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Abstract varying number of multiple moving objects. The entire state

space is modelled by a Hidden Markov Model (HMM) [18],
In this paper the problem of event detection in image se- where each state represents a configuration of objects in
quences involving situations with multiple objects présen the scene and the state transactions represents object move
is studied. A Hidden Markov Model describing the move- ments as well as the events of objects entering or leaving
ments of a varying number of objects as well as their en- the scene. The solution is found by optimising the obser-
tries and exits is presented. Previously similar modelsshav vation likelihood over different state sequences. Resuilis
been used, but in online systems the standard dynamic progenerated with several frames delay in order to incorporate
gramming Viterbi algorithm is typically not used to find information from both past and future frames in the optimi-
the global optimum state sequence, as it requires that all sation.
past and future observations are available. In this paper
we use an extension to the Viterbi algorithm that allows it . .
to operate on infinite time sequences and produce the opti-l'l' Relation to previous work
mum state sequence with only a finite delay. This makes itA classical solution to generate tracks from object detec-
possible to use the Viterbi algorithm in real time applica- tions is Kalman filtering [13], but since it is a linear model
tions. Restrictions on where objects might enter or exit the that assumes Gaussian probabilities it often fails in heavy
scene is placed in the model, which makes the detection otlutter. In those cases particle filtering [10, 16] are often
some simple events trivial. We also show that extending thepreferred as it allows multiple hypothesis to be maintained
observation model to use use several overlapping or non-  Wwhen several objects are considered, one model for each

overlapping cameras is straight forward. tracked object is often used. However, the data association
problem [20] of deciding which detections should be used to
1. Introduction update which models has to be solved. This is done by the

MHT [19], for the Kalman filtering framework, where all

Detecting simple events, such as a pedestrian entering aossible associations are considered. Less likely hypothe
shop, or a vehicle turning left at an intersection, can beedon ses are pruned as the number of possible associations in-
by using a robust tracker. By placing restrictions on the creases exponentially with time. This exponential inceeas
tracker, such as vehicles may only appear at the borders ofs avoided in the JPDAF [22] by presuming the associations
the intersections and not in the middle of the intersections at each time step to be independent from associations of the
the event detection will be a simple matter of checking the previous time step. The complexity can be lowered even
endpoints of the tracks produced. In this paper we present gurther by also assuming independence among the different
tracker that uses online Viterbi optimisation to find theafet ~ associations at one time step, which is done by the PMHT
tracks with maximum likelihood conforming to restrictions [21]. Here the data association problem does not have to be
as the one mentioned above. solved explicitly in every frame. Instead the probabilify o

The problem of tracking moving objects has been stud- each measurement belonging to each model is estimated.
ied for a long time, see for example [20, 8]. Two main The problems of detecting when objects enter or exit the
approaches are commonly used. Either a set of hypoth-scene has to be solved separately in the cases above. When
esis are generated and tested against the observed imagesing a single model for all objects, as proposed in this pa-
[10, 16, 12, 3], or methods for detecting objects in single per, neither the data association problem, nor the enity/ex
frames, are combined with dynamic models in order to gain problems has to be solved explicitly in every frame. Instead
robustness [19, 22, 21, 6]. we optimise over all possible sequences of solutions over

In this paper an online system is presented that tracks atime. In [6] the PMHT is extended with the notion of track



visibility to solve the problem of track initiation. Howexe
their system is still based on the creation of candidat&k$rac
that may not be promoted to real tracks, but they will still
influence other real tracks.

particle filter also results in this kind of posterior stats-d
tribution, which means that both the particle filter and this
kind of HMM trackers suffer from the problem of trying to
estimate the single state of the system from this distralputi

Extending the particle filter to handle multiple tracks is

Later processing stages or data-displays usually reqaires

not straight forward and several versions have been sug-ingle state and not an distribution.

gested. In [9] a fixed number of objects is assumed, which

Common ways to do this is to estimate the mean or the

means that only the data association problem is handled andnaximum (MAP) of this posterior distribution, but this have
not the entry and exit problems. The problem of reinitial- a few problems:

isation is addressed in [11]. A fixed number of objects is
still assumed, but it can abandon the current track if a bette
candidate track is discovered. In [12] a similar state space
to the one proposed in this paper is used. That space is
parametrised with a varying number of continuous parame-
ters specifying the state of each object.

One problem with the patrticle filter is that the contribu- 2.

tion of previous observations to the current state distidiou

is represented by the number of particles. This means that
the precision of this probability is limited by the number of
particles used. This becomes a problem in cases where the
numerical differences between different observationlilike
hoods are big, which is the case for the observation model
suggested in this paper. In these situations the partiele fil
ter will almost always sample from the most likely particle,
and thus becomes a greedy algorithm that does not represent
multiple hypotheses anymore.

An alternate approach is to discretize the state space and
use an HMM to represent the dynamics. In that case all
calculations can be performed with log-likelihoods, arel ar
thus able to represent huge numerical differences.

This have previously been suggested by [8] where a
state space is exhaustively searched for an optimum in each
frame. However the authors assume a known positions in
the previous frame. In another approach [5] the discretiz-
ing grid is repositioned in each frame, centred at the ctirren

1.

A mean of a multimodal distribution is some value be-
tween the modes. The maximum might be a mode that
represents a possibility that is later rejected. We pro-
pose to instead use optimisation that considers future
observation and thereby chooses the correct mode.

In the multi object case the varying dimensionality of
the states makes the mean value difficult to define. In
[12] it is suggested to threshold the likelihood of each
object in the configurations being present. Then the
mean state of each object for which this likelihood is
above some threshold is calculated separately.

3. Restrictions placed in the dynamic model, such as il-

legal state transactions, are not enforced, and the re-
sulting state sequence might contain illegal state trans-
actions. For the patrticle filter also restrictions in the
prior state distribution might be violated. In [12] for
example, the prior probability of two objects overlap-
ping in the 3D scene is set to zero as this is impossi-
ble. However the output mean state value may still be
a state where two objects overlap, as the two objects
may originate from different sets of particles. In our
approach impossible states or state transactions will
never appear in the results.

In [1] we suggested a novel modification to the Viterbi

best estimate with it's mesh size and directions given as thealgorithm [18], that allows it to be used on infinite time se-

eigenvalues and eigenvectors of the error covariance. Morequences and still produce the global optimum. In this pa-
recently, [4] shows, in the single object case, that a dartic per that method is extended to multiple cameras. The prob-
filter is capable of matching the performance of an HMM |em with the original Viterbi algorithm is that it assumes
tracker [3] at a fraction of the computational cost. However that all observations are available before any results ean b
in [15] it is shown that by placing some restrictions on the produced. Our modification allows results to be computed
HMMs the computational complexity can be reduced form pefore all observation are received, and still generates th
O(n?) to O(n), and that HMMs with100, 000 states can  same global optimum state sequence as is done when all
be used for real time tracking. In both these approachesobservations are available. However, there is a delay of sev
fairly densely discretized state spaces are used. We show iral frames between obtaining an observation and the pro-
this work that state spaces discretized more sparsely can bguction of the optimum state for that frame.
used. In[17]itis suggested to calculate the current state by ap-
Most real-time HMM-base trackers [15], [14] and [7] plying the Viterbi algorithm to a fixed size time slice look-
do not use the standard Viterbi dynamic programing ing into the future and only storing first state of the solatio
algorithm[18], which finds the global maximum likelihood but this only gives approximative solutions.
state sequence, as this requires the entire set of future ob- Another problem is that when considering multiple ob-
servations to be available. Instead they estimate the statgects, the state space becomes huge. Typically at least some
posterior distribution given the past observations onlye T 10000 states is needed for a single object, and to be able to



track NV objects simultaneously that mear@00" states.
An exact solution is no longer possible for real time appli-
cations. In [1] we present two possible approximations that
can be used to compute results in real time. Either use mul
tiple small spatially overlapping HMM'’s, or only evaluate
the M most likely states in each frame.

Also, we show how it is possible, for the later of the two
approximations, to assess whether this approximation actu
ally found the global optimum or not. This could be useful
in an off line calibration of the approximation parameters.

1.2. Paper overview

The paper is organised as follows. The theory behind hid-

den Markov models is describe in Section 2. This includes
our extensions from [1] to handle infinite time sequences,
Section 2.2, and infinite state spaces, Section 2.3. Segtion
describes our proposal of how to use the HMM for object
tracking, including single object tracking, Section 3. Lltin

V(i) = argmax;(d;—1(j)a;,;) the optimal state sequence
can be found by backtracking frogj. = argmax; ér (i),
and lettingg; = v:41(qf, ) fort < T.

2.2. Infinite time sequences

To handle the situations whefé — oo consider any given
timet; < T. The observation symbo(3,, for0 < ¢ < ¢y,
have been measured, afidi) as well as);(i) can be cal-
culated. The optimal state for= ¢, is unknown. Consider
instead some set of staté3;, at timet such that the global
optimumg; € ©,. For timet; this is fulfilled by letting
0, = S, the entire state space. F¢, ¢ < t1, shrinking
sets of states can be found by letti®g be the image of
O¢41 undery, 1, such that

©; = {Si|i = ¢y41(j) forsomeS; € ©,41}.  (4)

If the dependencies of the model is sufficiently localised

object tracking, Section 3.2 and multi camera setup, Sec-in time, then for some time, < #,, there will be exactly

tion 3.4. Finally Section 4 gives experimental verification

2. Hidden Markov models

A hidden Markov model is defined [18] as a discrete time
stochastic process with a set of statés= Sy,...,Sn
and a constant transitional probability distributioy);

p(aer1 = Sjlag = Si), where@Q = (qo,...,qr) is a
state sequence for the time= 0,1,...,7. The ini-
tial state distribution is denoted = (o, ..., 7n), Where

m; = p(go = S;). The state of the process cannot be di-

rectly observed, instead some sequence of observation sym

bols,O = (O, ...,Or) are measured, and the observation
probability distributionb; (O;) = b;: = p(O¢lgr = S;),
depends on the current state. The Markov assumption give
that

(g1 | s G155 q0) = P(qr41 | @) (1)
and the probability of the observations satisfies
p(Ot | C]taQt—la---aQO) :p(ot | Qt) (2)

2.1. Viterbi optimisation

From a hidden Markov mode\ = (a; ;,b;,m) and an
observation sequence€), the most likely state sequence,
Q" = argmaxg p(Q[\, O) = argmaxg, p(Q, O|A), to pro-
duceO can be determined using the classical Viterbi opti-
misation [18] by defining

0t (i)

y dt—1,qt = S’LvOOv s

) Ot)

)
Fort = 0, do(i) become(qo = Si, Op), which can be
calculated ag, (i) = m;b; 0, and fort > 0 it follows that
0:(1) = max;(0,—1(j)a; ;) - b; . By also keeping track of

max  p(qo, .- -
q0,---,qt—1

one statey;, in ©4,, and the optimal statg’ for all ¢ < ¢,

can be obtained by backtracking fragfy. No future ob-
servations made can alter the optimum state sequence for
t <to.

2.3. Infinite state spaces

The problem with using the Viterbi optimisation for large
state spaces is théi(i) has to be calculated and stored for
all statesi at each time. By instead only storing thé/
largestd: (i) and an upper boundnax(t) on the rest, sig-
nificantly less work is needed. [/ is large enough, the
entire optimal state-sequence might be found by backtrack-
ing among the stored states. It is also possible to verify if
this is the case or not for a given example sequence and
% given M. If the global optimum were not found, then
M could be increased and the algorithm executed again, or
an approximative solution could be found among the stored
states. Typically the algorithm is executed off-line formso
example sequences to decide how largelaris needed,
and then when running live this value is used and approx-
imative solutions are found. The details of this algorithm
and a proof of it's correctness is presented in [1].

3. Using HMM for tracking

3.1. Single object tracking

An HMM such as described above can be used for tracking
objects in a video sequence produced by a stationary cam-
era. Initially we assume that the world only contains one
mobile object and that this object sometimes is visible & th
video sequence and sometimes located outside the scene.
The state space of the HMM, denot&d, is constructed
from a finite set of grid pointsY; € R?, j 1,...,N
typically spread in a homogeneous grid over the image. The



stateS; represents that the mass centre of the object is at3.3. Calculating bmax(t)

position.X; in the camera coordinate system. A special state 1 yse the method described in Section 2.3, some estimate,
So, representing the state when the object is not visible, is bmax(t), as low as possible, has to be found such that

also needed.

The observation symbols of this model will be a bi-
nary background/foreground imagé, : R* — {0,1},
as produced by for example [2]. By analysing the result

of the background/foreground segmentation algorithm on a

sequence with known background and foreground, the con
stant probabilities

prg = p(Oi(x) = 1|x is a foreground pixgl  (5)
and
Doy = p(O¢(x) = 0|z is a background pixgl  (6)

can be calculated. Typically these are well abby2, and

it is here assumed that they are constant over time and does

not depend om.

The shape of the object when located in stéte can
be defined as the set of pixelSg,, that the object covers
when centred in at this position. This shape can be learn
from training data off line. As there is only one object in
the world, when the HMM is in stat§;, the pixels inC's,

bmax(t) Z bi7t fOI"L ¢ Ht (8)

given the observation symba),. WhereH, is the set of
the M largest states stored at time The estimate will be
derived for any number of objects, e.g. in the state space
"S™, for the case when objects are not allowed to overlap.
Each stateb; is a subset of the set of possible object centre
pointsX = {X,}. So is the empty set. But not all subsets
of X has to be evaluated. Consider any stéteand form

S; = S; U {X}} by adding one object at poiy,. If X},
don't overlap any of the objects presentinthe likelihood

b+ = b; bx (k), where

I
©

z€Cx,
andCl, is the pixels cover by an object centredt. This
means that if overlapping objects were not allowed only
tpoints X, wherebx (k) > 1 could increase the likelihood,
and thus only such points had to be considetgd k) can
be computed fast for alt using integral images and then

—DPyg
Dbg

bx (k)

are foreground pixels and all other pixels are backgroundthe likelihood of all subsets of the poinfs(;|bx (k) > 1}

pixels. The probabilityp; ; = p(O.|q. = S;), of this is

bit =

)

[T Oc@psy + (1 = Ou(@))(1 = pgy)]-

z€Cs;

[T (2= Ou@)pog + (O1(@)(1 = pog)] (7

zgZC's;

and thereby all parts of the HMM are defined.

3.2. Multi object HMMs

can be evaluated and the maximum H; can be found.

3.4. Using multiple cameras

Extending this to multiple overlapping or non-overlapping
cameras is straight forward. By calibrating the set of cam-
eras and identifying a common coordinate system for the
ground plane, the objects centrég,, can be modelled as
moving in this common coordinate system. Thereby a sin-
gle HMM modelling the events on this ground plane can be
used. The observations for this model is the images from all
the cameras. Using the calibration of the cameras, each cen-

To generalise the one object model in the previous sectiontre point can be projected into the shape of the objectin each

into two or several objects is straight forward. For the two
object case the states becosig < 5?2 = 5 x S and the
shapes('s, ;. = Cs, U Cs,. The transitional probabilities
becommiljlb]é = Qiyiy * Ay o

of camera image€’s, wherec = 1,2,..., represents the
different camerasC, might be the empty set if an object
at positionX}, is not visible in camera. By indexing Equa-
tion 7 on the camera, with Oy the background/foreground

Solving this model using the Viterbi algorithm above image produced from camera
gives the tracks of all objects in the scene, and since
there is only one observation in every frame, the back-
ground/foreground segmented image, no data associationis b5, = H [Of(x)prg + (1 = O5(2))(1 — prg)l-

needed. Also, the model states contain the entry an the exit zeCy,

events, so this solution also gives the optimal entry and exi . .

pointsl H [(1 - Ot (x))pbg + (Ot ('r))(l _pbg)], (10)
zgcgl

There is however one problem with this approach. The
number of states increases exponentially with the number
of objects and in practice an exact solution is only compu-
tationally feasible for a small number of objects within a
small region of space.

and the total observation probability

biw =[] 05

(11)



200-300 states (all states reachable from the stored 20) are
evaluated and compared to find the top 20.

4.2. Occlusion

To test how well the system could handle occlusions, an-
other test were performed using a camera overviewing a
corridor with significant perspective effects and occlusio

cf. Figure 2. The camera where calibrated and the world
coordinate system registered to a blueprint of corridoe Th
set of possible object centre poik,, were generated as an
regular grid in the blueprint. For each of the centre points
the region of the image a pedestrian located at that point
would cover could be calculated from the calibration. Entry
and exit points were placed around the doors and along the
bottom half of the image.

The sequence is 1:45 min and contains 9 events of peo-
Figure 1: Object centre points in a single model. The red ple walking through the scene in different ways. All of
stars are the possible starting points and the green stars arthem were correctly detected. But because of noise from
the possible exit points. the opening and closing of the doors and reflections a few

short erroneously tracks were generated between the entry
. and exit points belonging to the same door, but they were
4. Experlments all easinF:‘iIter out aftgrwgrds by removing all short t)r/acks
4.1. Traffic starting and ending at the same door. No other errors were
made.
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For automatic analysis of traffic surveillance the first s¢ep
often to extract the trajectories of the vehicles in the scen
The infinite state space method described in Section 2.35. Conclusions

with M = 20 were tested on this problem by analysing a

5 minutes surveillance video, acquired by a Axis 2120 web In this paper we have proposed a multi HMM model to
camera, Figure 1. The sequence contained in total 40 ve-model multiple targets in one single model with the advan-
hicles, including some larger than the normal car and onetage of solving all the problems of a multi target tracker
bus. The shape of the objects is assumed to be squares afy @ Viterbi optimisation. This includes track initiationc
proximately the size of the cars. The full tracks of all the termination as well as the model updating and data associa-
40 vehicles where correctly extracted. These tracks couldtion problems. Furthermore two extensions to the standard
be used to count the number of vehicles turning left/right or Viterbi optimisation are used that allows the method to be
going straight through the intersection, by simply chegkin Used in real-time applications with infinite time sequences
their start and end-points which are guaranteed to be oneand infinite state spaces. The later extension only gives ap-
of the start/end points marked in Figure 1. In addition to Proximative solutions in the general case, but can also de-
those correct tracks 5 more were discovered. Two due totermine if an exact solution were found.

groups of bicycles, and 3 due to larger vehicles, including

the bus. The main reason for those failures is the assump-
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