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Superpixel based road user tracker.

H̊akan Ardö Mikael Nilsson Aliaksei Laureshyn

November 18, 2013

Abstract

A superpixel based tracker is tested on the two Track-
ing sequences from PDTV[7], Minsk and Sherbrooke.
It detects all vehicles from the Minsk dataset al-
though a few of them are splitted. The pedestrians
are too small and thus all missed. The results for the
Sherbrooke are not as good, especially in the areas far
way from the camera where the intersection s viewed
at a low angle. Also the sign in the foreground causes
misses.

Results on the positioning precision are also pre-
sented and how these can be improved by fitting 3D
models to the detections.

1 Introduction

Comparing video analytics algorithms on the same
datasets is important to assess their relative perfor-
mance. To facilitate this we here present the result
of a superpixel based tarcker on two Tracking se-
quences from PDTV [7], Minsk and Sherbrooke, pub-
licly available online. The system extract the moving
road users from the video data and produces trajec-
tories on the ground consisting of both positions and
orientations.

Advanced traffic applications like detection of se-
rious breakdowns in interactions (traffic conflicts) or
extraction of large amounts of microscopic data for
calibration of traffic models require quite high level of
accuracy in detection and tracking of the road users
in video. In the trade-off between the processing time
and complexity of calculation for higher output accu-
racy, the priority is given to the latter. The problem,
however, is that the more advanced video process-

ing techniques are used, the more parameters have
to be set up, and the performance might vary a lot
depending on the conditions at which the input video
was taken (camera angle, resolution, distance to the
objects). To test the universality of the developed
technique, it needs to be tested on videos taken in
different places and in different conditions.

2 Tracking

The moving road users are extracted from the video
using a sequence of video analytics operations. The
result after each of those steps are shown for one ex-
ample frame in Figure 1.

The first step performs a background foreground
segmentation. The algorithm used[1] calculates im-
age gradients and builds a background model as the
temporal mean over the observed gradient directions.
This background model is compared with the gradi-
ent directions in the current frame. By using the
gradient magnitudes as weights it asserts the relia-
bility of those matches and produces a probability of
foreground for each pixel. This probability becomes
close to 0.5 in uniform areas of the image where the
gradient directions are unreliable. In structured ar-
eas on the other hand it is close to 1.0 for foreground
pixels and close to 0.0 for background pixels. The
second image in Figure 1 shows an example.

The next step turns this probabilistic segmentation
into a binary segmentation by performing a Markov
random field segmentation [2, 4]. The single pixel
probabilities are used as unary terms and constant
probabilities are used as binary times. The probabil-
ity of the pixels belonging to the same class, i.e. both
being foreground or both being background is set to
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Figure 1: Results after each processing step for a single frame. Top row from the Minsk sequence and bottom
row from the Sherbrooke seqeunce. Columns from left to right: input frame, probabilistic segmentation,
binary MRF segmentation, superpixel segmentations, final tracks.

0.9, and a prior is introduced saying that on average
30 % of the pixels in the image are foreground. The
result of this step is that the uncertain pixels are filled
in by looking at their neighbours, see the third image
in Figure 1. The parameters are chosen in such a way
as to never split a single road user into several con-
nected components. This means that quite often two
or more road users are merged into a single connected
component.

The connected segments are further segmented into
super pixels. We use the energy function suggested
by Conrad et al. [3] to define good segmentations, but
optimize it using hierarchical clustering. That is ini-
tially each normal pixel is assigned to it’s own super
pixel. Then, iteratively, two super pixels are selected
and fused into a single super pixel. The selection is
made by locating the fuse that will reduce the energy
function the most. This process is continued until all
super pixels are larger than some threshold and any
additional fusing would increase the energy function
significantly. An example of the resulting segmenta-
tions is shown in the forth image of Figure 1.

Finally, the super pixels are matched form one
frame to the next. This is achieved by minimizing
the distance to the closest super pixel in (r, g, b, x, y)-
space over translations. Here (r, g, b) represents the
color of the pixel and (x, y) its position within the
image. The optimization is regularized by also pe-

nalizing variations in distances between neighbouring
super pixels. This connects the segments produced
by the background foreground segmentation between
the frames into a potentially complicated graph of
segments that are splitting and merging as different
object becomes close to each other. This graph is
then splitted into tracks under the assumption that
all super pixels forming a single object belongs to the
same connected foreground segment in each frame.
This means that in theory it is enough for an ob-
ject to become a foreground segment of it’s own for
a single frame during it’s trajectory to allow it to be
segmented out during it’s full trajectory.

3 Metric Promotion

Camera calibration is performed by manually select-
ing points in the image and their 3D positions. They
can be measured with a GPS (such as Leica GX1230
GG) or using areal images from for example google
earth. These points are manually positioned in an
image from a static mounted camera. The calibra-
tion procedure is performed using well chosen points,
following guidelines described in [5]. Once the world
and image corresponding points are measured and
positioned, the camera is calibrated [8].

Given the calibration, a defined search space in
the ground plane and a 3D model a 3D search with
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context is conducted to find metric position and
orientation in the ground-plane [6]. The pipeline
involves foreground/background segmentation and
non-maximum suppression. Two models were used,
one van-sized box model and one sedan car using 60
triangles, see Fig. 2.

Figure 2: 3D model of a sedan car using 60 triangles
and its rectangle footprint (left) and the enlarged 3D
model (right) used to capture context.

4 Results

The system was tested on the two Tracking sequences
from PDTV [7], Minsk and Sherbrooke. The first step
yields pixel level bounding boxes in the image. Those
image tracks were compared to the ground truth as
suggested by PDTV [7]. Both the tracking result
and the ground truth was restricted to the region of
interest before comparing. The result is presented in
Table 1 and Figure 3 for the Minsk sequence and in
Table 2 and Figure 4 for the Sherbrooke sequence.

There are a lot of missed tracks in the in Sher-
brooke sequence. The vehicles are however tracked
fine in the center of the intersection. The mistakes
are made on the remote side of the intersection where
the viewing angle is low and the vehicles are small.
Also the sign in foreground causes vehicles going be-
hind it to be missed.

The Minsk sequence comes with a camera calibra-
tion that allows the pixel level result to be promoted
to meters. The 3D model fitting approach described
above was used with two different 3D models that
were fitted to all tracks. Figure 5 shows the results
of fitting a car 3D model and compares the result with

Bus Car Van Ped ?

True tracks 1 33 3 4 1
Detected tracks 1 33 3 0 1
Missed tracks 0 0 0 4 0
Extra tracks 0 8 0 0 0

True states 28 888 83 261 66
Detected states 26 834 79 0 53
Missed states 2 54 4 261 13
Extra states 3 221 0 0 7

Table 1: Pixel level detection results from the Minsk
sequence.
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Figure 3: Pixel level tracking precision for the Minsk
sequence.
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car pedestrians unknown

True tracks 15 4 2
Detected tracks 7 1 1
Missed tracks 8 3 1
Extra tracks 15 0 0

True states 2965 2045 568
Detected states 684 162 49
Missed states 2281 1883 519
Extra states 793 0 0

Table 2: Pixel level detection results from the Sher-
brooke sequence.
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Figure 4: Pixel level tracking precision for the Sher-
brooke sequence.
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Figure 5: Metric tracking precision for the Minsk se-
quence using a car 3D model. Dotted lines are the
pixel bounding box centers projected onto the ground
plane for comparison.

the position achieved by projecting the center of the
pixel bounding box onto the ground plane. Figure 6
uses a van sized 3D box instead. Note how the po-
sition is improved when a suitable 3D model is used.
That is the position estimate of the cars are improved
when the car model is used and the position estimate
of the vans are improved when the box model is used.

5 Conclusion

We’ve shown how super pixels can be used to extract
road user trajectories form video sequences and that
the estimated position of those road users can be im-
proved by fitting 3D models to the detections.
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quence using a van sized box as 3D model. Dotted
lines are the pixel bounding box centers projected
onto the ground plane for comparison.
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