LUND UNIVERSITY

Obesity and carotid artery remodeling.

Kozakova, M; Palombo, C; Morizzo, C; Hgjlund, K; Hatunic, M; Balkau, B; Nilsson, Peter;

Ferrannini, E

Published in:
Nutrition & diabetes

DOI:
10.1038/nutd.2015.26

2015

Link to publication

Citation for published version (APA):

Kozakova, M., Palombo, C., Morizzo, C., Hgjlund, K., Hatunic, M., Balkau, B., Nilsson, P., & Ferrannini, E.

(2015). Obesity and carotid artery remodeling. Nutrition & diabetes, 5, e177.
https://doi.org/10.1038/nutd.2015.26

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://doi.org/10.1038/nutd.2015.26
https://portal.research.lu.se/en/publications/29de2440-65ba-4147-b53f-a10e40ae0471
https://doi.org/10.1038/nutd.2015.26

Download date: 13. Feb. 2026



OPEN
Citation: Nutrition & Diabetes (2015) 5, e177; doi:10.1038/nutd.2015.26

@,

www.nature.com/nutd

ORIGINAL ARTICLE
Obesity and carotid artery remodeling

M Kozakova', C Palombo?, C Morizzo', K Hgjlund®, M Hatunic®, B Balkau®, PM Nilsson® and E Ferrannini' on behalf of the RISC
Investigators’

BACKGROUND/OBJECTIVE: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness
(IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS)
in altered hemodynamic conditions characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP).
SUBJECTS/METHODS: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different
populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters and CCA LD (266 healthy
subjects with wide range of body weight (24-159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression
rate (AIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry
and CWS (88 obese subjects without CV complications and 88 non-obese subjects matched for gender and age).

RESULTS: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD
was an independent determinant of AIMT, and AIMT of subjects in the highest LD quartile was significantly higher (28 + 3 um) as
compared with those in the lower quartiles (8+3, 16+4 and 16+ 3 um, P=0.001, P < 0.05 and P=0.01, respectively). In addition,
CCA CWS decreased during the observational period in the highest LD quartile (from 54.2+8.6 to 51.6+7.4 kPa, P < 0.0001).

As compared with gender- and age-matched lean individuals, obese subjects had highly increased CCA LD and BP (P < 0.0001 for
both), but only slightly higher CWS (P=0.05) due to a significant increase in IMT (P=0.005 after adjustment for confounders).
CONCLUSIONS: Our findings suggest that in obese subjects, the CCA wall thickens to compensate the luminal enlargement caused
by body size-induced increase in SV, and therefore, to normalize the wall stress. CCA diameter in obesity could represent an

additional biomarker, depicting the impact of altered hemodynamics on arterial wall.
Nutrition & Diabetes (2015) 5, e177; doi:10.1038/nutd.2015.26; published online 24 August 2015

INTRODUCTION

Obesity is an independent risk factor for cardiovascular (CV)
disease'? and an obesity-related increase in carotid intima-media
thickness (IMT)>* is usually interpreted as a sign of subclinical
atherosclerosis. However, obesity is accompanied not only by an
alteration in the metabolic profile but also by changes in systemic
hemodynamics that are necessary to satisfy the metabolic
demand of expanded body mass and that comprise increase in
blood pressure (BP),>° heart rate and stroke volume (SV).™°
Hemodynamics has a fundamental role in controlling arterial
geometry. Physiologically, arterial wall remodels in response to
persistent alterations in blood flow'®'? and pressure,'>' thus
keeping wall shear stress and circumferential wall stress (CWS)
within homeostatic targets.'”” In obesity, a body size-related
increase in SV can be expected to increase luminal diameter'''%"”
in order to maintain the shear stress;'®?° yet an increase in
luminal diameter and systemic pressure augments CWS and may
induce carotid wall thickening aimed to normalize the stress.?'

Therefore, in the present study we tested the hypothesis that
obesity-related changes in IMT might represent not only
preclinical atherosclerosis but also an adaptive remodeling meant
to preserve CWS in altered hemodynamic conditions. For this
purpose we performed several analyses in three different
populations. (A) The inter-relationships between anthropometric
parameters, SV, BP, luminal diameter and IMT were studied in a

healthy population with a wide range of age and body size.
(B) The relationships between carotid luminal diameter, IMT and a
3-year IMT progression rate (AIMT) were evaluated in apparently
healthy non-obese young-to-middle-aged men and women free
of carotid atherosclerosis and without increased CV risk and
metabolic syndrome at baseline and at 3 years. (C) Carotid IMT,
luminal diameter and CWS were compared between obese
subjects free of CV complications and healthy controls, matched
for gender and age. The above-described relationships were
studied in the proximal segment of the common carotid artery
(CCA) as its simple cylindrical geometry and linear blood flow
allows the application of Laplace’s law for wall stress calculation.

MATERIALS AND METHODS

Study populations

Three different populations were studied: (A) Two-hundred and sixty-six
apparently healthy subjects (children, adolescents and adults), free of CV
disease, carotid plaques, diabetes, antihypertensive and lipid-lowering
therapies, with a wide range of age (from 8 to 77 years) and body weight
(from 24 to 159 kg), were recruited in a single center (Pisa).

(B) Five-hundred and seventy-one apparently healthy non-obese
subjects with a low-average CV risk (assessed by the Framingham risk
score) and free of the metabolic syndrome and carotid plaque at
baseline and at 3 years selected from the 1566 participants of the
Relationship between Insulin Sensitivity and Cardiovascular Risk (RISC)
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Study (www.egir.org) that recruited healthy Caucasians in 19 centers in 14
European countries. Inclusion criteria of this longitudinal study, as well as
power calculation, were previously reported.?

(C) Eighty-eight obese subjects (children, adolescents and adults) free of
CV complications and carotid plaques and 88 apparently healthy
volunteers, matched for gender and age, were recruited in a single center
(Pisa).

Study protocol

The examination protocol of all three studies included medical history,
anthropometry, brachial BP measurements, resting ECG, a fasting blood
test, high-resolution ultrasound of extracranial carotid arteries and, for the
first study population, cardiac ultrasound for SV assessment. Information
regarding medical history, drug use and smoking habit was collected
directly by a physician (in Pisa populations) or using standardized self-
reported questionnaires (in the RISC study). A relative risk for coronary
heart disease over a 10-year period was estimated from the Framingham
Heart Study risk score sheets and graded as low, below average, average,
above average or high.?® The metabolic syndrome was defined according
to the US National Cholesterol Education Program Adult Treatment Panel
11”7 as the presence of at least three out of five metabolic syndrome
components (waist circumference (WC) >102cm in men and >88cm
in women; BP >130/85mmHg; high-density lipoprotein cholesterol
<1.03mmolI”" in men and <1.29mmoll™" in women; triglycerides
>1.7mmolI7"; fasting glucose >6.1mmoll~"). The study protocols
conformed to the ethical guidelines of the 1975 Declaration of Helsinki
Principles and was approved by local ethics committee in each center.
Written consent was obtained from all participants.

Carotid artery ultrasound imaging and analysis

Carotid ultrasound was performed according to current guidelines in all
three studies.”® Briefly, longitudinal B-mode images of the left and right
CCA, carotid bifurcation and internal carotid artery were recorded from
anterior, lateral and posterior angle by a high-resolution B-mode
ultrasound. The analysis of carotid images was performed using the
computer-driven image analysis system MIP (Medical Image Processing;
Institute of Clinical Physiology, CNR, Pisa, Italy). End-diastolic frames of the
right CCA in longitudinal projection with a well-defined intima-media
complex of the near and far wall were selected and digitized with a
resolution of 576 x 768 pixels, and 256-degree gray scale per pixel. In the
digitized image, the far-wall IMT and the luminal diameter (inner diameter,
that is, distance between the lumen-intima interfaces of the near and far
wall) were measured in a 1-cm long straight segment, ~1cm before the
flow divider. The value reported represents the average of three cardiac
cycles. End-diastolic CWS was calculated with Lamé’s equation as the
product between diastolic BP (DBP in kPa) measured during image
acquisition on the left brachial artery (Omron, model 705cp, Kyoto, Japan)
and the ratio of end-diastolic luminal radius (r=diameter/2) to end-
diastolic far-wall IMT (end-diastolic r/IMT): end-diastolic CWS (kPa) = DBP x
end-diastolic r/IMT.??

In the multicenter study, carotid scans were acquired in each recruiting
center by trained and certified technicians, while the analysis of carotid
images was completed in a reading center (Pisa) by a single reader (MK), as
previously described. Intra-observer variability of IMT and diameter
measurements as well as inter-test IMT variability were tested and are
previously reported.?*?°

Cardiac ultrasound

SV was assessed by transthoracic Doppler-echocardiography as the
product of aortic valve cross-sectional area and trans-aortic flow velocity-
time integral.” Trans-aortic flow was obtained in the apical projection,
aortic valve opening was measured in the long-axis view and aortic valve
area was calculated by circular geometry. The values used for statistical
analysis are averaged over five consecutive cardiac beats. Intra-observer
variability of SV measurement in our laboratory was previously reported.?®

Anthropometric and BP measurement

Height and weight were measured, and body mass index (BMI) was
calculated as body weight (in kg) divided by squared height (in meters). In
adults, obesity was defined as BMI 230kgm’2; in children and
adolescents obesity was defined as BMI >95th percentile of value
reported for gender and age in BMI-for-age percentiles charts.3® WC was
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measured as the narrowest circumference between the lower rib margin
and anterior superior iliac crest. Office brachial BP was measured by a
digital electronic tensiometer (Omron, model 705cp, Kyoto, Japan, regular
or large adult cuffs according to the arm circumference) in subjects seated
for at least 10 min. The reported values are the mean of two measurements
performed during two different visits.

Analytical procedures

All biochemical parameters were determined by standard methods on a
Roche-Modular System (Basel, Switzerland). In the multicenter study, all
biochemical analyses were performed in a single center.?

Statistical analysis

Data are expressed as meanz*s.d., meants.e. and categorical data as
percentages.

Variables with a skewed distribution are summarized as median and
interquartile range, and log transformed for parametric statistical analyses.
Analysis of covariance and Wilcoxon signed-rank test or Student’s t-test
were used to compare continuous variables, and x*-test to compare binary
variables. Relations between the outcome variables (CCA IMT, AIMT and
luminal diameter) and continuous variables were evaluated by univariate
Pearson's correlation coefficients (r). Multiple linear regression with
backward removal (adjusted for center in the multicenter study) was used
to test the independent association of outcome variables with their
significant univariate correlates. Statistical tests were two-sided and
significance was set at a value of P<0.05. Statistical analysis was
performed by JMP software, version 3.1 (SAS Institute Inc., Cary, NC, USA).

RESULTS

Cross-sectional study evaluating the relationship between
anthropometric parameters, SV, BP, CCA luminal diameter and IMT
In 266 apparently healthy subjects with a wide range of age and
body weight (Supplementary Table 1), SV was directly related to
body weight (Figure 1), height, BMI, WC (r=0.50, 0.33 and 0.28,
P < 0.0001 for all), age (r=0.33, P < 0.0001), systolic BP (SBP) and
DBP (r=0.34 and 0.20, P < 0.0001 and P=0.001). SBP was directly
related to body weight (Figure 1), height, BMI, WC (r=0.31, 0.30
and 0.30, P < 0.0001 for all), age (r=0.43, P < 0.0001) and plasma
glucose (r=0.25, P<0.001). In multivariate models, following
backward stepwise removal of variables, SV was determined by
age, body height and body weight, and SBP was determined by
male gender, age and body weight (Table 1).

CCA luminal diameter increased with SV and body weight
(Figure 1), height, BMI and WC (r=0.43, 0.41 and 0.45, P < 0.0001
for all), age (r=0.56, P < 0.0001), SBP and DBP (r=0.41 and 0.38,
P < 0.0001 for both) and plasma glucose (r=0.26, P < 0.0005). CCA
IMT increased with age (r=0.73, P <0.0001), luminal diameter
(Figure 1), SBP (Figure 1) and DBP (r=0.34, P <0.0001), low-
density lipoprotein cholesterol, triglycerides and plasma glucose
(r=0.27,0.32 and 0.25, P < 0.001-0.0001). In a multivariate model,
luminal diameter was determined by male gender, age, WC and
SV; when body weight was included in the model, it replaced SV
and WC (Table 2a). CCA IMT was independently associated with
age, luminal diameter and SBP (Table 2a).

Longitudinal and cross-sectional study evaluating the relationship
between baseline CCA luminal diameter and IMT or 3-year IMT
progression rate

In 571 healthy non-obese subjects without increased CV risk and
metabolic syndrome, BP components and established athero-
sclerotic risk factors remained stable during the observational
period of 3 years, whereas body weight, BMI, WC and fasting
plasma glucose slightly increased (Supplementary Table 2).

Cross-sectional data. Univariate correlates of baseline CCA IMT
and luminal diameter are reported in Table 3. In a multiple
regression model adjusted for centers, baseline CCA IMT was
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Table 1.

age and body weight

Independent determinants of stroke volume and systolic
blood pressure in apparently healthy population with wide range of

*Bts.e. P-value
Stroke volume (ml) Age (years) 0.17 +0.05 0.001
Body weight (kg)  0.36 +0.05 < 0.0001
Body height (m) 0.28 +0.06 < 0.0001
Cumulative R? 0.38 < 0.0001
Systolic BP (mmHg)  Gender (male) 0.15+0.05 < 0.01
Age (years) 0.36 +0.05 < 0.0001
Body weight (kg)  0.31+0.05 < 0.0001
Cumulative R? 0.31 <0.0001

*B = standardized regression coefficient.
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Correlations between body weight, stroke volume, blood pressure, CCA luminal diameter and IMT in 266 apparently healthy

independently related to age, luminal diameter, SBP and total
cholesterol, and baseline luminal diameter was independently
related to male gender, age and body weight (Table 2b).

Longitudinal data. During a 3-year period, carotid IMT signifi-
cantly increased (from 594+75 to 611+77pum P <0.0001),
and end-diastolic wall stress decreased (from 47.7+8.6 to
46.8+7.8 kPa, P<0.005). AIMT was directly related to age,
baseline CCA diameter and plasma total and low-density
lipoprotein cholesterol, and inversely to the baseline CCA IMT
(Table 3), whereas it was not related to 3-year changes in
atherosclerotic risk factors. In a multiple regression model
adjusted for centers, the independent determinants of AIMT were
age, baseline luminal diameter, baseline IMT and total plasma
cholesterol (Table 2b).
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Table 2.

Independent determinants of CCA IMT, AIMT and luminal diameter

Baseline CCA IMT (um)

ACCA IMT (um) Baseline luminal diameter (mm)

*Bts.e. P-value *Bts.e. P-value *Bts.e. P-value

a) Healthy population with wide range of age and body size; N = 266
Gender (male) 0.14 +0.05 0.005
Age (years) 0.58 +0.05 < 0.0001 0.42+0.05 < 0.0001
Waist circumference (cm) 0.25+0.05 < 0.0001
Stroke volume (ml) 0.19+0.05 < 0.0001
Baseline luminal diameter (mm) 0.15+0.05 <0.01
Systolic BP (mm Hg) 0.12+0.05 0.01
Cumulative R? 0.56 < 0.0001 0.51 < 0.0001
Gender (male) 0.16 +0.04 < 0.0001
Age (years) 0.45+0.04 < 0.0001
Body weight (kg) 0.43 +0.04 < 0.0001
Cumulative R 0.57 <0.0001

b) Healthy non-obese population without increased cardiovascular risk; N=571
Gender (male) 0.26 +0.04 < 0.0001
Age (years) 0.44+0.04 < 0.0001 0.26 +0.04 < 0.0001 0.12+0.04 0.001
Baseline luminal diameter (mm) 0.19+0.04 < 0.0001 0.24+0.04 < 0.0001
Baseline CCA IMT (um) -0.43+0.04 < 0.0001
Body weight (kg) 0.29 +0.04 < 0.0001
Systolic BP (mm Hg) 0.09 +0.04 0.01
Total cholesterol (mmol 1~ 7) 0.11+0.04 < 0.005 0.12+0.04 < 0.005
Cumulative R? 0.36 < 0.0001 0.25 < 0.0001 0.32 < 0.0001

Abbreviations: BP, blood pressure; CCA, common carotid artery; IMT, intima-media thickness. * = standardized regression coefficient.

Table 3.

Univariate correlations between carotid structural measures, anthropometric parameters and risk factors in 571 non-obese healthy subjects

Baseline CCA IMT (um)

ACCA IMT (um) Baseline luminal diameter (mm)

Baseline CCA IMT (um) —

Baseline diameter (mm) 0.23
Age (years) 0.47
BMI (kg m™3) 0.18
Body weight (kg) 0.15
Waist circumference (cm) 0.22
Systolic BP (mm Hg) 0.21
Diastolic BP (mm Hg) 0.16
Total cholesterol (mmol =) 0.27
LDL-cholesterol (mmol1~") 0.27

HDL-cholesterol (mmol I~") NS

Triglycerides (mmol 17" 0.15
Fasting glucose (mmol ) 0.13
Fasting insulin (pmol I~7) NS

-0.22 0.23
0.17 —
0.14 0.12

NS 0.30
NS 0.47
NS 0.42
NS 0.23
NS 0.13
0.13 NS
0.10 NS
NS -0.19
NS 0.15
NS 0.29
NS NS

density lipoprotein; NS, not significant.

Abbreviations: BP, blood pressure; BMI, body mass index; CCA, common carotid artery; HDL, high-density lipoprotein; IMT, intima-media thickness; LDL, low-

The distribution of AIMT, body weight and changes in CWS
were evaluated also by quartiles of baseline luminal diameter.
AIMT as well as body weight were significantly higher (P-value
after adjustment for center, gender and age) in the highest
diameter quartile as compared with lower quartiles of luminal
diameter (Figure 2a and b). CWS did not change during the 3-year
period in the first two quartiles of luminal diameter, whereas in
the third and above all in the fourth quartile the wall stress
decreased (Figure 2c).

Case-control study evaluating CCA geometry and wall stress in
obese and non-obese subjects

Carotid geometry was compared between 88 obese children,
adolescents and adults without CV complications, and 88
healthy non-obese volunteers matched for gender and age

Nutrition & Diabetes (2015) 1-8

(Supplementary Table 3). CCA IMT was higher in obese subjects
as compared with controls, and the difference between the two
groups remained highly significant (P=0.005) after adjustment for
BP and metabolic variables (Table 4). Obese subjects had also
significantly higher CCA luminal diameter and DBP (P < 0.0001 for
both), whereas end-diastolic CWS was only slightly increased
(P=0.05).

DISCUSSION

Altogether, our findings suggest that in obese subjects carotid
artery wall thickens to compensate the luminal enlargement and
BP increase related to expansion of body mass, thus preventing a
significant increase in CWS. However, our data were obtained in
healthy population without increased CV risk and in obese
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Figure 2.

(@ and b) Distribution of AIMT (mean =+ s.e.) and baseline body weight (mean +s.d.) by quartiles of baseline luminal diameter in 571

apparently healthy non-obese subjects. Statistical significance is reported after adjustment for center, sex and age. (c) End-diastolic
circumferential wall stress (CWS; mean +s.d.) at baseline and at 3 years by quartiles of baseline luminal diameter in 571 apparently healthy

non-obese subjects.

Table 4. CCA IMT, luminal diameter, circumferential wall stress in non-obese and in obese subjects matched for gender and age

Non-obese Obese P-value P-value after adjustment
CCA IMT (um) 516+ 89 615+ 122 < 0.0001 0.0005 adjustment for BP
0.001 adjustment for BP and plasma lipids
0.005 adjustment for BP, plasma lipids and FPG
Luminal diameter (mm) 5.53+0.48 6.23+0.71 < 0.0001
Diastolic BP (mm Hg) 70+8 78+ 11 < 0.0001
End-diastolic CWS (kPa) 50.8+94 53.8+13.3 0.05

Abbreviations: BP, blood pressure; CCA, common carotid artery; CWS, circumferential wall stress; FPG, fasting plasma glucose ; IMT, intima-media thickness.

subjects free of CV complications and may not be extrapolated to
populations at higher risk or with CV disease.

Experimental studies have clearly demonstrated that arterial
wall stress is maintained stable by a mutual adjustment between
luminal diameter and wall thickness,>'* and several clinical
cross-sectional studies have shown an independent association
between CCA IMT and luminal diameter.?’23%3% We have
expanded the previous findings by the observation that in a
healthy non-obese population with limited impact of CV risk
factors, luminal diameter was an independent determinant of IMT
progression rate. In addition, subjects in the highest quartile of
luminal diameter had significantly higher 3-year IMT increase as
compared with those in lower quartiles, which resulted in
reduction of end-diastolic CWS in this subgroup during the
observational period (Figure 2).

The adjustment between arterial lumen and wall thickness is
reciprocal and some studies have suggested that compensatory
luminal enlargement might occur in response to arterial wall

thickening.3*3 Yet, in obese subjects without carotid stenosis and
CV complications, the luminal enlargement that is supposed to
reflect the response to body size-related increase in blood flow'"
could be considered the initial abnormality. It has been
demonstrated that a chronic increase in blood flow stimulates
outward arterial remodeling aimed to maintain wall shear stress,
while increasing the circumferential stress.'®' In the present
study, we did not assess local carotid blood flow and wall shear
stress, but we have observed a direct independent association
between anthropometric parameters and SV, as well as between
carotid diameter and SV or body weight, respectively (Tables 1
and 2).>"" Even in a healthy non-obese population, body weight
was the strongest determinant of luminal diameter and subjects
with luminal diameter in the highest quartile had significantly
higher body weight (Table 2 and Figure 2).

Thus, if carotid diameter determines the changes in carotid wall
thickness, the obesity-related increase in luminal diameter and BP
could induce IMT thickening aimed to reduce wall stress. In our
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case-control study, obese subjects had highly increased both
luminal diameter and BP (P < 0.0001 for both) as compared with
gender- and age-matched lean controls, yet the CWS was only
slightly increased (P=0.05), as obese subjects had also signifi-
cantly higher IMT (Table 4). These data suggest the adaptive wall
thickening, and are in line with a recent study of Kappus et al. 3’
showing that young obese men had increased local carotid BP,
carotid diameter and IMT as compared with overweight and
normal weight individuals.

The hypothesis on arterial adaptation to body size-related
changes in hemodynamic load is indirectly supported by the
results of several large population studies. In the Cardiovascular
Risk in Young Finns Study,*® as well as in the Bogalusa study,*® the
association between youth BMI and adult IMT was mediated by
tracking of body mass from youth to adulthood; subjects who had
been obese in youth but were non-obese as adults had IMT values
comparable to subjects who had been consistently non-obese
from childhood to adulthood, whereas subjects who had
remained obese from childhood to adulthood had increased
IMT. Furthermore, in the Cardiovascular Risk in Young Finns Study,
the association between adult BMI and carotid IMT remained
significant and of similar magnitude after adjustment for several
metabolic risk factors, such as low-density and high-density
lipoprotein cholesterol, triglycerides, insulin and C-reactive
protein®® In the Avon Longitudinal Study of Parents and
Children,*® that evaluated the impact of obesity on arterial
function, obese children had increased brachial artery diameter,
resting and hyperemic flow and flow-mediated dilation and
reduced arterial stiffness as compared with normal weight
children. Observed changes were explained by physiologic
adaptation to the hyperemic/hyperdynamic state of obesity.

It is worth to note the similarity between arterial and left
ventricular (LV) adaptation in obesity. Obesity-related increase in
circulating blood volume is associated with LV remodeling in the
form of cavity dilation and compensatory LV hypertrophy, the
latter representing a response to increased wall stress.*'™** Cardiac
magnetic resonance-based studies have demonstrated that over
75% of LV mass cross-sectional variation in subjects free of CV risk
factors can be explained by lean mass, SV and abdominal visceral
fat,”® and that increase in LV end-diastolic wall stress leads to LV
hypertrophic response aimed to compensate for LV dilation.** On
the other hand, some growth factors related to obesity, such as
insulin-like growth factor-1, insulin-like growth factor-binding
protein-3 and fibroblast growth factor,*>*® may also participate
on IMT thickening and LV hypertrophy in obese subjects, as their
relationship to preclinical atherosclerosis or LV mass has been
recognized.*’

Study limitations

DBP used for the calculation of CWS in carotid artery was
measured at brachial and not carotid artery level. However, it is
known that DBP, in contrast to SBP, does not change substantially
throughout the arterial tree.*® Wall shear stress, that could better
explain the association between obesity, SV and luminal diameter,
was not assessed. Only established risk factors were evaluated in
our populations, and the impact of other risk factors, such as
lipoproteins, adipocytokines, insulin resistance or chronic inflam-
mation, on carotid wall thickness cannot be excluded.

CONCLUSIONS

Results of our cross-sectional, longitudinal and case-control
studies support the postulate that an increase in carotid wall
thickness in obesity should not be simply interpreted as
accelerated atherosclerosis, but an adaptive remodeling aimed
to normalize increased CWS caused by body size-related increase
in BP, SV and luminal diameter, should also be considered.
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Therefore, in obesity, carotid luminal diameter enlargement might
represent an additional marker of CV risk that reflects the adverse
impact of hemodynamic overload on vascular system. Our data
also indicate that the weight reduction should be the
most effective measure for reversing carotid wall thickening in
obesity, as it is the only way to normalize central resting
hemodynamics.”'
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