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Abstract

Algorithms for solving systems of polynomial equations
are key components for solving geometry problems in com-
puter vision. Fast and stable polynomial solvers are es-
sential for numerous applications e.g. minimal problems or
finding for all stationary points of certain algebraic errors.
Recently, full symmetry in the polynomial systems has been
utilized to simplify and speed up state-of-the-art polynomial
solvers based on Gröbner basis method. In this paper, we
further explore partial symmetry (i.e. where the symmetry
lies in a subset of the variables) in the polynomial systems.
We develop novel numerical schemes to utilize such par-
tial symmetry. We then demonstrate the advantage of our
schemes in several computer vision problems. In both syn-
thetic and real experiments, we show that utilizing partial
symmetry allow us to obtain faster and more accurate poly-
nomial solvers than the general solvers1.

1. Introduction

For many geometric computer vision problems, solving
polynomial systems is one of the essential building blocks.
For instance, minimal problems can be formulated as poly-
nomial systems with several unknowns e.g. [15]. On the
other hand, finding all stationary points of an overdeter-
mined systems [2, 8, 13] has also been formulated as poly-
nomial system. Polynomial systems in computer vision
problems are in general of small size (few unknowns) and
of low degree. Gröbner basis method has been applied suc-
cessfully to construct numerical solvers for such systems
[17, 11]. Several techniques have been proposed to im-

1This work was supported by the strategic research projects ELLIIT
and eSSENCE, Swedish Foundation for Strategic Research projects EN-
GROSS and VINST (no. RIT08-0043), and the Grants-in-Aid for Scien-
tific Research (no. 25240025) from the Japan Society for the Promotion of
Science.

prove both the stability and the speed for general polyno-
mial solvers [4, 14].

In general, polynomial solvers are problem-specific and
structures in the problems can be utilized to further improve
the solvers. Recently, in [1], a general technique to exploit
full symmetry (i.e. the symmetric pattern is common for all
variables) in polynomial systems is proposed to reduce the
size of the elimination template as well as improve the sta-
bility of the solvers. Utilizing the technique in [1], faster
solvers are derived for robust fitting [7] and perspective-n-
point problem [19]. While it has been shown that full sym-
metry exist in several important computer vision problems,
it is still a restricted requirement that all variables share the
same symmetric pattern. It is of great interest to generalize
the technique in [1] for polynomial systems where only a
subset of variables share a common symmetric pattern.

Related Works With the introduction of Gröbner basis
method for solving polynomial systems in computer vision
[17], extensive works have been done in the direction of
improving the speed and numerical stability of general nu-
merical solvers. In [4], several basis selection techniques
were proposed to enhance numerical stability of the solvers.
The work in [11] enables automatic generation of polyno-
mial solver for specific problems and describes a equation
removal scheme to speedup polynomial solvers. Other re-
moval strategies have also been studied in [14, 10] The most
related work to ours is [1] where full symmetry of the poly-
nomial systems is explored. As [1], our proposed method
can be naturally integrated with other techniques for con-
structing polynomial solvers [4].
Contribution In this paper, we generalize the technique
for fully symmetric polynomial systems to partially sym-
metric systems. This enables a much larger class of prob-
lems where we can utilize symmetry to reduce the complex-
ity of the problem and speed up the polynomial solvers. The
solution scheme is general and can be readily integrated
with existing schemes for improving speed and numerical
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stability. We prove how partial or full symmetry in the so-
lution set is related to the structure of the polynomial equa-
tions. This can be used to automatically detect partial or
full symmetry. We show that several problems in computer
vision exhibit partial symmetry e.g. optimal Euclidean reg-
istration and optimal pose from line correspondences. We
demonstrate in several experiments that explicitly utilizing
such symmetry improve the numerical stability as well as
the speed of the polynomial solvers.

2. Symmetry in Polynomial Systems
In this section, we define the concepts for symmetry in

polynomial systems. To begin with, we consider solving
polynomial system as the following problem:

Problem 2.1. Given a set ofm polynomials fi(x) in n vari-
ables x = (x1, . . . , xn), determine the complete set of so-
lutions to

f1(x) = 0, . . . , fm(x) = 0. (1)

We denote a monomial xγ = xγ11 x
γ2
2 . . . xγnn , where γ =

(γ1, γ2, . . . , γn) is the vector of exponents. And the degree
of xγ is defined as the sum of exponents |γ| = γ1+· · ·+γn.
The set of polynomials fi’s in (1) generate an ideal I =
{l ∈ C[x] : l = Σimi(x)fi(x)}, where mi ∈ C[x] are any
polynomials and C[x] denotes the set of all polynomials in
x over the complex numbers.

In the following, we define partial symmetry in a poly-
nomial and in a solution set, respectively. To facilitate the
discussion, for each polynomial f(x) we divide the vari-
ables into two sets x = {xs,xt} such that

f(x) =
∑
k

ckx
αk
s xβk

t . (2)

Here, ck’s are the coefficients of monomials.

Definition 2.1. A polynomial f(x) has partial symmetry of
type p on a subset of variables xs if for each monomial in
the polynomial, the sum of the exponents corresponding to
xs has the same remainder q modulo p.

A polynomial system is said to have partial symmetry of
type p on xs if all polynomial equations in the system have
symmetry of type p on xs. Before we discuss partial sym-
metry in a solution set, we define the symmetric operator on
xs of type p:

Sjxs,p(x) = (ei2πj/pxs,xt). (3)

where j ∈ Z+. By definition, we have Spxs,p(x) = x.

Definition 2.2. A solution set is said to have partial symme-
try of type p on a subset of variables xs if for each solution
x∗, the point Sjxs,p(x

∗) is also a solution.

Example 1. The following polynomial system has partial
symmetry (p = 2) to x1, and there is no symmetry for the
unknown x2.

x21 − x22 − 2 = 0

x21 − 3x2 = 0 (4)

For this system, the two pairs of partial symmetric solutions
are {[

√
6 2]

T
, [−
√

6 2]
T } and {[

√
3 1]}T , [−

√
3 1]

T }.
The following theorem shows that partial symmetry in a

polynomial system has a solution set that is partially sym-
metric. On the other hand, the existence of a partially sym-
metric solution set implies that the polynomial system is
partially symmetric.

Theorem 2.1. A system of polynomial equations, where ev-
ery polynomial has partial symmetry of type p on the subset
of variables xs has a solution set with partial symmetry of
type p on xs. Vice versa, each system of polynomial equa-
tions, whose solution set has partial symmetry of type p on
xs, can be written as a set of polynomial equations with
partial symmetry of type p on xs.

Proof. We first prove that partial symmetry in polynomial
systems indicates partially symmetric solution sets. Assume
for a polynomial equation f(x) = 0 in the system, the sum
of the exponents |γk| has constant remainder q modulo p
i.e. ∀k, q ≡ |γk| mod p. Let b = ei2π/p, we have b|γk| =
ei2π|γk|/p = bq. Then for f

(
S1
xs,p(x)

)
= f

(
(bxs,xt)

)
,

f
(
(bxs,xt)

)
=
∑
k

ck(bxs)
γkxβk

t =
∑
k

b|γk|ckx
γk
s xβk

t

=
∑
k

bqckx
γk
s xβk

t = bq
∑
k

ckx
γk
s xβk

t

= bqf(x). (5)

Thus if f(x∗) = 0, then f
(
(bx∗s,x

∗
t )
)

= bqf(x∗) = 0. One
can prove the same for f

(
Sjxs,p(x

∗)
)

= f
(
(bjxs,xt)

)
by

induction. This proves the assertion in one direction.
We then prove the existence of partially symmetric solu-

tions indicates partial symmetry in the corresponding poly-
nomial systems. Assume for a certain p that for every solu-
tion x∗ = (x∗s,x

∗
t ) holds also

f
(
(bjx∗s,x

∗
t )
)

= 0, j = 0, . . . , p− 1. (6)

Divide the polynomial into p parts according to |γk| mod
p so that

f(x) = g0(x) + g1(x) + . . .+ gp−1(x). (7)

Then we have

f
(
(xs,xt)

)
= g0(x) + g1(x) + . . .+ gp−1(x),

f
(
(bxs,xt)

)
= g0(x) + bg1(x) + . . .+ bp−1gp−1(x),

...
...

...
f
(
(bp−1xs,xt)

)
= g0(x) + bp−1g1(x) + . . .+ bgp−1(x).



which is equivalent to the following linear system

F(x) = HpG(x) (8)

where

F(x) =
[
f
(
(xs,xt)

)
. . . f

(
(bp−1xs,xt)

)]T
,

G(x) =
[
g0(x) g1(x) . . . gp−1(x)

]T
and

Hp =


1 1 1 . . . 1
1 b b2 . . . bp−1

...
...

...
. . .

...
1 bp−1 bp−2 . . . b

 . (9)

From (6), it can be seen that F(x∗) = 0. Since Hp is
invertible for all p (it is basically the matrix representing
the discrete Fourier transform of p-vectors), it follows that
gj(x

∗) = 0, for all j = 0, . . . , p − 1. Thus if there exist
a set of partially symmetric solutions, then it follows that
each polynomial fi(x) can be split into p parts i.e. gij(x),
where each part has x∗ as the solution.

From the definition of partial symmetry of a polynomial
system, we can easily interpret that full symmetry (symme-
try in all variables) introduced in [1] is a special case of
partial symmetry. Specifically, it corresponds to the cases
where xs = x. Thus, by Theorem 2.1, we have generalized
the full symmetry to partial symmetry.

3. Revisit Gröbner Basis Methods
In this section, we first describe the action matrix method

for solving polynomial systems. We then present briefly the
polynomial solving technique in [4]. These two techniques
serve as the basic building blocks for our symmetric poly-
nomial solvers.

3.1. Action Matrix Method

In this paper, we consider polynomial systems where the
zero set V of (1) (or the ideal I) is finite i.e. V is a point set.
If V is a finite point set, it can be proved that the quotient
space C[x]/I is also finite-dimensional [5]. Furthermore, if
I is radical (I is equal to the complete set of polynomials
vanishing on V), then one can show that C[x]/I is isomor-
phic to Cr, where r = |V | is the number of solutions to the
polynomial system [5].

The action matrix method is an multivariate extension of
companion matrix for solving uni-variate polynomial equa-
tions. To start with, we consider first the linear mapping
Ta(x) : f(x) 7→ a(x)f(x) in the r-dimensional C[x]/I
where a(x) ∈ C(x). In this paper, we limit the choice of
a(x) to be a monomial instead of any polynomial and we

call a(x) as action monomial. While in general a(x) is cho-
sen as one of the variables, we will discuss in later section
that choosing a(x) is one of key steps in utilizing partial
symmetry. Given that C(x)/I is finite dimensional, one can
choose a linear basis of monomials B = {xα1 , . . . ,xαr}
for C(x)/I . Now the mapping Ta(x)

can be represented as
a r×r matrix ma, which is the so-called action matrix. The
solutions of the polynomial system is closely related to this
matrix. The eigenvalues of ma are the values of a(x) eval-
uated at the solution points i.e. V . On the other hand, the
eigenvectors of the mT

a are the values of the basis monomi-
als in B evaluated at the solution points.

3.2. Constructing Action Matrix

In this section, we review several important techniques
for constructing action matrix in a numerically stable man-
ner including the single eliminate scheme and the basis se-
lection technique.

The single elimination technique has been widely
adapted e.g. [4, 11]. It starts by multiplying the equations
in (1) by a set of multiplication monomials and produces an
equivalent and expanded set of equations. This is in contrast
to the Buchberger’s algorithm for computing Gröbner bases
where equations are generated incrementally. By stacking
the coefficients of the expanded set of equations in a coeffi-
cient matrix Cexp which is usually called elimination tem-
plate, we have

CexpXexp = 0. (10)

where Xexp is a vector of the set of monomials in the
expanded equations. In general, the set of multiplication
monomials can be chosen such that the resulting equations
are all up to a certain degree.

To select B in a numerically stable way, we have used
the column-pivoting scheme for basis selection [3]. To en-
able basis selection, one first partition the set of all mono-
mials M occurring in the expanded set of equations as
M = E

⋃
R
⋃
P . Specifically, P (permissible monomi-

als) represent the set of monomials that remain inM after
multiplying with a(x). The reducible set a(x)xαk /∈ P for
xαk ∈ P is denoted as R. We denote the remaining mono-
mials as the excessive set E . By reordering the monomials
such that E > R > P , we yield

[
CE CR CP

] XEXR
XP

 = 0. (11)

The key idea of of [3] is to select B adaptively from a
permissible set P where |P| > r. The first step eliminate
the monomials in E :UE1 CR1 CP1

0 UR2 CP2

0 0 CP3

XEXR
XP

 = 0, (12)



where UE1 and UR2 are upper triangular. One can remove
the top rows of the coefficient matrix involving the E[

UR2 CP2

0 CP3

] [
XR
XP

]
= 0. (13)

In the second elimination step, the goal is to reduce CP3

into upper triangular matrix. In [3], column-pivoting QR is
utilized to improve the stability, which introduces a permu-
tation CP3

Π, where Π is a permutation matrix. The basis is
selected as the last r monomials after the reordering Π i.e.[
XP′ XB

]T
. This gives

[
UR2 CP4 CB1

0 UP3 CB2

]XRXP′

XB

 = 0. (14)

To this end, monomials inR and P ′ are linear combina-
tions of monomials in B:[

XR
XP′

]
= −

[
UR2

CP4

0 UP3

]−1 [
CB1

CB2

]
XB. (15)

By finding the corresponding indices of the monomials
{a(x)xαk | ∀xαi ∈ B} in [XR XP′ ], the action matrix
can be extracted from the linear mapping (15).

4. Utilizing Partial Symmetry
In this section, we present methods to integrate partial

symmetry into the action matrix method.

4.1. Partially Symmetric Action Matrix

Recall from Theorem 2.1 that for a type-p partially sym-
metric polynomial system in xs, there exist a set of type-p
partially symmetric solutions in the form of (ei2πj/pxs,xt)
where j = 0, . . . , p − 1. This suggests that there is a p-
fold ambiguity in the r solutions, which can be utilized
to simplify the action matrix construction step. To sim-
plify the discussion, we assume that there is no zero so-
lution or one have used the scheme in [1] to remove the
zero solution. The idea is to construct a linear mapping
Ta(x) : f(x) 7→ a(x)f(x) that preserves the underlying
partial symmetry of the system.

To achieve this, we first need to choose the action mono-
mial a(x) such that the sum of exponents of xs in a(x) is p.
This follows that the p ambiguous solutions collapse into a
single solution point in a(x) which effectively reduces the
dimension of the solution space to rp = r

p
2. Thus, instead

of considering the original solution space, we can express
the reduced space with a monomial basis Bp of size rp.
The advantage of the reduced action matrix is obvious in
that it not only simplify the last eigenvalue decomposition

2r is divisible by p, if there exists no zero solution.

step. We show in the experimental section that it also leads
a elimination template of smaller size which speedups the
solver even more.

The next step is to construct a elimination template with
partially symmetry in mind. The idea again is to generate
the expanded set of equations that preserve the symmetry in
xs. To facilitate the elimination step for partially symmetric
systems, we propose a scheme to achieve this: choose the
multiplication monomials that results in the same remain-
der modulo p across the set of different equations (not only
within each equation). This scheme ensures good overlap-
ping of the expanded monomials between different equa-
tions, which improves the efficiency and stability of the
elimination step. We will illustrate these schemes in Sec-
tion 5.3 with detailed examples.

4.2. Extracting Solutions

Once we have constructed the reduced action matrix
mrp , we can extract the solutions from the eigenvector v’s
of mT

rp . From the action matrix method, we know that the
eigenvectors v are values of the basis monomials Bp evalu-
ated at the solutions up to unknown scales. Specifically, we
have for each element in v

λvk = xαk1
1 xαk2

2 . . . xαkn
n

where k = 1, . . . , rp and λ is a unknown constant. In gen-
eral polynomial solvers where symmetry is not explored,
the simplest scenario is that all the first-order monomials
as well as the constant term i.e. {x1, . . . , xn, 1} are in B.
In this case, the solutions can be extracted by reading off
the corresponding values of {λx1, . . . , λxn, λ} from v and
the solutions for {x1, . . . , xn} can be calculated via divi-
sion by λ. In fact, we can also extract the solutions directly
if the first-order monomials are in R or P ′, which can be
written as linear combination of B based on (15). However,
for type-p partially symmetric cases where p > 1, the gen-
eral idea is to find a mapping from monomials in Br to xpi
for i = 1, . . . , n and the p-fold ambiguity of xi’s can be
solved directly. For example, if we know v1 = λx1x2 and
v2 = λx1x

3
2 are in the basis, one can calculate x22 = v2/v1.

In general, this mapping is not unique. To find one of such
mappings automatically, a general two-step scheme involv-
ing (i) a random sampling step and (ii) solving an integer
linear system was derived in [1]. This scheme can be gen-
eralized directly without any modification to partially sym-
metric systems. However, it has been seen in our exper-
iments that the stability of the mappings found by such a
general scheme vary and most of them can be very unstable.
This is due to the fact that most of these mappings involve
(i) evaluation of the solutions for monomials of high degrees
(ii) numerical operations e.g. division of monomial of high
degrees. Therefore, we have derived proper but numerically
stable mapping for specific problems. The general guide-



line for choose such mapping is to avoid monomials of high
degrees which in general introduces ill-condition divisions.

4.3. Detecting Partial Symmetry

Based on the Theorem 2.1, we describe a simple strat-
egy for detecting partially symmetric polynomial system. It
is an exhaustive scheme and involves combinatorial search
over all subsets of variables. However, for general prob-
lems in computer vision where the number of variables are
among 2 to 10, the search is completely feasible. If d is
lowest degree of all the polynomials fi(x)’s, we check for
each subset of x, whether type-p ( 2 ≤ p ≤ d ) partial
symmetry is fulfilled (by checking the remainder of sum of
exponents of the corresponding subset modulo p for each of
the polynomial in the system.

5. Applications
In this section, we discuss partial symmetry in the con-

text of geometric problems in computer vision. We show
that formulating these problem in a straightforward manner
yields polynomial systems with partial symmetry. While
the formulations are straightforward as well as avoid certain
degeneracy, the resulting polynomial systems have not been
solved before due to their difficulty. We illustrate the pro-
posed techniques in details for these examples and obtain
faster and more stable solvers than previous state-of-the-art
general polynomial solvers.

5.1. Optimal Euclidean Registration

First we study the Euclidean registration problem given
point-point, point-line or point-plane correspondences [16].
This problem has been solved using a branch-and-bound
method that exploits the quasi-convexity property of the
minimization problem. For simplicity, we use the point-
plane correspondences only.

Problem 5.1. (Optimal Euclidean Registration) Given n
points xi, and their corresponding planes in another co-
ordinate system, each of which is represented by the normal
ei and a supporting point yi, to find the optimal rotation R∗

and translation t∗ such that the

{R∗, t∗} = arg min
R,t

n∑
i=1

(
eTi (Rxi + t− yi)

)2
(16)

Given R, the translation t can be directly solved as

t =

(
n∑
i=1

eie
T
i

)−1 n∑
i=1

eie
T
i (yi −Rxi) . (17)

After parameterizing R by the unit quaternion q and
plugging t back into (16), we obtain a constraint optimiza-

tion problem

{q∗} = arg min
q

n∑
i=1

(
eTi (R(q)xi + t(q)− yi)

)2
,

s.t. ‖q‖22 = 1.

(18)

5.2. PnL Problem

The Perspective-n-Line (PnL) problem is to estimate the
absolute pose of a calibrated camera by using n known lines
and their image projections. It was studied in [13].

Problem 5.2. (Perspective-n-Line) Given n lines with di-
rection li in the world framework, and their correspond-
ing image lines, each of which determines a plane passing
through the optical center with normal ei, to find the opti-
mal rotation R∗ such that

{R∗} = arg min
R

n∑
i=1

(
eTi Rli

)2
. (19)

After the rotation R is determined, the estimation of
translation t becomes trivial.

To parameterize R by the unit quaternion q would lead
to a constraint optimization problem

{q∗} = arg min
q

n∑
i=1

(
eTi R(q)li

)2
,

s.t. ‖q‖22 = 1.

(20)

5.3. Constructing Polynomial Solvers

To solve for global optimal of the geometric or algebraic
errors, we use the first order optimality condition i.e. to find
all stationary points of the error function. To do that, we
calculate the partial derivative of the functions with respect
to the unknowns in the quaternion q = {a, b, c, d} as well as
the Lagrange multiplier w. Both problems yield a mixture
of cubic and quadratic equations in 5 unknowns. Specifi-
cally, for optimal Euclidean registration, we have a polyno-
mial system in the following form:

[
V 04×4 −I 04×1

01×24 11×4 01×4 −1

]
x = 0 (21)

where V is a 4 × 24 coefficient matrix calculated from
each specific problem and x is the monomial vector
[a3, a2b, a2c, a2d, ab2, abc, abd, ac2, acd, ad2, b3, b2c, b2d,
bc2, bcd, bd2, c3, c2d, cd2, d3, a, b, c, d, a2, b2, c2, d2, wa,
wb, wc, wd, 1]T .

As for the PnL problem, we have the following polyno-
mial system:

[
U 04×4 −I 04×1

01×20 11×4 01×4 −1

]
x = 0 (22)



where U is a 4 × 20 coefficient matrix for each
specific problem and x is the monomial vector
[a3, a2b, a2c, a2d, ab2, abc, abd, ac2, acd, ad2, b3, b2c, b2d,
bc2, bcd, bd2, c3, c2d, cd2, d3, a2, b2, c2, d2, wa,wb, wc, wd,
1]T .

By checking the polynomials in both systems, we can
see that the variables in the subset xs = {a, b, c, d}, only
appear with 3rd and 1st degree in the first 4 equations (p =
2, q = 1), and only 2nd and 0th degree in the last equation
(p = 2, q = 0). Thus, these two polynomial systems are
both partially symmetric of type 2 to {a, b, c, d} according
to Theorem 2.1. Note that, these partial symmetries can not
be resolved via variable substitution.

By using tools in algebraic geometry [6], we verify that
there are in general 80 solutions to these two polynomial
systems or equivalently 40 pairs of partially symmetric so-
lutions. Using automatic generator in [11] which does
not utilize partial symmetry, we obtain general solvers that
solve for the 80 solutions directly. The elimination tem-
plates of these solver are of size 1523 × 1603 and 688 ×
788 for the Euclidean registration and the PnL, respectively.
Note that in this elimination template is obtained after the
build-in optimization for template size [11]. There is little
possibility to reduce the size of this template further.

Now we discuss in details the construction of our par-
tially symmetric solvers. It turns out the elimination tem-
plate and solution extraction scheme work for both prob-
lems due to their similarity in structures. We can choose
any quadratic monomials in {a, b, c, d} as the action mono-
mial to utilize type-2 partially symmetry. There is no sig-
nificant effect for the choice of action monomial on the
numerical stability for the two problems. Here we use a2

for the following discussion. The second step is to choose
the set of multiplication monomials. The idea is to ensure
the expanded set of monomials coincide between different
polynomials. This will facilitate the elimination step so that
the numerical stability is improved. To start with, for the
first 4 equations, we choose {H1,H3, a

2H3, wH1, wH1,
wa2H3, w

2H1, w
2H1, w

2a2H3} as the set of multiplica-
tion monomials. Here Hk denotes the set of mono-
mials in {a, b, c, d} where the sum of exponents is k.
In the resulting expanded set, the sum of exponents
for variables {a, b, c, d} in the monomials are all even.
Correspondingly, the multiplication monomials for the
last equation are chosen as {H2,H4, a

2H4, wH2, wH4,
wa2H4, w

2H2, w
2H4, w

2a2H4, w, w
3}. This also yields

a set of expanded monomials where the sum of exponents
for variables {a, b, c, d} are even. This results in a stable
elimination template is of size 770× 854, which is already
much smaller than the 1523 × 1603 elimination template
for the Euclidean registration problem. With further tuning
with similar equation removal technique in [11], we obtain a
more compact elimination template of size 433× 487. This

is used for all our experiments later. With this elimination
template, we follow the basis selection technique where we
have chosen the permissible set as the last 60 monomials (in
grevlex order) and construct the 40× 40 action matrix.

The last remaining step is to extract solutions by utilizing
eigenvectors of the transpose of the action matrix. To en-
hance the numerical stability, we have derived the following
extraction scheme. The first observation is that, for these
two problems, one can enforce the constant term i.e. x0 to
be in B,R or P ′ without breaking the type-2 partially sym-
metry. Extracting the values for the unknown constant λ’s is
simply reading off the corresponding values from the vec-
tors. We note also that {λa2, λac, λab, λad} are expressible
by linear combination of the basis, which means that one
can obtain their values up to an common unknown constant
for each solution i.e. {λa2, λac, λab, λad}. Thereafter, the
solutions of a2 can be calculated by division with the values
of the constant term. We retrieve the two sets of solutions
for a by taking square root. The values for {b, c, d} can
be extracted using similar division given that λ and a are
known. The 2-fold ambiguity of the solutions are handled
naturally in the extraction step which is much simpler than
solving the directly as in the general methods. In case of
near-degenerated configuration where a ≈ 0, the division
when we extract {b, c, d} is ill-conditioned. In those case,
we can extract the solutions with {b2, b4, ba, bc, bd} etc. in
a similar way to avoid such degeneracy. Note that these ex-
traction steps are fast given that the bottleneck is generally
in the elimination step. Therefore, we can extract all possi-
ble solutions in an very efficient way to avoid degeneracy.
This is superior to the schemes in [8] which requires solve
several different polynomial problems with specific solvers.

6. Other Examples

Besides the two problems presented above, partial sym-
metry also exists in other geometric problems in computer
vision. For instance, any problems that involve Cayley’s
parameterization can be reformulated with the unit-norm
constraint on the quaternion. These problems generally
are fully symmetric or partially symmetric of type-2 to the
quaternion e.g. [9]. On the other hand, estimating funda-
mental matrix with radial distortion in [12] is partially sym-
metric of type-2 to {f1,1, ..., f3,3} if we fix the scale of the
fundamental matrix by enforcing ‖f‖2 = 1 instead of set-
ting f3,3 to 1. The same holds for other related problems
that fix the scale in a similar way.

7. Experiments

Optimal Euclidean Registration For this experiments,
we simulate point-to-plane correspondence in 3D randomly.
We first study the numerical stability of the general solver
generated by [11] and our solver that utilizes partial symme-
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Figure 1. Numerical stability of the general polynomial solver [11]
and our symmetric solver for the optimal Euclidean registration
problem. The histogram of log10 relative errors of {a, b, c, d} for
2000 noise-free random problems is shown.

try. From Figure 1, we can see that our method is superior to
the general solver with respect to the stability. On the other
hand, our solver is around three times faster than the general
solver (Table 1). The formulation in [16] is a quadratic pro-
gramming problem and a branch-and-bound scheme (bnb)
for the global optima was derived. It is a much more dif-
ficult problem to solve and is in general very slow with in-
creasing number of points. Our formulation along with our
solver is much fast and guarantee to find the global optimal
of the same geometric error.

bnb∗ [16] General [11] Ours

> 1s 75ms 23ms

Table 1. Average time performance of different solvers for the opti-
mal Euclidean registration problem. (∗) based on the time reported
in [16]. The other timing are measured on a MacBook Air with 1.8
Ghz i5 CPU.

PnL problem For the synthetic experiments in this sec-
tion, we first randomly generate 3D lines at around the
origin, with cameras pointing towards the origin approxi-
mately. Then we calculate 2D projections of the lines onto
the image plane. We perturb endpoints of lines to sim-
ulate noise. We will first look at the numerically stabil-
ity of the proposed solvers under different configurations.
Here by Cayley degeneracy for the camera pose, we mean
one or several of the variables in {a, b, c, d} is equal to
(Cayley-degnerate) or close to 0 (near-Cayley-degenerate).
For methods in [13, 8] where one of the {a, b, c, d} is as-
sumed to be 1, we can see that they degenerate in cases
when that specific variable is actually 0. In Figure 2, we first
observe that our partially symmetric solver is better than the
general solvers across different experiments. Our solver is
faster (23ms) compared to the general solver (55ms) which
has a larger elimination template. On the other hand, we
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Figure 3. Noise sensitivity of different PnL solvers with varying
noise levels for fixed n = 10 lines.

4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5
Mean Rotation Error

Number of Lines

R
o
ta

ti
o
n
 E

rr
o
r 

(d
e
g
re

e
s
)

 

 

RPnL
Cayley

Blind
Partial

4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5
Mean Translation Error

Number of Lines

T
ra

n
s
la

ti
o
n
 E

rr
o
r 

(%
)

 

 

RPnL
Cayley

Blind
Partial

Figure 4. Noise sensitivity of different PnL solvers with varying
number of lines with fixed noise level (2 pixels).

can see the solver based on Cayley’s parameterization of the
quaternion [13] performs better than both our solver and the
general solver for random configurations. However, when
the configuration is close to degeneracy, the performance of
such solve deteriorate drastically (Figure 2, mid). And for
degenerated cases (e.g. a = 0), the solvers fail completely.
While one can argue that running different solvers for dif-
ferent degeneracy mitigates these issues, but it undermines
the intrinsic structure of the problem.

We then study the performance of the solvers under
noise. In this experiment, we generate camera poses in a
fully-random manner. With the formulation in this paper,
we can see that the solvers are more robust to degeneracy
which causes the large variance in mean errors for Cayley-
based method. The RPnL method described in [18] yields
better results than Cayley-based method, but still inferior to
the formulation here. With the same formulation, our solver
performs similarly to the general solver under varying noise
levels and number of lines, while being much faster.

8. Conclusion

We present a general framework for utilizing partial sym-
metry in solving polynomial systems. We study and prove
the correspondence between partially symmetric polynomi-
als and solution sets that are partially symmetric. We have
also identified two example problems in computer vision
that have partial symmetry. We verify the improvements
gained by utilizing partially symmetry in both speed and
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Figure 2. Numerical stability of the Cayley PnL solver [13], general polynomial solver [11] and our symmetric solver under varying
configurations (from left to right, ’fully random’, ’near-Cayley degeneracy’, ’Cayley degeneracy’). The histogram of log10 relative errors
2000 noise-free random problems is shown.

accuracy in these problems. The solvers derived using our
methods are both faster and more stable than previous gen-
eral solvers.

As future work, it is of practical importance to achieve
automatic detection and reformation of partially symmetric
polynomial system. While the techniques presented in this
paper can be combined with previous optimization schemes
for polynomial solvers, it is of interest to see whether spe-
cific optimization scheme can be derived for partially sym-
metry systems. Moreover, it is important to derive schemes
for automatically selecting mapping for solution extraction
in a numerically stable manner. On the other hand, the ex-
ploration and integration of other types of symmetry in solv-
ing polynomial system are of particular interest.
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view triangulation. In Asian Conference on Computer Vision,
2007. 1

[3] M. Byröd, K. Josephson, and K. Åström. A column-pivoting
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