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On the Relation between Air void system parameters and Salt frost scaling

Sture Lindmark
M.Sc., Ph.D.
Lund University
Div Building Materials
Box 118
221 00 LUND
E-mail: sture.lindmark@byggtek.lth.se

ABSTRACT
An attempt to develop a tool based on analysis of the air void 
system in concrete for an early assessment of salt frost scaling 
resistance of concrete is presented. Relations between the air void 
system parameters and scaling are discussed. A new technique 
based on the accumulated surface area of all air voids is presented. 
This is a short description of the project. The full report is 
available from our division and also includes a) a study of the rate 
of water absorption at above-knick point level in capillary suction 
tests, b) a technique for improving the image analysis procedure 
with respect to edge objects and c) a comparison between different 
ways of analyzing the air void system.

Key words: Frost resistance, air void, image analysis.

1. INTRODUCTION

In large construction projects, the client often demands that concrete shall be resistant to 
saltfrost scaling. Often, this resistance is tested according to SS 13 72 44. This test method 
requires one month of concrete curing before testing, and then the test runs for two months (four 
months if the concrete contains silica fume). Thus results are obtained three (or five) months 
after casting. The problem is that while the test is in progress, more concrete is cast and there is 
an obvious risk that a large amount of concrete of insufficient quality is cast before test results 
are at hand. In the worst case, concrete of insufficient quality is built in so that it cannot be 
replaced.

This happened in a large project some years ago, when the contractor made changes in the 
concrete composition because the fine contents of the gravel made it possible to reduce the 
cement content. Then, the air void system changed in such a way that the concrete no longer 
would pass the salt frost scaling test.

Because this is a problem that might become expensive for the contractor, the Development 
Fund of the Swedish Construction Industry (SBUF) (an association for Swedish contractors) 
ordered a development project from Lund University, division of Building Materials in 1999. 
This report gives a brief description of that project.
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2. AIM

The aim of the project was to develop a method with which the contractor would be able to 
make his own quality assessment one or two days after casting, i.e. he would not have to wait a 
long time for results from the scaling test. Because the air void system, in contrast to the 
capillary pore system, is fixed once the concrete hardens, it seemed reasonable that an analysis 
of the air void system would be a suitable tool for this assessment. 

Previously, the overall air content, the Powers’ spacing factor and/or the specific surface of the 
air voids have been used for quality assessment as regards salt frost scaling. It was assumed that 
none of these alone would provide the information needed with good enough accuracy. Instead, 
the assessment would be based on a combination of these or other parameters. 

In this project, the scaling test was performed according to a slightly modified version of the SS 
13 72 44 (in order to save labour and time). Thus the results from the project (the relation 
between scaling and combinations of air void system parameters) were not expected to hold true 
in a full test according to SS 13 72 44. The intention was that if the project turned out 
successfully, the assessment methodology would later be modified to fit results from the SS 13 
72 44.

3. METHODS AND REALISATION

The main principle was to produce a large amount of concretes with different types of air void 
systems and then compare the outcome of salt frost scaling test with the air void system 
parameters. 

3.1 Concrete materials

Concretes of two water cement ratios were used; 0.40 and 0.50. The air void systems were 
varied by adding various amounts of air entraining agent and by vibrating the moulds in four 
different ways, including – in some cases – vibration one hour after casting. The 0.40 concrete 
was produced with 10 different dosages of AEA, which, multiplied by four different ways of 
combining vibration and plasticizer, resulted in 40 different air void systems. For various 
reasons 2 of these were discarded and thus 38 air void systems of w/c 0.40 were investigated. In 
the same way, the 0.50 concrete was produced with 20 different systems. Thus, in total, 58 
concretes were cast and tested.

The concretes were mixed in batches of 140 l. Four blocks of size 400×300×250 (mm3

Cylinders were drilled from the cast blocks and then discs were sawn for saltfrost scaling test, 
image analysis and capillary suction tests, see fig 1.

) were 
cast of every concrete: A: heavy vibration, B: modest vibration, C: modest dosage of plasticizer, 
and finally one block (D) with a high dosage of plasticizer.

For further details please see the original report [ 1 ].
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Table 1: Basic mix compositions for concretes used in the study (no plasticizer). These mixes were 
varied by adding more or less air entraining agent and plasticizer.

Water cement ratio: 0.40 0.50
Cement (”Anläggning”) Dens 3200 kg/m³ 512.5 410
Water 205 205
Gravel 0-8 mm (Åstorp kvartsit) 919.85 967.38
Stone 8-12 mm (Hardeberga kvartsit) 722.74 760.09

100 mm till DBT

Sågsnitt

F1     BA1  F2    BA2  F3

28     10    28    10   28 mm

400 mm

84 mm skrot 84 mm skrot

Figure 1: Distribution of samples in drilled out cores from tha cast blocks: Width of saw cuts 4 mm, 
total core length: 400 mm. F: Sample for scaling test, BA: Sample for image analysis. Image 
analysis performed on BA1.Capillary suction test performed on BA2. (“100 mm till DBT” 
indicates which part was sent to Dansk Beton Teknik for air void system analysis by linear 
traverse, ”Sågsnitt” = saw cut)

Figure 2: Set-up for the modified salt frost scaling test: Samples were placed in PVC containers, 
supported by 2 mm high studs. The lid, of PVC, is laid loose on top of the container. 
(“Limfog” = glued joint)
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Figure 3: Temperature cycle.The two curves shown are data collected from two different samples. The 
difference somewhat reflects the spread in temperature cycle between different samples which 
is due partly to the randomly varying super cooling.

3.2 Scaling test 

A complete test according to SS 13 72 44 was not possible due to lack of time. Also, the risk of 
leakage was estimated to be too high and thus a more reliable container had to be used. The 
modified setup is shown in Figure 2.

The samples were circular discs (diameter 94 mm, thickness some 27 mm). Three samples were 
used for every air void system. Samples were stored in lime water until one week before start of 
test. Then they were taken up, weighed and dried for 22±2 hours at 18°C/38%RH, weighed, 
imbibed in water for 5 minutes, taken up and wrapped in plastics. Then the samples were left to 
somewhat even out moisture gradients for four days. From 46±2 hours before start of test the 
samples were placed in water until start of test. Right before starting the test, the samples were 
once again weighed.

The temperature cycle was measured in the NaCl solution on top of some of the samples, see 
Figure 3.

Each frost cycle lasted 24 hours. 28 cycles were run. Scaling were collected every seven cycles.

The minimum temperature is lower than in the SS 13 72 44 (some –21°C instead of –18°). 
During cooling and thawing, the temperature change is more rapid than described in the 
standard.

After 28 cycles, so many samples were so badly damaged that a continuation was no longer 
meaningful. Thus the tests were interrupted.

Because the test method deviates from the standard method, the acceptance criterion of the 
standard cannot be used. 
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3.3 Air void analysis procedure

Discs of concrete were cut out from the cast blocks (Figure 1) and then ground and dyed with a 
blue background colour. The air voids then appear as circular, shallow cavities. These cavities 
are filled with a white paste to create a good contrast in black-white between background and air 
voids. 

The prepared surface is then photographed (in black and white) in a microscope and presented 
on a computer screen. Each picture measures approximately 1.6×1.6 mm2. For each concrete 
quality, 250 pictures were taken. The resolution is such that each pixel on the computer screen 
corresponds to 3.1 µm. Examples of pictures are shown below (in a different magnification).

Figure  5: Example of samples for image analysis of air void systems
Left: B1, air content 1.9%, Right: B3C air content 4.6%. 
Each picture shows an area of 24�36 mm².

3.4 From 2D image to 3D volume: Calculation of air void system parameters

The photographs produce 2D representations of a 3D air void system. To calculate the properties 
of the original 3D system, a methodology according to Underwood [2] was used (also described 
by Vesikari [3]). For the sake of comparison and as a quality control, the air void systems were 
also analysed by linear traverse (Lord and Willis [4]) by Peter Laugesen at DBT, Dansk 
Betonteknik, Copenhagen. 

The following is a brief description of the calculation procedure:

When slicing through a unit size cube of a concrete sample, the probability of hitting a sphere of 
diameter Di (=2Ri

cube

i
ihit l

DP �,

), is proportional to the diameter of that sphere:

( 1 )

where  lcube 

When slicing a plane through a unit size cube through a concrete sample containing a certain air 
void system, each void size interval i produces a number n

is the side length of the cube. 

2d,i of circles (2D projection of the 
cavities) on the plane which number is calculated as
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ihitidid Pnn ,,3,2 �� ( 2)

The probability of cutting a sphere of radius Ri so that the diameter of the 2D circle is in the size 
class j (d=2rj

� � � �
i

jiji
ji R

rRrR
P

2
1

222

,
����

�

) is calculated (illustrated below):

( 3 )

Figure 6: Illustration to calculations as given b Vesikari [3].

The number of 2D circles in circle size class j that is produced by spheres in sphere size class i
thus is calculated as:

idihitjijd nPPn ,3,,,2 ��� ( 4 )

The calculation of the complete air void size distribution is done by using these formulas in a 
matrice form, solving for n3d,i

The final product of these calculations is the probable number of spheres in size class i, i.e. the
number of spheres of diameter in the interval between two sizes. (The Underwood/Vesikari 
method produces somewhat different results as compared to the method of Lord and Willis).

.

It might turn out that the calculated number of spheres in a certain size class is negative, which 
of course cannot be correct. This incorrect result occurs because the statistical ground is too 
small (too few pictures). The calculated numbers are corrected by subtracting the absolute 
number of spheres in the classes where negative values are received from the number of spheres 
in the size class of next larger spheres.

The treatment of identified objects is further described in the original report [1].

The calculation of 3D distributions of air voids is inherently associated with several difficulties. 
For instance, on the 2D image, spherical air voids will appear as perfectly circular cavities. 
However, many air voids are not perfect spheres, and thus their 2D-representations may be more 
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or less oval. In the extreme end, compaction pores create cavities which are far from circular. 
These imperfections are handled in the automated image analysis computer program by setting a 
criterion on different parameters of the cavities. For example, Roundness is one of the 
parameters which may be used do differentiate cavities which are likely to have come from 
spheres from cavities resulting from compaction pores etc.

In Figure 10, an example of the finally calculated air void distribution is presented, described as 
accumulated volume of air as a function of void size. Also seen is this figure is the effect of 
choice of the parameter Roundness, which is one of the parameters which can be used as a 
criterion for separating circles produced by true air voids from those circles produced by 
irregular voids. The parameter Roundness has the value 1.0 for perfect circles and 1.57 for 
squares. The choice of limiting value for this parameter is also dependent on the absolute size of 
the individual object (due to the way screen pixels represent objects). In the calculations, the 
value of Roundness was finally set to R = 2.5 (a lower value would discriminate objects which, 
by visual inspection, most likely to stem from voids which act protectively just like air voids. 
Recalculations with varying values can be made quite easily.

Finally, in the microscope image there are some circles in the plane which are cut by the frame 
of the image. Such edge objects disturb the calculated air void size distribution. A way of 
handling these objects is described in the original report. 

Figur 10: Effect of choice of value of parameter Roundness on calculated accumulated air content.  
Sample B7A (w/c 0.40), (not adjusted for edge objects).

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

A
cc

um
ul

at
ed

 v
ol

um
e 

of
 a

ir 
vo

id
s 

[m
m

³ a
ir/

m
m

³ m
trl

]

Diameter (upper class limit) [µm]

B7A
Max "Roundness": 1.5

Max "Roundness": 2

Max "Roundness": 3

Max "Roundness": 10



8

4. RESULTS

4.1 Results from air void system analysis

The specific surface of air voids and/or air void systems may be defined in different ways. In 
this study, the specific surface is calculated as the total surface area of all (spherical) air voids, 
divided by their total volume:

)(

)(

0

0

dVn

dAn

d
d

d
d

�

�
	

�

	

��


( 5 )

This equation produces a value which is not equal to that calculated according to Powers’
definition (which is calculated under presumption that all voids are of the same size).

4.2 Results from scaling tests

The amount of scaling for each concrete type after 28 cycles is given in figures 13 and 14.

Figur 13: Spread in accumulated scaling (28 cycles) for concretes of w/c 0.50.For each concrete three 
samples were tested (=one ring).In cases where only two circles are visible, the third one is 
hidden by one of the other two.
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Figur 14: Spread in accumulated scaling (28 cycles) for concretes of w/c 0.40. (Concrete quality B2D 
was not tested.)

5. DISCUSSION

5.1 Relations between scaling and air void system parameters - ”traditional way”

The traditional ways of seeking relations between air void system parameters and frost induced 
deterioration (pure frost or salt frost) is by plotting scaling vs. air content, specific surface of 
voids or Powers’ spacing factor. Examples of such plots are given in figures 19-21. As seen in 
the figures, these relations are rather poor.
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Figure 19:Accumulated scaling (mean of threesamples) vs. Total air content determined as accumulated 
air content in calculated air void size distribution.

Figur 20a: Acc scaling (each dot = mean of three samples) vs. Powers spacing factor. 
Spacing factor determined from total calculated air content and with specific surface 

calculated acc. to eq 5.
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Figur 20b: Acc scaling (each dot = mean of three samples) vs. Powers spacing factor. 
Spacing factor determined acc. to ASTM C457 (linear traverse). 

Figure 21:Accumulated scaling (mean of three samples) vs. specific surface of air void 
system acc. to eq 5.

According to Laugesen [5], Dansk Beton Teknik describes the quality of an air void system by 
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chords shorter than 350µm. Plotting accumulated scaling vs. this parameter produces the graph 
shown in figure 22. Apparently, there is a reasonably good correlation for the 0.40 concrete, but 
not for the 0.50 concrete.

Figure 22:Accumulated scaling after 28 cycles (one dot = mean of three samples) vs air content as 
calculated fraction chords shorter than 350µm of total travers length.

As seen above, relating scaling to one, single air void system parameter tends to result in 
insufficient relations. Thus, one may try relating scaling to a combination of parameters. 
Different ways of doing this are shown in figures 23 and 24. In these figures, the amount of 
scaling is represented by the area of circles. (More examples are given in the original report.)
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Figure 23 : Accumulated scaling ((28 cycles) for concrete of w/c 0,40 (represented relative to each other 
by the area of circles) in  relation to specific surface (eq 5) and the Powers spacing factor.

Figure 24: Amount of scaling (relative to each other, represented by area of circles) n relation to specific 
surface (eq 5) and total air content, w/c 0.40. Red line according to eq (6) with arbitrarily 
chosen parameters.
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critical value for both specific surface and for total air content. Thus an equation of the 
following form may be set up:

� �� � kLL critcrit ���

 ( 6 )

in which k is some critical limit value which has to be derived from tests according to the 
appropriate test method (SS 13 72 44 or which other method is to be used).

In figure 24, a line has been drawn according to this equation. The parameters 
crit, Lcrit

5.2 Some words about protective and non-protective voids

and k
were chosen arbitrarily to produce a line in an area that seemed reasonable. However, it is seen 
that the line may very well be drawn lower in the graph (i.e. the critical values for the respective 
parameters might be set lower). This kind of equation might be useful, but needs to be calibrated 
for the appropriate test method.

Which voids should be disregarded? Which voids have a protective effect with respect to frost 
attack? It cannot really be expected that a relation between salt frost scaling and parameters of 
the air void system as determined in a microscope analysis alone will be found. This is due to 
that some of the voids probably will become completely filled with water very quickly when the 
concrete is subjected to water [6], and some will become partly filled. Thus some of the air 
voids that are detected in the microscope do not have a protective effect. Such voids must be 
excluded when analyzing the relation between scaling and air void system parameters. The 
question of how to do this exclusion remains open. An attempt was made to study this: For 
concrete of w/c 0.40, scaling was plotted vs. total air content in voids of diameter D>250µm, fig 
25. The relation is not very good, and for w/c 0.50 it is even worse. A continued experimenting 
with choice of limiting void sizes might have proven successful. However, since we know only 
little about the process of water filling of air voids (e.g. we do not know for sure whether small 
voids are completely filled before larger ones start filling), it is difficult to make a rational 
choice of limiting void size, and because there are uncertainties in the determination of air void 
size distributions, it is meaningless to carry this study any further in this text. (More information 
is found in the original report.)

Furthermore, in the automated image analysis, voids are described with various parameters, and 
in the subsequent calculation from 2D to 3D distributions, some cavities of a too irregular (non 
circular) shape are disregarded. This may not be a correct procedure; since many of the 
compaction pores are of the same size as air voids, they are not likely to get filled with water 
easily, and thus they probably do provide some protection against frost destruction. Thus they 
should in fact be included in the calculations. Then, on the other hand, these irregular voids 
cannot be treated with the mathematics described above, and thus including them in this 
calculation will cause an error in the calculation of different air void system parameters.
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Figure 25: Scaling vs. total air content [m3/m3

6. ALTERNATIVE TECHNIQUE FOR PREDICTING SALT FROST SCALING 
FROM ONE SINGLE AIR VOID SYSTEM PARAMETER

] in air voids of diameter >250µm.Concrete of w/c 0,40.

It should be clear that the demands on a high quality air void system are both that the total air 
volume must be large enough to provide space for ice formation (whichever way the ice 
formation process takes place), and

From this reasoning, it was hypothesized that for reasonably normal air void systems, the 
accumulated surface area of all air voids might be useful for assessing the quality of an air void 
system; Provided that the accumulated surface area is large enough, the total volume of air will 
be large enough and at the same time the flow distances will be kept short enough. This should 
hold true at least as long as ordinary air entraining agents are used. Minor shortcomings in flow 
distance might be counterbalanced by increased air content and vice versa. 

that the distances between spheres must not be too large. 
Together, these two requirements result in an air void system in which the total sum of air void 
surface areas has some value: Small voids produce a large surface area per unit volume, but if 
there are too few of these small voids, the total air content will be too low. On the other hand, 
large voids will produce a volume large enough to allow ice formation without any stresses in 
the matrix, but then again, if there are too few of these large voids, the flow distance between 
them may become too large. 

In figure 26 the accumulated scaling of all concretes tested in this project are plotted vs. the 
accumulated surface area of their respective air void systems. The results seem to be fairly well
gathered together, with concretes of w/c 0.50 consistently showing larger amounts of scaling (as 
might be expected). At least, there is a more obvious relation between this parameter and scaling 
than for any of those relations presented above (air content, specific surface or Powers spacing 
factor, etc.).
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Figure 26: Scalings after 28 cykler plotted vs. the accumulated surface area of the entire air void system. 
In the calculatin of surface area, it is assumed that all voids are empty (non of them are filled 
with water).

Lines/equations have been fitted to the plots. As seen (especially for w/c 0.40) the dots actually 
show more clearly that scaling increases substantially as the total surface area is reduced below 
some 1500 m2/m3 of concrete than the equation

The logical background as to why this parameter might be useful may be visualized as follows: 
When ice forms in concrete, destruction may be caused either by hydraulic pressures or by 
microscopic ice lens growth (or a combination). In either case, there has to be empty space 
enough to accommodate the excess volume that appears, and also, the flow distance for water 
must not be too long. It is known that for many brittle, porous materials, there exists a critical 
thickness below which a thin flake will not be destroyed by frost even if it is frozen in a 100% 
complete saturation [7,8]. This is believed to be so because the flow distance for water to the 
surface is short enough. For concrete this critical thickness is in the order of 1 mm. Thus, if a 1 
m

reveals. (A reduction of surface area below this 
value leads to an increase in scaling, while an increase in surface area has little ability to reduce 
the scaling.) Of course, the required surface area needs to be calibrated in a full scale test with 
the appropriate test method (SS137244 etc.)

3 cube of concrete were sliced into 1 mm thick discs (figure 27), the flow distances would be 
short enough and the discs would not be destroyed. The drainage area created in such a cube by 
this slicing is 2000 m2 (1000 slices with two surfaces), i.e. 2000 m2/m3

Of course, the remarks made under subheading 5.2 apply also for this way of evaluating the air 
void system. And, again, there also has to be a minimum requirement on the total air content to 
accommodate the excess volume created by the ice formation.

. This drainage area is of 
the same order of size as indicated in figure 26. Although the geometries are very different, the 
correct order of size indicates that the proposed evaluation technique may be relevant.
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Figure 27:Illustration to the slicing of a concrete cube into thin slices of thickness  Dcrit

7. CONCLUSIONS

.

Despite the use of different ways to change the air void system, the size distribution of the air 
void systems were very similar; More or less only the total number of bubbles increased, and 
thus the total air content. For a truly meaningful analysis of the relation between air void system 
parameters and salt frost scaling, it is necessary to produce concretes of radically different air 
void size distributions.

Using accumulated surface area of all voids in the air void system may be an effective tool for 
assessing the salt frost resistance of a concrete. The exact need for surface area is probably 
related to water cement ratio and to volume of paste. And of course, a certain total empty air 
volume too is required. The surface area required for acceptable salt frost resistance in 
laboratory tests needs to be determined from scaling tests according to standardized methods. 

The methodology for air void system analysis needs to be improved in order to improve its 
repeatability.

The tool that was the aim of this project may prove successful on a relative scale rather than an 
absolute scale: In the pre-testing of concrete for a project, the air void system of concrete that is 
approved for use in the project may be analyzed and then, when the construction work starts, the 
cast concrete can be analyzed and compared to the concrete that was approved in pre-testing. In 
this way, changes in the air void structure may be discovered at an early stage, and subsequent 
problems with insufficient salt frost resistance may be avoided.

A continued analysis of the results in the original report might reveal better assessment 
techniques than those studied hitherto. An attempt will be made to finance such a study. 
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