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Abstract

In this paper the problem of event detection in image se-
quences involving situations with multiple objects present
is studied. A Hidden Markov Model describing the move-
ments of a varying number of objects as well as their en-
tries and exits is presented. Previously similar models have
been used, but in online systems the standard dynamic pro-
gramming Viterbi algorithm is typically not used to find
the global optimum state sequence, as it requires that all
past and future observations are available. In this paper
we use an extension to the Viterbi algorithm that allows it
to operate on infinite time sequences and produce the opti-
mum state sequence with only a finite delay. This makes it
possible to use the Viterbi algorithm in real time applica-
tions. Restrictions on where objects might enter or exit the
scene is placed in the model, which makes the detection of
some simple events trivial. We also show that extending the
observation model to use use several overlapping or non-
overlapping cameras is straight forward.

1. Introduction
Detecting simple events, such as a pedestrian entering a
shop, or a vehicle turning left at an intersection, can be done
by using a robust tracker. By placing restrictions on the
tracker, such as vehicles may only appear at the borders of
the intersections and not in the middle of the intersections,
the event detection will be a simple matter of checking the
endpoints of the tracks produced. In this paper we present a
tracker that uses online Viterbi optimisation to find the setof
tracks with maximum likelihood conforming to restrictions
as the one mentioned above.

The problem of tracking moving objects has been stud-
ied for a long time, see for example [20, 8]. Two main
approaches are commonly used. Either a set of hypoth-
esis are generated and tested against the observed image
[10, 16, 12, 3], or methods for detecting objects in single
frames, are combined with dynamic models in order to gain
robustness [19, 22, 21, 6].

In this paper an online system is presented that tracks a

varying number of multiple moving objects. The entire state
space is modelled by a Hidden Markov Model (HMM) [18],
where each state represents a configuration of objects in
the scene and the state transactions represents object move-
ments as well as the events of objects entering or leaving
the scene. The solution is found by optimising the obser-
vation likelihood over different state sequences. Resultsare
generated with several frames delay in order to incorporate
information from both past and future frames in the optimi-
sation.

1.1. Relation to previous work

A classical solution to generate tracks from object detec-
tions is Kalman filtering [13], but since it is a linear model
that assumes Gaussian probabilities it often fails in heavy
clutter. In those cases particle filtering [10, 16] are often
preferred as it allows multiple hypothesis to be maintained.

When several objects are considered, one model for each
tracked object is often used. However, the data association
problem [20] of deciding which detections should be used to
update which models has to be solved. This is done by the
MHT [19], for the Kalman filtering framework, where all
possible associations are considered. Less likely hypothe-
ses are pruned as the number of possible associations in-
creases exponentially with time. This exponential increase
is avoided in the JPDAF [22] by presuming the associations
at each time step to be independent from associations of the
previous time step. The complexity can be lowered even
further by also assuming independence among the different
associations at one time step, which is done by the PMHT
[21]. Here the data association problem does not have to be
solved explicitly in every frame. Instead the probability of
each measurement belonging to each model is estimated.

The problems of detecting when objects enter or exit the
scene has to be solved separately in the cases above. When
using a single model for all objects, as proposed in this pa-
per, neither the data association problem, nor the entry/exit
problems has to be solved explicitly in every frame. Instead
we optimise over all possible sequences of solutions over
time. In [6] the PMHT is extended with the notion of track
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visibility to solve the problem of track initiation. However,
their system is still based on the creation of candidate tracks
that may not be promoted to real tracks, but they will still
influence other real tracks.

Extending the particle filter to handle multiple tracks is
not straight forward and several versions have been sug-
gested. In [9] a fixed number of objects is assumed, which
means that only the data association problem is handled and
not the entry and exit problems. The problem of reinitial-
isation is addressed in [11]. A fixed number of objects is
still assumed, but it can abandon the current track if a better
candidate track is discovered. In [12] a similar state space
to the one proposed in this paper is used. That space is
parametrised with a varying number of continuous parame-
ters specifying the state of each object.

One problem with the particle filter is that the contribu-
tion of previous observations to the current state distribution
is represented by the number of particles. This means that
the precision of this probability is limited by the number of
particles used. This becomes a problem in cases where the
numerical differences between different observation likeli-
hoods are big, which is the case for the observation model
suggested in this paper. In these situations the particle fil-
ter will almost always sample from the most likely particle,
and thus becomes a greedy algorithm that does not represent
multiple hypotheses anymore.

An alternate approach is to discretize the state space and
use an HMM to represent the dynamics. In that case all
calculations can be performed with log-likelihoods, and are
thus able to represent huge numerical differences.

This have previously been suggested by [8] where a
state space is exhaustively searched for an optimum in each
frame. However the authors assume a known positions in
the previous frame. In another approach [5] the discretiz-
ing grid is repositioned in each frame, centred at the current
best estimate with it’s mesh size and directions given as the
eigenvalues and eigenvectors of the error covariance. More
recently, [4] shows, in the single object case, that a particle
filter is capable of matching the performance of an HMM
tracker [3] at a fraction of the computational cost. However
in [15] it is shown that by placing some restrictions on the
HMMs the computational complexity can be reduced form
O(n2) to O(n), and that HMMs with100, 000 states can
be used for real time tracking. In both these approaches
fairly densely discretized state spaces are used. We show in
this work that state spaces discretized more sparsely can be
used.

Most real-time HMM-base trackers [15], [14] and [7]
do not use the standard Viterbi dynamic programing
algorithm[18], which finds the global maximum likelihood
state sequence, as this requires the entire set of future ob-
servations to be available. Instead they estimate the state
posterior distribution given the past observations only. The

particle filter also results in this kind of posterior state dis-
tribution, which means that both the particle filter and this
kind of HMM trackers suffer from the problem of trying to
estimate the single state of the system from this distribution.
Later processing stages or data-displays usually requiresa
single state and not an distribution.

Common ways to do this is to estimate the mean or the
maximum (MAP) of this posterior distribution, but this have
a few problems:

1. A mean of a multimodal distribution is some value be-
tween the modes. The maximum might be a mode that
represents a possibility that is later rejected. We pro-
pose to instead use optimisation that considers future
observation and thereby chooses the correct mode.

2. In the multi object case the varying dimensionality of
the states makes the mean value difficult to define. In
[12] it is suggested to threshold the likelihood of each
object in the configurations being present. Then the
mean state of each object for which this likelihood is
above some threshold is calculated separately.

3. Restrictions placed in the dynamic model, such as il-
legal state transactions, are not enforced, and the re-
sulting state sequence might contain illegal state trans-
actions. For the particle filter also restrictions in the
prior state distribution might be violated. In [12] for
example, the prior probability of two objects overlap-
ping in the 3D scene is set to zero as this is impossi-
ble. However the output mean state value may still be
a state where two objects overlap, as the two objects
may originate from different sets of particles. In our
approach impossible states or state transactions will
never appear in the results.

In [1] we suggested a novel modification to the Viterbi
algorithm [18], that allows it to be used on infinite time se-
quences and still produce the global optimum. In this pa-
per that method is extended to multiple cameras. The prob-
lem with the original Viterbi algorithm is that it assumes
that all observations are available before any results can be
produced. Our modification allows results to be computed
before all observation are received, and still generates the
same global optimum state sequence as is done when all
observations are available. However, there is a delay of sev-
eral frames between obtaining an observation and the pro-
duction of the optimum state for that frame.

In [17] it is suggested to calculate the current state by ap-
plying the Viterbi algorithm to a fixed size time slice look-
ing into the future and only storing first state of the solution,
but this only gives approximative solutions.

Another problem is that when considering multiple ob-
jects, the state space becomes huge. Typically at least some
10000 states is needed for a single object, and to be able to
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trackN objects simultaneously that means10000N states.
An exact solution is no longer possible for real time appli-
cations. In [1] we present two possible approximations that
can be used to compute results in real time. Either use mul-
tiple small spatially overlapping HMM’s, or only evaluate
theM most likely states in each frame.

Also, we show how it is possible, for the later of the two
approximations, to assess whether this approximation actu-
ally found the global optimum or not. This could be useful
in an off line calibration of the approximation parameters.

1.2. Paper overview
The paper is organised as follows. The theory behind hid-
den Markov models is describe in Section 2. This includes
our extensions from [1] to handle infinite time sequences,
Section 2.2, and infinite state spaces, Section 2.3. Section3
describes our proposal of how to use the HMM for object
tracking, including single object tracking, Section 3.1, multi
object tracking, Section 3.2 and multi camera setup, Sec-
tion 3.4. Finally Section 4 gives experimental verification.

2. Hidden Markov models
A hidden Markov model is defined [18] as a discrete time
stochastic process with a set of states,S = S0, . . . , SN

and a constant transitional probability distributionai,j =
p(qt+1 = Sj |qt = Si), whereQ = (q0, . . . , qT ) is a
state sequence for the timet = 0, 1, . . . , T . The ini-
tial state distribution is denotedπ = (π0, . . . , πN ), where
πi = p(q0 = Si). The state of the process cannot be di-
rectly observed, instead some sequence of observation sym-
bols,O = (O0, . . . , OT ) are measured, and the observation
probability distribution,bj(Ot) = bj,t = p(Ot|qt = Sj),
depends on the current state. The Markov assumption gives
that

p(qt+1 | qt, qt−1, . . . , q0) = p(qt+1 | qt) (1)

and the probability of the observations satisfies

p(Ot | qt, qt−1, . . . , q0) = p(Ot | qt). (2)

2.1. Viterbi optimisation
From a hidden Markov modelλ = (ai,j , bj , π) and an
observation sequence,O, the most likely state sequence,
Q∗ = argmaxQ p(Q|λ,O) = argmaxQ p(Q,O|λ), to pro-
duceO can be determined using the classical Viterbi opti-
misation [18] by defining

δt(i) = max
q0,...,qt−1

p(q0, . . . , qt−1, qt = Si, O0, . . . , Ot).

(3)
For t = 0, δ0(i) becomesp(q0 = Si, O0), which can be
calculated asδ0(i) = πibi,0, and fort > 0 it follows that
δt(i) = maxj(δt−1(j)aj,i) · bi,t. By also keeping track of

ψt(i) = argmaxj(δt−1(j)aj,i) the optimal state sequence
can be found by backtracking fromq∗T = argmaxi δT (i),
and lettingq∗t = ψt+1(q

∗
t+1) for t < T .

2.2. Infinite time sequences
To handle the situations whereT → ∞ consider any given
time t1 < T . The observation symbolsOt, for 0 ≤ t ≤ t1,
have been measured, andδt(i) as well asψt(i) can be cal-
culated. The optimal state fort = t1 is unknown. Consider
instead some set of states,Θt, at timet such that the global
optimumq∗t ∈ Θt. For timet1 this is fulfilled by letting
Θt1 = S, the entire state space. ForΘt, t < t1, shrinking
sets of states can be found by lettingΘt be the image of
Θt+1 underψt+1, such that

Θt = {Si|i = ψt+1(j) for someSj ∈ Θt+1} . (4)

If the dependencies of the model is sufficiently localised
in time, then for some timet2 < t1, there will be exactly
one stateq∗t2 in Θt2 , and the optimal stateq∗t for all t ≤ t2
can be obtained by backtracking fromq∗t2 . No future ob-
servations made can alter the optimum state sequence for
t ≤ t2.

2.3. Infinite state spaces
The problem with using the Viterbi optimisation for large
state spaces is thatδt(i) has to be calculated and stored for
all statesi at each timet. By instead only storing theM
largestδt(i) and an upper bound,δmax(t) on the rest, sig-
nificantly less work is needed. IfM is large enough, the
entire optimal state-sequence might be found by backtrack-
ing among the stored states. It is also possible to verify if
this is the case or not for a given example sequence and
a givenM . If the global optimum were not found, then
M could be increased and the algorithm executed again, or
an approximative solution could be found among the stored
states. Typically the algorithm is executed off-line for some
example sequences to decide how large anM is needed,
and then when running live this value is used and approx-
imative solutions are found. The details of this algorithm
and a proof of it’s correctness is presented in [1].

3. Using HMM for tracking
3.1. Single object tracking
An HMM such as described above can be used for tracking
objects in a video sequence produced by a stationary cam-
era. Initially we assume that the world only contains one
mobile object and that this object sometimes is visible in the
video sequence and sometimes located outside the scene.

The state space of the HMM, denotedS1, is constructed
from a finite set of grid pointsXi ∈ R

2, j = 1, . . . , N
typically spread in a homogeneous grid over the image. The
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stateSi represents that the mass centre of the object is at
positionXi in the camera coordinate system. A special state
S0, representing the state when the object is not visible, is
also needed.

The observation symbols of this model will be a bi-
nary background/foreground image,Ot : R

2 → {0, 1},
as produced by for example [2]. By analysing the result
of the background/foreground segmentation algorithm on a
sequence with known background and foreground, the con-
stant probabilities

pfg = p(Ot(x) = 1|x is a foreground pixel) (5)

and

pbg = p(Ot(x) = 0|x is a background pixel) (6)

can be calculated. Typically these are well above1/2, and
it is here assumed that they are constant over time and does
not depend onx.

The shape of the object when located in stateSi, can
be defined as the set of pixels,CSi

, that the object covers
when centred in at this position. This shape can be learnt
from training data off line. As there is only one object in
the world, when the HMM is in stateSi, the pixels inCSi

are foreground pixels and all other pixels are background
pixels. The probability,bi,t = p(Ot|qt = Si), of this is

bi,t =
∏

x∈CSi

[Ot(x)pfg + (1 −Ot(x))(1 − pfg)]·

·
∏

x 6∈CSi

[(1 −Ot(x))pbg + (Ot(x))(1 − pbg)] (7)

and thereby all parts of the HMM are defined.

3.2. Multi object HMMs
To generalise the one object model in the previous section
into two or several objects is straight forward. For the two
object case the states becomeSi,j ∈ S2 = S × S and the
shapes,CSi,j

= CSi
∪ CSj

. The transitional probabilities
becomeai1j1i2j2 = ai1i2 · aj1j2 .

Solving this model using the Viterbi algorithm above
gives the tracks of all objects in the scene, and since
there is only one observation in every frame, the back-
ground/foreground segmented image, no data association is
needed. Also, the model states contain the entry an the exit
events, so this solution also gives the optimal entry and exit
points.

There is however one problem with this approach. The
number of states increases exponentially with the number
of objects and in practice an exact solution is only compu-
tationally feasible for a small number of objects within a
small region of space.

3.3. Calculatingbmax(t)

To use the method described in Section 2.3, some estimate,
bmax(t), as low as possible, has to be found such that

bmax(t) ≥ bi,t for i /∈ Ht (8)

given the observation symbolOt. WhereHt is the set of
theM largest states stored at timet. The estimate will be
derived for any number of objects, e.g. in the state space
Sn, for the case when objects are not allowed to overlap.
Each stateSi is a subset of the set of possible object centre
pointsX = {Xj}. S0 is the empty set. But not all subsets
of X has to be evaluated. Consider any stateSi and form
Sj = Si ∪ {Xk} by adding one object at pointXk. If Xk

don’t overlap any of the objects present inSi the likelihood
bj,t = bi,tbX(k), where

bX(k) =
∏

x∈CXk

(

Ot(x)
pfg

1 − pbg

+ (1 −Ot(x))
1 − pfg

pbg

)

(9)
andCXk

is the pixels cover by an object centred atXk. This
means that if overlapping objects were not allowed only
pointsXk wherebX(k) > 1 could increase the likelihood,
and thus only such points had to be considered.bX(k) can
be computed fast for allk using integral images and then
the likelihood of all subsets of the points{Xk|bX(k) > 1}
can be evaluated and the maximumi /∈ Ht can be found.

3.4. Using multiple cameras
Extending this to multiple overlapping or non-overlapping
cameras is straight forward. By calibrating the set of cam-
eras and identifying a common coordinate system for the
ground plane, the objects centres,Xk, can be modelled as
moving in this common coordinate system. Thereby a sin-
gle HMM modelling the events on this ground plane can be
used. The observations for this model is the images from all
the cameras. Using the calibration of the cameras, each cen-
tre point can be projected into the shape of the object in each
of camera imagesCc

Xk
wherec = 1, 2, . . . , represents the

different cameras.Cc
Xk

might be the empty set if an object
at positionXk is not visible in camerac. By indexing Equa-
tion 7 on the camerac, with Oc

t the background/foreground
image produced from camerac,

bci,t =
∏

x∈Cc
Si

[Oc
t (x)pfg + (1 −Oc

t (x))(1 − pfg)]·

·
∏

x 6∈Cc
Si

[(1 −Oc
t (x))pbg + (Oc

t (x))(1 − pbg)], (10)

and the total observation probability

bi,t =
∏

c

bci,t. (11)
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Figure 1: Object centre points in a single model. The red
stars are the possible starting points and the green stars are
the possible exit points.

4. Experiments
4.1. Traffic
For automatic analysis of traffic surveillance the first stepis
often to extract the trajectories of the vehicles in the scene.
The infinite state space method described in Section 2.3
with M = 20 were tested on this problem by analysing a
5 minutes surveillance video, acquired by a Axis 2120 web
camera, Figure 1. The sequence contained in total 40 ve-
hicles, including some larger than the normal car and one
bus. The shape of the objects is assumed to be squares ap-
proximately the size of the cars. The full tracks of all the
40 vehicles where correctly extracted. These tracks could
be used to count the number of vehicles turning left/right or
going straight through the intersection, by simply checking
their start and end-points which are guaranteed to be one
of the start/end points marked in Figure 1. In addition to
those correct tracks 5 more were discovered. Two due to
groups of bicycles, and 3 due to larger vehicles, including
the bus. The main reason for those failures is the assump-
tion that all objects in the scene have the same shape, which
is not the case here. A solution to that would be to have
several different object types of different sizes in the model.
This run were made in matlab at 0.78 fps (0.75 ifbmax(t)
also were calculated to evaluate whether the global maxi-
mum were reached). Tests with varyingM showed that the
global maximum is found with as small values asM = 20.
This might seem unbelievable small, but note that this is
the20 most likely states give the entire history, not 20 ran-
dom samples as compared to the particle filter. Also, object
centres are quite sparsely sampled, keeping the number of
possibilities low, and at each time interval typically some

200-300 states (all states reachable from the stored 20) are
evaluated and compared to find the top 20.

4.2. Occlusion

To test how well the system could handle occlusions, an-
other test were performed using a camera overviewing a
corridor with significant perspective effects and occlusions,
cf. Figure 2. The camera where calibrated and the world
coordinate system registered to a blueprint of corridor. The
set of possible object centre pointXk, were generated as an
regular grid in the blueprint. For each of the centre points
the region of the image a pedestrian located at that point
would cover could be calculated from the calibration. Entry
and exit points were placed around the doors and along the
bottom half of the image.

The sequence is 1:45 min and contains 9 events of peo-
ple walking through the scene in different ways. All of
them were correctly detected. But because of noise from
the opening and closing of the doors and reflections a few
short erroneously tracks were generated between the entry
and exit points belonging to the same door, but they were
all easily filter out afterwards by removing all short tracks
starting and ending at the same door. No other errors were
made.

5. Conclusions

In this paper we have proposed a multi HMM model to
model multiple targets in one single model with the advan-
tage of solving all the problems of a multi target tracker
by a Viterbi optimisation. This includes track initiation and
termination as well as the model updating and data associa-
tion problems. Furthermore two extensions to the standard
Viterbi optimisation are used that allows the method to be
used in real-time applications with infinite time sequences
and infinite state spaces. The later extension only gives ap-
proximative solutions in the general case, but can also de-
termine if an exact solution were found.
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