maintain the liver-
specific gene expression profile for longer times. Another
study showed that rat hepatocytes showed stable expression
of more than 80 % of 242 liver-related genes, including
those of albumin synthesis, urea cycle, phase I and II
metabolic enzymes (Brophy et al. 2009). The expression of
metabolic enzymes was verified by the upregulation of
leukotriene, cholesterol metabolism and synthesis of GSH,
albumin and ATP (Chang and Hughes-Fulford 2009; Bro-
phy et al. 2009; Fukuda et al. 2000).
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It is well known that the metabolic activity of hepato-
cytes in 2D culture rapidly declines while many studies
have shown that the liver-specific metabolism of hepato-
cytes maintained in 3D is preserved for extended periods
(reviewed in van Zijl and Mikulits 2010). The enhanced
gene expression of hepatocytes in spheroids for phase I
enzymes led to increased metabolism of 7-ethoxyresorufin
to resorufin via CYP1A1 and CYP1A2, and diazepam to
exazepam via CYP3A4 (Fukuda et al. 2006). Rat hepato-
cyte spheroids cultured in bioreactors showed enhanced
liver-specific metabolism, such as elevated phase I (ECOD)
and phase II enzyme (UGT) activities and the capacity to
metabolize diphenhydramine and troglitazone (Miranda
et al. 2009). In summary, liver-specific metabolism was
shown to be maintained for extended time periods in 3D
culture of hepatocytes.

5.7.3.5 Hepatospheres for toxicology assessment Hepa-
tocytes in 3D maintain xenobiotic metabolism enzymes and
are therefore thought to be suited for toxicity assessment. In
one study, five different compounds were tested (Xu and
Purcell 2006) with rat hepatocyte spheroids. All tested
compounds (diclofenac, galactosamine, isoniazid, acetami-
nophen, m-DNB and 3-nitroaniline) significantly decreased
glucose secretion, which was thus suggested as the most
sensitive end point. Other evaluated end points, such as
pyruvate uptake, galactose biotransformation and lactate
release, were less sensitive than glucose secretion. Moreover,
the compounds, such as propanol, galactosamine, diclofenac
and acetaminophen, had a negative impact on anchorage
dependence, cellular morphology and cell spreading (Xu
et al. 2003) of spheroids. Other reports suggested that rat
hepatocyte spheroids were not useful for drug testing, since
they were not sensitive to methotrexate treatment (Walker
et al. 2000), whereas 2D culture displayed sensitivity. The
authors suggested that this may result from the lack of com-
pound penetration into the tissue or from the maintenance of
cellular functions, which would render hepatocytes more
resistant to methotrexate-induced cell death. The latter
hypothesis was recently supported by the finding that hepa-
tocytes in gel entrapment, in contrast to 2D culture, display
high levels of the drug transporter MRP2, which is able to
excrete methotrexate from the cell, thus rendering the hepa-
tocytes more resistant toward methotrexate (Yin et al. 2009).
However, a rigorous screen with known hepatotoxic com-
pounds on spheroids models has so far not been undertaken.
Moreover, an evaluation of accepted and sensitive endpoint
assays for different toxicity pathways on hepatocyte spher-
oids would aid the use of this model system.

The long culture life time, presence of tight cell—cell
contacts and lack of exogenous stimuli in the scaffold-free
culture make spheroids an ideal model system for studying
effects of carcinogens, such as non-genotoxic carcinogens
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(Roberts and Soames 1993). Likewise, it was shown that
rat hepatocyte spheroids exhibit a 4.5-fold increase in the
cytoplasmic fraction of peroxisomes in response to the
peroxisome proliferator nafenopin. In addition, there was a
concomitant induction of peroxisomal bifunctional enzyme
CYP4A, the enzyme marker associated with peroxisome
proliferation. The spheroids also maintained expression of
peroxisome proliferator-activated receptor and are able to
undergo replicative DNA synthesis in response to nafen-
opin (Roberts and Soames 1993).

5.8 3D co-cultures of hepatocytes with non-
parenchymal cells

Key questions

e  Which 3D co-culture systems are available?

e What are the limitations of these systems?

e s there a general recommendation which co-culture 3D
system should be used?

Take home messages

e Several co-culture 3D culture systems are available,
mainly using sandwich and spheroid techniques that are
superior to co-culture or 3D hepatocyte culture systems.

e The optimal system depends on the scientific question
being asked.

e Limited comparability of systems due to different
parameters used as readouts.

e Up-scaling for high-throughput approaches using co-
culture of hepatocytes with NPCs in the hepatosphere
model is possible if performed in a multiwell format.

Inspired by the in vivo situation, researchers set up
attempts to maintain hepatic function in vitro by co-cul-
turing hepatocytes with NPCs (Langenbach et al. 1979;
Talamini et al. 1998). Based on availability, liver NPCs
were used, such as Kupffer cells, hepatic stellate cells and
sinusoidal endothelial cells, and found to be superior to the
extrahepatic-derived NPCs (Bader et al. 1996; Bhatia et al.
1999). For Kupffer cells (but also for other NPCs). it is
important to include an adequate acclimation/recovery
period to avoid activation due to the stress-inducing culture
conditions prior to their use. Moreover, optimized ratios of
hepatocytes to Kupffer cells should be established to
reproduce the effects that occur in tissue. Similar to in vivo,
heterotypic cell-cell contacts are therefore beneficial for
in vitro use of primary hepatocytes (Morin and Normand
1986; Okamoto et al. 1998; Auth et al. 1998; Bhandari et al.
2001). A further improvement of the co-culture setting, as
measured by urea synthesis, was the use of 3T3 fibroblasts
together with hepatocytes, grown as double-layers. As
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substratum, collagen-tagged poly-dimethylsiloxane mem-
brane was used to allow faster oxygen diffusion/exchange
(Nishikawa et al. 2008). Oxygen supply in culture is a
challenge as hepatocytes have high oxygen demands (Smith
et al. 1996), and indeed, increased oxygen supply is capable
of improving hepatocyte function (Tilles et al. 2001; De
Bartolo et al. 2006). In general, an improvement in hepa-
tocyte stability and maintenance is achieved irrespectively
of the type of cell used for co-culture. In addition, the co-
culture cell type is not required to be primary, since
established hepatic stellate cell lines were demonstrated
sufficient for hepatocytes. Readouts for improved hepato-
cyte function in co-culture are frequently CYP activity
measurements, urea secretion and albumin production
(Guguen-Guillouzo et al. 1983; Begue et al. 1984).
Approaches have been made to combine the benefits of
3D models leading to polar hepatocyte structures, either
sandwiched or cultured as spheroids, with heterotypic cell-
cell contacts with NPCs. However, distinct co-culture
models may also be considered as 3D when sandwiching
the hepatocytes between a substratum and a dense layer of
other cells, where it was shown that the hepatocytes
maintained a polar shape (Fig. 17 illustrates the different
approaches). The idea behind these efforts is to promote
formation of lobular structures with apical-basal polariza-
tion (including bile canaliculi formation) of hepatocytes
and additionally to maintain enzymatic activities. The latter
feature is of utmost relevance for long-term cytotoxicity
testing, and therefore, this model is of particular interest

surface with low or non-adhesive matrix

Fig. 17 Models of combined co-culture and 3D systems. a Hepato-
cytes grown on a soft collagen surface overlaid by non-parenchymal
cells, e.g. endothelial or hepatic stellate cells. b Hepatocytes cultured
in sandwich configuration, overlaid by non-parenchymal cells; under
these conditions, no heterotypic cell-cell contacts are possible.
¢ Hepatocyte/non-parenchymal cell spheroids, grown on low or non-

and improvement needs to be fostered. On the other hand,
the growth of understanding mechanisms to maintain
hepatocyte function will be applied to advance the devel-
opment of bioreactors and to translate toward the estab-
lishment of bioartificial liver devices (BALs) offering
support to patients suffering from acute liver failure.

A direct comparison between hepatocyte cultures and co-
cultures with NPCs in monolayer, or sandwich condition was
performed by Uchino and co-workers who proved significant
superiority of co-culture in collagen sandwich (Fig. 17a)
based on urea synthesis (Koike et al. 1996). However, the
culture period used in this study did not exceed 14 days and
also did not investigate CYP activities. Furthermore, there
was no difference between albumin secretion in co-cultures
and single hepatocyte cultures in the sandwich condition.
Another study described the generation of a sandwich system,
where hepatocytes were maintained within two collagen
layers, covered by a NPC mixture from the same isolation
procedure (Bader et al. 1996). A hallmark of this study was
the use of a gas permeable membrane on the bottom to allow
better gas exchange and oxygen supply. Studying albumin
production revealed that the NPC co-culture had no beneficial
effect on hepatocyte function. Similarly, biotransformation
of ethoxyresorufin was not influenced by NPCs. However, a
major drawback of this system is the lack of heterotypic cell—
cell contacts that have been shown to be relevant for main-
taining hepatocyte function (Fig. 17b).

Recently, a spheroid system combining rat hepatocytes
with hepatic stellate cells was developed (Thomas et al. 2005;

HCs ECM

/Collasen gel

NPC

HCs

ECM
s
o Collagen gel

glas / plastic surface / semipermeable membrane

adhesive matrices. d Hepatocytes and non-parenchymal cells sand-
wiched in ECM matrices. These conditions enable heterotypic cell-
cell communication. Different culture surfaces, e.g. glass, plastic or
semi-permeable membranes, can be used. NPC non-parenchymal
cells, HCs hepatocytes, ECM extracellular matrix
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Riccalton-Banks et al. 2003). Here, primary rat HSCs were
seeded on a poly-DL-lactic acid surface that allowed weak
attachment of cells (Fig. 17c). Within 2 days, spheroids
developed consisting of both cell types. The authors not only
identified improved enzymatic function, but also effects of
stellate cells on spheroid formation underlining their rele-
vance for organ/lobule formation of hepatocytes. CYP2EI,
CYP3A1 and CYP1A2 expression and CYP activities
(assessed using testosterone metabolism) were enhanced in
these speroids. Electron microscopy revealed the presence of
bile canaliculi, tight junctions and desmosomes. Addition-
ally, a widespread fibrous pattern within the spheroids was
evident, giving rise for stellate cells to contribute to the
generation of ECM supporting hepatocyte stability. Another
spheroid system using the HSC-T6 stellate cell line was tes-
ted, using primaria as the matrix (Abu-Absi et al. 2004). In
this study, hepatic marker expression, but not enzymatic
activities, was assessed after 14 days of culture. Comparing
hepatocyte spheroids with co-culture aggregates, a significant
production of albumin and CYP2B1/2 was determined.
However, a benefit of the co-culture condition could not be
drawn for other hepatic markers (e.g. CPS-I, CYP3A2).

Another approach to establish a 3D hepatocyte environ-
ment is embedding hepatocytes in liquid collagen solution
with subsequent gelation (Jindal et al. 2009) followed by the
addition of a layer of endothelial cells. Although no hetero-
typic cell contacts are established, the authors were able to
identify soluble factors that signal in a paracrine manner.
Depending on the focus, other cell types may also be applied
to study cell-cell communication with subsequent analysis of
hepatocyte functionality. Here, a combination of co-culture
in the sandwich condition might be promising (Fig. 17d). A
further challenging approach to study hepatic cell commu-
nication was introduced recently (Kasuyaetal. 2011). Here, a
tri-culture model employing hepatocytes, stellate and endo-
thelial cells was generated. Using a microporous membrane,
an intercalating sheet of HSC between layers of hepatocytes
and endothelial cells was established. Thus, translating this to
a more general level, this model allows analysis of complex
communication networks in vitro and might allow adjustment
for specific questions. A very promising strategy for the
development of 3D tissues is the culture of hepatocytes on
biodegradable membranes (Kasuya et al. 2012). After
attachment to the membranes, these layers can be stacked and
upon biodegradation, a two (or more)-layer tissue is achieved.
As this approach has not been tested with co-culture systems
and due to appearing problems with oxygen supply based on
increased stack sizes, the system needs further validation.

In order to enhance hepatocyte-specific functions of he-
patospheres (see section “Hepatospheres”), co-culture
approaches were performed with different cell types. It was
shown that co-culture of rat hepatocytes with mouse NIH3T3
(Seo et al. 2006b; Chia et al. 2005) had beneficial effects on
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albumin secretion, ammonia elimination rate and CYP1A1
activity. Co-culture of rat hepatocytes with the rat hepatic
stellate cell line HSC-T6 resulted in heterospheroids with
elevated albumin and CYP2B1/2 expression. The HSC-T6
cells invaded into the hepatocyte spheroids before retracting to
their original location at the periphery of the MT, leaving
sinusoid-like spaces (Abu-Absi et al. 2002). Similarly, coating
of rat hepatocyte spheroids with human umbilical vein endo-
thelial cells (HUVECS) resulted in invasion of HUVECs into
the hepatocyte spheroid and establishment of a dense vascular
network (Inamori et al. 2009). The previously discussed
approaches use cell lines mixed with primary cells but to fully
exploit the potential of co-culture as a means of achieving a
more organotypic model, primary hepatocytes would ideally to
be co-cultured with primary cells from the same organ. This
can be achieved by isolation of primary hepatocytes and
enrichment of NPCs, such as endothelial cells, Kupffer and
stellate cells. This cell mixture can be co-cultured with hepa-
tocytes in hanging drops, which results in tissue re-formation
within 2-3 days. Interestingly, the endothelial cells re-orga-
nize themselves to completely surround the hepatocyte core, as
visualized by whole-mount confocal microscopy in Fig. 18a.
The endothelial cells were stained with ICAM-1 marker,
whereas hepatocyte polarity and bile canaliculi were visual-
ized with DPPIV marker. The self-sorting of cells can be
explained by the differential expression of cadherins on the two
cell types. According to the differential cell adhesion hypoth-
esis, the cell type with the higher expression of cadherins builds
the core of a tissue, whereas the cell type with the lower
expression of cadherins surrounds the core (Foty and Steinberg
2005). Moreover, the Kupffer cells, which are present in the
NPC fraction, distribute themselves within the hepatosphere
(Fig. 18b). Kupffer cells are very motile within the tissue
in vivo as well as in the hepatosphere, since they do not form
direct cell—cell contacts to hepatocytes. Importantly, Kupffer
cells can be stimulated with inflammatory stimuli, such as
lipopolysaccharide. In response to this stimulus, the macro-
phages secrete cytokines, which trigger local inflammation
(unpublished results). Thus, it is possible to study inflamma-
tion-mediated toxicity.

Besides generating stable cultures of primary hepato-
cytes for drug testing and development of BALs, it is of
outmost relevance to establish systems to expand hepato-
cyte cultures, e.g. for transplantation purposes. Although
the hepatocyte dedifferentiation in monolayers leads to
genetic reprogramming, priming the cells for proliferation
(Zellmer et al. 2010), even supplementation with growth
factors (e.g. HGF), only leads to minor cell expansion
in vitro (and partially only DNA synthesis was observed
with a lack of subsequent cell divisions) (Richman et al.
1976; Block et al. 1996). Therefore, in parallel to investi-
gations of maintaining hepatocyte function using co-cul-
tures, methods for in vitro expansion are under
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Fig. 18 a Confocal image of whole-mount staining of primary rat liver
microtissue in co-culture with non-parenchymal cells. The endothelial
marker ICAM-1 is visualized by red, bile canalicular marker DPPIV is
shown by green, and nuclei are by blue fluorescence. The picture was

development with mixes of NPCs, certain liver-derived cell
types or fibroblast cell lines (Goulet et al. 1988; Shimaoka
et al. 1987; Uyama et al. 2002). Advancement was
achieved as recently reported using 3T3-J2 fibroblasts as
feeder cells for hepatocyte cultures (Cho et al. 2008). The
authors showed that hepatocytes underwent proliferation
and at the same time maintained functionality, as evaluated
by albumin production. Unfortunately, re-plating in a 3D
sandwich configuration led to proliferation arrest but kept
hepatocytes stable and functional. Thus, although hepato-
cytes have a high potential of proliferation in vivo (e.g.
upon partial hepatectomy), a setting to trigger hepatocyte
expansion in a 3D environment in vitro is still pending.
Attempts using a 3D extracellular scaffold were introduced
recently (Lang et al. 2011; Zhang et al. 2009). Although no
co-culture technologies were applied, the use of matrix
scaffolds for maintaining hepatocyte function and trigger-
ing proliferation seems promising and superior compared
with sandwich or spheroid culture techniques. Noteworthy,
to circumvent these limitations, alternative sources of
functional hepatocytes are being developed, ranging from
pluripotent stem cells to differentiated cells which have to
be reprogrammed toward a hepatocyte phenotype. These
approaches are described in section “iPS cells for modeling
diseases and ADMET.”

In conclusion, it is now very obvious that the in vitro
establishment of long-life fully functional hepatocytes for
BAL development, drug discovery and toxicity testing or even
transplantation depends on several factors that need to be
integrated into in vitro models. Besides the composition of
medium (e.g. growth factors and stabilizing agents), cell—cell
communication is improving hepatocyte function (including
paracrine communication via soluble factors and direct cell-

kindly provided by Dr. Seddik Hammad, IfaDo, Dortmund. b Paraffin
section and immunostaining of primary rat liver microtissue in co-
culture with NPCs. Kupffer macrophage marker CD68 is visualized by
green color, whereas nuclei appear in gray

cell interactions) and the extracellular environment is required
as a scaffold. Although many attempts have been followed, a
final recommendation what the optimal system is cannot be
drawn, and this might also depend on the scientific question to
be addressed. However, the feasibility of comparing the above-
introduced models is limited. This is mainly due to not-stan-
dardized systems, e.g. how long are the cells cultured (weeks to
months), and the readout, e.g. urea or albumin synthesis, or
CYP activities. Furthermore, the species the primary cells
derive from will matter as, for example, human hepatocytes
were more stable than mouse hepatocytes in vitro. With respect
to co-cultures, only a few publications tested the ratio of par-
enchymal/non-parenchymal to be used for optimal hepatocyte
function. Hepatocytes make up around 65-80 % of total liver
cells with, e.g., stellate cells making up around 8 % (Morin
et al. 1988). Will the approximately 8:1 ratio be sufficient in
in vitro systems to maintain functionality? Data are implying
that a lower ratio is required in culture systems. A not well-
investigated question yet to be clarified is whether polar, bile
canaliculi-forming hepatocytes in a 3D environment might
become cholestatic due to impaired bile efflux. This might
subsequently affect longevity and stability of hepatocytes
in vitro. Another not yet carved out question focuses on
throughput capabilities. Usually, the generation of 3D co-
culture systems requires a lot of hands-on, non-automated
work, binding workforce and limiting broad applications.
Systems being developed thus should also be evaluated for
usability in high-throughput desiring projects. Nevertheless,
co-cultures are superior to single hepatocyte cultures, also in a
3D environment, and a combination of these parameters will
definitely enable stable systems for many applications, e.g. for
BALSs, bioreactors mimicking liver function and expanding of
hepatocytes used for transplantation or toxicology tests. For the
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latter, an ethical motivation should additionally lead to rapid
advances of in vitro systems.

5.9 Microfluidic in vitro systems—advances and status
for a physiologically relevant sinusoid-like liver
cell culture device

Key questions

e How do microfluidic devices help cell functions?
e  What microfluidic models are available?
e What are the applications of microfluidic devices?

Take home messages

e There are many examples of microfluidic device
functions and these illustrate the importance and need
of liver-like culture systems for drug investigations on
metabolism, xenobiotic properties and toxicity.

e The HepaChip® represents a highly advanced
microfluidic in vitro system.

e Engineering of a biometric 3D cellular liver microen-
vironment, including ECM, multiple cell types, cell-
cell interactions, soluble factors, mechanical stimula-
tion and cell organization, will enable the preservation
and control of the natural liver cell phenotype over a
long period of time.

e This holistic approach could generate new types of
information that have not been accessible with com-
monly used cell culture models.

e Microfluidic devices may facilitate universal types of
application including personalized medicine with
patient’s cells that mimics the liver’s metabolic and
pharmacokinetic properties.

Preclinical testing of drug biotransformation and
organ-specific toxicity is greatly hampered by the low
comparability between in vitro results and the in vivo
situation. An important issue during drug development is
the occurrence of adverse drug reactions (ADRs) which
has led to the removal of several drugs from the market
because of CYP inhibition by co-administered drugs. The
still existing high drug failure rate in clinical trials calls
for novel cell culture devices increasing the predictability
of ADME/Tox assays as well as short- and long-term
in vitro safety testing of potential drug compounds. Rea-
sons for lack of significance and comparability of standard
cell cultures include:

e Biotransformation reactions in cultured cells are usu-
ally much lower than in the same cell types embedded
in the organotypical ECM and the specific cellular
environment in the native tissue.
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e Organ toxicity is rarely a matter of a single cell type,
but rather depends on interactions of several cell types
which mutually influence each other in various ways.

e In addition to the interactions between tissue resident
cells, interactions with immune cells may participate
and may modify the toxic response according to the
activation state of the entire immune system.

e Since each organ has an individual connection with the
brain and is subject to specific innervation, organ
toxicity may also be influenced by neuronal activity and
various types of neurotransmitters.

e Furthermore, results obtained from animal derived cells
do not adequately reflect the behavior of drugs in
humans as a consequence of species differences.

The liver features a distinguished example of the
importance of these different levels of intercellular and
inter-organ communication for the regulation of its func-
tion. There have been no in vitro systems that may account
for all different levels of complexity ranging from proper
interaction of cells with their ECM up to the multifunc-
tional influence of the innervation by cells of the peripheral
and/or central nervous system. Even if complexity is
reduced to the first two levels mentioned above, most cell
culture systems are far from mimicking tissue-specific
interactions between individual cells and the surrounding
ECM or neighboring cell types. Sandwich culturing has
brought a remarkable step forward (Dunn et al. 1992;
Hoffmaster et al. 2004; Nahmias et al. 2007; Pan et al.
2012; Swift et al. 2010), visible particularly in a more
pronounced biliary polarity and enhanced biotransforma-
tion compared to simple monolayer culture (Kim et al.
2010b; Liu et al. 1999). According to currently used pro-
tocols, however, it replaces the relatively sparse, but highly
diverse matrix of the liver by a bulky one with only few,
strongly overrepresented molecular species. As revealed by
microarray and proteomic studies, the global impact of
sandwich culturing is very limited (Kienhuis et al. 2007;
Rowe et al. 2010) and does not overcome hepatocyte
dedifferentiation. Likewise, simple co-cultures are also not
a completely satisfying solution, even though they
acknowledge the presence and interaction of different cell
types and, therefore, may perform better than monocultures
(Gebhardt et al. 2003; Guillouzo et al. 1999). Usually, co-
cultures are based on random mixing of different cell types
(Gebhardt 2002) and, thus, do not account for their specific
anatomical relationship. This may lead to a very artificial
situation concerning neighborhood relations and relative
distances between different cell types, although these
parameters may be of utmost importance for organotypic
interactions favoring longevity and performance of the
cells in situ and in culture. If these parameters are not met,
inefficient or aberrant interactions may occur resulting in
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detrimental influence and malfunctioning of the cells. This
unfavorable situation urgently calls for sophisticated novel
culture approaches that avoid some, if not all of these
problems and lead to improved culture systems with much
higher predictive power. Two recent major scientific and
technical achievements have paved the way toward a
rational and successful novel approach of tissue-like 3D
culture, namely (1) the elucidation of morphogen action in
liver physiology and metabolic regulation, and (2) micro-
fluidics coupled with dielectrophoretic cell positioning.
Morphogens are signaling molecules which, by defini-
tion, play important roles during embryogenesis and
organogenesis (Hendriks and Reichmann 2002; Hogan
1999). Usually, they are produced by small groups of cells
arranged in specific signaling centers. The morphogens
spread from there in a gradient-like fashion over relatively
short distances of less than 20 cells. Interestingly, the
majority of these signaling factors are proteins that belong
to a relatively small number of conserved multiprotein
families, in particular the BMPs, EGFs, FGFs, Hedgehogs
and Wats. Concerning liver, Wnt factors play a particularly
important role, because canonical Wnt signaling has been
identified as the main determinant of zonation of the liver
parenchyma (Benhamouche et al. 2006; Burke and Tosh
2006; Gebhardt and Hovhannisyan 2010). Proof of this fact
has been obtained by knockout of the tumor suppressor
gene, APC, which is a negative regulator of [B-catenin
activity (Benhamouche et al. 2006; Colnot et al. 2004).
APC protein in liver shows a gradient decreasing from the
periportal to the pericentral zone (Benhamouche et al.
2006). Thus, its knockout leads to a pericentralization of
hepatic functions, e.g. the extension of the small pericentral
glutamine synthetase-expressing zone to the entire paren-
chyma (Benhamouche et al. 2006; Gebhardt and Hovhan-
nisyan 2010). Conversely, studies on the knockout of B-
catenin revealed the opposite influence on zonation, i.e. the
periportalization of hepatic functions (Sekine et al. 2006;
Tan et al. 2006). These studies provided compelling evi-
dence that expression of B-catenin is a necessary condition
for the expression not only of major enzymes of ammonia
detoxification, but also of many CYP isoforms in the liver
(Braeuning 2009; Loeppen et al. 2005; Sekine et al. 2006).
In particular, it could be shown that B-catenin not only
regulates basal expression of drug-metabolizing enzymes
but also determines the magnitude and hepatic localization
of responses to xenobiotic inducers in vivo (Braeuning
et al. 2009; Braeuning and Schwarz 2010b). Taken toge-
ther, these findings imply that conservation of biotrans-
formation capacities in vitro is impossible without
maintenance of proper functioning of the Wnt/B-catenin
signaling pathway between hepatocytes and NPCs. Besides
controlling hepatocellular function in the adult liver, Wnt/
B-catenin signaling also plays an important role in liver

development, hepatocyte proliferation and maturation, and
in cell fate decision of progenitor cells (Apte et al. 2007;
Decaens et al. 2008; Hu et al. 2007). These aspects are also
of highest relevance for establishing and maintaining a
tissue-like situation in vitro. It is obvious that cultured liver
cells always start and reside in an artificial environment
reflecting an injured or disorganized tissue rather than a
healthy one. Therefore, any signals that aid in certain
routes of regeneration or “healing” seem welcome. Again,
it can be expected that morphogen signals like Wnt/[-
catenin signaling can exert their beneficial effects the better
the closer the cellular arrangement reflects the in situ
situation.

Much progress has been made in recent years on mi-
crofluidics and cell positioning techniques. Ever since the
establishment of successful hepatocyte cultures, culture
systems enabling continuous perifusion with culture med-
ium have proved advantageous over standard culture in
flasks or wells requiring sequential changes in culture
medium (Gebhardt and Mecke 1979a; Gebhardt et al.
2003). In particular, perifusion systems allow the mainte-
nance of hormones and drugs at very low steady-state
concentrations and enhance metabolic performance of the
hepatocytes. Likewise, the delivery of oxygen may be
improved by perifusion. Furthermore, perifusion offers a
way of diluting or removing toxic metabolites, such as bile
acids in higher concentrations. All these features may
support longevity and phenotypic stability of the cultures
(Gebhardt et al. 2003). On top of that, perifusion aids in
determining effective concentrations, kinetic constants and
other parameters characterizing biotransformation and
toxicity (Gebhardt and Fischer 1995; Gebhardt et al. 1996).
Following the rapid progress in manufacturing of tiny
channels and almost any kind of microstructures on bio-
compatible plastic material, microfluidic systems have
become increasingly popular for cell culture. This tech-
nology allows the 3D cellular environment to be mimicked
on a simple microchip. Thus, complex “artificial micro-
organ” cultures that match well the size of cells and blood
vessels of the human liver can be realized. Such perfusion
cultures are able to avoid the disadvantages of short-term
incubation, metabolite accumulation and non-steady-state
conditions to improve viability, life span and metabolic
activity of cultured hepatocytes (Takeshita et al. 1998;
Gebhardt and Mecke 1979b; Allen et al. 2005; Khetani and
Bhatia 2008; Novik et al. 2010).

One of the first feasibility studies to engineer hepatic
tissue was published in 1997 and featured a mixture of
primary hepatocytes and endothelial cells on biodegradable
polymers (Griffith et al. 1997). Several limited liver cell
models were reported, for instance, the microfluidic 3D
Hepa Tox Chip, which is based on multiplexed microflu-
idic channels where a 3D microenvironment is engineered
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in each channel to maintain hepatocyte functions (Toh
et al. 2009). The device utilizes physical restraints (mi-
cropillars) for mimicking more or less adequately the
fenestrated endothelial cells, and an animal-derived extra-
cellular matrix to retain the cells and to support a 3D
aggregation. A similar approach was achieved by sur-
rounding a culture area comprising rat primary hepatocytes
at high density by a parallel panel of microfluidic channels
replacing an endothelial cell layer for physically separating
the hepatocytes from media perfused vessels (Lee et al.
2007). Both cell culture devices do not describe the res-
toration of membrane polarity by the formation of bile
canaliculi.

A further developed design consisted of a cell com-
partment in the middle flanked by two microchannels with
additionally micropillars as a barrier (Goral et al. 2010).
The microfluidic device was used to promote and maintain
3D tissue-like cellular morphology and cell-specific func-
tionality of primary human hepatocytes. The integration of
bottom-patterned microstructures in the cell culture chan-
nel resulted in minimized cell spreading and cell surface
interactions which support the re-establishing of cell
polarity, demonstrated by active transport of fluorescein
diacetate via MRP2 transport protein in the bile canalicular
structures. In all approaches discussed, the influence of
liver NPCs was neglected.

Primary hepatocytes cultures co-cultured with growth
factor—secreting 3T3-J2 fibroblasts (Khetani and Bhatia
2008) in a miniaturized multi-well culture system for
human liver cells was demonstrated as a valuable model for
elucidating phase I and phase II biotransformation activity
over several weeks. They use polydimethylsiloxane
(PDMS) stencils consisting of 300-pm-thick membranes
with trough-holes at the bottom of each well in a 24-well
mold. Hepatocytes adhere to previously adsorbed collagen
I, thus forming micropatterned clusters which were sub-
sequently surrounded by mouse 3T3-J2 fibroblasts. The co-
cultures were able to express bile canicular transport pro-
teins. Further progress was made by applying dielec-
trophoretic forces to sorting and active cell positioning in
microfluidic devices (Docoslis et al. 1999; Ho et al. 2006a;
Wang et al. 1999b; Archer et al. 1999; Sankaran et al.
2008). Of note, Docoslis et al. (1999) demonstrated that
positive dielectrophoresis can be safely used to retain
viable cells in perifusion cultures which provide a high
degree of cell separation between viable and non-viable
cells without any adverse effects on the cultured cells over
long periods of time. A first approach for active cell
positioning to mimic liver-like structures was demonstrated
by positive dielectrophoresis on a concentric-stellate-tip
electrode array (Ho et al. 2006a). In this model, HepG2
cells and HUVECs were radially oriented to form stellate-
type pearl chains towards the center of the concentric
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electrode array. However, this design enables only a 2D
structure, and organ-typic perifusion is not feasible. The
mentioned examples show clearly that microfluidic tech-
nology is a practical tool to build up artificial microorgans.
The considerations above have prompted the establish-
ment of a novel culturing approach for liver cells, com-
bining a microfluidic system with a liver-like cellular
arrangement. Extensive in silico modeling and optimiza-
tion processes combined with intensive experimental
studies (Schutte et al. 2010, 2011b) resulted in a semi-
automated 3D culture system mimicking hepatic sinusoids,
called the HepaChip®. On an area the size of a microscope
slide, the HepaChip® features a system of branching mi-
crochannels supplying and draining 8 microchambers (Fig.
S2; see ESM). Each microchamber contains 3 parallel cell
assembly ridges with a length of 500 um and a width of
100 pm, approximately the mean length of sinusoidal
structures of the human liver. The ridges are also parallel to
the flow direction, mimicking the portal and central area
along the porto-central axis in the liver lobule in vivo
(Gebhardt 1992). Additional micro-pillars located at the
front and back of the ridges represent flow barriers which
provide reduced flow velocity and a reduction in friction
forces acting on the settled cells, imperative for long-term
culture conditions of microfluidic hepatocyte cultures. Just
before cell positioning, the inner surfaces of HepaChip®
were modified to bind human collagen IV exclusively to
the cell culture regions, whereas other areas become non-
adhesive for cells. To carry out active cell positioning,
positive dielectrophoresis was used dragging the cells
toward the assembly ridges. To this end, each cell chamber
comprises two electrodes at the outer chamber wall which
span the full length of a ridge. After turning on the electric
filed, a field of inhomogenity results because of the mi-
crostructured cell chambers, creating highest dielectroph-
oretic forces at the edges of the cell assembly ridges where
the channel’s restriction is maximal. Thus, cells are trapped
out of the flow to the top of the assembly ridges.
Positioning of the cells by dielectric forces is a
sequential process that serves not only the correct
localization on the ridges, but also the separation of
viable cells from non-viable contaminants (Docoslis et al.
1999). First, the viable hepatocytes only are attracted to
the coated surface of the ridges by applying an AC
electric field with approximately 200 VSS and 350 kHz.
After positioning and switching to normal culture med-
ium, the hepatocytes start to attach to the collagen matrix
and establish first contacts with neighboring cells
(Fig. 19). Second, positioning is continued by assembling
sinusoidal endothelial cells in the same manner. The
sequential process favors the attachment of the majority
of the endothelial cells to the right and left border of the
hepatocyte cord on the ridge. Only some few endothelial
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Fig. 19 Cell assembly of hepatocytes and liver endothelial cells in
HepaChip®. a Assembly of primary mouse hepatocytes onto the cell
assembly ridges in less than 2 min. b After 4-h culture, sparsely
assembled cryopreserved human hepatocytes are labeled with

Fig. 20 Sinusoid-like shape of
a 96-h-old hepatocyte/
endothelial cell culture in
HepaChip®. a Micrograph
overlay of DAPI fluorescence
and transmission microscope
images. b Immunofluorescence
image of von Willebrandt factor
(green) decorated endothelial
cells and DAPI (blue) nuclei.

¢ Enlarged receptive of image B
showing clearly an endothelial
cell characteristic granular
pattern of von Willebrandt
factor in HepaChip®
“sinusoids”

cells may reach the inner surface of the cords (Figs. 19,
20). Frequently, endothelial cells may form pearl chains
that stretch into the lumen between the ridges, but it
appears that later in the process, these chains bent back
toward the borders and, thus, place most endothelial cells
in an ideal position. The morphology of such artificial
sinusoids does not change over several days; moreover,

Calcein-green fluorescence demonstrating the initial cord-like
arrangement. ¢ Assembly of cryopreserved mouse liver endothelial
cells (Calcein-red) onto 4-h cultured hepatocytes (Calcein-green)

they retain a robust volume ratio of nucleus to cytoplasm,
unusual in common monolayer cultures. Clearly visible
slender spaces between hepatocytes indicate the forma-
tion of bile canaliculi (Fig.20), an indicator of re-
established cell polarity. Both characteristics are sup-
ported by heterotypic cell-cell interactions of the bor-

dering and covering co-cultured endothelial cells,
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Fig. 21 Primary mouse hepatocytes and liver endothelial cells: Phase
I biotransformation in HepaChip® and standard 2D cell cultures.
CYP3A metabolism was measured using testosterone hydroxylation
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Fig. 22 Primary mouse hepatocytes and liver endothelial cells: Phase
IT biotransformation in HepaChip® and standard 2D cell cultures.
Sulfotransferase (a) and UDP glucuronosyltransferase (b) activities

depicted by the typical granular pattern of vWF-positive
endothelial cells in the artificial sinusoids (Fig. 20).

The HepaChip® in vitro microfluidic system has been
tested for activities of several phase I and phase II
metabolizing enzymes (Figs. 21, 22) and compared to
standard 96-well plate co-cultures of hepatocytes and
endothelial cells. Freshly isolated mouse hepatocytes and
cryopreserved liver endothelial cells have been applied for
short-term incubations up to 3 h each day with a substance
cocktail containing 10 uM 7-hydroxycoumarin, 20 pM
testosterone and 20 pM phenacetin in Williams E medium
supplemented with 0.1 M dexamethasone. Incubations of
hepatocytes without test substances were also included.
Data on testosterone hydroxylation and phenacetin
deacetylation to acetaminophen by CYP3A4 and enzymes
CYPI1A2, respectively, are summarized in Fig. 21; data on
7-hydroxycoumarin-sulfate formation by sulfotransferase
and 7-hydroxycoumarin-glucuronide formation by UGTs
are summarized in Fig. 22. From these data, it is evident
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that activities in HepaChip® cultures are at each time point
significantly higher than in standard cultures. These results
fit well with the increased urea and albumin secretion rate
(Fig. 23) which is obvious higher in HepaChip® compared
to standard 96-well plate cultures.

In its current version, the HepaChip® has already
demonstrated an unprecedented improvement of structural
and metabolic stability and performance. However,
because of its sophisticated and versatile design and
functionality, the HepaChip® in its current format is still
not at the end of its capabilities. Several build-in features
may allow and support further efforts to implement even
higher levels of complexity as have been currently reached.
For instance, dielectric positioning may allow an easy
inclusion of additional liver cell types such as Kupffer cells
and NK cells. The fact that the fraction of NPCs from
ordinary cell preparations from human liver provides the
source of endothelial cells currently used in the HepaChip®
renders the goal achievable to include other cells from the
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Fig. 23 Primary mouse hepatocytes and liver endothelial cells: urea (a) and albumin (b) secretion in HepaChip® versus standard 2D cell

cultures. Data represent values &+ SD of four mice

NPC fraction in the positioning process. Furthermore, the
HepaChip® may allow an approach to the problem of biliary
drainage that currently is not yet solved by any existing
hepatic culture system. As mentioned above, the ridges
carrying the sinusoidal cell cords are flanked by plastic
pillars for the sake of optimized medium flow. These pillars,
however, in particular those placed at the entrance of the
medium stream, may also allow the imitation of “portal
fields” where drainage of bile could be established in the
natural anatomic location. Of course, such an endeavor
seems not easily achievable, but in contrast to other culture
systems the design of the HepaChip® at least opens the
possibility to approach this challenge. Besides this cellular
and structural complementation, other functional aspects
merit attention. First, the automated supply of culture
medium can easily be adapted to mimic various physiologic
conditions of the blood such as postprandial and starvation
states or circadian cycles of hormone and metabolite con-
centrations. Second, there are a number of biocompatible
materials suitable for microfluidic devices, partially used in
medical engineering with a high oxygen transfer rate. For
instance, the HepaChip® device is covered and closed with
a thin cyclic olefin copolymer, to enable adequate oxygen
transfer into HepaChip® cultures. Artificial oxygen carriers
developed as blood substitutes to transfusion medicine can
further support and increase oxygen delivery if needed (for
an extensive overview see Simoni 2012). Third, the system
already has attractive analytical possibilities, e.g. intermit-
tant periods of perifusion with drug cocktails for repeti-
tively determining biotransformation capacity. Even here,
the HepaChip® could be equipped with additional sensors
and analytical tools working online and allowing time-
dependent measurements, for example, integrated oxygen
sensors measuring the cell respiration allow the calculation
of LCss in cytotoxicity testing and require only minimal
handling and no additional agents (Deshpande et al. 2005).

5.10 Bio-artificial livers

Key issues and questions

e The liver microenvironment is essential for hepatocyte
functionality.

e The liver-specific microenvironment is based on a
heterogeneous cell population (composed of hepa-
tocytes, endothelial cells, myofibroblasts and mac-
rophages), a liver-specific ECM, a spatial gradient
of oxygen and hormones, and physiological
mechanical cues (including blood flow-dependent
shear).

e These biochemical and biomechanical cues must be
integrated into a liver-specific 3D spatial architecture,
in order to obtain functional bioengineered liver
models.

e Do current approaches to liver bioengineering take our
knowledge concerning cellular composition, ECM,
mechanics and physiology of the liver into account?

Take home messages and perspectives

e Reproducing as accurately as possible liver-specific
micro environmental cues, namely the 3D cell-cell
contacts, the 3D cell-ECM contacts, the heterotypic
cellular population and the nutrient flow, is required to
bioengineer functional liver constructs for drug screen-
ing and for use in the clinics.

e Co-cultures of hepatocytes and NPCs, sandwich hepa-
tocyte cultures, microfluidics systems and self-assem-
bling cellular spheroids have been exploited to liver
bioengineering.

e The strategies developed so far only partially mimic the
liver microenvironment.
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Table 7 Commercially available bioengineered liver models

Company Platform Dimensionality Mimicked biomimetic cues

Hepregen Micropatterned liver cells colonies surrounded 2D Hepatocyte—stromal cells interaction
by stromal cells

Miromatrix Liver constructs based on whole-organ 3D Vascularization, liver-specific ECM, hepatocyte—stromal
decellularization—recellularization cells interaction

MIT (Griffith Microfluidic system. 3D Physiological shear stress.

laboratory)
CellAsic Microfluidic system 2D Plasma perfusion, endothelial-like barrier between liver
cell layers (artificial sinusoids)

Hurel Microfluidic system 2D Plasma perfusion, liver architecture.

RegeneMed Porous nylon 3D interweaving nanofiber 3D 3D hepatocyte—stromal cells interaction
scaffold, 96-well format

InSphero Spheroid model 3D 3D hepatocyte—Kupffer cell-endothelial cell interactions

Bioengineering an artificial liver is a major goal in bio-
technology with a huge potential impact on regenerative
medicine and toxicology (e.g. in ADMET assays). Unpre-
dicted liver toxicity is the main cause of late-stage failure and
withdrawal of drugs from the clinical development or even
from the market (Pampaloni et al. 2007). Species-dependent
metabolism prevents an accurate prediction of toxicity with
laboratory animals (e.g. rodents, fish). Cell-based toxicity
assays with human cells are the obvious alternative. Primary
hepatocytes (e.g. human hepatocytes cultured in vivo in
receptive transgenic mouse, e.g. from Yecuris Corporation,
USA, see also Chen et al. (2011)) and immortalized liver cell
lines (e.g. HepaRG) are available from companies in bulk
amounts. However, hepatocytes lose their liver-specific
functions within 72 h when cultured on conventional 2D
plates (Schuppan et al. 2001). This is due to the non-physi-
ological microenvironment of 2D substrates. Thus, estab-
lishing culture conditions that mimic a liver micro-
environment is a major issue in drug development. In order to
bioengineer a functional artificial hepatic tissue, the physi-
ological interactions between hepatocytes and NPCs, as well
as the interactions between the liver-specific extra-cellular
matrix and hepatocytes, must be re-established.

Current liver bioengineering strategies are based on
retaining the actual architecture, cellular composition, ECM
composition, mechanics and physicochemical gradients in
the liver. Early efforts have shown that hepatocytes and
NPCs extracted from mice liver spontaneously reorganize
to form functional structures (Mitaka et al. 1999). More
recent approaches mimic one or more specific aspects of the
liver architecture, namely heterotypic cellular composition,
culture in ECM gels and the sinusoid plates compartmen-
talization (Nahmias et al. 2007). An overview of the com-
mercially available bioengineered liver constructs and of
the corresponding mimicked biomimetic cues is given in
Table 7. Commercial liver constructs are mainly employed
for drug and toxicity screening.

@ Springer

One of the basic approaches to establish a liver-specific
microenvironment is the co-culture of hepatocytes with
NPCs (Bhatia et al. 1999). Culturing the different liver cell
types in close proximity allows for heterotypic cell—cell
communication through cytokines and chemokines. A recent
publication reported the culture of primary hepatocytes on
circular ECM (collagen type I) spots with a diameter of about
500 pm. Stromal cells (3T3-J2 fibroblasts) were subse-
quently seeded in the space between the spots (about
1,200 pm, center-to-center). The cells were cultured in a
24-well plate format, which is suitable for drug screening
(Khetani and Bhatia 2008). In another paper, circular spots of
fibroblasts (3T3-J2) were used as a feeder layer for a second
hepatocytes layer deposited on the top. This layered co-
culture approach allows for an increased heterotypic cell—
cell contact area, and for an improved oxygen supply to the
cells (Cho et al. 2010). Both types of micro-patterned co-
cultures favor liver-like differentiation and liver-specific
metabolism of the hepatocytes. This is confirmed by the
secretion of albumin and urea, the expression of CYPs, the
formation of bile canaliculi and the polygonal and densely
packed phenotype of the hepatocytes. Micro-patterned cell
islands on planar substrates can be spotted over an extended
area. Thus, this technology should be extendable to large-
scale ADME/Tox screenings (see Table 7, Hepregen).
However, micro-patterned co-cultures do not precisely
mimic the layered 3D liver architecture. Flat and hard sub-
strates are employed. Moreover, fibroblasts are mostly
employed as co-cultured NPCs. However, fibroblasts are not
abundant in the liver acinus. They mainly populate the per-
iportal region. Myofibroblasts are found in the space of Dissé
(Table S1; see ESM). The use of fibroblasts as a NPC type
limits the power of simple co-cultures in mimicking the liver
functionality. LSECs are the second most abundant cell type
in the liver (see Table S1, ESM) and should be employed in
co-cultures in order to improve the predictive ability of this
type of bioengineered liver.
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Fig. 24 a Hepatocyte polarization in 2D and 3D collagen gel. In the
collagen “sandwich” gel, hepatocytes assume a typical polar
structure, with multiple basolateral and apical compartments. The
basolateral sides face the collagen layers and the apical sides face the
bile canaliculi. By contrast, hepatocytes on collagen monolayers are
flattened and form actin stress fibers. Adapted from (Dunn et al.
1991). b Formation of canaliculi in micropatterned sandwich culture.

Sandwich cultures of hepatocytes have been established
more than twenty years ago (Dunn et al. 1991). In the
sandwich approach, hepatocytes are seeded on a collagen I
substrate and subsequently overlaid with a second collagen
layer. Under these conditions, the hepatocytes assume their
typical liver polarity, with the basolateral side facing the
collagen layers and the apical side facing the bile canaliculi
(Fig. 24a). The conventional sandwich culture has been
widely adopted by the pharmaceutical industry. A recent
improvement of the sandwich method seeds hepatocytes in
micro-molded collagen “pits” with a diameter of about
80 pm, which are then overlaid by a second collagen layer

SANDWICH GEL

collagen

@80um

©200pm conventional

The hepatocytes are cultured in micromolded collagen pits of
increasing diameters. Following 2 days in culture, the hepatocytes
have formed a canalicular network (green staining). The canalicular
network appears more organized in the pits than in a conventional
non-patterned sandwich culture. A pit diameter of 80-100 pum is
optimal for canaliculi formation. Scale bar 100 pm (from Matsui
et al. 2012)

(Matsui et al. 2012) (Fig. 24b). The hepatocytes in the
cavities develop a more extended canalicular network
compared to conventional sandwich cultures. A further
advantage is that biliary metabolites can be more easily
recovered from the enlarged canaliculi with a micro-pip-
ette. Nahmias et al. (2006a) have developed a sandwich
system in which a fluorocarbon oxygen carrier is embedded
within the collagen I matrix. A physiological oxygenation
of the hepatocytes during the seeding phase in the gel is
ensured by the carrier. This results in much higher hepa-
tocyte viability and CYP activity, as well as increased
albumin and urea levels.
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The culture of hepatocytes within microfluidic devices
allows the integration of multiple biological, structural and
physical cues (Huh et al. 2011). Liver-specific cues derived
from cell—cell contacts (Kane et al. 2006), blood hydrody-
namics (Kane et al. 2006; Carraro et al. 2008; Toh et al. 2009),
and physicochemical gradients of oxygen and plasma com-
ponents (Kane et al. 2006; Nahmias et al. 2006a; Lee et al.
2007; Toh et al. 2009; van Noort et al. 2009) have been
applied with microfluidic systems. Kane et al. (2006) have
combined micro-patterned co-cultures of hepatocytes and
fibroblasts with a microfluidics system consistingofan 8 x 8
chambers array. The system features two separated channels
for medium perfusion and oxygenation. This separates the

A Micropillars

effects of medium exchange and shear stress from that of
oxygenation on hepatocyte functionality. A stable and sus-
tained production of urea and albumin was measured for
32 days in the system. Carraro et al. (2008) mimicked the
liver parenchyma by seeding hepatocytes in a microfluidic
capillary network reproducing the length scale and flow
parameters of the sinusoids. The hepatocytes are separated
from the artificial sinusoids by a nanoporous polymer mem-
brane. The nanopores have the same size of the sinusoidal
fenestrae and allow the exchange of nutrients, oxygen and
metabolites. The membrane is coated with collagen I in order
to mimic the space of Dissé. The collagen-coated membrane
directs the formation of the basal side of the hepatocyte facing

cell area

pores

EE4RREILRINDNRD

2

Fig. 25 Mimicking liver plates and fenestrated endothelium by
seeding the hepatocytes in chambers enclosed by microfabricated
pores. al Schematic representation of the system developed by Toh
et al. (2009). An array of micropillars separates the microchannel in
the central compartment containing the seeded hepatocytes and two-
side compartments with the perfusing media. a2 Transmitted light
image of seeded hepatocytes. b1-2 SEM micrograph and schematic
representation of the microfluidic artificial sinusoid. The central
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flow channel

channel containing the hepatocytes and the outer flow channel have a
width of 50 pm and a height of 30 um. b3a—3b phase-contrast and
epifluorescence images (calcein and ethidium homodimer-1 staining)
of hepatocytes seeded at low density. The images indicate that
hepatocytes have a low viability at low cell density. b3c—d By
contrast, hepatocytes seeded at high density are viable, as visible from
the calcein staining (green) (from Lee et al. 2007)
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the nanopores. This mimics the liver-specific hepatocytes
polarization. The system is scalable and could be developed
further to an artificial liver suitable for clinical application
(e.g. aliver assisting device that supports patients waiting for
aliver transplantation). Toh et al. (2009) have reproduced the
sinusoidal architecture in a multiplexed device. The liver
plates have been mimicked by seeding the hepatocytes in
chambers enclosed by micropillars (Fig. 25a). The space
between micropillars mimics the fenestrae. The culture
medium flows in perfusion channels surrounding the artificial
plate. In vitro toxicity data obtained with this system correlate
well with the corresponding in vivo data. A similar strategy
has been employed by Lee et al. (2007). The fenestrated
endothelium was reproduced by parallel channels with a
width of 2 um and a height of 1 um (Fig. 25b).

Perhaps the most intriguing approach to liver bioengi-
neering exploits the propensity of cells to histotypic self-
organization. It is well known that a mixture of different types
of isolated cells has an intrinsic ability to self-organize. Cells
of the same type tend to coalesce in a mixture following a
typical length and time-scale. This ability relies mainly on a
differential cell—cell adhesion. This principle can be exploi-
ted in liver bioengineering. Nahmoas et al. (2006b) have
generated vascular structures formed by seeding endothelial
cells on basement membrane ECM. Hepatocytes seeded in
contact with the bioengineered vasculature migrate and
adhere to the vessel. Structures resembling the liver sinu-
soids, with hepatocyte plates, bile canaliculi and a vascular
lumen are formed by the self-organization of the hepatocytes
and the endothelial cells (Fig. 26). These bioengineered
sinusoids maintain CYP expression and activity, as well as an
expression and secretion rate of albumin stable for over
2 months. A further approach to the controlled self-assembly
of functional liver constructs is the formation of spheroids,
described in detail in section “Hepatospheres.” The maxi-
mum diameter that can be reached by liver cell spheroids is
limited by the diffusion of oxygen and nutrients. A necrotic
core develops in a spheroid as its diameter exceeds
200-300 pm. Several approaches have been tested in order to
overcome the size limitation of the spheroids and obtain
larger bioengineered constructs. Inamori et al. (2009) have
obtained a large vascularized liver construct by self-assembly
of hepatocyte spheroids coated with endothelial cells.
Spheroids with a diameter of 100-150 pm were obtained
from rat hepatocytes. The spheroids were first coated with
collagen I by immersion in a diluted solution. The collagen-
coated hepatocyte spheroids were then co-cultured with
endothelial cells (HUVEC). Due to the collagen barrier, the
HUVEC covered the spheroid surface without invading it.
Subsequently, the HUVEC-coated spheroids were packed in
a plastic hollow fiber and cultured further. After nine days of
culture, the spheroids were fused with each other and
the endothelial cells have formed a dense vascular network

Fig. 26 Self-assembly of sinusoid-like structures in vitro by co-
culturing hepatocytes and endothelial cells. Endothelial cells were
seeded on Matrigel. The endothelial cells rapidly formed tubes.
Subsequently, freshly isolated hepatocytes were randomly seeded in
the culture. The hepatocytes directionally migrated toward the
artificial vasculature and adhered to it. The image shows hepatocytes
decorating an endothelial cell tube at day four in co-culture. Double-
immunofluorescence staining for endothelial cells (CD31, red) and
hepatocytes (CK-18, green). Scale bar 200 pm (from Nahmias et al.
2006b)

(Fig. S3; see ESM). This is an interesting approach to bio-
engineer the liver parenchyma by employing a scaffold-free
self-assembly strategy. A similar approach was pursued
(Kelm et al. 2006) to engineer vascularized cartilage by
culturing spheroids in large custom-shaped agarose molds.

Decellularization is a new approach to remove cells
from an organ, preserving the original ECM functionality
and 3D architecture. Recently, decellularization was
applied to rat liver yielding a scaffold with intact ECM and
vasculature (Uygun et al. 2010). The scaffold was repop-
ulated with rat hepatocytes and endothelial cells. This
bioengineered liver graft was then successfully trans-
planted to a recipient rat. This model can be used to
investigate liver development and regeneration, and can
ultimately be employed for transplantation in humans, as
claimed by the company Miromatrix (Table 7).

6 Cryopreservation of hepatocytes and recent
developments

Key questions

e How have methods to cryopreserve human hepatocytes
improved over the past decade?

e Which parts of the process have changed?

e How are transporters affected by the process of
cryopreservation?
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Take home messages

e Cryopreserved hepatocytes can be considered to be a
good alternative to freshly isolated cells.

e Advances in the processes of cryopreservation and
post-thawing have been made in the last decade but
perhaps the main factor contributing to the success of
these methods is the quality of the cells frozen.

e The pre-incubation of hepatocytes (suspension culture)
with anti-oxidants is an important step, which can
increase the chances of a high viability following
thawing of hepatocytes. Although investigations con-
tinue to explore additional improvements to the cryo-
preservation process, success is reliant on the use of
high-quality hepatocytes before they are frozen.

e Improvements now include risk-free freezing of 3D cell
formats as well as single cell suspensions.

e Limited information on the effect of cryopreservation
on transporters is available.

e Effects on transporters are donor-dependent and, in
general, both uptake and efflux transporters are retained
by cryopreserved hepatocytes, albeit at lower rates.

The reasons for cryopreserving human hepatocytes are
manifold; however, for a long time, cryopreservation was a
very difficult process and mostly associated with a high
loss of cell viability after thawing. In the 1980s and 1990s,
huge strides were made toward the successful freezing and
storage of human hepatocytes such that they were not only
viable but could also attach in culture after thawing. These
advancements have meant that cryopreserved hepatocytes
can be used for assays in which previously only fresh cells
could be used, for example, drug-metabolizing enzyme
induction studies and bile transporter function assays
(Kaneko et al. 2010; Bi et al. 2006). Cryopreserved human
hepatocytes are also a valuable tool that can be used in a
multitude of other different applications ranging from
pharmacotoxicology studies to cell transplantation in
humans (Donato et al. 2008a; Gomez-Lechon et al. 2003,
2008; Lahoz et al. 2008; Li et al. 1997). Commercial
suppliers of hepatocytes now offer plateable human hepa-
tocytes from multiple donors, together with the assurance
that they will function in such assays.

6.1 Further improvement of cryopreservation
techniques

6.1.1 General considerations for successful
cryopreservation

Although the confidence in cryopreservation methods has

reached a level that regulatory agencies accept fresh and
cryopreserved cells data interchangeably (Huang and
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Stifano 2006), research continues to optimize this process
further (Gomez-Lechon et al. 2003; Sosef et al. 2005).
Several protocols have been established, according to
which hepatocytes can be cultured and cryopreserved as a
suspension or as a sandwich culture configuration (Gomez-
Lechon et al. 1984; Koebe et al. 1990; Novicki et al. 1982;
Dunn et al. 1989). One technique has been published by
Dunn et al. (1989) and Koebe et al. (1990), which dem-
onstrated that rat hepatocytes that were cultured and
cryopreserved in a sandwich gel culture were able to
maintain their phenotypic properties and functionalities for
a longer period of time than hepatocytes in suspension. In
addition, Sugimachi et al. (2004) demonstrated that cryo-
preserved rat hepatocytes retain their function and metab-
olism when placed in co-culture to the same extent as
freshly isolated primary hepatocytes. Over the years,
intensive research into the development of an optimal
cryopreservation protocol has been performed, and key
parameters that influence the success rate of this process
are constantly under investigation. To date, there are a few
critical factors that are crucial for a successful cryopres-
ervation and a subsequent recovery of hepatocytes. Full
details of cryopreservation methods have been reviewed by
Hewitt (2010) and Stéphenne et al. (2010). First of all,
following the isolation process, a high quality of hepato-
cytes is the first vital step toward a successful cryopreser-
vation process and the quality of hepatocytes can be
impaired by a high fat content, prolonged warm ischemia
or mishandling or inappropriate storage of the liver (Terry
et al. 2005; Gomez-Lechon et al. 2006). In addition, the
different sources of tissue from which human hepatocytes
have been isolated and are also an important factor that has
to be considered, as Terry et al. (2005) demonstrated that
hepatocytes originally isolated from non-heart-beating
donors and steatotic donors are more sensitive to the
cryopreservation process than hepatocytes that have been
originally isolated from a piece of resected liver tissue.
Moreover, additional factors from the patient’s medical
history (for example drug intake, smoking, diabetes,
obesity) could also influence the successful process of
cryopreserving hepatocytes. However, these studies have
not been carried out so far. There is also evidence by a few
research groups that shows that a pre-incubation of hepa-
tocytes as a suspension culture after their isolation greatly
improves their recovery after cryopreservation (Darr and
Hubel 2001; Hubel et al. 2000; Gomez-Lechon et al. 2006).
Furthermore, several groups investigated the beneficial
effect of anti-oxidants within this pre-incubation medium
and concluded that the presence of anti-oxidant agents
greatly helps the recovery of hepatocytes following thaw-
ing (Gomez-Lechon et al. 2008; Terry et al. 2006; Silva
et al. 1999). In most studies, hepatocytes are cryopreserved
at a concentration ranging between 10° and 107 cells/ml
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and it has been demonstrated previously that the use of the
UW solution supplemented with 10 % human albumin or
fetal calf serum as a freezing medium has a beneficial
effect on hepatocytes after thawing (Terry et al. 2010;
Arikura et al. 2002; Adams et al. 1995). Regarding the
cryoprotectants, DMSO is universally used in a final con-
centration of 10 % and represents the gold standard cryo-
protectant. Furthermore, Gomez-Lechén et al. (2006)
showed that the addition of a non-permeating cryoprotec-
tant known as polyvinylpyrrolidone (PVP) to the freezing
medium already containing DMSO significantly improves
the cell viability following thawing. The rate at which
hepatocytes are frozen is also critical for a successful
cryopreservation and a successful recovery of the hepato-
cytes. Most cryopreservation protocols use a slow cooling
procedure before the cryovials are stored in liquid nitrogen
(Coundouris et al. 1993; Dou et al. 1992; Alexandre et al.
2002). Finally, a fast thawing procedure at 37 °C is also
required in order to avoid intracellular ice formation, which
results in cellular damage (Harris et al. 1991). The fol-
lowing sections touch on a number of aspects of cryo-
preservation which have been explored in the past decade.

6.1.2 Storage of 2D and 3D cultures

Although the majority of researchers freeze cell suspen-
sions, some continue to optimize the cryopreservation of
in situ monolayers. Early attempts to freeze hepatocytes as
sandwich cultures resulted in varied success (Kafert-Ka-
sting et al. 2006; Koebe et al. 1996, 1999) due to extensive
loss of viability of cells which were trapped in the gel.
More recent attempts by Miyamoto et al. (2010) using
collagen vitrigel membranes showed significant improve-
ment in comparison with cells cryopreserved without the
collagen vitrigel membrane; however, the recovery of liv-
ing rat hepatocytes after cryopreservation was only 26.7 %.
Despite the limited success of this method, the concept of
freezing pre-cultured cells has continued, possibly as a
result of the increased use of 3D culture formats since more
complex structures are considered to be more predictive of
in vivo processes. Magalhdes et al. (2012) used two dif-
ferent concepts of freezing, namely vitrification and cryo-
preservation to store cell suspensions as well as monolayer
and spheroid cultures. Vitrification involves the solidifi-
cation of a supercooled liquid by using high concentrations
of cryoprotectant and a rapid cooling rate (>40 °C/min) to
produce a “glassy state,” rather than a crystalline state.
These authors showed that cryopreservation and vitrifica-
tion differ with respect to the degree of mechanical stress
they cause to the cells, reflected in changes to the actin
cytoskeleton and levels of apoptotic markers. For example,
the cytoskeletal structure of cryopreserved cells (either
suspensions or monolayer or spheroid cultures) was

disrupted, while vitrification did not markedly alter cyto-
skeletal structure or induce apoptosis. This study concluded
that cell-to-cell contact is beneficial in the maintenance of
viability post-cryopreservation and that the vitrification
approach was far superior to those of conventional freezing
when applied to 2D and 3D hepatocyte-based engineered
cultures. Others have employed encapsulation methods to
improve the vitality of human hepatocytes after cryopres-
ervation. For example, Hang et al. (2010) prepared human
hepatocytes by first pre-incubating for 12-24 h and then
microencapsulating them in alginate-poly-L-lysine-algi-
nate. Compared to cells which had been immediately
cryopreserved, encapsulated hepatocytes exhibited higher
mRNA and protein levels in attached cells, and higher
secretion of albumin and urea levels after thawing. The
protective effect is reported to be due to the alginate
microencapsulation protecting the hepatocytes from phys-
ical damage caused by the growth of extracellular ice
crystals and the alginate gel maintaining the HNF level
(Kusano et al. 2008) and retention of detoxifying enzymes
(Canaple et al. 2001). Encapsulation also has a general
protective effect on of hepatocytes in culture, such as
maintenance of specific functions (transaminase activity,
urea synthesis and protein secretion (Stéphenne et al.
2010), suggesting that this culture format would be ame-
nable to cryopreservation.

6.1.3 Cryoprotectants and supplements

The most common cryoprotectant is DMSO and it is
unlikely that many researchers will deviate from this rec-
ipe. However, Grondin et al. (2009) reported on the use of a
crude wheat extract as a promising alternative to DMSO.
Using partially purified wheat extracts or recombinant
wheat freezing tolerance-associated proteins (such as
WCS120, TaTIL, WCS19 and TalRI-2), the post-thaw
viability (77-93 %), attachment efficiency (77 %) and
CYP activities (CYP1A1/2, CYP2C6, CYP2D2 and
CYP3A1/2) of cryopreserved rat hepatocytes were com-
parable to those of freshly isolated cells. The advantage of
using wheat proteins as cryoprotectants is that they are
non-toxic, natural products that do not require animal
serum, and are economical and easy to prepare.

While the basic freezing medium components remain
constant (DMSO, basal medium and serum), there have
been a number of reports of additional supplements to the
cryoprotectant medium which claim to result in higher
post-thaw viabilities (reviewed by Hewitt 2010). More
recently, Galbiati et al. (2010) reported a beneficial effect
of pre-incubating hepatocytes with unconjugated bilirubin,
a physiological antioxidant. Another natural supplement,
platelet lysates, was also shown to improve hepatocyte
recovery (Tolosa et al. 201la). This rather unusual
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supplement resulted in hepatocytes exhibiting higher
expression of adhesion molecules, higher attachment effi-
ciency and cell survival as well as decreased apoptosis.
They also showed that ATP levels and metabolic enzyme
levels were close to those in fresh hepatocytes. Others have
reported beneficial effects of an ice nucleating agent,
crystalline cholesterol; to reduce supercooling and sub-
sequent cryoinjury (Massie et al. 2011), while Miyamoto
et al. (2010) described the effectiveness of the inclusion of
maltose and a silk-derived high molecular protein, sericin,
on the attachment of hepatocytes. Regardless of the sup-
plement, the need for animal component-free media has
been of a greater importance, either due to transport
requirements (and avoidance of swine fever/CJD issues) or
clinical reasons such as a lack of tolerance to animal
derived products (Selvaggi et al. 1997).

6.1.4 The freezing apparatus

Most researchers use either a programmable freezing
machine or the more basic isopropanol “Mr Frosty” con-
tainer to freeze their cells. However, for clinical use, liquid
coolants for cryopreservation and storage should be avoided
to minimize contamination of the cells. To address this,
Massie et al. (2011) compared a cryogen-free cooler with a
nitrogen vapor-controlled freezer. They cryopreserved algi-
nate-encapsulated liver cell spheroids using both freezing
machines. Viability, cell numbers and function were com-
parable between the two methods, suggesting that cryogen-
free coolers offer a promising alternative to liquid nitrogen-
coolant cryopreservation for cells designated for clinical use.

6.1.5 Post-thaw methods

Post-thaw methods have remained largely unchanged but
are divided into two distinct methods: either thawed cells
(still containing a few ice crystals) are placed on ice and
the DMSO gradually diluted by sequential addition of ice-
cold medium or the cells are thawed until no ice remains in
the vial and then transferred into a large volume of warm
(37 °C) medium, which rapidly removes DMSO. Early
methods using the former technique involve the use of
glucose to off-set the osmotic changes during DMSO
removal but supplementation of thawing media with glu-
cose has also been shown to significantly decrease caspase-
3 activation and increase the preservation of adhesion
molecules, suggesting that this basic addition may be
advantageous in more than one way (Tolosa et al. 2011a).

6.2 Effect of cryopreservation on transporter function

Cryopreserved hepatocytes are routinely used for assess-
ment of drug metabolism in the pharmaceutical industry.
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Access to human hepatocytes is critical due to the large
variation in drug-metabolizing enzyme expression across
species such that animal hepatocytes often do not reflect
human responses or functions. The optimization of hepa-
tocyte cryopreservation has therefore been instrumental in
improving the capability to predict metabolic clearance,
drug—drug interactions and metabolite formation in man. In
general, phase I metabolism, e.g. CYP activities, as well as
the phase II enzymes e.g. UGTs, that have been investi-
gated are well preserved after cryopreservation (McGinnity
et al. 2004; Jacobson et al. 2007). By contrast, the GSH
status may be compromised which may explain the
sometimes lower activity of GSH conjugation observed in
cryopreserved hepatocytes (Sohlenius-Sternbeck and
Schmidt 2005).

More recently, drug transporters have emerged as
important determinants of drug disposition. Several solute
carriers and ATP-binding cassette transporters in the liver
have an impact on the disposition of their drug substrates,
as reviewed by the “International Transporter Consortium”
(Giacomini et al. 2010). Regulatory authorities are cur-
rently reviewing their guidelines, and among the liver
transporters, OATPIB1 (SLCOIBI), OATP1B3
(SLCOI1B3), MDR1 (ABCBI) and BCRP (ABCG?2) are on
the list of transporters to be assessed in drug development.
In addition, EMA recommends assessment of OCT1
(SLC22A1) and BSEP (ABCBI11) (FDA draft guidelines
and EMA guidelines).

Functional activity of clinically important drug-trans-
porting solute carriers has been assessed in human and rat
cryopreserved hepatocytes. In general, NTCP (SLCI10A1),
OATPI1B1/1B3 (SLCOI1B1/3) and OCT1 (SLC22AI) have
been reported to be functional after cryopreservation (De
Bruyn et al. 2011). However, only few groups have com-
pared drug transporter activity in the same batch of hepa-
tocytes before and after cryopreservation. In human
hepatocytes, uptake studies have been performed before
and after cryopreservation of hepatocytes from the same
donors (Shitara et al. 2003; Badolo et al. 2011). In terms of
Na™-dependent uptake of taurocholate, mediated by NTCP
(SLCI0AI), there was a large variation in the effect of
cryopreservation (Shitara et al. 2003) between donors with
an average decrease in CLypuie by 40 %. In the same
study, the average of estradiol-17B-glucuronide CLpke,
reflecting the functional activity of OATP1BI1/3
(SLCO1B1/3), was decreased by 33. Similarly, Badolo and
co-workers observed a 50 % decrease in CLypgie Of
estradiol-17B-glucuronide after cryopreservation of human
hepatocytes (Badolo et al. 2011). This was due to a
decrease in V.., whereas the Km of estradiol-17f-glucu-
ronide uptake was similar before and after cryopreserva-
tion, indicating conservation of the substrate affinity for the
transporter. OCT1 (SLC22A1) activity was also assessed in
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human hepatocytes before and after cryopreservation (Ba-
dolo et al. 2011). Uptake of the organic cation transporter
substrate 1-methyl-4-phenylpyridinium (MPP+) was not
statistically different in terms of Km and Vmax after
cryopreservation, and thus, no difference in CLypgke Of
MPP+ could be detected.

Drug transporters of the ABC-binding cassette family
also retain functional activity after cryopreservation.
Although a direct comparison of freshly prepared and
cryopreserved hepatocytes has not been accomplished on
the same preparations, several studies have demonstrated
efflux in the same order of magnitude in cryopreserved as
freshly prepared cells. Sandwich culture, which is the most
commonly used system for assessment of transporter-
mediated efflux at the canalicular membrane, has been
successfully prepared from cryopreserved human hepato-
cytes (Bi et al. 2006). Mdrl activity was retained in
cryopreserved rat hepatocytes (Jorgensen et al. 2007).
Biliary excretion rates of taurocholate and digoxin were
similar in cryopreserved and fresh hepatocytes. Using
hepatocytes from dog, rat, monkey and man in suspension,
comparable results were found in experiments with freshly
prepared and cryopreserved hepatocytes when efflux of
substrates of MDR1 (ABCB1), BCRP (ABCG2) and MRPs
(ABCCs) was measured (Li et al. 2008).

In conclusion, hepatocytes retain functional activity of
both solute carriers and ATP-binding cassette transporters
during cryopreservation. In some cases, e.g. uptake of
estradiol-17B-glucuronide, the activity may decrease dur-
ing cryopreservation (Shitara et al. 2003; Badolo et al.
2011). Cryopreserved hepatocytes are important tools in
the prediction of metabolic clearance and transport. In
terms of transporters, the strength lays in the possibility to
gain a mechanistic understanding of hepatobiliary drug
disposition. Cryopreservation may affect the quantitative
aspect of drug transport similar to other factors like incu-
bation and cell culture conditions which may also affect
transporter expression on the mRNA level (Richert et al.
2006).

7 Hepatocyte dedifferentiation

Key questions

e Why do hepatocytes dedifferentiate in vitro?

e What are the major differences between hepatocytes
cultured as monolayers and hepatocyte sandwich
cultures?

e Do epigenetic and posttranscriptional mechanisms of
gene expression play a role in the dedifferentiation of
primary hepatocytes in culture?

Take home messages

e Hepatocyte isolation and culture causes major altera-
tions in gene expression patterns that ultimately cause
these cells to dedifferentiate.

e Hepatocyte dedifferentiation is an active process driven
by Ras/Mek/ERK signaling. Activation of this pathway
in differentiated hepatocytes causes dedifferentiation
with features of epithelial to mesenchymal transition
(EMT). Conversely, dedifferentiation is reversible
when the signaling activity is reduced to an in vivo-
like state.

e Hepatocyte monolayers, i.e. hepatocytes cultured on
stiff and dry collagen, show a phenotype characterized
by (1) resistance to apoptosis because of PI3K/Akt
activation, (2) a proliferation primed state in which
cell division can readily be induced by mitogens such
as EGF or HGF and (3) a dedifferentiated state
characterized by feature of epithelial to mesenchymal
transition (EMT) and loss of cell polarity due to
overactive Ras/Mek/ERK signaling. By contrast,
hepatocyte sandwich cultures maintain their sensitiv-
ity to apoptosis, show a polar phenotype but prolifer-
ation cannot be stimulated by mitogens.

e It is clear that targeting epigenetic and posttranscrip-
tional mechanisms controlling the hepatocellular gene
expression holds great promise as an innovative
approach to tackle dedifferentiation of primary hepa-
tocytes in culture. Nevertheless, we have only just
begin to discover the diversity of levels and mecha-
nisms composing an inherent part of that control and
their interactions. Further research, using combinations
of these approaches, is necessary in the future to fully
explore their potential as novel anti-dedifferentiation
strategies.

e Interfering with epigenetic and posttranscriptional
mechanisms of gene expression has great potential as
an innovative anti-dedifferentiation strategy for pri-
mary hepatocytes in culture and thus for a liver-based
in vitro tool that can be used for long-term pharmaco-
toxicological purposes.

Freshly isolated primary hepatocytes and their culture, either
of human or rodent origin, are considered as faithful replicas of
in vivo-like hepatic physiology. The hepatocytes are cultured,
usually as sandwich cultures, in which the cells are maintained
between two layers of soft gel or as collagen monolayers in
which hepatocytes grow on a dish that has been coated with stiff
and dry collagen (protocols for which are described in the
Supplement Section B). Hepatocytes maintain a considerable
level of functionality during short-term cultures and thus rep-
resent a well-accepted tool for studying drug metabolism (Re-
der-Hilz et al. 2004; Gebhardt et al. 2003; Carmo et al. 2005;
Papeleu et al. 2002; Knobeloch et al. 2012; Ullrich et al. 2007,
2009; Hengstler et al. 2000a, 2005) and drug interactions such
as inhibition or induction (Li et al. 1999; Hengstler et al. 2000a,
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b; Ringel et al. 2002, 2005; Kafert-Kasting et al. 2006; Saussele
et al. 2007). All compounds known to cause enzyme induction
in vivo that have been tested with cultured hepatocytes pro-
duced positive results (Bode and Heinrich 2001). Nevertheless,
their routine implementation in preclinical safety evaluation,
particularly for long-term studies, is hampered by the progres-
sive deterioration of liver-specific features (Elaut et al. 2006;
Vinken et al. 2006a). Altered mRNA and protein levels of phase
I and phase II biotransformation enzymes and drug transporters
are well-known hallmarks of hepatocyte dedifferentiation
(Baker et al. 2001; Elaut et al. 2006; Beigel et al. 2008; Rowe
et al. 2010). In fact, the entire physiological repertoire in
hepatocytes collapses as a function of culture time. This is
caused at least in part by a drastically decreased expression of
hepatic master regulators, such as liver-enriched transcription
factors (LETFs) (Padgham et al. 1993; Mizuguchi et al. 1998;
Rodriguez-Antona et al. 2002). Primary hepatocytes ultimately
die after only a couple of days in culture. Loss of hepatic
cytoarchitecture and ischemia-perfusion injury, experienced by
hepatocytes during their isolation from the freshly removed
liver, are the main molecular triggers of these changes. They
initiate proliferative and inflammatory signaling cascades, with
a shift of the hepatocellular balance toward a proliferation-ori-
ented and thus less differentiated cell phenotype (Paine and
Andreakos 2004; Elaut et al. 2006; Vinken et al. 2006a). In this
section, the changes in gene expression as a result of cell iso-
lation and culture are described, as well as potential methods to
restore hepatocyte-specific functions.

7.1 Characteristics of hepatocyte dedifferentiation

7.1.1 Hepatocyte “dedifferentiation” is a consequence
of overactive RAS/MEK/ERK signaling

With the advent of gene expression profiling, it would be of
interest to use cultured hepatocytes also for toxicogenomic

Fig. 27 Phosphorylated and
total ERK1/2 and Akt in liver
tissue from C57BL6/N mice
(“liver”), freshly isolated
hepatocytes (“fresh hep”),
hepatocytes cultured on stiff and
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pAkt
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studies (see section “Toxicogenomics, a rapidly evolving
subdiscipline of toxicology”). Currently, this is hampered
by the fact that cultured hepatocyte cultures show major
alterations in gene expression compared to the in vivo
situation. When placed into culture, more than 3,000 genes
are up- or downregulated by at least threefold. Principle
component analysis (PCA) of gene array data demonstrated
that most up- or downregulations occur during the first 24 h
of culture, followed by a period with much smaller
expression alterations (Fig. S4(a); see ESM) (Zellmer et al.
2010). This PCA also included liver tissue of mice
(L) which shows only relatively small differences com-
pared to the freshly isolated hepatocytes (H). In a next step,
only genes altered during culture were included into the
PCA (Fig. S4(b); see ESM). This analysis illustrates that
the three mice (indicated by blue pink and red color) can be
differentiated along axis 1. More importantly, axis 2
comprises genes whose expression was altered during the
culture period (Fig. S4(b); see ESM). To understand the
mechanism responsible for the observed time-dependent
gene expression alterations, the genes associated with axis
2 (Fig. S4(b); see ESM) were analyzed for over-repre-
sented transcription factor binding sites (Zellmer et al.
2010). After adjustment for multiple testing, ETF, Elk-1
and NF-Y were identified as over-represented. An impor-
tant factor that these transcription factors have in common
is that they are influenced by MAP kinase signaling. This
led to the hypothesis that MAP kinase signaling might be
activated in cultured hepatocytes compared to the in vivo
situation. Indeed, phosphorylated ERK1/2 was clearly
increased in cultured hepatocytes compared to liver tissue
(Fig. 27; Godoy et al. 2009). This increase in phosphory-
lated ERK1/2 was already present in freshly isolated
hepatocytes, indicating that activation of MAP kinase
signaling is not only a consequence of the culture condi-
tions (see 24-72 h in culture in Fig. 27) but also of the
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Fig. 28 Influence of hepatocyte culture conditions on signaling and
phenotype. When hepatocytes are isolated from the organ and
cultured on stiff and dry collagen (“collagen monolayers”), at least
two signaling pathways (ERK and Akt) are activated. The activation
process involves focal adhesion kinase (FAK) and src although the
exact mechanisms initiating this process are still unknown. Signaling
via the Ras/Raf/ERK pathway (“MAP kinase”) causes dedifferenti-
ation and epithelial to mesenchymal transition (EMT). Activation of
the PI3K/Akt pathway causes resistance to apoptosis. Both pathways
are strongly activated in collagen monolayers but much less in
collagen sandwich cultures (Godoy et al. 2009)

isolation stress. Similar to ERK1/2, Akt phosphorylation
was also increased. The degree of Akt and ERK1/2 acti-
vation strongly depends on the culture conditions with
much stronger phosphorylation seen in hepatocytes cul-
tured as monolayers than in sandwich culture (Fig. 27).
Both activation of the signaling via ERK1/2 and Akt have
major consequences on the hepatocyte phenotype. Acti-
vation of ERK1/2, e.g. by expression of a constitutively
active Ras, but not constitutively active Akt leads to
hepatocyte dedifferentiation and to features of epithelial to
mesenchymal transition—EMT (Fig. 28; Godoy et al.
2009). Activation of Akt causes resistance of apoptosis by
antagonizing activation of p38. This has been shown by
inhibitor experiments in hepatocyte monolayers where
inhibition of PI-3 kinase restored apoptosis sensitivity
(Godoy et al. 2009). Similarly, over-expression of a con-
stitutively active Akt in sandwich cultures (representing
conditions without Akt activation and apoptosis resistance)
induced resistance to apoptosis. Therefore, activation of
Akt as a consequence of the culture conditions is of rele-
vance for toxicity experiments and may lead to underesti-
mation of in vivo toxicity. Both activation of ERK1/2 and
Akt and its biological consequences (EMT and apoptosis
resistance) are reversible. Upon harvesting hepatocytes
from collagen monolayers and re-plating them into sand-
wich cultures, the degree of ERK1/2 and Akt phosphory-
lation decreased (Godoy et al. 2009). This was
accompanied by a re-establishment of the differentiated

phenotype, a decrease in EMT markers and by re-estab-
lishment of apoptosis sensitivity.

7.1.2 Cultured hepatocytes exist in a “proliferation primed
state”

Since signaling via Akt and ERK is known to mediate
proliferation, BrdU incorporation into hepatocytes cultured
as collagen monolayers was analyzed. Under subconfluent
conditions, basal BrdU incorporation (without EGF, HGF
or other mitogens in the culture medium) was already
relatively high and generally ranged between 15 and 20 %
(Zellmer et al. 2010). Addition of the MEKI inhibitor,
PD098059, or the PI3K inhibitor, LY294002, almost
completely abolished the basal BrdU incorporation, dem-
onstrating the role of MAP kinase and Akt signaling. In
contrast to subconfluent cultures of hepatocyte monolayers,
confluent cultures did not show increased basal BrdU
incorporation despite the high levels of phosphorylated
ERK1/2 and Akt. This is most probably due to efficient
contact inhibition (Machide et al. 2006). Similar to con-
fluent monolayers (on stiff and dry collagen), hepatocytes
in collagen gels (sandwich cultures) did not show increased
basal BrdU incorporation.

7.1.3 Hepatocyte differentiation and dedifferentiation
as reversible results of signaling network activities

Signaling activities and gene expression patterns of hepa-
tocyte monolayers are strongly altered compared to the
in vivo situation. The phenotype resulting from these
alterations is a dedifferentiated (“EMT-like”) and apop-
tosis resistant cell. These processes are driven by overac-
tive MAP kinase and Akt signaling (Fig. 28). This is in
contrast to the common view that hepatocyte dedifferen-
tiation in vitro is a passive process of deterioration finally
leading to cell death. Actually, hepatocyte dedifferentiation
is an active process driven by overactive signaling path-
ways, which makes them more apoptosis resistant. Under
appropriate conditions, dedifferentiated hepatocytes can be
cultured for months. By manipulating the respective sig-
naling pathways, the cells even re-differentiate, showing
that the differentiated and EMT-like phenotypes are
reversible. Although it is clear that the isolation stress as
well as the matrix of the culture system contributes to the
in vitro alterations, the exact mechanisms initiating ERK1/
2 and Akt signaling are not fully understood. Unfortu-
nately, practical strategies that completely avoid the culture
condition-mediated switch to increased signaling activities
are not yet available. Soft gel collagen sandwich cultures
clearly improve the situation. However, although quanti-
tatively to a lesser degree, similar patterns of gene
expression alterations are observed in sandwich as in
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Fig. 29 Epigenetic control mechanisms of gene transcription. Inhi-
bition of gene transcription typically corresponds with hypermethy-
lated CpG islands in gene promoter regions and deacetylated histone
tails at local chromatin domains. HDAC inhibitors (HDACi) and
DNMT inhibitors (DNMTi) modulate the chromatin structure. They

monolayers cultures, suggesting that the in vitro alterations
are ameliorated but not stopped by the soft gel collagen.
More advanced 3D culture systems such as hepatocyte
spheroids (discussed in section “Hepatospheres”) have not
yet been systematically studied with respect to gene
expression and signaling activities. An important milestone
in future will be to fully understand the mechanisms that
cause the altered state of the signaling network and to
identify efficient strategies to maintain them in a more
in vivo-like state.

7.1.4 Epigenetic and posttranscriptional mechanisms
as novel anti-dedifferentiation strategies for primary
hepatocytes in culture

Initial anti-dedifferentiation approaches attempted to boost
the expression of liver-specific features and to prolong the
lifespan of cultured primary hepatocytes by providing an
in vivo-like culture microenvironment (Papeleu et al. 2002;
Vinken et al. 2006a). Yet, these methodologies only slow
down hepatocyte dedifferentiation but do not causally
counteract it. More recent strategies described here aim at
the restoration of the hepatocyte-specific transcriptional
blueprint by directly targeting (epi)genetic mechanisms
that drive hepatocellular gene expression.

7.1.5 Epigenetics and its mechanisms in the regulation
of gene expression

Already in the early 1940s, the term “epigenetics” was
introduced by merging “genetics” with “epigenesis,” i.e.
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create an open, transcriptionally active euchromatin configuration at
gene coding and regulatory regions, accessible for transcription
factors (TF), thereby facilitating gene transcription. 5-AzaC decita-
bine, M, 5-methyl cytosine at CpGs, SB sodium butyrate, TSA
Trichostatin A, VPA valproic acid (from Snykers et al. 2009)

the developmental events that bring mature organisms to
life (Waddington 1942). Although this term was used ini-
tially purely in the context of developmental studies, it
became clear over the years that the functional scope of
epigenetics stretches far beyond the developmental pro-
cesses (Choudhuri 2010). The most general contemporary
interpretation describes epigenetics as an inheritance of
variation (-genetics) above and beyond (epi) changes in the
DNA sequence (Bonasio et al. 2010). Three major mech-
anisms, which are not caused by changes in gene sequence,
provide the molecular basis for such variations, namely (1)
DNA methylation, (2) reversible histone modifications and
(3) non-coding RNA (ncRNA)-related control (Choudhuri
2010). It is, however, still a matter of debate whether the
last group can be considered as a part of the epigenome or
rather must be seen as a separate regulatory phenomenon;
and therefore, mechanisms involving ncRNA are not
expanded on here (although miRNAs are described in
section “MicroRNAs”).

7.1.5.1 DNA methylation Both DNA methylation and
posttranslational histone modifications control by means
of an elegant mechanism the accessibility of gene pro-
moters to the RNA polymerase II-containing transcrip-
tional machinery. As such, methylation marks deposited
on a DNA template by DNA methyltransferases (DNMTs)
hinder efficient transcription factor binding (Fig. 29).
Specifically, cytosine, which is located in so-called CpG
islands of DNA within the 5 promoter of genes, is
methylated (Cheng and Blumenthal 2008; Szyf 2010; Ren
et al. 2011). The presence of 5-methylcytosine
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subsequently attracts the methylated DNA-binding domain
proteins (Meehan et al. 1989; Nan et al. 1993). The latter
recruit histone-modifying enzymes, which cause gene
silencing by altering the level of chromatin compaction
(Nan et al. 1993; Fuks et al. 2003). DNA methylation in
regulatory regions, such as gene promoters and enhancers,
is therefore inversely correlated with gene expression
(Szyf 2010).

7.1.5.2 Histone deacetylation Histone deacetylases
(HDACS) are often recruited to methylated gene promoters,
bringing about a final silencing imprint. HDAC-mediated
deacetylation of histones N-termini tightens DNA strands
on histone cores by increasing the electrostatic attraction
between these two chromatin components (Witt et al.
2009). By contrast, the introduction of acetyl groups by
HDAC:Ss reduces the affinity of the protein core to the DNA
strands. As a result, a more relaxed chromatin configura-
tion is formed, thus facilitating transcription factor binding.
The presence of covalently attached acetyl groups on his-
tone tails is therefore linked with the transcriptional acti-
vation, while their absence is related to transcriptional
repression (Fig. 30) (Riggs et al. 1977; Hebbes et al. 1988;
Durrin et al. 1991).

Fig. 30 Biogenesis of miRNA.
miRNAs are processed through
the canonical pathway or
mirtron pathway into pre-
miRNA. After exporting the
pre-miRNA from the nucleus to
the cytoplasm, miRNA—
miRNA* duplexes are formed
after cleavage by Dicer. From
this duplex, only the guide
strand is loaded into the RISC
complex, forming miRISC. This
complex will cause translational
repression or mRNA cleavage.
DGCR DiGeorge syndrome
critical region, Pre-miRNA
Precursor miRNA, Pri-miRNA
Primary miRNA, RISC RNA-
induced silencing complex
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Although reversible acetylation is the best-studied
example of posttranslational modification of histone
proteins, a plethora of other chemical signatures may be
deposited at their N-terminal tails, evoking either
transcriptional activation or suppression (Yang et al.
2007; Tambaro et al. 2010). All known histone phos-
phorylation events are associated with transcriptional
activation. In comparison, histone methylation and
ubiquitination may have a dual outcome, depending on
the identity of the amino acid residue concerned in the
histone tail, while sumoylation has a purely repressive
character (Choudhuri 2010). These specific chemical
entities not only modulate the interaction between the
DNA and the histones, but also create a so-called his-
tone code, which is a sort of roadmap for nuclear reg-
ulatory proteins (Strahl and Allis 2000). The latter
possess evolutionarily conserved domains, which allow
them to selectively bind specific histone modifications
with a very high affinity. Thus, nuclear regulators can
“read” the histone code and initiate appropriate DNA-
templated programs, including the on or off switching
of gene transcription (Bannister et al. 2001; Lachner
et al. 2001; Santos-Rosa and Caldas 2005; de la Cruz
et al. 2007; Vermeulen et al. 2007).
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7.1.6 Inhibition of HDAC and/or DNMT activity
in the hepatic in vitro systems as anti-
dedifferentiation strategy?

Aberrant expression and function of epigenetic regulators,
such as HDACs and DNMTs, have been implicated in a
variety of pathological processes. As such, their role in
carcinogenesis has been reported on numerous occasions
and these enzymes became ubiquitous targets of clinical
anticancer therapies (Batty et al. 2009; Fandy 2009; Kris-
tensen et al. 2009; Prince et al. 2009; Witt et al. 2009;
Spiegel et al. 2011). In fact, in vitro cancer models were the
first cell systems in which the anti-proliferative and pro-
differentiating potential of HDAC and DNMT inhibitors,
HDIs and DMTIs, respectively, could be demonstrated
(Gore 2009). Specifically, in respect of liver cancer-derived
cell models, the natural prototypical HDI, Trichostatin A,
was shown to induce the expression of CYP3A4 and
alcohol dehydrogenase (ADH) 1B phase I biotransforma-
tion enzymes, as well as the CCAAT-enhancer-binding
protein (C/EBP) o transcription factor in the human hep-
atoma HepG?2 cell line (Kim et al. 2004; Dannenberg et al.
2006a, b; Dannenberg and Edenberg 2006). Furthermore,
both HepG2 and Huh-7 hepatoma cells responded to Tri-
chostatin A exposure with upregulated apolipoprotein CIII,
human blood coagulation factor (HCFX) and glutamine
synthetase expressions, in addition to an improved
ammonia removal and albumin secretory ability (Ya-
mashita et al. 2003). In comparison, the pharmacological
inhibition of DNMT activity exerted positive effects on the
expression of several phase I and phase II biotransforma-
tion effectors in HepG2 cells (Bakker et al. 2002; Dan-
nenberg et al. 2006). Combined inhibition of these
epigenetic mechanisms in the HepG2 cell line also upreg-
ulated C/EBPa, ADH 1B and 1C levels (Dannenberg et al.
2006a, b). These observations were subsequently extrapo-
lated to cultures of primary hepatocytes. In this respect,
Trichostatin A was successfully used to inhibit the prolif-
erative induction of EGF-stimulated hepatocytes (Papeleu
et al. 2003, 2007). The sooner the cells could be exposed to
the HDI, the earlier, in terms of a cell cycle stage, the cells
became arrested. Indeed, when Trichostatin A was added
already during the isolation of the hepatocytes from liver
tissue, i.e. during the two-step collagenase perfusion, the
hepatocytes were still in the state of proliferative quies-
cence and neither the proto-oncogen c-jun nor cyclin D1
could be detected. This pointed toward a cell cycle block at
the early G; phase. However, hepatocyte proliferation
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could only be stopped in the early S-phase when cells were
cultured in the presence of Trichostatin A from the time of
cell seeding onwards. This was evidenced by the inhibition
of DNA replication and the absence of the S/G,/M-phase
marker cyclin-dependent kinase 1 (cdkl) (Papeleu et al.
2003). By contrast, the metabolically more stable synthetic
Trichostatin A derivative, -carboxypentyl p-dimethy-
laminobenzamide hydroxamate (4-Me,N-BAVAH), could
already induce a G, cell cycle arrest when added to the cell
culture medium from the time of plating (Papeleu et al.
2007). In primary rat hepatocyte cultures, Trichostatin A
and its analogues elevated CYP1Al, CYP2B1/2 and
CYP3A2 mRNA and protein steady-state levels, and this
was accompanied by corresponding increased enzymatic
activities (Henkens et al. 2007; Fraczek et al. 2009).
Similar observations were made with respect to the protein
expression of key hepatic transcription factors, namely
C/EBPa and HNF-4a (Henkens et al. 2008). HDAC inhi-
bition also improved other aspects of hepatocyte func-
tionality, namely albumin secretion and gap junctional
intracellular communication (Papeleu et al. 2003; Henkens
et al. 2007, 2008; Vinken et al. 2006b). In contrast, Tri-
chostatin A, as well as a number of its structural analogues,
reduced caspase-3 activation and the expression of the pro-
apoptotic B cell lymphoma 2 (Bcl-2)-like proteins Bid and
Bax in rat hepatocyte monolayer cultures. At the same
time, the protein levels of the anti-apoptotic Bcl-2 family
member Bcl,; were increased, indicating that interference
with HDAC activity delays the onset of apoptosis, which
spontaneously occurs during primary hepatocyte culture
(Papeleu et al. 2003, 2007 Vanhaecke et al. 2004; Fraczek
et al. 2009). Most recent findings also demonstrate that
DNMT inhibition has comparable beneficial effects as
HDAC inhibition on the phenotype of primary hepatocytes
in an in vitro setting. Accordingly, DMTI, i.e. decitabine
alone or in combination with HDI, caused a concentration-
dependent inhibition of DNA synthesis in EGF-induced
hepatocyte monolayers, and had a positive impact on
albumin secretory activity and CYP1AT1 protein expression
(Fraczek et al. 2011). Moreover, simultaneous exposure to
both epigenetic modifiers resulted in even more pro-
nounced effects than each of these agents separately.

7.1.7 miRNAs and their regulation by HDAC inhibition
in primary hepatocyte cultures/hepatoma cell lines

To date, little is known about miRNA expression in
hepatic in vitro models. Yet, it was recently shown that
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dedifferentiation of primary rat hepatocyte cultures is
accompanied by changes in their hepatocellular miRNA
profile, reflecting the combined action of multiple miR-
NAs on different biological pathways. Two miRNA
species, i.e. miR-21 and miR-126, were found to be the
most up- and downregulated miRNAs, respectively
(Bolleyn et al. 2011). These modifications are presumed
to be linked to the proliferative response triggered upon
isolation of the cells from the liver (Guo et al. 2008;
Elaut et al. 2006; Marquez et al. 2010; Song et al. 2010).
In addition, Trichostatin A had a positive outcome on
miR-122 expression (Bolleyn et al. 2011), a miRNA
species that accounts for approximately 70 % of all
hepatic miRNAs and that has been claimed to be
imperative for preserving the differentiated hepatic phe-
notype (Lagos-Quintana et al. 2002; Esau et al. 2006).
Concerning the miRNA expression in hepatic cell lines,
different miRNAs have been reported to be aberrantly
expressed, such as miR-375, miR-21 and miR-34a, which
probably is a manifestation of tumor-based characteristics
including cell proliferation, migration/invasion and clo-
nogenicity (He et al. 2011; Connolly et al. 2011; Cheng
et al. 2010).

8 Alternative models to primary human hepatocytes

Key questions

e Are there any relevant alternatives to primary hepato-
cytes for metabolism-dependent hepatotoxicity testing?

e Why is there a need of engineered hepatic-derived
cells?

e Can several CYP be transduced simultaneously?

e (Can customized cells expressing the desired levels of
CYP activities be developed?

e What hepatocyte applications and models can utilize
iPS-derived hepatocytes?

e What are the limitations of iPS-derived hepatocytes for
studying human liver diseases?

e What are the current methods for isolating and
characterizing embryonic, fetal and adult stem cell-
derived hepatocytes?

e How may stem cells be used in research and therapy?

Take home messages

Engineered human hepatic-derived cells expressing
drug-metabolizing enzymes represent a useful in vitro
approach to early identification of bioactivated com-
pounds by comparing toxic effects in metabolically
competent versus wild-type non-competent cells.
Contrary to primary hepatocyte cultures, cell lines offer
the advantage of robustness and good experimental
reproducibility.

Customized cells over-expressing a single enzyme or a
combination of several drug-metabolizing enzymes that
are representative of the average activity in human
liver/hepatocytes can be easily prepared using adeno-
viral strategy.

iPS hepatocytes can serve as a good model for a wide
range of applications for studying human liver diseases,
metabolism and toxicology.

Several studies demonstrate the feasibility to generate
mature hepatocytes from different cellular sources
including embryonic, fetal and adult stem cells. Adult
stem cells received particular interest as they can be
easily obtained from a liver biopsy, expanded in vitro
and made differentiate into mature hepatocytes. This
cellular source solves some ethic and biological
concerns with use of stem cells although undifferenti-
ated, maintain a stable phenotype and avoid serious
consequences such as metaplasia and cancer.

Future research with stem or progenitor cells, and/or
tissue engineering methods may yield improved ways
to maintain hepatocyte-like functions (synthesis of
factors, metabolic capacity, etc.) in liver diseases, as
well as ways to enhance proliferation, engraftment,
survival and other desirable features for cell transplan-
tation therapy. Future efforts are envisioned that
combine the proliferative and integrative capabilities
of stem or progenitor cells with the specialized
functions and environment-changing impact of mature
hepatocytes (natural or in vitro differentiated) or drug/
gene therapies in the treatment for liver diseases in the
coming years.

Stem or progenitor cells are an exciting prospect for
future cell transplantations and may prove a sustainable
alternative source of cells, providing that tumorigenic-
ity concerns are addressed and high levels of hepato-
cyte-like functions can be induced. Innovations aimed
at enriching the quality of current cell sources and
improving hepatocyte functions, survival and delivery
will certainly help improve clinical outcomes.
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Primary cultured human hepatocytes are the “gold
standard” for hepatotoxicity studies (LeCluyse 2001; Go-
mez-Lechon et al. 2010a, b). However, their phenotypic
instability over culture time, the scarce and irregular
availability of liver tissue for cell harvesting, the poor
plateability of certain lots of cryopreserved hepatocytes,
and the high batch-to-batch functional variability of
hepatocyte preparations from different donors seriously
compromises their use in routine testing (Gomez-Lechén
et al. 2003).

In order to develop an alternative to primary human
hepatocytes, it is necessary to identify specific cell surface
markers for each of the liver cell types and to perform a
detailed characterization of liver parenchymal cells and
NPCs (Michalopoulos 2007). Generally, the downregula-
tion of fetal markers, such as a-fetoprotein (AFP) and
glutathione-S-transferase P1 (GSTP1l; GSTm), and the
acquisition of phase I and phase II drug-metabolizing
enzymes expression, such as CYPs, are used as markers of
mature hepatocyte. In addition, the expression of albumin,
cytokeratins (CK) 18 and 19, the epithelial cell adhesion
molecule (EpCAM), ol-antitrypsin, asialoglycoprotein
receptor and tyrosine aminotransferase is considered a
feature of differentiated hepatocytes (Nava et al. 2005;
Gridelli et al. 2012; Touboul et al. 2010). Moreover,
hepatic-enriched nuclear factors (HNF) family members
and CAAT/enhancer-binding protein o (C/EBPa) super-
family members are nuclear factors expressed in human
liver and, among others features, exert an important role in
the biotransformation enzyme functions (Tan et al. 2007).
In particular, HNF-4 is described to be one of major tran-
scription factors for various liver-specific genes involving
in the regulation of protein and lipid synthesis, glucose and
drug metabolism (Kimata et al. 2006; Crestani et al. 2004).
These hepatocyte characteristics and functions emphasize
their importance in liver functions. This section describes
two main areas of research addressing alternatives to pri-
mary human hepatocytes, namely cell lines, iPS cells and
embryonic stem cells.

8.1 Cell lines isolated from human hepatomas
8.1.1 Advantages and drawbacks of cell lines

To overcome the limitations of primary human hepato-
cytes, several human hepatoma cell lines have been pro-
posed for hepatotoxicity assessment (e.g. HepG2, Hep3B,
Huh7, Fa2N4, HepaRG). Cell lines are characterized by
their unlimited life span, stable phenotype, high availability
and easy handling, which make them potential alternative
in vitro models for screening purposes. Unfortunately, most
hepatic cell lines show a low or partial expression of drug-
metabolizing enzymes compared to primary hepatocytes or
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human liver, likely due to a decreased transcription of
enzyme genes (i.e. CYPs) (Donato et al. 2008b). The
marked differences in expression levels of key hepatic
transcription factors and nuclear receptors found between
hepatocytes and hepatoma cell lines have been related to
the observed differences in CYP expression (Rodriguez-
Antona et al. 2002). This finding was supported by ade-
novirus-mediated transfection studies with c/EBPa or
HNF-4, PXR and CAR in HepG2 cells, resulting in
increased levels of several CYPs (Jover et al. 1998; Naiki
et al. 2004; Martinez-Jimenez et al. 2007; Kiiblbeck et al.
2010).

Recent studies have established that several hepatoma
cell lines show an expression pattern closer to hepatocytes
in confluent cultures. Proliferating HepaRG cells differ-
entiate toward hepatocyte-like phenotype after several
weeks of treatment with DMSO, and under these culture
conditions, they show higher levels of drug-metabolizing
activities than other hepatoma cells commonly used for
hepatotoxicity screenings (i.e. HepG2) (Kanebratt et al.
2008a). However, compared with human hepatocytes, CYP
expression in HepaRG cells is in general lower, with the
exception of CYP3A4, which is present at higher mRNA
and activity levels (Kanebratt et al. 2008a; Lubberstedt
et al. 2011). Similarly, confluent growth of hepatoma
HuH?7 cells for several weeks results in increased levels of
CYP3A4 activity (Sivertsson et al. 2010). Phenotypic
changes in HuH7 cells occur in the absence of differenti-
ation inducers (i.e. DMSO). Fa2N4, a non-tumorigenic
immortalized hepatic cell line widely used in the pharma-
ceutical industry, has been reported to be a potential model
system to assess the induction of the major CYPs (Youdim
et al. 2007). However, the basal enzyme activities are low,
and therefore, it is difficult to assess CYP induction without
very sensitive analytical methods (Sinz et al. 2008). Drug
metabolism (particularly CYP-dependent metabolism) is a
major determinant of hepatotoxicity, as both detoxification
and bioactivation processes can occur, and are most fre-
quently responsible for inter-individual differences in drug-
induced toxicity. Unfortunately, even the most promising
and differentiated hepatoma cells do not constitute an ideal
surrogate system for human hepatocytes for hepatotoxicity
studies, as they do not reproduce drug-metabolizing
enzyme pattern of human hepatocytes.

8.1.2 Strategies to develop metabolically competent
hepatic cell lines by gene engineering

In view of the limited expression of drug-metabolizing
enzymes in most hepatic-derived cell lines, alternative
approaches have been explored to obtain immortalized
hepatocytes from a non-hepatocarcinoma origin (reviewed
by Castell et al. 2006 and Donato et al. 2008b). A
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successful immortalization of normal hepatocytes from dif-
ferent species was achieved using different strategies
including cell transformation with virus genes or oncogenes
(i.e. simian virus 40 large T antigen, c-myc, cH-ras) (Osanai
et al. 1997, reviewed by Castell et al. 2006), hybrid cells
obtained by the fusion of hepatocytes and immortalized cell
lines (Widman et al. 1979; Cassio et al. 1991) or the gener-
ation of hepatic cell lines from transgenic animals (reviewed
by Castell et al. 2006). Immortalized hepatic cell lines have
been established from livers of transgenic mouse and rat
expressing the SV-40 large T antigen under the control of the
hepatic L-pyruvate kinase (Courjault-Gautier et al. 1997) or
albumin (Bulera et al. 1997) promoter, respectively; or from
animals over-expressing growth factors (TGF-o0 or human
growth hormone), early growth signals (constitutively active
met-protooncogene) or truncated growth suppressor genes
(p53-knockout mice) (reviewed by Castell et al. 2000).
Although using these strategies some hepatic functions were
maintained following cell transformation, the cells show a
very low expression of CYP enzymes, which, in general,
makes them unsuitable for drug metabolism and hepatotox-
icity studies (Castell et al. 2006; Donato et al. 2008b).

Other strategies have been currently explored to overcome
the limitations of hepatic cell lines for drug metabolism
studies. Metabolically competent hepatic cells have been
successfully developed by the transfection of hepatic and
NPCs with viral expression vectors encoding for human CYP
enzymes and other genes involved in xenobiotic metabolism
(i.e. UGTs, glutathione transferases.) resulting in both tran-
sient or stable gene expression (Crespi and Miller 1999;
Gonzalez and Korzekwa 1995; Sawada and Kamataki 1998).
The development of genetically manipulated hepatic cell
lines expressing CYP genes has been accomplished by using
vaccinia virus, adenovirus, cytomegalovirus (CMV) and
retroviral vectors systems. While vaccinia virus and adeno-
viral vectors transduce hepatocytes effectively, the vectors
are non-replicating and remain episomal, and thus gene
expression is transient (Ilan et al. 1999; Li et al. 1993), by
contrast, most integrating vectors into the host genome
require a round of cell division for the integration event to
occur (Ferry et al. 1991; Yamashita and Emerman 2006).
Genetically modified hepatic-derived cells expressing human
drug-metabolizing enzymes have become in recent years
suitable cell tools for assessing metabolism-mediated bio-
activation of chemicals and their effects on cells (Prakash
et al. 2008). In addition, in contrast to primary hepatocyte
cultures, these cell lines offer the advantage of robustness and
good experimental reproducibility.

A key point is that the catalytic activity of CYP trans-
fected cells relies not only on the efficient expression of the
transgene, but also in the existence of the required electron
transport partners (NADPH-P450 reductase and cyto-
chrome b5) (Gonzalez and Korzekwa 1995). The existing

hepatoma cell lines express sufficient P450 reductase to
ensure sufficient monooxygenase activity (Donato et al.
2008b). In fact, among mammalian cell expression sys-
tems, liver-derived cell lines (HepG2, THLE, Hep3B,
HLE, HLF, Huh6, Huh7 and Fa2N4 cells) have been suc-
cessfully transfected to express human CYP genes. The
CYP expression is confirmed by the determination of
enzyme activities and by the RT-PCR procedure. Recom-
binant enzymes show catalytic properties comparable to
those of human liver microsomes, and the activity levels of
the expressed CYP enzymes are similar or higher when
compared to human hepatocytes.

Vectors containing CMV promoter/enhancer sequences,
such as the singular expression vector pPCM Vneo (Baker et al.
1990), which effectively drive the expression of CYP genes
inserted, has been used in human hepatic—derived THLE
cells, a non-tumorigenic SV40-immortalized human liver
epithelial cell line (Mace et al. 1994; Bort et al. 1999).
Recombinant retroviruses have been widely used to deliver
human CYP genes to mammalian cell lines (Sawada and
Kamataki 1998). Lentiviral vectors are unique within the
retroviral vector family since they are capable of effectively
transduce both dividing and non-dividing cells and stably
integrate into the genome of the host cell, thereby facilitating
long-term transgene expression (Naldini et al. 1996). In the
past few years, different vector systems have been developed
based on primate and non-primate lentiviruses, including
human immunodeficiency virus type 1 (HIV-1), simian
immunodeficiency virus (SIV), equine infectious anemia
virus (EIAV) and feline immunodeficiency virus (FIV)
(Chang and Gay 2001). Several studies have shown that
lentiviral vectors effectively transduce the widely used hep-
atoma cell lines, Huh7 and HepG2 (Nash et al. 2004; Liao and
Ning 2006). Some studies have reported that baculovirus
(Autographa californica nuclearpolyhedrosis virus) vectors
can be used to shuttle foreign genes into mammalian cells
(Gonzalez et al. 1991a; Shoji et al. 1997; Condreay et al.
1999). Baculovirus transfection strategies have proven suc-
cessful at transferring foreign DNA into hepatoma cells and
primary hepatocyte cultures (Beck et al. 2000). It is note-
worthy that the uptake of the baculovirus was reported to be
predominantly specific for hepatic cell types, with associated
transfection efficiencies ranging greater than 70 % (Boyce
and Bucher 1996).

In general, genetically engineered cells using vectors that
integrate the genetic material into the host cell genome have
no limited life span, express permanently high levels of the
transgene. However, present limitation of these cells is the
fact that only one or two enzymes can be satisfactorily
transfected into cells and the risk of mutagenic properties
associated with integrating vectors cannot be excluded.

Recombinant constructions of vaccinia virus which only
replicates in the cytoplasm of the host cell, outside of the
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Fig. 31 Modulation of CYP activity levels in HepG2 cells transduced
with CYP adenoviruses. HepG2 cells were individually transfected
with increasing doses (moi) of adenoviruses encoding CYP1A2 (a),
CYP2C9 (b) or CYP3A4 (c). Afterward, activities were determined

nucleus have been described (Gonzalez et al. 1991Db).
Several isoforms of CYP have been expressed in HepG2
cells using vaccinia virus-mediated transient expression
(Aoyama et al. 2009; Waxman et al. 1991). The major
drawback of this system is that infection of host cells with
vaccinia virus results in cytopathic effects, hindering stable
recombinant protein expression.

The adenovirus vector strategy has been used for
introducing target genes into liver-derived cells with very
high efficiencies (reviewed by Wickham (2000), and cell
transfer is not dependent on active cell division. Recom-
binant adenoviruses rapidly and efficiently infect hepatic
cell lines, and almost 100 % of the cells can express
functional levels of the transgene after a short exposure to
the virus (Castell et al. 1997). This technology has facili-
tated the generation of transient metabolically competent
cells after transduction with recombinant-defective aden-
oviral vectors encoding for CYP genes (Castell et al. 1997,
Bai and Cederbaum 2004; Naiki et al. 2004; Hosomi et al.
2011; Donato et al. 2010). A major characteristic of this
approach is that functional levels of CYP are easily mod-
ulated as a function of the number of infecting virus par-
ticles (Fig. 31). Among several hepatoma cell lines
(HepG2, Hep3B, HLE, HLF, Huh6, Huh7 and Fa2N4 cells)
efficiently infected with adenovirus vector harboring
CYP3A4, HepG2 cells showed the highest CYP3A4 pro-
tein expression and corresponding testosterone 6f-
hydroxylase activity (Hosomi et al. 2011). The use of
adenoviral strategy to confer CYP activities to HepG2 cells
has been extensively reported (Vignati et al. 2005; Donato
et al. 2010; Aoyama et al. 2009). This cell system has been
proposed as a new in vitro tool for metabolism-mediated
toxicity and clearance prediction of drugs metabolized by
CYPs (Vignati et al. 2005; Donato et al. 2010). Recently, it
has been shown that HepG2 cells can be co-transduced
with multiple CYPs (Tolosa et al. 2011b). By selecting an
appropriated mixture of recombinant CYP adenoviruses,
transgene expression in HepG2 cells is comparable to that
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for 48 h using phenacetin, diclofenac or midazolam as selective
substrates, respectively. Activity data are expressed as pmol of the
corresponding metabolite formed per minute and per mg of cell
protein

of human hepatocytes as shown by the enzymatic activity
assessed with specific substrates (Fig. 32). Important
advantageous properties of adenoviral vectors include:
feasible production of high-titer vector preparations, high
efficiency in transducing both quiescent and actively
dividing cells, high levels of controllable gene expression
and co-transduction with multiple CYPs which can repro-
duce the in vivo relative abundance of each enzyme and a
lack of mutagenic properties associated with integrating
vectors. However, a limitation of adenovirus transduction
is that expression of the enzyme of interest is transient, and
a new transfection is required for each experiment.

8.1.3 Metabolically competent hepatic cell lines for drug
hepatotoxicity testing

Conferring drug-metabolizing capability to target cells
allows their use in the study of phenomena involving bioac-
tivation and toxicity, as it facilitates discrimination of toxic
effects resulting from the expression of an individual gene,
and to compare with their isogenic parental control cell line.
There has been a considerable progress in the development of
suitable cell systems based on the stable transfection of cells
with gene/cDNAs encoding for drug-metabolizing enzymes
(Crespi and Miller 1999; Gonzalez and Korzekwa 1995).
Hepatic THLE cells have been genetically engineered to
express individual human CYPs (CYP1A2, CYP2B6,
CYP2C9, CYP2C19, CYP2D6, CYP2EI and CYP3A4) with
activities comparable to those of human liver while retaining
the characteristics of the parental cells and conjugating
enzymes (Pfeifer et al. 1993, 1995; Mace et al. 1997; Bort
et al. 1999). THLE cell lines expressing human CYP2E]1 or
CYP1A2 were used to activate N-nitrosodimethylamine and
2-amino-3-methylimidazo 4,5-f quinoline and to assess the
inhibitory effect of sulforaphane (Barcelo et al. 1998). A five
THLE cell line set has been used as a first tier screen to assess
whether toxicity is due to the parent compound or an active
metabolite or whether there is CYP-mediated detoxification
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of the parent compound (Dambach et al. 2005). Yoshitomi
etal. (2001) have also established a series of HepG2 cell lines
with stable expression of single human CYP enzymes, such as
CYP1A1,CYP1A2,CYP2A6,CYP2B6, CYP2C8,CYP2C9,
CYP2C19, CYP2D6, CYP2E1 and CYP3A4 which are a
suitable model to investigate drug-induced cytotoxicity.
Genetically engineered cell lines expressing stable human
drug-metabolizing enzymes have also been satisfactorily
used in the identification of those enzymes involved in the
metabolism of a drug candidate. In fact, incubating the
compound with each separate cell line is useful to ascertain
which CYP isoform(s) is(are) responsible for metabo-
lite(s) formation (Bort et al. 1999; Chang et al. 2006a; Emoto
et al. 20006).

A cell line, Huh7-1A2-1-E, with high expression level of
CYPI1A2 has been established based on Huh7 cells using a
recombinant lentiviral vector (Chu et al. 2011). The Huh7-
1A2-I-E cells were evaluated as a cell-based model for
high-throughput screening to identify CYP1A2 inhibitors
or CYP1A2-associated cytotoxic agents. A collection of
approximately 200 drugs were screened using this system,
and results indicate that for most drugs the metabolism by
CYPI1A2 is unlikely to have made a major contribution to
the in vitro cytotoxicity (Chu et al. 2011).

CYP3A4 is the major isoform in the liver contributing to
the metabolism of more than 50 % of the drugs currently
used (Rendic and Carlo 1997) and is involved in the met-
abolic activation of drugs causing toxicity (Walgren et al.
2005). Several engineered hepatic cells expressing this
isoform have been developed. HepG2 cells lacking
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Fig. 32 CYP activities in HepG2 cells simultaneously transduced
with a mix of adenoviruses encoding CYP1A2, CYP2C9 and
CYP3A4. HepG2 cells were co-transfected with a mixture of
adenoviral CYP constructs (6 moi CYP1A2 + 90 moi CYP2C9 + 66
moi CYP3A4). CYPIA2 (phenacetin O-deethylation), CYP2C9
(diclofenac 4'-hydroxylation) and CYP3A4 (midazolam 1’-hydroxyl-
ation) were determined 48 h later in the cells and compared to those
in control HepG2 cells and human hepatocytes (HH) in primary
culture. Activity values are expressed as pmol of the corresponding
metabolite formed per minute and per mg of cell protein

estrogen receptors and engineered to over-express
CYP3A4, the most important CYP to metabolize tamoxi-
fen, have shown to be a good model to study the effects of
tamoxifen metabolites which are not related to estrogen
receptor inhibition (Holownia and Braszko 2004). CYP3A-
mediated biotransformation of the thiazolidinedione ring
may be involved in hepatotoxicity of the glitazones in
humans (Alvarez-Sanchez et al. 2006). The toxicity of
3-(3,5-dichlorophenyl)-2,4-thiazolidinedione and several
structural analogues or potential metabolites was compar-
atively tested in wild-type human HepG2 cells and HepG2
cells stably transfected with CYP3A4. The results of these
studies indicate that thiazolidinedione-ring-induced cyto-
toxicity in the transfected HepG2 cells is dependent on
CYP3A4-mediated metabolism (Frederick et al. 2011). The
role of CYP3A4 (responsible for amiodarone N-deethyla-
tion) in amiodarone-associated hepatotoxicity was investi-
gated in HepG2 cells stably transfected with CYP3A4.
Amiodarone was cytotoxic for HepG2 expressing CYP3A4
cells but not for wild-type HepG2 cells and co-incubation
with ketoconazole attenuated cytotoxicity of amiodarone.
Metabolized amiodarone triggered the production of ROS,
induced mitochondrial damage and cytochrome c release,
and promoted apoptosis/necrosis in HepG2 cells expressing
CYP3A4, supporting the hypothesis that a high CYP3A4
activity is a risk factor for amiodarone hepatotoxicity
(Zahno et al. 2011).

CYP2EI is a key CYP enzyme involved in the bio-
transformation of ethanol and volatile anesthetics and in
the chemical activation of many carcinogens, pro-carcin-
ogens and toxicants. A HepG2 cell line stably expressing
recombinant CYP2E1 was established to assess the meta-
bolic activation of N-nitrosodiethylamine (Zhuge et al.
2003). An increase in cytotoxicity and micronucleus rate
was observed in CYP2El-expressing cells in comparison
with wild-type HepG2 cells. Thus, the cell line is proposed
as a useful model for testing the cytotoxicity, mutagenicity
and metabolism of xenobiotics, which may be activated or
metabolized by CYP2EL.

To approach more complex phenomena (i.e. two-stage
metabolism, bioactivation), cells expressing both activating
and detoxifying enzymes have been constructed (Sawada
and Kamataki 1998). Engineering hepatoma cells (human
HepG2 and HuH7 and rat Hepalclc7) expressing CYP2E1
and GSTP1 has been developed and used to investigate the
bioactivation of carcinogens (Goldring et al. 2006). Cells
expressing other drug-metabolizing enzymes, such as
aldehyde dehydrogenases, superoxide dismutase, UGTs
and glutathione transferases, have also an obvious utility in
pharmacology and toxicology (Townsend et al. 1999).

A major limitation of engineered cells stably expressing
drug-metabolizing enzymes is that metabolic profiles differ
from those of primary hepatocytes. Transfection techniques
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did not allow a controlled expression of the transfected
gene, and often resulted in activity levels lower or higher
than in hepatocytes (Wu and Cederbaum 1996; Vignati
et al. 2005; Frederick et al. 2011). Moreover, each cell line
shows relatively high activity levels of the transfected
enzyme (i.e. a particular CYP) compared to other drug-
metabolizing enzymes (i.e. other CYPs or conjugating
enzymes), which produce an unbalanced metabolic
capacity. These drawbacks can be avoided by the use of
adenoviral strategy which allows the generation of cells
expressing desired levels of each enzyme (Aoyama et al.
2009; Tolosa et al. 2011b). In addition, it has been sug-
gested that transient adenovirus-mediated expression
avoids potential selection problems and cell adaptations
which may occur with permanent engineered cell lines (Bai
and Cederbaum 2004).

A feature of adenovirus infection is that functional
expression level of the recombinant enzyme is modulated as a
function of the amount of virus used. Therefore, infection of
hepatoma cells with appropriate doses of adenoviral con-
structs lead to high expression of target genes, which ensure
high metabolic activity of the enzyme(s) of interest (Donato
et al. 2010). It has been shown that by optimization of
transfection conditions (adenovirus dose, infection time),
HepG2 cell cultures expressing CYP activity levels similar to
those of primary hepatocytes can be easily prepared (Fig. 32)
(Vignati et al. 2005; Aoyama et al. 2009; Tolosa et al. 201 1b).
To date, a few HepG2 cell-based systems prepared using
adenoviral vectors have been proposed to evaluate CYP-
mediated hepatotoxicity (Bai and Cederbaum 2004; Vignati
etal. 2005; Hosomi et al. 2011; Tolosa et al. 201 1b; Iwamura
etal. 2011). The sensitivity of cytotoxicity assays is increased
by cell treatment with L-buthionine sulfoximine to deplete
GSH levels. HepG2 hepatoma is selected as the cell system
since it has been proven to be successfully transfected with
adenoviruses, expresses the required levels of elements nee-
ded to support CYP activity (i.e. NADPH-cytochrome P450
reductase, cytochrome b5) and is widely used for hepato-
toxicity studies.

As a proof of concept of the potential use of these cell
systems for toxicity assessment, effects of acetaminophen
were studied in HepG2 cells infected with an adenovirus
construct harboring CYP2E1 (Bai and Cederbaum 2004).
Acetaminophen is a commonly administered drug known to
produce hepatotoxicity when taken at large doses. Toxic
effects of the drug are metabolism-dependent and are mainly
due to its bioactivation by CYP2E1 to NAPQI, an active
metabolite. Compared with cells infected with B-galactosi-
dase adenovirus, HepG2 cells transiently over-expressing
CYP2El were more sensitive to acetaminophen-induced
necrosis and apoptosis (monitored by changes in cell viabil-
ity, relative percentage of apoptotic or necrotic cells, caspase-
3 activity, mitochondrial membrane potential and formation
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of drug protein adducts). The observed cytotoxicity was
clearly dependent on the concentration of acetaminophen and
the amount of CYP2E1 adenovirus (multiplicity of infection,
moi). HepG2 cells infected with CYP2E1 adenovirus have
also been used to study the role of CYP2E1 in Fas-mediated
cytotoxicity, oxidative stress and apoptosis (Yan et al. 2008).
Vignati et al. (2005) proposed HepG2 cells transiently
transfected with CYP3A4 as an in vitro tool for metabolism-
mediated toxicity screenings. The results showed that ten
CYP3A4 substrates known to generate toxic metabolites
(bioactivation) produced higher cytotoxicity (assessed by
MTT test and intracellular ATP content) in CYP3A4 ade-
novirus-transfected cells than in non-transfected control
HepG2 cells. By contrast, when cells were treated with drugs
known to be metabolized by CYP3A4 to non-toxic metabo-
lites (detoxication), the highest toxic effects were produced in
control HepG2 cells. The potential utility of adenovirus-
transfected HepG2 cell systems to identify hepatotoxicity
associated with CYP3A4 metabolism was supported by a
recent study including 24 bioactivated and non-bioactivated
drugs (Hosomi et al. 2011). In this study, the sensitivity of
HepG2 cells over-expressing CYP3A4 to drug-induced
cytotoxicity was increased by reduction in intracellular level
of Nrf2, a transcription factor involved in upregulation of
several genes coding antioxidant proteins and phase II drug-
metabolizing enzymes. A similar strategy was applied to the
study of drug-induced toxicity associated with metabolic
activation by CYP2C9 (Iwamura et al. 2011). Recombinant
adenovirus vectors provide versatile systems for efficient
transfection of more than one gene. Using this technology,
CYP3A4-expressing and superoxide dismutase (Yoshikawa
et al. 2009) or y-glutamylcysteine synthetase (Hosomi et al.
2010) knockdown rat hepatoma cells have been generated.
These cell systems were proposed as useful screening tools
for the prediction of metabolism-mediated hepatotoxicity
produced by oxidative stress and/or generation of active
metabolites by CYP enzymes.

As indicated above, simultaneous transfection with a
mixture of recombinant CYP adenoviruses results in HepG2
cells with a metabolic competence similar to that of human
hepatocytes (Fig. 32). Recently, the procedure of adenovirus
coinfection was optimized to cells cultured in 96-well formats
with such degree of efficiency and accuracy that the system is
amenable to use in high-throughput hepatotoxicity screen-
ings (Tolosaetal. 2011b). As an example, aflatoxin B, which
is bioactivated by several CYPs, was more toxic to upgraded
HepG2 cells transiently expressing functional levels of
CYPIA2, CYP2C9 and CYP3A4 than to non-metabolically
competent HepG2 cells (Fig. 33). By contrast, no appreciable
differences in cytotoxicity parameters (cell viability, mito-
chondrial membrane potential, intracellular calcium con-
centration and nuclear changes) of non-bioactivated
compounds were found between both cell systems.
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In summary, human liver-derived cells lines manipulated
for both stable or transient expression of drug-metabolizing
enzymes are promising in vitro systems for routine screening
of metabolism-based hepatotoxicity in drug discovery.
Although cells engineered to permanently over-express a sin-
gle enzyme exhibit an unbalanced metabolism, they provide
useful tools to maximize the production of reactive metabolites
and to identify potentially bioactivated hepatotoxins (Dam-
bach et al. 2005). Similarly, rapid, sensitive and relatively
inexpensive cell-based hepatotoxicity screenings can be per-
formed using adenovirus constructs. A major advantage of
adenovirus procedure is its versatility that allows generating
cells expressing desired levels of multiple genes. Thus, cus-
tomized cells over-expressing a single enzyme or expressing a
combination of several drug-metabolizing enzymes that are
representative of the average activity in human liver/hepato-
cytes or that mimic a particular population group (i.e. extensive
or poor metabolizers) can be easily prepared.

8.2 iPS cells for modeling diseases and ADMET

An alternative to primary human hepatocytes may be the use
of other cells, such as human fetal liver cells, or adult liver
stem/progenitor cells. In this section, the focus is on the
potential of these possible cell sources for liver cell trans-
plantation. Hepatocytes have been differentiated from a
number of different stem and somatic cell sources, including
mesenchymal, fibroblast, embryonic and induced pluripotent

AFLATOXIN B1 (LM)

stem (iPS) cells. The use of somatic cell sources has grown in
the past few years, and iPS-derived hepatocytes have been
generated from a variety of species including mouse (Okita
et al. 2007; Sancho-Bru et al. 2011), human (Takahashi et al.
2007b; Yuetal. 2007; Song et al. 2009) and pig (Aravalli et al.
2012). Recent technological advances in iPS derivation have
evolved for the development of footprint and feeder-free lines
(Iwamuro etal. 2010; Nagaokaetal. 2010; Yuetal. 2011) and
the use of non-integrating episomal vector reprogramming of
the patient T-cell population (Brown et al. 2010; Mack et al.
2011). These iPS cells can be expanded and directly differ-
entiated into hepatocytes in vitro and are capable of many
hepatic functions (1) albumin secretion, glycogen storage,
drug metabolism, drug transportation and lipogenesis (Ras-
hidetal. 2010; Si-Tayebetal.2010; Chenetal. 2012). Human
iPS-derived hepatocytes exhibit key morphological features
of differentiated hepatocytes (2) senescence and polyploi-
dism as well as differentiated gene expression and function
(Fig. S5; see ESM). A promising application of IPS-derived
hepatocytes will be to study inherited metabolic disorders of
the liver such as progressive familial hereditary cholestasis,
o l-antitrypsin deficiency, glycogen storage disease type 1a,
familial hypercholesterolemia, hereditary tyrosinemia and
Crigler—Najjar syndrome (Ghodsizadeh et al. 2010; Rashid
etal. 2010). Rashid and colleagues recently showed that their
iPS-derived hepatocytes were capable of maintaining the
phenotypic characterization of their intrinsic disease prop-
erties. In another study, they were able to use zinc finger
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nucleases (ZFNs) and PiggyBac technology in human iPS
cells to correct a point mutation (Glu342Lys) in the ol-
antitrypsin gene that is responsible for ol-antitrypsin defi-
ciency (Yusa et al. 2011). These studies are an important
proof of concept that different mechanisms of inherent liver
diseases can be recapitulated in iPS-derived hepatocytes.
Another in vitro application will be for the study of hepatitis
infection and disease. Recently it has been shown that both
mouse and human iPS-derived hepatocytes are capable of
HCV infection and replication (Aly et al. 2011; Yoshida et al.
2011; Si-Tayeb et al. 2012).

Since iPS cells can bypass the ethical concerns surrounding
embryonic stem cells (ESCs), they represent an ideal source of
patient and disease-specific cells for clinical applications. In
order to reduce the dependence on donor liver organs, iPS
hepatocytes have been evaluated for cell therapy treatments. In
recent studies, iPS-derived hepatocyte functions have been
tested to determine whether these cells are useful for cell
replacement therapy applications such as in a bioartificial liver
(Yu et al. 2012) and their functional integration in drug-
induced rodent models of the liver (Asgari et al. 2011).

Hepatotoxicity and the variability of individual responses
are major causes of drug failure during pre-clinical testing.
Therefore, a useful application of iPS-derived hepatocytes
will be to screen drugs tailored to the individual patient and
genetic background. Moreover, this will also be useful for the
study of idiosyncratic drug interactions. The net result of this
approach would substantially decrease the risk and cost
associated with clinical trials and will lead to a more per-
sonalized approach in drug administration.

8.2.1 Limitations and challenges of using iPS-derived
hepatocytes for studying human liver diseases

It is known that many metabolic disorders of the liver and
hepatotoxicity require interactions between hepatocytes and
the other liver NPCs (see sections “Non-parenchymal cells
and their role in hepatotoxicity” and “Use of in vitro sys-
tems for predicting liver toxicity”). While many advantages
to having patient-specific iPS-derived hepatocytes exist, the
development of models that include these hepatocytes along
with other key signals from extracellular matrices and other
liver cells may be necessary when testing unknown mech-
anisms of disease and drug toxicity. In addition, it is known
that differences in iPS reprogramming (Kim et al. 2010c)
and epigenetic cell memory (Ohi et al. 2011; Ruiz et al.
2012) can cause variability in subsequent differentiation
procedures. Advances in iPS cell reprogramming will be
needed to understand and generate more consistent iPS cell
cultures for subsequent hepatocyte differentiation proce-
dures. Another challenge is the large quantities of hepato-
cytes required for large-scale toxicology and drug
interaction screenings. These iPS-derived hepatocytes will
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need to be produced in large volumes with consistent
functionality and gene expression between batches. Current
developments exist that provide large numbers of functional
iPS-derived hepatocytes (CDI, wunpublished results). In
addition to the difficulty of generating this high volume of
cells, the possibility of teratoma formation is a concern.
Many, recent, remarkable advances in the field of stem cell—-
derived hepatocytes have been made (Takebe et al. 2013).
However, major challenges still exist, and more studies are
needed to address the key issues surrounding the expansion
and development of these cells to achieve an efficient dif-
ferentiation into pure and functional populations of disease-
and toxicity-relevant hepatocytes.

8.3 Embryonic stem cell-derived hepatocytes

Embryonic stem cells (ESCs) have been extensively stud-
ied as a potential cell source for cell replacement therapies
and drug development due to their self-renewing capability
and a strong proliferation rate. Many protocols have been
developed in order to differentiate several cell types from
ESCs (Kim et al. 2002; Kehat et al. 2004; Lako et al. 2001;
Suzuki et al. 2005; D’Amour et al. 2006; Soto-Gutierrez
et al. 2007). In an elaborate study, Duan et al. (2007)
described a method to differentiate human ESC in hepa-
tocyte-like cells. For the first time, they demonstrated by a
bioluminescence imaging that purified differentiated ESCs
express liver-specific genes at physiological levels and
exhibit liver-specific functions comparable to those of
primary human hepatocytes. In addition, the differentiated
ESCs are able to engraft mouse livers and produce human
albumin detectable in mouse serum. Moreover, they found
human liver-specific mRNA and protein species in the liver
of transplanted mice after 3 weeks of transplantation (Duan
et al. 2007). Cai et al. (2007) reported a protocol to dif-
ferentiate ESCs in hepatic cells, by treatment with activin
A for 3 days followed by treatment with fibroblast growth
factor-4 and bone morphogenetic protein-2 for 5 days. The
hepatocyte-like cells obtained express the adult liver cell
markers tyrosine aminotransferase, tryptophan oxygenase
2,  phosphoenolpyruvate  carboxykinase = (PEPCK),
CYP7A1, CYP3A4 and CYP2B6. Moreover, the cells were
able to secrete albumin, store glycogen, indocyanine green,
and uptake low-density lipoprotein, and possessed induc-
ible CYP activity. Several other reports showed methods to
obtain hepatocyte-like cells from ECSs (Touboul et al.
2010; Basma et al. 2009), suggesting the potential of these
embryonic cells to differentiate into mature hepatocytes.
Despite such potential, the clinical application of ESCs is
associated with practical and ethical concerns. In general,
these cells proliferate extensively in vitro and possess high
levels of telomerase activity and, when injected in mice,
they generate teratoma and eventually teratocarcinoma
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(Przyborski 2005). Therefore, the persistence of undiffer-
entiated ESCs and their differentiation into NPCs after
infusion in mice is a serious concern about long-term safety
of these cells. At present, there are no clinical trials using
ESC:s to treat liver diseases in human patients.

8.3.1 Foetal liver cells

An alternative source of stem cells for hepatocyte production
was found in fetal liver by Suzuki et al. (2002). They developed
a hepatic colony-forming unit in culture (H-CFU-C) assay to
isolate hepatic progenitor/stem cells from mouse liver char-
acterized by multi-lineage differentiation potential and self-
renewing capability. These cells, when clonally propagated in
culture, can both maintain their primitive stem cell feature and
produce hepatocytes and cholangiocytes as descendants.
When transplanted in recipient animals, mouse fetal liver stem
cells differentiated into hepatocytes and cholangiocytes.
Moreover, they differentiated into pancreatic ductal and acinar
cells or intestinal epithelial cells when transplanted into the
pancreas or duodenal wall (Suzuki et al. 2002). Other studies
described the possibility to isolate precursor cells from the fetal
liver in rodents (Tanimizu et al. 2003; Oertel et al. 2006). These
results prompted researchers to isolate progenitor cells also
from human fetal livers. Nava et al. (2005) identified and
isolated from early human fetal livers a cell population positive
for the two hematopoietic markers CD117 and CD34, but not
hepatic markers, able to differentiate in vitro into hepatic cells
when cultured in presence of HGF and EGF. These differen-
tiated cells expressed the hepatic markers such as albumin,
AFP, al-antitrypsin and CK19. Moreover, they found in the
later gestation time a subpopulation of cells expressing CD90
and co-expressing hepatic markers. They proposed that, during
liver development, the two earliest markers expressed by
hepatic precursor cells are CD117 and CD34 and that CD90
marker appears later (Nava et al. 2005).

Dan et al. (2006) reported the isolation and characterization
of a stable population of human liver progenitor cells, called
human fetal liver multi-potent progenitor cells (WFLMPCs),
from the human fetal liver. hRFLMPCs were characterized by
mesenchymal stem cells properties such as the osteogenic,
adipogenic, chondrogenic and endothelial differentiation
ability, and express the mesenchymal—epithelial transition
marker. These cells can differentiate into functional hepato-
cytes and bile duct cells although do not express liver-specific
genes. Moreover, hFLMPCs possess the repopulation ability in
a mouse model of liver injury (Dan et al. 2006).

Schmelzer et al. (2007) isolated from fetal liver a human
hepatic EpCAM + stem cell population expressing CKS,
CK18, and CK19, CD133/1, telomerase, CD44H, claudin 3,
and albumin. These cells are negative for a-fetoprotein,
intercellular adhesion molecule (ICAM) 1, and for CYPs,
CD45 and some endothelial markers. When cultured on feeder

layers of embryonic mouse fibroblasts, these cells differentiate
into hepatoblasts. Both freshly isolated EpCAM + cells and
human hepatic stem cells expanded in culture can give rise to
mature liver tissue expressing human-specific proteins, when
transplanted into NOD/SCID mice (Schmelzer et al. 2007).

In recent work, Gridelli et al. (2012) described a 5-step
method, characterized by a portal vein in situ perfusion tech-
nique, to isolate cells from fetal liver tissue obtained from the
late second trimester of gestation (gestational weeks 18-22).
They found a heterogeneous population characterized by cells
expressing hepatocyte markers (CK18), albumin-positive
cells, a-fetoprotein—positive cells, HNF-4 positive cells and
asialoglycoprotein receptor—positive cells. The population also
included CK19+ cells (a bile duct marker), CD68+ cells
(Kupffer cells), epithelial cell adhesion molecule (EpCAM)
cells, as well as cells expressing markers associated with
mesenchymal stem cells. Of interest, this cell population was
used in the first clinical application by splenic artery trans-
plantation in a patient with end-stage liver disease. It was
observed a reduction in MELD score, which was the main
clinical end point in the study protocol, from 15 to 11 at
3-month and to 10 at the 18-month follow-up and the patient
continued to show no signs of encephalopathy, suggesting that
fetal liver stem cells could be a feasible cell source for liver cell
therapy (Gridelli et al. 2012).

An interesting interpretation about fetal liver development
was proposed by Zhang et al. (2008a). They assumed that the
hepatic stem cells secondarily give rise to hepatoblasts, the
presumptive transit amplifying cells. The hepatic stem cells
are located in vivo in stem cell niches that are represented by
the ductal plates in fetal and neonatal livers and by canals of
Hering in pediatric and adult livers. The hepatic stem cells
express the epithelial cell adhesion molecule (EpCAM),
neural cell adhesion molecule (NCAM), CK19, albumin ,
and are negative for o-fetoprotein. The hepatoblasts are
contiguous to the niches, decline in numbers with age and
differ from hepatic stem cells in expressing albumin++-, and
AFP++. Thus, the canals of Hering are shown to be the adult
remnants of the ductal plates containing the hepatic stem cells
that give rise to the hepatoblast. This assumption suggests
symmetry between fetal and adult liver transition and indi-
cates the adult reparative process as a recapitulation of fetal
development. Moreover, this interpretation could explain the
response of liver regeneration to specific diseases. In partic-
ular, the involvement of hepatic stem cells and minimal
response from the hepatoblast, during massive liver necrosis
and, by contrast, the expansion of the hepatoblast in chronic
diseases such as cirrhosis (Zhang et al. 2008a).

8.3.2 Human adult liver stem cells

Evidence from several studies indicates the presence of
resident stem cells in the adult liver (Fausto 2004;

@ Springer



1414

Arch Toxicol (2013) 87:1315-1530

Shafritz et al. 2006). Results based primarily on models
of liver injury and carcinogenesis in experimental animals
led to the concept that a potential stem cell compartment
is located within the smallest branches of the intrahepatic
biliary tree (Fausto 2004). The human liver progenitor
cell activation and proliferation has been mainly observed
during acute and chronic liver diseases. Herrera et al.
(2006) described in the adult a population of pluripotent
resident liver stem cells (HLSCs) able to localize within
the injured liver and contribute to liver regeneration when
injected in non-immunocompetent mice with acute liver
failure induced by acetaminophen. HLSCs can be isolated
by culturing under stringent conditions hepatocytes
obtained from normal human liver and are able to grow
for up to 30 passages in culture. HLSCs express CD29,
CD90, CD73 and CD44 mesenchymal markers, nanog,
Oct-4, Sox2, and SSEA-4 a-fetoprotein embryonic stem
cell markers and liver-specific markers such as human
albumin, CK18 and CKS. In addition, HLSCs are negative
for hematopoietic (CD34 and CD45), oval stem cell
markers (CD45, CD34, and CD133 and CK19), a-SMA,
NCAM and STRO-1. HLSCs, like mesenchymal stem
cells, are characterized by the ability to differentiate into
osteogenic, adipogenic, endothelial and insulin-producing
cells when cultured in appropriate conditions. Moreover,
HLSCs can be in vitro differentiated into mature hepa-
tocytes by culturing in the presence of a combination of
FGF-4 and HGF. When cultured in a rotary bioartificial
liver (BAL), HLSCs spontaneously acquired an hepato-
cyte phenotype increasing the expression of liver-specific
markers and acquiring the expression of CYPs concomi-
tantly a downregulation of embryonic and fetal liver
markers. In addition, HLSCs gain liver-specific metabolic
activities such as detoxification capabilities, cleavage of
the CYP substrate and urea production. In addition,
HLSCs in rotary bioartificial liver (BAL) markedly
enhanced the production and release of HGF in respect of
adherence culture conditions. The quantitative difference
was 20-fold higher in HLSCs in rotary BAL than in
adhesion. Moreover, when cultured in rotary BAL,
HLSCs acquired the expression of liver-specific tran-
scription factors such as HFN-4 and C/EBP (Fonsato
et al. 2010). The presence of a progenitor/stem cell
population in the adult liver was confirmed by Khuu et al.
(2007) that describe an epithelial cell population with
characteristics similar to HLSC. However, this cell pop-
ulation is more engaged in the hepatocytic lineage than
HLSC (Khuu et al. 2007).

Duret et al. (2007) isolated non-parenchymal epithelial
cells (NPE) from samples of human liver resections
obtained from patients who underwent lobectomy. These
cells are negative for classic stem/progenitor cell markers
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(Oct-4, Rex-1, a-fetoprotein, CD90, c-kit and CD34), are
only slightly positive for albumin, but possess a strong
proliferative potential. Despite the lack of stem cell
phenotype, NPE cells are able to differentiate into
mature hepatocytes when cultured in presence of HGF,
EGF and FGF-4 and express albumin, ol-antitrypsin,
fibrinogen, hepatobiliary markers such as CK7, CKI19
and CK&8/18, liver-enriched transcription factors and
genes typical of either a fetal (CYP3A7 and GST pi) or
a mature (tyrosine aminotransferase, tryptophan 2,3-
dioxygenase, GST alpha and CYP3A4) (Duret et al.
2007).

8.3.3 Hepatocyte proliferation induced by gene transfer

The availability of in vitro proliferating hepatocytes that
maintain many or ideally all of their differentiated in vivo
functions would greatly advance research in hepatology as
well as pharmacology and toxicology. Therefore, numerous
studies have been performed to immortalize hepatocytes,
particularly human hepatocytes (e.g. Tsuruga et al. 2008;
Wege et al. 2003; Kobayashi et al. 2001). For example,
human reverse transcriptase (hTERT), ES5/E7, SV40,
inactivation of the p16/RB and/or p53 pathways have been
used successfully to induce hepatocyte proliferation. In
addition to permanent expression, reversible strategies of
hepatocyte immortalization have also been tested (Ko-
bayashi et al. 2001). A general difficulty of these approa-
ches has been that hepatocytes tend to dedifferentiate
in vitro even under “mild” genetic manipulations. So far it
has been impossible to maintain all (or even most) func-
tions and gene expression levels similar to that of hepato-
cytes in vivo.

Recently, a new approach on generation of proliferating
human hepatocytes has been published (Burkard et al.
2012). The cells, called “upcyte hepatocytes,” show
inducible CYP1A2 and 3A4 activities, albeit lower than
freshly isolated human hepatocytes. Phase II enzyme
activities (UDP glucuronidase, sulfotransferases and glu-
tathione-S-transferases) were reported to be comparable to
that of freshly isolated primary human hepatocytes (Bur-
kard et al. 2012). The cells are able to produce urea and are
sensitive to known hepatotoxins, suggesting that they rep-
resent a promising model. However, future experiments
using functional readouts, as well as genome-wide gene
expression analyses, will show how closely these in vitro
proliferating human hepatocytes resemble freshly isolated
human hepatocytes or human liver tissue and how stable
they are during culture. A limitation of the technology is
that the “proliferation-inducing genes” are part of a pro-
prietary technology (Braspenning et al. 2010) that has not
yet been published.
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9 Use of in vitro systems for predicting metabolism
and drug interactions

9.1 Prediction of hepatic drug clearance

Key questions

e How is clearance measured?

e What are the current expectations of hepatocytes in
predicting clearance?

e How can clearance predictions be improved?

Take home messages

e The clearance of drugs in human subjects is currently
most appropriately predicted by in vitro assay using
primary human hepatocytes in suspension.

e The general approaches should enable at least the
clearance of novel drugs to be approximately charac-
terized in terms of ranking relative to drugs with known
in vitro/in vivo correlation.

e Absolute prediction of clearance would require resolu-
tion of the relationship between in vitro and in vivo
phenotypes (for metabolizing enzymes and transport-
ers) and, in addition, solving the underprediction bias
inherent in this system—two important goals as yet not
achieved.

e Ongoing developments in hepatocyte-like cell model
technology may lead to greater standardization capa-
bility in vitro which could help to solve these
outstanding issues.

9.1.1 Overview of prediction methodology status

During the last several years, the position of primary
human hepatocytes as the prominent tool for prediction of
hepatic clearance has been consolidated. Widespread
commercial availability of cryopreserved human hepato-
cytes has underpinned their adoption for routine use. At the
same time, continued methodological investigation has
increased our understanding of both the application and
limitations of this versatile in vitro system. However, there
remain major challenges to the guaranteed achievement of
reliable predictions of clearance using this human-liver-
derived in vitro system. In particular, underprediction bias
is inherent, although it is poorly resolved from other sub-
stantial uncertainties including wide phenotypic variation
in drug-metabolizing enzyme expression. Although much
prediction uncertainty may arise in vitro, investigation into
the causes of bias has particularly focused on extrapolation
methodology—where certain underlying principles remain

under debate—highlighting the importance in understand-
ing the limitations of extrapolation methodology for pre-
diction of clearance from in vitro systems. In addition,
increasing investigation into drug transport (both passive
and active) using hepatocytes has highlighted the potential
underlying complexity of measurements of clearance (CL)
in this system.

9.1.2 In vitro—in vivo extrapolation: a work in progress

Extrapolation of intrinsic clearance (CL;,) measurements
using hepatocytes (or microsomes) to give predicted
CLi, vivo involves a widely established two-step mecha-
nistic approach: physiological scaling from cell to whole
liver and subsequent modeling of extraction from blood by
the liver (Houston 1994; Pelkonen and Turpeinen 2007;
Fagerholm 2007). Early application in rat studies indicated
satisfactory accuracy with this methodology (Houston and
Carlile 1997; Ito and Houston 2004), but more recent
reports have showed a consistent tendency toward under-
prediction (more than several-fold) of human in vivo CLj,,
from human hepatocytes (Riley et al. 2005; Brown et al.
2007; Stringer et al. 2008). As the use of human hepato-
cytes from liver donors has eclipsed the rat equivalent, both
steps of the mechanistic extrapolation approach have
received re-appraisal and suggested refinement in recent
years. For the hepatocyte-to-liver scaling factor, a con-
sensus has been reached (as for microsomes) based on a
number of relevant studies providing a relatively unbiased
standard value together with some indication of the asso-
ciated uncertainty (Barter et al. 2007). Liver models, on the
other hand, have continued to cause debate. Three alter-
native models, which differ in complexity only in relation
to liver perfusion—the well-stirred (venous equilibrium)
model, the parallel tube model and the dispersion model—
predate the widespread use of human liver in vitro systems
but remain accepted standards. There has been a level of
consensus that the models are equally compatible with all
but the most highly cleared drugs leading to pragmatic
acceptance of the simplest of these, the well-stirred model
(Ito and Houston 2005; Hallifax et al. 2010). Debate has
instead been focused on the appropriateness of the fraction
unbound in blood (fu) term (common to all models) which
relies on the simple assumption of rapid equilibrium of
unbound drug (the assumed mechanistic object of CL)
either side of the hepatocyte plasma membrane. Concern
has been raised in a number of reports in which in vitro
intrinsic clearance measurements for some drugs were not
directly dependent on the fraction unbound when serum (or
isolated plasma protein) was included in the assay (Baba
et al. 2002; Tang et al. 2002; Shibata et al. 2002; Blanchard
et al. 2004, 2006). One particular explanation invokes the
concept of facilitative uptake of protein-bound drug into
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hepatocytes—a process which would, at least partially,
negate the unbound drug hypothesis (Burczynski et al.
2001; Poulin et al. 2012). Alternatively, it has been sug-
gested that no equilibrium exists between drug bound in the
hepatic sinusoids and drug taken up through the hepatocyte
sinusoidal membrane (Baker and Parton 2007). In both
cases, modeling of the respective mechanisms has been
proposed but, to date, direct experimental support has been
lacking. Also, both proposals have cited evidence of a trend
of decreasing prediction accuracy with increasing binding
to plasma protein to support the proposed impact of fu on
prediction (Riley et al. 2005; Ring et al. 2011). However, a
more extensive comparison of fu and prediction did not
confirm such a trend (Hallifax et al. 2010; Hallifax and
Houston 2012). Further elucidation of the role of binding to
plasma protein in extraction of drug by the liver is required
to clarify whether there is a need to modify the liver model
component of the extrapolation process.

Measurement of intrinsic clearance by substrate deple-
tion is favored over metabolite formation kinetics for
routine assay, reflecting a need for pathway inclusivity as
well as expediency (Obach and Reed-Hagen 2002; Komura
et al. 2005; Mohutsky et al. 2006; Soars et al. 2007a).
Although this approach seems appropriate for the primary
hepatocyte model, the validity of the underlying assump-
tions, particularly regarding the combined impact of uptake
clearance with metabolic clearance, remains under debate
(Jones and Houston 2004, 2012). Soars et al. (2007a)
proposed that total CL;,, could most accurately be esti-
mated according to drug depletion from the medium, rather
than (as conventionally) from the whole incubation.
However, caution is required in the interpretation of sub-
strate concentration—time profiles because of the potential
impact of any substantial, but reversible, intracellular
binding on the initial rate of depletion from the medium.
Hence, dual incubations involving both media loss and
total incubation loss are necessary to resolve mechanisms
due to uptake rather than intracellular binding (Hallifax and
Houston 2006; Jigorel and Houston 2012). Nevertheless,
this approach reflects increasing awareness of involvement
of processes other than metabolism, when using hepato-
cytes to predict CL and may represent a safe option when
the mechanism of hepatic clearance is not unknown.

Moreover, it has become evident that the specific pro-
cesses of drug disposition in the hepatocyte (in vivo and
in vitro), including binding to protein (external and inter-
nal) and/or membranes, permeation (passive diffusion and
active uptake/export) and metabolic turnover should ide-
ally be quantified simultaneously (Lave et al. 2007; Web-
born et al. 2007; Baker and Parton 2007) (Fig. 34). In
recent years, the increasing incidence of drugs that are
transporter substrates has led to the need to characterize all
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Fig. 34 Scheme of key simultaneous processes of hepatocyte dispo-
sition. From Baker and Parton (2007)

these processes, in particular resolve active uptake from
passive uptake and, in some cases, metabolism (Shitara
et al. 2006; Webborn et al. 2007; Paine et al. 2008; Grime
et al. 2008; Badolo et al. 2010; Menochet et al. 2012). To
this end, dynamic modeling of drug extraction from blood
(or in vitro media) is inevitably favored over the conven-
tional static modeling approach. Potentially, this method-
ology could also incorporate any critical artifactual
differences in vitro (compared with in vivo) such as
restricted removal of metabolites, diffusion through an
external unstirred water layer (Lu et al. 2006) and/or
modified cofactor supply—issues which have received
relatively little attention.

The advent of successful commercial software for whole
body modeling such as SimCyp, which can incorporate
inter-individual variability (physiological, CYP genotype
and gastro-intestinal absorption) has made prediction of
clearance integral with prediction of pharmacokinetics a
routine procedure (Howgate et al. 2006; Lave et al. 2007).
But as with the more traditional in-house physiologically
based pharmacokinetic (PBPK) whole body models
(practiced over a longer period), there has been little
development of the liver component from the standard
models (described above). Beyond the extrapolation mod-
eling issues, successful methodology for prediction of CL
will ultimately depend on resolving the biological vari-
ability in vitro—inherent in drug transporter and drug-
metabolizing activity—with that in vivo. Currently, meth-
odology is judged, at best, by average activities among
livers from a range of donors and average CL measured for
a range of clinical subjects, for drugs representative of the
various physicochemical types. The implications of this
situation are discussed below.
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9.1.3 Current expectations in prediction from hepatocytes

Commercially available cryopreserved human hepatocytes,
used in suspension, are the most established hepatic cell
system for prediction of human clearance, are generally
considered to be superior to alternative primary hepatocyte
culture systems and have substantially replaced the previ-
ous microsome standard model (Blanchard et al. 2005;
Griffin and Houston 2004; Soars et al. 2007b). At the same
time, it has been recognized that predictions from primary
hepatocytes are frequently inaccurate. A recent assessment
of published predictions of CL found that human cryo-
preserved hepatocytes, on average, underpredicted in vivo
CL;,; by about fourfold, whereas human liver microsomes
underpredicted by about fivefold (Hallifax and Houston
2010), consolidating previous reports (Naritomi et al. 2003;
Bachmann et al. 2003; Riley et al. 2005; Brown et al. 2007;
Stringer et al. 2008). Some tendency toward underpredic-
tion using microsomes is anticipated given their incomplete
set of CL pathways (including phase II metabolism and
uptake transport), although this extent of average under-
prediction suggests additional methodological shortcom-
ings (Lam and Benet 2004; Parker and Houston 2008).
However, while microsomal CL;,, was approximately
proportional to in vivo CL;, (throughout a wide range),
CL;, in hepatocytes tended to diverge from in vivo with
increasing CL;,, from relatively unbiased predictions for
low CL drugs to poorer predictions (relative to micro-
somes) for high CL drugs (Hallifax et al. 2010) (Fig. 35).
This inconsistency between the systems implies that the
causes of underprediction have a substantial in vitro com-
ponent as opposed to possible extrapolation methodologi-
cal bias, as discussed above.

A major difficulty in identifying the general causes of
underprediction of CL is the high degree of variance seen
among a set of predictions (Blanchard et al. 2006; Hallifax
and Houston 2009). Inter-individual variability in

expression of drug-metabolizing enzymes (and transport-
ers) is anticipated from the known genotypes but sub-
sequent modulation by various factors (hormonal status,
diet, environmental chemicals, etc.) leads to unpredictable
phenotypes and hence problematical use of a population
average (Shah 2005). For several CYP substrates, CL
ranged about fourfold between clinical subjects, whereas
in vitro, CYP activities were found to range from 30- to
100-fold (depending on the CYP) for either microsomes or
hepatocytes (in a database of commercially available
material), indicating a wide inherent in vitro variation
(Hallifax and Houston 2009). Moreover, the in vitro
activity of each of five major CYPs was found to be dis-
tributed log-normally, a characteristic which could further
confound meaningful use of average values or the utility of
multi-donor pools. Prediction based on modeling of geno-
typically defined variability (such as SimCyp) may also be
confounded by this phenotypic variability.

Against a background of prediction reports involving
unmatched clinical subjects and liver donors, a direct
comparison of CL;, between microsomes and hepatocytes
from the same livers was reported by Foster et al. (2012).
In this case, CL;j,  was similar on average between the
systems, for a range of drugs. However, CL;,, values from
hepatocytes tended to exceed those from microsomes at
low CL;, (<10 ml/min/kg), while values from microsomes
tended to exceed those from hepatocytes at higher rates.
This trend, resolved from the experimental variance
between CL;, for several pathways, further suggests the
existence of rate-limiting factors specifically associated
with hepatocytes. As described above, the measurement of
CL;,,; using hepatocytes may yield an impure value which
combines the influence of drug uptake (passive and active)
and intracellular binding with drug metabolic turnover—
from which CL;,, of unbound drug representing the situa-
tion in vivo must be resolved. Specific in vitro factors
which could rate limit the measurement of CL;, in
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hepatocytes would include cofactor exhaustion and/or
passive permeability across the cell membrane; for the
latter, however, there was no evidence found when the ratio
of permeability to CL;,, for several types of permeability
assay, was compared with prediction of CL;,, (Hallifax and
Houston 2012). In the current absence of any mechanistic
solution(s) to the problem of underprediction of CL from
hepatocytes, the use of an empirical correction of bias
(according to the trend outlined above) helps to minimize
prediction bias. Likewise, judicious selection of hepatocyte
pools from a range of donors may help to minimize pre-
cision error. It would seem that a key limitation in pre-
diction methodology to be addressed is the relationship
between genotype and phenotype, both in vivo and in vitro.

9.1.4 Future development of the hepatocyte model
for prediction of clearance

Currently, important limitations of the standard primary
hepatocyte model for prediction of CL appear to be negative
bias and high phenotypical variability, as discussed. Solving
the bias would seem to necessitate resolution of the variability,
the more fundamental problem. As yet, prediction perfor-
mance can only be standardized using donor pools with the
assumption that average in vitro phenotypes will match
average clearance among clinical subjects. To overcome the
unresolved relationship between genotype and phenotype
(especially apparent among liver donors), further control of
phenotypical expression is ideally required; an ideal hepato-
cyte (for use in suspension) would have activity predictable
from a predefined genotype, preferably one reflecting an
average expression of all pathways or typical subpopulation
genotypes. Development toward such a standardized hepato-
cyte model is conceivably achievable via cell line system
development (potentially offering custom phenotyping),
especially considering recent advances in hepatocyte-like
cells, such as those derived from hepatocellular carcinoma cell
lines which have recently indicated potential for prediction of
CL (Guillouzo et al. 2007). In particular, the HepG2 cell
transfected (via adenovirus) separately with CYPs 1A2, 2C9
and 3A4 displayed CL;, (based on relative activity factor
scaling) comparable with in vivo and hence an improvement
on that reported for cryopreserved hepatocytes (Donato et al.
2010). Alternatively, HepaRG cells, which, in culture, have
previously been shown to express CYP activity comparable
with primary hepatocytes (Aninat et al. 2006; Kanebratt et al.
2008a; Antherieu et al. 2010; Lubberstedt et al. 2011), now
appear to be successfully cryopreservable; in a recent
assessment, prediction of CL;,, for 26 CYP substrates was
generally in close agreement with cryopreserved hepatocytes,
indicating the potential of this novel product as a practical
alternative in vitro system for routine use (Zanelli et al. 2012)
(Fig. 36). Although a fully customized and widely available
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hepatocyte-like in vitro model may be some way off, these
developments are encouraging for that goal.

9.2 Drug—drug interactions: prediction of enzyme
induction, inhibition, transporter and enzyme
interplay, active uptake, and clearance

Key questions

e How can DDIs involving drug-metabolizing enzymes
be predicted from in vitro studies?

e How can DDIs involving drug transporters be predicted
from in vitro studies?

e What is the consequence of inhibiting both hepatic
uptake transporters and metabolic enzymes?

Take home messages

e Quantitative predictions of DDIs need to be based on an
appropriate model taking into account the mechanism
of the interactions as well as the contribution of each
process in the drug disposition.

e The degree of DDIs caused by hepatic transporter and
enzyme inhibition depends on the contribution of each
process (hepatic uptake and metabolism/excretion) to
the hepatic elimination of the drug.

e The modeling and simulation of DDIs based on both
drug-metabolizing enzymes and transporters would
enable predictions to be made with a higher level of
accuracy, which is expected to improve the efficiency
of the drug development process and to reduce the risk
of unexpected toxic effects appearing in clinical
studies.
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Drug—drug interactions (DDIs) can take place during
any of the pharmacokinetic processes, such as absorption,
distribution, metabolism and excretion, and can cause
significant changes in drug efficacy as well as adverse
events. Therefore, it has always been an important issue in
drug development to predict the degree of DDIs based on
the preclinical data. Among the various mechanisms of
DDiIs, those involving drug metabolism have long attracted
much attention and the methods for their accurate predic-
tion have been investigated by many researchers (Ito et al.
1998; Tucker et al. 2001; Yao and Levy 2002; Houston and
Galetin 2010; Rostami-Hodjegan 2010).

Recently, as the role of drug transporters in pharmaco-
kinetics has been explored, more and more cases of DDIs
involving drug transporters have been recognized which
could also be of clinical significance (Shitara et al. 2005;
Zhang et al. 2008b; Grover and Benet 2010; Unadkat et al.
2010). Furthermore, some of the DDIs have been suggested
to be caused by the inhibition of both metabolism and
transport by a co-administered drug (Shitara and Sugiyama
2006; Yoshida et al. 2012). Attempts to predict the degree
of these interactions have just started.

9.2.1 DDIs involving drug-metabolizing enzymes

Inhibition of drug metabolism can cause an increase in drug
concentrations, depending on the potency of the inhibitor
and its concentration. When an enzyme is competitively or
non-competitively inhibited and the substrate concentration
is much lower than its Km (Michaelis constant) value, the
extent of reduction in metabolic activity (CL;,; intrinsic
clearance) can be expressed as 1 + [I]/Ki, where [I] is the
inhibitor concentration around the enzyme and Ki is the
inhibition constant which can be obtained in in vitro studies
(Rowland and Matin 1973). In the case of interactions
involving a mechanism-based inactivation of the enzyme,
the CL;,, reduction depends also on the exposure time of the
enzyme to the inhibitor and enzyme turnover, which can be
characterized by the kinetic parameters for the enzyme
inactivation (k;,,. and K’app) obtained from in vitro studies
and kg, the degradation rate constant for the enzyme
(Silverman 1995; Mayhew et al. 2000).

The simple and convenient approach for predicting the
magnitude of in vivo DDIs due to metabolic enzyme inhibi-
tion is to estimate the degree of AUC increase in the substrate
in the presence of a co-administered inhibitor, compared with
that in its absence, which can be calculated based on the CL;
reduction (by either competitive inhibition or inactivation)
along with the fraction metabolized by the inhibited enzyme
(fm) (Ito et al. 2004, 2005; Brown et al. 2005; Zhang et al.
2007b; Obach et al. 2007). False-negative predictions of
AUC increase caused by the competitive inhibition of hepatic

enzymes can be avoided using a maximum concentration of
inhibitor at the inlet to the liver (/i max):

Tinmax = Imax + ka Fa Dose/Qh

where I,,.x, ka, Fa and Qh represent the maximum inhibitor
concentration in the systemic circulation, absorption rate
constant, fraction absorbed and the hepatic blood flow,
respectively (Ito et al. 2002; Obach et al. 2006).

On the other hand, induction of drug-metabolizing
enzymes can facilitate the drug elimination leading to a
reduced concentration. The degree of enzyme induction
can be characterized by the parameters such as ECsq
(concentration causing half-maximal effect) and Emax
(maximum effect) determined in in vitro studies. Fahmi
and co-workers have proposed the following equation for
predicting the net effect of competitive inhibition, inacti-
vation and induction of the hepatic enzyme (except for
CYP3A4 which exists also in the intestine) on the AUCpo
(AUC after oral administration) of its substrate:

AUC, 3 < 1 )

AUC,,. [AXBXC|]Xfn+(1—fn)

A= kdeg,H _ M _ 1
Kaeg 1 + e [7]; + ECso. 1+

where A, B, and C represents the CL;,, change due to
inactivation, induction and competitive inhibition of the
enzyme, respectively (Fahmi et al. 2009). The draft guid-
ance for industry recently issued by FDA also suggests the
use of this equation as a “mechanistic static model” for
prediction of the in vivo DDIs involving investigational
drugs (FDA 2012).

For a more detailed evaluation of the DDIs than the
AUC increase in substrates, the time profiles of the sub-
strate concentration in the presence and absence of inhib-
itor can be simulated by using a PBPK model which
describes the disposition of both substrate and inhibitor
(Kanamitsu et al. 2000; Rowland et al. 2010). Kato and co-
workers have shown that the AUC increase can be suc-
cessfully predicted for most of the CYP-mediated interac-
tions wusing PBPK modeling, while substantial
overestimation was observed for the predictions using a
fixed inhibitor concentration (/i max)- They suggest the use
of in vivo Ki values, estimated from regression analyses of
clinical DDI data, in order to make successful predictions
(Kato et al. 2008). For mechanism-based inactivation of
enzyme, the changes in midazolam concentration due to
co-administration of macrolides with different inhibitory
potency against CYP3A (erythromycin, clarithromycin and
azithromycin) were successfully predicted based on a
PBPK model for the substrate (midazolam), inhibitor
(macrolides) and the active CYP3A content in the liver,
using the kinetic parameters for the enzyme inactivation
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(kinact and K'app) obtained from in vitro studies together
with the pharmacokinetic parameters for the drugs (Ito
et al. 2003a). The use of PBPK models for predicting DDIs
is expected to increase as the FDA draft guidance men-
tioned above has suggested the use of PBPK model
(“dynamic model”) before conducting a clinical study for
evaluating possible DDIs (FDA 2012).

9.2.2 DDIs involving drug transporters

In addition to the DDIs involving drug metabolism, where
the enzyme activities are affected by co-administered drugs
as described above, the importance of DDIs involving drug
transporters is being increasingly recognized. Drug trans-
porters are expressed throughout the body and an alteration
in their function can result in changes in absorption, dis-
tribution and excretion of their substrates. For example,
inhibition of organic anion-transporting polypeptides
(OATPs), a hepatic uptake transporter, can lead to the
reduction in hepatic clearance of the drug taken up by the
transporter, which could result in an increase in its con-
centration in the systemic circulation. Inhibition of P-gly-
coprotein (P-gp) or breast cancer resistance protein (BCRP)
could also result in reduced biliary/renal excretion of a drug
as well as increased absorption from the intestinal tract.
Similar to the enzyme inhibition described above, the
extent of reduction in transporter activity (CL;,) in the
presence of an inhibitor is expressed as 1 + [I]/K; in the
case of competitive or non-competitive inhibition and a
sufficiently low concentration of substrate. Here [/] is the
inhibitor concentration around the transporter and Ki is the
inhibition constant of the transporter which can be obtained
from in vitro studies using hepatocytes, membrane vesi-
cles, tissue slices or gene expression systems (Ueda et al.
2001; Shitara et al. 2005). If the substrate is eliminated
mainly from the liver and the rate-limiting process is
hepatic uptake, where the overall intrinsic clearance
(CLintan) can be approximated by the CL,, for hepatic
uptake, the AUC ratio after oral administration with and
without an inhibitor can be estimated from 1 + [I]/K; for a
hepatic uptake transporter, similar to the case of metabolic
inhibition. In the FDA draft guidance (2012), it is recom-
mended that the possibility of a new molecular entity as an
OATPIB1/1B3 inhibitor should be investigated based on
its effect on the AUC or maximum concentration (Cp,,y) of
rosuvastatin, pravastatin or pitavastatin (ITC 2010; Gia-
comini et al. 2010; FDA 2012). The rate-limiting step for
the overall elimination of these statins has been suggested
to be the hepatic uptake process mediated by OATP1B1/
1B3. In the above guidance, the use of the /;;, 1,,x, originally
proposed as the maximum inhibitor concentration to be
used for the prediction of DDIs based on metabolic inhi-
bition (see above) is also suggested as the inhibitor
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concentration associated with the inhibition of OATP1B1/
1B3. The decision trees for the DDIs based on other major
transporters are also presented in the above guidance (ITC
2010; Giacomini et al. 2010; FDA 2012).

9.2.3 Impact of enzyme and transporter inhibition
on the overall pharmacokinetics

Although hepatic elimination of a drug can be affected by
the inhibition of either hepatic uptake, metabolism, or
biliary excretion by co-administered drugs, the degree of
interaction (concentration change) largely depends on the
contribution of each process to the hepatic elimination
(Shitara et al. 2005; Kusuhara and Sugiyama 2009; Maeda
et al. 2011). The overall intrinsic clearance (CLj, o) for
hepatic elimination is expressed as follows:

CLint

CLinan = PSing X ———c—
Lol "7 CLin + PSett

where PS;,, PSee and CL;,, represent the intrinsic clear-
ance for hepatic uptake, efflux from hepatocytes to the
blood and metabolism/biliary excretion, respectively.

For a drug with a CL;,, much larger than the PS¢
(CLjy > PSefr), the CLiyay is approximated by PSju,
according to the above equation. In this case, the CL;, 4 is
directly affected by inhibition of hepatic uptake trans-
porter(s), while the inhibition of metabolism or biliary
excretion has almost no impact on the CL;, .. As the
blood AUC after oral administration of a drug which is
completely absorbed from the gut and mainly eliminated
from the liver is expressed as Dose/fbCL;, .;; based upon
“well-stirred” model, where fb represents the unbound
fraction in blood, a change in CL;, ) directly results in a
change in the blood AUC. A simulation study based on a
simple flow model shown in Fig. S6 (see ESM) has dem-
onstrated the different effects of inhibiting hepatic uptake
and metabolism/excretion on the blood concentration pro-
file (Fig. 37A, upper panel). As a case of this type of
interaction, the plasma AUC of atorvastatin (substrate of
both OATPs and CYP3A4) has been reported to greatly
increase when co-administered with rifampicin (an inhibi-
tor of OATPs) while showing little change when co-
administered with itraconazole (an inhibitor of CYP3A4)
(Maeda et al. 2011). This finding suggests that the hepatic
clearance of atorvastatin is limited by the hepatic uptake
process, not by the metabolic process.

In contrast, in the case of a drug with a CL;,, much
smaller than the PS.y (CLiy < < PSefr), the CLijy .y 1S
approximated by PS;,; x CL;,/PS¢s and, thus, is affected
by the inhibition of both hepatic uptake and metabolism/
excretion. This is expected to result in the corresponding
alteration in the blood AUC (Fig. 37B, upper panel). The
maximum effect of inhibiting both hepatic uptake and


http://dx.doi.org/10.1007/s00204-013-1078-5

Arch Toxicol (2013) 87:1315-1530 1421
Fig. 37 Simulation of blood A fbPS, =100 L/h, thPS_.=2 L/h, fhCL, =500 L/h
and liver concentration profiles
based on a simple PBPK model —E' 12 — 5 4
shown in Fig. S6; see ESM > / \\ Control E 35 Control
£ 101 \ PSinf x1/2 2 5l CLint x1/2
S sl ! \ PSinf x1/5 = [a CLint x1/5
= | N — — PSinf x1/10 9O 25 I \ — — CLintx1/10
— -
£ 6fl \ S 2}
s
8 ! ~ 3 15 [
S 4 AN o i
<] N c
(&) | ~ o 1
T 2 ~ o
S - 5 05
k) ‘ -~ o ~—
o 0 L PR N Y P — 2 0 - TR |
0 1 2 3 4 5 m 0 2 3 4 5
Time (hr) Time (hr)
TE| 0.8 =5 8
3, Control % 7k Control
£ PSinf x1/2 £ s 1\ CLint x1/2
c=> PSinf x1/5 c [\ CLint x1/5
= — — PSinf x110 251 — — CLintx110
m -
e «©
£ 54\
o S \
o Q3
c Qe 7|
° c \
o 8 2|
- (&)
g 5 1}
] T E 0 e ]
3 4 5 0 2 3 4 5
Time (hr) Time (hr)
B fbPS, =100 L/h, fhPS =100 L/h, fhCL, =50 L/h
I _
£ 18 018
? 16 b - Control E 16 Control
S Ll 7 S o PSinf x1/2 2.l ) CLint x1/2
g 12l / ~ - PSinf x1/5 : 12l 7 CLint x1/5
= . ~ == Ppsinfx1/10 2 / ~ — — CLintx1/10
S 10/ ~ = 10 / ~
- ~ © ~
S 8rf S~ s 8¢t/ ~
[ ~ < S~ e
Q 6t/ =~ - O 6|/ -
S ali S 4l RN
S 44 S 4r - -
T 2 O 2
S o ; ; : 80 )
om 0 1 2 3 4 5 k-] 0 2 3 4 5
Time (hr) @ Time (hr)
-y o
5 15
g Control g Control
<) =) -
£ af PSinf x1/2 £ 12} / CLint x1/2
5 PSinf x1/5 5 / S CLint x1/5
= 3 — — Psint x1/10 2 o/ < — — CLintx1110
© © | ~
it s ~
£, £ ~
~
8 8 7l ~.
5 3 o
o'l N~ o ?d \
S .| T ]
20 : : ; >0 : ]
3 o 1 2 3 4 5 3 o 2 3 4 5
Time (hr) Time (hr)

metabolism/excretion occurs in this situation, where the
reduction in CL;y oy is the reduction in PS;, multiplied by
that in CL;,,. This idea can be used for DDI predictions in
which false-negative predictions need to be avoided (Ueda
et al. 2001; Maeda et al. 2010; Yoshida et al. 2012).

On the other hand, the AUC in the liver (AUCh) is
expressed as follows, indicating that it is affected by the
inhibition of metabolism/excretion but not hepatic uptake,
irrespective of the rate-limiting process (Watanabe et al.
2009; Maeda et al. 2010):
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fbPSint

fh(CL;, + PSefr)
fbPS;,¢ Dose

= X
fh(CLint + Pseff) beSinf X

_ Dose

~ fthCLiy

AUCh = x AUC

CLint
CLim + Pscl'l'

This is also depicted by the simulation study shown in
Fig. 37 (A and B, lower panels). It is clear from these
figures that the inhibition of hepatic uptake has no effect on
the AUCh but does affect the concentration profiles and
Chax in the liver, reflecting the delay in the hepatic uptake
process. It should be noted that all these considerations are
based on the assumption that the drug is eliminated mainly
from the liver: for example, the AUCh is affected also by
the hepatic uptake inhibition when the renal excretion of
the drug is not negligible (Watanabe et al. 2009; Kusuhara
and Sugiyama 2009).

This type of “static” approach has been shown recently
by Yoshida et al. (2012) to be useful for the prediction of
transporter-mediated DDIs with in vitro inhibition
parameters, which enables the pharmaceutical researcher
to discuss the need for clinical DDI studies in early drug
development phases, even if only a limited number of
pharmacokinetic parameters are available. On the other
hand, the FDA has demonstrated the usefulness of PBPK
model (“dynamic” approach) for evaluating the pharma-
cokinetic changes (including DDIs) in the patients with
renal impairment, which could facilitate drug develop-
ment and regulatory decision making on whether, when
and how to conduct additional clinical trials (Zhao et al.
2012).

10 Use of in vitro systems for predicting liver toxicity

Liver toxicity is a major reason of post-market attrition of
approved drugs, accounting for 50 % of the cases of acute
liver failure (Lee 2003). Occurrence of drug-induced
hepatotoxicity is attributable to the poor predictivity of
preclinical animal studies, which can be explained by
several reasons, including differences in drug metabolism
existing between man and experimental species. To
improve and accelerate the process of lead identification
and optimization, high-/medium-throughput cell-based
assays have been incorporated in early phases of drug
development. In vitro screenings, in combination with
preclinical in vivo studies, may help guide the selection of
drug candidates with minimal hepatotoxicity risk,
heightening the predictive capacity for human hepato-
toxicity. In this section, mechanistic studies on the
mechanisms of compound toxicity, apoptosis, steatosis
and idiosyncratic DILI are described.

@ Springer

10.1 Studying the role of the aryl hydrocarbon receptor

and dioxin toxicity in primary hepatocytes

Key questions

How can primary hepatocytes be used to reduce the
uncertainty in determining the risk to humans from
dioxin exposure?

How can studies in NPCs, alone or in combination with
other NPCs and hepatocytes, shed light on important
risk assessment issues related to the mode of action
behind sustained aryl hydrocarbon receptor (AhR)
activation causing rodent liver tumor promotion?

How will these primary liver cell studies improve our
understanding of the relative potency of AhR ligands in
producing adverse effects, thereby providing useful
toxic equivalency factor data, especially for humans?
Will the data generated from primary human liver cell
research be the definitive basis for species-derived
uncertainty factors when extrapolating from animal
cancer bioassays to human risks?

How can primary liver cell studies, with emphasis on
the utilization of human tissue, be integrated into the
future areas of predictive toxicology and high-through-
put screening methodologies for evaluating risk as
future research initiatives begin to develop AhR ligands
for the treatment for disease?

Take home messages

Primary liver cell cultures are available to directly ask
questions related to human risk from dioxin exposure.
Instead of relying solely on data from rats and mice,
human cells can inform us about how sensitive humans
are and how the less potent PCDD/F congeners
compare to TCDD.

These cell cultures, combined with our growing
knowledge on how hepatocellular and cholangiolar
carcinoma occur, could be used to define the underlying
key events, associative events and modulatory factors
for how sustained AhR activation acts as a tumor
promotional response in rodents and whether or not this
response is relevant for humans and, if so, at what
exposure levels does this occur.

In view of the normal role of the AhR, primary liver
cell studies provide the opportunity to evaluate the use
of AhR ligands in preventing or modifying pathology
and ultimately, result in new pharmaceutical agents
targeting a receptor that has previously been viewed as
problematic.

Studies in primary liver cells will also allow for the
future use of high-throughput screening methods that
quickly and efficiently allow us to evaluate the risk
from AhR ligands while eliminating the use of labo-
ratory animals.

The availability of human cells to provide the data
needed to reduce the current uncertainties that exist
with PCDD/F risk assessments.
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Aryl hydrocarbon receptor (AhR) ligands, especially the
persistent polychlorinated dibenzo-p-dioxins and dib-
enzofurans (PCDD/Fs), are human health concerns (Deni-
son et al. 2011; EPA 2012). Some non-persistent AhR
ligands, on the other hand, are being assessed as potential
pharmacological agents for treating cancer, allergy, asthma
and inflammatory bowel disease (Esser 2012). In addition,
a clear role for the AhR in normal biology is evidenced by
abnormal organ/tissue development and function in AhR
knockout mice, suggesting an important role for yet-to-be
determined naturally occurring ligands(s) (Gonzalez et al.
1996; Gonzalez and Fernandez-Salaguero 1998; Fernan-
dez-Salguero et al. 1996; Connor and Aylward 2006;
Schecter et al. 1999).

Evidence for dioxin cancer and non-cancer toxicity is
largely based on observations in laboratory rodent studies.
Numerous human epidemiological studies of highly
exposed communities and workers, however, have not
observed similar effects as those reported in animal studies
(Boffetta et al. 2011; Buffler et al. 2011). This discrepancy
has created a need to identify useful human cell models to
study the effects of dioxin-activated AhR of which primary
hepatocytes are particularly well suited. Primary rodent and
human hepatocytes have been employed to study the mode
of action (MOA) of AhR-mediated liver cancer and its
human relevance, the relative potencies of AhR ligands and
their species sensitivities, and have potential utility in
corroborating observations from human epidemiology
studies. The following discussion focuses on AHR-medi-
ated toxicity, and where primary hepatocyte and other liver
cell studies have been and could be used further to evaluate
the potential of AHR-mediated risks in humans.

10.1.1 Primary hepatocytes as models for understanding
AhR-mediated liver tumor mode of action
and the human relevance

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is one of the
most-studied promoters of rodent liver tumors (Dragan and
Schrenk 2000; Schwarz et al. 2000). The scientific com-
munity, generally views TCDD’s tumor promotion mode
of action (MOA) to be threshold in nature (NAS 2006).
Primary liver cells can help to answer important aspects of
questions posed by threshold and human relevance/sensi-
tivity controversies. Numerous PCDD/Fs initiation-tumor
promotion studies have been conducted establishing sus-
tained AhR activation as a necessary key event for the
promotion and clonal expansion of altered hepatic foci (e.g.
Pitot et al. 1987; Maronpot et al. 1993; Teeguarden et al.
1999; Knerr and Schrenk 2006). AhR activation has been
exhaustively studied by evaluating dioxin-induced CYP1A
induction, tumor promotion in constitutively active AhR
models and AhR polymorphism rat models that are

resistant toward dioxin (Viluksela et al. 1997, 2000; Po-
hjanvirta et al. 1999; Moennikes et al. 2004; Brunnberg
et al. 2006). Sustained AhR activation promotes two dif-
ferent liver tumor lineages (Walker et al. 2006). On the
hepatocyte side, mature hepatocytes divide to replace
eliminated senescent T cells. Hepatocyte replication
potentially creates initiated cells with fixed mutations, and
the possibility of a new phenotype with autonomous
growth potential unless committed to apoptosis. However,
AhR activation within initiated cells can facilitate clonal
expansion due to inhibition of intrafocal apoptosis
(reviewed in Chopra and Schrenk 2011; Buchmann et al.
(1994); Stinchcombe et al. (1995); Lue beck et al. (2000).
Without AhR inhibition of intrafocal apoptosis, the phe-
notypically altered foci might likely undergo apoptosis, e.g.
the reversibility of clonally expanded foci upon discon-
tinuation of the tumor promoter. Additional key events
related to hepatic adenoma development include increased
cell proliferation, high-dose necrosis with regenerative
repair, centrilobular zonal activation of the AhR, as well as
mito-inhibition of mature hepatocytes that are usually
required to replace old parenchymal cells, mitochondrial
injury, steatosis, estrogen dependency, reactive oxygen,
retinoid depletion, porphyria and disruption of gap junc-
tions (Maronpot et al. 1993; Fox et al. 1993; Walker et al.
2006; Shertzer et al. 2006; Aly and Domenech 2009;
Chang et al. 2005; Andersen et al. 1997; Lucier et al. 1991;
Graham et al. 1988; Hassoun et al. 2000; Baker et al. 1995;
Weiss et al. 2008; Munzel et al. 1996; Fattore et al. 2000;
Schmidt et al. 2003; Mitchell et al. 2006; Huang and El-
ferink 2005). On the biliary side of the acinus, oval cell
stimulation and portal fibrosis serve as important key event
markers preceding the development of cholangiolar carci-
nomas (Maronpot et al. 1993; Bauman et al. 1995). It
appears that the stem cell is pivotal to the development of
cholangiolar cancer (Alison 2005; Alison et al. 2009). It is
possible that stem cells could give rise to both hepatocel-
lular and cholangiolar tumors following sustained AhR
activation (Grisham 1997; Alison 2005; Marquardt et al.
2011; Turner et al. 2011; Gaudio et al. 2009). The key
event evidence for stem cells is more limited than that for
hepatocytes. Evidence for stellate cell involvement is
entirely lacking although they are likely contributors to
portal fibrosis and cholangiolar carcinoma (Friedman 2008;
Senoo et al. 2010). Overall, the interaction between
parenchymal and NPCs in explaining AhR-related liver
tumor promotion is consistent with the integrated pathol-
ogy of liver cancer and key events including hepatotoxic-
ity, regenerative repair and fibrosis (Walisser et al. 2005;
Fausto 2004; Pintilie et al. 2010).

Finally, there is a normal biological role of the AhR that
must be accounted for in the tumor promotion MOA.
Adaptive effects countering sustained AhR, such as Nrf2
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induction pathways (Kohle and Bock 2006), which may be
more likely at lower dosage of TCDD or in its basal state of
activation, could act as a tumor suppressing activity (Fan
et al. 2010b). Consequently, there are numerous key
events, associative events and modulatory factor questions
that primary liver cell studies could be applied toward in
better defining the potential risk of liver cancer in humans
exposed to PCDD/Fs. A number of options employing
purified cultures of primary liver cells, or co-cultures of
parenchymal and NPCs, could be explored to better
understand the MOA and key events.

Numerous cell cycle genes have been identified with
AhR activation such as PAI-1 and SOS (Huang and
Elferink 2005; Pierre et al. 2011). Primary liver cell
cultures could be used to evaluate AhR activation-
dependent changes in growth regulatory genes and
pathways allowing for both quantitative dose-response
assessment, species sensitivities and relative potencies
among the PCDD/F congeners (Sartor et al. 2009).
Cell cultures could be used to examine the expression
of cell receptors, chemokines and cytokines following
AhR activation that could explain inflammation and
cell proliferation observed following sustained AhR
activation and with AHR-induced hepatotoxicity
observed in mice (Pande et al. 2005); immune changes
associated with liver injury reviewed in (Adams et al.
2010).

One area that could be explored is the role of AhR-
induced cell cycle inhibition (G1-S) reported following
hepatectomy (Bauman et al. 1995; Fox et al. 1993;
Hushka and Greenlee 1995; Mitchell et al. 2006). For
example, AhR activation impairs E2F regulations of
S-phase proteins and this may be a mechanism for
explaining how AhR activation induces cell cycle delay
(reviewed in Denison et al. 2011; Puga et al. 2000,
2002). Since the relationship between AhR activation
and cell cycle factors, such as E2F, has been derived
from hepatic cell lines, the use of primary liver cell
cultures is necessary to establish relevance for normal
parenchymal and NPCs. Or, Does AhR activation-
induced inhibition of normal hepatocyte replacement,
especially in aging rats where slowing of hepatocyte
replication naturally occurs (reviewed by Schmucker
and Sanchez 2011), add an additional burden on stem
proliferation to replace the loss of aging hepatocytes?
Maybe the role of the AhR on inhibiting hepatocyte
replication in aging rats explains why tumors do not
develop until after the first year of TCDD administra-
tion. Other reported pathways affected by the AhR
amendable to further study in primary liver cell cultures
include retinoblastoma (Elferink et al. 2001; Ge and
Elferink 1998) and p53 (Paajarvi et al. 2005).
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Does the AhR-dependent inhibition of cell cycle
transition impact other liver cell types since AhR
activity in a stem cell cell-line, for example, has been
reported (Kim et al. 2009)? What is not known is
whether AhR activation can inhibit oval cell prolifer-
ation or the infiltration and proliferation of endothelial
progenitor cells that have migrated from the bone
marrow (Wang et al. 2012a). By contrast, it has been
reported that AhR activation in WB-344 stem cell lines
exerts an apparent proliferative response with increased
DNA synthesis (Munzel et al. 1996). Does this cell line
respond similarly to normal oval cells? Would AhR-
dependent inhibition of hepatocyte replication, espe-
cially in aging rats, coupled to increased rats of cell
proliferation in oval cells, be one of the critical key
events in the MOA? Does AhR activation in stem cells
alter normal stem cell differentiation? Oval cells offer
an important T-cell type to look into other cell cycle
control pathways such as Wnt/beta-catenin (Apte et al.
2008).

The AhR plays a role in TGF- expression in the liver
(Gomez-Duran et al. 2009). On the one hand, the
absence of AhR functioning in AhR knockout mice
leads to liver fibrosis (Corchero et al. 2004). These
investigators have also shown that primary hepatocytes
isolated from AhR knockout mice express greater
amounts of TGF-f protein and this may be the reason
for smaller livers exhibiting greater apoptosis in AhR
knockout mice (Zaher et al. 1998). On the other hand,
sustained AhR activation in wild-type rodents results in
periportal fibrosis (Hailey et al. 2005). Purified primary
liver cells, or co-cultures treated with dioxin, could be
used to examine the role of TGF-f and its role in
inducing stellate cells to proliferate and produce
fibrosis or in TGF-B role in delaying hepatocyte
proliferation, increasing apoptosis or facilitating hepa-
tocytes to undergo epithelial to mesenchymal transition
(reviewed by Dooley and ten Dijke 2012).

TCDD activation of the AhR results in retinoid
depletion in rat liver (Hakansson and Hanberg 1989;
Kelley et al. 2000; Schmidt et al. 2003). It has been
proposed that stellate cells differentiate into a myelo-
fibrolast-like phenotype, producing collagen fibrosis,
while losing their vitamin A content (Ramadori and
Saile 2002; Glaser et al. 2009; Shmarakov et al. 2010).
Could TCDD activation of AhR in quiescent stellate
cells trigger their myofibroblast conversion and biliary
fibrotic deposition? Retinoid depletion may represent a
key event component triggering stellate cell differen-
tiation in myelofibrolasts and increased periportal
collagen deposition reported in the two-year NTP
2006 TCDD cancer bioassays (Hailey et al. 2005).
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e Could the separation of zone 1 hepatocytes from zone 3
hepatocytes, with or without co-cultures of various
NPCs, provide information on the unique perivenous
AhR activation with respect to the MOA? For example,
periportal hepatocytes are more responsive to EGF-
induced DNA synthesis than perivenous hepatocytes
and the polyploidal hepatocytes bordering the central
vein, where AhR activation first manifests with TCDD
administration in rodents, and are almost non-respon-
sive to EGF (Gebhardt and Jonitza 1991). In intact
female rats, following diethylnitrosamine initiation and
hepatectomy, EGF receptor expression is distributed
along mid-zonal to centrilobular regions of the liver
(Sewall et al. 1993). Since TCDD administration causes
downregulation of the EGF receptor (Sewall et al.
1993), zone-specific hepatocyte studies may provide
insights on the importance of zonal activation involving
EGEF and its receptor, especially as a modulatory factor
of sustained AhR activation leading to tumor
promotion.

These preceding ideas are just a few high-level exam-
ples that could be examined with primary liver cells in
order to more clearly elucidate the liver tumor MOA of
sustained AhR activation.

10.1.2 Human sensitivity to dioxins

It is generally believed that humans are less sensitive than
rats to dioxin (Connor and Aylward 2006; Moriguchi et al.
2003). This reduced sensitivity is partially explained by the
human AhR having a tenfold reduced binding affinity to
TCDD than rats (Connor and Aylward 2006). Primary
hepatocyte studies corroborate this viewpoint and suggest
even less human sensitivity relative to rats (Schrenk et al.
1995; Silkworth et al. 2008; Budinsky et al. 2010; Carlson
et al. 2009; Black et al. 2012; Le Vee et al. 2010; Schrenk
et al. 1994). Much of the sensitivity comparison is based on
CYPIA induction. However, the apparent conservation of
AhR-induced phase I and phase II enzyme across species,
e.g. CYPIA induction may not really be a species differ-
entiation pathway, and the lack of involvement of these
enzymes in the liver tumor promotion MOA raise the
possibility that humans are even less sensitive, overall to
the carcinogenic potential of PCDD/Fs, than rats as sug-
gested by the CYP1A induction results. Thus, comparing
human to rodent sensitivity based on hepatocyte studies of
CYPIA induction is conservative but may not convey the
true differences between humans and rodents. The reduced
human sensitivity relative to rats has been reported for the
transcriptomic response to dioxins. Human primary hepa-
tocytes are less sensitive than rats depending on how gene
change comparisons are made (Black et al. 2012).

Figure S7 (see ESM) shows the genomic response of
orthologous and non-orthologous genes with a fold change
of 1.5 or greater and a false discovery rate p value <0.05
(adapted from Black et al. (2012). The estimated ECs,
values were 0.32 nM (95 % CI 0.16-0.62) and 1.38 nM
(95 % CI 0.81-2.3) for rat and human hepatocytes,
respectively, indicating humans, on a global genomic
response level, were 4 times less responsive. Of course, this
includes the core battery genes (e.g. CYP1A) which may
not differentiate humans from rodents in a manner relevant
to risk assessment (Nebert et al. 1993). In terms of efficacy,
the human response was about 40 % of the rat response.
When modeling the individual orthologues using the BMD
methodology (Thomas et al. 2011), the human genes
affected by TCDD were approximately 18-fold less sensi-
tive than rats. When 208 human and 508 rat signaling
pathways were compared (each comprised of four or more
genes), the estimated benchmark dose model estimates
were 10.63 and 0.39 nM for human and rat pathways,
respectively, suggesting an approximate 27-fold reduced
sensitivity in humans. These types of data could be used to
develop species-specific uncertainty factors that would be
applied toward extrapolation of rat toxicity data to humans,
e.g. supporting an uncertainty factor of 1.0 or less. And, in
the future event that in vitro data can be converted into
estimates of an intake dose, the points of departure for
transcriptional changes could be modeled to established
tolerable intake levels of dioxin. Again, the limitation of
these data is their acute nature, whereas the sustained AhR
activation-dependent tumor MOA may not be reflected in
these gene changes. Overall, future studies in human and
rodent hepatocytes, in the event the genomic responses can
be linked to the MOA phenotypic changes, will be
important sources of data for reducing the uncertainty over
human sensitivities to PCDD/Fs within risk assessment
applications.

10.1.3 Relative potency of dioxins

Since dioxin exposure always occurs as a mixture, where
only 17 of the 210 PCDD/Fs congeners have the necessary
2,3,7,8 chlorine substitutions required to activate the AhR,
an additive means is desirable for assessing the risk of the
dioxin mixture. The toxic equivalency factor (TEF)/toxic
equivalency quotient (TEQ) methodology developed by the
World Health Organization is the mixture’s additivity
method that is relied upon to do so (Van den Berg et al.
2006). However, the TEF method has a number of
important limitations that introduces variability and
uncertainty in this application. For one, the TEFs, which
reflect a single consensus value of a congener’s potency,
relative to TCDD, and the TEF value is entirely derived
from diverse toxicity studies done in laboratory animals,
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many of which are CYP1A induction results. In addition, it
has been shown that the TEF estimate for PCDD/Fs generally
reflects the upper range of the relative potency values repre-
senting the collection of studies for a particular congener
(Haws et al. 2006). It has been proposed that a probabilistic
treatment of the relative potency distribution data sets may
provide a better depiction of the true relative potency when
applying TEFs in risk assessment. Moreover, almost all of the
animal data sets lack cancer bioassay comparisons between
the PCDD/F congener and TCDD with just a few exceptions,
e.g. 2,3,4,7,8-pentachlorodibenzofuran and hexa-
chlorodibenzo-p-dioxin (Budinsky et al. 2006; NTP 1980).
Therefore, the TEFs do not reflect the relative potency
comparison across the PCDD/F AhR ligands in humans, the
range of variability and uncertainty in overall relative
potency of a congener or the critical risk end point of cancer.
Limited studies of CYP1A induction in primary human
hepatocytes suggest that the TEF values are too conservative
but again, CYPIA induction may not accurately depict the
gene networks associated with the tumor promotion MOA
(Budinsky et al. 2010, 2012; Silkworth et al. 2008). Genomic
data for TCDD, 2,3,7,8-tetrachlorodibenzofuran (TCDF) and
2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF) reveal that
TCDF and 4-PeCDF are 27-fold and 35-fold less potent than
TCDD (Rowlands et al. 2011, 2012). This is based on
benchmark dose estimates from transcriptional changes in
human hepatocytes that were treated with TCDD, TCDF and
4-PeCDF with corresponding average BMD estimates of
0.27, 7.3 and 9.4 nM, respectively (Fig. S8; see ESM). Data
such as these could be used to adjust the current 0.1 and 0.3
TEF values for TCDF and 4-PeCDF, respectively (Van den
Berg et al. 2006). Future studies in primary hepatocyte cell
cultures with emphasis on genomic pathways anchored to
phenotypical changes in the MOA could add useful data in
reducing the current uncertainty that exists in the TEF
methodology. However, criteria and guidelines will be nec-
essary for how to incorporate in vitro human data into the
overall World Health Organization’s TEF method.

10.1.4 Replicating observations reported in human
epidemiology studies: Improving Regulatory Values
For PCDD/Fs

The US EPA has developed a TCDD-specific reference dose
(RfD) that is based on sperm deficit and increased thyroid-
stimulating hormone (TSH) data reported in the Mocarelli
etal. (2008) and Baccarelli et al. (2008) studies. The US EPA
modeled both of these end points as adverse observations
despite neither end point being outside the normal clinical
range or direct proof of clinical evidence of disease, e.g.
infertility or hypothyroidism. However, the desire to use
human data over animal data is to be applauded but the
uncertainties in this effort need to be carefully revealed and
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incorporated into risk assessment. With respect to primary
hepatocyte studies, the RfD hinges on a fairly simple MOA
for how TCDD induction of human UGT isoforms enhances
thyroxine (T4) glucuronidation and clearance and how spe-
cific UGT isoform induction could increase the risk of
hypothyroidism and developmental delays in infants (Kohn
et al. 1996; Nishimura et al. 2005; Viluksela et al. 2004).
AhR exerts a developmental and physiological role in the
liver in response to natural AhR ligands that occur endoge-
nously, e.g. bilirubin, or in the diet (indoles). This is sup-
ported by the fact that AhR knockout mouse has defects such
as small, fibrotic livers with patent ductus venosus and
impaired bile acid metabolism and excretion. Basal activity
of the AhR, in response to endogenous ligands, is necessary
to reduce apoptosis of hepatocytes. Without the AhR activ-
ity, the fetal liver undergoes more apoptosis, is smaller at
birth and develops fibrosis, presumably as a result of growth
factors trying to stimulate hepatocyte growth. The current
thinking is that AhR-activation-induced UGT activity results
in clearance of T4 with negative feedback release of TSH
from the pituitary gland. The presumption is that elevated
TSH levels reported in rat studies due to increased UGT
induction and increased T4 glucuronidation are relevant for
humans and pose similar quantitative dose-response rela-
tionships (Kohn et al. 1996; EPA 2012; Van Birgelen et al.
1995). Since hepatic UGT induction is at the core of this
issue, the role of primary rat and human hepatocytes is an
obvious tool for exploring uncertainties concerning EPA’s
reference dose.

In conclusion, humans are still exposed to dioxins with
the diet contributing almost the entire source of exposure
(Lorber et al. 2009). Although the current dietary exposure
is not associated with adverse health impacts, questions
still remain on how sustained AhR activation could con-
tribute to human risk and how levels of exposure should be
controlled. On the other hand, there is a keen interest in
modulating AhR activity in the treatment of various dis-
eases. Research using primary liver cell cultures will be an
important tool in addressing these interests.

10.2 PPARa pathway and hepatocarcinogenesis

Key questions

e What are the molecular determinants of the species
differences in PPARo-pathway-dependent gene expres-
sion and hepatocarcinogenesis?

e Can combined high-throughput data sets, specifically
transcriptome profiling and genome-wide location
analysis, be used to generate a preliminary reconstruc-
tion of the PPARa signaling and transcriptional
network in primary human hepatocytes?
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Take home messages

e A combination of high-throughput data sets derived
from primary human hepatocytes and hepatoma cell
lines are providing useful insights into the concentra-
tion- and time-dependent events involved in the
activation of the PPAR« toxicity pathway.

e Regulation of the PPAR« transcriptional network is a
multifaceted and multidimensional process involving
both direct and indirect ligand-activated binding events
between PPAR« and other transcription factors, as well
as kinase-mediated phosphorylation cascades, includ-
ing ERK1/2, SRC and p38.

High-throughput data sets, specifically transcriptome
profiling and genome-wide location analysis, for a pre-
liminary reconstruction of the PPARa signaling have been
recently combined and transcriptional network in primary
human hepatocytes. Primary human hepatocytes were
treated for up to 72 h, with concentrations varying from
0.001 to 10 uM of the PPARa ligand, GW7647 (GW). A
relatively small subset of 193 genes was differentially
expressed by GW treatment in a time- and concentration-
dependent manner, with more than 90 % being upregu-
lated. The transcriptomic dose-response of four of these
genes, Acox, Hmgcs2, CptlA and Cyp4All, at 72 h, is
shown in Fig. S9 (see ESM), along with validation by
gRTPCR measurement.

A published genome-wide profile of PPARa binding
using chromatin immunoprecipitation combined with
microarray hybridization (ChIP-on-chip) in HepG2 human
hepatoma cells was then used to identify differentially
expressed genes that had PPARa bound to their promoter
regions. In addition, a catalogue of direct binding targets of
PPARa with functional PPREs in their promoter was used
(Mandard et al. 2004; Heinaniemi et al. 2007; Rak-
hshandehroo et al. 2010) to assign differentially expressed
genes to three groups based on their mechanism of regu-
lation (Shen et al. 2011):

1. Direct genomic binding (DGB), where PPARo induces
gene transcription by binding to PPREs in the
promoters of target genes, corresponding to the
“canonical” mode of action.

2. Indirect genomic binding (IDGB), whereby PPARa is
bound to promoter regions of target genes, but not to
PPREs—presumably through protein—protein interactions
with other transcription factors that directly bind DNA.
This “tethering” mechanism has been observed with other
NRs like the GR and ER, where it may account for the
regulation of 25-30 % of target genes (George et al. 2011;
Heldring et al. 2007; So et al. 2007; Stender et al. 2010).

3. Non-genomic interactions (NGI), where PPAR« is not
bound to the promoter region of a differentially

expressed gene. These genes are presumably activated
or repressed by other transcription factors activated by
phosphorylation or cross talk with alternative signaling
pathways.

Surprisingly, a fairly small number (Quistorff 1985) of
the 193 differentially expressed genes showed evidence for
PPARa binding in the ChIP-on-chip study, with an even
smaller subset (Atzori et al. 2009) of these genes con-
taining functional PPREs. Thus, the DGB and IDGB
groups consisted of 12 and 24 genes, respectively—with
the large majority of genes belonging to the NGI group.
The non-PPARua transcription factors that regulate genes in
groups (2) and (3) were identified from the TRANSFAC
(Biobase Corporation, Beverly, MA) database of confirmed
transcription factor—DNA interactions assembled from
other genome-wide ChIP studies. Only those transcription
factors known to be expressed in the liver were included.

All of these regulatory interactions were assembled to
obtain the topology of the “latent” PPARa transcriptional
regulatory network (Fig. 38). A small number of tran-
scriptional “hubs” (highly connected transcription factors
in the network)—ERo, HNF4a, STATI1, ETS1 and Spl—
regulate the majority of differentially expressed genes that
did not show evidence of PPAR«a binding. Superposing the
transcriptomic data from microarray studies onto this
deduced network allowed us to characterize the time- and
ligand concentration-dependent activation of the PPARa-
responsive network. A comparison of the network showing
differentially expressed genes at 72 h with 0.001 uM and
10 M GW, respectively (Fig. 38b, c), shows a progressive
recruitment of the hub transcription factors in addition to
PPARGa. This process is likely regulated by cross talk at the
transcriptional level between PPARa and these transcrip-
tion factors, as well as kinase-mediated phosphorylation
cascades initiated by the ligand. Multiple kinases, includ-
ing MEK, ERK1/2, PI3K, SRC and p38, have been shown
to be activated by peroxisome proliferators, through either
PPARa-dependent or PPARo-independent mechanisms
(Gardner et al. 2003; Ledwith et al. 1996; Mounho and
Thrall 1999; Pauley et al. 2002; Rokos and Ledwith 1997;
Teruel et al. 2003). Protein—protein interaction databases
reveal that a subset of these kinases (ERK1/2, SRC and
p38) can also activate the majority of hub transcription
factors identified in the network.

In summary, the current state of knowledge of the
PPARua toxicity pathway is described, as well as an outline
of an approach to map out this pathway by combining high-
throughput data sets from human primary hepatocytes and
human hepatoma cell lines. Currently there is no published
genome-wide survey of PPARa binding in primary human
cells. Other issues that could be clarified by surveying the
PPARo pathway in human hepatocytes include:
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<« Fig. 38 PPARu transcriptional regulatory network and dose-depen-

dent transition. Rectangular nodes indicate regulatory transcription
factors (TFs), with the PPARa- RXRo heterodimer marked with a
bold label. Each edge in the network indicates binding of a TF to the
promoter of a target gene (circular nodes). a The “latent” network
showing: (1) direct genomic binding by PPARa. (thick black edges);
(2) indirect genomic binding by PPARa (light blue edges); (3) non-
genomic interactions (NGI) mediated by other TFs (dark blue edges).
Dose-dependent evolution of the network indicated by expression
levels of target genes at 72 h for PPARa ligand concentrations of
b 0.001 pM and ¢ 10 M

1. Intracellular localization of PPARa in the presence and
absence of ligand.

2. Distinguishing direct genomic versus indirect effects
of PPARa activation.

3. Assessing dose-dependent differential gene expression
in individual hepatocytes rather than averaged cell
populations for a better understanding of the activation
mechanism of PPARa target genes (graded vs. switch-
like, the latter suggesting involvement of upstream
ultrasensitive kinase cascades).

10.3 Hepatocyte in vitro systems to study apoptosis
in the liver

The liver has an extraordinary regeneration capacity. After
injury, up to 70 % of the liver mass can be restored from
the growth and proliferation of the remaining cells.
Importantly, in the end, the organ reaches its normal size
and contains all the cells necessary for proper functioning.
To maintain this homeostasis, it is crucial that regulatory
mechanisms for cell death and survival/proliferation are
exactly balanced (Rathmell and Thompson 2002). Apop-
tosis is a tightly regulated form of physiological cell death
involved in organ shaping during embryogenesis, tissue
turnover in the adult as well as the removal of damaged,
misplaced and used-up cells (Meier et al. 2000). Any
dysfunction or deregulation of apoptosis can lead to path-
ological conditions, for example cancer, if mutated cells
are not removed (Schattenberg et al. 2006; Schattenberg
et al. 2011a).

Liver injury involves all cell types but cell death is
mainly detected in the hepatocytes. Stellate cells are
responsible for the induction of liver fibrosis following
damage. Kupffer cells are considered to be protected from
apoptosis but participate in the inflammatory reactions
associated with the damage. Whereas the liver can recover
from hepatectomy, some acute or chronic damages destroy
up to 80-90 % of hepatocytes leading to hepatic failure and
by consequence hepatic encephalopathy (mental status
changes) and impaired protein synthesis (determined by
serum albumin and prothrombin in the blood). Triggers for
hepatic failure are alcoholic and non-alcoholic steatosis,

overdose of acetaminophen or other toxic products, idio-
syncratic reactions to medication, ischemic injury, viral
hepatitis (A and B, less so for C), acute fatty liver of
pregnancy or Wilson’s disease (hereditary copper accu-
mulation) (Yoon and Gores 2002; Martins et al. 2008; Sun
and Karin 2008). In all these cases, hepatocytes do not only
die by apoptosis but also by necrosis, a more pathological
form of cell death leading to cell lysis (Natori et al. 2001;
Feldstein et al. 2003; Ribeiro et al. 2004). Usually hepa-
tocellular death begins in the centrizonal area and pro-
gresses toward portal tracts of the liver. It was previously
generally accepted that apoptotic cells are removed by
phagocytosis without stimulating inflammatory reactions,
whereas necrosis is often associated with a variable degree
of parenchymal inflammation that is often proportional to
the duration of the disease. However, it was recently
reported that also apoptosis promotes inflammation in the
liver (Malhi et al. 2006, 2010; Ogasawara et al. 1993;
Matsumura et al. 2000). Engulfment of apoptotic bodies by
Kupffer cells resulted in the expression of the death ligands
TNFa, TNFo-related apoptosis-inducing ligand (TRAIL)
and FasL leading to a continuation and enhancement of
apoptosis in hepatocytes, but also the activation of hepatic
stellate cells. Once activated, the latter cells aid in the
removal of apoptotic bodies and provoke hepatic fibrosis.
Hence, excessive apoptosis now plays a key role in hepatic
inflammation and fibrogenesis. Necrosis is especially sig-
nificant in ischemia/reperfusion injury and acute drug-
induced hepatotoxicity. Moreover, the same death-initiat-
ing stimulus (e.g. FasL/CD95L) can lead to apoptosis and
necrosis (Ogasawara et al. 1993; Matsumura et al. 2000).
For these reasons, an understanding of how liver cells die
and how such cell death can be modulated is of immense
clinical relevance (Malhi et al. 20006).

Damaged hepatocytes can undergo apoptosis by the
extrinsic or intrinsic signaling pathways. The extrinsic
pathway involves so-called death receptors, which are
stimulated by members of the TNFa super family. The
major trigger in the liver is FasL (or CD95L). Injection of
agonistic anti-Fas antibodies (Jo2) into mice provoke
massive hepatocellular cell death, hepatic failure and
consequent death of the animals (Ogasawara et al. 1993)
due to stimulating its receptor Fas (CD95 or Apo-1) highly
expressed on hepatocytes (Ni et al. 1994; Saile et al. 1997,
Muschen et al. 1998; Cardier et al. 1999; Ueno et al. 2000).
Physiologically, FasL is expressed on the surface of cyto-
toxic T cells or NK cells (Kagi et al. 1994; Berke 1995;
Tacke et al. 2009), which are especially activated by the
infection with viruses (hepatitis A, B and C viruses). The
infected hepatocytes are then killed by the stimulation of a
caspase cascade after FasL/Fas binding (details see below).
By contrast, TNFa and TRAIL do not primarily induce
apoptosis neither in vivo nor in isolated primary
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hepatocytes (Malhi and Gores 2008). In the liver, TNFa is
mainly produced by Kupffer cells, but also monocytes and
T cells, and occasionally by hepatocytes (Malhi et al. 2010;
Akazawa and Gores 2007). TNFo participates in inflam-
matory reactions, with the main purpose of rapidly fighting
off bacterial infections. Therefore, TNFo primarily keeps
cells alive via activating the NFkappaB signaling pathway
and producing survival factors, such as Bcl-2, Bcl-xp,
c-FLIP and others (Wullaert et al. 2007; Liedtke and
Trautwein 2011; Schattenberg et al. 2011b). Consequently,
TNFo becomes pro-apoptotic for hepatocytes when
NFkappaB is inhibited. Thus, combined treatment of mice
with lipopolysaccharide, which increases TNFa production
by macrophages and Kupffer cells, and the hepatocyte-
specific transcription inhibitor D-galactosamine (GalN)
lead to apoptosis of hepatocytes (Nowak et al. 2000; Koide
et al. 2009a). In vitro, the same effect can be obtained by
combining TNFa and the transcription inhibitor actino-
mycin D (ActD) or the translation inhibitor cycloheximide
(CHX). Recently, it was demonstrated that chronic HCV
infection also suppresses NFkappaB activation and there-
fore enhances TNFa-induced cell death (Park et al. 2012).
Under chronic inflammatory conditions, TNFo. may, how-
ever, sensitize cells to FasL-induced apoptosis in an NF-
kappaB-independent manner, as it has recently been sug-
gested by Schmich et al. (2011) (see below).

TRAIL, which is also not cytotoxic to hepatocytes per
se, can also sensitize the cells to FasL-induced apoptosis.
Furthermore, it was reported to be induced and facilitate
hepatocellular apoptosis by acetaminophen as TRAIL —/—
mice were protected against the hepatotoxic action of this
drug (Badmann et al. 2011). Finally, the group of Gregory
Gores published that bile acids improperly manufactured or
secreted during cholestasis become cytotoxic by increasing
the surface expression of death receptors, thereby sensi-
tizing hepatocytes for death receptor-induced apoptosis
(Higuchi et al. 2001). A similar sensitization was reported
by his group for high levels of circulating fatty acids during
the metabolic syndrome (obesity, diabetes), leading to a
non-alcoholic fatty liver injury and hepatocyte cell death
(Malhi et al. 2007).

The cytokines, FasL, TNF or TRAIL, specifically bind
to their related receptors present on the hepatocyte surface,
namely Fas, TNF receptor type 1 (TNF-RI, p55/65,
CD120a) or TRAIL receptor type 1 (TRAIL-R1, DR4) and
type 2 (TRAIL-R2, DRS), respectively (Yoon and Gores
2002; Schattenberg et al. 2006). To induce cell death, the
bound receptor tri- or multimerizes and recruits from the
cytoplasm the adaptor molecule FADD and monomeric
pro-caspases-8 (and pro-caspase-10 in humans) forming
the death-inducing signaling complex (DISC) (Kischkel
et al. 1995; Peter and Krammer 2003; Chang et al. 2003;
Strasser et al. 2009). By their close proximity on the DISC,
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the pro-caspase-8 monomers dimerize, are activated by
autoproteolysis and either directly cleave and activate the
effector, caspase-3, or the BH3-only protein Bid (Scaffidi
et al. 1998). For unknown reasons, the direct caspase-3
activation, the so-called type I pathway, is insufficient to
induce death ligand-induced apoptosis in hepatocytes,
although it effectively kills infected target cells by CTLs
and lymphocytes by activation-induced cell death (Strasser
et al. 1995, 2009). This might be due to the fact that
hepatocytes express high levels of the caspase-3 inhibitor
XIAP, which binds to the caspase-8 processed p19 form of
caspase-3 preventing its autoprocessing to the highly active
p17 form. Indeed hepatocytes from XIAP —/— mice show
accelerated FasL-induced apoptosis through the direct type
I pathway (Jost et al. 2009). Therefore, hepatocytes link the
extrinsic to the intrinsic, mitochondrial pathway (the so-
called type II pathway) for signal amplification and the
neutralization of XIAP. After cleaving Bid into tBid by
caspase-8, the latter protein migrates to mitochondria
where it either interacts with Bcl-2-like survival factors
(Bcl-2, Bel-xp, Mcl-1) to release Bax and Bak or directly
binds to Bax/Bak to activate them (Li et al. 1998b; Desa-
gher et al. 1999; Wei et al. 2000; Gavathiotis et al. 2008;
Gallenne et al. 2009; Llambi et al. 2011). Activation of Bax
and Bak involves a conformational change at their N-ter-
mini that allows their oligomerization and pore formation
on the mitochondrial outer membrane (MOM) (Desagher
et al. 1999; Nechushtan et al. 1999; Griffiths et al. 1999;
Borner 2003). This membrane permeabilization, called
MOMP, leads to the release of cytochrome ¢ and other
apoptogenic factors into the cytoplasm (Youle and Strasser
2008). Cytochrome c binds to the adaptor APAF-1 which
then recruits monomeric pro-caspase-9 into a heptameric
wheel structure called the apoptosome. By autoprocessing,
pro-caspase-9 is activated and cleaves and activates cas-
pase-3 (Green and Kroemer 2004). In addition, XIAP is
neutralized by its binding to Smac/DIABLO which is co-
released with cytochrome c from mitochondria, and
thereby caspase-3 can be fully activated and the apoptotic
signal is amplified (Kaufmann et al. 2012; Huang et al.
2004; Vaux and Silke 2003). Active caspase-3 cleaves
hundreds of cellular substrates involved in metabolism,
DNA repair, DNA fragmentation and cytoskeletal rear-
rangements to dismantle the cell by a regulated process
(Luthi and Martin 2007). The crucial involvement of the
mitochondrial, type II pathway in FasL-induced hepatic
apoptosis was demonstrated by the finding that Bcl-2
transgenic and Bid-/- mice were completely protected
against fulminant hepatitis and death due to anti-Fas anti-
body injection (Jo 2) (see above) (Lacronique et al. 1996;
Yin et al. 1999).

Interestingly, FasL. does not only cause liver damage
during infections and excessive drug exposure but also
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participates in the opposite response, namely liver regen-
eration. Mice harboring an inactive Fas mutation (lpr)
exhibit reduced liver regeneration after hepatectomy or
damage with CCl, (Desbarats and Newell 2000). Surpris-
ingly, the same effect was observed in animals in which
caspase-8 had been conditionally knocked out in hepato-
cytes (Kang et al. 2004, 2008). These findings indicate that
the same Fas/caspase-8 signaling pathway can be used for
hepatocyte apoptosis and proliferation. However, the cas-
pase-8 substrates are likely to be different. The reason for
the opposing activities of the Fas/caspase-8 system is
unknown. Either the dose of FasL, its route of delivery
(membrane bound or soluble), its cellular source or the co-
stimulation with other mitogenic factors such as HGF, EGF
or TGF-B play a role in the switch from apoptosis to
mitogenesis.

As mentioned above, TNFao has been assigned a dual
role, being involved not only in apoptosis but also in survival
pathways resulting in hepatocyte protection and prolifera-
tion (Schattenberg et al. 2011a; Guicciardi and Gores 2009;
Woullaert et al. 2007). TNFo mediates its effects through two
different receptors, TNFR1 and TNFR2. Since TNFR2 lacks
a functional death domain, only TNFR1 can initiate apop-
tosis. TNFa signaling starts by binding to TNFR1, a mem-
brane-bound complex I consisting of TNFRI, receptor-
interacting protein 1 (RIP1), TNF-receptor-associated factor
2 (TRAF2) and TNFRI1-associated death domain protein
(TRADD). Complex I rapidly signals to the activation of the
survival transcription factor NF-kappaB and the c-Jun
N-terminal kinase (JNK) (Micheau and Tschopp 2003; Papa
et al. 2006). However, triggering TNFR1 can also lead to
apoptosis when FADD and procaspase-8 bind to complex I
forming the cytosolic complex II (DISC) whose assembly is
critically dependent on receptor endocytosis (Wullaert et al.
2007; Micheau and Tschopp 2003; Guicciardi and Gores
2009). Under normal conditions, complex II formation is
blocked by c-FLIP and NF-kappaB survival signaling (Karin
and Lin 2002). Hence, activation of NF-kappaB, which
regulates various antiapoptotic genes besides c-FLIP, such
as Bcl-x;, XIAP, and cIAP1 and 2, is probably the main
reason why TNFa alone does not induce cell death in most
cells. Recently, it was shown that when caspase-8 is inhib-
ited or deleted, TNFa induces necroptosis, a programmed
form of necrotic cell death, which may be crucial for non-
apoptotic liver injury (Liedtke and Trautwein 2011; Feok-
tistova et al. 2011; Gunther et al. 2011; O’Donnell et al.
2011; Duprez et al. 2012). This cell death is mediated by
RIP1 and RIP3 protein kinases associated with the TNFR1
(Vandenabeele et al. 2010). Hence, caspase-8 is not only a
mediator of FasL- and TNFa-induced apoptosis, but also
protects the liver from TNFo-induced necroptosis.

While activation of NF-kappaB by TNFa promotes
survival, JNK signaling has different impacts on the fate of

hepatocytes (Papa et al. 2009; Malhi et al. 2010). Transient
activation of JNK by the TNFR1 complex I is rapidly
terminated by MAPK phosphatases (MKPs), whose genes
are regulated by NF-kappaB promoting proliferation.
However, inhibition of the activity of MKPs by ROS leads
to sustained activation of JNK and to cell death (Papa et al.
2006; Kamata et al. 2005; Nakano et al. 2006). ROS are
assumed to originate from mitochondria, but recent reports
also suggest a possible involvement of the plasma mem-
brane—associated NADPH oxidase as an ROS producer
after TNFa treatment (Yazdanpanah et al. 2009). More-
over, JNK can also directly activate the E3 ubiquitin ligase
Itch, which is involved in c-FLIP degradation (Chang et al.
2006b). Activated JNK has been shown to mediate TNFa-
induced apoptosis either through a caspase-8-independent
cleavage of Bid at a distinct site (jBid) (Deng et al. 2003)
or through phosphorylation and/or transcriptional induction
of Bim (Papa et al. 2009; Schmich et al. 2011). The latter
mechanism also appears to be exploited by TRAIL for its
sensitizing effect on FasL-induced liver damage and
lethality (Corazza et al. 2006). In summary, TNFo-medi-
ated induction of apoptosis is tightly regulated by a com-
plex signaling network.

10.3.1 FasL-induced apoptosis signaling differs
between isolated, collagen-plated and in vivo liver
residing hepatocytes

Freshly isolated mouse hepatocytes all died within 4-8 h
when treated with low dose of FasL (50-100 ng/ml) in
suspension (Walter et al. 2008). The cells displayed the
typical hallmarks of apoptosis (Kerr et al. 1972; Leverrier
and Ridley 2001), such as membrane blebbing, phospha-
tidylserine exposure, caspase-3 processing to the active p17
form and increased caspase-3/-7 (DEVDase) activity, as
well as cleavage of caspase-3 substrates such as PARP. All
these features were entirely blocked in primary hepatocytes
from Bid-/- mice. In addition, while wt hepatocytes showed
release of cytochrome ¢ and Smac/DIABLO, both pro-
cesses were blocked in Bid-/- cells. These data indicated
that directly after isolation, hepatocytes behaved as in vivo,
i.e. they underwent apoptosis in response to FasL in a type
II, Bid- and mitochondria-dependent, manner (Fig. 39). By
contrast, when the isolated murine hepatocytes were plated
on a collagen I monolayer, the time kinetic of FasL-
induced apoptosis was slower and the apoptotic signaling
changed from Bid- and mitochondria-dependent type II to
the direct, Bid- and mitochondria-independent type I
pathway (Fig. 39). In addition to the apoptosis features
seen in suspension cells, the polyhedral shape of healthy
plated hepatocytes changed after 4 h of FasL treatment, the
cells got smaller, showed the typical membrane blebbing
and detached from the plate (Walter et al. 2008; Ferreira
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Fig. 39 Activation of different death receptor signaling pathways
depending on the culture conditions of hepatocytes. In the mouse liver
and when kept in suspension right after isolation, hepatocytes undergo
apoptosis in response to FasL in a manner dependent on the BH3-only
protein Bid and mitochondrial outer membrane permeabilization
(cytochrome c release) (so-called type II signaling). However, when
plated on a stiff collagen monolayer or embedded into a soft collagen

et al. 2012). Due to the larger cytoplasmic area of plated
hepatocytes, it was also possible to perform immunofluo-
rescence analysis using antibodies against the active form
of caspase-3 (Jones et al. 1998; Walter et al. 2008) or
mouse cytochrome c¢ (Jemmerson et al. 1999), and GFP-
annexin-V as a measure of PS exposure. Moreover,
nuclear/DNA fragmentation could be monitored by DAPI
or Hoechst 33342 staining. These analyses clearly showed
that both wt and Bid-/- exhibited GFP-annexin-V staining
and caspase-3 activation followed by nuclear fragmenta-
tion and detachment from the plate, but no cytochrome c
release. Thus, all features of apoptosis could be faithfully
measured in primary mouse hepatocytes cultured on a
collagen I monolayer but the FasL-induced signaling
switched from the type II to the type I manner.

A variety of technical problems were encountered, which
were specific for the collagen-plated hepatocytes. Firstly, it
was impossible to quantify apoptosis by GFP-annexin-V/PI
FACS analysis because the cells rapidly lysed upon detach-
ment with either scraping or the treatment with trypsin or
collagenase. Therefore, general cell death assays were used,
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sandwich, the FasL signaling pathway switches to a more direct
manner that bypasses mitochondria and cleaves and activates effector
caspase-3 directly by death receptor-bound caspase-8 (type I signal-
ing). Interestingly, TNFa signaling does not switch in collagen-
cultured hepatocytes, as sensitization of FasL-induced apoptosis by a
pretreatment with TNFa remains Bid/mitochondria (type II)-
dependent

such as MTT or CellTiterGlo™ (chemoluminescence),
which determine the extent of cell survival based on mito-
chondrial activity, as well as an ELISA assay which quantifies
DNA fragmentation (Walter et al. 2008; Schmich etal. 2011).
Secondly, hepatocytes contain a high amount of proteases.
Therefore, cell lysates (especially subcellular fractions) were
prepared in the presence of lots of protease inhibitors and
either immediately processed for further experiments or
snap-frozen in liquid nitrogen. Thirdly, due to the marked
autofluorescence of hepatocytes, the antibodies for immu-
nofluorescence had to be highly specific with minor cross-
reactivities (for example cytochrome c¢) (Jemmerson et al.
1999; Walter et al. 2008).

Interestingly, as observed for FasL, Godoy et al. (2009)
showed that the signaling pathway in response to TGF-f3 was
disturbed when primary mouse hepatocytes were plated on a
stiff collagen monolayer. This culturing provoked a typical
epithelial-mesenchymal transition (EMT) and this was
associated with a complete resistance to TGF-B-induced
apoptosis. However, when the primary hepatocytes were
cultured in a soft collagen sandwich where polarity and the
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epithelial phenotype were maintained, they showed the typ-
ical feature of apoptosis in response to TGF-3 (Godoy et al.
2009). It therefore seems that the microenvironment, in par-
ticular the kind of ECM and eventually also the lack of other
cell types, influences the differentiation state and apoptosis
sensitivity of primary hepatocytes. Unfortunately, the colla-
gen sandwich culturing did not reverse the type II to type I
switch of FasL-induced apoptosis signaling observed on stiff
collagen monolayers (unpublished data). This was also true
when the primary mouse hepatocytes were plated on Matri-
gel™, a combination of collagen I, collagen IV and other
basal lamina components such as laminin and heparan sulfate
proteoglycans (LeCluyse et al. 1996; Semler et al. 2000;
Walter et al. 2008). Results described here therefore indicate
that the FasL signaling switch did not depend on the differ-
entiation or polarity state of primary hepatocytes but most
likely on collagen itself or the lack of other cell types in the
neighborhood. One idea is the development of spheroid cul-
tures whose survival would be independent of collagen, but
dependent on cell—cell interactions in a 3D manner. This
culturing technique has been successfully used to grow and
analyze the signaling pathways of primary mammary cancer
cells by biochemical and immunohistochemical methods
(Schurigt et al. 2008; Sevenich et al. 2010).

10.3.2 Apoptosis in hepatocytes by a systems biology
approach

In order to properly investigate the molecular mechanisms
involved during apoptosis and/or regeneration in the liver,
studies must be performed under conditions as close to the
in vivo situation as possible. It is difficult to obtain healthy liver
cells from humans, as they usually come from biopsies of
normal tissue surrounding tumors or fatty liver from patients.
Studies to optimize the isolation of human liver cells (see sec-
tion “Isolated human hepatocytes™) and to establish an in vitro
steatosis model (see section “Hepatocellular lipid accumula-
tion and non-alcoholic fatty liver disease”) are showing some
progress; nevertheless, to date, apoptosis studies have not yet
been consistently reported in human primary hepatocytes.
Since the apoptotic machinery is highly conserved among
species, a valuable model system is mouse or rat-derived
hepatocytes. Rodents are easily accessible for studies involving
hepatectomy or drug-induced liver damage. They can be
genetically modified and hepatocytes as well as other liver cells
can be easily isolated in appreciable numbers under standard-
ized, reproducible conditions. These primary cell cultures are
expected to simulate, at least in part, the signaling mechanisms
occurring in vivo because the cells are isolated from the living
organism and kept in culture for a limited amount of time.
Freshly isolated hepatocytes can be kept in suspension for
up to 4 h and still preserve their metabolic function. This
system is technically low demanding and is suitable for

screening of metabolites, analysis of interspecies differences
and rapid signaling pathways (Gebhardt et al. 2003). However,
to study biological responses such as cell proliferation, dif-
ferentiation or apoptosis, which take longer to implement,
suspension hepatocytes cultures are not suitable as the cells
start to spontaneously die by apoptosis after 4-6 h post-isola-
tion. Therefore, culture conditions and standardized proce-
dures were established to plate freshly isolated mouse and rat
hepatocytes and other liver cells immediately on a stiff colla-
gen I or Matrigel layer, on which they adhere and can be
cultured and experimentally assessed for a few days (Ni et al.
1994; Klingmuller et al. 2006; Walter et al. 2008; Gebhardt
et al. 2003). Under these conditions, the primary hepatocytes
can be distinguished from established hepatocyte cell lines in
many features (Clayton and Darnell 1983; Hengstler et al.
2000a; Ruhnke et al. 2005). Nevertheless, they do not exactly
behave as in vivo because their microenvironment is absent.
Sandwich cultures exhibit biological responses and signaling
pathways similar to those seen in the liver in vivo (Hengstler
et al. 2000a; Godoy et al. 2009; di Mambro et al. 2011).
Although optimal in vitro culturing system that reproduces
type Il FasL signaling in vivo has not yet been established, the
collagen monolayer hepatocyte culture system has been used
to better understand the regulation of the type I pathway that is
present in most of the Fas-sensitive cells such as lymphocytes
(Strasser et al. 1995, 2009). One major question has been how
type I signaling is amplified when mitochondria do not par-
ticipate and therefore the caspase-3 inhibitor XIAP is not
neutralized. Eissing et al. (2004) proposed a mathematical
model in both type I and type II FasL signaling pathways that
caspase-3 feeds back on caspase-8 to cleave the partially
processed and active p43 form at the DISC into a fully pro-
cessed, highly active p18 form in the cytoplasm, thereby fur-
ther processing and activating caspase-3. By using two
selective caspase-3 inhibitors (AB06 and AB13), the caspase-3
to caspase-8 feedback loop was shown to exist (Ferreira et al.
2012). However, this loop did not seem to activate caspase-8
further but rather diverted the protease to other substrates or
inactivated it by complete degradation. This is consistent with
two recent reports showing that caspase-8 variants mutated in
the autocleavage site converting p43 to p18 exert a more sus-
tained rather than a lower caspase-8 activity (Hughes et al.
2009; Oberst et al. 2010). Because caspase-8 also participates
in mitogenic signaling in response to FasL (refer to liver
regeneration), it is well possible that this activity has to be
eliminated by degrading caspase-8 in a caspase-3-dependent
manner in order to fully commit a cell to apoptosis. In addition,
by using ABO6 and AB13, previous reports that active caspase-
3 cleaves Bid into tBid and effectively degrades its own
inhibitor XIAP were confirmed (Tang et al. 2000; Lee et al.
2000). These are clearly positive feedback loops, which
amplify type I signaling without the participation of XIAP
neutralizing proteins such as Smac/DIABLO.
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10.3.3 Modeling the TNFa-induced apoptosis pathway
in hepatocytes combining FasL/TNFo. and TNFo/
ActD

As mentioned above, FasL is a critical mediator of cell death in
chronic and acute liver diseases and induces apoptosis in pri-
mary hepatocytes in vitro. By contrast, the pro-inflammatory
cytokine, TNFa, alone fails to provoke cell death in isolated
hepatocytes but contributes to hepatocyte apoptosis during
liver diseases associated with chronic inflammation, such as
steatohepatitis (Malhi and Gores 2008). In accordance with
these in vivo results, it was recently demonstrated that TNFo
sensitizes primary murine hepatocytes cultured on collagen to
FasL-induced apoptosis (Schmich et al. 2011). Using hepato-
cytes from various knockout mice, the TNFo/FasL sensitizing
effect was shown to be Bid-dependent but XIAP-independent.
Moreover, JNK activation and Bim played a crucial role. The
mitochondrial amplification loop was activated by the inter-
play of Bim and Bid resulting in the induction of cytochrome ¢
release, a hallmark of type II apoptosis. Thus, TNFo was
confirmed to be capable of restoring type II signaling in pri-
mary hepatocytes cultured on collagen by engaging the JNK/
Bim apoptotic pathway (Fig. 39). The mechanism of TNFo-
induced sensitization was supported by a mathematical model
that correctly reproduced the most critical interactions asso-
ciated with Bid and Bim, the prominent role of XIAP as a
caspase-3 buffer, as well as the neutralization function of the
Bcl-2-like survival factors.

A second mathematical model describing the cross talk of
TNFa with the transcriptional inhibitor actinomycin D was
developed, and both models were combined with an existing
NF-kappaB model from Lipniacki et al. (2004). Whereas it has
already been known that only the combination of TNFo and
actinomycin D, but not TNFa alone can induce apoptosis in
primary hepatocytes (as mentioned above), this mathematical
model gives insights into the dynamical interplay between
TNFo and FasL. pathways, NF-kappaB and ROS. The model
confirms the crucial role of ROS for the sustained activation of
JNK during death-receptor-induced apoptosis (Schlatter et al.
2011).

10.3.4 Conclusions and future challenges in apoptosis
research

Although a great deal about the causative agents and the
resulting liver pathologies are elucidated, the entire surge of
death triggers are still unknown, their cellular source and their
MOA, especially in combination with the various co-stimuli
present in such a complex liver organ. For example, we need to
know more about when and where FasL is produced within the
liver in response to inflammatory stimuli, drugs, toxins or
various pathogens. In addition, how exactly does FasL coop-
erate with TNFa and/or TRAIL and under which conditions
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can TNFa be a crucial pro-apoptotic molecule, which aggra-
vates liver failure? Due to the stimulation of multiple signaling
pathways for apoptosis, necrosis or survival, TNFa has
pleiotropic actions on the liver, depending on where it is pro-
duced, on which cells it acts and with which other signaling
pathways it cooperates, the principle of which was revealed
using in vitro models (Walter et al. 2008; Schmich et al. 2011).
Another interesting future study field will be why FasL can also
trigger hepatocyte proliferation during liver regeneration.
What distinguishes it from its apoptotic mechanism and how
can this knowledge be exploited to improve liver regeneration
after excessive damage? For all these aspects, it would be ideal
to have reproducible in vitro systems for easy handling.
However, as mentioned above, this is not an easy task since
hepatocytes, and most likely also their non-parenchymal
counterparts, can change signaling properties when cultured on
collagen or other ECM components. Would it be better to
improve the survival of suspension cells after their isolation
from the liver tissue, keeping them alive for longer than
8—12 h? Or is the solution to co-culture hepatocytes with
combinations of all the other, NPCs in vitro, thereby recon-
structing a whole liver organ from scratch? The latter approach
is the big challenge of the Virtual Liver Network, which
combines mathematical modeling with data mining (Systems
Biology) to better understand the complex biology of the liver.

10.4 Hepatocellular lipid accumulation
and non-alcoholic fatty liver disease

Key questions

e What are the mechanisms involved in steatosis?
e What in vitro models are available to investigate
steatosis?

Take home messages

e Activated HSCs are responsible for hepatic fibrosis in
response to chronic liver injury and in non-alcoholic
fatty liver disease.

e When activated, these cells express high amounts of
ECM, the degradation of which is concomitantly
inhibited by inhibitors of metalloproteinases.

e De novo expression of pro-inflammatory cytokines and
chemokines further enhances hepatic fibrogenesis by
recruiting leukocytes and perpetuating the inflamma-
tory response.

e [nvitro models are straightforward and include primary
human hepatocytes to which free fatty acids (such as
palmitate) are added to the culture medium. The assays
can be extended to include hepatic stellate cells.
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Fig. 40 Induction of lipid
accumulation in hepatocytes

in vitro. Oil red O staining of
primary human hepatocytes
(PHHSs) incubated with b:
palmitate (0.2 mM) or (a) FFA-
free BSA, which served as a
control

Non-alcoholic fatty liver disease (NAFLD) has emerged
as a considerable public health concern as its major risk
factors, obesity and insulin resistance, reach epidemic
proportions worldwide. Thus, NAFLD is a clinicopatho-
logical condition of emerging importance, and it is now
recognized as the most common cause of abnormal liver
tests. NAFLD starts with hepatic steatosis, which until
recently was regarded as a benign condition. However,
histological studies of biopsies taken from patients with
NAFLD indicate that a significant number of patients
progress to non-alcoholic steatohepatitis (NASH) that leads
to liver fibrosis and finally cirrhosis (Powell et al. 1990).
The “two-hit model” has been suggested to describe the
development and progression of “simple” fatty liver and
NASH, respectively (Day and James 1998). The first hit
causes hepatic steatosis, i.e. an imbalance between hepa-
tocellular lipid uptake on the one side and combustion and
secretion on the other side. According to the two-hit-
hypothesis of NASH, hepatic steatosis is a prerequisite for
subsequent events (“second hits”), involving environ-
mental and genetic factors that lead to progressive hepatic
inflammation and fibrosis.

In an in vitro model, cellular lipid accumulation was
induced in primary human hepatocytes by adding free fatty
acids (FFAs) to the culture medium (Wobser et al. 2009).
FFAs appear to be the major mediators of excessive hepatic
lipid accumulation. The rate of hepatic FFA uptake is not
regulated, and therefore, is proportional to plasma FFA
concentrations (Teli et al. 1995). In humans with NAFLD,
circulating FFAs are commonly elevated, and their plasma
levels correlate with disease severity (Nehra et al. 2001). In
their model, Wobser et al. (2009) used palmitate (C16:0),
the most prevalent long-chain saturated fatty acid found in
the circulation where it is bound to albumin in physiolog-
ical ratio of 2:1. In states of insulin resistance and obesity,
serum fatty acid levels are commonly elevated, yielding
ratios as high as 7.5:1 (Kleinfeld et al. 1996). Thus, human
hepatocytes were incubated with palmitate complexed to
bovine serum albumin in a molar ratio of 6.7:1, thereby
mimicking hyperlipidemic conditions. Exposure to

palmitate induced an accumulation of cytosolic lipid
droplets in human hepatocytes, as detected by confocal
microscopy after staining with Oil Red O (Fig. 40). Col-
orimetric analysis revealed a dose-dependent increase in

intracellular triglyceride concentration in hepatocytes
exposed to 0.1-0.4 mM palmitate (Fig. 41). Measurement
of the (residual) palmitate concentration in the supernatant
revealed a complete uptake of palmitate by hepatocytes
incubated for 24 h with palmitate at a concentration of 0.1
or 0.2 mM, and after 24-h incubation with 0.4 mM pal-
mitate, approximately 85 % of the palmitate was taken up
by the hepatocytes. Importantly, the viability of human
hepatocytes was not affected by the stimulation with pal-
mitate in a concentration of up to 0.4 mM. This in vitro
model of hepatocellular lipid accumulation has been
applied already in several subsequent studies to assess the
effect of hepatic steatosis on the expression of defined
genes and signal transduction pathways (Wanninger et al.
2011; Schnabl et al. 2011; Kirovski et al. 2010). Notably,
changes observed in human hepatocytes in response to
in vitro-induced steatosis were in line with elevated
expression levels in human NAFLD tissue compared to
normal hepatic tissue (Wanninger et al. 2011; Schnabl et al.
2011; Kirovski et al. 2010). Furthermore, palmitate dose
dependently induced ROS formation in human hepatocytes
in this model (Schnabl et al. 2011). Oxidative stress has
been suggested to be major consequence of cellular lipid
overload, and to contribute significantly to inflammatory
liver damage and fibrogenesis in NASH, when the capacity
of hepatocytes to safely store excess FFAs in form of tri-
glyceride in lipid droplets is depleted (Rombouts and
Marra 2010). Together, these findings indicate that palmi-
tate-induced lipid accumulation in human hepatocytes
in vitro is a suitable model to resemble the in vivo situation
in human NAFLD.

In humans, the severity of hepatic steatosis correlates
with the stage of liver fibrosis in a wide range of liver
diseases (Bosserhoff and Hellerbrand 2011). However, it
remains unclear whether hepatocellular lipid accumulation
per se can initiate hepatic inflammation and fibrogenesis. To
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Fig. 41 Dose-dependent induction of cellular triglyceride accumula-
tion in hepatocytes in vitro. Colorimetric quantification of the
intracellular triglyceride concentration in primary human hepatocytes
exposed to 0.1-0.4 mM palmitate (*P < 0.05 compared to control)

address this question, the in vitro model of hepatic steatosis
was extended to hepatic stellate cells (HSCs). Activated
HSC:s are the effector cells of hepatic fibrosis in response to
chronic liver injury, and also in NAFLD, HSC activation is
the central pathophysiological mechanism underlying
hepatic fibrosis (Rombouts and Marra 2010). During
hepatic injury, HSCs undergo a phenotypic transformation
from a quiescent retinoid-storing cell to a highly prolifer-
ative myofibroblast-like cell type, a process termed acti-
vation. Activated HSCs express large amounts of ECM,
including collagen type I, fibronectins and proteoglycans.
Deposition of ECM is further enhanced by the production of
tissue inhibitors of metalloproteinases (TIMPs), which
prevent the degradation of ECM, leading to a net accumu-
lation of ECM with a gradual disruption of normal liver
architecture. The activation process of HSCs is character-
ized further by the release a large number of cytokines
among which TGF-f is considered as the main fibrogenic
cytokine. De novo expression of pro-inflammatory cyto-
kines and chemokines enhances hepatic fibrogenesis further
by recruiting leukocytes and perpetuating the inflammatory
response (Bataller and Brenner 2005; Friedman 2004). The
activation process of HSCs can be simulated by culturing
freshly isolated (quiescent) HSC on plastic. Under these
culture conditions, HSCs start to be activated within
2-3 days and undergo the activation process to fully acti-
vated myofibroblast like activated HSCs within 7-10 days
in vitro (Bataller and Brenner 2005). This in vitro model of
HSC activation and the in vitro model of hepatic steatosis
were combined to assess the effect of steatotic hepatocytes
on the in vitro activation process of HSC (Wobser et al.
2009). First, conditioned medium (CM) was generated from
human hepatocytes from the same donor stimulated with
either 0.2 mM palmitate or BSA as control. Subsequently,
human HSCs were isolated and cultured in vitro. Two days
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after isolation, HSCs were exposed to CM from lipid-loaded
or control human hepatocytes. The experimental setting
assessing the effects of CM from control and steatotic
human hepatocytes on HSCs is depicted schematically in
Fig. 42. HSCs exposed to CM from steatotic hepatocytes
for 3 days revealed significantly higher expression of col-
lagen type I and alpha smooth muscle actin (o-sma), an
established marker of HSC activation (Bataller and Brenner
2005). These findings clearly indicate that exposure to CM
from lipid-loaded human hepatocytes accelerated the acti-
vation of HSCs in vitro.

In a second approach, the in vitro model of hepatic
steatosis was used to assess the effect of hepatic steatosis
on fully activated HSCs (Wobser et al. 2009). Here, acti-
vated human HSCs were exposed to CM from steatotic or
control hepatocytes, as illustrated in Fig. 42. Compared to
CM from control hepatocytes, stimulation with CM from
steatotic hepatocytes induced a significantly higher
expression of TIMPs and TGF-f. Moreover, CM of stea-
totic hepatocytes enhanced proliferation and resistance to
apoptosis of activated HSC. Furthermore, CM from lipid-
loaded hepatocytes induced NF-kappaB-dependent pro-
inflammatory gene expression in activated hepatic stellate
cells (Wobser et al. 2009).

Noteworthy, removal of proteins with a molecular
weight above 5 kDa from the CM with cut-off spin
column before stimulating HSCs abolished the stimula-
tory effect of CM from steatotic hepatocytes on profibr-
ogenic and pro-inflammatory gene expression (Wobser
et al. 2009). Together, these findings showed that lipid
accumulation in human hepatocytes leads to the secretion
of soluble factors, which enhance pro-fibrogenic and pro-
inflammatory phenotype of HSCs. Further analysis
applying this model may lead to the identification of this
or these soluble factor(s), which may lead to the identi-
fication of new therapeutic targets or novel markers for
the progression of NAFLD. Furthermore, the combined
in vitro model of (conditioned medium from) steatotic
hepatocytes and HSCs can be used to study the interac-
tion of these two critical cell types in NAFLD progres-
sion and for screening of pharmaceuticals.

10.5 Idiosyncratic DILI

Key questions

e What are the mechanisms thought to be involved in
DILI?

e What in vitro models are available to investigate DILI?

e What models are available to determine the intracellu-
lar signaling networks controlling DILI?




Arch Toxicol (2013) 87:1315-1530

1437

Take home messages

Idiosyncratic DILI (iDILI) is a particularly worrying
form of liver injury as it appears to be highly patient-
specific.

Recent advances have identified both metabolism- and
immune-mediated etiologies in which the mechanisms
show significant overlap. Indeed it is hypothesized that
many drugs that undergo metabolism to a chemically
reactive metabolite (CRM) will then activate the
immune system.

For metabolism, polymorphisms in enzymes and trans-
porters of all stages, phases I, II, and III, appear to have
an impact by either increasing CRM formation, reduc-
ing hepatic efflux of toxic products, or encouraging an
alternative metabolic route where a CRM will be
formed.

The immune component seems also to be largely
determined by polymorphic alleles, in particular the
HLA molecule associations that are currently under
investigation. It appears that a slight variation between
alleles may be enough to recognize a drug as an antigen
and produce a significant immune response against it.
In fact, the liver may be at a disadvantage respective to
other organ systems, due its large immune cell popu-
lation, its role in drug bioactivation and its central
physiological location, these responses likely occur
intra-hepatically causing damage.

Protein kinase C inhibitor protein 1 (PKCIP-1) and
macrophage migration inhibitory factor (MIF) are
biomarkers that have been identified from in vitro
assays. Such biomarkers are of great interest and a large
new area of research as they could potentially indicate
whether a drug or patient is likely to develop iDILI in
clinical trials or before the injury is widespread.

In vitro models would be a vital tool in iDILI research
and have already been utilized to assess the role of
inflammatory signals in the induction of iDILI. Models
may simply be built upon existing hepatocyte models,
or novel models developed such as the development of
models which will use iPSC. The complex nature and
intracellular environment of iDILI make such model
development an even greater challenge. It is also
important to remember that even as in vitro models are
developed, they are indeed only models and so can
identify potential agents but are unlikely to be 100 %
predictive of the effects that will be seen in humans.
Primary rodent and human hepatocytes and certain cell
lines are vital tools in screening compounds for
hepatotoxic potential and in evaluating mechanisms
of toxicity. In particular, studies with human hepato-
cytes or related human cell lines are a critical bridge to
translate observations found in animals to humans.
However, the validity of these in vitro findings depends
critically on the relevance of the in vitro cell culture
conditions and the metabolic competence of the cells.

A range of drugs, from antibiotics to NSAIDs, have
been shown to cause DILI, an issue that in severe instances
can cause acute liver disease and death (Hussaini and
Farrington 2007). DILI has been reported to not only be the
leading cause of drug withdrawal from the market, but also
in early cessation of clinical trials (Holt and Ju 2006). In
the USA, DILI is responsible for over half of all acute liver
failures, with idiosyncratic DILI (iDILI) accounting for
approximately 12 % of these (Amacher 2012). iDILI is a
particularly worrying form as these reactions are unpre-
dictable based upon drug dosing or known pharmacology
(Holt and Ju 2006). iDILI represents a substantial clinical
problem as it can arise from drugs that are very commonly
prescribed and thus represents a widespread issue. Some of
the associated drugs are listed in Table 8. In a study of
patients with DILI listed in a Spanish registry over the
course of a decade, the greatest links to DILI were with the
commonly prescribed drugs atorvastatin and amoxicillin—
clavulanate (Andrade et al. 2004). Approximately 500
deaths occur in France per year out of 8,000 total DILI
cases (Chalasani and Bjornsson 2010), which when
extrapolated to a worldwide level represents a significant
number of deaths. An average of 15 % of acute liver fail-
ure, in combination with studies between Sweden and the
USA, was categorized as iDILI. Most patients will undergo
liver transplant, as without this, mortality averages 70 %
(Bjornsson and Olsson 2005). An overall frequency of
between 1 in 10,000 and 100,000 patients (Stirnimann et al.
2010) makes iDILI very hard to identify before a drug
enters the market. It has been estimated that a trial would
require a minimum of 30,000 patients, much larger than
any clinical trial, to detect an association with iDILI based
on a frequency of 1/10,000 (Holt and Ju 2006).

In this section, the possible mechanisms of DILI and in
particular iDILI are described, as well as developments in
the understanding the risk factors that make some patients
susceptible to iDILI rather than others. The in vitro models
available and those of the future, as well as possible bio-
markers to indicate injury will also be reported.

10.5.1 Mechanisms of DILI

There are two forms of liver injury which may occur; the
more severe form being hepatocellular and associated with
elevated ALT and 10 % mortality, and the lesser chole-
static injury where elevated alkaline phosphatase (ALP) is
seen (Hussaini and Farrington 2007). Cholestatic injury is
defined as when serum ALP levels are >2 ULN, or the
ALT serum activity: ALP serum activity ratio (R) is <2.
Hepatocellular damage is when ALT is >2 ULN or R > 5.
Mixed injury is a combination of the two such that the ALT
>2 ULN and 2 <R <5 (Amacher 2012). The patho-
mechanism of DILI relies on toxic drugs or metabolites
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Fig. 42 Mechanisms of drug-induced liver injury (DILI). / Detox-
ification of chemically reactive metabolites (CRM) by conjugation
with glutathione. However, high demand or reduced replenishment of
glutathione can prevent such detoxification, leaving the liver at
increased risk of injury. 2 Altered calcium homeostasis due to
chemically reactive metabolite (CRM) presence can cause actin
disassembly, cell membrane blebbing and lysis. 3 CRM may bind to
transport pumps or actin around the bile canaliculi preventing bile
export. 4 CRM binding to mitochondrial proteins may reduce ATP
formation, produce ROS, and open the MPTP causing apoptosis.
Apoptosis is ATP dependent. Due to the lack of ATP formation
necrosis occurs. 5 Immune stimulation via the hapten or prohapten

that are electrophilic or free radical in nature, which bind
cellular proteins or induce oxidative stress (Kaplowitz
2004). A number of recognized methods of cell injury are
possible which could cause the large-scale damage seen in
DILI, as seen in Fig. 42. These include; FasL or TNFo, and
their presence may promote caspase activation and apop-
tosis, reduced mitochondrial ATP production and thus
reduced fatty acid oxidation. This leads to increased ROS
formation, cell blebbing and lysis due to actin fibril
breakdown as a result of altered calcium management.
Further disruption of actin filaments may disrupt normal
bile export pump function, causing cholestasis (Lee 2003).
The proposed cause of cholestatic DILI is intracellular
actin or transport pump dysfunction (Hussaini and Far-
rington 2007), leading to the buildup of bile acids, toxic
drugs and toxic metabolites.

Metabolism and adduct formation are well defined for
many drugs which cause iDILI, but for many the patho-
mechanism is still unknown. The two general mechanisms
of iDILI, which show tremendous overlap, are immune-
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mechanisms leading to either humoral (B cell) or cell-mediated (T-
cell) reactions. B cells produce antibodies that cause inflammation
and cell damage; T-cell release cytotoxic cytokines causing apoptosis.
6 The same as the aforementioned immune activation, however, this
occurs by the PI mechanism using the parent drug. 7 TNF receptor
sensitivity may be heightened increasing responsiveness to TNF,
leading to reduced NF-kappaf}, and apoptotic caspase activation.
DME drug-metabolizing enzyme, CRM chemically reactive metabo-
lite, ROS reactive oxygen species, MPTP mitochondrial permeability
transition pore, APC antigen-presenting cell, MRP2 multidrug
resistance protein 2, NF-kappafl nuclear factor kappa beta (from
Lee 2003; Kaplowitz 2004; Bleibel et al. 2007)

and metabolism-mediated forms, which will be discussed.
However, when discussing the liver- and immune-mediated
injury, it is necessary to state that tolerance to an antigen is
the natural response of the liver rather than a damaging
immune response. This could be due to a variety of
mechanisms, including the fact that the liver is a site for
activated T-cell apoptosis. Kupffer cells, the resident
hepatic antigen-presenting cells, can produce prostaglan-
dins and actually suppress the activation of T cells (You
et al. 2008). This damage limitation concept is worth
bearing in mind when considering an immune response
which occurs within the liver and against the liver, as this
has to be overcome for injury to occur.

10.5.2 Metabolism-mediated iDILI

There is a wide repertoire of enzymes and transporters in
the human body whose role it is to metabolize or trans-
port xenobiotics, respectively, and all have the potential
to cause iDILI through the presence of polymorphic
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variants. The idea of metabolites playing a central role in
the mechanism of iDILI is logical, considering that the
liver is a major site of metabolism and so is highly
exposed to drug metabolites (Ju and Reilly 2012). A
recent study found that patients were much more likely to
develop liver failure and fatal DILI where the medicated
drug underwent hepatic metabolism (Lammert et al.
2010). It is also easy to comprehend how reduced efflux
transporter efficiency within the liver could cause the
buildup of bile and contribute to damage. It should be
possible to design out such factors during drug develop-
ment, but the link seen in clinics between chemically
reactive metabolite (CRM) formation in vitro and adverse
effects is weak, meaning that design alone cannot guar-
antee a safe drug (Park et al. 2011).

Strong evidence for products of metabolism being
involved with idiosyncratic liver injury lies with a group of
anesthetics. Desflurane, isoflurane and halothane are all
structurally similar and are all linked to hepatotoxicity but
to different extents. All three are metabolized, albeit to a
different degree, to the same hepatotoxic metabolite.
Desflurane fulminant hepatic necrosis occurs in less than 1
in 10,000,000 patients and 0.02-0.2 % of this drug is
metabolized; isoflurane causes hepatic necrosis in less than
1 in 1,000,000 and 0.2-2.0 % of the drug is metabolized,
and most injury is seen with halothane with 1 in 35,000
patients being affected and 25-50 % of this drug is
metabolized. This illustrates how drug metabolites can be
the cause of severe liver injury as metabolite formation is
proportional to injury sustained (Ju and Reilly 2012).

Metabolism of drugs occurs by either phase I CYP
enzyme reactions followed by phase II, phase I alone, or
occasionally phase II alone. Phase I reactions are involved
in the formation of CRMs and phase II are commonly
detoxification reactions (Lammert et al. 2010). The
majority of CRM are electrophiles, which will react with
nucleophilic entities, including protein amino and sulfhy-
dryl groups (Lee and Lewis 2011). CYP enzymes are
abundant in the liver, and CYP3A4, 2C9, 2D6, 2C19, and
1A2 enzymes, which are major CYP isoforms, metabolize
>90 % of currently marketed drugs that undergo metabo-
lism (Amacher 2012). There are two proposed mechanisms
of metabolism-mediated toxicity. Toxicity may arise when
metabolism of a toxic drug occurs through an enzyme
isoform with impaired function and so the drug builds up in
the liver, or alternatively if this isoform causes the drug to
be metabolized by another pathway that creates a toxic
metabolite (Amacher 2012).

One indication that metabolism of drugs is a critical step
in iDILI was provided in a 2005 study, in which >50 % of
drugs in the study with hepatotoxicity black box warnings
were known to form CRMs, as were >80 % of the drugs
that had been withdrawn for liver injury (Walgren et al.
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2005). Another indication is that the centrilobular zone,
which contains a high concentration of CYP enzymes, is
often the most severely affected in some drug-specific
cases of DILI. Phase II reactions have also been implicated,
for instance glucuronidation in a rodent model of diclofe-
nac-induced injury (Lammert et al. 2010). The UGT2B7*2
isoform has been found with greater frequency in patients
with diclofenac-induced liver injury than without (Am-
acher 2012). The fact that in drugs with greater hepatic
metabolism, it was shown that there is a significantly
increased risk of liver failure and death from DILI
(p = 0.004, p =0.001, respectively) (Lammert et al.
2010) and that a CRM has been detected for all known
iDILI-causing drugs (Lee and Lewis 2011) further pro-
motes the metabolic theory.

NSAIDs are just one of many drugs that undergo bio-
transformation due to the action of the polymorphic
CYP2C19 and CYP2C9 enzymes. It was due to their
polymorphic nature that it could easily be conceived that a
specific polymorphic variant could alter drug metabolism
and cause a rare form of DILI. These associations were
proved invalid when no association was seen in a Spanish
registry of DILI in cases with drugs metabolized by these
enzymes (Pachkoria et al. 2007). In fact, a large number of
studies looking at associations with CYP enzyme particular
polymorphisms follow a similar route or only identify
relatively weak associations. For instance, weak signifi-
cance was found when comparing diclofenac DILI and
CYP2C8 with specific interest in the CYP2C8%4 variant
allele (Daly et al. 2007).

It is not only enzymes that have been examined, but also
transport pumps found within the liver that aid the hepatic
export of toxins, a mechanism which may be deregulated in
iDILI. This includes pumps such as the BSEP, MRP2 and
P-glycoprotein (Amacher 2012). Reduced efficiency or
complete inhibition of these pumps can lead to the buildup
of bile acids, metabolites and drugs, which concentrates
any accompanying toxicities and may damage the liver
(Amacher 2012). Mutations in the BSEP gene lead to
severe progressive liver disease (Strautniecks et al. 2008).
This highlights the fact that BSEP constitutes a bottle neck
for export of bile salts into the canalicular space. The BSEP
variant p.V444A seems to be a susceptibility factor for
drug-induced cholestasis (Gradhand et al. 2008) In addi-
tion, p.G855 W and p.D676T were found individuals with
drug-induced cholestasis. However, the only specific link-
ages are of Gly855Arg with ethinylestradiol, and
Asp676Tyr with fluvastatin-induced liver injury (Russ-
mann et al. 2010). MRP2 has also been associated with
certain herbal medicine-induced DILI. It was also discov-
ered that a mechanism to induce MRP2 activation, acti-
vated in cholestatic conditions, is removed by a specific
mutation and as such could promote the onset of

cholestasis (Russmann et al. 2010). Another transporter
class, the OATPs, have also been indicated in DILI. They
are involved in regulation of NR activation in the liver,
such as PXR, which if induced will activate CYP3A4
transcription, thus possibly affecting drug metabolism of
known DILI-indicated drugs (Russmann et al. 2010).
Specific mutations in PXR have also been identified
unsurprisingly as causing increased CYP3A4 induction and
are therefore another genetic factor to consider in iDILI
(Lamba et al. 2008).

10.5.3 Immune-mediated iDILI

The liver contains a large number of immune cells and an
immune aspect could also play a role in the pathomecha-
nism of iDILI (see sections “Immune-mediated iDILI
models” and “Non-parenchymal cells and their role in
hepatotoxicity” for more details on the role of NPCs in
DILI). A quarter of NPCs in the liver are lymphocytes,
with the CD8+ T-cell population roughly 3.5 times greater
than that of CD4+ (Ju and Reilly 2012), a ratio that is
reversed in the circulation where the CD4+ population is
greater by 1.8-fold. The occurrence of DILI is 0.01-0.1 %;
however, the DILI-associated genetic variants have a much
greater prevalence (Russmann et al. 2010), thus indicating
that multiple genetic aspects may play a role. Little is
known about immune-mediated iDILI and very few drugs
have established links to this etiology. Genome-Wide
Association Studies (GWAS) and Candidate Gene Asso-
ciation Studies (CGAS) that have allowed the detection of
genes implicated in iDILI are vital tools in this field. They
do, however, give a high false-positive reading, and rely on
gene frequency and so associations with low-frequency
genes may not be identified (Au et al. 2011).

Recognition that drugs could stimulate the immune
system to promote cellular injury was an interesting theory
to account for DILI. However, to make progress in this
field, knowledge of how drugs could act as antigens to
promote such a response was required. When a correlation
between in vitro protein reactivity and in vivo sensitization
to the tested compounds was seen by Landsteiner in 1935,
it was proposed that drugs could bind host proteins and
subsequently stimulate T cells (Sanderson et al. 2006). This
conversion of small, non-immunogenic drugs which are
<1,000 Da into immunostimulatory neoantigens was
termed the hapten hypothesis (Fig. 43). When a neoantigen
is formed, it may cause damage itself through protein
binding; however, antigen-presenting cells (APC) may
promote T-cell activation (Andrews and Daly 2008).
Indeed it has been shown in vitro that T cells can be
stimulated by using drug—protein complexes presented by
APC (Martin et al. 2010). Hepatocytes covalently express
the antigen on major histocompatibility complex (MHC)
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Antigen processing)

Fig. 43 Mechanisms of immune stimulation by drugs. a Hapten
theory—a drug binds to self-proteins causing the immune system to
recognize the protein—hapten complex as foreign. This may be
followed by antigen uptake and processing by APCs creating peptides
which are then covalently bound on MHC molecules on the APC

class I molecules to stimulate an immune response, and
liver damage ensues. Expression may also be seen on
Kupffer cells by MHC class II molecules (Bleibel et al.
2007), which present to T-helper cell (Th) 1 and Th2
CD4+ T cells to stimulate a subsequent antibody or cell-
mediated reaction (Andrade et al. 2004). The prohapten
theory is a similar explanation for immune activation;
however, it deems drug metabolites responsible for neo-
antigen formation (Fig. 43).

The pharmacological interaction of drugs with immune
receptors (PI) concept is a relatively new theory (Fig. 43)
which does not rely on covalent binding of peptides to
MHC molecules to stimulate the immune response, but
rather a non-covalent direct binding of the parent drug to
the T-cell receptor or MHC triggering a response (Pichler
et al. 2006). The hapten and prohapten theories state that a
protein carrier is necessary for a drug to become immu-
nogenic in a hypersensitive fashion and that drugs that
cannot form a hapten will not become immunogenic. Drugs
that are not metabolized in the skin and were deemed
unable to undergo haptenization had been used in patch
tests and shown to stimulate an immune response (Pichler
et al. 2006). The PI concept was then developed around the
identification that sulfamethoxazole could directly stimu-
late T cells. Sulfamethoxazole was found to stimulate the
T-cell receptor via interaction with the MHC causing T-cell
activation, even when APC were fixed and so antigen
processing could not occur (Schnyder et al. 1997).

Immune-mediated DILI is identified by immunological
traits seen during exposure such as a positive lymphocyte
transformation assay, the presence of inflammatory infil-
trates (Carey and van Pelt 2005), the presence of antibodies
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(Antigen processing)

C PI concept

surface for presentation to T cells. b Prohapten theory—the same
process as for the hapten mechanism but the drug is first metabolized
to a CRM which then acts as the hapten. ¢ The parent drug is directly
expressed in a MHC-dependent, non-covalent fashion to T cells (from
Pichler et al. 2006)

against the drug such as for tienilic acid (Adams et al.
2010), and increased reaction severity upon re-challenge of
the drug (Lee 2003). A delayed time for onset for many
drugs is also thought to be associated with the time
required to develop a T-cell population before injury.

10.5.4 Polymorphic MHC associations

MHC molecules are involved in the expression of anti-
gens to T cells through binding of the T-cell receptor,
and act as the primary signal of T-cell activation. There
are three MHC molecule classes but only MHC classes I
and II for T-cell-mediated DILI are discussed here. MHC
class I molecules, which present antigens to CD8+ cells,
include HLA-A, HLA-B and HLA-C loci, and are
expressed on the majority of nucleated cells. MHC class
II, on the other hand, encompasses HLA-DR, HLA-DQ,
and HLA-DP, which present to CD4 + cells, and is
expressed only on APC such as dendritic cells (Neefjes
et al. 2011; Bharadwaj et al. 2012). Although the type of
MHC expression results in different T-cell subsets
expanding, overall activation leads to T-cell proliferation
and antigenic elimination. It is well known that certain
HLA molecules are highly polymorphic with more than
1,000 variants for HLA-B alone. Many variants may
often have different peptide-binding capabilities, or the
ability to bind different peptide fragments (Bharadwaj
et al. 2012), which are the proposed reasons behind why
some variants stimulate a response against a drug when
the majority do not.

HLA genetic variability is of great importance in the
search for a cause of immune-mediated iDILI well defined
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by the strong association observed between a specific HLA
allele and abacavir hypersensitivity (Mallal et al. 2002).
Abacavir caused acute hypersensitivity, which manifested
itself after a median of 11 days into a variety of symptoms
including lethargy, fever and rashes. Time to onset corre-
sponding to time to activate the immune system and the
presence of CD8+ cells recovered from a patient rash
(Phillips et al. 2002) gave important evidence for the role
of T cells in immune-mediated DILI. One study found a
CD8+-specific T-cell response in vitro in a hypersensitive
patient, thus indicating the importance of CD8+ mecha-
nism of cell injury (Bharadwaj et al. 2012). An in vitro
study specifically showing T-cell activation by abacavir
(Chessman et al. 2008) confirmed these data. This response
was only seen in HLA-B*5701 individuals, including those
who were drug naive, and not in individuals with other
HLA-B variants thus confirming the specific association
between abacavir-induced liver injury and HLA-B*5701.
This link is now well established and there is also rea-
soning as to why abacavir is specific to this allele only. The
F pocket, an important site for peptide anchoring during
expression to T cells, is located in the antigen-binding
region of the MHC class I molecule. This position contains
a position 9 polymorphism and so where in other alleles
tryptophan or phenylalanine is present, HLA-B*5701 has a
tyrosine which is believed to alter the repertoire of peptides
that can be expressed and so accounts for the HLA speci-
ficity (Chessman et al. 2008). With a 47.9 % positive
predictive value and 100 % negative predictive value,
genetic pretesting is currently in place for abacavir patients
as to identify those who should be treated with other
medications. This has reduced the incidence of hypersen-
sitivity with the drug from 2.7 to 0 % (Russmann et al.
2010).

The association of iDILI with specific HLA type thus
indicating a T-cell-mediated etiology has been success-
fully identified in a range of other drugs too (Table 9). A
paper from 2011 stated that the World Health Organisa-
tion (WHO) adverse Drug Reaction database had recorded
almost 1,500 cases of DILI due to flucloxacillin (Lee and
Lewis 2011). It is a beta-lactamase resistant antibiotic and
well known to cause iDILI. Usage increased between
1991 and 2006 despite a warning in 1992 from the UK
medicine control agency about the associated DILI (Li
et al. 2009b), thus indicating its popularity and the wide-
scale risk to patients prescribed the drug for S. Aureus
infections (Robles et al. 2010). Flucloxacillin DILI has
been associated with the same allele, HLA-B*5701, as in
abacavir DILI and with an odds ratio of 80.6, represents
the greatest genetic risk factor for iDILI ever (Russmann
et al. 2010). There is also much clinical evidence to
suggest an immune pathomechanism similar to that of
abacavir, with inflammatory infiltrates and eosinophilia

observed (Park et al. 2005), and a similar period before
reaction is seen as in abacavir DILI. However, structural
dissimilarity confuses the reasoning behind both drugs
having the specific HLA-B*5701 association (Daly et al.
2009). There is also evidence from studies such that Thl
and Th2 responses were detected by cytokine EIISpot
analysis in T-cell clones generated from a flucloxacillin
hypersensitive patient (Spanou et al. 2006), and although
only reported for one patient, a lymphocyte transformation
test positive result has been reported (Victorino et al.
1987). The HLA-B*5701 genotype was identified as a
potential risk factor in the DILIGEN trial whose aim was
specifically to identify genetic associations for flucloxa-
cillin-mediated DILI. The trial involved 51 patients with
flucloxacillin DILI and looked at possible associations
between disease and 866,399 makers in a GWAS. The
HLA-B*5701 association was indirectly observed through
linkage disequilibrium between this HLA allele and
rs2395029[G] (Daly et al. 2009). Flucloxacillin appears
not to affect hepatocytes or biliary epithelial cells, how-
ever, once metabolized to the hydroxyl metabolite, a
reaction involving CYP3A4, biliary epithelial toxicity
occurs. Just 10 % of a standard dose is metabolized to this
product by CYP3A4, an enzyme whose expression is
modified by flucloxacillin, which could have further
implications in disease etiology (Andrews et al. 2010).
This metabolite, before the HLA association was made,
had been shown to undergo very specific haptenization to
serum albumin in which fewer than 20 % of the lysine
residue on albumin become bound (Pichler et al. 2011).
As discussed, haptenization is a method of immune
stimulation and so the idea of an immune etiology for
flucloxacillin liver injury was there, but the HLA associ-
ation has given this idea greater strength.

It should also be pointed out that only 1/500-1,000
HLA-B*5701-positive individuals progress to flucloxacil-
lin-mediated DILI (Alfirevic and Pirmohamed 2010), thus
illustrating the complexity of genetic linkages to such
issues. Although not as good an indicator as in abacavir
DILI where 70 % of patients with the genotype will
develop liver injury (Waters et al. 2007), a large reduction
is seen if compared to the 1/15,000 risk without consider-
ation of the genotype reported in one study (Devereaux
et al. 1995). The HLA-B*5701 allele is present as a com-
mon haplotype, which contains other HLA alleles includ-
ing DRB10701, and C4A6 among others (Almeida et al.
2008). The ST6GALI gene was also indicated as having a
flucloxacillin-mediated DILI association in the DILIGEN
study (Russmann et al. 2010) along with polymorphisms
that lead to elevated IL-4 and reduced IL-10 (Andrews and
Daly 2008). Therefore, it is clear that iDILI is unlikely to
have just one association and indeed may have multiple
genetic influences.
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Many other drugs have also been found with HLA
associations. Antiepileptic drugs are commonly linked to
DILI, and one of the best examples is carbamazepine. Ten
percent of the total number of adverse reactions due to
carbamazepine were listed as hepatic in a Swedish study
(Bjornsson 2008). Such hypersensitivity can have fatal
consequences, and it has been noted that in such cases,
symptoms are often not present (Kalapos 2002). Another
established linkage is that of HLA*DRB*0701 to ximel-
agatran-induced liver injury. This was found in a study of
74 cases of ximelagatran DILI based upon results from
both a CGAS and genome-wide tag SNP scan (Kindmark
et al. 2008).

10.5.5 Intracellular signaling networks controlling DILI

Due to its general ease of use and amenability to high-
throughput assays, hepatocyte cell culture, especially
immortalized cell lines, is a standard approach to study
different aspects of liver function and to predict hepato-
toxicity of a number of drugs. However, in order to
extrapolate results from in vitro hepatocyte studies to the
in vivo condition in humans, it is essential to understand
the effect of culture conditions on signaling pathways
involved in drug-induced hepatocyte cell death. Here,
current concepts on drug-induced cell signaling in hepa-
tocytes in culture with a focus on acetaminophen toxicity
explore the role of culture conditions on modulating these
events.

Generally, when cultured hepatocytes are being used to
screen for drug toxicity, the assumption is that using a cell
viability marker will identify potential hepatotoxic agents.
However, in order to extrapolate results from in vitro cell
culture experiments to the in vivo system, it is essential
that mechanistic indices are validated. For example,
chemical-induced oxidant stress and its involvement in cell
death is an area where significant differences exist between
in vitro and in vivo data, leading to substantial contro-
versies in the literature regarding mechanisms of cell
injury and mode of cell death (Jaeschke et al. 2012a). Also,
in spite of the numerous publications on the importance of
oxidant stress in most disease processes, no beneficial
effect of an antioxidant has been demonstrated in these
human diseases (Jaeschke 2011). A key reason for these
discrepancies is the gap in understanding of mechanisms of
oxidant stress-induced cell injury, especially due to results
obtained in experimental in vitro systems with limited
relevance to in vivo conditions and human pathophysiol-
ogy. As an illustration of the issue, the quinone redox-
cycling agent menadione, which is metabolized by cyto-
solic flavoprotein reductase and produces superoxide and
hydrogen peroxide in cultured cells, has been shown to
induce oxidative stress in mitochondria (Xu and Arriaga

2009) and causes caspase-dependent apoptosis in the rat
hepatocyte cell line RALA255 (Jones et al. 2000) and in
primary rat hepatocytes (Conde de la Rosa et al. 2006).
Paraquat, which also is a redox-cycling agent producing
superoxide, causes apoptosis in primary rat hepatocytes
(Conde de la Rosa et al. 2006) and in the HepG2 cell line
(Liu et al. 2006b). These types of experiments led to the
widely accepted dogma that “oxidant stress causes apop-
tosis” (Singh and Czaja 2007). By contrast, diquat- or
menadione-induced oxidant stress in vivo causes oncotic
necrosis in rat liver not apoptotic cell death (Hong et al.
2009). Although the MAP kinase c-jun-N-terminal kinase
(JNK) is activated by oxidant stress in vivo (Hong et al.
2009) and in cultured cells (Conde de la Rosa et al. 2006),
only cultured rat cells are protected by a JNK inhibitor.
Another example is the role of lipid peroxidation in acet-
aminophen (APAP) toxicity. APAP-induced cell death
in vivo is dependent on mitochondrial ROS and perox-
ynitrite formation (Bajt et al. 2006), but no lipid peroxi-
dation is evident and vitamin E is not protective (Knight
et al. 2003). However, in primary hepatocytes, vitamin E
protects against APAP-induced cell injury (Nagai et al.
2002; Yan et al. 2010). The importance of validating
in vitro data in vivo is illustrated in the case of APAP,
where key mechanistic features of APAP hepatotoxicity
seen in mice in vivo, such as depletion of GSH, mito-
chondrial dysfunction and production of peroxynitrite can
be replicated in isolated primary mouse hepatocytes and in
a metabolically competent hepatoma cell line (HepaRG)
after exposure to APAP (Bajt et al. 2004; McGill et al.
2011). Another example is the case of troglitazone hepa-
totoxicity, where troglitazone hepatotoxicity has been
demonstrated in human hepatocytes cultured as monolay-
ers (Kostrubsky et al. 2000), and rat hepatocytes in culture
were shown to be susceptible to troglitazone toxicity
(Toyoda et al. 2001). However, no hepatotoxicity of
troglitazone alone was evident when administered to rats
(Li et al. 2002b), though it increased APAP toxicity in that
model (Li et al. 2002b).

10.5.6 Modes of drug-induced hepatocyte cell death
and the signaling involved

Cell death has traditionally been categorized into two
distinct types. The programmed mode of cell death with
well-defined mediators was termed apoptosis in contrast to
necrosis, which was considered to be unregulated cell
death. This paradigm is gradually changing in light of
recent evidence which suggests that necrosis is not just a
single catastrophic event but involves disturbances of cel-
lular homeostasis, which can be amplified through intra-
cellular signaling events ultimately resulting in necrotic
cell death. Interestingly, there are a number of mediators
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and signaling mechanisms that are shared between apop-
tosis and necrosis pathways. Initiation of apoptotic cell
death can be through either of two pathways; an extrinsic
pathway mediated by receptors in the cell surface or an
intrinsic pathway mediated by mitochondrial dysfunction
(Schattenberg et al. 2006), which is more relevant to drug-
induced toxicity. In fact, mitochondrial oxidant stress and
subsequent signaling events are among the many common
features of apoptosis and necrosis. Though a number of
drugs have been shown to induce mitochondrial oxidant
stress and subsequent mitochondrial dysfunction, mecha-
nistically it is still unclear in a number of cases whether
these organelles are direct drug targets or merely affected
bystanders (Jaeschke et al. 2012a). At least in the case of
certain drugs such as APAP, extensive studies over the last
decades have shown that the mitochondria are central to the
mechanism of hepatotoxicity, though the initiating events
antecedent to this is formation of the reactive metabolite
NAPQI (Jaeschke and Bajt 2006). Therapeutic doses of
acetaminophen are typically conjugated to glucuronic acid
or sulfate by transferases and the small amounts of the
reactive metabolite NAPQI formed by CYP2EI are neu-
tralized by reaction with GSH (Dahlin et al. 1984). APAP
hepatotoxicity is initiated when concentrations of the drug
overwhelm the capacity of the conjugation systems,
resulting in accumulation of NAPQI, and its formation of
protein adducts with cellular proteins, especially in the
mitochondria (Jollow et al. 1973; Jaeschke et al. 2012a).
These cellular events, coupled with translocation of cyto-
solic Bax to the mitochondria, then result in generation of
mitochondrial superoxide, which along with nitric oxide
forms peroxynitrite, a highly reactive radical species
(Cover et al. 2005). The increase in mitochondrial perox-
ynitrite causes nitration of target proteins such as SOD2
(Agarwal et al. 2011), which seems to be critical in mod-
erating APAP-induced hepatocellular injury (Ramachan-
dran et al. 2011). The mitochondrial oxidative and
nitrosative stress induced by NAPQI protein binding then
initiates a cascade of amplifying events, which include
activation of JNK, its translocation to the mitochondria and
ultimately, initiation of the mitochondrial permeability
transition (MPT). This event then results in the release of
mitochondrial factors such as cytochrome c, apoptosis-
inducing factor (AIF) and endonuclease G into the cytosol.
The subsequent translocation of AIF and endonuclease G
into the nucleus then initiates the characteristic DNA
fragmentation and oncotic necrosis induced by APAP
overdose (Bajt et al. 2006). A number of events in this
pathway, such as mitochondrial Bax translocation, the
activation of the MPT and the release of cytochrome ¢ and
AIF from the mitochondria, were initially thought to be
unique features of apoptosis. However, these events are
now recognized to also occur during necrotic cell death
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(Jaeschke 2006). In fact, activation of the mitochondrial
permeability transition is now considered to occur mainly
in necrosis (Baines 2011), during which the release of
cytochrome c¢ has also been demonstrated (Jaeschke and
Bajt 2006; Bajt et al. 2008). The described intracellular
events and mechanisms after APAP exposure are very
similar in primary mouse hepatocytes (Bajt et al. 2004,
2006; Burke et al. 2010; Kon et al. 2004, 2010; Ni et al.
2012; Reid et al. 2005), human HepaRG cells (McGill et al.
2011) and in human patients (McGill et al. 2012) compared
to the in vivo mouse model.

In addition to APAP, mitochondrial dysfunction is also
seen in hepatocytes exposed to a number of other drugs and
chemicals. A study in immortalized human hepatocytes
(HC-04) demonstrated that troglitazone produced mito-
chondrial oxidant stress and shifted the redox ratio of
mitochondrial Trx2 toward the oxidized state. This then
results in activation of apoptosis signaling kinase 1
(ASK1), leading to mitochondrial permeabilization (Lim
et al. 2008). Troglitazone has also been shown to induce
degradation of PGC-1a, which is thought to function in
conjunction with the nuclear hormone receptors estrogen-
related receptor-alpha and gamma to regulate mitochon-
drial mass and oxidative phosphorylation, resulting in a
reduction in mitochondrial mass (Liao et al. 2010). Acetyl
salicylic acid has been shown to induce mitochondrial
dysfunction, oxidant stress and induction of apoptosis in
HepG?2 cells (Raza et al. 2011).

10.6 Hepatotoxicity models

10.6.1 Toxicogenomics, a rapidly evolving subdiscipline
of toxicology

The development of molecular biology and, more specifi-
cally, genomic tools has progressed rapidly over the last
decade, not only technically but also methodically and
analytically. The ability to analyze and understand
molecular mechanisms has allowed a greater insight into
the extreme complexity of molecular relationships.
Although the scientific literature is crowded with detailed
new findings and molecular details, there is a consensus
that we have just started to scratch the surface. One of the
key challenges of future development will be to make sense
out of all the data generated with these modern techniques.

It is widely accepted that the adverse effect evoked by a
toxicant can be captured by analyzing an organism’s gen-
ome, because through various mechanisms such com-
pounds alter cellular homeostasis which the cell tries to
maintain by switching on/off the expression of specific
genes. There are sophisticated new and established tools
that allow one to understand how an organism or cells
respond at the gene expression level to stressors. These
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relationships can be very complex, but the understanding of
molecular pathways and interactions will have an enor-
mous impact on our ability to assess the risk from exposure
to toxicants.

Toxicogenomics can be defined as a scientific subdis-
cipline that combines toxicology (the study of the nature
and effects of poisons) with genomics (the investigation of
the way that our genetic makeup, the genome, translates
into biological functions). It is the study of the structure
and output of the genome as it responds to adverse xeno-
biotic exposure and the identification of their putative
mechanisms of action. Therefore, the field of toxicoge-
nomics is a highly interdisciplinary field combining
knowledge of chemistry, molecular biology, mathematics
and statistics (Khor et al. 2006; Nuwaysir et al. 1999; Chin
and Kong 2002). In the field of toxicology, a profound
knowledge of the compound-induced adverse reactions on
the molecular level is crucial. A multitude of toxicoge-
nomics studies have been published showing the elucida-
tion of molecular mechanisms, the discovery of novel
biomarkers, as well as how gene expression analysis can
influence risk assessment. As an example, the work of
Afshari et al. (2011) gives a comprehensive overview on
the history, development and recent issues.

Although the relationships between changes in gene
expression and adverse effects are not fully understood at
this time, there is a belief that changes in the gene
expression pattern may prove to be useful in predicting a
specific toxic outcome. This would allow the extrapolation
of toxic effects from known model compounds to unknown
compounds by comparison of their expression profiles
(Hamadeh et al. 2002a, b; Zidek et al. 2007; Ellinger-
Ziegelbauer et al. 2004; Hrach et al. 2011). The develop-
ment of specific databases based on expression profiles of
reference compounds and the use of ever improving sta-
tistical methods to discriminate compounds on the basis of
their gene expression profiles will result in highly infor-
mative gene clusters which can be used to predict the class
membership of new unknown compounds (Hamadeh et al.
2002a). To date, studies employing such predictive models
are based on in vivo data and are mainly focused on acute
toxicity (Hamadeh et al. 2002b; Zidek et al. 2007; Ellinger-
Ziegelbauer et al. 2008; Ruepp et al. 2005). Using these
modern techniques of data generation and analysis, toge-
ther with established in vitro systems, it should be possible
to predict subsequent adverse effects early in a compounds
development. This would lead a much more efficient and
streamlined drug discovery/development process and also
overcome the ethical, time and financial bottleneck of
animal use.

10.6.1.1 Possibilities and limitations of in vitro systems for
toxicogenomics Multiple cell culture models are being

used to evaluate the potential of drug-induced liver toxicity
of a new drug or chemical candidate. The advantages and
limitations of these “screening” tools are very apparent
(and described elsewhere in detail within this paper). There
is currently great progress in the development and stan-
dardization of stable in vitro liver cell culture techniques.
Hepatocytes are of particular interest as they have a central
function in the metabolic fate and the process of detoxifi-
cation and toxification of xenobiotics. Unfortunately, they
have not been amenable for longer-term in vitro experi-
ments as they undergo the process of dedifferentiation
upon perfusion and culturing. This has restricted their use
to mechanistic studies or short-term metabolic and acute
toxicity testing. Recent studies have demonstrated the
possibility to maintain hepatocytes in their differentiated
state with a high enzymatic activity for longer time by
using 3D ECM and supplementing the culture medium
with certain factors (Tuschl and Mueller 2006; Tuschl et al.
2009; Godoy et al. 2009). Even though these in vitro sys-
tems are continuously being improved (in both predict-
ability and complexity), we are still far away from reliably
predicting in vivo effects and their application in toxic-
ogenomics is still considered as problematic. This criticism
has its background in studies where little overlap between
gene expression alterations induced in the liver in vivo and
in cultured hepatocytes has been reported (Kienhuis et al.
2009). For example, acetaminophen altered the expression
of 1,349 genes in rat liver in vivo, 368 genes in rat hepa-
tocytes cultured in a standard medium and 1,289 genes in
rat hepatocytes cultured in a modified medium containing
enzyme inducers (Heise et al. 2012). However, only 18
(1.4 %) and 2 (0.5 %) of the genes altered in vitro (in
hepatocytes cultured in modified and standard medium,
respectively) were analogously altered in the same direc-
tion in vivo. Not a single gene altered in both in vitro
systems was also altered in vivo. This negative result
prompted another study that systematically compared gene
expression alterations in vitro using the improved rat
hepatocyte sandwich culture system and livers of rats
exposed in vivo (Heise et al. 2012). In this study, 22 genes
that were up- or downregulated in livers of rats after oral
administration of the liver carcinogens, aflatoxin B; (AB1),
2-nitrofluorene (2-NF), methapyrilene (MP) and piperonyl-
butoxide (PBO), were analyzed (Heise et al. 2012). The
functions of the 22 genes have been classified as (1) stress
response, DNA repair or metabolism associated or (2)
associated with proliferating cells. Subsequently, rat hepa-
tocyte sandwich cultures were exposed to AB1, 2-NF, MP
and PBO for 24 h and expression of the aforementioned
genes was determined by RT-qRPC. Significant correla-
tions between the degree of test compound-induced gene
expression alterations in vivo and in vitro were obtained for
the metabolism, stress and DNA repair associated genes at
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Fig. 44 In vivo: in vitro
correlation of gene expression

alterations (from Heise et al.
2012). Aflatoxin B; (AB1),
2-nitrofluorene (2-NF),
methapyrilene (MP) and
piperonyl-butoxide (PBO) were
tested after oral administration
to male Wistar rats (gene
expression analysis 24 h after
administration) and in sandwich
cultures of hepatocytes isolated
from male Wistar rats

(incubation period: 24 h).
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10.6.1.2 The relevance of pharmacokinetics Recently,

concentrations covering a range from cytotoxic to non-
toxic/in vivo relevant concentrations (Fig. 44). In contrast
to the stress associated genes, no significant in vivo/in vitro
correlation was obtained for the genes associated with
proliferating cells. The reason for this discrepancy is that in
contrast to the liver in vivo, hepatocytes cultured in sand-
wich culture do not show replacement proliferation. This
example illustrates that not all groups of genes altered in
response to toxic compounds in vivo show a similar
response also in cultured hepatocytes. Nevertheless, the
remaining in vivo and in vitro overlap may still be large
enough to allow identification of toxic pathways. For the
establishment of classifiers, more important than the exact
overlap to the in vivo situation is the consistent reproduc-
ibility of the effects found in vitro after compound treatment
(as discussed later in this chapter).
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other in vivo/in vitro discrepancies have been described by
comparing gene expression in cultured hepatocytes
(described by Beekman et al. 2006) and the rat liver in vivo
study of Ellinger-Ziegelbauer et al. (2008). In the inter-
laboratory study of Beekman et al. (2006), four indepen-
dent laboratories observed that the non-genotoxic rat liver
carcinogen methapyrilene increases RNA levels of the
DNA damage response gene protein phosphatase 1
(GADD34) and decreases expression of the metabolizing
enzymes SULT1A1 and 4-aminobutyrate aminotransferase
(ABAT) in cultured rat hepatocytes (Schug et al. 2012).
This was later confirmed by other authors (Schug et al.
2008; Heise et al. 2012). However, in the in vivo studies of
Ellinger-Ziegelbauer et al. (2004, 2008), methapyrilene did
not significantly alter expression of GADD34, SULT1A1
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or ABAT in livers of rats at any tested doses and time
points (summarized in Schug et al. 2012). Should this
in vivo/in vitro discrepancy be true, it would mean that the
in vitro system with cultured hepatocytes is capable of
producing false-positive data. Under such circumstances, it
would seem naive to invest research efforts into in vitro
gene expression profiling studies aimed at classifying dif-
ferent classes of hepatotoxic compounds. Therefore, this
seemingly contradictory case was revisited in a recently
publication (Schug et al. 2012). Interestingly, the discrep-
ancy was not a result of false positive in vitro data but
could be explained by different pharmacokinetics in vitro
and in vivo. Because of its relatively short half-life of
approximately 2.8 h in rats, orally administered metha-
pyrilene in vivo soon decreases below concentrations that
can cause gene expression alterations. This corresponded to
the time curve of GADD34, ABAT and SULT1A1 RNA
levels in the liver: RNA levels were altered 1, 6 and 12 h
after methapyrilene administration but return to control
levels after 24 and 72 h (Schug et al. 2012). By contrast,
methapyrilene concentrations in vitro decrease at a much
slower rate. This explains why GADD34, ABAT and
SULTI1AT1 are still deregulated after a 24-h exposure period
in vitro but not in vivo. It should also be considered that the
earliest analyzed time point in the previous in vivo studies
was 24 h after methapyrilene administration. In conclusion,
the previously observed in vitro/in vivo discrepancy is not
a result of false positive in vitro data but can be explained
by different pharmacokinetics in vitro and in vivo. There-
fore, although the currently available hepatocyte in vitro
systems still clearly differ from the in vivo situation, they
nevertheless reflect some of the in vivo responses correctly
and should therefore be applied for establishment of
in vitro classifiers of hepatotoxicity.

10.6.1.3 In vitro classifiers of hepatotoxicity Cha et al.
(2010) have recently identified a classifier for hepatotox-
icity prediction, specifically for non-steroidal anti-inflam-
matory drugs (NSAIDs) by analyzing differential gene
expression profiles in HepG2 cells. A hepatotoxicity pre-
diction model based on 8 positive compounds was built and
77 specific genes identified as being predictive. These
genes and pathways, commonly regulated by hepatotoxi-
cants, may be indicative of the early characterization of
hepatotoxicity and possibly predictive of later hepatotox-
icity onset. Four test compounds, including hepatotoxic
and non-hepatotoxic NSAIDs, were used for validating the
prediction model and the accuracy was 100 %. Even
though these results are promising, the gene expression of
HepG2 cells does vary greatly from the situation in the
liver. The reliability of this small data set and the relevance
of the gene signature for the situation in hepatocytes or
in vivo will have to be confirmed in the future. Cheng et al.

(2011) published a study in which a cell-based molecular
predictor of hepatotoxicity was developed (based on
in vivo rat and human in vitro data), and tested this sig-
nature against data from more than 160 diverse com-
pounds. Here they were able to predict in vivo acute
hepatotoxicity from an in vitro cell model.

In a recent publication, in vitro and molecular tech-
niques were combined to establish a new in vitro model for
toxicological screening (Hrach et al. 2011). Similar tech-
niques have been reported before; however, the combina-
tion used by here was novel and the data set used was more
comprehensive than other smaller studies, which addressed
only very specific questions (Boess et al. 2003; Braeuning
et al. 2006). The key objective of this study was to deter-
mine whether it is possible to distinguish between hepa-
totoxic and non-hepatotoxic compound-based gene
expression data from long term exposed in vitro cultured
rat hepatocytes.

Before being able to address such complex issues, the
cell culture method used must allow longer-term culturing
of hepatocytes. Being extensively discussed in the scien-
tific literature, this is still a key objective and topic of
scientific research. As discussed earlier in this review,
adding a third dimension into the culture system of primary
rat hepatocytes has proven to help maintain the cells in a
viable and metabolically active state for longer (Tuschl and
Mueller 2006; Tuschl et al. 2009). A comprehensive
genomic time course analysis showed that after an initial
adaptation phase, gene expression stabilized in sandwich
culture. This is of particular importance when compound-
specific gene expression changes after treatment are
assessed.

Sandwich-cultured rat hepatocytes were treated with
well-known hepatotoxic and non-hepatotoxic model com-
pounds in a proof-of-concept study. Gene expression data
were collected and used as a training set to build a clas-
sification model, using four different clustering algorithms.
Ranking of genes according to their contribution to the
classification and misclassification rates were calculated,
and a classifier composed of 724 genes was found that
could discriminate between the two compound groups
(Fig. 44)—and therefore, in principal, predict human drug
toxicity. Furthermore, the model was challenged with
another, unknown, model compound and proved its dis-
criminative capability (Hrach et al. 2011). The best results
were obtained with samples dosed for 9 days and including
both high and a low concentration of the test compounds in
the model. In this case, the misclassification rate was
reduced to only 7.5 %.

The intention of these experiments was to test the ability
to compute a predictive model based on pattern analysis of
transcriptomic data from in vitro experiments with rat
hepatocytes—without previous mechanistic knowledge.
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Nevertheless, the whole data set or the descriptive subset of
genes selected can be used for subsequent mechanistic
analysis to identify compound-specific mechanisms or
subsets of genes specific for a particular mode of action.

In the last few decades, many genes have been proposed
as predictive biomarkers, although only a few of them have
been shown to be really decisive. The identification of gene
signatures and networks seems to be promising as they
contain more information and therefore are more reliable
than single gene biomarkers (Khor et al. 2006). Ideally, a
prediction model would be able to classify novel com-
pounds based on new, in vitro generated, gene expression
data by applying previously determined classifiers and
gene networks independently from mechanistic analyses.
This would largely contribute to candidate selection and
therefore contribute to the improvement of the drug/
chemical discovery and development process. The ability
to conduct mechanistic studies with the same data gener-
ated for the model can prove itself valuable in later stages
of development. The data shown in Fig. 44 are extremely
promising, but require further validation and refining.
Being aware that there are multiple mechanisms of liver
toxicity leading to a variety of perturbations in gene
expression, there is a need for validation of the data of this
feasibility study. Further compounds covering every end
point of liver toxicity needs to be introduced into the data
set to substantiate the classifier. The aim, in the end, will be
a solid classifier comprising a set of genes highly saturated
with genes being predictive for liver toxicity end points.
Besides the robustness, reliability and predictivity, the gene
set building the classifier should consist of a manageable
number of genes measurable in a standard method (e.g.
Tagman) to allow broad acceptance.

Although still on an experimental level, with many
parameters still to be considered, this (and other recent
reports) example shows that once a reliable and stable cell
culture system has been established, the combination of
whole genome analysis and in vitro cell culture can con-
tribute to early detection of specific target organ toxicities.
Utilizing in vitro models will make it possible to build
large databases with time-matched gene expression data of
cells treated with many reference compounds and drug
candidates. Furthermore, the insecurity of extrapolating the
results between species may be overcome by the possibility
to conduct these experiments with human cells, as well as
the potential to explain the species differences which are
too often seen in preclinical animal studies.

10.6.1.4 Hepatocytes and the influence of culture condi-
tions on cellular signaling The applicability of results
from in vitro studies to in vivo situations is directly
dependent on the degree of similarity between the in vitro
experimental condition and the in vivo environment.

@ Springer

Differing conditions would render data non-reproducible
in vivo and result in controversies on mechanisms of dis-
ease and potential therapeutic targets as mentioned earlier
regarding lipid peroxidation in APAP hepatotoxicity.
Though oxidative stress is known to play a role in drug
toxicity, hepatocyte responses to oxidative stress vary
depending on cell type and experimental condition.

In the context of oxidative stress, a major difference
between the hepatocyte environment in vivo and in vitro
culture conditions is the oxygen tension. Primary cultures
of hepatocytes are typically carried out at normoxia or
21 % oxygen, while hepatocytes in the liver are exposed to
an oxygen gradient of 9-11 % (zone 1) to 5-7 % (zone 3)
(Broughan et al. 2008). It is therefore possible that hepa-
tocytes in culture are exposed to additional oxidant stress,
which affects the mode of cell death and intracellular
signaling mechanisms (Halliwell 2003). In fact, it appears
that the threshold of ROS-induced toxicity is much lower
in cultured cells leading to apoptosis and under more
severe conditions to necrosis (Conde de la Rosa et al.
2006). On the other hand, much of the oxidant stress
in vivo is more effectively detoxified and only when the
multi-layered antioxidant system is overwhelmed do the
cells die by oncotic necrosis (Hong et al. 2009). The
modulation of cell signaling mechanisms relevant to cell
death by oxygen tension is illustrated by the fact that in the
case of APAP-induced cell necrosis, the higher oxygen
concentrations in cell culture lead to higher mitochondrial
oxidant stress, and accelerated mitochondrial dysfunction
and APAP-induced cell death at 21 % oxygen compared to
10 % oxygen (Yan et al. 2010). The interesting point here
is that it was not the baseline oxidant stress which was
affected under hyperoxic (21 %) conditions but the APAP-
induced mitochondrial ROS formation. This suggested that
primary cultured hepatocytes exposed to drugs under 21 %
oxygen show an enhanced oxidant stress, which can lead to
injury mechanisms involving Fenton-type reactions and
lipid peroxidation. In the case of acetaminophen, this
mechanism is irrelevant in vivo (Knight et al. 2003) and in
primary hepatocytes under 10 % oxygen (Yan et al. 2010),
which mimic closer in vivo conditions. Thus, when cells
are incubated in room air (21 % oxygen), there is a risk for
exacerbation of oxidant stress mechanisms in the
pathophysiology.

In addition to oxygen levels, the other issues affecting
data in vitro is physical culture conditions. While the
majority of hepatocyte culture in vitro is carried out after
plating the cells and allowing them to adhere, a few studies
use cells in suspension (Burke et al. 2010). This could
probably be justified in cases where drug metabolism is
important and CYP activity loss with time is an issue.
However, the major drawback is that incubating cells in
suspension could severely affect their susceptibility to cell
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death signals. In fact, comparing APAP toxicity in adherent
versus suspended cells shows a 4-5-fold higher cell death
in suspended cells independent of the dose of APAP used
(Ramachandran and Jaeschke, unpublished). It has also
been shown that hepatocyte spheroids in culture generate
ROS with time (Lillegard et al. 2011), which could con-
found studies on cell death signaling involving free
radicals.

Another factor affecting cell signaling is the matrix used
when culturing cells. Culturing hepatocytes on dry stiff
collagen induces resistance to TGF-B-induced apoptosis
(Godoy et al. 2009, 2010). A study comparing toxicity of
troglitazone between gel-entrapped human and rat hepa-
tocytes cultures demonstrated that human hepatocytes were
more susceptible to the drug in this system compared to the
rat hepatocytes, an effect not seen in monolayer culture
(Shen et al. 2012).

10.6.2 iDILI biomarkers

Attempts have been made to discover biomarkers, which
could identify drugs or patients at risk of developing idi-
osyncratic toxicity. Altered gene expression profiles
in vitro have been suggested as predictive markers of
toxicity (Lambert et al. 2009; Cheng et al. 2011) (section
“Toxicogenomics, a rapidly evolving subdiscipline of
toxicology™), which could distinguish between toxic and
subtoxic doses of drugs; however, this may not be appli-
cable to iDILI. This is because it is more likely to be the
starting gene expression or protein profile of the patient
rather than the response to the drug, which pre-disposes the
individual to iDILI.

In vivo models have so far identified a number of
potential biomarkers, including inflammatory mediators
that are selectively upregulated prior to liver injury, which
could potentially be of prognostic value in humans (Deng
et al. 2009). In vivo, one study attempted to model idio-
syncratic hepatotoxicity mediated by oxidative stress by
incubating isolated rodent hepatocytes with a number of
drugs known to cause iDILI (Tafazoli et al. 2005). The pro-
oxidant environment increased hepatocyte sensitivity to
drug-induced toxicity, suggesting that biomarkers of oxi-
dative stress may also be indicative of risk of iDILI. Since
cytokines are implicated in the mechanism of idiosyncratic
toxicity, it has been suggested that the identification of a
“cytokine fingerprint” in preclinical models could translate
to a predictive tool in humans (Lacour et al. 2005). Other
studies have sought to find protein biomarkers in vitro.
Protein kinase C inhibitor protein 1 (PKCIP-1) and mac-
rophage migration inhibitory factor (MIF) were found in
conditioned medium of hepatic models, only when the cells

had been exposed to drugs linked with iDILI (Gao et al.
2004). In this study, PKCIP-1 correlated with known tox-
icity profiles of all 20 drugs tested, and MIF was correct in
19/20 with one false-negative result.

10.6.3 Immune-mediated iDILI models

Work carried out in a number of studies has revealed
genetic linkages with DILI and have also hinted at the
involvement of underlying inflammatory diseases as pos-
sible risks (see section “Immune-mediated iDILI”). These
observations have aided in our understanding of the
mechanism of liver injury for a number of drugs. The
possible involvement of pre-existing inflammatory states
has received much attention in animal models of hepato-
toxicity. In comparison with control drugs, lipopoly-
saccharide-mediated inflammation has been shown to shift
the toxicity curve to the left for a number of idiosyncratic
drugs such as trovafloxacin (Shaw et al. 2009) and chlor-
promazine (Buchweitz et al. 2002), which therefore cause
damage at much lower doses. Data from in vivo studies
have been developed upon and transferred into in vitro
systems where it was found that combinations of inflam-
matory cytokines can increase the sensitivity of primary
hepatocytes and liver cell lines to iDILI drugs (Cosgrove
et al. 2009). Such results have been seen with ranitidine
(Tukov et al. 2007), chlorpromazine (Gandhi et al. 2010)
and sulindac (Zou et al. 2009). This underlying inflam-
matory cytokine risk may be the result of stimuli unrelated
to the drug, for instance a bacterial or viral infection, or the
result of a drug-mediated inflammatory response. The
formation of a hepatocyte model which incorporates a pro-
inflammatory environment so as to study these effects
would only require a simple addition to systems already in
place and could be of help in the study of hepatotoxic drugs
where the pathomechanism includes inflammatory signals.
For some drugs however, an inflammatory background
may play an important but not obligatory role, with rare
and specific genetic trait or traits, playing the more major
roles. The development of models allowing the comparison
of different phenotypes in patients who have experienced
idiosyncratic reactions may improve the prediction of a
drug’s potential to cause liver injury in cases where par-
ticular genotypes are at risk. The supply of human hepa-
tocytes is a potential worry; however, hepatocyte
differentiation from stem cells could be a solution and is
currently driving the field of embryonic stem cell research
reviewed in (Baxter et al. 2010) and described in section
“Embryonic stem cell-derived hepatocytes.” The ethical
concerns of using human embryo-derived stem cells is
further driving research into isolating stem cells from adult
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tissues (Tanaka et al. 2011), and inducing pluripotency in
terminally differentiated adult somatic cell sources (Huang
et al. 2011; Sekiya and Suzuki 2011). It is this exciting
induced pluripotent stem cell (iPSC) work that could
potentially derive liver-like cell lines for preclinical
screening assays directly from patients who have experi-
enced iDILI (Tiscornia et al. 2011). Cell banks from dif-
ferent patient cohorts would be valuable in the weighting of
genetic versus environmental factors that can synergize to
produce the rare conditions required for hepatic damage by
a drug at otherwise safe doses. However, modeling iDILI
in vitro remains a huge challenge due to the complex
physiological environment that predisposes the liver to
injury, and the multicellular series of events, which lead to
injury.

In vitro models have also been developed to look at
T-cell stimulation applicable to iDILI. A recently pub-
lished paper reports on the generation of dendritic cells
from peripheral blood mononuclear cells in vitro, which are
subsequently used to stimulate drug naive T cells with
sulfamethoxazole. Proliferation assays and cytokine
detection assays were then used to detect a response
(Faulkner et al. 2012). Such an assay could be used to
detect HLA allele-specific T-cell stimulation in vitro,
which is of potential prognostic use.

10.6.4 Role of NPCs in immune-mediated DILI

The characteristics and transporter function of a number
of NPCs and their contribution to hepatotoxicity are
described in section “Non-parenchymal cells and their
role in hepatotoxicity.” Here, the role of the immune
response and NPCs in drug-induced hepatotoxicity is
described. Even considering our understanding of this
complex and dynamic process is only partial, some
basic principles can clearly be recognized that call for a
re-evaluation of in vitro systems aimed to reproduce
aspects of liver toxicity in vivo. It is clear that a
starting cue comes from chemically induced hepatocyte
damage, which results in release of DAMPs that are
detected by TLR in LSECs and HSCs. This induces the
release of chemokines and cytokines which results in
the recruitment of neutrophils and NK cells (Fig. 45).
These leukocytes have the potential to exert cytolytic
activity against hepatocytes. Neutrophils may release
their chemical arsenal in the form of proteases and
enzymes that generate ROS. Likewise, NK cells attack
hepatocytes by their inherent cytotoxic activity via FasL
and release of their granules containing perforin and
granzyme (Fig. 45). Although the roles of neutrophils
and NK cells have been well validated in several
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models of liver damage such as ischemia-reperfusion
and biliary obstruction (Notas et al. 2009; Jaeschke
et al. 2012b), their role in DILI remains controversial
(Jaeschke et al. 2012b). This is largely due to off target
effects in the experimental approaches such as pre-
conditioning the liver by antibody-based neutrophil
depletion (Liu et al. 2004; Ishida et al. 2006; Jaeschke
and Liu 2007; Jaeschke et al. 2012a, b), or NK cell
activation by DMSO used in acetaminophen solutions
(Masson et al. 2008; Jaeschke et al. 2012b). Clearly,
there is a need for more refined experimental strategies
to accurately identify the role of these cells in hepato-
toxicity. Current advances in the field of live tissue
imaging using genetically labeled fluorescent -cells
allows direct visualization of immune cells for extensive
time periods (McDonald et al. 2010). Such techniques
in combination with knockout strains are beginning to
shed light in this complex scenario (McDonald et al.
2010). Furthermore, even if neutrophils and NK cells
were convincingly demonstrated not to contribute to
acetaminophen toxicity, this does not exclude a poten-
tial role of the innate immune system in hepatotoxicity
induced by other drugs and compounds.

For Kupffer cells and macrophages, it seems that their
role in acetaminophen-induced hepatotoxicity is well
understood. In this model, depletion approaches demon-
strate that these cells promote tissue regeneration (Holt
et al. 2008; Campion et al. 2008). However, these cells
might play different roles in hepatotoxicity induced by
other drugs. Recent investigations have shown that
macrophages are not a single cell type, and the identifi-
cation of macrophage-subpopulations is revealing distinct
classes with sometimes opposing roles: M1 or classically
activated macrophages, which are triggered by Thl
cytokines and bacterial molecular components such as
lipopolysaccharide, and M2 or alternatively activated
macrophages, which are generated in response to Th2
cytokines. In acetaminophen-injured liver, the infiltrating
macrophages are M2, and their role seems to be pro-
moting tissue regeneration by secreting anti-inflammatory
cytokines (IL-10, IL-13) and TGF-f which can promote
wound closure by inducing HSC proliferation and dif-
ferentiation. As for neutrophils and NK cells, more
investigations are needed to determine their contribution
to drug-induced liver injury.

Further controversy arises when dealing with HSCs.
These cells express TLR4 and TLRY, and in addition,
they can secrete potent chemoattractants for macrophages
(Mcp-1, RANTES) and neutrophils (Cxcll/Grol). Secre-
tion of these chemokines in HSCs can be induced by
TNFo and IL-1B, indicating that HSCs can initiate and
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Fig. 45 Schematic representation of potential immune cell partici-
pation in liver injury induced by hepatotoxic drugs (see Table 8 for
details). Upon direct chemical-induced damage, only a small fraction
of parenchymal cells (hepatocytes) are killed, releasing death-
associated molecular patterns (DAMPs) such as CpG-rich DNA,
which are detected by TLR9 expressed in LSEC, HSC and Kupffer
cells. In turn, these cells release cytokines (e.g. TNFa, IL-1) which
trigger the secretion of chemokines (e.g. Cxcll) that recruit NK cells
and neutrophils. These leukocytes infiltrate the parenchyma at the site
of initial injury, where they further extend tissue damage by their
cytotoxic arsenal (e.g. IFNy, Fas-L in NK cells; hypochlorous acid,
proteases in neutrophils). Afterward, circulating monocytes are
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recruited to the site of injury by chemokines (e.g. Cxcl2, RANTES,
Mcp-1), where they become infiltrating macrophages (IM). These IM
can resolve the cytotoxic immune milieu, by inducing apoptosis of
infiltrating neutrophils and by actively removing cell debris. At the
same time, HSC become activated and promote tissue repair by
deposition of extracellular matrix (collagen-). If there is a single-acute
injury, the inflammatory process will regress and the parenchyma will
be reconstituted, mainly due to hepatocyte proliferation. However, if
the damage is repeated chronically, activated HSC proliferate leading
to fibrotic scarring, characterized by extensive collagen I deposition in
the parenchyma
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promote an inflammatory response that might aggravate
the initial damage inflicted by drugs. However, HSCs can
also secrete TGF-B and ECM proteins (e.g. collagen I)
which leads to wound closure and resolution of inflam-
mation. The lack of efficient cell depletion strategies for
HSC makes it difficult to assess their contribution to
hepatotoxicity in vivo.

In the case of LSECs, it can be expected that in an initial
phase, they would promote the inflammatory process, by
sensing cell debris from damaged hepatocytes via TLR
(e.g. TLRY), followed by secretion of chemokines and
expression of cell adhesion molecules that recruit neutro-
phils to the site of damage. However, it remains to be
elucidated whether they also play a role in recruitment of
macrophages that can favor the regeneration process. For
LSECs, a cell depletion strategy would not be practical,
since it would result in extensive hemorrhage and initiation
of an inflammatory process.

Obviously, there is still a need for animal experiments to
understand and characterize all the mechanisms involved in
hepatotoxicity. Moreover, current knowledge encourages
the development of co-culture systems with hepatocytes
and NPCs. Understanding the precise role of cytokines,
chemokines and leukocytes in vivo has the potential to
implement such systems in vitro. Those approaches should
reproduce the direct damage to hepatocytes and the cyto-
kine-chemokine synthesis and secretion in NPCs. Eventu-
ally, inclusion of potentially harmful leukocytes (e.g. NK
cells, neutrophils) might reflect the cytolytic component of
inflammatory cells. These approaches may increase the
sensitivity for hepatotoxic assays in vitro while better
reflecting the most important mechanisms in drug-induced
hepatotoxicity.

Finally, priority should be given to establishment of
in vitro systems that reflect a true quiescent in vivo-like
state, which can be triggered into an inflammatory milieu
only by the addition of hepatotoxic compounds. Notewor-
thy, culture of primary LSEC induces per se synthesis and
secretion of cytokines, and exposure to CpG-DNA enhan-
ces this feature (Martin-Armas et al. 2006). Likewise,
culture of primary HSCs induces features of in vivo-acti-
vated HSCs (Dooley et al. 2001). Primary hepatocytes also
undergo an activation process during culture that not only
represses the expression of metabolic genes, but also trig-
gers signaling pathways typically induced in the regener-
ating liver (Zellmer et al. 2010). Thus, a strong effort must
be focused on improving in vitro systems for primary liver
cells.

In conclusion, understanding the role of the immune
system and NPCs in drug-induced hepatotoxicity is fun-
damental for our interpretation of molecular mechanisms
of toxicity and for establishing new and improved in vitro
systems for toxicity testing.

@ Springer

10.6.5 Use of primary cells versus transformed cells
for hepatotoxicity testing

While primary hepatocytes and their cultures are simple
and versatile in vitro systems, they have a major drawback
for use in studies where metabolic activation of the drug is
important. Due to the loss of CYP activity with time and
significant interspecies variations between humans, mice
and rats in drug toxicity, such as for APAP (Jemnitz et al.
2008) using human hepatocytes for study of APAP toxic-
ity, would have the most relevance to human pathophysi-
ology. However, availability of livers that yield
hepatocytes suitable for preparing primary cultures remains
a problem and individual cultures of human hepatocytes
exhibit variable responses to known inducers of CYPs
(Aninat et al. 2006). In addition, primary human hepato-
cytes have scarce and unpredictable availability, limited
growth activity and lifespan, and undergo early phenotypic
alterations (Aninat et al. 2006). A viable alternative in this
scenario is the recently derived HepaRG cell line, which
was initially isolated from the liver of a patient with
hepatocellular carcinoma and are bipotent progenitor stem
cells expressing markers of both hepatocytes and bile duct
epithelial cells (Parent et al. 2004). In the presence of EGF,
HepaRG cells show a prominent differentiation pattern
toward hepatocyte-like cells, though smaller amount of
biliary epithelial-like cells also persist (Parent et al. 2004).
HepaRG cells have been shown to stably express tran-
scripts for the P450 system (Josse et al. 2008), and expo-
sure to prototypical inducers resulted in induction of CYPs,
including CYP3A4 (Kanebratt et al. 2008b), the major
CYP enzyme form catalyzing APAP oxidation to NAPQI
in the human liver (Laine et al. 2009). These cells have
been used to study metabolism of drugs such as midazo-
lam, naloxone and clozapine and it was shown that their
metabolism in HepaRG cells was similar to human hepa-
tocytes (Kanebratt et al. 2008a), suggesting that HepaRG
cells closely resemble primary human hepatocytes and are
metabolically competent. However, it has to be kept in
mind that HepaRG cells are also transformed cells and
signaling events may be altered due to that fact. A study
comparing signaling networks between normal and trans-
formed hepatocytes showed a number of significant dif-
ferences in cell signaling pathways, including a shift in
insulin receptor signaling from a metabolic function in the
normal liver to a pro-survival function in transformed cells
that involve elevated PI3K/AKT and GSK3 phosphoryla-
tion (Saez-Rodriguez et al. 2011). Cell signaling networks
determined from biochemical data also revealed profound
differences in Toll-like receptor and inflammatory signal-
ing between normal and transformed hepatocytes (Alexo-
poulos et al. 2010). It has also been shown that TGF-f
signaling to AKT and EGFR is different in adult rat
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hepatocytes and hepatoma cells (Caja et al. 2007). Hence,
it is essential that key features of drug-induced cell sig-
naling be validated in vivo at least in rodents before
extrapolations from studies on transformed cells are made.
Key mechanistic aspects of APAP toxicity have been
demonstrated, such as GSH depletion, protein adduct for-
mation, mitochondrial dysfunction and nuclear DNA
fragmentation, which have been validated in mice (Ja-
eschke et al. 2012a) and humans (McGill et al. 2012), also
occur in HepaRG cells in culture (McGill et al. 2011),
suggesting that these cells could be a useful model for
understanding mechanisms of APAP-induced hepatotox-
icity and evaluating therapeutic intervention strategies.

In contrast to primary cells and HepaRG cells, most
hepatoma cells (HepG2, Hep3B, HuH7, etc.) are charac-
terized by very low levels of all drug metabolism enzymes
and transporter proteins. Despite these shortcomings, these
cells have been extensively used in mechanistic studies of
APAP-induced cell death (e.g. Macanas-Pirard et al. 2005)
and in proteomics and genomics experiments (Van
Summeren et al. 2011; Prot et al. 2011). Although detri-
mental effects including cell death can be induced in
hepatoma cells by APAP, in the absence of reactive
metabolite formation, gene and protein expression changes
and signaling mechanisms of cell death obtained in these
cells have little relevance for the pathophysiology in ani-
mals or humans (Jaeschke et al. 2011).

10.6.6 Tools for high-throughput assays used in chemical
screening

Future uses for primary liver cell models might also
include high-throughput screening assays in programs such
as the USEPA ToxCast program (Judson et al. 2011; Shah
et al. 2011). There is an ongoing effort in toxicology to find
cheaper and faster ways to identify potentially toxic
chemicals without using large numbers of animals. As a
result, several large governmental programs have been
launched in Europe and the US including ToxCast™
launched in 2007 that is anticipated to be a new approach
for prioritizing large numbers of chemicals that need tox-
icity testing. Currently, there are over 600 in vitro assays
included in ToxCast, most being cell-based assays. Primary
human hepatocyte cultures have been used as a model
system in ToxCast to characterize the concentration and
time response of the ToxCast chemicals for changes in
expression of genes regulated by NRs, including the AhR.
These gene expression data can be used to rank order
chemicals for further testing based on their relative
potencies for gene induction. In addition, the results from
the AHR-induced genes in primary human hepatocytes are
being used with other ToxCast assay results in an attempt
to develop predictive modeling for in vivo toxicity.

10.6.7 High-throughput screening and prediction models
for DILI and the use of image analysis

Key Questions

e To which degree can idiosyncratic drug-induced liver
injury (DILI) be predicted by hepatocyte in vitro
systems?

e How can image analysis be applied to predict
hepatotoxicity?

Take home messages

e Hepatocytes cultured in the sandwiched configuration
with both top and bottom layers of extracellular matrix
maintain balanced drug metabolism and transport. They
are one of the best available models to study drug-
induced hepatotoxicity today.

e In order to identify idiosyncratic DILI drugs in the
uniform in vitro test systems, it may be necessary to
apply multiple toxicokinetic and toxicodynamic scaling
factors.

e Image analysis can be applied and automated to
measure multiple key pathophysiological processes
and mechanisms underlying DILI with both accuracy
and efficiency.

The key mechanisms leading to DILI include: CYP-
mediated activation of toxicants to reactive metabolites,
oxidative stress overcoming antioxidant defense systems,
mitochondrial injury and pathogenesis of steatohepatitis,
membrane transport and pathogenesis of drug-induced
cholestasis (Kaplowitz and Deleve 2002). To recapitulate
the underlying biological processes, a necessary in vitro
system to screen for these key mechanisms should at a
minimum possess the following characteristics: (a) a nor-
mal repertoire of drug activation and detoxification
enzymes, (b) oxidative and antioxidant defense systems,
(c) uptake and efflux transporters, and (d) healthy mito-
chondria. Primary cultures of human hepatocytes, from
either freshly isolated or cryopreserved cell sources, rep-
resent the best currently available in vitro model that met
these criteria. Specifically, hepatocytes cultured in the
sandwiched configuration with both top and bottom layers
of ECM maintain balanced drug metabolism (Mathijs et al.
2009) and transport (Bi et al. 2006). Since the degree to
which how much drug load hepatocytes “see” intracellu-
larly and the degree drug is metabolized or activated dic-
tate the ultimate prediction of drug-induced toxicity,
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sandwiched hepatocyte culture represents the current state
of the art of in vitro models for hepatotoxicity studies
(Swift et al. 2010).

It is known that a single drug and/or its metabolite can
cause DILI by more than one mechanism. For example,
acetaminophen forms reactive metabolite but also induces
oxidative stress and mitochondrial injury (Reid et al. 2005),
troglitazone can induce mitochondrial injury but also
interferes with BSEP (Masubuchi 2006). Therefore, an
in vitro screen focusing on a single mechanism is unlikely
to be sufficient for studying DILI. Proper evaluation of
hepatotoxic potential requires a combined measure of
multiple indicators of cellular health. In the past few years,
several mechanism-specific measurements have been
developed based on the concept of “phenotypic anchoring
screens.” These screens rely on key modes of action that
are central to the most common mechanisms of DILI, e.g.
ROS generation and GSH depletion as occurs during oxi-
dative stress, mitochondrial membrane potential change as
occurs during mitochondrial injury, inhibition of BSEP as
occurs during drug-induced intrahepatic cholestasis (Bo-
elsterli 2003). At a practical level, these phenotypic screens
further employed a panel of optimized fluorescent probes
to measure these modes of action specifically (Xu et al.
2012). The concept of phenotypic screens can be extended
to include other toxicologically relevant end points by
using additional fluorescent or other markers to probe other
pathophysiological processes including steatosis, phos-
pholipidosis, apoptosis, endoplasmic reticulum (ER) stress,
protein trafficking and transport dysfunctions.

The accuracy and efficiency of conducting and
obtaining data from phenotypic screens has been greatly
facilitated by automated fluorescent microscopes equip-
ped with a charge-coupled device (CCD) camera, and a
computer algorithm capable of performing rapid image
analysis. With today’s state of the art image analysis
systems, microscopic-quality images of specimens can be
saved, multiple measurements on toxicological mecha-
nisms of interest can be obtained, all with the same speed
of a traditional light-based plate reader. The richer biol-
ogy revealed by the image-based screens far surpasses
the knowledge gained from non-image-based screens, as
a picture is often worth a thousand words. While a
combination of optimized hepatocyte cultures (via sand-
wiched culture) and phenotypic screens (via automated
image analysis) is a powerful advancement in the study
of DILI, the technology has to confront a set of key
questions that challenges all in vitro tests. That is: Where
does the test draw a line between positive (toxic) versus
negative (non-toxic) response? How good is such a pre-
diction? How can such a prediction be applied in the real
world? How can such a test be further improved to
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account for additional modes of action of
hepatotoxicants?

The phenotypic screens utilizing sandwiched human
hepatocytes were validated with over 300 drugs and
chemicals, including over 100 drugs that were considered
non- or less hepatotoxic (Xu et al. 2008). In particular,
drugs that showed transient increase in liver-derived ala-
nine aminotransferase (ALT) activity in serum without
causing serious hepatotoxicity in the clinic were included
as less hepatotoxic controls. This less hepatotoxic list
includes clinically beneficial drugs such as tacrine, sim-
vastatin, aspirin, fluoxetine, propranolol, raloxifene, par-
oxetine and buspirone. The inclusion of these real-world
drugs as negative controls made it possible to truly assess
the test’s low false-positive rate. On the other hand, DILI-
positive drugs included those: (a) withdrawn from the
market mainly due to DILI (e.g. troglitazone), (b) not
marketed in the USA mainly due to DILI (e.g. nimesulide),
(c) received black-box warnings from the FDA mainly due
to DILI (e.g. dantrolene), (d) marketed with hepatotoxic
warnings in their labels (e.g. telithromycin), 5) other drugs
with at least 10 independent published clinical reports of
DILI that met the criteria of Hy’s Law (e.g. sulindac and
diclofenac). The use of many such “real-world” hepato-
toxic drugs led to the conclusion that at least half of the
idiosyncratic DILI drugs can be identified by in vitro tests
utilizing primary human hepatocytes and image-based
screens. It was also found that a threshold of 100 times the
average single-dose human therapeutic C,,, represented a
reasonable threshold that differentiates positive (toxic)
versus negative (non-toxic) drugs for idiosyncratic DILI
(Fig. 46).

The 100x Cp.x can be rationalized as follows:

1. there is likely a span of 6x difference between an
average single-dose human therapeutic C,,x, versus a
multi-dose steady-state C,,, for certain outlier patients
in a large patient population, for an orally administered
drug;

2. there is likely a span of another 6x difference in the
systemic Cp,.x versus liver Cy,,, for an orally admin-
istered drug, due to first-pass effect of the liver;

3. another threefold safety scaling factor to account for
toxicodynamic variability in a large patient population;

4. Hence, 6 x 6 x 3-100-fold scaling factor may be
necessary in order to detect those rare DILI events in a
simple and uniform in vitro test.

In applying the test in the “real-world” setting, it was
found that drugs that failed in clinical trials due to DILI
(i.e. not the low-frequency idiosyncratic DILI but still
detrimental to a drug development program nevertheless)
can generate a positive (toxic) signals at concentrations less
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Fig. 46 Identification of DILI compounds. It was found that a
threshold of 100 times the average single-dose human therapeutic
Cmax represented a reasonable threshold that differentiated positive
(toxic) versus negative (non-toxic) drugs for idiosyncratic DILI.
Sandwich-cultured human hepatocytes were treated with drugs for
24 h before subject to staining by a mixture of fluorescent probes for

than 100x clinical Cy,,x (Feng et al. 2009). This makes
sense from the scaling rationale described above. Another
realization is that when clinical Cy,, is not yet available for
a new drug candidate, it can be replaced with predicted
efficacious concentrations (Cgs). Furthermore, when com-
paring drugs modulating the same biological target, such a
comparison based on predicted C.g can be very effective in
differentiating toxic from safer drug candidates (Xu et al.
2012).

Several improvements have been accomplished or envi-
sioned by extending the phenotypic screening concept
described above. These include measuring hepatobiliary
transport processes, or toxicities requiring inflammatory
conditions or extended period of drug exposure. To study the
mechanism of inhibition of bile acid transport, a fluorescent

2. Reactive Oxygen

4. Glutathione

X

ROV ST

nuclei/lipids, reactive oxygen species, mitochondria and reduced
glutathione. The negative controls included famotidine, fluoxetine
and vehicle controls. The positive drugs included drugs that cause
DILI in the clinic, e.g. nimesulide, telithromycin, nefazodone and
perhexiline (for further experimental details, please refer to Xu et al.
2008)

bile acid (cholyl lysyl fluorescein or CLF) was employed in
the screen. In normal healthy hepatocyte sandwich cultures,
CLF is taken up by the hepatocytes and transported to the bile
canaliculi space, as shown in the top-right panel in Fig. 47. At
3x clinical Cy,.x, CP-724,714 completely abolished this
process. The inhibition of bile acid transport by CP-724,714
was more potent than erythromycin estolate or cyclosporine
A, when compared to their clinical Cy,,x values (Fig. 47). The
clinical development of CP-724,714, a small molecule tar-
geting Her2 expressing tumors, was stopped in phase 2 due to
jaundice and cholestatic liver damage. In another study, in
order to mimic the effects of inflammatory conditions which
may sensitize the liver cell for more drug-induced injury, a
mixture of common inflammatory cytokines were added to
hepatocyte cultures and their effects on DILI are studied
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(Cosgrove et al. 2009). The authors screened 90 drugs for
cytokine effect in human hepatocytes and found that a sig-
nificantly larger fraction of the idiosyncratic hepatotoxicants
(19 %) synergized with cytokine addition than did the non-
hepatotoxic drugs (3 %). Drug—cytokine synergy was
observed for trovafloxacin but not levofloxacin, matching
similar observation in a lipopolysaccharide-administered
rodent model of hepatotoxicity (Shaw et al. 2007). Further-
more, it is now possible to culture and maintain differentiated
liver functions up to 3 weeks (Wang et al. 2008b). These
longer-term models made it possible to further investigate the
mechanism of chronic DILI caused by drugs including
nucleoside reverse transcriptase inhibitors (NRTIs) (Kline
et al. 2009). It can be expected that with better understanding
of mechanisms underlying DILI, further advances in hepa-
tocyte culture systems and image-based or other high-content
biomarker measurements, our predictivity toward idiosyn-
cratic DILI can only improve.

10.6.8 Use of tissue imaging, image analysis
and mathematical modeling to model in vitro
and in vivo liver architecture

Key questions

e How can spatial-temporal multi-cellular organization
processes in vitro be modeled mathematically and what
kind of insight do they allow?

e In how far can mathematical models of multi-cellular
organization processes calibrated with in vitro data be
re-calibrated to permit prediction of in vivo processes?

e What are current limitations of these models?

Take home messages

e Single-cell-based mathematical models provide a tool
to explore growth, regeneration and tissue organization
scenarios on the computer.

e Image analysis is a key interface between experiments
and mathematical modeling and serves to calibrate
model parameters as well as to compare mathematical
modeling results with experimental results.

e Mathematical models can be used to simulate possible
tissue organization scenarios in vitro and in vivo where
a possibly successful strategy is to adapt a mathemat-
ical model pre-calibrated with in vitro data in a
subsequent step to in vivo experiments.

e Mathematical models can be used to guide experimen-
tal strategies and thereby help to economically use
resources.

The main target of medical research is the understanding
of disease and repair mechanisms in human in order to
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improve diagnosis and treatment of patients with liver
disease. A fundamental question is in how far information
collected in vitro can be used to extrapolate to disease and
regeneration mechanisms in vivo. In this Section, the
application of a mathematical model of in vivo tissue is
illustrated, as well as the pre-calibration of the model by
in vitro experiments and re-adjusted with in vivo experi-
ments in order to guide an experimental strategy of in vivo
experiments optimized to efficiently unveil disease and
repair mechanisms. For this purpose, the example of liver
regeneration after drug-induced pericentral damage has
been used. A process chain composed of imaging and
image analysis is used to quantitatively calibrate model and
model parameters of the in vivo mathematical model.
While extensive modeling work has been performed on the
intra-cellular scales, unveiling the activity pattern of signal
transduction pathways and the metabolism of liver cells,
including the PBPK models representing different com-
partments of the body to investigate drug action, the pre-
cise spatio-temporal dynamics of liver tissue in disease
progression and regeneration is still not well understood
(Hoehme et al. 2010). Recently, Hoehme et al. (2010)
established a model based on a process chain integrating
data from image analysis to mimic regeneration after drug-
induced pericentral damage. Within this review, the gen-
eral conceptual idea underlying that approach is sketched.
Of particular, importance is how far mathematical models
can be pre-constructed based on in vitro experiments and
then re-adjusted by specifically chosen in vivo experiments
to complement missing information not accessible in vitro
but necessary to better understand the organizational
principles and processes underlying a particular disease or
repair process of interest. The regeneration after CCly-
induced pericentral damage in mouse is considered here,
but the conceptual approach can be applied equally to other
tissue organization processes.

The procedure consists of two fundamental steps: (1) the
setup of a pre-calibrated mathematical model based on in vitro
experiments. At this stage, the model is capable to capture the
observed and expected phenotypes and behaviors of hepato-
cytes in culture; (2) the re-adjustment and/or extension of the
mathematical model based on imaging and image analysis, as
well as of iterative re-adjustment of the mathematical model
from step (1) until a given in vivo process can be quantitatively
explained. In an iterative process and by comparison with
experimentally obtained process parameters, the resulting
model is then adapted until the experimental observations in
in vivo 3D tissue architectures can be reproduced. The itera-
tions are guided by mathematical model predictions followed
by experimental testing of the predictions named “model-
guided experimental strategy.” Ultimately, the strategy shall
be used to predict the behavior of the modeled system in not yet
observed or experimentally not accessible situations.



Arch Toxicol (2013) 87:1315-1530

1459

Fig. 47 CP-724,714 was found
to completely abolish the
activity of bile salt efflux pump
(BSEP) in sandwich-cultured
primary human hepatocyte
cultures compared to vehicle-
treated controls. The nuclei
were stained with Hoechst. The
bile canaliculi were stained by
cholyl lysyl fluorescein (CLF), a
substrate for BSEP. The clinical
development of CP-724,714, a
small molecule Her2 inhibitor
for oncology indications, was
stopped in phase 2 due to
jaundice and cholestatic liver
damage (for further
experimental details, refer to Xu
et al. 2012)

Erythromycin Estolate
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(3.08 pg/ml)

Cyclosporin A

10x Clinical Cmax

(0.

10.6.8.1 Initial in vitro model Already spatiotemporal
in vitro tissue modeling is a challenging task. Individual cells
behave as entities capable of migrating, growing and divid-
ing, responding on signals in their environment and modi-
fying their environment. Quantitative modeling requires
understanding of biomechanical and biological cell proper-
ties and of how these properties may change as a response of
external signals or cell internal machinery. One of the diffi-
culties in constructing spatiotemporal models on tissue scale
is that important components such as material parameters of
individual cells may affect the multi-cellular organisation
and hence have to be included in the model. In the last years,
however, more and more methods have been established that
are at least partly capable of providing this information. Bio-
mechanical parameters as the Young modulus, the Poisson
ratio or viscous parameters can now be estimated by optical
stretcher experiments, atomic force microscopy, magnetic
bead experiments or ultrasound-based methods.

In addition to these bio-mechanical parameters of indi-
vidual cells, the experimental observation of growth
dynamics and morphologies of cell clusters in vitro, for
example growing on collagen substrates (Jones et al. 2009),

Nuclei

Vehicle control

CP-724,714

3x Clinical Cmax
(12pg/ml)

.93 pg/ml)

(Fig. 48, left panel) or within sandwich cultures (Swift
et al. 2010), can lead to important insights and can be used
to further parameterize an initial mathematical model of a
hepatocyte population in vitro. Microscopic imaging of
growing cell cultures typically allows measurements of cell
number, cell density or even individual cell positions over
time. By quantifying the dynamics of population growth, a
distribution of cell cycle times, which is an important cell-
biological model parameter, can be derived. BrdU or Ki67
staining permits localization of proliferating cells. Fur-
thermore, cell density measurements allow the quantifica-
tion of typical cell sizes and their distribution within the
cell population. Depending on the spatial and temporal
resolution of the imaging techniques, which in typical
experiments can range from days down to milliseconds
when rapid time-lapse microscopy is utilized, cell diffusion
constants can be approximated by tracking the movement
of individual cells or analyzing border properties of the cell
population (Block et al. 2007).

This information from measurements addressing mate-
rial parameters and biological migration, growth and
division parameters can be condensed to set up a
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Fig. 48 Left: Hepatocytes on
collagen (I) spot after 5 days in
culture (from Jones et al. 2009).
Right Corresponding situation
in the monolayer culture system

mathematical model of monolayers. The used model
framework should in the next step permit extensions of the
model to the in vivo situation. The complex in vivo
architecture (see below) favors a model type where each
cell is represented individually as basic modeling unit
(“single-cell-based model” or “agent-based model”)
(Block et al. 2007; Drasdo et al. 2007; Anderson et al.
2007). In the mathematical model described by Drasdo
(2005) and Drasdo et al. (2007) and Galle et al. (2005),
each individual cell is represented by an isotropic, elastic
and adhesive object of limited compressibility and defor-
mability. Model hepatocytes are capable of active migra-
tion, growth and division and are defined by cell kinetic,
biophysical and cell biological parameters that in principle
can all be obtained by experimental measurements. As
introduced by Galle et al. (2005) for monolayers, and
Drasdo et al. (2007) for multi-cellular spheroids, cell
movement was simulated by a stochastic equation of
motion for the position of each cell. This equation mimics
friction, adhesion and repulsion forces with the substrate
and other cells, and the micro-motility of each cell (Galle
et al. 2005) (for an explanation of the equation, see section
“Appendix 3”).

As cells in hepatocyte suspensions have a spherical
shape and hepatocyte shapes from confocal micrographs
resemble deformed spheres (Hoehme et al. 2010), each
model cell can be assumed to be intrinsically spherical.
“Intrinsic” means that the cell is spherical in isolation but
can be deformed or compressed if it interacts with other
cells. For cell division, it is assumed that a cell starting
from an initial volume first doubles its volume, and then
deforms at constant volume into a dumb-bell, before it
divides into two cells of the original initial volume. It is
considered that cell cycle entrance is inhibited if the cell
experiences a too strong pressure (Drasdo and Hoehme
2012). With such a model, multi-cellular phenotypes of
hepatocytes (Fig. 48, right panel) or other cell types in
monolayer and multi-cellular spheroids, in liquid suspen-
sion as well as in more tissue—like environment could be
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successfully mimicked (Drasdo and Hoehme 2012; Drasdo
2005; Galle et al. 2005; Drasdo et al. 2007).

Establishing such an initial model in a relatively con-
trolled in vitro situation has the advantage that many
structures and factors that potentially influence hepatocyte
behavior in vivo can be excluded. Thereby, in vitro models
can more easily be tested even though at the expense of
lacking mechanisms representing 3D architecture and sig-
naling in vivo. For example, NPCs, blood vessels, the bile
canaliculi network and ECM, may drastically influence the
bio-mechanical and bio-chemical behavior of disease and
regeneration processes hence studying the main paren-
chyma in vitro is certainly an oversimplification for most
tissue organization—degeneration as well as regenera-
tion—processes in liver. For this reason, the next step
illustrates how the initial in vitro model was extended in
order to capture the more complex yet more realistic
in vivo situation during liver regeneration after CCly
intoxication in mouse.

10.6.8.2 Toward in vivo In order to develop a mathe-
matical model that realistically represents key spatiotemporal
features of a tissue under study, the static tissue architecture as
well as changes of that architecture in the process of interest—
here: liver regeneration—must be taken into account. A
number of invasive and noninvasive methods are available to
quantify the 3D tissue structure in vivo. For example, bright
field microscopy can be used with histological sections to
reconstruct the tissue architecture. This technique has the
advantage that large regions of tissue can be imaged in high
resolution and for arbitrary z-depth only limited by the cutting
process. The physical cutting, however, is also the major dis-
advantage of this method as it inevitably produces artifacts
such as inhomogeneously, unisotropically distributed defor-
mations of the cut tissue. Although there are a number of image
processing methods available to counteract these artifacts
(Braumann and Kuska 2006), the accuracy of the reconstruc-
tion remains limiting at high resolutions and the effects of the
cutting cannot be fully compensated. Furthermore, the
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Fig. 49 Left Stack of typical
experimental images in confocal
microscopy (Blue DAPI, Red
DokaMS, Green DPPIV). Right
Three-dimensional
reconstruction and segmentation
of all structures relevant to the
in vivo model (Red Sinusoids,
Blue Cell nuclei)

minimal thickness of histological tissue slices is approximately
5 um as thinner slices would drastically increase deformation
artifacts and generate tissue rupture. This thickness, however,
largely prevents the full reconstruction of connectivity of the
sinusoidal network and would not allow capturing the 3D
structure of the bile canaliculi network, whose average diam-
eter is approximately 1-2 pum.

Another widely applied method is confocal microscopy
where a post-processing by image registration techniques is
not necessary due to the use of optical sectioning without the
need for physical cutting. In confocal imaging, the maximal
z-depth of around 120 um down to which an image can be
obtained is limited by the penetration depth of both light and
antibodies. By using two-photon excitation microscopy, this
maximal imaging depth can be increased to up to 1 mm
(Denk etal. 1990). Despite this limitation, it is still possible to
reconstruct and statistically quantify liver cells (hepatocytes
and NPCs), the sinusoidal network (as well as the bile cana-
liculi network that is not shown here) in great detail (Fig. 49)
(Hoehme et al. 2010). With this information, an extended
spatiotemporal in vivo model on the scale of the liver lobule
that integrates statistical information from a large number of
data sets and therefore in a sense constitutes a representative
model tissue can be constructed. In order to construct archi-
tecturally valid models on lobe and organ scale, however, a
quantification of larger blood vessels (above the scale of the
sinusoids) that define the 3D shape of the lobules in the liver is
required, too. Confocal microscopy cannot capture the
structure of these macroscopic vessels because of the limited
z-depth that can be imaged. Noninvasive techniques as mic-
rotomography (Elliott and Dover 1982), however, are able to
capture the entire liver. Although compared to bright field or
confocal microscopy, the acquired data sets have signifi-
cantly lower resolution they may be used to obtain the com-
plementary information of the 3D architecture of
macroscopic hepatic vessels. By integrating both micro-
scopic and macroscopic architectural parameters,

spatiotemporal models may be constructed that represent the
correct tissue architecture across multiple scales from lobule
up to organ scale.

Based on the additional information emerging from the
complex liver lobule architecture, the initial mathematical
model, developed from in vitro data in step (1), must be
extended to account for elements that are known to have an
important impact in the in vivo situation as for example
cell polarity and the liver blood vessels. Polarized model
cells can change their orientation leading to anisotropic
adhesion. In case of anisotropic adhesion, cell orientation
changes may compromise tissue architecture hence cell
orientation changes may become a crucial element. For
simplicity, in the report by Hoehme et al. (2010), cell
orientation changes were modeled by energy minimization
(using the so-called Metropolis algorithm) instead of
numerically integrating equations for the torques. How-
ever, the cell—cell interaction energy can be obtained if the
cell—cell force is known (Block et al. 2007) (see also the
paragraph on the Metropolis algorithm in “Appendix 3”).

In the report by Hoehme et al. (2010), the summary
effect of all processes and components is modeled—such
as of the bile canaliculi network—contributing to hepato-
cyte polarity by a polar cell-cell adhesion. The equation of
motion for each cell for the in vitro situation (equation (1))
is modified by adding terms taking into account forces
between hepatocytes and sinusoids, and friction between
hepatocytes and the extra-cellular matrix localized in the
space of Dissé. The sinusoidal network and the larger
hepatic vessels are represented by chains of spherical su-
belements linked by springs. For each subelement, an
equation of motion similar to that for cells is solved
whereby the micro-motility term is dropped. With these
model extensions—anisotropic cell-cell adhesion, the
sinusoids, as well as the cell-sinusoid interactions—a rep-
resentative initial state for the in vivo mathematical model
can now be set up.
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volume
reconstruction
and segmentation

quantification
by architectural
parameters

Fig. 50 This scheme illustrates the general strategy of how architectural
parameters obtained by image analysis of confocal micrographs (leff) are
used together with a quantification of dynamic processes in the liver (fop
row: regeneration after intoxication with CCly; brown: hepatocytes, blue:
central necrosis) to construct a dynamic model of the in vivo situation

10.6.8.3 Model-guided experimental strategy So far, the
constructed spatiotemporal model for the in vivo situation
only contains direct information on static tissue architecture
and thus lacks parameterization to capture dynamic, i.e.
processes information. Process parameters can be quantified
by similar imaging and analysis methods used to obtain the
architectural parameters. For example, in order to realisti-
cally model regeneration of liver after intoxication or partial
hepatectomy, quantification of cell proliferation and cell
death is needed (Hoehme et al. 2007, 2010). The proliferation
pattern is usually obtained by analyzing BrdU, PCNA or
Ki67-stained histological slices or tissue blocks imaged using
confocal microscopy. The necrotic region that forms after
intoxication can be captured by detecting changes in the tis-
sue phenotype and captured by measurement of the necrotic
area and the number of hepatocytes after intoxication and
during the regeneration process (Fig. 50).

Experimentally, information on dynamic processes can
typically only be obtained for a number of discrete time
points, while the model generates continuous information.
Therefore, the mathematical model must not only be able
to reproduce the experimentally observed systems behavior
at the points of time of the experiments but also be able to
extrapolate the systems behavior between the experimen-
tally observed time points. The process parameters may be
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t=10 days

(bottom row: regeneration after intoxication in the model; light rose:
quiescent hepatocytes, dark rose: proliferating hepatocytes, brown:
glutamine synthetase positive hepatocytes, red: sinusoids, central and
portal vein, blue: portal artery). Left picture: confocal micrographs after
image processing; blue: hepatocytes nuclei, white: sinusoids

partly used to parameterize the mathematical model (as the
proliferation pattern described by Hoehme et al. (2010) was
used to determine the cell cycle entrance rate in space and
time) or to compare the results of model simulations on the
cellular and tissue scale to the experimental data and
therefore to verify the model (the number of hepatocytes,
the size of the necrotic area and the exchange area between
hepatocytes and blood (Hoehme et al. 2010) was used to
compare mathematical model and experiments in vivo). If
the model results do not completely capture the experi-
mentally observed phenotypes or behavior by modifying
the model parameters within biologically valid ranges,
important structures, mechanisms or processes that are
required to correctly capture the specific in vivo situation
may be missing in the model. For example, Hoehme et al.
(2010) reported that including sinusoids and cell polarity
turned out to be insufficient to explain the experimental
results on liver regeneration after CCly intoxication. In this
case, the model can be used to generate predictions of what
these missing model elements could be. The predictions
then guide further experiments aimed at verifying or falsi-
fying them by follow-up experiments. In case the predicted
new model elements could be validated, they are included in
the model and the iteration is restarted testing whether the
extended model is now able to correctly capture the
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experimentally observed situation. Hoehme et al. (2010)
reported that active directed migration toward the necrotic
zone and hepatocyte alignment during division along sinu-
soids (“HSA”) were identified by the model to be candidate
mechanisms necessary to correctly reproduce the process
parameters, number of hepatocytes, lesion size and hepato-
cytes—blood exchange area. The existence of active directed
migration toward the necrotic zone was supported by bright
field micrographs, HSA could subsequently be validated
experimentally by analyzing confocal scans of sinusoids and
dividing hepatocytes. Hence, this iterative strategy of mod-
eling and experimentation can lead to the discovery of yet
unknown mechanisms and processes.

10.6.9 Use of mathematical modeling to liver metabolic
pathways and cellular behavior

Key questions

e How can mathematical modeling of biological systems
help develop in vitro hepatocyte models?
e What models are available?

Take home messages

e Mechanistic models serve as an ideal tool to integrate
available experimental knowledge on various individ-
ual parts of a system (=integrative function) and to
generate hypothesis on changes of the system’s behav-
ior elicited by changes of its environment or properties
of its components (=heuristic function).

e Stoichiometric metabolic networks are reaction graphs
defined by a set of metabolites and processes (such as
chemical reactions and transport) converting the
metabolites into each other. Transcriptomic, proteomic,
metabolomic and phenotypic data can all be used to
extract liver-specific reactions.

e Metabolic flux analysis aims at the determination of
reaction rates (often called “fluxes”) in a metabolic
network.

e The constraint optimization method is commonly
referred to as flux-balance analysis as it presumes all
internal fluxes to be balanced (steady-state condition).
This method provides predictions of stationary meta-
bolic fluxes in large-scale networks for which exper-
imental information is insufficient to apply metabolic
flux analysis or kinetic modeling.

e A “Virtual Liver” is being developed with the aim of
establishing of a kinetic model of the full central
metabolism of human hepatocytes and serves as an
integral part of a multi-scale liver model.

Mathematical modeling of biological systems has
advanced to a branch of modern molecular and cellular
biology. Mathematical models can be descriptive (e.g. fit-
ting a phenomenological regression function to a data set)
or mechanistic, i.e., relating complex properties of a bio-
logical system such as growth, spatial movement or mor-
phogenesis to the properties of the constituting components
and the interactions among them. In the post-genomic era,
the integrative and heuristic function of mathematical
models is of increasing importance as biological experi-
mentation has reached a new quality. This holds in par-
ticular for molecular and cellular biology, where efficient
methods of DNA and RNA sequencing and protein struc-
ture analysis, quantification of molecule levels by high-
throughput techniques such as transcriptomics, monitoring
of the spatiotemporal movement of macromolecular com-
plexes and cellular organelles in single cell by fluorescence
spectroscopy provide data for virtual all layers of hierar-
chical organization spanning between the genotype and the
phenotype.

Putting a variety of data from different spatial and
temporal scales into a consistent and logical relationship
requires also a novel quality of mathematical models
(Koide et al. 2009b). Traditionally, mathematical models in
molecular and cellular biology have focused on a specific
level of cellular organization and therein on well-studied
subsystems with a small (2-30) number of interacting
components. The methodological benefit of such “reduc-
tionist” approach is obvious. However, explaining the
behavior of cells, tissues and organs as a whole in terms of
the underlying molecular processes—the ultimate goal of
systems biology—requires the development of multi-scale
models comprising a large set of different biological enti-
ties. Currently, however, the development of multi-scale
cell models is hampered by the fact that the enormous
experimental progress achieved in making large-scale
molecular snapshots of the cell was not flanked by an
equally intensive elucidation of the biochemical processes
unifying these molecular snapshots to a dynamic picture.
The exception is metabolism, where during several decades
of biochemical research, profound knowledge on structural
and kinetic properties of numerous enzymes has been
accumulated enabling the development of detailed mech-
anistic models for selected subsystems (see below). By
contrast, the detailed kinetic characterization of molecular
processes involved in gene regulation and signal trans-
duction is still in its infancy, thus preventing the creation of
truly mechanistic models. Therefore, alternative modeling
techniques like constraint optimization methods have
become more and more popular during the last 15 years.
The following section provides a short overview on the
main classes of metabolic models currently applied in liver
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biology and discusses their utility for in vitro studies of
hepatocyte metabolism.

10.6.9.1 Stoichiometric networks Stoichiometric meta-
bolic networks are basically reaction graphs defined by a
set of chemical compounds (metabolites) forming the
nodes of the graph and processes (biochemical chemical
reactions and transport processes through membranes, in
the following referred to as “reactions”) converting the
metabolites into each other, i.e. forming the edges of the
graph. Algebraically, a network model is given by the so-
called stoichiometric matrix (S;), whereby §;; is an integer
denoting how many molecules of metabolite (i) are formed
(S;; > 0) or utilized (S; < 0) in reaction (j).

Definition of the stoichiometric network is the com-
pulsory first step in metabolic modeling. It may taken into
account various information sources of different credi-
bility to demonstrate the presence of a reaction in a given
tissue or cell type, ranging from clear-cut evidences
derived from biochemical studies of individual reactions
(in vitro assays) to rather uncertain inferences solely
based on gene expression data and genome-based
sequence comparisons (Haggart et al. 2011). Size and
completeness of the network are mainly governed by the
specific biochemical issues addressed by modeling and
experimentation. For studies on the central metabolism of
hepatocytes, a medium-scale network as used in (Orman
et al. 2011) to study the metabolic response of perfused
livers to various oxygenation conditions will be sufficient
in many cases. This network comprises glycogen syn-
thesis and degradation, glycolysis and gluconeogenesis,
fatty acid synthesis and B-degradation. For studies linking
the central metabolism to more “peripheral” pathways
like nucleotide salvage metabolism or amino acid
metabolism, large-scale networks are available. Gille
et al. (2010) constructed a comprehensive metabolic net-
work of the human hepatocyte comprising 777 metabo-
lites in six intracellular and two extracellular
compartments and 2,539 reactions. The network was
based on available liver-specific gene expression data and
intensive literature search for biochemical evidences
supporting the presence of reactions in human hepato-
cytes. A similarly large network comprising 1,360
metabolites and 1,827 reactions was proposed by Jerby
et al. (2010). These authors used an algorithm that
exploits transcriptomic, proteomic, metabolomic and
phenotypic data to extract liver-specific reactions from the
generic human network Reconl (Duarte et al. 2007). A
third reconstruction of a human liver-specific metabolic
network used primarily proteomics data (Zhao et al.
2010a). However, unlike the two other reconstructions, it
was never tested for completeness, consistency and
functionality.
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10.6.9.2 Topological models of stoichiometric net-
works Some basic properties of a metabolic network can
be tested without development of sophisticated mathe-
matical models. The concept of elementary flux modes
allows identifying all subsystems which at steady state may
operate as an independent module (Kaleta et al. 2009;
Schuster et al. 1999). The number of elementary modes
present in a metabolic subsystem was also used to inves-
tigate the structural robustness of the amino acid metabo-
lism of hepatocytes networks against multiple knockouts
(Behre et al. 2008). Several algorithms are available to
check whether or not a reaction or transport process is
essential, i.e. cannot be removed (=“in silico knockout”)
from the network without compromising its functionality.
Because the essentiality of a reaction depends on the
availability of external substrates and thus on the compo-
sition of the external medium, it is an interesting problem
of topological network analysis to predict minimal sets of
external substrates allowing the network to produce a
prescribed output and to check such predictions experi-
mentally (Klamt 2006). A special variant of essentiality
analysis with particular relevance for network-based drug
design allows to determine a minimal set of reactions, the
so-called minimal cut set (Klamt 2006; Klamt and Gilles
2004), that have to be simultaneously silenced in order to
compromise a predefined function of the network.

10.6.9.3 Metabolic flux analysis Metabolic flux analysis
(MFA) aims at the determination of reaction rates (often
called “fluxes”) in a metabolic network. MFA represents a
relatively simple type of mathematical modeling that goes
without deeper knowledge of kinetic and regulatory prop-
erties of enzymes and transporters. A serious experimental
restriction of MFA is that the network has to be in a steady
state, i.e. time-dependent changes in the internal metabolite
concentrations should be negligibly small over the time
interval of the study.

Z S,‘jVj =0

J (internal)

Under this condition, the steady-state condition can be
used to calculate the unknown fluxes v; from a smaller set
of measured independent fluxes. The number N* of these
independent fluxes that have to be experimentally
determined is given by the rank of the stoichiometric
matrix. As the choice of the independent fluxes is not
unequivocal, the modeler and the experimentalist together
can agree on a list of independent fluxes that can be
comfortably determined (preferentially exchange fluxes
that can be easily measured by monitoring the respective
concentration changes in the external medium) and which
from the computational point of view allow to infer the
remaining fluxes with a minimal error. Numerous examples
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for MFA applied to liver cells can be found in the report by
Orman et al. (2012). Note that if the number of measured
fluxes is smaller than the number of independent fluxes N*,
MFA has to be complemented by flux-balance analysis (see
below) to determine all fluxes.

A special and more advanced type of MFA consists in
the determination of fluxes by means of radioactive tracer
experiments. After administration of a substrates labeled at
defined heavy atoms position by an isotope (C'3, C'¥,
N3 ,...), the labeling of internal metabolites is monitored in
a time-dependent manner. These time-courses obey a first-
order differential equation comprising the unknown fluxes
as free adjustable parameters (Sauer 2006). Maier et al.
(2008) applied this method to determine fluxes in glycol-
ysis, pentose-phosphate pathway (PPP) and citric acid
cycle (TCA) in a hepatoma cell line grown in aerobic batch
cultures.

10.6.9.4 Constraint optimization methods This modeling
technique is commonly referred to as flux-balance analysis
(FBA) as it presumes all internal fluxes to be balanced
(steady-state condition). This method has greatly advanced
during the past 15 years as it provides predictions of sta-
tionary metabolic fluxes in large-scale networks for which
experimental information is insufficient to apply MFA or
kinetic modeling. The basic idea of FBA is to determine the
distribution of fluxes in the network by solving an optimi-
zation problem, i.e. minimizing (or maximizing) a physio-
logical objective function that depends on the metabolic
fluxes. A vague justification of this approach may be taken
from the consideration that natural evolution has shaped the
regulation of enzymes and transporters in a way that allows
an optimal performance of the metabolic network.

The outcome of FBA depends sensitively upon the
choice of the objective function. For the metabolism of
microbial systems characterized by fast growth, the maxi-
mization of biomass production is typically used as opti-
mization criterion. For hepatocytes and other complex
eukaryotic cell types, growth is only one out of a multitude
of possible objectives to be accomplished by an “optimal”
metabolism. Accordingly, some FBA studies on hepatocyte
metabolism (Nolan et al. 2006; Uygun et al. 2007) applied
a multi-level approach where the distribution of intracel-
lular fluxes optimizes simultaneously a set of relevant
metabolic functions as, for example, maximization of
oxygen uptake and synthesis of urea. The principle of flux
minimization (Holzhutter 2004) has been used to determine
in a large-scale metabolic network of hepatocytes, the rate
with which ammonia is converted in varying proportions
into urea, alanine and glutamine (Gille et al. 2010). The
oxygen consumption rates inferred from these flux distri-
butions were in good concordance with the fact that
ammonia detoxification is zonated, i.e. shifts from

predominant urea production in well-oxygenated periportal
hepatocytes to almost exclusive glutamine synthesis in
poorly oxygenated pericentral hepatocytes. Generally,
however, it has to be emphasized that owing to the
incomplete knowledge of all metabolic objectives and their
relative importance in a given metabolic state of the
hepatocyte and, furthermore, the idealized assumption of a
perfect metabolic optimization renders flux predictions by
FBA fairly hypothetical and certainly less reliable com-
pared to MFA or kinetic modeling techniques.

10.6.9.5 Kinetic models of hepatocyte metabolism MFA
and FBA merely determine stationary fluxes in the meta-
bolic network without being able to account for these fluxes
by the regulatory features of the underlying enzymes and
transporters. To really understand metabolic regulation and
on that basis to design new experiments with high infor-
mational gain, it requires the development of mechanistic
mathematical models. These mechanistic (kinetic) models
use the formalism of chemical kinetics (ordinary or partial
differential equations) to relate the fluxes and metabolite
concentrations to the kinetic and regulatory properties of the
underlying reactions. They allow in silico simulations of
stationary states as well as time-dependent metabolic
changes elicited by variations in substrate supply, transient
siRNA knockdown of enzymes or membrane transporters,
enzyme inhibition by drugs and toxins or administration of
hormones, to name only a few possible applications.

Up to now, relatively few kinetic models of hepatocyte
metabolism have been developed, each of them focusing on
a small number of reactions pertinent to the specific met-
abolic function of interest. For example, Bartel and Hol-
zhiitter (1990) modeled the adenine nucleotide salvage
metabolism of hepatocytes and simulated the impact of
anoxia and subsequent re-oxygenation on variations in the
total adenine nucleotide pool of the cell. Chalhoub et al.
(2007a, b) used kinetic models to study the interdepen-
dence of carbohydrate and lipid metabolism. Beard and
Qian (2005) investigated the impairment of hepatic glucose
production in von Gierke’s and Hers’ diseases. Maier et al.
(2010) analyzed the control of glycolysis in HepG2 cells
under conditions of glucose deprivation by fitting a kinetic
model to the measured concentrations of 25 extra- and
intracellular intermediates. A kinetic model of ammonia
detoxification in the liver lobule was constructed by Ohno
et al. (2008) which accounts for the strict zonation of this
metabolic function. Surprisingly, despite the fact that a
large body of our current knowledge on metabolic regu-
lation in higher vertebrates has been gathered by studies in
isolated hepatocytes, liver slices, liver homogenates and
liver perfusion systems, up to now, no comprehensive
kinetic model of the central metabolism of liver cells is
available. However, in the German systems biology

@ Springer



1466

Arch Toxicol (2013) 87:1315-1530

program, “Virtual Liver” work is in progress that aims at
the establishment of a kinetic model of the full central
metabolism of human hepatocytes which is supposed to
serve as an integral part of a multi-scale liver model
developed (Holzhutter et al. 2012).

11 Final conclusions

Many in vitro and in vivo models have been developed to
investigate the complex interactions between pathways and
functions of the liver, as well as mechanisms of action of
chemically induced liver injury—these models form the basis
of this review. In order to achieve a better liver model, a clear
understanding of its structure is needed. The liver is not
composed of just one cell, although this is an obvious choice
for hepatic-specific effects, and even hepatocytes themselves
have different phenotypes depending on their zonal location.
For years, hepatocytes have been isolated and separated from
their neighboring cells, yet current thinking is to reunite them
in in vitro models to reproduce in vivo results. The advances
in isolation and culture techniques have meant that the
research into different NPCs has increased, along with our
understanding of their importance in overall liver function
and responses to toxins. The selection of liver models is ever-
increasing, ranging from perfusion of intact livers, liver slices
and isolated cells to co-cultures of multiple cell types and 3D
“organoid” models and bioreactors. The availability of
human cells has increased with the improvements in cryo-
preservation techniques; however, perhaps more effort has
been invested in recent years into understanding differentia-
tion and the genes involved in this process. This has meant
that high-quality alternatives to primary human hepatocytes
may now be a reality. Metabolically competent cell lines,
precursor cells and stem cells feature prominently as the most
promising models for investigating diseases, toxicity and
metabolic functions, although these will require further
optimization to represent complete replacements for primary
hepatocytes. Multiple international projects are running to
investigate mechanisms of liver injury and establishing novel
models which are more predictive than current standard
regulatory studies. Models—in vivo, in vitro and in silico—
for apoptosis, steatosis, idiosyncratic DILI and hepatocarci-
nogenesis are now extensively described, along with high-
throughput models that aim to be more practical for the
pharmaceutical and chemical industries.

Clearly, there is a wealth of information that has been
generated in the past decade—much has been learnt, but it
is a certainty that more will come! It is the hope that this
review has encompassed the most important recent
advances in understanding liver functions and developing
more relevant models and has given food for thought for
future research.
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Appendix 1: Hepatocyte isolation protocols

An overview of the hepatocyte isolation process is shown in
Fig. 51. The procedure can be applied to livers of humans,
rats, mice and other species. Here, the isolation and culture of
human and rodent hepatocytes are described in detail.

Isolation of human hepatocytes

The following chapter will briefly define the solutions that
are necessary for a successful isolation of primary human
hepatocytes from liver resections and liver tissue that was
unsuitable for transplantation.
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Fig. 51 Overview over the
hepatocyte isolation process.
The procedure can be applied to
livers of humans, rats, mice and
other species

Mice, e.g.

8-12 weeks

In situ perfusion
with EGTA/
collagenase

Transfer the
perfused liver
into a Petri
dish

Preparation of media and equipment
Media

To ensure a smooth and successful performance, all nec-
essary solutions and equipment must be sterilized and
ready to use before starting the procedure. A detailed
description of the components and instructions for the
preparation of the perfusion buffers and stop solution are
listed below and in Tables 10 and 11. EGTA is added to
prevent the coagulation of the residual blood and to deplete
extracellular Ca®". N-acetyl-L-Cyteine can be used to
prevent oxidative damage in the cells during the perfusion
process (Stéphenne et al. 2007).

e Perfusion solution I: See Table 10.

e Perfusion solution II: See Table 11

e Stop solution: The stop solution (100 ml FCS in 500 ml
sterile PBS at 4 °C) is used to stop the enzyme
activities (e.g. trypsin, clostripain, neutral proteases) of
the remaining collagenase perfusion solution in the
tissue in order to prevent over-digestion of the tissue
and damage to the cells.

Equipment

e The isolation procedure is generally performed under
sterile conditions; therefore, it is advised to place the
whole perfusion system setup under the sterile work-
bench (Fig. 52).

e Set the water bath temperature to 39 °C. Keep the
temperature at the outflow between 36 and 38 °C in
order to maintain an optimal collagenase activity (for

C57BL6/N, male,

Open the
liver capsule

Culture on collagen
coated dishes

Suspend the hepatocytes

details, see section “Pitfalls and limitations in the
isolation of primary human hepatocytes™).

e The sterile equipment includes a forceps, a scalpel,
gauze, a glass Petri dish and a buttoned cannula with up
to 6 channels (Fig. 52a). Place all equipment on an
unwrapped surgical drape sheet.

e Prepare a container with ice and several 50-ml tubes.
The number of tubes depends on the size of the tissue to
be isolated. Approximately 10 tubes can be used for a
40-g piece of perfused liver tissue.

e For the filtration of the cell suspension subsequent to
the isolation procedure, a sterile plastic funnel coated
with aseptic gauze is used (Fig. 52c).

In order to save time, the complete setup for the perfusion
system should be prepared before the arrival of the tissue in
the laboratory from the surgical ward. The setup of the
perfusion system is depicted in Fig. 52b.

e Place a bottle containing perfusion solution I into the
water bath and fix it with a lead ring to prevent floating.

e Secure a Buchner funnel with a tripod and place an
empty sterile 500-ml bottle underneath for waste
collection.

e Place both ends of a sterile silicone tube in the bottle
containing perfusion solution I and let the solution
circulate until the hose is completely filled (Fig. 52b).
Avoid air bubbles, because they might be harmful to
the tissue.

The ideal tissue for hepatocyte isolation weighs between
30 and 100 g and is surrounded on three sides by tissue
capsule, ideally from patients younger than 50 years, with
a single isolated pathological finding (e.g. single metastasis
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Table 10 Perfusion solution I preparation: The following reagents
are dissolved in distilled water and then the pH is adjusted to 7.5

Ingredients Concentration
NaCl 142 mM

KCl1 6.7 mM
Hepes 100 mM
N-acetyl-L-cysteine 5 mM

EGTA 24 M

The buffer is sterile filtered and stored at 4 °C. If the solution is not
prepared freshly, re-check the pH value at 37 °C immediately before
the isolation procedure and adjust if necessary

Table 11 Perfusion solution II preparation: Solutions A and B are
prepared separately

Additive Concentration
Solution A
NaCl 67 mM
KCl1 6.7 mM
Hepes 100 mM
Albumin 0.5 % (w/v)
Solution B
CaCl, 4.8 mM

A volume of 1.3 1 of solution A and 150 ml of solution B are mixed
and made up to 1.5 1 with distilled water. The pH is then adjusted to
7.5. The buffer is sterile filtered and stored at 4 °C. If the solution is
not prepared freshly, re-check the pH value at 37 °C immediately
before the isolation procedure and adjust if necessary

or liver tumor such as colorectal carcinoma) or trauma
(Fig. 53a). Usually, the smaller the resection area, the
better is the performance of the perfusion (Fig. 53b).

The resected liver tissue should be transported as fast as
possible into a sterile vessel containing cell culture medium
or PBS on ice in order to minimize the time of warm
ischemia. The isolation procedure starts immediately after
the arrival at the laboratory.

Isolation procedure

During the first perfusion step, the remaining blood is
removed and the liver tissue is prepared for the collagenase
digestion. Upon arrival of the liver, the tissue is removed
from the transport container and placed on a sterile Petri
dish followed by a gentle wipe of the remaining blood from
the tissue using aseptic gauze. In order to prepare the piece
of liver for perfusion I, the buttoned cannulae are placed
into several vessels of the resection site and fixed with
tissue glue (Braun, Melsungen, Germany). By using the
biological architecture of vessels, the whole piece of liver
can be perfused with 3-8 cannulae, depending on the size
of the tissue. Using too many cannulae can restrict the
outflow of the perfusion solution or lead to a long recir-
culation of the perfusion solution into the tissue. The per-
fusion process is as follows:

e Check all cannulae for blockages by pumping perfusion
solution through the system.

e Place cannulae into the largest vessels and fix them
with tissue glue (Fig. 54a). Close smaller vessels and
bile ducts in the same way. Control the perfusion
pressure and adjust the pump speed so that a homog-
enous perfusion is achieved.

e Transfer the prepared tissue into the Buchner funnel
and start perfusion step I. The setup for this perfusion is
depicted in Fig. 54b. Use at least 300 ml of perfusion
solution I to remove residual blood and warm up the
tissue. The end of this perfusion step is indicated by a
light-red color of the out-flowing perfusion solution I.

e Note: To avoid a loss of perfusion pressure, any vessel
leakage should be immediately stopped by using
additional tissue glue.

e Prepare the buffer for perfusion step II by adding the
necessary amount of Collagenase P for the digestion of
the liver tissue to 100 ml perfusion solution II (pre-
warmed at 37 °C). Sterile filter the solution into a glass

Fig. 52 Liver cell isolation setup. a Ready-to-use sterile work area
with sterile drape sheet, glass and plastic dishes, scalpel, forceps, cell
scraper, gauze and cannula for perfusion. b Perfusion system with
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water bath, thermostat, peristaltic pump and Buchner funnel. ¢ Plastic
funnel with aseptic gauze and 50-ml tubes for the filtration of the cell
suspension after the isolation procedure
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Fig. 53 a Resected liver piece on a sterile work area in the surgical suite showing a colorectal liver metastasis (see arrow) after right-lateral
hemihepatectomy. b Preparation of the piece of liver tissue for the perfusion procedure using an amputation knife

Fig. 54 a A buttoned cannula is placed in a blood vessel and fixed
with tissue glue. b The first perfusion step is carried out in order to
remove residual blood and to warm up the tissue. ¢ Recirculation of
Collagenase P-containing perfusion solution for digestion of the liver

bottle of at least 150 ml and keep the ready-to-use
solution warmed at 37 °C in order to avoid any loss of
activity (for details, see section “Pitfalls and limitations
in the isolation of primary human hepatocytes™).

For the collagenase digestion, the perfusion setup has to
be rearranged in order to enable the recirculation of the
perfusion solution II, which reduces the necessary amount
of Collagenase P and hence reduces the running cost
(Fig. 54c):

e Remove the silicone tube from the cannula tubing and
empty it.

e Transfer the end of the tube from the perfusion solution
I into the bottle containing perfusion solution II.

e Remove the bottle for the collection of waste and the
bottle containing perfusion solution I from the water
bath and place the bottle with the collagenase buffer
(perfusion solution II) underneath the Buchner funnel.
Then, re-attach the silicone tube to the buttoned
cannula and start the perfusion. Check all adhesive

tissue during perfusion step II. d The digested liver tissue is gently
tweezed and cut into two halves with a scalpel, before the cells are
released into the surrounding stop solution

joints for leakages and, if necessary, re-fix the cannula
with tissue glue.

e The termination of perfusion step II is indicated by
irreversible deformation of the tissue upon slight
pressure. This state should be reached after approxi-
mately 10-20 min.

Following the digestion procedure, the cannulae have to
be pulled out quickly. The tissue is placed into a Petri dish,
and stop solution is immediately poured over the tissue for
enzyme inactivation to prevent the over-digestion of the
tissue. The release of hepatocytes from the digested tissue
matrix is carried out as follows:

e Use the scalpel to cut the piece of perfused liver into two
halves without cutting through the capsule (Fig. 54d).

e Tweeze the tissue gently and release the cells from the
tissue into the surrounding stop solution.

A complete perfusion of liver tissue can nicely be seen
in Fig. 55. Only the left side of the liver tissue has been
well perfused and shows the typical morphology of
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Fig. 55 Digested liver tissue: The left side of the tissue shows the
typical morphology of digested tissue matrix after harvesting the
hepatocytes. The right side, however, has not been sufficiently
perfused and therefore the tissue remains intact

digested liver tissue after harvesting the hepatocytes. The
perfusion of the right side, however, has not been suffi-
ciently perfused, and therefore, almost no cells could be
isolated from this part of the tissue.

e Collect the cell suspension with a serological pipette
and pass the suspension through the prepared funnel
with gauze into ice-cooled 50-ml tubes in order to
eliminate tissue debris.

e Pellet the cells by centrifugation at 50-100x g at 4 °C
for 5 min. Note that with cells from steatotic livers, a
higher centrifugation speed (up to 100xg) is recom-
mended, since these cells often contain intracellular fat
that will hinder their sedimentation at 50xg.

e Aspirate and discard the supernatant, resuspend the cell
pellets in hepatocyte culture medium or PBS and place
the suspension on ice.

To assess yield and viability, Trypan blue exclusion can
be performed using a Neubauer hemocytometer:

e Use a 0.5 % solution of Trypan blue; dilute it in a ratio
of 1:4 in PBS.

e Mix 100 wl of the cell suspension with 900 pl of the
diluted Trypan blue to obtain a dilution of 1:10. This
step can be adjusted according to the amount of isolated
cells in suspension.

e Count viable and dead cells.

e Calculation:

e Total cells/ml = counted cells x 10* x 10 (dilution
factor)

e Viability [%)] = vtaleells . 10

~ total cells

Using the procedure described above, it is possible to
obtain a cell viability of over 90 %. However, the viability
and quality of hepatocytes can be impaired if there is
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prolonged ischemia or if the liver was steatotic or fibrotic.
If the cell suspension contains lower than 70 % of viable
cells, a separation of the dead cells from the viable cells by
density gradient centrifugation with Percoll® is highly
recommended.

Cell yield and purification

The quality and quantity of the isolated hepatocytes
strongly depends on many factors, including initial liver
damage (normal, steatotic, cholestatic or fibrotic tissue),
the conditions caused by the liver disease itself, and the
pretreatment of the liver by drugs as well as the warm
ischemia time upon surgery (Table 11).

As already mentioned, a density gradient centrifugation
known as Percoll® can be performed and is carried out as
follows:

Prepare several 50-ml Falcon tubes with 20 ml of a
25 % Percoll® solution (15 ml PBS + 5 ml Percoll®). The
number of tubes depends on the total cell count, as for the
density gradient centrifugation no more than 50 x 10°
viable cells in a total volume of 4-5 ml should be added.
This concentration allows the best separation between
viable and dead cells.

e Carefully overlay the Percoll® solution with the cell
suspension (Fig. 56a).

e Centrifuge at 1,200-1,300x g at 4 °C for 15-20 min.
NOTE: Turn off the break and use a minimum
acceleration in order to improve separation.

e After centrifugation, two layers can be observed. Dead
cells and cell debris are located at the interphase, while
viable cells are pelleted (Fig. 56b).

e Aspirate both layers, starting at the interphase.

e Resuspend the cell pellets with PBS and fill each one up
with PBS to 50 ml mark and centrifuge at 50-100x g at
4 °C for 5 min.

e Agpirate the supernatant and resuspend all pellets in an
appropriate medium for the culture of hepatocytes.
Yield and viability of hepatocytes can be reassessed
using Trypan blue exclusion.

e At this point, the cells can be stored on ice for several
hours prior to seeding or shipping.

Seeding and culture of primary human hepatocytes

During the isolation procedure, the plates for culturing the
cells should be prepared by coating them with ECM pro-
teins (e.g. collagen) to allow a better attachment. The cells
are suspended in hepatocyte culture medium and seeded in
multi-well plates, Petri dishes or culture flasks according to
the chosen experimental setup. An adequate cell density
ensuring the confluence of the cells is 0.1-0.15 x 10° cells
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Fig. 56 Separation of viable and dead hepatocytes by density
gradient centrifugation. a A 25 % Percoll solution is carefully
overlaid with the suspension containing a maximum of 50 million

per cm?, and the number of cells can be seeded according
to Table 12. A recommended hepatocyte culture medium is
described in Table 13. It should be noted that the compo-
sition of the culture medium may be adapted according to
the experimental setup. For instance, if certain inflamma-
tory events in liver cells are investigated, it might be useful
to withdraw or reduce hydrocortisone from the medium.

Shipping method
Shipping of hepatocytes using Hepacult cold storage

solution can be carried out as follows:

e Prepare and label sterile cryovials.

e Resuspend the hepatocytes in cold storage solution with
a concentration of approximately 50 million cells per
ml.

Table 12 Cell numbers suitable for different cell culture plates

Number of wells per plate 6 12 24 48 96

Surface area per well (cm?) 96 39 19 10 034
Number of cells per well (x 106) 1.0 04 02 0.1 0.033

Table 13 A recommended hepatocyte culture medium

Supplement Final concentration

100 U/100 uM
1 % (0.292 g/)

Penicillin/streptomycin

L-glutamine

Hepes 15 mM

FCS 10° %
Hydrocortisone 0.8 mg/l

Human insulin (100 U/ml) 50 pU/ml (1.5 uM)
MEM non-essential amino acids 1 % (0.1 mM)

This medium is based on Williams’ E medium with the following
supplements

dead cells

viable cells. b After the centrifugation, the dead cells and the cell
debris are located at the interphase, while viable cells are pelleted

e Transfer the cells into cryovials and avoid air bubbles.

¢ Close the cap carefully and avoid overflow.

¢ Disinfect the cryovials with ethanol and seal them with
Parafilm. Pack the vials into a small plastic bag and
place the bag into a big styrofoam box filled with ice.

e Seal the box and arrange with a trustworthy courier
service for overnight shipping.

Note If the hepatocytes arrive with a significantly
decreased viability, it is possible to perform a second
Percoll® density gradient centrifugation upon arrival.

Isolation of primary rat and mouse hepatocytes

The following chapter will briefly define the procedure of
hepatocyte isolation from rats and mice.

Preparation of buffers, media and equipment
General buffers

Glucose solution: 9 g/l H,O

HEPES, pHS.5: 60 g/, adjusted with NaOH to pH 8.5

HEPES, pH7.6 60 g/, adjusted with NaOH to pH 7.6

Glutamine solution: 7 g/l

EGTA solution: 47.5 g/l in H,O

Dissolve in a small amount of NaOH and adjust pH7.6

with HCI

CaCl, solution 19 g/l CaCl,.2H,0

e MgSO, solution 24.6 g/l MgSO,.7H,0

e Krebs Henseleit buffer (see Table 14 for preparation of
this buffer):

e Amino acid solution (From PAN Biotech GmbH, Cat.

No: SO-33100). Dissolve the following amino acids in

a 4M NaOH solution:
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Table 14 Krebs Henseleit buffer preparation

Ingredients Concentration
NaCl 60 g/1

KCl1 1.75 g/l
KH,PO, 1.6 g/l
N-Acetyl-L-cysteine 5 mM

EGTA 24 M

The following reagents are dissolved in distilled water and then the
pH is adjusted to 7.4. The buffer is sterile filtered and stored at 4 °C

0.27 g/l L-alanine; 0.14 g/l L-aspartic acid; 0.4 g/l L-aspara-
gine; 0.27 g/l L-citrulline; 0.14 g/l L-cysteine; 1.0 g/l L-his-
tidine; 1.0 g/l L-glutamic acid; 1.0 g/l L-glycine; 0.40 g/l L-
isoleucine; 0.8 g/l L-leucine; 1.30 g/l L-lysine; 0.55 g/l L-
methionine; 0.65 g/l L-ornithine; 0.55 g/l L-phenylalanine;
0.55 g/l L-proline; 0.65 g/l L-serine; 1.35 g/l L-threonine;
0.65 g/l L-tryptophan; 0.55 g/1 L-tyrosine; 0.80 g/l L-valine.
Stir until fully dissolved and then adjust to pH 7.6 by 2N HCI).
Store at 4 °C and pre-warm in water bath before use.

Buffers for perfusion

e EGTA buffer
(Table 15)

e Collagenase buffer composition for liver perfusion
(Table 16)

e Suspension buffer composition for resuspension of
primary hepatocytes (Table 17)

composition for liver perfusion

Table 15 EGTA buffer composition for liver perfusion

Reagents Amount (ml)
Glucose solution (9 g/l) 248

Krebs Henseleit Buffer pH 7.4 40

HEPES pH 8.5 40

Amino acid solution 60
Glutamine (7 g/1) 4

EGTA solution pH 7.6 1.6

Table 16 Collagenase buffer composition for liver perfusion

Reagents Amount (ml)

Glucose solution (9 g/l) 155

Krebs Henseleit buffer pH 7.4 25

HEPES pH 8.5 25

Amino acid solution 30

CaCl,-2H,0 solution (19 g/l) 10

Glutamine (7 g/l) 2.5

Collagenase Add during perfusion with EGTA

Table 17 Suspension buffer composition for resuspension of primary
hepatocytes

Reagents Amount (ml)
Glucose solution (9 g/l) 124

Krebs Henseleit Buffer pH 7.4 20

HEPES pH 8.5 20

Amino acid solution 30
CaCl,-2H,0 solution (19 g/l) 1.6
Glutamine (7 g/l) 2
MgSO,4-7H,0 solution (24.6 g/l) 0.8

Bovine albumin fraction V Add during

perfusion with EGTA

Equipment

Technical and laboratory equipment for liver perfusion are
listed in Table 18. Further laboratory equipment includes
100 pum filter; beakers; measuring cylinders, flasks; culture
dishes (50 mm & for mouse, 100 mm & for rat liver perfu-
sion); sharp and blunt cannula (see below) for anesthesia and
for perfusion; 1-3 ml syringes. Note: All further laboratory
equipment must be autoclaved before usage or provided as
sterile disposable material.

Animals

Typical breeds of mice and rats are shown in Table 19,
together with a description of ideal weight ranges and

Table 18 Technical and laboratory equipment for liver perfusion

Equipment Description Supplier

Fresenius Kabi, Bad
Homburg, Germany

Transmed Sarstedt, Bad
Wuennenberg, Germany

Perfusion pump Volumat Agilia

SAHARA inline
system

Olympus KL
1500 compact

Heating element

Lamp Olympus, Hamburg,

Germany
Volumat line Fresenius Kabi, Bad

Homburg, Germany

“Giving set” for
infusion pumps

Infusion extension 5 m extension Fresenius Kabi, Bad
tube Homburg, Germany

Connection tubing  Heidelberger Fresenius Kabi, Bad
extension Homburg, Germany
3-way stopcock 3-way tap Fresenius Kabi, Bad

Homburg, Germany

Table 19 Description of animals suitable for hepatocyte isolation

Animals Description Supplier

Male Black 6 N 8-12 weeks of age Charles River, Sulzfeld,

mice Germany
Male Wistar rats  250-300 g body Charles River, Sulzfeld,
weight Germany
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suppliers. The animals should have free access to water and
food (ssniV, Soest, Germany) and should be kept under
controlled temperature (18-26 °C), humidity (30-70 %)
and light (12-h light/dark circle).

Setup of the perfusion apparatus

A small plastic cap has to be removed from one end to fix
the 3-way stop cock, while the other end is placed into a
reservoir of perfusion buffer. Opposite to the tube, the
infusion tube extension is connected with the 3-way stop
cock. The other end of this tube extension carries a blunt
cannula which is inserted into the blood vessel during
perfusion. The tube is spirally coiled on the heating ele-
ment to ensure appropriate warming of the perfusion buffer
before entering the liver through the needle. The third
conjunction of the 3-way stop cock fixes another connec-
tion tubing, a so-called Heidelberger extension. This con-
junction enables pressure release in case the pressure in the
perfusion system is too high. The system must be rinsed
with EGTA perfusion buffer before usage to avoid air
bubbles in the tubes that might perturb the perfusion.
Finally the flow rate is set to 15 ml/min.

General procedure for mouse and rat liver

The surgical procedure for the isolation of primary hepatocytes
is based on a modified two-step isolation method described by
Seglen (1976). This procedure was established by Berry and
Friend (1969) and Seglen (1972) and makes it possible to
convert nearly the whole liver to a suspension of intact hepa-
tocytes. In the first step, the liver is perfused with an EGTA-
containing perfusion buffer. Calcium ions are complexed with
EGTA, and the blood is rinsed to wash out blood cells and
plasma. The removal of calcium ions is crucial for cell
detachment and washing out of Ca”*"-dependent adhesion
factors. The loss of these adhesion factors causes loosening of
cell—cell connections and is a preparative step for the following
perfusion with collagenase, which is applied to digest collagen
in the ECM and to disperse the liver cells. Because collagenase
is a Ca®"-dependent enzyme, Ca®" has to be added anew to the
collagenase perfusion buffer to achieve effective enzymatic
activity. This way reproducibility of the yield and viability of
the isolated cells are substantially increased. After liver
digestion with collagenase buffer, the liver is excised from the
tissue. By opening the liver capsule with forceps, the cells can
be released into suspension buffer. The following section
focuses on the detailed surgical procedure.

Isolation procedure

Rats and mice are anesthetized with an intraperitoneal
injection of a mixture consisting of xylazine (Rompun 2 %,

Table 20 Suggested amounts of ketamine and xylazine for rats and
mice

Item Rats Mice

Ketamine 120 mg/kg body weight 61.5 mg/kg body weight

Rompun 20 mg/kg body weight 20 mg/kg body weight
Needle B.Braun Sterican BD microlance3
22G x 11/4, & 26G x 5/8, &
0.70 x 30 mm 0.45 x 16 mm
Syringe BD 3 ml syringe 08DO08 BD 1 ml syringe REF
300013

Bayer, Leverkusen, Germany) and ketamine (Ratiopharm,
Ulm, Germany). The corresponding amounts of ketamine
and xylazine depend on the animals’ body weight and are
listed in Table 20. The anesthesia needs to be controlled by
checking the lid reflex and pain sensitivity (pedal reflex).
Next, the narcotized animal should be fixed in a dorsal
position by fixing the limbs. To create an aseptically sur-
rounding the body of the animal is sprayed with 70 %
Ethanol. The surgical procedure is as follows:

1. Cut into the suprapubic region of the abdomen: A
longitudinal cut from caudal to cranial is performed
and the upper abdominal wall is opened without
touching the peritoneum. This longitudinal cut is
further cranially extended to the axilla, and the
abdominal wall is removed -carefully from the
peritoneum. Two further cuts are made into the
abdominal wall, dorsolaterally to the hind legs. This
enables an optimal flow off from the perfusion
buffers (Fig. 56a, b).

2. The surgical instruments and the uncovered perito-

neum are briefly rinsed with PBS. Surgical forceps
are used to pull the peritoneum to ventral, and a small
cut is made in the suprapubic region. The cut is
subsequently extended toward cranial and stopped
when reaching the breastbone. With two transverse
incisions to the costal arch and to the hind legs, the
abdominal cavity is exposed. This way the perito-
neum is carefully removed without injuring any
organs. The intestines are displaced to the left side of
the abdominal cavity (Fig. 57c¢).
While rat livers are usually perfused via the hepatic
portal vein, mouse liver perfusion proceeds through
the vena cava inferior. The following steps refer to
the vena portae for rat perfusion and to the vena cava
for mouse perfusion.

3. A loose ligature is placed around the appropriate
blood vessel (vena cava for mouse, vena portae for
rat) near the liver: Small forceps are carefully
directed underneath the vein, and second forceps
are used to pass a piece of suture thread beneath the
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Fig. 57 Progressive workflow of rat liver perfusion

blood vessel. A loose knot is made but not tightened.
In case of rat perfusion, a second ligature is placed at
5-10 mm below the upper one. This second ligature
helps to fix the vena portae which facilitates inserting
the needle. For mouse perfusion, no second ligature
is necessary (Fig. 57d).

A small incision is made diagonally into the vein
(vena portae for rat, vena cava for mouse) (Fig. 57e).
A blunt needle (B. Braun Sterican 20G x 1 %, &
0.90 x 40 mm) is inserted at a flat angle into the
blood vessel and the liver is perfused with EGTA
buffer.

If the needle is placed in the right position, the liver
will blanch immediately, indicating effective perfu-
sion. The ligature around the needle is fixed by
tightening the thread ends. The needle can further be
kept in its position by fixing it with a piece of tape
(Fig. 571).

To avoid high pressure to the hepatocytes and for
pressure release in rats, the jugular veins are cut off.
For mouse perfusion, the vena portae is cut
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immediately. The perfusion with 37 °C warm EGTA
buffer should last 10-15 min at a flow rate of 15 ml/
min. The other two perfusion buffers are prepared
during this perfusion step, e.g. by adding collagenase
to the collagenase-containing perfusion buffer and
adding BSA to the suspension buffer.

The buffer flow has to be stopped before changing to
collagenase-containing buffer. Perfusion with colla-
genase perfusion buffer (37 °C) is continued at a flow
rate of 15 ml/min until the liver becomes smooth and
soft. Depending on the collagenase activity, this step
might last between 10-15 min for rat and 5-10 min
for mouse liver perfusion. The digestion state can be
tested by cautiously applying pressure with the back
of a pair of forceps. The perfusion should be finished
when the consistency of the liver changes from
elastic to a deformable state.

The liver is carefully excised by piercing the
diaphragm and fixing the liver with forceps at
thoracal liver blood vessels (Fig. 57g). The dia-
phragm, ligaments and further connections to other
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organs are carefully severed without injuring other
organs. As soon as the liver is excised, it is placed in
a Petri dish filled with suspension buffer. Further
steps of hepatocyte isolation need to be performed
under a sterile hood or lamina flow hood.

8. The liver capsule is opened carefully with forceps,
and primary hepatocytes are released into the
suspension buffer. In case of optimal digestion, only
the encasing connective and vascular tissue (the
empty liver capsule) remains.

9. In a next purification step, the cell suspension is
filtered through a 100-um gauze to remove tissue
debris. For mouse hepatocytes, the cell suspension is
transferred into a single 50-ml falcon tube. For rat
hepatocytes, the cell suspension is equally distributed
into eight 50-ml falcon tubes and the volume made to
20 ml with suspension buffer.

10. NPCs can be separated from parenchymal hepatocytes
by centrifuging the cell suspension at 50x g for 5 min,
at 4 °C. NPCs are removed when discarding the
supernatant. A second washing and centrifugation step
with suspension buffer ensures a greater purity of
hepatocytes. For mouse hepatocytes, the obtained cell
pellet is resuspended in 10 ml suspension buffer and
placed on ice immediately. The cell pellets of rat
hepatocytes are resuspended in 3-5 ml suspension
buffer and pooled into one 50-ml falcon tube. Healthy
and viable hepatocytes will aggregate and form clumps,
which should carefully be disaggregated by gently
inverting the falcon tube until all cell aggregates are
dissolved. Cells need to be kept on ice afterward.

For culture, cell viability and the amount of cells per ml
can be determined using Trypan blue exclusion, as described
in section “Isolation procedure” of “Appendix 1.”

Hepatocyte purification with Percoll®

Percoll® reagent (Easycoll Separating Solution, desity
1.124 g/ml, Biochrom AG, Berlin, Germany, Cat. No.
L6143) is a useful tool for further purification of the isolated
rat or mouse hepatocytes. Polyvinyl pyrrolidone-coated silica
gel particles are used to create a density gradient, and isolated
cells are hence separated according to their density. For
hepatocyte purification, a 48 % Percoll® solution in PBS is
optimal. Depending on the required amount of cells, several
50-ml falcon tubes are filled with 25 ml of 48 % Percoll®
solution. A volume of 2.5 ml of cell suspension is transferred
carefully dropwise “on top” of the Percoll® solution and then
centrifuged at 28 xg and room temperature for 5 min. The
supernatant is discarded, and the cell pellet is resuspended in
25 ml of suspension buffer and centrifuged again at 50x g for
5 min, at 4 °C, to remove the Percoll® solution. All cell

pellets are carefully resuspended in 2.5 ml suspension buffer
by gently turning the falcon tubes. Finally, all Percoll®
purified cells are collected in a single 50-ml falcon tube. Cell
count and viability must be determined as described above.

Appendix 2: Primary human hepatocyte collagen
sandwich and monolayer protocols

Equipment

e Laminar airflow cabinet

Incubator (water jacketed, 37 °C, humidified atmo-
sphere of air containing 5 % CO,).

Thermostated waterbath (37 °C)

Bright field/phase-contrast microscope

Pipette-aid, pipettes and micropipettes

Polystyrene tubes (50 ml) and desired cell culture
plates (6 cm Petri dish, 24-, 12-, or 6-well plate)

Cell scrapers

e Ice box

Reagents and media

e Lyophilized rat tail collagen I (Roche Diagnostic
Mannheim, 10 mg)

e (.2 % solution of acetic acid (v/v in distilled H,0,
sterile filtered)

e VWilliam’s E Medium with additives

e 10x Dulbecco’s modified Eagle medium [BioConcept,
1-25K03-1]

e 1 M solution of NaOH for pH neutralization (sterile
filtered)

All media should be pre-warmed to 37 °C prior to use. A
basic culture medium is described in Table 21. Complete
medium is the basic medium supplemented with 10 % Sera

Table 21 Basic culture medium preparation

Supplements Supplier and Amount
catalogue number
Penicillin/ PAN biotech, PO6- 100 U/ml penicillin/0.1 mg/
streptomycin 07100 ml streptomycin
Gentamycin PAN biotech, PO6- 50 pg/ml
13001
Dexamethasone Sigma-Aldridge, 100 nM in EtOH
D4902
L-glutamine PAN biotech, P0O4- 20 Mm
82100
Insulin (ITS) Sigma 13146 2 ng/ml

This medium consists of Clear William’s E medium [500 ml (PAN
Biotech, P04_29510)] with the following supplements
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Plus (PAN Biotech, 3701-P103009) and washing medium
is William’s E without any supplements.

Cell suspension preparation

e All of the steps should be performed under sterile
conditions.

e Cells should be kept on ice before plating.

e Centrifuge the isolated primary human hepatocytes at
50xg for 2 min at 4 "C.

e Under a laminar airflow cabinet, gently remove the
supernatant and resuspend the cell in 2 ml of complete
medium, centrifuge again at 50x g for 2 min, at 4 °C.

e Under a laminar airflow cabinet, gently remove the
supernatant, resuspend the cell in 2 ml of complete
medium and transfer the suspension into polystyrene
tube (50 ml). Add additional 8 ml of complete medium
(resulting in total of 10 ml complete medium).

e Count the cell number and viability in 4 % Tryptan
blue as described in section “Isolation procedure” of
“Appendix 1.”

e Calculate appropriate cell suspension volume for the
amount of cells needed per well.

Collagen Sandwich preparation procedure

e All of the steps should be performed under sterile
conditions.

e All collagen solution should be constantly kept on ice
to prevent the gelation process.

e Gelled collagen solutions should be used immediately
after dissolving and not to be re-used afterward.

e Under a laminar airflow cabinet, add 9 ml 0.2 % acetic
acid to the bottle of lyophilized collagen type I
(resulting in final concentration of 1.11 mg/ml) and
let it dissolve for at least 3 h in the fridge until no
collagen clumps are visible in the solution (dissolving
overnight is preferred).

e Calculate the total amount of collagen gel to be used as
a first layer for the experiment according to Table 22.

Table 22 Calculation of the appropriate amount of gelled collagen to
be used as a first layer

e In a 50-ml sterile tube, prepare a mix of collagen/1 x
DMEM by mixing 1 volume of 10x DMEM and 9
volumes of acidic collagen solution. This generates a
final collagen solution of 1 mg/ml in 1x DMEM (.e. if
a total of 5 ml of collagen solution is needed, then mix
4.5 ml of acidic collagen solution with 500 pl of 10x
DMEM).

e Neutralize the collagen solution by adding 1 M NaOH
(drop-wise) and constantly shake until the initial yellow
color turns to fuchsia.

e Keep the neutralized collagen solution on ice to prevent
gelation.

e Add an appropriate amount of pH-adjusted collagen
onto the desired plate format (see Collagen Layer
Volume in the Table 23) and distribute it evenly by
quick movements of a cell scraper and gently shake the
plate up and down and side to side. Avoid air bubbles.

e Transfer plates with smoothly distributed gelled colla-
gen into a 37 °C incubator for 45 min.

e Proper collagen gelation can be assessed by tilting the
plates. The gel should be firm and the surface even and
smooth.

e After gel polymerization, place plates under the hood
for a few minutes to adjust to room temperature.

e Add gently the appropriate amount of pre-warmed full
medium to the side of each well (see Table 23),
followed by gentle addition of hepatocytes in suspen-
sion (see Table 23).

e Shake gently the plate side to side (in directions North—
South; West—East) until cells are evenly distributed.
Transfer plates in the incubator for at least 3 h to allow
cell attachment.

e After attachment, prepare an appropriate amount of
1 mg/ml gelled collagen to be used as a second layer as
described for the first layer. (Note: it is recommended
to use 0.5 mg/ml gelled collagen for the upper layer
when performing immunostaining procedures).

¢ Gently aspirate the media from each well. Wash gently
3 times with washing medium and add the appropriate
amount of collagen onto the plated cells and gently

Table 23 Correct medium volumes and cell seeding densities for
confluent cultures isolated hepatocytes suspension

Plate format Collagen layer Amount of Medium Plate format Confluent condition Media
volume (ulJ/well)  cells (x 106) (ml/well) amount of cells (x 10°) (ml/well)

Petri dish (J 6 cm) 700 2 3 Petri dish (J6 cm) 2

6-well plate 350 0.85 2 6-well plate 1

12-well plate 300 0.4 1 12-well plate 0.6

24-well plate 100-200 0.2 0.5 24-well plate 0.3 0.5
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shake to distribute the collagen solution evenly over the
surface.

e Transfer the completed collagen gel sandwich plates for
45 min in the incubator for collagen gelation.

e After gel polymerization, add gently an appropriate
amount of pre-warmed basic culture medium.

e Renew the medium every day thereafter with the same
volume of basic culture medium.

e Control the morphology of the cells daily by bright
field/phase-contrast microscopy.

Collagen monolayer protocol

e All of the steps should be performed under sterile
conditions.

e All collagen solution should be constantly kept on ice
to stop gelation process.

e The stock collagen type I solution of 250 pg/ml can be
re-used.

e Under a laminar airflow cabinet, add 40 ml of 0.2 %
acetic acid to the bottle of lyophilized collagen type I
(resulting in final concentration of 250 pg/ml), let it
dissolve for at least 3 h in the fridge until no collagen
clumps are visible in the solution (dissolving overnight
is preferred).

e Place the 250 pg/ml collagen solution on ice in the
laminar airflow cabinet.

e Coat all wells with 250 pg/ml collagen type I stock
solution until the well is fully covered and aspirate back
to the stock to solution. Allow the plates to dry in the
sterile flow hood.

e Before plating the cells, wash the coated plates twice
with 1x PBS.

e Add gently appropriate amount of pre-warmed com-
plete medium, according to Table 23, followed by
gentle addition of freshly isolated hepatocyte suspen-
sion (see Confluent Condition column in the table) of
freshly isolated hepatocytes suspension.

e Gently shake the plate side to side until the cells are
evenly distributed. Transfer plates in the incubator for
at least 3 h to allow cell attachment.

e After 3 h of attachment gently aspirate the media
from each well. Wash gently three times with
washing medium and add gently appropriate amount

of pre-warmed culture medium to the side of each
well.

e Renew the medium every day thereafter with the same
volume of basic medium.

e Control the morphology of cells daily under bright
field/phase-contrast microscope.

Appendix 3: Model-guided experimental
strategy—equation of cell motion

To understand the concept of an equation of motion, con-
sider the classical example of Newton’s equation of motion
of an object of mass m falling down as a consequence of
the attraction by the earth: ma = F. Here, a = dv/dr is the
acceleration of the center of mass of the object. The left
hand side ma describes the inertia of the object and is
called inertia term. The acceleration describes the incre-

ment of the velocity v within an arbitrarily short period of
time: a= % = Alfi:n()i—% where Ay = v(t + At) — v(¢).
Knowing the velocity and the current position permits to
calculate the new position of the object from dr/dr = .
Acceleration, force, velocity and position are vectors, have
an absolute value and a direction. If the acting force on the
object is due to the attraction between the object and the

earth, then F = mg where g is the earth acceleration.

For hepatocytes in culture, the equation of motion is more
complicated. It is assumed that hepatocyte movement results
from the superposition of (1) hepatocyte—hepatocyte inter-
actions by friction, as well as adhesion and repulsion between
them, (2) hepatocyte-substrate friction, as well as adhesion
and repulsion between hepatocytes and substrate and (3) the
active movement of the hepatocytes. The active movement
includes the hepatocyte micro-motility and possible directed
movements of hepatocytes that play an important role in vivo.
The repulsive forces emerge mainly from cell deformation
(and to a small extend, from compression). Adhesive and
repulsive forces are mimicked by elastic and adhesive central
forces of the JKR (Johnson-Kendall-Roberts)-type. The JKR
force has been shown to successfully mimic adhesion and
repulsion of S180 cells on sufficiently short time scales
including the hysteresis behavior leading to cell stretch if
cohering cells are pulled apart (Chu et al. 2005).

The equation of motion for hepatocyte i reads:

active,H
m<%+ vi(t) = (‘3“(!/'(0 — (1) + Eij) + Fig + F W
" dt gis_l N ~— ~~ < —
— JNNi hepatocyte— hepatocyte— micro—motility
inertia . _ hepatocyte— hepatocyte substrate
fricti friction repulsion repulsion
riction
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In this equation, v;(¢) is the velocity of cell i denotes a
hepatocyte. S denotes the friction tensor (here a 3 x 3
=i

matrix) describing the friction of hepatocytes i and j (for
X = j), or hepatocytes i and the substrate (for X = S). The
friction tensor may be decomposed into a perpendicular
and a parallel component: Sy =1L (Uix @ wix)+
P — wx @ uy). Here, wix = (rx — r)llrx — ril with r,
denoting the position of cell i. “®” denotes the dyadic
product. F,, denotes the JKR force between hepatocytes i
and j (for X =j) as well as between hepatocyte i and
substrate. [ is the unity matrix (here a 3 x 3 matrix with
“17 on the diagonal and “0” on the off-diagonals). y,, y),
are the perpendicular and parallel friction coefficients,
respectively. F*Y* denotes the active movement force.
The model neglects internal friction (friction inside the cell
that emerges from intracellular reorganization if cells are
deformed or compressed) by considering the setting
v, = 0. For hepatocytes in monolayer culture as in Fig. 48,
right panel, we assumed for the micro-motility:

preivet _ /2Dmyﬁnim(t). m denotes the coordinate index:

m = x,y, z. The choice of the diffusion constant, D, = D,;
D, = 0 corresponds to an isotropic homogeneous micro-
motility in the plane of the monolayer substrate. 1 (1)

denotes a Gaussian-distributed random variable with
average<ﬂi(t)> =0 and autocorrelation (,,(/)n,;()) =

o(f — 1) (m, n = x, y, z denote the coordinate direction; i, j
are the hepatocyte indices). Here, (X) denotes the expec-
tation value obtained by averaging the random variable X
over many of its realizations. As each component of 7 is
Gaussian distributed, each realization is sampled from a
Gaussian distribution. The friction between cells and the
substrate is large so that the inertia term, the first term in
Eq. (1), can be neglected and be set to zero.

Metropolis algorithm

Cell orientation changes can be mimicked by an optimi-
zation principle using the Metropolis algorithm for the
energy change in case of a cell orientation change (Drasdo
et al. 2007) or an equation for the angular momentum
(Drasdo 2005). Here we used the Metropolis algorithm for
convenience as the equations for the angular momentum
lead to very complicated equations of motion. In the
Metropolis algorithm, a trial step (here: a small rotation) is
performed and subsequently it is evaluated whether this
step is accepted, or rejected (in which case the step is taken
back). The change of total energy of the whole cell con-
figuration is used to evaluate the step. As the orientation
change of a hepatocyte only affects the next and maybe
next-next neighbors, only those neighbors need to be

@ Springer

considered. To calculate the orientation change, within
each time interval Ar for each hepatocyte, a rotation trial
around three space-fixed axes by angles 0f; with i = 1, 2,
3, dw; ¢ [0, 0Wmax), With dw. < < /2 was performed,
using the algorithm of Barker and Watts (Allen and Til-

dersley 1987). The energy can be calculated by integration
of the equation F; = — % where only the JKR force

contributions were considered. The energy difference is
then calculated fromAV;;(t) = V;;(t + At) — V;(¢), and the

probability that a step is accepted is calculated using p =

min(1,e AVi/Fr) where Fr ~ 107'®J is a reference

energy (comparable to the kT in fluids or gases were k;, is
the Boltzmann factor, T the temperature).
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